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ABSTRACT

HYBRID METAHEURISTIC ALGORITHMS
FOR SINGLE AND MULTI-OBJECTIVE 2D BIN PACKING PROBLEM

Beyaz, Muhammed

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Ahmet Coşar

Co-Supervisor : Dr. Tansel Dökeroğlu

January 2015, 86 pages

2D Bin packing problem (2DBPP) is an NP-hard combinatorial optimization prob-
lem. Objects with different width and length sizes are packed in order to minimize
the number of unit-capacity bins according to an objective function. Single or multi-
objective versions of this well-known industrial engineering problem can be faced
frequently in real life situations. There have been several heuristics proposed for the
solution of 2DBPP until now where it is not possible to find the exact solutions for
large problem instances. Next fit, First Fit, Best Fit, Unified Tabu Search and Ge-
netic Algorithms are some of these algorithms. Recently, Memetic Algorithms have
put themselves forward as a new area of research in evolutionary computation with
their ability to combine different heuristics and local search mechanisms together for
higher quality solutions. In this thesis, we propose a set of single and multiobjective
memetic and genetic algorithms that make use of the state-of-the-art metaheuristics
and local search techniques for the solution of 2DBPP. We analyze the optimization
time and the resulting solution quality of the algorithms on a 2DBPP benchmark of-
fline problem set with 500 instances. Through results of exhaustive experiments and
with the aid of a novel visual analyzer developed in this study, we conclude that the
proposed memetic and hybrid genetic algorithms are robust with their ability to ob-
tain very high percentage of the optimal solutions for the given benchmark problem
instances.
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ÖZ

TEK VE ÇOK AMAÇLI İKİ BOYUTLU KUTU PAKETLEME PROBLEMİ İÇİN
MELEZ METASEZGİSEL ALGORİTMALAR

Beyaz, Muhammed

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ahmet Coşar

Ortak Tez Yöneticisi : Dr. Tansel Dökeroğlu

Ocak 2015 , 86 sayfa

İki boyutlu kutu paketleme problemi çözümü polinom zamanlı olmayan (NP) kombi-
natoriyal bir problemdir. Farklı genişlik ve uzunluktaki nesnelerin en az kutu kapla-
yacak şekilde birim kapasiteli kutulara bir nesnel fonksiyonun en az sonuç üretecek
şekilde yerleştirilmesidir. Çok bilinen bu endüstri probleminin çok amaçlı versiyon-
larıyla gündelik hayatta sıkça karşılaşılmaktadır. Kesin çözüm bulmanın mümkün ol-
madığı büyük ölçekli 2 boyutlu kutu paketleme problemleri için şimdiye kadar birkaç
sezgisel yöntem önerilmiştir. Sonraki Ekleme, İlk Ekleme, En İyi Ekleme, Birleşik
Tabu Araması ve Genetik Algoritmalar bu algoritmaların en çok kullanılan birkaçıdır.
Son zamanlarda, farklı sezgisel ve lokal aramaları birleştirerek daha yüksek kalitede
sonuç üreten Memetik Algoritmalar evrimsel hesaplamalarda yeni bir araştırma alanı
olmuştur. Bu tezde, 2 boyutlu kutu paketleme problemi için metasezgisel ve lokal
aramayı kullanan tek ve çok amaçlı memetik ve genetik algoritmalardan oluşan bir
çözüm kümesi sunduk. 500 problem içeren çevrimdışı bir problem kümesi ile algorit-
malarımızın optimizasyon zamanlarını ve sonuç kalitelerini analiz ettik. Bu projede
geliştirdiğimiz görsel analiz aracı ile de yapılan yoğun testler sonucunda, geliştirdiği-
miz memetik ve genetik algoritmaların kullanılan problem kümeleri üzerinde yüksek
oranda optimum sonuç ürettiği neticesine vardık.
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CHAPTER 1

INTRODUCTION

Given a set of rectangular items and a 2D bin of fixed width and variable length, the

two-dimensional bin packing problem (2DBPP) consists of orthogonally placing all

the pieces within the bin, without overlapping, such that the overall number of the bins

is minimised [1, 2, 3, 4, 5]. The 2DBPP is an intractable optimization problem and

widely faced during the industrial manufacturing processes. Textile manufacturing

and newspaper page design are some of these optimization areas.

Online and offline are two different categories of 2DBPP according to the availability,

at the beginning, of information about input. Online bin packing (OnBP) means that

objects arrive one by one and there is no way to know complete input sequence, so

it must be inserted into a bin immediately without waiting other objects. Hard drive

partitioning for online storage systems usually deals with these types of problems.

Offline bin packing (OffBP) means that all of the objects are known before they are

packed so they can be reordered according to insertion heuristics. Plane load planning

is a typical OffBPP.

Orientation is another key aspect of the 2DBPP. Rotating objects in packing creates

better results, but objects may be not rotatable. Textile industry can change the orien-

tation of single color shirts by rotating the shirts while the process is in cutting phase,

because there is no difference between rotation or not. But shipping industry consider

the orientation of fragile items.

In this thesis we study mechanisms, which are inspired by natural evolution, known

as Evolutionary Algorithms (EA). Reproduction, mutation, recombination and selec-

1



tion are key mechanisms of EA that are used to solve optimization problems. Bin

Packing, Travelling Sales Person and Quadratic Assignment Problem [5, 6] are well-

known problems that are solved with EAs. Genetic Algorithm (GA) and Memetic

Algorithm (MA) are the most well-known approaches of EAs. The objective of these

optimization problems can be single or multi-objective. GA mimics the natural evo-

lution process and has the ability to find optimal solution in a large search space. In

nature, survival of the fittest is a rule allowing the fittest solutions in each iteration to

converge a (near-) optimal solution in a short time. In GA, the fittest of individual is

the solution of optimization problems:

• Parents mate and produce offsprings

• Some of individuals are mutated

• Best individuals are selected to survive to the next generation

MA is another growing are of EA. It mimics natural evolution process but it may differ

from GA by performing individual learning which is also known as meme(s). As in

GA, MA applies below list to find (near-) optimal solution of optimization problems:

• Parents mate and produce offsprings

• Some of individuals are mutated

• Individual learning is performed (local search)

• Best individuals are selected to survive

In this thesis, we propose four different techniques to solve two different 2D of-

fline BPPs. In each technique, we use some of well known heuristics: Finite Next

Fit (FNF), Finite First Fit (FFF), Best Fit Decreasing Height (BFDH), Unified Tabu

Search(UTS)Improved Left Gap Fill (LGFi) and oriented Improved Left Gap Fill

(LGFof).

The objective of our first problem is minimizing the number of bins. Orientation

is crucial part of bin packing problems so we developed two different multi-heuristic

single objective memetic algorithms (MH-SOMA). Our first algorithm, MHO-SOMA,

uses heuristics: FNF, FFF, BFDH, UTS and LGFof. It tries to minimize the number

2



of bins for orientated 2D offline BPP. Our second algorithm, MHNO-SOMA, uses

heuristics: FNF, FFF, BFDH, UTS, LGFof and LGFi in order to minimize the num-

ber of bins for non-orientated 2D offline BPP.

Our second optimization problem tries to find a pareto-optimal solution for both the

minimal number of bins and the most efficiently load-balanced placing of the rectan-

gular items. We propose two different multi-heuristic multi-objective genetic algo-

rithms (MH-MOGA). The first proposed multi-objective technique, MHO-MOGA,

uses heuristics: FNF, FFF, BFDH, UTS and LGFof to solve oriented multi objective

2D offline BPPs. The second proposed multi-objective technique, MHNO-MOGA,

uses heuristics: FNF, FFF, BFDH, UTS, LGFof and LGFi. It tries to find pareto-

optimal solution (minimal number of bins and most effective load-balancing of items)

for non-oriented multi objective 2D offline BPPs.

Through exhaustive experiments with 500 benchmark problem instances, we analyze

the performance of our novel algorithms.

3
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CHAPTER 2

RELATED WORK

In this chapter, we give information about the well known metaheuristics/heuristics

such as Next Fit, First Fit, Best Fit, Unified Tabu Search, Left Gap Fill, Genetic

Algorithm and Memetic Algorithm which are used to solve 2DBPP.

Next Fit is a level-oriented packing heuristic. It keeps a current level and tries to pack

item into current level, if item does not fit then it creates a new level as current level

and insert the item into current level.

First Fit is another level-oriented packing heuristic. It keeps all levels in all bins and

tries to pack an item into first available level, if the item does not fit into any level

then it creates new level and insert the item into new level

Best Fit is another level-oriented packing heuristic. It keeps all levels in all bins. First

it calculates remaining gaps of all level even if we pack the item to that level and then

tries to pack the item into minimum remaining gap level, if the item does not fit into

any level then it creates new level and insert the item into new level.

Unified Tabu Search is a variant of Tabu Search Algorithm. First it packs the items

into bins and then tries to replace items in order to minimize the number of bins.

While minimizing the number of bins, it keeps a list known as tabu list and keeps

track of last replacement movements.

Left Gap Fill tries to pack items into left most position of bin by calculating the best

item which can fit into current gap.

Genetic Algorithm is an evolutionary algorithm. It tries to exploit the global search

5



space by mating best solution of problem. It uses inheritance, mutation, selection and

crossover of natural evolution.

Memetic Algorithm is another evolutionary algorithm. It combines global search with

an individual learning method.

2.1 Next Fit

Meir and Moser introduced a new packing algorithm in 1968 [32]. This algorithm

packs the largest square cube into the left most corner of the hyberbox, and then it

picks the second largest cube. It checks the remaining part of ground level of the

hypercube. If the remaining part is enough then it inserts the second largest square

cube into the position which it can touch the first largest cube. If the second largest

cube cannot fit then it creates a new level with height of first largest cube and tries to

insert the second largest cube at that level. This new introduced algorithm is known

as Next Fit Decreasing (NFD) algorithm.

Coffman et al. studied on the NFD in order to pack the rectangles into rectangles or

strips. This new extended algorithm is called Next Fit Decreasing Height (NFDH)

algorithm [28].

Berkey and Wang enhanced Coffman’s approach and proposed a new algorithm known

ad Finite Next Fit (FNF). This level-oriened algorithm packs the item into finite bin

set in one phase [35].

2.2 First Fit

Johnson et al. examined the good placement heuristics. One of the heuristics is known

as First Fit (FF) [40]. In FF, items are packed into the first bin which has available

space for item. First Fit Decreasing (FFD) algorithm is another variant of FF. It first

sorts the items in descending order and then applies FF.

Coffman et al. applied non-increasing height sorting to FFD for 2DBPP and intro-

duces a new algorithm First Fit Decreasing Height (FFDH) [28].
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Berkey and Wang enhanced Coffman’s first fit approach and proposed a new algo-

rithm Finite First Fit (FFF) [35]. This level-oriened algorithm packs the item into

finite bin set in one phase.

2.3 Best Fit

Johnson et al. described another good placement heuristics Best Fit (BF) algorithm

[40]. It is similar to FF algorithm but items are inserted by remaining space in the bin.

It calculates all the remaining spaces and inserts the item into bin which has smallest

remaining space. Best Fit Decreasing (BFD) algorithm is an extended version of BF.

First it sorts the items and then items are inserted.

Berkey and Wang enhanced BF and proposed a new algorithm Finite Best Strip Pack-

ing (FBSP) [35]. FBSP is a two level algorithm. At first level, items are inserted

according to BF. At second level, prepared strip result is divided into levels and levels

are merged into bins by using remaining horizontal space.

Coffman and Shor [23] described a new method similar to FBSP algorithm. It first

sorts the items according to decreasing height and then inserts them by using BFD

algorithm. This algorithm is Best Fit Decreasing Height (BFDH).

2.4 Unified Tabu Search

In 1986, Glover developed a new algorithm which is known as Tabu Search (TS)

[19]. Glover described the details of algorithm [20, 21]. TS is composed of stopping

condition, keeping tabu list, neighborhood search and aspiration condition. Stopping

condition checks the endpoint of search. Tabu list keeps the track of last known

moves in order to not to stuck in local optima. Neighborhood search is minor changes

(swaps) of items. Aspiration condition or fitness function calculates the value of

current search.

Lodi et al. developed new heuristics for different 2DBPP and used these heuristics

within TS [11]. Lodi et al. explained the detail of their Unified Tabu Search (UTS)
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algorithm [12] .

2.5 Left Gap Fill

Burke et al. introduced a new best fit strategy in order to pack 2D rectangles into

strip [29]. New heuristic is using dynamic selection of best fit strategy in order to

choose next rectangle. It used two stages processing of rectangles. First stage is

preprocessing which rotates items whose height is greater than width and then sorts

the item by decreasing width. Second stage it inserts items by using leftmost, tallest

neighbor or shortest neighbor heuristics.

Bennell et al. enhanced the Burke strip packing strategy and used it to solve two

dimensional bin packing problem [9]. It used the same preprocessing strategy and

packing best fit rectangle into bin by using waste space insertion. This algorithm is

known as Best Fit Bin (BFB). Lee changed BFB algorithm to Lowest Gap Fill (LGF)

algorithm by using left most position search instead of waste space insertion [31].

Wong and Lee improved LGF into Improved Lowest Gap Fill (LGFi) by changing

the shortest edge as remaining gap and also developed a new version of LGFi in order

to pack oriented bin packing known as Oriented Improved Lowest Gap Fill (LGFof)

[30].

2.6 Genetic Algorithms

Bremermann offers a mathematical model for solving problems by using gene (so-

lutions), mutation and crossover [26]. This is the start point of Genetic Algorithms

(GA). Holland extended GA and developed a framework for it [25]. This study made

GA more applicable in computing enviroment. Goldberg introduced GA terminol-

ogy and application areas [16]. Goldberg solves some problems in order to show the

application of GA in a real problem. He also describes the implementation of the

functionalities of genetic algorithm.

Smith tried to find the maximum number of rectangles that can be packed into a

bin by using GA [14]. He used permutation of rectangles in order to encode the
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chromosomes so the sequence of rectangles becomes important. The sequence gives

the solution.

Hopper and Turton found solution to rotatable objects bin packing problems by use

of BL and BLF heuristics [17]. He used order-based (permutation) encoding schema.

Crossover and mutation generate valid chromosomes. There are two types of muta-

tion operation. First one is order changing mutation and second one is rotation.

Kröger et al. creates a new vision of genetic algorithm encoding [13]. Directed Graph

(DG) based encoding is used with top and right insertion technique. If a problem

arises, then indices which shows priority are used to solve problem.

2.7 Recent Studies

Thapatsuwan et al. aim to find an optimal solution for multiple container packing

problem [39]. Their study is composed of three different algorithms which are Artifi-

cial Immune System (AIS), GA and Particle Swarm Optimization (PSO). Result part

of the study shows that according to found parameter sets AIS is better than GA and

PSO but its run time is at least four times greater than GA.

Lim et al. encountered a practical problem California Vehicle Code (CVC) [10] .

Containers are prepared by an oversea company and delivered in USA. Trucks has

to obey axle weight constraints. A Greedy Randomized Adaptive Search Procedure

(GRASP) is used in order to meet criteria.

Gonçalves and Resende presented a new way of 2DBP and 3DBP with Biased Ran-

dom -Key Genetic Algorithm (BRKGA) [22]. He developed two different insertion

heuristics which are based of Distance to the Front-Top-Right Corner (DFTRC) rule.

DFTRC1 is calculating the distance according to the current presentation of box so it

is available for oriented bin packing and DFTRC2 is calculating the distance for all

the possible orientation of box so it is good to use it for orientation free problem.

Lopez-Camacho et al. suggested a heuristic and hyperheuristic method for packing

problems [18]. Heuristics are FFD, Filler, BFD, Djang and Finch with initial full-

ness of DJD 1
2 , DJD1

3 and DJD1
2 . Hyperheuristic finds the best combination of these
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heuristic in order to solve one instance. GA is used to find hyperheuristics. Principle

Component Analysis (PCA) is used to analyse BPPs.

Bennell et al. proposed a MultiCrossover Genetic Algorithm (MXGA) with BFB

heuristic for NO-2DBPP with Due Dates (DD) [8]. BFB is a variant of BF heuristic

and it has two phases. Phase one rotates the bins in order to maximize width and phase

two sorts items with decreasing height. GA assigns the bin number of rectangles.

Fitness function considers minimum number and minimum latency.

Fernández et al. considered rotation of items and Load Balancing (LB) of bins as

multi-objective [4]. Multi-Objective Memetic Algorithm (MOMA) is developed. In-

sertion heuristic is made of two phase. First phase is using BLF heuristic and second

phase is dividing bin into many bins in order to meet level criteria. Two types of

local optimizers are used. First local optimizer tries to minimize the number of bins

by trying the items from emptiest bin to insert to most occupied bin. Second local

optimizer tries to gathers the items from most occupied zones of bins and insert them

into new bins.

Blum and Schmid described an evolutionary algorithm (EA) for free guillotine ori-

ented two-dimensional bin packing problem (FG-O-2DBPP) [3] . The proposed al-

gorithm is based on LGFi heuristic. Crossover operator is a variant of uniform order-

based crossover.

Bansal and Khan used Round and Approximation Framework to pack 2D rectangles

with and without rotation [46] . The proposed technique divides rectangles into five

group: big, wide, long, medium and small. It creates containers with wide and long

group of rectangles. First, it packs big, containers and medium by brute force ap-

proach. Then, it packs small rectangles by Next Fit.

Recent studies shows that bin packing problems do not have exact solutions. Recent

optimization techniques such as GA, MA, PSO and AIS are tried to be applied for

packing problems as soon as possible. Real life applications of BPP are not just

about minimizing the number of bins so recent studies not only try to minimize the

number of bins but also tries to keep balance of bins. Industrial engineering is curious

about the solution of BPP.
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2.8 Memetic Algorithms

Dawkins unfolded a new idea of gene-centered view of evolution. He coined a new

phrase “meme” which means a behavior is passed from one individual to another in-

dividual. Moscato inspired by the book “The Selfish Gene” and developed a term

Memetic Algorithm (MA) [37] . MA is also known as Hybrid Evolutionary Algo-

rithms (HEA). It is a hybridization of population-based search and local search tech-

nique. In this study, he used MA as a combination of GA and Simulated Annealing

(SA) for Travelling Sales Person (TSP) and some other problems. Moscato and Cotta

described terms about MA and gave guidelines about the MA implementation [38] .

MA uses two different learning methods. First one is Lamarckian Learning. In

Lamarckian Learning, individuals learn during their lifetime and keep the values of

local search improvement. In selection mechanism, fitness of individuals are eval-

uated according to their local search improvements, so best improved fitnesses are

transferred to next generation with their improvement information in genotype. Sec-

ond one is Baldwinian Learning. In Baldwinian Learning, local search is applied to

individual and fitness value of individual is calculated by the use of local learning,

but local improvements are not part of genotype, so local search improvements are

passed indirectly to next generation. Whitley et al. argued that Lamarckian Learning

is faster than Baldwinian Learning but results of Lamarckian Learning can converge

to local optima faster than Baldwinian Learning [15]. In 2005, Yao et al. showed

that there is no significant difference between Lamarckian and Lamarckian Learnings

[45] .

Development of MA can be divided into three generations. First generation de-

scribes the basis of Memetic Algorithm. It introduced Memetic Algorithm as mar-

riage between a global search techique with local learning. Hyper-heuristic [24],

Meta-Lamarckian MA [42] and Multi-meme [33] are classfied as second generation

of MA. In Hyper-heuristic and Meta-Lamarckian MA, a reward mechanism is applied

to individuals. Past values of memes are considered for reward value and individuals

with higher reward values have more chances to survive and be replicated. In Multi-

Meme, memes are considered as a part of individual (genotype) so inheritance is used

to passed memetic behavior of individuals to their offsprings. Third generation of MA
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uses Co-evolution [27] and self-generation [34]. Rule-based local search is applied to

heuristic so repeated patterns are captured and individuals are nourished by captured

patterns.

Fischer and Merz developed a MA for cost-based communication problem. Recom-

bination and mutation of population is proposed for global search and Ahuja and

Murty (AM) tree improvement heuristic (AM-H) and the Random Sampling Ahuja

and Murty (RSAM) algorithm are used for local search heuristics [44].

Merz and Freisleben proposed Genetic Local Search (GLS) algorithm for quadratic

assignment problem (QAP). Proposed algorithm uses GA for global search and swap-

ping items for local search [36].

Wolf and Merz described a new algorithm for supply chain problems. Linear pro-

gramming (LP) is used as local search heuristic and mutation based filter checks off-

spring generation is applied for global search technique [43] .
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CHAPTER 3

PROPOSED ALGORITHMS

2DBPP is an NP combinatorial problem. In daily life, humans encounter this problem

directly or indirectly. Minimizing the textile usage for a manufacturer and planning

the position of advertisements in a newspaper are well known problems. Some pack-

ing problems must be considered to solve with other objectives such as load balanc-

ing, due dates, etc.

In this thesis, we tried to solve two different packing problems. For each problem, we

developed two different algorithms.

Our first problem is minimizing the number of bins. We developed MHO-SOMA for

oriented 2D offline BPP and MHNO-SOMA for non-oriented 2D offline BPP.

Minimizing number of bins and increasing load balance is our second problem. We

proposed MHO-MOGA for oriented 2D offline BPP and MHNO-MOGA for non-

oriented 2D offline BPP.

In first section, mathematical formulation of problems are described. In second sec-

tion, we defined orientation in packing problems. In third section, we gave informa-

tion about heuristics (FNF, FFF, BFDH, UTS, LGFof and LGFi) which are used in

proposed algorithms. In fourth and fifth sections, we described details of our proposed

algorithms (MHO-SOMA, MHNO-SOMA, MHO-MOGA and MHNO-MOGA).
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3.1 Problem Definition

Load balancing for 2DBPP means that trying to balance total moments of rectangles

which are on the left of centre of gravity (CG) of bins with total moments of rectangles

which are on the right of CG of bins according to CG of bins. In our case, Euclidean

Center of bin is considered as CG of bin. CG of bin and CG of rectangle is shown in

Figure 3.1:

Figure 3.1: CG of bin and CG of rectangle

Two different load balancing of two different bins with same rectangle list is shown

in Figure 3.2 and Bin2 has better load balance than Bin1.

Figure 3.2: Bin1 (left) and Bin2 (right), red dot for CG of bin, green dots for CG of
rects and blue dot for CG of load
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Definition of concept and mathematical formulation of single objective and multi-

objective bin packing problem will be explained in two subsections.

3.1.1 Single Objective 2DBPP

Single objective two dimensional bin packing [39, 3] tries to

minimize

C =

n∑
j=1

c j (3.1)

subject to

xi + (wiwx
i ) + (hihx

i ) ≤ xk + (1 − leik) , ∀i, k, i < k (3.2)

xk + (wkwx
k) + (hkhx

k) ≤ xi + (1 − riik) , ∀i, k, i < k (3.3)

yi + (wiwx
i ) + (hihx

i ) ≤ yk + (1 − unik) , ∀i, k, i < k (3.4)

yk + (wkwx
k) + (hkhx

k) ≤ yi + (1 − abik) , ∀i, k, i < k (3.5)

leik + riik + unik + abik ≤ pi j + pk j − 1 , ∀i, k, i < k (3.6)

C∑
j=1

pi j = 1 , ∀i (3.7)

B∑
i=1

pi j ≤ Mc j , ∀ j (3.8)
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xi + (wiwx
i ) + (hihx

i ) ≤ W j + (1 − pi j)M , ∀i, j (3.9)

yi + (wiw
y
i ) + (hih

y
i ) ≤ H j + (1 − pi j)M , ∀i, j (3.10)

wx
i ,w

y
i , h

x
i , h

y
i , leik, riik, abik, unik, pi j, c j ∈ 0, 1 , ∀i, k, i < k (3.11)

xi, yi ≥ 0 , ∀i (3.12)

Variables of formulation are described as

C total number of bin
wi, hi indicates width and height of rectangle i
W j,H j indicates width and height of bin j
xi, yi indicates left-bottom corner of rectangle i as coordinate
wx

i ,w
y
i binary variables indicate width of rectangle i is parallel to

X and Y axis
hx

i , h
y
i binary variables indicate height of rectangle i is parallel to

X and Y axis
leik a binary variable indicates rectangle i is placed on the left side of

rectangle k
riik a binary variable indicates rectangle i is placed on the right side of

rectangle k
abik a binary variable indicates rectangle i is placed above rectangle k
unik a binary variable indicates rectangle i is placed under rectangle k
pi j a binary variable indicates; pi j = 1 if rectangle i is placed in

bin j otherwise pi j = 0
c j a binary variable indicate; c j = 1 if bin j is used otherwise c j = 0
M an arbitrarily large number used in Bin-M constraints

According to above definitions

• constraints (Eq. 3.2-3.5) ensure that none of the rectangles overlaps each other

• constraint (Eq. 3.6) makes sure non-overlapping rectangles

• constraint (Eq. 3.7) guarantees that each rectangle is packed only in single bin
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• constraint (Eq. 3.8) indicates that a bin is used iff a rectangle is packed into it

• constraints (Eq. 3.9-3.10) guarantee that all rectangles in the bin do not exceed

the dimensions of the bin

• constraints (Eq. 3.11-3.12) describes the range of variables

3.1.2 Multi-Objective 2DBPP

Multi-objective two dimensional bin packing with load balancing [39, 3, 4] tries to

minimize

(C/2 + LB/2) (3.13)

when

C =

n∑
j=1

c j (3.14)

LB =

C∑
j=1

∣∣∣∣∣∣∣
B∑

i=1

pi jdimi j

√
(xi j + (wi j/2) − xCG)2 + (yi j + (hi j/2) − yCG)2

∣∣∣∣∣∣∣ (3.15)

subject to

xi + (wiwx
i ) + (hihx

i ) ≤ xk + (1 − leik) , ∀i, k, i < k (3.16)

xk + (wkwx
k) + (hkhx

k) ≤ xi + (1 − riik) , ∀i, k, i < k (3.17)

yi + (wiwx
i ) + (hihx

i ) ≤ yk + (1 − unik) , ∀i, k, i < k (3.18)

yk + (wkwx
k) + (hkhx

k) ≤ yi + (1 − abik) , ∀i, k, i < k (3.19)
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leik + riik + unik + abik ≤ pi j + pk j − 1 , ∀i, k, i < k (3.20)

C∑
j=1

pi j = 1 , ∀i (3.21)

B∑
i=1

pi j ≤ Mc j , ∀ j (3.22)

xi + (wiwx
i ) + (hihx

i ) ≤ W j + (1 − pi j)M , ∀i, j (3.23)

yi + (wiw
y
i ) + (hih

y
i ) ≤ H j + (1 − pi j)M , ∀i, j (3.24)

wx
i ,w

y
i , h

x
i , h

y
i , leik, riik, abik, unik, pi j, c j ∈ 0, 1 , ∀i, k, i < k (3.25)

xi, yi ≥ 0 , ∀i (3.26)

mi j ∈ −1, 1 , ∀i (3.27)

xCG ≥ (W/2) (3.28)

yCG ≥ (H/2) (3.29)

Variables of formulation are described as
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B total number of rectangle
C total number of bin
LB total sum of load balancing
wi, hi indicates width and height of rectangle i
di indicates weight of rectangle i
W j,H j indicates width and height of bin j
xi, yi indicates left-bottom corner of rectangle i as coordinate
xCG indicates x coordinate of center of gravity of bin

which is equal to (W/2)
xCG indicates y coordinate of center of gravity of bin

which is equal to (H/2)
wx

i ,w
y
i binary variables indicate width of rectangle i is parallel to

X and Y axis
hx

i , h
y
i binary variables indicate height of rectangle i is parallel to

X and Y axis
leik a binary variable indicates rectangle i is placed on the left side of

rectangle k
riik a binary variable indicates rectangle i is placed on the right side of

rectangle k
abik a binary variable indicates rectangle i is placed above rectangle k
unik a binary variable indicates rectangle i is placed under rectangle k
pi j a binary variable indicates; pi j = 1 if rectangle i is placed in

bin j otherwise pi j = 0
mi j a variable indicates; mi j = 1 if (xi j + (wi j/2) − xCG) ≥ 0

otherwise mi j = −1
c j a binary variable indicates; c j = 1 if bin j is used otherwise c j = 0
M an arbitrarily large number used in Bin-M constraints

According to above definitions

• constraints (Eq. 3.16-3.19) ensure that none of the rectangles overlaps each

other

• constraint (Eq. 3.20) makes sure non-overlapping rectangles

• constraint (Eq. 3.21) guarantees that each rectangle is packed only in single bin

• constraint (Eq. 3.22) indicates that a bin is used iff a rectangle is packed into it

• constraints (Eq. 3.23-3.24) guarantee that all rectangles in the bin do not exceed

the dimensions of the bin
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• constraints (Eq. 3.25-3.29) describes the range of variables

3.2 Orientation

Orientation means that an object can be rotated (90 angle) or not, while the object is

being packed into bin. If an object of problem can be rotated while it is being packed

into bin, then it is called as non-oriented or orientation-free. If an object of problem

cannot be rotated, then it is called as oriented or orientation-fix. Therefore, if objects

of problem can be rotated, then this problem is a non-oriented bin packing problem.

Otherwise, the problem is an oriented bin packing problem. Textile industry can

change the orientation of single color shirts by rotating the shirts while the process is

in cutting phase, because there is no difference between rotation or not so it is a non-

oriented bin packing problem. But shipping industry must consider the orientation of

loads which are fragile, so it is an oriented packing bin problem.

3.3 State-of-the-art Algorithms

Insertion of items into bins is achieved by the use of heuristics. Each technique can

result in a different arrangement of items so heuristic is one of the key part of BPP.

Large numbers of methods have been proposed for bin packing problem. We choose

six well known heuristics, which are FNF, FFF, BFDH, LGFi, LGFof and UTS, to

pack items. In this study, FNF, FFF, BFDH, LGFi and LGFof heuristics are imple-

mented and TSpack implementation of UTS is used.

3.3.1 Finite Next Fit

Berkey and Wang developed FNF algorithm [35]. The proposed FNF is described

below in Algorithm 1.
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Algorithm 1 Finite Next Fit (FNF) algorithm
1: function FNF(rectList, binWidht, binHeight)

2: sort rectList by decreasing height

3: currentBin← CreateNewBin(binWidth, binHeight)

4: currentLevel← CreateNewLevel(currentBin)

5: n←rectList.length

6: for i← 1, n do

7: if rect(i) fits into currentLevel then

8: pack rect(i) into currentLevel

9: else

10: currentLevel← CreateNewLevel(currentBin)

11: if rect(i) fits into currentLevel then

12: pack rect(i) into currentLevel

13: else

14: currentBin← CreateNewBin(binWidth, binHeight)

15: currentLevel← CreateNewLevel(currentBin)

16: end if

17: end if

18: end for

19: end function

An example of proposed algorithm is shown in Table 3.1 and Figure 3.3:

Table 3.1: Input List with Bin Width = 20 and Bin Height = 20
Rect 1 2 3 4 5 6 7 8 9 10
Height 9 3 5 3 15 10 15 8 4 2
Width 10 8 6 10 2 6 4 3 6 12
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Figure 3.3: Finite Next Fit Output

3.3.2 Finite First Fit

Berkey and Wang introduced FFF algorithm [35]. The proposed FFF is described

below in Algorithm 2.
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Algorithm 2 Finite First Fit(FFF) algorithm
1: function FFF(rectList, binWidht, binHeight)

2: sort rectList by decreasing height

3: n←rectList.length

4: for i← 1, n do

5: m←bins.length

6: for j← 1,m do

7: n←bin(j).levels.length

8: for k ← 1, n do

9: if rect(i) fits into bin(j).level(k) then

10: pack rect(i) into bin(j).level(k)

11: end if

12: end for

13: end for

14: if rect(i) does not fit into any bin then

15: create new bin

16: pack rect(i) into new bin

17: end if

18: end for

19: end function

An example of proposed algorithm is shown in Table 3.1 and Figure 3.4:

Figure 3.4: Finite First Fit Output
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3.3.3 Best Fit Decreasing Height

Coffman and Shor described BFDH algorithm [23]. The proposed BFDH is described

below in Algorithm 3.

Algorithm 3 Best Fit Decreasing Height(BFDH) algorithm
1: function BFDH(rectList, binWidht, binHeight)

2: sort rectList by decreasing height

3: n←rectList.length

4: for i← 1, n do

5: minRemainingS pace← binWidth

6: m←bins.length

7: for j← 1,m do

8: n←bin(j).levels.length

9: for k ← 1, n do

10: if rect(i) fits into bin(j).level(k) then

11: pack rect(i) into bin(j).level(k)

12: if remainingS pace < minRemaningS pace then

13: minRemainingS pace← remainingS pace

14: end if

15: end if

16: end for

17: end for

18: if rect(i) fits fit into any bin then

19: packs the item into minRemainingSpace bin level

20: else

21: create new bin

22: pack rect(i) into new bin

23: end if

24: end for

25: end function

An example of proposed algorithm is shown in Table 3.1 and Figure 3.5:
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Figure 3.5: Best Fit Decreasing Height Output

3.3.4 Unified Tabu Search

Lodi et al explained the detail of their UTS and implemented the algorithm [12]. UTS

algorithm of Lodi is explained below in Algorithm 4.
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Algorithm 4 Unified Tabu Search(UTS) algorithm
1: function TSpack(rectList, binWidht, binHeight)

2: z∗ ← A(f1; : : : ; ng)

3: L← alowerboundontheoptimalsolutionvalue

4: if z∗ = L then

5: stop

6: end if

7: initialize all tabu lists to empty

8: pack each item into a separate bin

9: z← n . Tabu Search solution value

10: d ← 1;

11: determine the target bin t

12: while dotimelimitisnotreached

13: diversity← f alse

14: k ← 1

15: while dodiversi f y = f alseandz∗ > L

16: kin← l SEARCH(t, k, diversi f y, z)

17: z← min(z, z∗)

18: if thenk <= kin

19: determine the new target bin t

20: end if

21: end while

22: if z∗ = L then

23: stop

24: elseDIVERSIFICATION(d, z, t)

25: end if

26: end while

27: end function

An example of proposed algorithm is shown in Table 3.1 and Figure 3.6:
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Figure 3.6: Unified Tabu Search Output

3.3.5 Improved Left Gap Fill

Wong and Lee improved LGF into LGFi [30]. LGFi is used for non-oriented bin

packing problem. The proposed LGFi is described below in Algorithm 5.

27



Algorithm 5 Improved Left Gap Fill Non-Oriented(LGFi) algorithm
1: function LGFi(rectList, binWidht, binHeight)

2: rotate rects to make width greater than height

3: sort rectList by decreasing height

4: currentBin← CreateNewBin(binWidth, binHeight)

5: currentPoint(x, y)← 0, 0

6: while rectList.length! = 0 do

7: rect ← GetNextRectangle(rectList)

8: gapWidth← binWidth − currentPointX

9: gapHeight ← binHeight − currentPointY

10: gap← min(gapWidth, gapHeight)

11: if gap = 0 then

12: currentBin← CreateNewBin(binWidth, binHeight)

13: currentPoint(x, y)← 0, 0

14: else if gap < min(allRemainingRectHeight) then

15: mark are as waste space

16: set currentPoint(x, y) to lowest-leftmost point

17: else if gap = rect.heightorgap = rect.width then

18: pack rect into currentPoint(x, y)

19: set currentPoint(x, y) to lowest-leftmost point

20: remove rect from rectList

21: else if norect f itintogap then

22: rect ← GetNextRectangle(rectList)

23: pack rect into currentPoint(x, y)

24: set currentPoint(x, y) to lowest-leftmost point

25: remove rect from rectList

26: end if

27: end while

28: end function

An example of proposed algorithm is shown in Table 3.1 and Figure 3.7:
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Figure 3.7: LGFi Output

3.3.6 Oriented Improved Left Gap Fill

Wong and Lee improved LGFi for O-BPP and developed LGFof [30]. The proposed

LGFof is described below in Algorithm 6.
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Algorithm 6 Improved Left Gap Fill Oriented(LGFof) algorithm
1: function LGFof(rectList, binWidht, binHeight)

2: sort rectList by non-increasing area

3: currentBin← CreateNewBin(binWidth, binHeight)

4: currentPoint(x, y)← 0, 0

5: while rectList.length! = 0 do

6: rect ← GetNextRectangle(rectList)

7: gapWidth← binWidth − currentPointX

8: gapHeight ← binHeight − currentPointY

9: gap← min(gapWidth, gapHeight)

10: if gap = 0 then

11: currentBin← CreateNewBin(binWidth, binHeight)

12: currentPoint(x, y)← 0, 0

13: else if gap < min(allRemainingRectHeight) then

14: mark are as waste space

15: set currentPoint(x, y) to lowest-leftmost point

16: else if gap = rect.heightorgap = rect.width then

17: pack rect into currentPoint(x, y)

18: set currentPoint(x, y) to lowest-leftmost point

19: remove rect from rectList

20: else if norect f itintogap then

21: rect ← GetNextRectangle(rectList)

22: pack rect into currentPoint(x, y)

23: set currentPoint(x, y) to lowest-leftmost point

24: remove rect from rectList

25: end if

26: end while

27: end function

An example of proposed algorithm is shown in Table 3.1 and Figure 3.8:
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Figure 3.8: LGFof Output

3.3.7 Genetic Algorithm

GA mimics the behavior of the natural evolution process. GA has got the power of

natural evolution process in order to find optimum solution for a large search space.

In GAs, a chromosome means a possible solution for the given problem set. A list

of chromosome generates the population of GA. Each chromosome consists of genes

and has an, encoding schema. Heuristic can be part of a chromosome or genetic

algorithm. Each item of the problem means a gene in the chromosome. Encoding

keeps the identification of items. Heuristic is used to find the fitness value of the

chromosome.

GA has three operators:

• Selection: survival of the individual

• Crossover: mating the parents in order to get offspring

• Mutation: random modification of individual

GA works as follows in Algorithm 7.
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Algorithm 7 Genetic Algorithm (GA) algorithm
1: Initialize population

2: Calculate fitness of population

3: while Best individual (chromosome) does not meet the criteria do

4: Select parents

5: Crossover operation in order to get offsprings

6: Mutation operation over population

7: Determine fitness of population

8: end while

9: Best individual is the solution of problem

3.3.8 Chromosome Structure

Chromosome is a candidate solution of BPP. For 2DBPP, rectangular items are the

genes of a chromosome. In this study, chromosome is not only composed of genes

also it has two heuristics to pack the genes into bins. We have used permutation

encoding to keep the identification of rectangles. Permutation encoding is a form of

keeping width-height of rectangular items and sequence between rectangles.

Chromosome Structure of 2DBPP Explanation of structure is in Figure 3.9:

• W: width of rectangle

• H: height of rectangle:

• Heu1: heuristic one

• Heu2: heuristic two
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Figure 3.9: Chromosome Structure

An example of chromosome is shown Figure 3.10:

Figure 3.10: Example Chromosome

3.3.9 Selection

We have used Elitism as the selection of parents in GA. Elitism means that best chro-

mosomes in the population have the chance to mate in order to create new offsprings.

3.3.10 Crossover

Single point crossover is applied technique in our study. One point is chosen. From

beginning of the chromosome to the crossover point is copied from first parent and

the rest of the chromosome comes from the second parent. Our crossover point is half

of the chromosome. We also get first heuristic from one parent and second heuristic

from other parent.

An example of crossover is shown in Figure 3.11 and Figure 3.12:
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Figure 3.11: Single Point Crossover Chromosome Structure

Figure 3.12: Single Point Crossover Example

3.3.11 Mutation

Mutation ensures the diversity of population. Invalid genes can be generated as a

result of mutation operation. Mutation is only done in the concept of rectangular

items and heuristics are not mutated. In this study, we do not want to create invalid

genes so three types of mutation operations are implemented:

• Swap : Only swaps selected genes

• Rotate : Only rotate object, the value of width and height is swapped

• Swap and Rotate : Selected genes are swapped and rotated

An example of swap mutation is shown in Figure 3.13:
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Figure 3.13: Swap Mutation Example

An example of rotation mutation is shown in Figure 3.14:

Figure 3.14: Rotation Mutation Example

An example of swap-rotation mutation is shown in Figure 3.15:
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Figure 3.15: Swap-Rotation Mutation Example

3.3.12 Memetic Algorithm

MA is another growing are of EA. It also mimic natural evolution process but it may

differ from GA by performing individual learning which is also known as meme(s).

In this study, MA uses the same chromosome structure, selection, crossover and mu-

tation operation of GA.

MA works as follows in Algorithm 8.

Algorithm 8 Memetic Algorithm (MA) algorithm
1: Initialize population

2: Calculate fitness of population

3: while Best individual (chromosome) does not meet the criteria do

4: Select parents

5: Crossover operation in order to get offsprings

6: Mutation operation over population

7: Individual learning is proceed (local search)

8: Determine fitness of population

9: end while

10: Best individual is the solution of problem
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3.4 Single Objective Proposed Algorithms

Bin packing problems mostly consider the number of bins so the goal of the algo-

rithms is to pack items in minimum number of bins. We have developed a two Multi-

Heuristic Single Objective Memetic Algorithms for minimizing the number of bins

by considering orientation is important or not. Our fitness functions are the result of

applied heuristic in the term of number of bins. We explain two algorithms in two

different subsections.

3.4.1 MHO-SOMA for O-2DBPP

Minimizing the number of bins is our goal but orientation of items must be conserved

for some 2D offline BPP. Advertisement packing for a newspaper can be classified as

one example of these problems. To keep orientation of items, we developed Multi-

Heuristic Oriented Single Objective Memetic Algorithm (MHO-SOMA). FNF, FFF,

BFDH and LGFof are used as heuristics to pack items. First, genetic algorithm with

heuristics is run by the use of swap mutation operation. Then, best individual of

genetic algorithm is selected and UTS is applied to best individual as local search.

Overall best result is the solution of oriented 2D offline BPP. MHO-SOMA is ex-

plained in Algorithm 9 and Algorithm 10:
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Algorithm 9 Multi-Heuristic Oriented Single Objective Memetic Algorithm Func-

tions
1: function Initalize(rectList, n, k)

2: for i← 1, n do

3: copyList ← rectList

4: for j← 1, k do

5: ApplySwapMutation(copyList)

6: end for

7: heuristic← ChooseOne(FNF, FFF, BFDH, LGFof)

8: heuristic1← heuristic

9: heuristic2← heuristic

10: CreateChromosome(copyList, heuristic1, heuristic2)

11: PutPopulation(chromosome)

12: end for

13: return population

14: end function

15: function Fitness(population)

16: for eachchromosomeinPopulation do

17: if heuristic1 = Heuristic2 then

18: f itness← Insert(heuristic1, rectList)

19: else

20: resHeuristic1← Insert(heuristic1, firstHalfRectList)

21: resHeuristic2← Insert(heuristic2, secpmdHalfRectList)

22: f itness← resHeuristic1 + reHeuristic2

23: end if

24: end for

25: S ortChromosomesaccordingtotheir f itnessvalue

26: return population

27: end function
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Algorithm 10 Multi-Heuristic Oriented Single Objective Memetic Algorithm (MHO-

SOMA) algorithm
1: function MHO-SOMA(rectList, binW, binH, numGen, numPop, numIMut)

2: population← Initialize(rectList, numPop, numIMut)

3: Fitness(population)

4: for k ← 1, numGen do

5: parents← ElitismSelectParents(population)

6: o f f springs← SinglePointCrossover(parents)

7: SwapMutation(population)

8: Fitness(population)

9: end for

10: rectS equence← bestindividualrectanglesequence

11: f itnessBest ← bestindividual f itness

12: f itnessUTS ← Insert(UTS, rectSequence)

13: if f itnessUTS < f itnessBest then

14: resultHeuristic← UTS

15: resultNumberO f Bin← f itnessUTS

16: else

17: resultHeuristic← bestindividualheuristic

18: resultNumberO f Bin← f itnessBest

19: end if

20: return resultHeuristic, resultNumberO f Bin

21: end function

3.4.2 MHNO-SOMA for NO-2DBPP

Orientation of items is not considered for some 2D offline BPP. Textile usage of man-

ufacturer can be classified as one example of these problems. We proposed Multi-

Heuristic Non-Oriented Single Objective Memetic Algorithm (MHNO-SOMA) for

these problems. Rotation and swap-rotation mutations are used to change orienta-

tion of items. First we run genetic algorithm with heuristics: FNF, FFF, BFDH and

LGFof by the use of rotation and swap-rotation mutations. Then, best chromosome
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of genetic algorithm is selected to apply UTS and LGFi. Overall best result is the

solution of non-oriented 2D offline BPP. MHNO-SOMA is explained in Algorithm

11 and Algorithm 12:

Algorithm 11 Multi-Heuristic Non-Oriented Single Objective Memetic Algorithm

Functions
1: function Initalize(rectList, n, k)

2: for i← 1, n do

3: copyList ← rectList

4: for j← 1, k do

5: RotationMutation(copyList) or SwapRotationMutation(copyList)

6: end for

7: heuristic← ChooseOne(FNF, FFF, BFDH, LGFof)

8: heuristic1← heuristic

9: heuristic2← heuristic

10: CreateChromosome(copyList, heuristic1, heuristic2)

11: PutPopulation(chromosome)

12: end for

13: return population

14: end function

15: function Fitness(population)

16: for eachchromosomeinPopulation do

17: if heuristic1 = Heuristic2 then

18: f itness← Insert(heuristic1, rectList)

19: else

20: resHeuristic1← Insert(heuristic1, firstHalfRectList)

21: resHeuristic2← Insert(heuristic2, secpmdHalfRectList)

22: f itness← resHeuristic1 + reHeuristic2

23: end if

24: end for

25: S ortChromosomesaccordingtotheir f itnessvalue

26: return population

27: end function
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Algorithm 12 Multi-Heuristic Non-Oriented Single Objective Memetic Algorithm

(MHNO-SOMA) algorithm
1: function MHNO-SOMA(rectList, binW, binH, numGen, numPop, numIMut)

2: population← Initialize(rectList, numPop, numIMut)

3: Fitness(population)

4: for k ← 1, numGen do

5: parents← ElitismSelectParents(population)

6: o f f springs← SinglePointCrossover(parents)

7: RotateMutation(population) or SwapRotateMutation(population)

8: Fitness(population)

9: end for

10: rectS equence← bestindividualrectanglesequence

11: f itnessBest ← bestindividual f itness

12: f itnessUTS ← Insert(UTS, rectSequence)

13: f itnessLGFi← Insert(LGFi, rectSequence)

14: resultNumberO f Bin← min(fitnessBest, fitnessUTS, fitnessLGFi)

15: resultHeuristic← resultNumberO f BinHeuristic

16: return resultHeuristic, resultNumberO f Bin

17: end function

3.5 Multi-Objective Proposed Algorithms

Load balancing of bins is an important issue so the goal of the algorithms is not only

to pack items in minimum number of bins but also maximize the load balancing of

bins. We have developed two Multi-Heuristic Multi-Objective Genetic Algorithms

for minimizing number of bins and maximizing load balance.

Our fitness function is composed of two parts, fitness of number of bins and fitness of

center of gravity. Number of bins is calculated directly by heuristic. Our algorithm

is not directly consider load balancing so we add calculation of center of gravity to

each bin. In order to calculate center of gravity, each bin’s center point is selected as

Center of Gravity (CG). When a rectangle box inserted, then the Euclidean distance

of its center to bin’s CG is calculated and multiplied by the weight of rectangle. This
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calculated value is CG of rectangle. If sign of x coordinate of rectangle is minus

then CG of rectangle is subtracted from total CG of Bin. If sign of x coordinate of

rectangle is plus then CG of rectangle is added to total CG of Bin. When all rectangles

are inserted to bins, then absolute values of total CG of bins are added. This calculated

value is called as CG of Chromosome. Load balance of bin is explained in Equation

3.30 and load balance of chromosome is explained in Equation 3.31.

LBBin =

#Rect∑
j=1

di jmi j

√
(xi j + (wi j/2) − xCG)2 + (yi j + (hi j/2) − yCG)2 (3.30)

LBChromosome =

#Bin∑
i=1

∣∣∣∣∣∣∣
#Rect∑

j=1

d jmi j

√
(xi j + (wi j/2) − xCG)2 + (yi j + (yi j/2) − yCG)2

∣∣∣∣∣∣∣ (3.31)

Multi-objective 2D offline BPP can be classified into two categories according to

rotation. We developed two algorithms: one for oriented and another for non-oriented

problems. Two proposed multi-objective algorithms are explained in two different

subsections.

3.5.1 MHO-MOGA for O-2DBPP with LB

Multi-Heuristic Oriented Multi-Objective Genetic Algorithm (MHO-MOGA) is pro-

posed to solve oriented multi-objective 2D offline BPP. FNF, FFF, BFDH, LGFof and

UTS are applied as heuristics on the base of genetic algorithm. Swap mutation oper-

ation is used to keep orientation of items. Best result of GA is the result of problem.

MHO-MOGA is explained in Algorithm 13, Algorithm 14 and Algorithm 15:
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Algorithm 13 Multi-Heuristic Oriented Multi-Objective Genetic Algorithm Func-

tions
1: function Initalize(rectList, n, k)

2: for i← 1, n do

3: copyList ← rectList

4: for j← 1, k do

5: SwapMutation(copyList)

6: end for

7: heuristic← ChooseOne(FNF, FFF, BFDH, LGFof, UTS)

8: heuristic1← heuristic

9: heuristic2← heuristic

10: CreateChromosome(copyList, heuristic1, heuristic2)

11: PutPopulation(chromosome)

12: end for

13: return population

14: end function
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Algorithm 14 Multi-Heuristic Oriented Multi-Objective Genetic Algorithm Func-

tions Part2
1: function Fitness(population)

2: maxBin← 0

3: minBin← MAXINT EGER

4: maxCG ← 0

5: minCG ← MAXINT EGER

6: for eachchromosomeinPopulation do

7: if heuristic1 = Heuristic2 then

8: chromosomeBin← Insert(heuristic1, rectList)

9: else

10: resHeuristic1← Insert(heuristic1, firstHalfRectList)

11: resHeuristic2← Insert(heuristic2, secpmdHalfRectList)

12: chromosomeBin← resHeuristic1 + reHeuristic2

13: end if

14: if chromosomeBin < minBin then

15: minBin← chromosomeBin

16: end if

17: if chromosomeBin > maxBin then

18: maxBin← chromosomeBin

19: end if

20: chromosomeCG ← Sum(bin of chromosome)

21: end for

22: di f f Bin← maxBin − minBin

23: di f fCG ← maxCG − minCG

24: for eachchromosomeinPopulation do

25: f itnessBin← (chromosomeBin − minBin)/Di f f Bin

26: FitnessCG ← (chromosomeCG − minCG)/Di f fCG

27: f itness← (FitnessBin ∗ 0.5) + (FitnessCG ∗ 0.5)

28: end for

29: S ortChromosomesaccordingtotheir f itnessvalue

30: return population

31: end function
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Algorithm 15 Multi-Heuristic Oriented Multi-Objective Genetic Algorithm Oriented

(MHO-MOGA) algorithm
1: function MHO-MOGA(rectList, binW, binH, numGen, numPop, numIMut)

2: population← Initialize(rectList, numPop, numIMut)

3: Fitness(population)

4: for k ← 1, numGen do

5: parents← ElitismSelectParents(population)

6: o f f springs← SinglePointCrossover(parents)

7: SwapMutation(population)

8: Fitness(population)

9: end for

10: resultHeuristic← bestindividualheuristic

11: resultNumberO f Bin← bestindividual f itness

12: return resultHeuristic, resultNumberO f Bin

13: end function

3.5.2 MHNO-MOGA for NO-2DBPP with LB

Sometimes, orientation is not part of problem so in order to solve such problems, we

developed Multi-Heuristic Non-Oriented Multi-Objective Genetic Algorithm (MHNO-

MOGA). Each individual uses one or two of the heuristics: FNF, FFF, BFDH, UTS,

LGFof and LFGi to pack rectangles into bins. At the beginning of genetic algorithm,

each indivudual picks only one of the heuristics. In the next phases of GA, an indi-

vidual can have two different heuristics. Each heuristic is applied to corresponding

part of rectangle list. Rotation mutation and swap-rotation mutation are applied to

change orientation of rectangles. Best result of GA gives the solution of problem.

MHNO-MOGA is explained in Algorithm 16, Algorithm 17 and Algorithm 18:
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Algorithm 16 Multi-Heuristic Non-Oriented Multi-Objective Genetic Algorithm

Functions
1: function Initalize(rectList, n, k)

2: for i← 1, n do

3: copyList ← rectList

4: for j← 1, k do

5: RotationMutation(S wapMutation) or SwapRotationMuta-

tion(S wapMutation)

6: end for

7: heuristic← ChooseOne(FNF, FFF, BFDH, LGFof, UTS, LGFi)

8: heuristic1← heuristic

9: heuristic2← heuristic

10: CreateChromosome(copyList, heuristic1, heuristic2)

11: PutPopulation(chromosome)

12: end for

13: return population

14: end function
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Algorithm 17 Multi-Heuristic Non-Oriented Multi-Objective Genetic Algorithm

Functions Part2
1: function Fitness(population)

2: maxBin← 0

3: minBin← MAXINT EGER

4: maxCG ← 0

5: minCG ← MAXINT EGER

6: for eachchromosomeinPopulation do

7: if heuristic1 = Heuristic2 then

8: chromosomeBin← Insert(heuristic1, rectList)

9: else

10: resHeuristic1← Insert(heuristic1, firstHalfRectList)

11: resHeuristic2← Insert(heuristic2, secpmdHalfRectList)

12: chromosomeBin← resHeuristic1 + reHeuristic2

13: end if

14: if chromosomeBin < minBin then

15: minBin← chromosomeBin

16: end if

17: if chromosomeBin > maxBin then

18: maxBin← chromosomeBin

19: end if

20: chromosomeCG ← Sum(bin of chromosome)

21: end for

22: di f f Bin← maxBin − minBin

23: di f fCG ← maxCG − minCG

24: for eachchromosomeinPopulation do

25: f itnessBin← (chromosomeBin − minBin)/Di f f Bin

26: FitnessCG ← (chromosomeCG − minCG)/Di f fCG

27: f itness← (FitnessBin ∗ 0.5) + (FitnessCG ∗ 0.5)

28: end for

29: S ortChromosomesaccordingtotheir f itnessvalue

30: return population

31: end function
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Algorithm 18 Multi-Heuristic Non-Oriented Multi-Objective Genetic Algorithm

(MHNO-MOGA) algorithm
1: function MHNO-MOGA(rectList, binW, binH, numGen, numPop, numIMut)

2: population← Initialize(rectList, numPop, numIMut)

3: Fitness(population)

4: for k ← 1, numGen do

5: parents← ElitismSelectParents(population)

6: o f f springs← SinglePointCrossover(parents)

7: RotationMutation(population) or SwapRotationMutation(population)

8: Fitness(population)

9: end for

10: resultHeuristic← bestindividualheuristic

11: resultNumberO f Bin← bestindividual f itness

12: return resultHeuristic, resultNumberO f Bin

13: end function
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CHAPTER 4

EXPERIMENTAL RESULTS

In this Chapter, we present the results of proposed algorithms. All the algorithms

are implemented in C++ language and tests are executed under Windows7 OS. The

computer, which is used for tests, has 2.10 GHz Intel Core 2 Duo CPU with usable 3

GB RAM.

4.1 Problem Sets

In this study, we tried to solve 2D offline BPPs. For test cases we used two well

known problem instance sets. First one is Berkey-Wang classes [35]. They generated

six classes. Their classses structures are as follows:

• Class 1 : wj and hj uniformly random in [1,10], W = H = 10;

• Class 2 : wj and hj uniformly random in [1,10], W = H = 30;

• Class 3 : wj and hj uniformly random in [1,35], W = H = 40;

• Class 4 : wj and hj uniformly random in [1,35], W = H = 100;

• Class 5 : wj and hj uniformly random in [1,100], W = H = 100;

• Class 6 : wj and hj uniformly random in [1,100], W = H = 300.

Second instance set is composed of four classes which are generated by Martello and

Vigo [41]. Their proposed type structures is :

• Type 1 : wj uniformly random in [2
3W; W], hj uniformly random in [1; 1

2H];
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• Type 2 : wj uniformly random in [1; 1
2W], hj uniformly random in [2

3H; H];

• Type 3 : wj uniformly random in [1
2W; W], hj uniformly random in [1

2H; H];

• Type 4 : wj uniformly random in [1; 1
2W], hj uniformly random in [1; 1

2H].

Martello-Vigo class structures is using W = 100 and H = 100 and listed below:

• Class 7 : type 1 with probability 70%, type 2, 3, 4 with probability 10% each;

• Class 8 : type 2 with probability 70%, type 1, 3, 4 with probability 10% each;

• Class 9 : type 3 with probability 70%, type 1, 2, 4 with probability 10% each;

• Class 10 : type 4 with probability 70%, type 1, 2, 3 with probability 10% each.

In this study, we have four different problems as listed below:

• Single Objective O-2DBPP

• Single Objective NO-2DBPP

• Multi-Objective O-2DBPP with LB

• Multi-Objective NO-2DBPP with LB

In order to solve these problems, we need to find the population size and generation

number. We listed Berkey-Wang and Martello-Vigo instances and picked a random

number between 1 and 500. The number is 245 and its properties are listed below :

• a Berkey-Wang instance

• its class number is 5

• has 100 rectangles

• its bin width and bin height are 100 unit

Our experimental setup is consists of UTS, LFGi and GA whose heuristics are FNF,

FFF, BFDH and LGFof. First we apply GA to the problem and then best result’s rect-

angle list is given as input to UTS and LGFi. Each set is run twice. Our experimental

result is shown in Table 4.1, Table 4.2 and Table 4.3.
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Table 4.1: Result of population-generation for instance number 245 (Part 1)
Population Generation GA Algo(s) GA Res(s) UTS LGFi

10 LGFof 29 30 29
20 LGFof / FFF 29/5 30.5 29
40 LGFof / FFF 29.5 30 29
60 BFDH / LGFof 29 31.5 29

10 80 LGFof 28.5 30 29
100 LGFof / BFDH 28.5 30 29
200 LGFof / BFDH 28 30.5 29
300 LGFof 28 30 29
400 LGFof 28 29.5 29
500 LGFof 28 30.5 29
10 LGFof 29 30 29
20 LGFof 29 30 29
40 LGFof / BFDH 29 30.5 29
60 LGFof 28.5 30 29

20 80 LGFof 28.5 29.5 29
100 LGFof 28 29.5 29
200 LGFof 28 30.5 29
300 LGFof 28 29.5 29
400 LGFof 28 29.5 29
500 LGFof 28 29.5 29
10 LGFof 29 30.5 29
20 LGFof 29.5 30 29
40 LGFof 28 30 29
60 LGFof 28.5 30 29

40 80 LGFof 28.5 30 29
100 LGFof 28 30 29
200 LGFof 28 30 29
300 LGFof 28 30 29
400 LGFof 28 29.5 29
500 LGFof 28 30 29
10 LGFof 29 30 29
20 LGFof 28.5 29.5 29
40 LGFof 28 30 29
60 LGFof 28 30 29

60 80 LGFof 28 30 29
100 LGFof 28 30 29
200 LGFof 28 30.5 29
300 LGFof 28 30.5 29
400 LGFof 28 29.5 29
500 LGFof 28 29.5 29
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Table 4.2: Result of population-generation for instance number 245 (Part 2)
Population Generation GA Algo(s) GA Res(s) UTS LGFi

10 LGFof 29 30 29
20 LGFof 29 30 29
40 LGFof 28 29.5 29
60 LGFof 28 30 29

80 80 LGFof 28 29 29
100 LGFof 28 30 29
200 LGFof 28 29.5 29
300 LGFof 28 29.5 29
400 LGFof 28 29.5 29
500 LGFof 28 29 29
10 LGFof 29 30 29
20 LGFof 28.5 30 29
40 LGFof 28.5 30 29
60 LGFof 28 30 29

100 80 LGFof 28 29 29
100 LGFof 28 30 29
200 LGFof 28 29.5 29
300 LGFof 28 29.5 29
400 LGFof 28 29.5 29
500 LGFof 28 29 29
10 LGFof 29 30 29
20 LGFof 28.5 30.5 29
40 LGFof 28 30 29
60 LGFof 28 29.5 29

200 80 LGFof 28 30 29
100 LGFof 28 29 29
200 LGFof 28 30 29
300 LGFof 28 29 29
400 LGFof 28 29.5 29
500 LGFof 28 29.5 29
10 LGFof 29 29.5 29
20 LGFof 28.5 30 29
40 LGFof 28 30 29
60 LGFof 28 29.5 29

300 80 LGFof 28 29 29
100 LGFof 28 29.5 29
200 LGFof 28 30 29
300 LGFof 28 29.5 29
400 LGFof 28 29.5 29
500 LGFof 28 29.5 29
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Table 4.3: Result of population-generation for instance number 245 (Part 3)
Population Generation GA Algo(s) GA Res(s) UTS LGFi

10 LGFof 29 31 29
20 LGFof 29 30 29
40 LGFof 28 29.5 29
60 LGFof 28 29.5 29

400 80 LGFof 28 29.5 29
100 LGFof 28 29.5 29
200 LGFof 28 29.5 29
300 LGFof 28 29 29
400 LGFof 28 29.5 29
500 LGFof 28 30 29
10 LGFof 29 30.5 29
20 LGFof 28 29.5 29
40 LGFof 28 30 29
60 LGFof 28 29 29

500 80 LGFof 28 29.5 29
100 LGFof 28 29.5 29
200 LGFof 28 30 29
300 LGFof 28 29 29
400 LGFof 28 29.5 29
500 LGFof 28 29.5 29

As a result of this experiment, we chose our population size as 60 and our generation

number as 40.

4.2 A Tool for Visual Analysis of 2DBPPs

In this study, in order to analyze the results of packing heuristics and proposed al-

gorithms we developed an application named as A Tool for Visual Analysis of 2D

Bin Packing which is written in Java. We write the results of processed problem into

a text file in a predefined format. Then, the result text file is given as input to the

application. At the end, the application draws the position and shape of rectangles in

the bins and prints them into graphical canvas.
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4.3 MHO-SOMA

In order to solve single objective O-2DBPP, we applied MHO-SOMA. Experimental

setup is composed of :

• population size is 60

• number of generation is 40

• swap mutation is used

• for each population generation step, swap mutation is applied for ten times

• swap mutation is applied for once in each offspring generation to keep diversity

The general results of experiment are listed in Table 4.4 and Table 4.5. The results are

compared with best known solution lower bound of University of Bologna D.E.I.S.

Operations Research [7].
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Table 4.4: Result of MHO-SOMA for Berkey-Wang instances
Class Num of Rect lb Result

20 71 71
40 134 136

1 60 197 202
80 274 277
100 317 323
Av. 198.6 201.8
20 10 10
40 19 20

2 60 25 26
80 31 32
100 39 40
Av. 24.8 25.6
20 51 54
40 92 97

3 60 136 144
80 187 198
100 221 233
Av. 137.4 145.2
20 10 10
40 19 19

4 60 23 27
80 30 34
100 37 39
Av. 23.8 25.8
20 65 66
40 119 124

5 60 179 186
80 241 253
100 279 294
Av. 176.6 184.6
20 10 10
40 15 19

6 60 21 23
80 30 30
100 32 35
Av. 21.6 23.4
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Table 4.5: Result of MHO-SOMA for Martello-Vigo instances
Class Num of Rect lb Pr. Algo

20 55 57
40 109 115

7 60 156 161
80 224 232
100 269 276
Av. 162.6 168.2
20 58 59
40 112 115

8 60 159 166
80 223 227
100 274 284
Av. 165.2 170.2
20 143 143
40 278 278

9 60 437 437
80 577 577
100 695 695
Av. 426 426
20 42 43
40 74 76

10 60 98 106
80 123 134
100 153 164
Av. 98 104.6

4.4 MHNO-SOMA

In order to solve single objective NO-2DBPP, we applied MHNO-SOMA. We have

two different setups.

First experimental setup is composed of :

• population size is 60

• number of generation is 40

• rotation mutation is used
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• for each population generation step, rotation mutation is applied for ten times

• rotation mutation is applied for once in each offspring generation to keep diver-

sity

Second experimental setup is composed of :

• population size is 60

• number of generation is 40

• swap rotate mutation is used

• for each population generation step, swap rotate mutation is applied for ten

times

• swap rotate mutation is applied for once in each offspring generation to keep

diversity

The general results of two experiments are listed in Table 4.6 and Table 4.7. We used

simplest continous lower bound which is described in Equation 4.1.

LB =


#Rect∑

j=1
w jh j

WH


(4.1)

57



Table 4.6: Result of MHNO-SOMA for Berkey-Wang instances
Class Num of Rect clb Pr. Algo(r) Pr. Algo(sr)

20 64 66 66
40 120 131 129

1 60 185 196 195
80 253 270 270
100 305 314 313
Av. 185.4 195.4 194.6
20 10 10 10
40 19 20 19

2 60 25 25 25
80 31 31 31
100 39 39 39
Av. 24.8 25 24.8
20 44 48 48
40 82 95 95

3 60 125 137 137
80 173 186 187
100 205 225 225
Av. 125.8 138.2 138.4
20 10 10 10
40 19 19 19

4 60 23 25 25
80 30 32 33
100 37 38 38
Av. 23.8 24.8 25
20 54 59 59
40 101 116 115

5 60 157 175 176
80 215 240 241
100 259 284 284
Av. 157.2 174.8 175
20 10 10 10
40 15 18 17

6 60 21 22 22
80 30 30 30
100 32 34 34
Av. 21.6 22.8 22.6
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Table 4.7: Result of MHNO-SOMA for Martello-Vigo instances
Class Num of Rect clb Pr. Algo(r) Pr. Algo(sr)

20 47 52 52
40 97 106 107

7 60 140 152 153
80 197 216 217
100 238 260 259
Av. 143.8 157.2 157.6
20 48 53 53
40 96 106 105

8 60 141 155 154
80 195 213 214
100 241 261 262
Av. 144.2 157.6 157.6
20 94 143 143
40 180 275 275

9 60 276 435 435
80 371 573 573
100 450 693 693
Av. 274.2 423.8 423.8
20 38 41 41
40 69 73 73

10 60 94 101 101
80 122 129 130
100 153 161 162
Av. 95.2 101 101.4

4.5 MHO-MOGA

In order to solve multiple objective O-2DBPP, we applied MHO-MOGA. Experimen-

tal setup is composed of :

• population size is 60

• number of generation is 40

• swap mutation is used

• for each population generation step, swap mutation is applied for ten times

59



• swap mutation is applied for once in each offspring generation to keep diversity

The general results of experiment are listed in Table 4.8 and Table 4.9. We used

LGFof algorithm result in order to compare results.
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Table 4.8: Result of MHO-MOGA for Berkey-Wang instances
Class Num of Rect LGFof b LGFof cg Pr. Algo b Pr. Algo cg

20 74 268.1 71 117
40 137 469.1 136 189.4

1 60 202 748.1 202 408.6
80 278 1114.6 277 545.7
100 323 1188.5 323 616.5
Av. 202.8 757.7 201.8 375.4
20 10 376.5 10 11.1
40 20 646.4 20 6.8

2 60 27 1024.2 26 150
80 32 1533.7 32 178.6
100 40 1854.6 40 152.2
Av. 25.8 1087.1 25.6 99.7
20 56 1079 54 305.6
40 102 2012.6 98 776.3

3 60 146 2987.3 145 1144.5
80 199 4375 198 1687.2
100 236 5217.8 233 2353.5
Av. 147.8 3134.3 145.6 1253.4
20 11 1542.3 10 115.2
40 19 3469.3 19 432.3

4 60 27 4758.2 27 277.5
80 34 6017 33 794.9
100 41 8005.5 40 741.7
Av. 26.4 4758.5 25.8 472.3
20 66 2699.8 66 1126.2
40 124 5891.1 123 2850.6

5 60 187 7584.2 183 4045.6
80 254 11502.6 251 5713.5
100 296 12875 292 7311.6
Av. 185.4 8110.5 183 4209.5
20 10 4790 10 879.1
40 19 9357.9 19 228.9

6 60 23 11447.4 23 612.2
80 30 16052.8 30 1202.3
100 36 20841 36 1875.9
Av. 23.6 12497.8 23.6 959.7
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Table 4.9: Result of MHO-MOGA for Martello-Vigo instances
Class Num of Rect LGFof b LGFof cg Pr. Algo b Pr. Algo cg

20 58 4086.4 57 1200.2
40 115 9133.5 115 2064.1

7 60 161 12805.9 162 3594.5
80 235 18095.9 234 4984.6
100 276 22237.1 277 6297.1
Av. 169 13271.8 169 3628.1
20 61 2150.7 60 935.8
40 119 4482.7 115 2921.7

8 60 168 5912.5 166 3827.4
80 231 7719.8 230 6235.7
100 286 9266.1 285 6835.6
Av. 173 5906.4 171.2 4151.2
20 144 3718.7 143 2120.7
40 278 7808.1 278 4280

9 60 438 11027.8 437 7597.2
80 577 15529.9 577 9894.4
100 696 18976 695 12836.7
Av. 426.6 11412.1 426 7345.8
20 44 3162.7 45 531.2
40 77 5445.5 77 1721.7

10 60 108 9310.4 105 2670.5
80 134 10527.7 137 3331.5
100 165 13949.1 167 5850.5
Av. 105.6 8479.1 106.2 2821.1

4.6 MHNO-MOGA

In order to solve multi-objective NO-2DBPP, we applied MHNO-MOGA. We have

two different setups.

First experimental setup is composed of :

• population size is 60

• number of generation is 40

• rotation mutation is used
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• for each population generation step, rotation mutation is applied for ten times

• rotation mutation is applied for once in each offspring generation to keep diver-

sity

The general results of first experiment are listed in Table 4.10 and Table 4.11. We

used LGFi algorithm result in order to compare results.
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Table 4.10: Result of MHNO-MOGA Ro for Berkey-Wang instances
Class Num of Rect LGFi b LGFi cg Pr. Algo b Pr. Algo cg

20 67 230.9 68 67.5
40 131 392.6 131 218.7

1 60 199 620.5 197 359.6
80 271 877.5 270 584.6
100 317 1123.7 320 676.6
Av. 197 649 197.2 381.4
20 10 256.8 10 1.7
40 20 530.6 20 6.4

2 60 25 993.6 25 160.7
80 32 1107.9 31 134.1
100 39 1078.7 39 195.7
Av. 25.2 793.5 25 99.7
20 50 918.7 49 241.3
40 97 1706.4 95 643.1

3 60 139 2785.7 139 1073
80 189 3805.2 192 1709
100 227 4422.1 229 2211.8
Av. 140.4 2727.6 140.8 1175.6
20 10 1794.8 10 0.8
40 19 3940.2 19 8

4 60 26 4109.7 25 174.8
80 33 5558.4 33 162.9
100 39 7418.4 40 360.7
Av. 25.4 4564.3 25.4 141.4
20 62 2097.4 60 555.3
40 117 5039.1 117 2167.1

5 60 180 7031 177 3292
80 246 9068.5 242 4477
100 290 11640 286 5573.6
Av. 179 6975.2 176.4 3213
20 10 4788.4 10 8
40 19 13578.4 19 14.6

6 60 23 15069.6 22 202.6
80 30 20176 30 999.9
100 35 25989.9 34 1995.2
Av. 23.4 15920.5 23 644.1
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Table 4.11: Result of MHNO-MOGA Ro for Martello-Vigo instances
Class Num of Rect LGFi b LGFi cg Pr. Algo b Pr. Algo cg

20 55 1648.6 53 1145.2
40 109 3717.4 107 2968.7

7 60 161 6041 155 3869.6
80 223 6989.4 221 6229.4
100 271 9330.1 264 7259.2
Av. 163.8 5545.3 160 4294.4
20 56 1858.4 55 873.5
40 111 3877.2 107 2052.2

8 60 163 5440.7 155 3055.2
80 221 7640.6 214 4818.7
100 269 8981.9 264 6412.7
Av. 164 5559.8 159 3442.5
20 143 3012.3 143 2060.1
40 275 6081.2 275 4432.6

9 60 435 10005.9 435 7661.3
80 573 13963.7 573 9919.7
100 693 16765.3 693 12324
Av. 423.8 9965.7 423.8 7279.5
20 41 3800.9 43 396.2
40 75 6710.7 75 732.4

10 60 104 9447.3 105 1885.1
80 133 12136.1 134 2937.9
100 163 15835.2 165 4615.5
Av. 103.2 9586 104.4 2113.4

Second experimental setup is composed of :

• population size is 60

• number of generation is 40

• swap rotate mutation is used

• for each population generation step, swap rotate mutation is applied for ten

times

• swap rotate mutation is applied for once in each offspring generation to keep

diversity

65



The general results of second experiment are listed in Table 4.12 and Table 4.13. We

used LGFi algorithm result in order to compare results.

Table 4.12: Result of MHNO-MOGA SwRo for Berkey-Wang instances
Class Num of Rect LGFi b LGFi cg Pr. Algo b Pr. Algo cg

20 67 230.9 66 76.9
40 131 392.6 125 202.8

1 60 199 620.5 200 359.2
80 271 877.5 264 630.7
100 317 1123.7 320 711.7
Av. 197 649 195 396.3
20 10 256.8 10 1
40 20 530.6 20 8.7

2 60 25 993.6 25 133
80 32 1107.9 31 131.8
100 39 1078.7 39 245.5
Av. 25.2 793.5 25 104
20 50 918.7 49 260.3
40 97 1706.4 97 581.1

3 60 139 2785.7 141 1165.3
80 189 3805.2 190 1775.7
100 227 4422.1 228 2335.5
Av. 140.4 2727.6 141 1223.6
20 10 1794.8 10 0.5
40 19 3940.2 19 22.6

4 60 26 4109.7 25 97.1
80 33 5558.4 33 346.4
100 39 7418.4 39 633.6
Av. 25.4 4564.3 25.2 220
20 62 2097.4 60 719.4
40 117 5039.1 116 2027

5 60 180 7031 177 3444.2
80 246 9068.5 245 5043.8
100 290 11640 286 5154.2
Av. 179 6975.2 176.8 3277.7
20 10 4788.4 10 4.9
40 19 13578.4 19 51.3

6 60 23 15069.6 22 112.3
80 30 20176 30 502
100 35 25989.9 34 1356.8
Av. 23.4 15920.5 23 405.5
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Table 4.13: Result of MHNO-MOGA SwRo for Martello-Vigo instances
Class Num of Rect LGFi b LGFi cg Pr. Algo b Pr. Algo cg

20 55 1648.6 53 1015.6
40 109 3717.4 108 2612.5

7 60 161 6041 156 3880.6
80 223 6989.4 220 6126.4
100 271 9330.1 267 6899.4
Av. 163.8 5545.3 160.8 4106.9
20 56 1858.4 53 785.3
40 111 3877.2 107 2170.4

8 60 163 5440.7 155 3044
80 221 7640.6 214 4521.9
100 269 8981.9 265 6237.6
Av. 164 5559.8 158.8 3351.8
20 143 3012.3 143 1885.9
40 275 6081.2 275 4241.6

9 60 435 10005.9 435 6762.7
80 573 13963.7 573 9355.1
100 693 16765.3 693 11598.4
Av. 423.8 9965.7 423.8 6768.7
20 41 3800.9 42 263.2
40 75 6710.7 75 971

10 60 104 9447.3 102 2616.8
80 133 12136.1 133 3837.2
100 163 15835.2 166 4662.4
Av. 103.2 9586 103.6 2470.1

4.7 Analysis of Algorithms

In order to analyze runtime and efficiency of algorithms, we randomly picked five

different item size (20, 40, 60, 80, 100) problems. Each test is runned for five times.

Best values of FNF, FFF, BFDH, LGFof and LGFi are used as results. For proposed

algorithms and UTS, we used average values of tests.

In each subsection, comparisons of algorithms according to 500 instance test setup

are also explained in detail.
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4.7.1 Oriented Single Objective Problems

Runtime analysis of FNF, FFF, BFDH, UTS, LGFof and MHO-SOMA for oriented

single objective random picked tests are shown in Table 4.14:

Table 4.14: Runtime of algorithms for orientated single objective problems in msec
Rect FNF FFF BFDH UTS LGFof MHO-SOMA
20 4.0 4.5 4.6 81.7 64.0 21748
40 4.4 4.6 4.9 317.4 29.7 47196
60 4.8 6.0 7.7 27761 1529.5 754233
80 7.4 8.3 9.1 3050 334.5 25486
100 10.1 12.1 17.2 3746 291.0 582892
Av. 6.1 7.1 8.7 6991.2 449.7 286311

Result (bin) analysis of FNF, FFF, BFDH, UTS, LGFof and MHO-SOMA for oriented

single objective random picked tests are shown in Table 4.15:

Table 4.15: Results (bin) of algorithms for orientated single objective problems
Rect FNF FFF BFDH UTS LGFof MHO-SOMA
20 11 9 9 9 9 8
40 17 13 13 13 13 12
60 53 47 47 47 47 46
80 30 24 23 24 24 23
100 44 31 31 30 30 30
Av. 31 24.8 24.6 24.6 24.6 23.8

Extra bin usage of FNF, FFF, BFDH, UTS, LGFof and MHO-SOMA for oriented

single objective 500 problem set to reach results Bologna University DEIS Operations

Research are shown in Table 4.16:

Table 4.16: Comparisons of heuristics and MHO-SOMA for orientated single objec-
tive 500 problem set

Bin Sol. FNF FFF BFDH UTS LGFof Pr. Algo.
No ex. 16.8% 42.4% 45.4% 46.2% 57.2% 63.4%
1 ex. 20% 36.2% 38.6% 38.6% 34.8% 32%
2 ex. 6% 16% 15% 14.2% 7.6% 4.4%
3 ex. 9.2% 5.2% 1% 1% 0.6% 0.2%
3+ ex. 48% 0.2% 0% 0% 0% 0%
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4.7.2 Non-Oriented Single Objective Problems

Runtime analysis of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-SOMA for

non-oriented single objective random picked tests are shown in Table 4.17:

Table 4.17: Runtime of algorithms for non-orientated single objective problems in
msec

Rect FNF FFF BFDH UTS LGFof LGFi MHNO-SOMA
20 4.0 4.5 4.6 81.7 64.0 65.0 101612
40 4.4 4.6 4.9 317.4 29.7 30.0 46640
60 4.8 6.0 7.7 27761 1529.5 2416.4 873217
80 7.4 8.3 9.1 3050 334.5 257.2 411683
100 10.1 12.1 17.2 3746 291.0 324.1 645343
Av. 6.1 7.1 8.7 6991.2 449.7 618.5 415699

Result (bin) analysis of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-SOMA

for non-oriented single objective random picked tests are shown in Table 4.18:

Table 4.18: Results (bin) of algorithms for non-orientated single objective problems
Rect FNF FFF BFDH UTS LGFof LGFi MHNO-SOMA
20 11 9 9 9 9 8 8
40 17 13 13 13 13 12 11
60 53 47 47 47 47 46 46
80 30 24 23 24 24 22 21
100 44 31 31 30 30 29 28
Av. 31 24.8 24.6 24.6 24.6 23.4 22.8

Extra bin usage of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-SOMA (r) and

MHNO-SOMA (sr) for oriented single objective 500 problem set ro reach results of

continuous lower bound are shown in Table 4.19 and Table 4.20:

Table 4.19: Comparisons of heuristics and MHNO-SOMA (r) for non-orientated sin-
gle objective 500 problem set

Bin FNF FFF BFDH UTS LGFof LGFi Pr. Algo.(r)
No ex. 16% 24.6% 25.6% 21.4% 27.4% 31.8% 41.4%
1 ex. 15.8% 19.2% 20.2% 23.6% 23% 27% 29%
2 ex. 5% 17% 17.4% 19.6% 17.8% 15.4% 14.4%
3 ex. 4.6% 12.2% 12.8% 13.6% 11.8% 12.2% 3.8%
3+ ex. 58.6% 27% 24% 21.6% 20.4% 13.6% 11.4%

69



Table 4.20: Comparisons of heuristics and MHNO-SOMA (sr) for non-orientated
single objective 500 problem set

Bin FNF FFF BFDH UTS LGFof LGFi Pr. Algo.(sr)
No ex. 16% 24.6% 25.6% 21.4% 27.4% 31.8% 41.8%
1 ex. 15.8% 19.2% 20.2% 23.6% 23% 27% 28.8%
2 ex. 5% 17% 17.4% 19.6% 17.8% 15.4% 14%
3 ex. 4.6% 12.2% 12.8% 13.6% 11.8% 12.2% 4.2%
3+ ex. 58.6% 27% 24% 21.6% 20.4% 13.6% 11.2%

4.7.3 Oriented Multi-Objective Problems

Runtime analysis of FNF, FFF, BFDH, UTS, LGFof and MHO-MOGA for oriented

multi-objective random picked tests are shown in Table 4.21:

Table 4.21: Runtime of algorithms for orientated multi-objective problems in msec
Rect FNF FFF BFDH UTS LGFof MHO-MOGA
20 4.1 4.6 4.7 81.7 64.0 17515
40 4.7 4.8 5.0 317.8 29.9 88024
60 5.3 6.4 7.8 27761.4 1529.8 3034228
80 7.6 8.4 9.2 3050.4 334.6 4664450
100 10.6 12.4 17.4 3746.9 291.1 677750
Av. 6.5 7.3 8.8 6991.6 449.9 1696393.4

Result (bin/cg) analysis of FNF, FFF, BFDH, UTS, LGFof and MHO-MOGA for

oriented multi-objective random picked tests are shown in Table 4.22:
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Table 4.22: Results (bin/cg) of algorithms for orientated multi-objective problems
Rect FNF FFF BFDH UTS LGFof MHO-MOGA
20 11 9 9 9 9 9

310.4 167.3 151.3 491.1 301.4 116.6
40 17 13 13 13 12 12

62.4 59.8 50 64.5 33.2 19.6
60 53 47 47 47 47 46

1207.5 1024.7 1008.5 1103.9 1021.1 813.7
80 30 24 23 24 24 24

1704.5 1850.1 1440.7 900.9 1728.7 421
100 44 31 31 30 30 29

1623.9 1391.2 1098.2 1088.9 1331.2 769.9
Av. 31 24.8 24.6 24.6 24.6 24

981.5 898.6 749.7 729.9 883.1 428.2

Results (bin/cg) of FNF, FFF, BFDH, UTS, LGFof and MHO-MOGA for oriented

single objective 500 problem set are shown in Table 4.23:

Table 4.23: Results (bin/cg) of heuristics and MHO-MOGA for orientated multi-
objective 500 problem set

Total FNF FFF BFDH UTS LGFof Pr. Alg.
Bin 9489 7591 7514 7521 7430 7389
CG 340954 333247 319187 297483 347076 126581

Superiority of MHO-MOGA to FNF, FFF, BFDH, UTS and LGFof for oriented multi-

objective 500 problem set are shown in Table 4.24:

Table 4.24: MHO-MOGA vs. heuristics for orientated multi-objective 500 problem
set

FNF FFF BFDH UTS LGFof
MHO-MOGA 100% 100% 100% 100% 97.2%

4.7.4 Non-Oriented Multi-Objective Problems

Runtime analysis of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-MOGA for

non-oriented multi-objective random picked tests are shown in Table 4.25:
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Table 4.25: Runtime of algorithms for non-orientated multi-objective problems in
msec

Rect FNF FFF BFDH UTS LGFof LGFi MHNO-MOGA
20 4.1 4.6 4.7 81.7 64.0 65.0 87615
40 4.7 4.8 5.0 317.8 29.9 30.1 39027
60 5.3 6.4 7.8 27761.4 1529.8 2416.4 1545971
80 7.6 8.4 9.2 3050.4 334.6 257.4 645442
100 10.6 12.4 17.4 3746.9 291.1 324.3 257878
Av. 6.5 7.3 8.8 6991.6 449.9 618.6 515186.6

Result (bin/cg) analysis of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-MOGA

for non-oriented multi-objective random picked tests are shown in Table 4.26:

Table 4.26: Results (bin/cg) of algorithms for non-orientated multi-objective prob-
lems

Rect FNF FFF BFDH UTS LGFof LGFi MHNO-MOGA
20 11 9 9 9 9 8 8

310.4 167.3 151.3 491.1 301.4 150.9 60
40 17 13 13 13 12 12 12

62.4 59.8 50 64.5 33.2 51.9 15
60 53 47 47 47 47 46 46

1207.5 1024.7 1008.5 1103.9 1021.1 901.4 700.2
80 30 24 23 24 24 22 21

1704.5 1850.1 1440.7 900.9 1728.7 887.4 821.3
100 44 31 31 30 30 29 28

1623.9 1391.2 1098.2 1088.9 1331.2 1131.2 575
Av. 31 24.8 24.6 24.6 24.6 23.4 23

981.5 898.6 749.7 729.9 883.1 624.6 434.3

Results (bin/cg) of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-MOGA (r) for

non-oriented multi-objective 500 problem set (according to continuous lower bound)

are shown in Table 4.27:

Table 4.27: Results (bin/cg) of heuristics and MHNO-MOGA (r) for non-orientated
multi-objective 500 problem set

Total FNF FFF BFDH UTS LGFof LGFi Pr. Alg.
Bin 9489 7591 7514 7521 7430 7226 7175
CG 340954 333247 319187 297483 347076 311434 113925
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Superiority of MHO-MOGA (r) vs. FNF, FFF, BFDH, UTS, LGFof and LGFi for

non-oriented multi-objective 500 problem set are shown in Table 4.28:

Table 4.28: MHO-MOGA(r) vs. heuristics for non-orientated multi-objective 500
problem set

FNF FFF BFDH UTS LGFof LGFi
MHNO-MOGA(r) 100% 100% 100% 100% 100% 95%

Results (bin/cg) of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-MOGA (sr) for

non-oriented multi-objective 500 problem set (according to continuous lower bound)

are shown in Table 4.27:

Table 4.29: Results (bin/cg) of heuristics and MHNO-MOGA(sr) for non-orientated
multi-objective 500 problem set

Total FNF FFF BFDH UTS LGFof LGFi Pr. Alg.
Bin 9489 7591 7514 7521 7430 7226 7165
CG 340954 333247 319187 297483 347076 311434 111623

Superiority of MHNO-MOGA (sr) vs. FNF, FFF, BFDH, UTS, LGFof and LGFi for

non-oriented multi-objective 500 problem set are shown in Table 4.30:

Table 4.30: MHO-MOGA (sr) vs. heuristics for non-orientated multi-objective 500
problem set

FNF FFF BFDH UTS LGFof LGFi
MHNO-MOGA(sr) 100% 100% 100% 100% 100% 96%

4.8 Visual Analysis of Algorithms

In order to visually analyze proposed algorithms, we randomly picked a problem in

our problem set. Our problem (instance) number is 108. It is a Berkey-Wang class

3 problem with item size as 20. Bin width and bin height of the problem is 40.

Rectangle list of the problem is listed in Table 4.31:
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Table 4.31: Rectangle list of instance number 108 with bin width = 40 and bin height
= 40

Rectangle 1 2 3 4 5 6 7 8 9 10
Width 30 13 7 29 7 19 13 21 16 17
Height 15 3 27 12 2 14 12 2 4 14
Rectangle 11 12 13 14 15 16 17 18 19 20
Width 19 32 5 2 33 12 5 19 4 27
Height 4 30 17 8 23 23 15 19 31 23

First, we considered the problem as an oriented single objective bin packing problem

so rotation of rectangles was not allowed and our objective is minimizing the number

of bins. Then, we tested it with FNF, FFF, UTS and MHO-SOMA. Results of test are

listed in Table 4.32:

Table 4.32: Results of instance number 108 as single objective BPP
FNF FFF UTS MHO-SOMA

Num of Bin 7 5 5 4

All results of the test is drawn by the use of our application which is described in

Section 4.2.

Visual analysis of FNF for the test is shown in Figure 4.1 and Figure 4.1:
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Figure 4.1: Visual analysis of FNF (part 1)
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Figure 4.2: Visual analysis of FNF (part 2)

Visual analysis of FNF for the test is shown in Figure 4.1 and Figure 4.1:
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Figure 4.3: Visual analysis of FFF

Visual analysis of UTS for the test is shown in Figure 4.4:
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Figure 4.4: Visual analysis of UTS

Visual analysis of our proposed algorithm MHO-SOMA for the test is shown in Fig-

ure 4.5:

78



Figure 4.5: Visual analysis of MHO-SOMA
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Bin packing problems are NP-hard combinatorial optimization problems. Engineer-

ing, manufacturing, transportation and logistics are dealing with these problems. In

this study, we developed four algorithms for two variant (single objective and mul-

tiobjective) of 2D offline bin packing problems and tested 500 benchmark problems

for each developed algorithm.

First, we tried to minimize number of bins to be packed. Two algorithms are proposed

to solve this single objective 2DBPP. Our first algorithm is MHO-SOMA. It tries to

minimize the number of bins for orientated 2D offline BPP. MHO-SOMA achieves

optimum solutions (according to Bologna University DEIS Operations Research) for

63.4% of the problems with no extra bin, 32.0% of the problems with extra one bin

and 4.4% of the problems with extra two bins.

Second single objective algorithm is MHNO-SOMA which solves non-oriented sin-

gle objective 2D offline BPP. MHNO-SOMA is using two different mutation oper-

ation. First mutation operation is rotation and second mutation operation is swap-

mutation. Each mutation operation is applied for 500 benchmark problems. MHNO-

SOMA with rotation mutation achieves optimum solutions (according to continuous

lower bound) for 41.4% of the problems with no extra bin, 29.0% of the problems

with extra one bin and 14.4% of the problems with extra two bins. MHNO-SOMA

with swap-rotation mutation achieves optimum solutions (according to continuous

lower bound) for 41.8% of the problems with no extra bin, 28.8% of the problems

with extra one bin and 14% of the problems with extra two bins. Experimental results

show that the combination of global search of well known heuristics with individual
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learning (local search of UTS) can achieve optimal results with a reasonable popula-

tion and number of generations.

For real world applications, load balancing is as important as minimizing number of

bins, so we proposed two different algorithms in order to solve multi-objective (bin

size-load balancing) 2D offline bin packing problems. First one is MHO-MOGA and

second one is MHNO-MOGA. Computational results show that well known heuristics

sometimes produce better results about number of bins but not about load balancing.

Our proposed MHO-MOGA and MHNO-MOGA give better results about not only

number of bins but also load balancing of bins. Analysis of algorithms also shows

that proposed algorithms produce better results than heuristics but the runtime of

heuristics are shorter than the proposed algorithms. MHO-MOGA achieves better

solutions for 97.2% of the problems than LGFof heuristic. MHNO-MOGA is also

using two different mutation operation which are rotation and swap-rotation. MHNO-

MOGA with rotation mutation achieves better solutions for 95.0% of the problems

than LGFi heuristic and MHNO-MOGA with swap-rotation mutation achieves better

solutions for 96.0% of the problems than LGFi heuristic.

With this study, we have proposed a set of novel metaheuristic algorithms for NP-

hard combinatorial optimization problem, 2DBPP. Future works of this study will

have two categories. First category is integrating other well known heuristics such as

Touching Perimeter and Floor-Ceiling into the proposed algorithms. Second one is

achieving truly parallelization of MH-SOMA and MH-MOGA.
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