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ABSTRACT

DENSITY ESTIMATION IN LARGE-SCALE WIRELESS SENSOR NETWORKS

Eroğlu, Alperen

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Ertan Onur

Co-Supervisor : Assoc. Prof. Dr. Halit Oğuztüzün

January 2015, 60 pages

Density estimation is a significant problem in large-scale wireless ad-hoc networks
since the density drastically impacts the network performance. It is crucial to make
the network adaptive in the run-time to the density changes that may not be pre-
dictable in advance. Local density estimators are required while taking run-time con-
trol decisions to improve the network performance. A wireless node may estimate the
density locally by measuring the received signal strength (RSS) of packets sent by its
neighbours. In this thesis, RSS-based individual and cooperative density estimators
are validated by controlled field experiments conducted in the FIT IoT-LAB test-bed,
in France. According to the experiments these methods cannot be used as accurate
density estimators in practice. The success of the individual density is significantly af-
fected by the position of the estimating node and the number of its neighbours. Also,
the cooperative density estimator is affected negatively by correlated data. Hence, a
new fusion approach is proposed as a new density estimator. New method is more
accurate than the two other density estimators. However, it should be considered that
the RSS is prone to large- and small-scale fading, and this phenomenon negatively
affects the accuracy of density estimators.

Keywords: Density Estimation, Received Signal Strength, RSS, Path-loss Exponent
Estimation, Real Test-bed, Large-scale Wireless Sensor Network
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ÖZ

GENİŞ ÖLÇEKLİ ALGILAYICI AĞLARINDA YOĞUNLUK TAHMİNİ

Eroğlu, Alperen

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ertan Onur

Ortak Tez Yöneticisi : Doç. Dr. Halit Oğuztüzün

Ocak 2015 , 60 sayfa

Yoğunluk, ağ performansını büyük ölçüde etkilediğinden geniş ölçekli kablosuz ağ-
lardaki yoğunluk kestirimi önemli bir problemdir. Önceden tahmin edilemeyen yo-
ğunluk değişikliklerine, çalışma zamanında ağın uyum sağlaması önemlidir. Çalışma
zamanı kontrol kararları ve ağ performansını artırmak için bölgesel yoğunluk kesti-
rimi gereklidir. Bir algılayıcı komşularının göndermiş olduğu paketlerin sinyal gücü
değerlerini kullanarak bölgesel yoğunluk kestirimi yapabilir. Bu tezde sinyal gücü
değerini kullanan iki adet yoğunluk kestirimi uygulaması, bireysel ve iş birlikli yo-
ğunluk kestirimi, kontrollü alan deneyleri ile Fransa’da yer alan IoT-Lab algılayıcı
ağında değerlendirilmiştir. Sonuçlara göre bireysel yoğunluk kestirimi ve işbirlikli
yoğunluk kestirimi metodları pratikte verimli yoğunluk tahmincisi olarak kullanıla-
mayabilirler. Bireysel yoğunluk tahmincisinin başarısı tahminci düğümün bulunduğu
yerden ve komşularının sayılarından büyük ölçüde etkilenmektedir. Diğeri ise korele
verilerden etkilenmektedir. Bu çalışmada daha başarılı sonuçlar veren ve bu iki tah-
mincinin birleştirilmesinden oluşan yeni bir yaklaşım önerilmiştir. Bu çalışmanın so-
nuçları sinyal gücünün geniş ve küçük ölçekli zayıflamaya maruz kalması nedeniyle
yoğunluk kestiriminin doğruluğunu olumsuz şekilde etkilediğini göstermektedir.

Anahtar Kelimeler: Yoğunluk Tahmini, Sinyal Gücü, Yol Kayıp Değeri Tahmini ,
Gerçek Sınama ortamı, Geniş Ölçekli Ağlar
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Assume an infinite forest where the trees are randomly distributed with a uniform

average density of λ per unit area [30]. An statistician wants to estimate the density

λ̂ by using distances [30]. The statistician chooses a random point in the forest. Then

he measures the distance r1 between himself and the nearest tree. Consider that in

πr1
2, there is only one tree, and the statistician saves the neighbour proximity degree

kth as 1, and calculates the area as πr12, then he selects another random point. The

statistician makes these calculations by considering j =1,2...∞ for kjth and their areas

πrj
2 in several random points. After gathering calculations and measurements, when

the statistician divides the summation of the neighbour proximity degrees kjth by

the summation of the areas πrj2, then the estimated density λ̂ can be found. This

approach is performed as a density estimator in a wireless sensor network in [29].

In an m dimensional space, suppose that there is a large number of deployed wireless

sensor nodes. The distances are not known between the sensor nodes. Nodes transmit

packets to their neighbours, and they can measure the received signal strength (RSS)

of these packets transmitted by their neighbours. The distances are estimated by using

the collected RSS values. After estimating the distances, the neighbour proximities

and the calculated areas can be found, then the same approach in [30] is applied. In

such networks, the number of sensors and the size of the area determines the den-

sity [39]. Density is essential for wireless sensor networks (WSNs) in terms of some

problems such as localization, energy conservation, sleep scheduling, topology con-
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trol, beam-forming, collaborative signal processing or adequate capacity planning.

Protocols of WSNs have to adapt their acts to the density since the throughput in

sensor network approaches asymptotically to zero as the density increases [16]. The

density of the wireless sensor networks affects the efficiency of the networking pro-

tocols. Thus, these protocols have to be adaptive to the provisional changes in the

density of the network. Estimating the density may make reconfiguration of the pro-

tocols adaptable to enhance the performance of the network. In this thesis, density

estimation problem in large-scale wireless sensor networks are dealt with as a real life

implementation. There are several solutions to the problem of the density estimation,

however we focus on received signal strength based density estimation technique pro-

posed in [29] since the method uses only RSS measurements and this technique can

be used in local density estimation [29]. There are two proposed methods called in-

dividual density estimation and cooperative density estimation in [29]. In this work, it

is shown that a wireless node can estimate the network density individually by using

local information such as the received power from its neighbours. It is also possible

to estimate the density cooperatively which provides a better estimate. These two

models need to be validated in a real life implementation. In this thesis, we focus on

the validation of these estimators. We also propose a fusion of these two estimators

to improve the accuracy.

1.2 Motivation

In recent years, research and various studies on wireless sensor networks (WSN)

are carried out along with the development of technology. Wireless sensor networks

(WSNs) can be used in many fields such as monitoring, security, disaster manage-

ment, habitat monitoring and environmental studies [2, 19, 41]. Especially, it can be

observed that WSNs have promising developments to provide some opportunities for

real-time monitoring in geographical areas which are prone to disasters [35]. Sensors

are deployed to collect local data systematically in areas where they are deployed and

send them to another place [19]. Sensors can collect many different types of data

such as temperature, humidity, smoke, motion, light and sound perception. The data

they have collected can be forwarded between themselves or transmitted to a center.

2



The collected data are analysed and combined, some decisions can be made based on

this manipulated data or systems can be controlled [19]. Sensors are deployed over

the area as required by events or the systems that should be controlled, monitored and

managed.

Design of a sustainable WSN is a difficult issue. Although, sensors are limited in

terms of energy, they are expected to work independently for a long time [4]. Supply-

ing a new energy source or battery for sensors in some environments is not sometimes

possible, even if it is possible, this directly brings a cost [38]. Sensor networks can be

designed in an application-oriented manner unlike other networks, and as mentioned

before these networks can be used in many different areas and for different aims with

different capacities and sizes [38]. Particularly in recent years, large-scale dense net-

works are considered as one of the foremost subjects among research studies. There

are hundreds and thousands of sensors in such networks [19]. In such large-scale

networks some problems may emerge such as network congestion, collisions, low ef-

ficiency and low capacity [29, 38]. Such problems can significantly increase the cost

of the communication and cause a delay in the collection and transmission of the data

[19]. Therefore, especially in these networks some characteristics and specifications

such as energy saving, fault tolerance, long network lifetime, efficient algorithms in

data collection should be taken into account because of resource limitations [19]. As

a higher number of sensors affects the performance of WSN, independent control-

ling, random participation or separation of the nodes especially in a dynamic network

cause a change in density of the nodes, for this reason the network performance is

also affected considerably [29]. It can be seen that how the density effects the quality

and the performance measures of the network such as network capacity, throughput,

connectivity, delay of the signal between the sender and receiver and other factors

in Table 1.1. Such problems should be managed in such networks, and this issue

has been studied under the topic of density estimation in several studies and various

methods have been developed.

Density estimation is very important solution to adequate capacity planning. These

networks should be developed in accordance with the unpredictable changes of den-

sity. Run-time decisions should be based on the density estimated locally [29]. The

protocols in these networks can be adapt their functions and algorithms according to

3



the density [7, 11, 16, 29] . In this way, the estimation of the density allows restruc-

turing of the network protocols to improve the performance and throughput of the

network [38]. The density estimation in WSNs can also be used for obtaining use-

ful information about the distribution of the mobile devices in crowd management or

the scope of such a network. For instance, estimating the density of mobile phones

in a stadium will assist in determining the required capacity planning by network

managers such as deploying additional base stations for providing better quality of

service. As another example, a re-placement or set-up in the network is possible after

detecting the deficiencies caused by the sensors which have lost their functionalities.

In a WSN, the optimization of the transmission power provides a longer network life-

time and maintains the quality of connection [8, 12] . The node density is used while

optimizing the transmission power in the network [8, 12]. In National Basketball As-

sociation and Major League Baseball events, wireless devices are used for sharing

the experiences of the audiences by adding desirable and available services including

features such as multiple streaming-video broadcasts, program information, relevant

statistical data, instant on-demand replays of videos, audio commentary [3]. The

question is regarded with the possibility of such an operational wireless stadium net-

work by considering the technical and financial feasibility of the system. In the case

of such a network design, the density of access points, and any other wireless devices

should be considered to obtain an efficient deployment strategy [3]. In WSNs, the en-

ergy consumption and coverage of the network are the important problems in terms

of gaining the efficient energy consumption, maintaining a longer lifetime. Sleep

scheduling is important solution to the problem of reducing the energy consumption,

while performing this solution, the coverage and the density of the network should

be considered [6, 41, 43, 44]. All these examples show that there is a need for accu-

rate estimation of the density, and while doing this, it is important that the density is

estimated locally. The common density estimation methods are explained in Chapter

2. In this thesis, one of common methods called received signal strength based den-

sity estimation is used by considering the importance of the local estimation solution

without using any extra system [27, 29, 48]. There are few research studies in the

literature, in this work, it is focused that proposed two analytic models by [29], and

this work had to be validated in a real deployment. In this thesis, how these mod-

els perform in a real life application is analysed. Two models are implemented and
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applied in a test-bed located in France.

Table 1.1: The qualitative comparison of the impact of the density regime on various
network parameters and performance measures.

Super-critical
(dense) (λ > λc)

Phase transition
(λ∼λc)

Sub-critical
(sparse)
(λ < λc)

Network
capacity

low given no
power

adaptation

maximum inside the
partitions good,
among partitions

worst
End-to-end
throughput

low high low

Connectivity redundant edge of chaos:
trade-off
between

throughput and
degree

low inside
clusters and
partitioned

network

Allocated
bandwidth per
node

low optimal high but useless

Number of hops many
possibilities to

balance
trade-offs

minimal disconnected
network

Possibility of
multi-path
routing

high very low none

Delay to sender-
to-receiver
distance ratio,
γ(λ)

scales linearly scales
sub-linearly

Average node
degree

high (low
deviation)

optimal low degree (high
deviation)

Resilience to
link failures

high low NA

Redundancy
assisted
topology control

possible possible NA

Trade-off in
brief

degraded
performance

←→ disrupted
connectivity
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1.3 Methodology

In this thesis, two analytical models, namely, RSS based individual density estimator

and cooperative density estimator which are proposed by [29] are validated in a real

deployment with controlled field experiments. In this study, firstly the problem is

explained by considering the importance and necessity of the topic in wireless sen-

sor networks. The problem is specified as a real life implementation for the density

estimation issue in large-scale wireless networks inspired by [29]. Then RSS based

estimation technique is used for the specified problem. In order to perform the tech-

nique in practise, we need a real deployment that consists of hundreds of sensors. We

choose IoT-Lab Lille test-bed in city, France to conduct controlled field experiments.

Details about the deployment and selected sensor type are presented in Chapter 3.

After experiments, the data is obtained to employ the density estimator models. In

this thesis, density estimation consists of three steps: path-loss exponent estimation,

distance estimation, obtaining results from each estimator. The methods need to find

estimated distances to estimate the density [29, 30]. The distance estimation requires

path-loss exponent estimation. The results of the estimators are compared with the

actual density. In this work, we understood that the calculation of the actual density

is also important. We calculate the actual density by using the analytical models. The

calculation of the actual density is also explained in this report. By considering the

deployment results, a new estimator based on the fusion of the individual and co-

operative density estimators is proposed. For the implementations of the estimators

MATLAB is used. The detailed experimental results are presented and discussed in

Chapter 3.

1.4 Contribution

In this thesis, the density estimators proposed in [29] are validated with controlled

field experiments. Moreover, unlike [29], the experiments are made by considering

different number of nodes with multiple measurements from their distinct neighbours.

Different transmission powers are used, and the experiments are conducted on differ-

ent parts of the testbed. In addition, since the calculation of actual density is an issue,
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unlike [29] we calculate the actual density using well-known distances and employ

them to the proposed analytical models, this approach is also more accurate while

determining the actual density in a WSN which has a limited-range. At the end, we

propose a new estimator that is the fusion of the individual and cooperative density

estimators. The new technique is called the fusion density estimation method that

yields more accurate results.

1.5 Outline

• In Chapter 2, path-loss exponent estimation and distance estimation techniques in

the literature are explained.

• In Chapter 3, density estimation techniques are discussed. Two analytical mod-

els proposed as density estimation techniques in [29] are explained in detail.

Path-loss exponent estimation which is required by density estimators is also

explained.

• In Chapter 4, experimental results are presented and evaluated. We present the

chosen test-bed, the topology information about the WSN, types of sensors,

collection of the data, distribution of the data, obtained results from analytical

models combined with empirical data, and the new fusion approach using both

estimators.

• Chapter 5 includes conclusion and future work sections. Conclusion section sum-

marizes the most prominent parts of the work, the evaluation and discussion of

the results in a real deployment. Then, the future work section includes sugges-

tions for what to do in the next studies.
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CHAPTER 2

RELATED WORK

2.1 Path-Loss Exponent Estimation

In wireless sensor networks, path-loss leads to the variation in received signal strength

over distance [15, 31, 37]. The loss of the power emitted by the transmitter as well as

by the impacts of the propagation channel [15]. The path-loss exponent is generally

assumed identical in a specified distance without considering the effects of the shad-

owing in the path-loss models [15]. Shadowing, reflection, diffraction, scattering, and

absorption are the factors that impact the received signal strength [15, 32, 37, 42].

There are miscellaneous types of path-loss prediction methods in the literature such

as free space path-loss model, ray tracing, Okumura model, Hata model, cost Hata

231 model, piecewise linear model, Stanford University Interim (SUI) model, Eric-

sson model, simplified path-loss model [1, 15, 24, 26, 28, 31, 34, 37, 49]. In this

thesis, we choose the simplified path-loss model since we may not know the environ-

ment, topology as an outsider statistician. The simplified model needs only the RSS

signal strengths and some known distances [10, 15, 22, 29, 33, 45]. The model is

particularly explained in Chapter 3. Propagation models are necessary for predicting

the path-loss exponent, and they need to be appropriate, low cost and suitable system

design alternatives since the site measurements are costly [24, 31]. They can be clas-

sified empirical models, site-specific models, theoretical models, indoor and outdoor

models [15, 31, 34, 36, 37].
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2.1.1 Free Space Path-Loss Model

Assume that no obstructions exist between the receiver and transmitter, and there is

a line-of-sight and clear path between them, thus the signal propagation is along a

straight line. The free space model estimates that the decays of the received strength

as a function of the separation distance of the transmitter-receiver raised to some

strength [15, 37]. In this model, the received signal strength lessens in inverse ratio to

the square of the distance between receive antennas and transmit antennas. Moreover,

the RSS has a ratio of the square signal wavelength, so the power decreases while the

carrier frequency increases.

2.1.2 Empirical Path-Loss Models

Some communication systems such as mobile sensor networks that have complex

propagation areas cannot be precisely modelled by using the ray tracing or free-space

path-loss [1, 24, 26, 28, 31, 34, 37, 49]. Thus, there is a number of empirical models

to estimate the path-loss in common wireless topologies such as inside buildings,

urban microcells, and urban macrocells. These empirical models basically consist

of experimental measurements in a specified frequency range and over a specified

distance for a specific environment or building [37]. These empirical models are used

for the analysis of the performance in many studies.

2.1.2.1 Okumura Model

This model is the most usual method for signal forecasting in large urban areas [15,

31, 37]. In the Okumura model, the appropriate range of the distance is between 1

and 100 km, but it is possible to extrapolated to 3000 MHz [37] , and the range of the

frequency is between 150-1500 MHz. The huge measurements of the base station to

mobile signal fading are used by Okumura throughout Tokyo in order to establish a set

of curves giving average attenuation with regarded to free space of signal propagation

in irregular area. The heights of the base station regarded with these measurements

were between 30 m and 100 m. The highest value of this range is higher than the

one that belongs to today’s common base stations. The upper end of this range is
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higher than typical base stations today. The empirical path-loss formula of Okumura

[15, 37]:

PL(d)dB = L(fc, d) + Aµ(fc, d)−G(ht)−G(hr)−GAREA, (2.1)

where d is the distance, and fc is carrier frequency, L(fc, d) is free-space path-loss.

Aµ(fc, d) is the median attenuation besides free-space path-loss across all areas. The

height gain factors of the base station antenna and mobile antenna is represented by

G(ht) and G(hr), respectively. GAREA presents the gain depends on the type of the

area. G(ht) and G(hr) are found using (2.2 and 2.3 or 2.4):

G(Ht) = 20log10(ht/200), 30m < ht < 1000m; (2.2)

G(Hr) = 10log10(hr/3), 10log10(hr/3), (2.3)

G(Hr) = 20log10(hr/3), 3m < hr < 10m. (2.4)

2.1.2.2 Hata Model

Hata model in [15, 31, 37] is an experimental formulation based on graphical path-

loss data obtained from Okumura and in this model the range of the frequencies is

between 150 MHz and 1500 MHz. This model is a closed form formula that simplifies

the computation of the path-loss exponent. In the Hata model, the parameters are

the same as under the Okumura Model, however the correction factors which are

not any path-specific are not provided. This model is appropriate for the earliest-

generation cellular systems, and is not suitable for present cellular systems that have

higher frequencies and smaller sizes, and indoor environments.
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2.1.2.3 COST 231 Extension to Hata Model Model

This model is extended version of the Hata model [15, 31, 37]. The European cooper-

ative for scientific and technical research developed this version to extend the model

to 2 GHz. The range of the frequencies of this model is between 1.5 GHz and 2 GHz.

2.1.2.4 Piecewise Linear Model

The Piecewise Linear model in [15] is to design path-loss model in indoor and outdoor

areas [15]. This model is a piecewise linear approach based on the dB loss versus log

distance. The piecewise linear approximation can be seen in Figure 2.1.

Figure 2.1: Piecewise Linear Model for Path-Loss with dB loss versus log distance.

In Figure 2.1, the dots show the measurements, and the piecewise linear model is

used as an methodology to these measurements. Assume that there are M segments

in a solution using this model, then the approach must specify M − 1 breakpoints

d1, ....dM−1 besides the slopes corresponding the each segment s1, ...sM . Different

solutions can be applied to determine the location and the number of the breakpoints

to be employed in the model. After these are determined, the corresponded slopes for

each segment can be calculated by using the linear regression.
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2.2 Distance Estimation

There are several methods which are most widely used in recent years such as re-

ceived signal strength, time of arrival (TOA), time difference of Arrival (TDOA), and

hop count [5, 9, 13, 14, 25, 40, 47]. They can be classified as time based distance

measurement methods and RSS based methods [14, 40, 47].

2.2.1 Received Signal Strength Based Distance estimation

Received signal strength based distance estimation uses the measurements of the sig-

nal strength receiving in a neighbour node and calculates distance employing this

received signal strength [5, 9, 13, 14, 15, 25, 29, 37, 40, 47]. In this thesis, the indi-

vidual and cooperative density estimators uses RSS measurements while calculating

the distances by considering the simplified path-loss model. RSS is affected nega-

tively by shadowing, large-scale and small-scale fading [5, 32].

2.2.2 Time of Arrival (TOA)

Assume that a clock synchronization or an exchange timing information by certain

protocols exit between two nodes [13, 14, 47]. One node sends a single packet to an-

other node, which contains the time of its transmission. The receiving node knows the

time of the arrival of the packet. The distance between these two nodes is calculated

by multiplying the velocity of the light and time difference. If this method can be

applied, in other words, if the perfect synchronization exits, then it is more accurate

than the RSS based method, but due to the the problems of the synchronization, this

method is not so popular [13, 14].

2.2.3 Time Difference of Arrival (TDOA)

TDOA is a method that consists of combination of the ultrasound/acoustic and ra-

dio signal to predict distances [13, 47]. Like TOA method, this approach also needs

the presence of the synchronization. If the synchronization exists between the nodes,
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then we can perform this estimation method [13, 14]. The method is based on the

hardware ranging mechanism, where each node has a speaker and a microphone [47].

In this method, assume that one source node transmits a radio signal and waits for a

fixed internal of time. Then it yields a fixed pattern of "chirps" on its speaker [47].

When the destination nodes receive the signal, they save the current time and turn on

their microphones. When their microphones catch the chirp pattern, the destination

nodes, they note this current time again. After these measurements are completed

then the receivers can calculate the distance between them by employing these mea-

surements together with the speed of the radio and sound waves [47]. In this method,

there are some drawbacks due to the possible synchronization problem between the

sender time-stamp and the real signal transmission, and the potential delay related to

a incoming sound signal being realised at receiver [47].

2.2.4 Hop Count

The hop count method takes the number of hopes from source node to the destination

node, then multiplies with the maximum communication range of a node [5, 13]. In

this method, an unweighed graph is defined by the local connectivity information

supported by the radio. In this graph, sensor nodes are the vertices, and direct radio

links among nodes are the edges. The hop count between two sensor nodes denotes

the length of the shortest path in this graph between these two nodes. In a naive

manner, if the hop count, namely, the length between two sensor nodes is less than the

result of the multiplication of the maximum communication range and the hop count.

The method can give the approximately 20% of the maximum range if the the number

of the neighbour nodes are more than 15 [5, 13]. This method provides an accuracy

of approximately 50% of the maximum range of a node, then this is a problem for this

method [5, 13]. Another problem in this method is that environmental objects may

prevent edges from coming in the connectivity graph [5].

2.2.5 Comparison of the distance estimation methods

In Table 2.1, it can be seen that the TDOA has more accurate result, however it is
highly required the usage of the hardware [13]. This method may always not be
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performed. The RSS technique is the low-cost and the practical approach although
it effects negatively large- and small- scale fading, and shadowing. Thus, the RSS
based method is a feasible approach [13, 45].

Table 2.1: The Comparison of the Distance Estimation Techniques

Accuracy Overhead
Line of Sight Non Line of Sight Hardware Computational

Distance
Estimation
Method

RSS Low Very Low Low Low
TOA High High Low Low
TDOA Very High High High Low
Hop Count Low Very Low Low Low
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CHAPTER 3

DENSITY ESTIMATION

Density estimation in wireless sensor networks is an important issue to take into con-

sideration. Density impacts the performance of the WSN. Many problems in WSNs

such as energy conservation through sleep scheduling, topology control for reducing

collisions and interference or capacity planning requires precise estimation of den-

sity. Density estimation can give beneficial information in some applications such as

distribution of mobile devices for crowd management or sensing coverage in a sensor

network.

In this chapter, density estimation techniques are discussed. Two proposed analytical

models called RSS based individual and cooperative density estimators in [29] are

explained in detail. Path-loss exponent estimation that is required by the density

estimators is also explained.

3.1 Density Estimation Methods

There are three common approaches for density estimation which are location-based

density estimation, neighbour discovery based density estimation and received signal

strength based density estimation.

Location-based methods require extra systems such as positioning systems that give

the coordinates of wireless tools such as wireless sensors to find the density. For in-

stance, node census [39], density adaptive routing protocol [20], priority-based state-

less georouting [46] are methods that find the network density with the location in-
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formation of the nodes that is provided by secondary systems such as GPS. There

are some disadvantages in this method such that the additional systems need further

energy consumption, and the auxiliary systems may lead to errors while estimating

the density.

Neighbour discovery based methods make use of the traffic analysis in the network.

Traffic analysis [39] or neighbourhood discovery algorithm [21] are some examples.

They use the identities of the nodes piggybacked to the packets and collect a census

to compute the density. In this method, There are some drawbacks such that the

estimation space is limited to the transmission range, and changes on the accuracy of

the density estimation depends on the network traffic.

RSS based density estimation methods overcome drawbacks of the previous two

methods. In this method, there is no need to use some auxiliary systems, and it is

also scalable since the estimation can be calculated locally and the estimation space

is controllable [29, 48].

In this thesis, the RSS based density estimation method is chosen. To apply this

method, firstly there are three steps, two of them are the path-loss exponent estima-

tion and the distance estimation steps, to be completed. Path-loss exponent estimation

lets us to understand the channel propagation model, and it is necessary for the dis-

tance estimation. After obtaining the path-loss exponent, the distance estimation step

is performed. The final step for each density estimator which is determining of neigh-

bour relations or connectivity degrees. Then, the density estimation methods can be

performed by using above results.

3.1.1 Individual Density Estimation

Individual density estimation uses one estimating node and RSS samples from its

neighbours while estimating the density. A node measures the RSS of packets trans-

mitted by its neighbours, then (3.1) is used for density estimation. Therefore, the

individual density uses only RSS measurements of one node, however, does not use

any other collected RSS samples from any other nodes. The individual density esti-
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mator is

λ̂ =
n(n+ 1)− 2

2π
∑n

i=1 d
2
i

, (3.1)

where λ̂ is the estimated density, n is the number of the nodes that transmit a packet

to the estimating node, and di is the estimated distance obtained from (3.2) by using

the RSS (dB) values.

In this case, any di shows the estimated distance by using:

di = 10
(K+Pt−Pr)

(10γ) , (3.2)

where K is a constant obtained from (3.3), Pt is the transmission power, Pr is the

received power, and γ is the path-loss exponent.

K(dB) = 20log10
c

4πd0f
, (3.3)

where f is the frequency and c is the speed of light, and d0 is the reference distance.

3.2 is a biased estimator. Hence, we use (3.4) for an unbiased estimation. It over-

comes the random effects of shadowing [23]:

di = 10
(K+Pt−Pr)

(10γ)

[
e
− σ2

2( 10
log(10)

)2γ2

]
, (3.4)

where the σ represents the standard deviation of the log-normally distributed shad-

owing.

Individual density estimation may not sometimes provide an accurate estimated den-

sity. In a sparse network, an estimating node has few neighbours and less measure-

ments, which is reducing the accuracy of the estimator [29].
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3.1.2 Cooperative Density Estimation

In a wireless sensor network, each node collects received signal strength measure-

ments from its neighbours. In these measurements, it is possible that there are mul-

tiple observations between two nodes. Then, if there exists multiple measurements,

the average of them is used for distance estimation by using (2.4). After obtaining

the estimated distances (djs) among each pair nodes, (3.5) is performed to find the

density.

λ̂ =
T

π
∑n

j=1 d
2
j

, (3.5)

where T represents the summation of the connectivity degrees or the proximity of

nearest neighbours, and it can be obtained from (3.6).

T =
n∑
j=1

kj, (3.6)

where kj is the connectivity degree of two nodes.

3.2 Path-Loss Exponent Estimation

Density estimators explained above require robust path-loss exponent estimators. Path-

loss exponent means difference between the transmitted power and the received power.

It shows us the attenuation caused by free space propagation, shadowing, reflection,

diffraction and scattering.

In order to estimate the path-loss exponent to analyse the system propagation model,

the Simplified Path-loss model in [15] is chosen. This model is used to design easily

a single propagation model. Obtaining a model in different environments is not an

easy task because of the complex signal propagation. However, we need to estimate

the path-loss model without any further information except RSS and some known dis-

tances obtained in measurements. This approach provides us a simple way to obtain

the path-loss exponent with the measurements. In the literature, there exists already
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known path-loss exponents for different environments. These values are shown in

Table 3.1 where γ represents the path-loss exponent in Table 3.1.

Table 3.1: Typical Path-Loss Exponents [15]

Environment γ

Urban macrocells 3.7-6.5

Urban microcells 2.7-3.5

Office building (same floor) 1.6-3.5

Office building (multiple floors) 2-6

Store 1.8-2.2

Factory 1.6-3.3

Home 3

3.2.1 Simplified Path-Loss Model

Pr = PtK
[
d0
d

]γ
. (3.7)

(3.7) can be used for computing path loss as a function of distance where K is a con-

stant, d0 is the reference distance for the antenna far field, γ is the path loss exponent.

Pr is the received power, Pt is the transmission power. d is the transmitter-receiver

separation distance [15].

Converting to dB domain, we obtain

Pr(dBm) = Pt(dBm) +K(dB)− 10γlog10

[
d
d0

]
, (3.8)

where K is a constant and it was obtained by using (3.3), d0 is the reference distance

for the antenna far field, γ is the path loss exponent. The reference distance is chosen

as 1 m. When the simplified model is used to approximate empirical measurements,

the value of K < 1 is sometimes set to the free-space path gain at reference distance

[15]. Then, it can be obtained by using (3.3).
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While applying the path-loss model, in order to fit to empirical measurements, the

MMSE approach is used by performing (3.9) to estimate the path-loss exponent.

F (γ) =
N∑
i=1

[Mmeasured(di)−Mmodel(di)]
2, (3.9)

where N is the number of samples, and the value of γ that minimizes the the mean-

square error was calculated by equating the derivative of F (γ) to zero, then γ was

found.

At this point, again performing (3.9) with the path-loss exponent that is obtained from

above steps, we can calculate a sample variance σ2 as a biased estimate. The result

from (3.9) is then divided by the number of samples that is used for calculating the

path-loss exponent. σ accounts for the random effect of shadowing.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, experimental results are presented and evaluated. This chapter gives

experimental details about which test-bed is chosen, the topology information about

the WSN, type of sensors, collection of the data, distribution of the data, obtained

results from analytical models processed with empirical data.

4.1 Testbed

In this work, we present the controlled field experiments using IoT-LAB Lille test-bed

in France [17].

Lille test-bed is deployed over a 225 m2 area, in which there are five offices and a big

room separated by a corridor. Nodes are positioned over the ceiling and wood poles.

Nodes on ceiling are dispatched over a 1.20 m x 1.20 m grid, at 2.50 m high. Nodes

on poles are vertically hanged at 2.40 m, 1.50 m and 0.60 m high.

4.1.1 Deployment

In Lille testbed, two experiments are conducted. The first one is performed on right

side of the Lille Testbed. The whole distribution of sensor nodes can be seen in

Figure 4.1. The red nodes on ceiling poles are deployed during the first and the

second experiments. The deployment of the first experiment is depicted in Figure

4.2. In the second experiment all of the red nodes are used. 30 nodes and 176 nodes

are deployed in the first and the second experiment, respectively.
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Figure 4.1: Lille Deployment.
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Figure 4.2: Selected Nodes in Lille Deployment in the First Experiment .

4.1.2 Usage of Platform

There are many choices to use the IoT-Lab platform. The web portal and command-

line tools are just two of them. Moreover, the platform can be used via a hosted

environment on SSH front-ends, CLI Tools which is pre-installed, target architec-

tures cross-compiler tool chains, and accessing to the serial ports of the nodes. The

experiment results are accessible in hosted environment. It can be very easy to deploy

nodes, and compiling codes and running the experiments; that is why we chose this

test-bed.

Figure 4.3 and Figure 4.4 show the web portal user interface and the deployed nodes

in the first experiment and the second experiment, respectively.

25



Figure 4.3: A Secreen Shot From The First Experiment.
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Figure 4.4: A Secreen Shot From The Second Experiment.
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To understand the system usage, useful tutorials are provided by IoT-Lab web plat-

form. There are a few steps to use this platform: firstly an IoT-Lab account should be

created. We can access the web platform of IoT-Lab such as Figure 4.4 after getting

the username and password. In the web platform, new experiments can be designed,

or some details about old experiments can be seen. Meanwhile, the platform can be

used by connecting the IoT-Lab servers. To connect the servers, an RSA key is a re-

quirement. After generating the SSH key, we can register this key by using the "edit

my profile" section in the web platform. Then, we can access via typing the code like

"ssh username@lille.iot-lab.info" on terminal, in this thesis lille test-bed is used. In

the web platform site, after clicking the new experiment button, some configurations

should be done such as setting an experiment name, determining the duration of the

experiment, and selection of the test-bed and types of the nodes, uploading the binary

firmware for the nodes that will be used. Then the submission of the experiment is

done.

In the IoT-Lab platform, we can create our own firmware codes by using the SSH

front-ends. After connecting the servers, we should select the environment accord-

ing to types of the nodes. In this thesis, "openlab" environment is chosen since m3

nodes are used. To choose the environment, "make setup-openlab" is typed. In this

platform, "gcc-arm" tool chain is used for m3 nodes. Then, the user type "cmake ..

-DPLATFORM=iotlab-m3" and "make firmware name" to compile our own code. In

this thesis, a implementation based on CSMA MAC library is used. We can access

the details of the CSMA MAC code via the following path /senslab/users/

eroglu/iot-lab/parts/openlab/net/mac_csma in our SSH front-end

site. Our firmware consists of some functions such as the "mac_csma_data_

send" function for sending a package, the "mac_csma_data_received" func-

tion for reception of a package. The transmission power can be changed by set-

ting the "#defineRADIO_POWERPHY_POWER_0dBm". In this thesis two ver-

sions of this line are used: "#defineRADIO_POWERPHY_POWER_0dBm" and

"#defineRADIO_POWERPHY_POWER_m17dBm". In addition, we can easily get

the results of many nodes, and sends beacons to many of them by using "serial link

aggregation". In order to obtain the whole nodes results in one terminal, we can use

the "serial_aggregator.py" python script. We need to use this script since
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we use 30 nodes, 176 nodes in our experiments, otherwise, we have to open a new

terminal to get the results for each node. We use this python script within our ssh

frontends of the Lille site where the nodes are deployed, and it can be seen in Figure

4.4.

When we want to use the command line tools on our own computer to perform the

applications same as SSH front-end in the server. The CLI tools should be installed

by following the instructions in tutorials regarded with CLI tools on [17]. Then, we

can compile our codes, submit new experiments with managing our profile, selecting

the nodes which will be deployed like in the web platform, controlling the status of

the running experiment, and looking the list of deployed nodes and accessing their

coordinates on this topology. To use the CLI tools, the authentication is also required

by using the provided username, password for web platform.

4.2 Data Collection

In this work, two controlled field experiments are conducted. In the fist experiment,

30 nodes with default transmission power (0 dBm) are deployed [17]. In the second

experiment, 176 nodes with software selectable minimum transmission power (-17

dBm) are used. M3 nodes are used in this test-bed 4.5. The CSMA MAC implemen-

tation is used in two experiments. During the experiments, packets are transmitted

between each of the deployed nodes.

4.2.1 Data Gathering Devices

The M3 open node is based on a STM32 (ARM Cortex M3) micro-controller [18].

M3 nodes contain a set of sensors and a radio interface such as light, temperature and

pressure. Main evolutions are a more powerful 32-bits processing, a new ATMEL

radio interface in 2.4 Hz. The node is depicted in Figure 4.5. Moreover, it has ports

for Contiki, FreeRTOS and Riot operating systems.
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Figure 4.5: m3 Sensor Node[18].

4.2.2 Data Gathering Method

In this work, the data are collected within two experiments. During the experiments,

the general-purpose CSMA MAC library which is provided by IoT-Lab platform is

used as a low-latency MAC layer. All of the nodes in WSN always have their radio

chip in reception mode. If a node is to send a data packet, the node will check whether

the radio channel is active or not since another node is transmitting the data, then when

the channel is detected as free, the node effectively sends the packet on the air. Using

this library a firmware is coded to collect data from each node. We send a packet from

each node to the others during the experiments. Empirical data consists of destination

node identifiers, source node identifiers, and the RSS value of the packets. In the

first experiment, multiple messages are transmitted from each node to the others,

which is approximately 100 messages. For the second experiment, 30 messages are

transmitted among the 176 nodes.

4.2.3 Data Manipulation

Firstly, for each experiment the empirical data are divided into two parts: the first part

of the data called train data is used for path-loss exponent estimation, and the second

part of the data called test data is used while performing the individual and coopera-

tive density estimation techniques. The train data are composed of approximately 1/3

of the whole experiment data. The rest of the data is used for calculating the results of

the estimators. The collected and modified data includes destination node identifiers,

source node identifiers, RSS value of the packets, and the distance between destina-
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tion and source node. The actual distances are calculated by using the coordinates of

the nodes. In this topology, each node has a unique identifier, and nodes on ceiling

are dispatched over a 1.20 m x 1.20 m grid, at 2.50 m high. Therefore, we can know

which node send messages to the other node, and what the distance is between these

two nodes. The train data is composed of 31620 samples in the first experiment and

332722 samples for the second experiment. The test data consists of 66981 observa-

tions, and 663845 observations in the second experiment. The sample distribution of

the train and test data are depicted in Figure 4.6, 4.7 and 4.8. Before using the data,

we also apply outlier detection for each part of the data. We define an outlier as a

value that is more than one standard deviation away from the mean.

Figure 4.6: Train Data in Logarithmic Scale with 0 dBm Transmission Power.
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Figure 4.7: Test Data in Logarithmic Scale with 0 dBm Transmission Power.
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Figure 4.8: Test Data in Logarithmic Scale with -17 dBm Transmission Power.

Secondly, dBm to mW conversions is performed on the train data. After converting

RSS (dBm) values to mW by using (4.1), the unique distances between nodes are

found. Then for each unique distances, the average of RSS values is found since there

exists multiple measurements for a node. At the end of this step, there are max 48

unique distances and RSS values for the fist experiment,and max 92 unique distances

and RSS values for the fist experiment. After that RSS (mW) values are converted to

(dB) values by using (4.2).

P(mW ) = 10(PdBm/10). (4.1)

P(dB) = 10log10

(
P(mW )

1(mW )

)
. (4.2)
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The obtained data after these steps is depicted in Table 4.1 and Table 4.2

There exists 48 and 92 unique euclidean distances among the nodes for each experi-

ment when train data in each experiment is used to estimate the path-loss exponent.

Table 4.1: Unique Distance Values and Their Average RSSs for the First Experiment.

Distance(m) RSS(dB) Distance(m) RSS(dB)

1.20 -43.92 8.65 -59.08
1.70 -43.26 8.74 -56.34
2.40 -45.70 9.14 -57.73
2.68 -46.10 9.60 -60.25
3.39 -46.34 9.67 -55.89
3.60 -48.21 9.90 -58.05
3.79 -47.83 10.25 -56.42
4.33 -49.51 10.73 -69.80
4.80 -50.10 10.80 -61.19
4.95 -48.55 10.87 -64.04
5.09 -50.87 11.06 -62.74
5.37 -49.35 11.38 -55.37
6.00 -52.62 11.82 -60.81
6.12 -53.00 12.00 -63.29
6.46 -52.81 12.06 -58.77
6.79 -51.57 12.24 -64.30
7.00 -51.25 12.92 -66.06
7.20 -55.94 13.20 -63.09
7.30 -54.44 13.25 -61.80
7.59 -54.78 13.42 -66.01
7.68 -57.55 13.68 -67.71
8.05 -54.32 14.40 -64.91
8.40 -56.82 14.60 -65.36
8.49 -55.58 15.18 -69.68
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Table 4.2: Unique Distance Values and Their Average RSSs for The Second Experi-
ment

Distance(m) RSS(dB) Distance(m) RSS(dB) Distance(m) RSS(dB)

1.20 -65.31 10.18 -80.94 14.84 -85.33
1.70 -68.10 10.25 -80.51 15.04 -82.57
2.40 -69.56 10.32 -80.37 15.18 -84.82
2.68 -70.51 10.73 -80.56 15.27 -82.16
3.39 -71.30 10.80 -80.23 15.37 -83.20
3.60 -71.38 10.87 -81.23 15.60 -85.16
3.79 -72.94 11.06 -81.18 15.65 -84.12
4.33 -73.84 11.32 -82.00 15.78 -88.52
4.80 -73.86 11.38 -81.36 16.01 -86.50
4.95 -74.44 11.82 -82.08 16.10 -85.21
5.09 -74.95 11.88 -81.42 16.14 -83.37
5.37 -74.90 12.00 -81.77 16.32 -83.53
6.00 -76.55 12.06 -81.99 16.67 -82.93
6.12 -76.36 12.24 -81.84 16.71 -87.97
6.46 -77.30 12.35 -82.33 16.97 -82.61
6.79 -77.71 12.53 -81.92 17.06 -83.35
7.00 -77.50 12.76 -81.27 17.18 -87.12
7.20 -77.40 12.92 -82.23 17.31 -85.43
7.30 -77.32 12.98 -82.72 17.72 -85.54
7.59 -77.75 13.20 -83.26 17.84 -84.23
7.68 -78.25 13.25 -82.51 18.00 -84.95
8.05 -79.44 13.42 -82.20 18.32 -85.52
8.40 -78.30 13.58 -82.85 18.67 -86.64
8.49 -78.39 13.68 -82.62 18.74 -85.75
8.65 -78.92 13.99 -82.05 18.97 -86.44
8.74 -79.43 14.05 -83.39 19.53 -87.25
9.14 -80.14 14.40 -83.92 19.68 -85.65
9.37 -79.62 14.45 -82.79 20.36 -86.54
9.60 -79.23 14.50 -83.96 20.44 -84.28
9.67 -80.30 14.60 -84.97 21.23 -91.00
9.90 -80.69 14.65 -82.24
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The relation between the unique distances and their corresponding average of RSS

values in logarithmic scale is shown in Figure 4.9.

Figure 4.9: Unique Distances in Logarithmic Scale vs Their Average RSS values in

-17dBm Transmission Power.

After obtaining the results in Table 4.1 and Table 4.2, the simplified path-loss model

that is presented with (3.8) is performed. The reference distance is chosen 1 m. Then,

the K value in (3.2) is computed by using (3.3), and K is found as -40.046 dB. While

applying the path-loss model, in order to fit to empirical measurements, the MMSE

approach is used by performing (3.9) to estimate the path-loss exponent.

At this point, the sample variance can be calculated [37]. Table 4.3 shows γ and

sample variance (σ) values while different number of nodes are used.
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Table 4.3: Path-Loss Exponent Estimation Results with Different Number of Nodes
with 17 dBm Transmission Power.

Number of Nodes Sigma(σ)(dB) Path-Loss(γ)

5 5.71 2.52
15 4.57 2.37
25 3.48 2.36
35 3.20 2.28
45 2.45 2.35
55 2.81 2.36
65 2.33 2.31
75 2.24 2.32
85 2.21 2.27
95 1.89 2.33

4.2.4 Evaluation of Path-Loss Exponent

A robust path-loss exponent is important while using RSS based density estimation

methods. After estimating the path-loss exponent model, we can have an information

about the signal propagation in WSN that is used for controlled field experiments. In

this experiment, we know the distances between each node. How can we estimate γ

when the deployment is not known. Let assume we want to calculate the number of

access points in a building. Firstly, we have to collect the RSS samples from some

access points by specifying the distances. After determining the distances, we can

collect the RSS values, but it is important that we have to use a constant transmission

power during the data collection. Then, by using the RSS samples with well known

distances, a regression analysis can be done to estimate the path-loss exponent. For

some known distances and their RSS values, we find the slope that is the the path-loss

exponent.

The accuracy of the path-loss exponent needs to be evaluated since it is important to

see how the signal propagation model is in that environment. Our path-loss exponent

should have the same range as the path-loss values of a same floor in Table 3.1. In

can be seen that the obtained path-loss exponents while different number of nodes in

Table 4.3. Moreover, after path-loss exponent estimation completes, we can estimate
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distances with the RSS values in dB scale. By using some well-known distances we

can see whether the estimated distances and real distances converge or not in Figure

4.10. It can be seen that the path-loss exponent estimation is mostly accurate.

Figure 4.10: Real Distances vs The Average of Estimated Distances with -17dBm

Transmission Power.

4.3 Results of Cooperative Density Estimation

Cooperative density estimation results are obtained by using the measurements of

each node. We increase the number of nodes each time for the graphical results of the

experiments. Cooperative density estimation results are analysed for two empirical

data, namely when the transmission power is 0 dBm, and when the transmission

power is -17 dBm. The number of nodes obtained from the first empirical data is

ranging from 5 nodes to 30 nodes, and the other results are obtained by increasing
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the number of nodes from 20 to 160 nodes. When the selected transmission power is

-17 dBm, the communication range is smaller; on the contrary, when the transmission

power is 0 dBm, the communication range is large. Large communication ranges may

cause an increase by alleviating the border effect problem, consequently the accuracy

of the estimators is low in the first experiment when the transmission power is 0 dBm.

Figure 4.11: Actual Cooperative Density vs. Estimated Cooperative Density Scatter

Plot I when Transmission Power is -17 dBm.

The relation between the actual cooperative density estimation and the estimated co-

operative density is shown in Figure 4.11. When the network is sparse, there is a

slight underestimation of the density. However, as the network becomes denser, the

level of the underestimation increases. Each node in this deployment has a noise

because of the multi-path fading and border effect problem. When the number of

nodes increases, the amount of noise also increases. This problem can be managed

by overcoming these phenomena.
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Figure 4.12: Actual Cooperative Density vs. Estimated Cooperative Density Error

Bar I when Transmission Power is -17 dBm.

The results are shown with the 95% confidence intervals in Figure 4.12. The level

of the confidence interval can be seen in this figure. It can be seen that the result

of cooperative density estimation stay under the perfect fit; that is, it underestimates

the density. In sparse deployments, namely when the number of nodes is small, the

results of the cooperative density estimators and actual density are closer. However, as

the actual density increases, the accuracy of the estimator is affected negatively. The

accuracy of the estimator is getting lower while the network density increases, since

the cooperative density estimators use all selected nodes and their RSSs. Because of

the shadowing, multi-path fading, and RSSs with noise, the estimator is performing

poorly. Furthermore, since we collect RSS measurement from overlapping areas, the

measurements are highly correlated. The correlation of the data negatively impacts

the accuracy of the estimators.
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Figure 4.13: Cooperative Density vs. Average Absolute Percentage Deviation I when

Transmission Power is -17 dBm.

We present the average absolute percentage deviation (AAPD) from actual density

in Figure 4.13. The AAPD is a measure of accuracy, and the AAPD represents the

accuracy as a percentage. It can be seen that the average of the AAPD of the estimate

is about 20%. The AAPD is defined as

AAPD =
100

n

n∑
t=1

(
|λ− λ̂|
λ

)
, (4.3)

where n is the number of samples, λ is the actual density, λ̂ represents the estimated

density.
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Figure 4.14: Actual Cooperative Density vs. Estimated Cooperative Density Scatter

Plot II when Transmission Power is 0 dBm.

Actual density versus the estimated cooperative density when the transmission power

is 0 dBm is shown in Figure 4.14. As it was the case when the transmission power was

-17 dBm, we under estimate the density when a larger amount of transmission power

is employed. However, as the transmission power increases, the AAPD increases

considerably as we will present in the sequel.
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Figure 4.15: Actual Cooperative Density versus Estimated Cooperative Density Error

Bar II when Transmission Power is 0 dBm.

The results are presented with the 95% confidence interval in Figure 4.15 when the

transmission power is 0 dBm. In this experiment, the maximum number of nodes is

30. At each run, the density estimator randomly selects 5 nodes in initial step, and

30 nodes at the end. Since we select different nodes at each run, the actual density

and the estimated density values change. To present the results, we divide the density

range into bins and accumulate the results for each bin. The estimated densities for

each bin is averaged and presented in Figure 4.15. The maximum number of nodes

in the topology is 30. Therefore, when we select all the 30 nodes in the runs, we

obtain the same actual density and the same estimate. That is why, there happens to

be sudden jumps in Figure 4.15.
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Figure 4.16: Cooperative Density vs. Average Absolute Percentage Deviation II when

Transmission Power is 0 dBm.

The results are represented in terms of average absolute percentage deviation (AAPD)

from actual density in Figure 4.16 when the transmission power is 0 dBm. The results

of the AAPD show that the accuracy of the cooperative density estimator is lower as it

was the case in the previous experiments when the transmission power was -17 dBm.

In this experiment, there exists 30 nodes in Figure 4.2, and RSS values of deployed

nodes have a lot of noise because of the border-effect problem and multi-fading, and

default transmission power 0 dBm. The average of the AAPD is about 40%. As the

transmission power increases, the communication ranges of the nodes increases and

the empty regions around the deployment area significantly impacts the accuracy of

the estimator.
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4.4 Results of Individual Density Estimation

Individual density estimation uses only measurements of one node that is selected in

the middle of the deployment area as the estimator node. Individual density estima-

tion results are also analysed for two empirical data, namely when the transmission

power is 0 dBm, and when the transmission power is -17 dBm. The range of the

number of nodes obtained from the first empirical data is increased from 5 nodes to

30 nodes, and the other results are obtained by increasing the number of nodes from

20 nodes to 160 nodes. When the selected transmission power is -17 dBm the, the

communication range is smaller, on the contrary in 0 dBm, the communication range

is large, this may cause an increase in terms of the border effect problem, so the ac-

curacy of the estimators is more lower in the first experiment with 0 dBm. For the

individual density estimation, the node labelled 143 in Figure 4.1 for the second ex-

periment in -17 dBm, and the node labelled 232 in Figure 4.2 for the first experiment

are selected as estimating nodes.

Figure 4.17: Actual Individual Density vs. Estimated Individual Density Scatter Plot

I when Transmission Power is -17 dBm.
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The relation between the actual individual density estimation and estimated individ-

ual density estimation can be seen in Figure 4.17. It can be seen that there is an

overestimation. The degree of the overestimation is increasing while the network is

getting dense. In individual estimation, the estimator node collect the RSS measure-

ments only from its direct neighbours. Consequently, the measurements are highly

correlated with each other. In cooperative estimation, the errors introduced by some

nodes could be suppressed by the measurements from other nodes. However, in in-

dividual estimation, this implicit error suppression is not possible since we use the

measurements collected only by the estimating node.

Figure 4.18: Actual Individual Density vs. Estimated Individual Density Error Bar I

when Transmission Power is -17 dBm.

The results are represented by using the 95% confidence interval in Figure 4.18 when

the transmission power is -17 dBm. It can be seen that the result of individual density

estimation stay over the perfect fit (overestimation). We observe a positive bias in the
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density estimates due to correlated RSS measurements as explained above.

Figure 4.19: Individual Density vs. Average Absolute Percentage Deviation I when

Transmission Power is -17 dBm.

The results are shown in terms of average absolute percentage deviation (AAPD)

from actual density in Figure 4.19. The results of the AAPD show that the accuracy

of the cooperative density estimator is low that the previous result in the experiment

when the transmission power is -17 dBm. The average of the AAPD is about 20%.
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Figure 4.20: Actual Individual Density vs. Estimated Individual Density Scatter Plot

II when Transmission Power is 0 dBm.

Figure 4.20 shows the scatter plot of the actual individual density versus estimated

individual density. In this experiment, the transmission power is 0 dBm and the range

of the deployed nodes is between 5 and 30, in addition the node labelled 232 in Figure

4.2 is selected. In this case the individual density estimator under-estimates at initial

steps, however in the next steps when the number of nodes became grater than 15

nodes, the estimator over-estimates.
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Figure 4.21: Actual Individual Density vs. Estimated Individual Density with 95

confidance interval when Transmission Power is 0 dBm.

The results are shown by using the 95% confidence interval in Figure 4.21. When

the number of nodes in Figure 3.2 is greater than 15 nodes the individual density

estimator converges the perfect fit, then under-estimates. If the number of selected

nodes whose RSSs are less noisy increases, the estimation is getting more closer to

fit.
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Figure 4.22: Individual Density vs. Average Absolute Percentage Deviation with

0dBm Transmission Power.

Figure 4.22 shows the average absolute percentage deviation (AAPD) from actual

density. The results of the AAPD show that the accuracy of the cooperative density

estimator is more lower that the previous result in the experiment in -17 dBm trans-

mission power. The average of the AAPD is about 10%. After several attempts the

estimating node selected as 232 which be seen in Figure 4.2. This result show us

individual density estimation may produce better results depending on the estimating

node. Choosing a node closer to the center of the topology, produces a better estimate

since the border effect problem is less severe.
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4.5 Comparing Individual and Cooperative Density Estimation

Experimental results shows that the performance of the cooperative density estimation

is more consistent than individual density estimation. Individual density estimation

depends on the position of the estimating note and distribution of its neighbours.

When the estimator node resides somewhere close to the middle of the deployment

area, the AAPD is low. If a node close to the borders is selected as the estimating

node, then the accuracy of the density estimator drops sharply because of the border

effect. It can be seen that the individual estimator over-estimates, the cooperative

density estimator under-estimates. If these two methods are combined, the accuracy

of the new estimator can produce better results.

4.6 Impact of Path-Loss Exponent

Table 4.4: Changes on Individual and Cooperative Estimators According to Path-loss
Exponent

γ λc λ̂c σλ̂c λi λ̂i σλ̂i
1.60 0.056 0.006 0.003 0.093 0.031 0.000
2.00 0.056 0.030 0.015 0.078 0.065 0.075
2.50 0.056 0.082 0.016 0.079 0.101 0.000
3.00 0.053 0.166 0.020 0.068 0.444 0.116
3.50 0.055 0.289 0.015 0.079 0.410 0.000

Individual and cooperative density estimation requires a robust path-loss exponent

estimator. The error in path-loss exponent estimate significantly impacts the accuracy

of the density estimator as can be observed in Table 4.4. The estimated path-loss

exponent is usually around 2.32 in our experiments. If we set the path-loss exponent

to some values in this range, the error of density estimation -both in individual and

cooperative- is smaller compared to those cases where the path-loss exponent largely

deviates from the estimated value.
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4.7 A New Method Based on Fusion of the Individual and Cooperative Density

Estimators

Considering the results of the individual and cooperative density estimation we ob-

served that if a method based on the fusion of these two estimators is performed,

then the performance of this new method is much better than these two estimators.

It can be understood from the experimental results that while the individual estima-

tor overestimates, the cooperative density estimator underestimates. When we use the

average results of these two estimators then the results of estimated and actual density

are very close.

Figure 4.23: Actual Fusion Density vs. Estimated Fusion Density Scatter Plot when

Transmission Power is -17 dBm.

Actual fusion density versus the estimated fusion density when the transmission power

is -17 dBm is shown in Figure 4.23. As it was the case when the transmission power

was -17 dBm, the individual density estimator has overestimated results, and the co-

operative density estimator has underestimated outcomes.
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Figure 4.24: Actual Fusion Density vs. Estimated Fusion Density Error Bar when

Transmission Power is -17 dBm.

The outcomes are presented with the 95% confidence interval in Figure 4.24 when

the transmission power is -17 dBm. In this experiment, the maximum number of

nodes is 100. At each run, the density estimator randomly selects 5 nodes in initial

step, and 100 nodes at the end. Since we select different nodes at each run, the actual

density and the estimated density values change. To present the results, we divide the

density range into bins and accumulate the results for each bin. After, we calculate

the average of the two estimators, the estimated densities for each bin is averaged and

presented in Figure 4.24.

53



Figure 4.25: Fusion Density vs. Average Absolute Percentage Deviation when Trans-

mission Power is -17 dBm.

The results are shown in terms of average absolute percentage deviation (AAPD) from

actual density in Figure 4.25. The results of the AAPD show that the accuracy of the

fused density estimator is more accurate than the previous results of the individual

and cooperative density estimators when the transmission power is -17 dBm. In this

experiment the estimating node in the individual density estimator is again selected

as 232 which be seen in Figure 4.2. It can be seen that as the number of nodes

increases, the accuracy of the estimator gets much better. The average of the AAPD

is about 4%. This result show us the fused density estimation method can produce

much better results.
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CHAPTER 5

CONCLUSION

5.1 Conclusion

In this thesis, received signal strength based individual and cooperative density esti-

mators are validated by controlled field experiments conducted in the FIT IoT-LAB

test-bed, in France. According to the experimental results, individual and cooperative

density estimators are not accurately used for density estimation of wireless sensor

networks in practice. The accuracy of the individual density estimator is significantly

affected by the position of the estimating node and the number of its neighbours.

Cooperative density estimator produces more consistent results than the individual

density estimator. Therefore, it can be said that cooperative density estimation is

more robust than the other. However, the cooperative density estimator effects nega-

tively due to the correlated data. Experimental results show that the average absolute

percentage deviation of the cooperative density estimator is around 10%-20%. Mean-

while, the AAPD deviation of the individual density changes between 10% and 35%.

These results can be improved by overcoming shadowing and multi-path fading. By

considering the experimental and deployment results, we can see that while the indi-

vidual estimator over-estimates, the cooperative density estimator under-estimates. It

can be observed that if these two method are combined, the accuracy of the new esti-

mator can produce better results. Thus, we define a new method based on the fusion

of these two estimators in this thesis. This new estimator uses the average results of

the estimators, and yields much better outcomes than the results of these two estima-

tors. The average absolute percentage deviation of this new fusion method is around

1%-4%. In this study, it is also observed that the path-loss exponent estimation is an
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important issue since it effects the accuracy of density estimation. Moreover, the re-

ceived signal strength is prone to large- and small-scale fading, and this phenomenon

negatively affects the accuracy of the estimators.

5.2 Future Work

There are some possible problems that need to be solved such as how to overcome

large- and small-scale fading. These estimators can be more accurate by consider-

ing this issue and correlated data while employing in large-scale but limited-range

networks. Some hybrid models can be designed by combining the strengths of the

individual and cooperative density estimation methods, and especially in the coop-

erative density estimation, the nodes can share their distance estimations instead of

received signal strength measurements. After improving these estimators, they can

be implemented as a network protocol. There is also one possible problem which is

the validation of these estimators in mobile wireless sensor network.
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