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ABSTRACT

ADVANCES IN ROBUST IDENTIFICATION OF SPLINE MODELS
AND NETWORKS BY ROBUST CONIC OPTIMIZATION,
WITH APPLICATIONS TO DIFFERENT SECTORS

Ozmen, Ayse
Ph.D., Department of Scientific Computing, METU
Supervisor : Prof. Dr. Gerhard Wilhelm Weber

February 2014, 130 pages

Uncertainty is one of the characteristic properties in tleaaf high-tech engineering
and the environment, but also in finance and insurance, agwbe data, in both input
and output variables, are affected with noise of variougjm@and the scenarios which
represent the developments in time, are not determinigkiere Since the global envi-
ronmental and economic crisis has caused the necessity fessential restructuring
of the approach to risk and regulation in these areas, censeglts of new global regu-
latory frameworks for serving the requirements of the riéaHave to be established in
order to make regulatory systems more robust and suitalideeMg and prediction of
regulatory networks are of significant importance in margaarsuch as engineering,
finance, earth and environmental sciences, educatioremyisiology and medicine.
Complex regulatory networks often have to be further expdraded improved with
respect to the unknown effects of additional parametersfactdrs that can emit a
disturbing influence on the key variables under considanatirhe concept of target-
environment (TE) networks provides a holistic framework tiee analysis of such
parameter-dependent multi-modal systems. Data-basddoa of complex regula-
tory networks requires the solution of challenging regmsproblems for an estima-
tion of unknown system parameters; however, given stegisthethods which assume
that the input data are exactly known, may not provide trastfuwy results. Since the
presence of noise and data uncertainty raises seriousepnstib be coped with on the
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theoretical and computational side, the integration okbutain is a significant issue for
the reliability of any model of a highly interconnected gst Therefore, nowadays,
robustification has started to attract more attention vagard to complex interdepen-
dencies of global networks and Robust Optimization (RO) la@sagl great importance
as a modeling framework for immunizing against parametniwantainties. In this the-
sis, Robust (Conic) Multivariate Adaptive Regression Spliif(€)MARS) approach
has worked out through RO in terms of polyhedral uncertanttich brings us back to
CQP naturally. By conducting a robustification in (C)MARS, th&rneation variance
is aimed to be reduced. Data uncertainty of real-world mo@ealso integrated into
regulatory systems and they are robustified by applying R(GR8AFor this purpose,
firstly, time-discrete TE regulatory systems are analyzit spline entries, and a new
regression model for these particular two-modal systemasaliows us to determine
the unknown system parameters is introduced by applying MARSECMARS as an
alternative to classical MARS. CMARS elaborates a reguladmaty means of con-
tinuous optimization, especially, conic quadratic prognsing (CQP) which can be
conducted by interior point methods. Then, time-discratgdt-environment regula-
tory systems are newly introduced and analyzed under pdfghancertainty through
RO. Besides, some numerical examples are presented to deaterise efficiency of
our new (robust) regression methods for regulatory netsiofke results indicate that
our approach can successfully approximate the TE interadbiased on the expression
values of all targets and environmental items. In (R)MARS &)}CMARS, however,
an extra problem has to be solved (by Software MARS, etc.)eharthe knot selec-
tion, which is not needed for the linear model part. Themfam this thesis, Robust
(Conic) Generalized Partial Linear Models (R(C)GPLMs) are aleveloped and in-
troduced by using the contributions of both regression risod@ear Model/Logistic
Regression and R(C)MARS. As semiparametric models, (C)GPLM a@)GHLM
lead to reduce the complexity of (C)MARS and R(C)MARS in terms efamber
of variables used in (C)MARS and R(C)MARS. Moreover, our methadsapplied
on real-world data from various areas, e.g., the financiebsemeteorology and the
energy sector. The results indicate that RMARS and RCMARS cad tngle precise
and stable models with smaller variances compared to tifdddBS and CMARS.

Keywords Robust (Conic) Multivariate Adaptive Regression Splines,iBbConic)
Generalized Partial Linear Models, Robust Optimization, i&bkConic Quadratic
Programming, Polyhedral Uncertainty, Robustification, weks, Regulatory Sys-
tems.
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Oz

DEGISIK SEKTORLERE UYGULAMALARIYLA B IRLIKTE SAGLAM KON IK
OPTIMIZASYON ILE EGRI MODELLERI VE AGLARIN SAGLAM
TANIMLANMASINDAK | GELISIMLER

Ozmen, Ayse
Doktora, Bilimsel Hesaplamadimi
Tez Yoneticisi : Gerhard Wilhelm Weber

Subat 2019, 130 sayfa

Hem girdi hem de c¢ikti dgiskenlerindeki veriler cesitlitrlerdeki kontrol&z degisim-
lerden etkilendji ve zaman icinde gelisimdgteren senaryolar da belirli olm@adndan
belirsizlik, yiksek teknoloji nihendislgi ve ¢evre alanlarinda ve ayni zamanda finans
ve sigorta alanlarindaki karakteristizelliklerden biri durumundadir. Cevresel ve
ekonomik alandaki iresel kriz bu alanlardaki risk vaidenleme yaklasimina gerekli
bir tekrar yapilandiriimanin kaginilmaz olmasina ydi@adan, yeni kresel dizen-
leyici yapilarin ana elemanlari gercek hayatin gerekdgrine hizmet vermekizere
duzenleyici sistemleri daha §&m ve uygun yapmak amaci ile kurulmalidiriizzn-
leyici aglarin tahmin ve modellenmesininimendislik, finans, yeiyzll ve cevresel
bilimler, egitim, sistem biyolojisi, tip gibi bircok alanda kaydagés bironemi vardir.
Karmasik dizenleyici @lar, didinilen anahtar dgskenleriizerinde rahatsiz edici
bir etkiyi agcga cikarabilecek ek parametre ve fakerin bilinmeyen etkisini dikkate
alarak siklikla daha fazla genisletiimesi ve geligtiési gerekir. Hedef-cevrajkari
kavrami, ldyle parametre iaml ¢cok modelli sistemlerin analizi icinttinail bir
yap! s@lamaktadir. Karmasikitzenleyici @larin veri tabanli tahmini, bilinmeyen sis-
tem parametrelerinin tahmini i¢in zorlu regresyon pratfikerinin gozimini gerekti-
rir; ancak, girdi verilerinin kesinlikle bilindji varsayiminda bulunan istatistik metod-
lar1 glvenilir sonuclar vermeyebilir. Kontrdllg degisimin varlgi ve veri belirsizI§i
teorik ve hesaplamali alanlarda ilgilenilmesi gerekemlictoblemlere yol acfindan
belirsiz verilerin entegrasyonu, son derece birbiringibdl sistem modellerininigve-
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nilirli gi icin 6nemdir. Bu nedenle,tkesel glarin karmasik karsilikh amhhklari

ile ilgili olarak sajlamlastirma, bugnlerde daha fazla dikkat cekmeye baslamis ve
parametrik belirsizfje karsi bgisiklik kazandiran bir modelleme yapisi digundan
sglam optimizasyon tyik bir onem kazanmistir. Bu tezde,gtam (konik) cok
degiskenli uyarlanabilir regresyorgéleri (R(C)MARS) yaklasimi sglam optimizas-
yon araclilgi ile standart konik karesel programlama (CQP) kullaninmmean sdla-
yan cokdizlemli belirsizlik altinda ¢zilmektedir. (C)MARS’da yapilan bir ggam-
lastirma ile tahmin dgisiminin digirilmesi amaclanmistir. Ayrica, gercek hayat mo-
dellerinin veri belirsizlgi de dizenleyici sistemlere entegre edilmis ve R(C)MARS
uygulayarak bu sistemler gamlastirimistir. Bu amag icirgncelikle, @ri girdile-
riyle kesik zamanlh hedef-cevraidenleyici sistemler analiz edilmis, MARS ve klasik
MARS’a bir alternatif olan CMARS metodlarini uygulanarak bdidtieikili-model
sistemleri icin bilinmeyen sistem parametrelerini Hetinemize olanak ggayan yeni
bir regresyon modeli sunulmustur. CMARSyrekli optimizasyonpzellikle i¢ nokta
yonteminin kullanildgi CQP aracifityla bir dizenlemeyi detaylandirmaktadir. Daha
sonra cokdzlemli belirsizlik altinda sglam optimizasyon yoluyla yeni kesikli zaman
hedef-cevre dzenleyici sistemleri tanitilmis ve analiz edilmistiBununla birlikte,
dizenleyici @larda yeni (sglam) regresyon metodunun etkiili gdstermek amaci
ile birka¢ sayisabrnek de sunulmustur. Sonuclaiant hedef ve cevresel fakierin
ifade dejerlerine dayanarak, bizimbptemimizin hedef-cevre etkilesimine basarili bir
sekilde yaklasabildjini gostermektedir. Ancak, (C)MARS ve R(C)MARS model-
lerinde, d@rusal kisimda ihtiya¢c duyulmayaii@lim noktasi secimi olarak adlandirilan
fazladan bir problemindzilmesi gerekir. Bundan dolayi, Jousal/lojistik regresyon
ve R(C)MARS katkilariyla sglam (konik) genellestiriimis parcali dgousal model
(R(C)GPLM) de gelistirilmis ve sunulmustur. Yari-paraniemodeller olan (C)GPLM
ve R(C)GPLM, (C)MARS ve R(C)MARS algoritmalarinda kullanilaigdgen sayilari
yoninden (C)MARS ve R(C)MARS'In karmasigini azaltmamiza olanak@amistir.
Ayrica, metodlarimiz, finansal séki meteoroloji ve enerji selétu gibi cesitli alan-
lardaki gercek hayat veriletiizerine uygulanmistir.  Sonuclar, MARS ve CMARS
methodlariyla karsilastirildinda, RMARS ve RCMARS’In dahailkilk deggisim ile
daha dgru ve daha kararli modeller kurabildigindgtermektedir.

Anahtar Kelimeler Saglam (Konik) Cok Dgiskenli Uyarlanabilir Regresyondileri,
Salam Genellestirilmis (Konik) Parcall Linear Modell&ajlam Optimizasyon, Sg
lam Konik Karesel Programlama, Cdkdemli Belirsizlik, Sd@lamlastirma, Alar,
Duzenleyici Sistemler.
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CHAPTER 1

INTRODUCTION

Multivariate adaptive regression splines (MARS)![48] is enfaf non-parametric re-
gression analysis for building high-dimensional and nwedr multivariate functions
and applied in many fields of science, engineering, tectyypfinance and control de-
signinrecentyears. Itis a modern methodology of statibk&arning, data mining and
mathematical estimation theory which is important in bafgression and classifica-
tion, and develops an multiplicative-additive model in a{stage process, namely, for-
ward and backward, without specific assumptions about tdenlying functional rela-
tionship between the variables [60] 70]. Continuing on tleesss of MARS in model-
ing real-life problems, as an alternative to MARS, Conic MARS (BRS) [129)138]
was developed for the backward part of the MARS algorithm inexipus study. For
this approach, a Penalized Residual Sum of Squares (PRSS)lisyeth for MARS as
a Tikhonov regularization (TR) problern|[5], and then, it isated with a continuous
optimization technique, namely, Conic Quadratic PrograngndCQP) [13].

For both the MARS and CMARS models, however, data are assumeahtaic fixed
input variables whereas, in reality, the data involved igression problems contain
noise. Therefore, these regression models are not capabiendling data uncer-
tainty. Indeed, in inverse problems of modeling and dataimginsolutions can rep-
resent a remarkable sensitivity with respect to pertuobatin the parameters which
base on the data, and a computed solution can be highly ibfeasuboptimal, or
both. Since, with increased volatility and further unciattias, economical, environ-
mental and financial crises translated a high “noise” wittata into the related models,
the events of recent years in the world have led to radicaityustworthy representa-
tions of the future, and robustification has started to etttnaore attention in many
areas. Hence, we include the existence of uncertainty dernsg future scenarios into
MARS and CMARS, and robustify them throu§tobust OptimizatioRO) [15,[16],
proposed to cope with data uncertainty. We represent the Rebust (C)MARS
(R(C)MARS) [98/99] 100, 103] in theory and method, and apply R(&R& on some
different kinds of datasets.



1.1 Purpose of the Study

The presence of noise and data uncertainty rises critichl@ms to be coped with on
the theoretical and the computational side. In order toaee that difficulty, new

models have to be developed where optimization results @réimed within real-

life applications. For immunizing against parametric utaaties, RO, developed by
Ben-Tal and Nemirovski[10, 11, 15], and EI-Ghaoui et[all [38], has gained in great
importance as a modeling framework from both a theoretiodlapractical point of

view. RO aims to find an optimal or near optimal solution tlsateasible for each
possible realization of the uncertain scenarios.

In order to make MARS and CMARS models more generalized and prepa deal
not only with fixed but also random type of input data, we idtroe the new methods
called RMARS and RCMARS by further enhancing the MARS and CMARS meathod
to handle data uncertainty [98, 107]. Because of the compuatdteffort which our
robustification of (C)MARS easily needs, we also describe ew concept of a weak
robustification that is called as WR(C)MARS. In our thesis, weaifoon the polyhedral
type of uncertainty which brings us back to CQP naturally. Bygisobustification
in (C)MARS, we aim to reduce the estimation variance. Furtloeenwe analyze
Generalized Partial Linear Models (GPLMs), and we intreadacewly developed Ro-
bust (Conic) Generalized Partial Linear Model (R(C)GPLM) [1002104] using the
contribution of a continuous regression model R(C)MARS andrarpatric/discrete
regression model Logistic/Linear Regression. A R(C)GPLM sdadeduce the com-
plexity of (C)MARS consisting in the number of variables usedR(C)MARS algo-
rithm.

In our thesis, the robust optimization technique of solvamgl optimizing the mod-

els having nonlinearity and uncertainty by using R(C)MARS soaliscussed with an
implementation on two-model regulatory systems (Targatf&nment (TE) systems)

that appear in the financial sector and in banking, in enwir@mtal protection, system
biology, medicine and so on. Since practitioners in theddsfieeed to be aware that
evaluation of probabilities based on history may be fundaally inaccurate, uncer-

tainty has importance for players in these sectors. Thetipeaof using models of

risks in a world of uncertainty is one of the reasons for then¢ environmental and
financial crisis[[40], 41]. We have presented a regressioreiimndusing splines for the

entries of regulatory network and achieved a relaxation bams of robust and con-
tinuous optimization, especially, Robust Conic QuadratimgPaming (RCQP). That

model of a TE regulatory system allows us to determine thenowk system param-

eters from uncertain measurement data by applying intpdort methods[[116, 117].

In case of uncertain data, polyhedral sets are used to erassngprors, what refers us
to particular robust counterpart programs.

We are interested in the multicritetiadeoff (antagonism) betweeaccuracyandro-
bustness In the line of our research [98, 199, 100, 103], robustnessheeome, in
some sense, an extension of stability or regularity. Stglslso means amall com-
plexity of the model, or: amall varianceof the estimation. Through R(C)MARS, we
have included uncertainty into our regression and clasasific modeling not only in
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the output variable but especially in the input variable®alThis type of uncertainty
is typical for real-life applications. So, in RCMARS, theresgia double way of ro-
bustification: {) The robustification is performed with respect to the inpartiables
and output variable, all of them with their own uncertainggss (i) The regulariza-
tion in integral form that expresses itself by the involvernaf the (squared) first- and
second-order partial derivatives of the multivariate v&snctions; after discretization
of the integrals, we reach a TR problem with first- and seconmiér complexity terms.
Then, this TR problem is turned into a CQP problem. In our RMARS only have
the robustification stef)( whereas the fine-tuning option)(dropped. We underline
the core importance of the target of numerical accuracyc{pian) as a central goal
in of our tradeoff that it establishes together wiggularity and robustnessrespec-
tively. Within the RCMARS concept and its RCQP optimization peogr through the
“control parameter” which is represented by the upper bafritie complexity term,
one can regulate and “tune” the importance that one assayrtbé stability (lack of
complexity) goal and, by this, for the antagonistic premisiarget. Moreover, we got
the promise of gaining from the “power” of RO to our R(C)MARS [9)3]. We
demonstrate the well performance of our models with nurakggperiences, simula-
tion studies and real-world applications.

1.2 The Significance of Uncertainty

Since the global economic crisis has caused the necessignfessential restructur-
ing of the approach to risk and regulation, core elementsrava global regulatory-
framework have become needed to establish in order to maktncial system more
robust and suitable for serving the requirements of theeeahomy. For this reason,
many scientists try to find ways to measure the probabilifjnaincial calamities, natu-
ral disasters and other catastrophes [41]. They draw attetat the difference between
known risksanduncertainty. The problem to be thought about is that most economists
and other risk modelers do not separate uncertainty frakn Esonomic models sup-
pose that the financial world contains known risks that caeva¢uated depending on
prior behavior of stock markets and other elements of theataoy system. Neverthe-
less, there is genuingencertainty which is the impossibility of knowing exactly what
the future keeps even in a probabilistic sense, as well asgkéhat is the range of
probabilities of outcomes pointed out by past events, whiealy serve as an unreliable
guide for the future in an uncertain environment [24,[40, H®pther words, there are
some sources of uncertainty: the data of the problem arexaatlg known or may
not be exactly measured, or the exact solution of the prob@ynot be implemented
because of inherent inaccuracy of the devices [23], andudatartainty results in un-
certain constraints and in the objective function. This nsethat the known statistical
models may not give trustworthy results.

Uncertaintyis often presented in the sectors of energy, economics,daamsurance,

but also in high-tech and the environmental studies. It is8 ohthe characteristic
properties in these sectors since the given data, in both sl output variables, are
affected with “noise” of various kinds, and the scenariosolwhrepresent the devel-
opments in time, are not deterministic either. Traditiomgbroaches to optimization
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under uncertainty such as stochastic programming [66,, thalhce-constrained pro-
gramming [28] or stochastic dynamic programming| [18] galigthave most serious
numerical difficulties as the models in these areas are kangecomplex, already in
their deterministic formulation. Therefore, as an altéueeto traditional methods, RO
Is introduced to handle the complexity issue in adopting m-pibabilistic formula-
tion of the uncertainty. RO does not have recourse to thaite®f probability that
makes it immune against the curse of dimensionality and coatipnal intractabil-

ity [44].

In this thesis, the existence of uncertainty has a strongamnpn the way of mod-
eling which, then, becomes the basis of regression andifatasi®n and, eventually,
of decision making. In this way, the uncertainty phenomeeoters all parts of the
model and its mathematical treatment, and one of the prarhieehniques to address
this situation is RO. In fact, it refers tworst-case scenariosn our study, we have at
hand control parameters in order to regulate the amounteytilism and optimism
or, in other wordsrisk-aversionandrisk-friendlinessn the modeling process. Here,
risk expresses itself in terms of variance, namely, the esttimatariance, as we shall
explain. We wish to underline that by all these consideratisnd measurements, with
our robustification we are going much beyond of the concepegidilarization which
just relates to the output data and the complexity of the rnogléunctions.

1.3 Robust Optimization

Optimizationhas been a leading methodology in many fields such as engigeér

nance and control design, and most applications suppospletmknowledge of the
data which are underlying the optimization problem. In otherds, it is assumed that
to develop a model, the input data are known exactly (fixedvexheless, solutions
to optimization problems can represent a significant sgitgito perturbations in the
parameters of the problem. Optimization affected by patamencertainty is a focus
of the mathematical programming community and a necessitydkle uncertain data
arises to develop models where optimization results arebgwed within real-world

applications([20, 22].

RO is a method to address data uncertainty in optimizatioblpms. The RO approach
aims to make the optimization model robust, consideringtramt violations by solv-
ing robust counterpart§RC9 of these problems in prespecified uncertainty sets for
the uncertain parameters. These counterparts are solvdtef@orst-casaealization

of the uncertain parameters based on uncertainty setsdoattdom parameters [42].

RO has gained a lot of attention from both a theoretical anchatigal point of view
as a modeling framework for “immunizing” against parantetmcertainties in math-
ematical optimization. It is a methodology to model, evéduand solve optimization
problems in which the data are uncertain and only known torgeto some uncer-
tainty set. RO purposes to receive an optimal or near optsolakion that is feasible
for each possible realization of the uncertain scenaribs128].

In this study, we work on R(C)MARS with the help of an RO approattictv makes
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(C)MARS robust in view of constraint violations by solving RCstbése problems
within uncertainty sets. Although these counterparts afteed for the worst-case
realization of those uncertain parameters based on syitefined uncertainty sets,
we shall weaken the concept of “worst case” for reasons ofpeational complexity.
Moreover, we have at hand control parameters which helpsesasisk-friendliness-
vs. -aversity. We study on robustification in termspaiiyhedral uncertaintyvhich
enables us to return back to standart CQP naturally [98,[1TH], 1

1.4 Complex Multi-modal Regulatory Networks

The identification of the underlying network topology petsnis to gain insights into
the regulating effects and the hidden relationships betvee variables. Many theo-
retical contributions from various disciplines concetdran the analysis of such sys-
tems. Nevertheless, the identification of regulatory neét&drom real-world data is
still a challenge in mathematics. This shows even more e the technical devel-
opments of the last decades have obtained a large numbetaahdad are still waiting
for a deeper analysis [20,749,158, 61] 63, 71,1 111] 119, 13&]refulatory systems
arise in many application areas in which they are more ance mederred to as gene-
environment or eco-finance networks. TE regulatory net&ar&n be analyzed as
gene-environment networks, for instance, to define the taxrpteractions between
genes and other components of cells and tissues in modelohgradiction of gene-
expression patterns from microarray experiments, reggroi a wider frame. The
target variables are the expression values of the geneseagediation, toxins, tran-
scription factors, etc., additionally become environraéitems [72] 73, 75, 80, 135,
137,141/ 146]. Today, it is obviously understood that emvinental factors comprise
an essential group of regulating components and the peafocenof the models may
be significantly improved by including these additionali@ales. The benefit of such
a refinement has been shown, for example_in[143], wheregtiea and classifica-
tion performances of supervised learning methods of the nayaplex-genome-wide
human disease classification can be made better by takimgacbunt environmental
aspects.

TE regulatory networks may be extended with eco-finance orsMecoabbreviating
“ecology”) by the important example in the area of £€missions-control; another
example consists of operational planning and portfolianoiation for natural gas
transportation systems. The interdisciplinary implicasi in economics, technology
and Operational Research can be successfully explainedesg tkinds of network
models [74] 80, 141, 146]. Furthermore, TE regulatory netemay be applied to an
extension of the Technology-Emissions-Means (TEM) Mod&P] that was prepared
with the occasion of the Kyoto protocdl [77]. The TEM modehds to a simula-
tion of the cooperative economic behavior of countries eegmises with the purpose
decreasing the greenhouse gas emissions. Here, the targdtles are the emissions
which some countries have to diminish, and the financial ederes act as additional
environmental items$ [68, 111, 112]. There exist many otkanmgles from biology and
life sciences, which refer to TE-regulatory systems, witkiinmental effects being
strongly included. Among them are, e.g., metabolic nete 2K, 110} 142], immuno-
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logical networks[[58], social- and ecological networks|[S¥odeling and prediction
of such regulatory systems and the problem of identifyirmgy#gulating effects and in-
teractions between the targets and other components oetiv@rk have a significant
importance in the mentioned areas.

The comparison of measurements and predictions of the TiHategy networks lead
to a regression models for parameter estimation. In mosiesdpplications from these
fields, it is assumed that the input data are not random bwtkigixed) in developing
models. Additionally, the data can undergo small changesgaiations in the opti-
mal experimental design. Therefore, all of these conditicause uncertainty in the
objective function and in possible constraints, and thaypduce some kinds of weak-
nesses to the methods, because real-life data involvetaimdgrin the form of noise.
Here, since the regression models of target-environmentanks can be affected by
noise and errors, presented inyervals the uncertain multivariate states are in to-
tal represented bgolyhedra and accordingly, our newly developed robust modeling
technigues R(C)MARS, which can handle random inputs is useds érhploys the
concept of robustness through RO problems.

1.5 Scope of the Thesis

This thesis is comprised of seven main chapters and four Agipes. Briefly summa-
rizing, the contents are organized as follows:

Chapterl: Introduction of the thesis. The objectives and outlinkthe study is given
in this chapter.

Chapter2: The background information about Multi-Model Regulatdigtworks,
Optimization and Regression is provided.

Chapter 3: Theory and approaches of R(C)MARS and R(C)GPLM method under
Polyhedral Uncertainty are demonstrated here.

Chapter4: Spline Regression Models for Multi-Model Regulatory Netikgare in-
troduced in theory and methods. (C)MARS results based orreliffalatasets for the
simulation are represented.

Chapter5: Robust Optimization in Spline Regression Models for MMtydel Reg-
ulatory Networks is introduced in theory and methodologyCR{ARS results with
different uncertainty scenarios for the numerical exanapéestudied here.

Chapter6: Real-world applications from different sectors are pnése in this chapter.

Chapter7: A conclusion and an outlook to further studies are statele last chapter.



CHAPTER 2

MATHEMATICAL METHODS USED

In this chapter, we introduce some preliminaries relatetl wur studies.

2.1 Optimization

2.1.1 Robust Optimization

Robust optimization (RO) has gained a lot of attention bottmfra theoretical and
practical point of view as a modeling framework for immuniziagainst parametric
uncertainties in mathematical optimization. It is a maaglmethodology to process
optimization problems in which the data are uncertain anohig known to belong
to some uncertainty set. Robust optimization purposes wiwea@n optimal or near
optimal solution that is feasible for every possible reatian of the uncertain data [15,
[148].

In the early 1970s, Soyster [123] was one of the first reseasdb investigate explicit
approaches to RO. This short note focused on robust lindaniagtion in the case

where the column vectors of the constraint matrix were camstd to belong to ellip-

soidal uncertainty sets. He suggested a linear optimizatiodel to create a solution
that was feasible for all input data such that each unceirgut data point could take
any value from an interval but, this approach tended to findtems that were over-

conservative. Even though Falk [43] followed this a few wdater with more work on

inexact linear programs, the optimization community wdatieely quiet on the issue
of robustness until the work of Ben-Tal and Nemirovs$kil [10,[13] and El Ghaoui et
al. [38,[39] in the late 1990s.

The RO approach makes the optimization model robust ragguadinstraint violations
by solvingrobust counterpart®f these problems within prespecified uncertainty sets
for the uncertain parameters. These counterparts aredsfawéhe worst-case realiza-
tion of those uncertain parameters based on appropriagéédyrdined uncertainty sets
for the random parametefs [42]. The general uncertain dgdiinon problem is defined
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as follows:

minimize ¢’ x
zERD (2.1)
subject tof;(x, ) <0 (i =1,2,...,m),

wheref;(x, ) are given constraint functiong, € RX is a vector of uncertain param-
eters and: € R™ as well. Ben-Tal and NemirovsKi [10, 11,/12] and, indepenigeEt
Ghaoui et al.[[38, 39] have taken a significant step forwardeweloping theory for ro-
bust optimization. Indeed, the uncertain optimizatiorgbem is a family of problems
- one for each realization @b. In the RO framework the information relatedd¢@nd
o are modeled as geometric uncertainty €étsc R? andU, c R¥. Therefore, the
family of problems of Eqn.[(2]1) is rewritten by itsbust counterparin the following
form:

minimize maxe’ x
T cely (2.2)
subject tofi(z,p) <0,V e U (i=1,2,...,m),

wherelU; andU, are given uncertainty sets. Let any minimal value be calfedlhe
motivation is to find a solution of the stated problem in EqA.2] that “immunizes”
the problem Eqn. [(211) against parameter uncertainty. ,Hbeeeobjective function
is guaranteed to be no worse thanand a solution of Eqn.[(2.2) is feasible to Eqn.
(2.3) for any realization ofp € U,. Anyone of the two uncertainty sets typically

is a polytope or an ellipsoid or an intersection of such detshe robust optimization
literature, a general form of uncertainty sét,e.g.,U, is given as follows:

q
U={¢=¢+ZPR¢HGRK\06Z}, (2.3)

k=1

wherep is the nominal value of the uncertain vectpy the vectorsp® are possible
scenarios of it, ang = (p1, o, ..., p,)" is @ perturbation vector. The sétdetermines
what type of uncertainty set we have. These sets may be

box uncertainty setZ = {p e RY| p > 0, €' p < 1},
convex combination of scenarieg = {p e RY| —1<p; <1(i=1,2,...,9)},

ellipsoid uncertainty setZ = {p € R?| p'p < 1}.
(2.4)
wheree = (1,1,...,1)T € RY.

These sets yield useful models of uncertainty, which leattactable optimization
problems|[16]. For a visualization see Figlrel 2.1.
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Figure 2.1: Approximating a robust solution [37].

2.1.2 Conic Optimization

A generalprimal conic(CP) optimization problem is a problem in the conic form

minimizec’ x

2.5
subjecttoAx = b, x € K, (2:5)

whereK is a closed, pointed (which means tiétcontains no line), non-empty, con-
vex coneg is the design vector anglis a given vector of coefficients of the objective
function. In fact we assume that is some product of the following cones [13]:

i) Thenonnegative orthanR’ . The non-negative orthant consists of all vector&in
whose elements are all non-negati®®: = {x|z;, > 0Vk=1,2,...,n}.

i) TheLorentz(or second order, or ice-cream) cone:

1= {o = () € R a2 o bbbk b (e N 1D,

lii) The positive semidefinite cone:
Lt ={AcR"" A=A" o" Az > 0Vo c R"}. (2.6)
A generaldual conic(CD) optimization problem is a problem in the conic form
minimize b’y
. . (2.7)
subjecttoc — A'y € K.

Here, (CD) is just called thdual problemof (CP), the constraint is called a linear
matrix inequality. For a conic problem, there exist thedaling properties of the

duality [13]:



1. The value of the dual objective at every dual feasibletswius the value of the
primal objective at every primal feasible solutiomgak duality.

2. The following two properties are equivalent to each ather
(&) The primal problem is strictly feasible and below bounded,
(b) The dual problem is solvable.

3. The following two properties are equivalent to each ather
(c) The dual problem is strictly feasible and bounded from Wwelo
(d) The primal problem is solvable.

Strong Duality propertyWhenever(a)(«< (b)) or (c)(«< (d)) is the case, the optimal
values in the primal and the dual problems are equal to edwr @trong duality:

Opt(C'P) = Opt(CD).

4. The duality issymmetric the problem dual to the dual is equivalent to the pri-
mal. There are different conic optimization problems cdased and coped with such
as Linear Programming (LP), Second-Order Cone Programn3@P), Semidefi-
nite Programming (SDP). In all these cases, these conim@atiion problems can be
solved efficiently by amterior Point Method(IPM) [116,[117]. For our study, we will
mainly focus on SOCP, also called @snic Quadratic Programmin¢CQP) [13,[21].
Here, to find a solution for conic optimization problem, MGSEB9], SeDuMi [127],
SDPT3[1338] can be used as a solver.

2.1.2.1 Conic Quadratic Programming

CQP is the problem of minimizing a linear objective functiombgct to the intersection
of an affine set and the direct product of quadratic coneseofdim

n—1
L" = {wER"} xi 229&?, Tp_1 20}.

j=1

We recall that the quadratic cone is also known as the secodet-(Lorentz or ice-
cream) cone. Many optimization problems can be construotdds form. Some ex-
amples are linear, convex quadratic and convex quadrgtmatstrained quadratic op-
timization. Various applications of conic quadratic optiation are presented ih [13,
$81]. A conic optimization problem can be represented in tiewing form:

minimizec’
subjecttoAx = b, x« € K,

associated with a conk, represented a& = L™ x L™ ... x L™ C E. Canoni-
cally turning to inequalities rather than equalities, imgel, a CQP is an optimiza-
tion problem with linear objective function and finitely matice-cream constraints”
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b,—A;x > 0,definedbyp,— A;x € L" (i =1,2,...,r). Therefore, a CQP problem
L™
can be written as| [13]

minimize ¢’ x

T

subjecttob;, — A;x > 0 (i =1,2,...,7).
Lni

If we subdivide the data matrixA;, b;], as follows:

D, d,
Ai7 b’L - : ’ 5
[ ] [PzT qi:|
whereD,; is of the size (m; — 1) x dimz), the problem can be written as follows:

minimizec’ x

€T

subjectto||D;x — d,||, <p/xz—q (i=1,2,...,7).

That is the most explicit form which is used. In that fori2; are matrices with the
row dimensions being the dimension ®f d; are vectors of the same dimensions as
the column dimensions of the matricék, p, are vectors of the same dimensions as
x, andg; are real numbers.

2.1.2.2 Interior Point Methods

Convex optimization problems like semidefinite programmiggometric program-
ming and, in particular, CQP problems are very essential ta daning and classi-
cal polynomial-time algorithms may be employed to solveséhkinds of problems.
Nevertheless, these algorithms have some disadvantagss thiey use local infor-
mation on the objective function and the constraints. Tloeeelnterior Point Meth-
ods (IPMs) [94], firstly introduced by Karmarkaf [64], are employedsive “well-
structured” convex problems, like CQP problems. There has dene comprehensive
research on interior-point methods for linear optimizati®ne result of this research
is the development of a primal-dual interior-point algamit [67,/90] that is highly ef-
ficient both in theory and in practicel [3,183]. Consequentiyme authors have studied
to drive this algorithm for other problems. An important wan this direction is the
paper of Nesterov and Todd [95] which represents that tmeghdual algorithm keeps
its theoretical efficiency when the nonnegativity constimiare replaced by a convex
cone as long as the cone is homogeneous and self-dual, @ tarthinology of Nes-
terov and Todd, a self-scaled cone [4]. It has subsequee#y bnplied by Gler [54]
that the only interesting cones having this property arealiproducts of the quadratic
cone and the cone of positive semi-definite matrices. Fostudy, we mainly focus
on conic quadratic optimization and on an algorithm for th&ss of problems.

For CQP, many authors have already worked algorithms. licpéat, Tuschiyal[131],
Monteiro and Tuschiyd [91] have analyzed the complexityifiecent variants of the
primal-dual algorithm. Schmieta and Alizadeh [120] haveresented that many of

11



the polynomial algorithms developed for semidefinite ojtation [126] may imme-
diately be translated to polynomial algorithms for coni@dratic optimization[[4].
Sturm [127] has reported that his code SeDuMi may solve aumciratic and semidef-
inite optimization problems. We take into consideratiorptimization problem given
by [4},[13]

minimize ¢’ «,

TP

wherep C R"™. Here, IPMs base on the interior point of the feasiblgsét/e suppose
that this feasible set is closed and convex. An interior [igfanction (barrier) F(x)
is selected, well defined, smooth and strongly convex, inrttegior of o and blowing
up as a sequence from the interior gnapproaches a boundary pointaf

xz,€intp (neNy), lim x, € dp = F(x,) — oo (r — o0).
T—00

Now, we take into account one parametric family of functigeserated by our objec-
tive and interiopenalty function

E,(x) :=pc” + F(z)|int p — R.

The penalty parameteris supposed to be nonnegative. Under mild regularity assump
tions [4],

i) every functionZ),(-) attains its minimum over the interior ¢f, the minimizerse, (p)
being unique;

i) the central path, (-) is a smooth curve, and all of the variabjests limiting points
(asp — =), belong to the set of optimal solution of above optimizagowoblem.

These algorithms have the advantage of employing the steucf the problem, of
allowing better complexity bounds and exhibiting a muchdrairactical performance.
In the so-calledorimal-dual IPMs both the primal and the dual problems and their
variables are regarded, the joint optimality conditiongymbed, parametrically solved
and followed towards a solution alongantral path

2.1.3 Robust Conic Optimization

For all (or most) possible realizations of the data, the temiushould satisfy the real
constraints despite of the data uncertainty. Such a saolugicalled arobust feasi-
ble solution The problem of receiving an optimal robust solution is@althe robust
counterpart of the original problem. Indeed, it is the peoblof minimizing the ob-
jective function over the set of robust feasible solutidnghis study, we deal with an
uncertain conic problem which has the following fofml[21]:

minimize ¢’ z,

T

subjectto Ayx — b, € K (k=1,2,...,N),

whereK}, (k= 1,2,..., N) are closed, pointed, non-empty, convex cones,4Anbl ¢
are subject to data uncertainty. It is necessary that thestatmunterpart is computa-
tionally tractable, that is, solvable in polynomial timetlwiespect to the problem size
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for RO, which is an applicable methodology for real-lifegasscale problems [38].
We note that tractability of the robust counterpart depemdthe original optimization
problem and the uncertainty set considered.

The robust optimization problem can be solved efficientlgwthe uncertainty set has
a special shape. These special shapes for uncertaintyasetseceither ellipsoidal or
polyhedral. If ellipsoidal uncertainty sets are applida tobustification is more suc-
cessful than the employing of polyhedral uncertainty Sdtsvever, the complexity of
optimization problems increases when an ellipsoidal,erathan a polyhedral uncer-
tainty set is applied. Indeed, owobust CQP(RCQB problem becomes a problem of
Semidefinite Programmin@DBP) [9][14,[39] under ellipsoidal uncertainty.

To not increase the complexity of optimization problemsolmed, in this study, we
only focus on polyhedral uncertainty with different unegmtscenarios. We study our
RCQP problem (robust second-order optimization problem (RS &R we shall
find out that it remains CQP. Consequently, we will guarantdghgalral uncertainty
sets by an interval concept for input and output data in ouwteh@ur RCQP problem
will be traced back directly as CQP programs.

2.1.4 Multi-Objective Optimization

In general optimization problems, there is a single obyectunction and the aim is
to find a solution which optimizes the objective functionuglubject to some con-
straints by using single-objective optimization metho@véitheless, most real-world
problems have several objectives, and decisions must be markgarding these ob-
jective functions at the same time [125]. When an optimizagimblem includes more
than one objective function, this problem is calledNslti-Objective Optimization
(MOO) problem that has the task of finding one or more optimum swiat[34]. If
optimization problems contain multiple objectives, wemairuse single-objective op-
timization methods. In fact, different objectives are coomhy conflicting with each
other. Therefore, a solution which performs well in one obiye cannot do as good as
in the other objectives [34]. There exist several solutithras do not perform suitably
in all objectives. It is not clear which of these solutione aetter until the decision
maker computes them. An MOO problem can be written as foligvform [125]:

minimize (f,(x), fo(x), ..., f,(z)) 'such thate € X,

wherex € R" is a feasible solution and’ C R" is the set of all feasible solutions.
In this problem, there argobjective functions to be minimized. Sometimes the MOO
problem issymbolicallywritten with a (¢ x n)-matrix A, where theith row of A
corresponds to th&h objective functionf;(x).

The pointy = (y1, 9, .-, y,)" € R?such thaty = A= is the outcome of the solution
@ € X. The setX is called decision space, and= {y € R!| y = Az, x € X} is
called the objective (criterion) space. A points called todominate point:’ if and
only if the corresponding, < y, for all ¢ andy, < y, for at least one;. If there is
nox’ € X such thate’ dominatese, thenz is callednon-dominatedr efficient The
complete set of non-dominated solutions is also known aPaneto-optimalket.
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2.1.5 Optimization Softwares

It is important to make distinction between optimizatiofveos (optimizer) and opti-
mization modeling languages [42]. An optimization solv&risoftware that carries
out numerical routines to obtain the optimal solution of atiraization problem. Op-
timization modeling languages appeared as user-frierdtjgoms that permit the user
to specify optimization problems. AMPL and GAMS, commuitiicg with a diversi-
fied amount of solvers, are two popular modeling languagdso,Ahere are lots of
languages which give modeling interfaces for particulgety of optimization prob-
lems or solvers [42]. For example, YALMIP let Matlab userpteprocess SDPs and
CQPs. Then, these are passed to semidefinite solvers like S&IRITSeDuMi.

SDPT3[133] and SeDuMi [127] can handle linear constrapussi-convex quadratic
constraints and positive semidefinite constraints. Twdefrt use a primal-dual inte-
rior points method implied as the centering-predictorgexiors method, and may ex-
ploit sparse matrix structure, making them very efficiel@g]L For these semidefinite
programming solvers, creating the inputs may be very timmseming, and can need
substantial background in optimization modeling. YALME2] and PROF which are
obtained as layers on top of these solvers in Matlab permiintoitive formulation

of SDPs and SOCPs, and help the user retrieve the results fi@sotvers very eas-

ily [42].

MOSEK is a useful optimizer for linear, quadratic and conegadratically con-
strained optimization problems, well-known for speed andharical stability [42].
It enables solvers for the optimization problems which hdoneetypes of the linear,
conic quadratic (CQ), convex quadratic, general convex amédrinteger. MOSEK
optimization tool consists of interfaces to make it easy ngy the functionality
of MOSEK from programming languages such as C, C++, MATLAB boal Java,
NET, and Python[[89]. MOSEK technique has some technicaéfitsrand an opti-
mization tool to solve large-scale mathematical optimaraproblems, but the prob-
lem size is only limited by the available memory. MOSEK is of iaterior-point
optimizer with basis identification and it is well known owiro its excellent speed
and stability [89]. The software uses problem sparsity @anetgire automatically to
receive the best possible efficiency. It also has both pramdldual simplex optimizers
for Linear Programming (LP) and corrects sensitivity asayor linear problems. It
has an efficient presolver to decline problem size beforeropation. It can tackle
primal and dual infeasible problems in a systematic way.[8®jrthermore, MOSEK
contains tools for infeasibility diagnosis and repair ahthay read and write industry
standard formats such as MPS, LP and XML.

2.2 Dynamical System of Complex Multi-Modal Regulatory Netwaoks

Dynamic systems abound in the real-life practical envirentras biological, mechan-
ical, electrical, civil, aerospace, medicine, environtaésciences, finance and econ-
omy and a variety of other systems. Understanding the dynéeinavior of these
systems is of primary interest to scientists as well as eggsg The availability of
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large data sets now allows to gain deeper insights in therdimlaehavior of complex
systems and opens promising avenues for further scientiigress. These systems
often involve two different kinds of data sets in form of e@ntkey or target variables
and additional environmental variables. For a deeper arsabne has to describe and
investigate the interactions and regulating effects betwaata items of interest and
the environmental items, encoded in the regulation-néwbdtodeling and anticipa-
tion of such systems and the problem of identifying regontagffects and interactions
between the targets and the other components of the netweekaremarkable signif-
icance in the mentioned areas|[15] 70]. As these models aezllmm real-world data,
errors and uncertainty have to be considered.

Examples:

(@) The models under consideration is developed in the coofaxtodeling and pre-
diction of gene-expression patterms [185,]137,] 140] 144, [147]. In these gene-
environment networks, the target variables represent xpeession levels of the
genes, whereas the environmental factors denote external items (e.g., rehair
toxins).

(b) TE regulatory-networks may be extended with eco-finantear&s (“eco” abbre-
viating “ecology”) with an important example in the area of £€missions-control;
another example of operational planning and portfolio rapation for natural gas
transportation systems. In[68, 111, 1112,1141], the TeawywEmissions-Means Model
(in short: TEM-model) is investigated, which lets a simigdatof the cooperative
economic behaviour of countries/enterprises with the psepf a reduction of CO
emissions. Here, the target variables are the emissionthhactors wish to decrease
and the required financial means act as additional enviratahgems.

2.2.1 Time-Continuous Regulatory Networks

With regard to different stages of modeling we can categdriwvo situations:
(i) Networks withn targets (by disregarding the environmental factors),
(i) Networks withn targets as well as: environmental factors.

For this, we divide the vectdft of concentration levels into two parts and construct
E = (E,Ey, ... ,Ep, B0, Eyo, -, Eni)?, WhereEy, Eo, ..., E, refer to then
targets and,, 1, E,.;o, ..., E, ., to them environmental factors, respectively. If we
deal with models of typea), F; indicates the expression level of targeind £ denotes
the firstn coordinates of thé = n + m-vectorE [147].

A dynamical system of targets (without any environmental factors) can be stayed b
the continuous differential equation

E = A(E)E, (2.8)
where the matrixA can depend o (cf. [135,/140]).
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To involve environmental factors into continuous model emtthe presence of noise
and uncertainty we extended in [135, 140] the model from p48] provided the con-
tinuous equation, equipped with an initial vector:

B+ _ A(k)E(k)’ E(ty) = EO (2.9)

The associated system matfixX) is a (@ x d)-matrix described by a family of func-
tions which have unknown parameters. Now, intervals ptaggrertainty in the states,
partially caused by uncertainty in the interactions. Wereb the interactions be-
tween the targets, to the effects between the environmehthentargets, or between
environmental factors. The initial vallg® = (E\” EY ... E)” contains the
interval-valued levels obtained by the first measuremett;) = E©. Since this can
result in a large and highly interconnected network, we rieedstrict on an approxi-
mate model and network. Here, polynomial, trigonometxpamential but otherwise
logarithmic, hyperbolic, spline, etc., entries present kimd of a prior information,
observation or assumption, in terms of growth, cycliciggewise behavior, etc.. In
this thesis, we analyze regulatory systems witlineentries as an advanced case.

2.2.2 Time-Discrete Regulatory Networks

The time-discrete TE regulatory systems under consiaeraibnsist oz targets and

m environmental factors. The expression values of the tamyéibles are given by the
vector X = (X1, Xs,...,X,)" and the vectol® = (E,, Es, ..., E,,)" denotes the

states of the environmental variables. The intricate auons and synergistic con-
nections between variables - targets as well environméatébrs - of the regulatory
system depend on four types of regulating effects, respyg 72, 75]:

(TT) target variable— target variable,

(ET) environmental factor target variable,

(TE) target variable- environmental factor, and
(EE) environmental factor> environment variable.

Predictions of the time-dependent states of targéjsand environmental factork’;
can be calculated through the following parametrized tthserete model:

XY = aly + (X®) o+ (BW) of, (2.10)
EFY = of 4 (X®)TaTE 4 (B®)oFE '

7

EE ¢ R™ stand for the vectors of

2

with & € No. Here,a]",afT € R* anda/F, a
parameters and}o,afo € R are intercepts, respectively. The initial vectoxs”)
and E”) can be given by the first measurements of targets and envéntairfactors:

x© .= X% andE® .= B

Theregulatory mode(RM) in Eqn. [2.10) depends dm + m)(n + m + 1) unknown
parameters. These parameters have to be assessed onsha ha@y measurements.
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The fundamental idea of our regression analysis is to coenparpredictions of (RM)
with the (uncertain) states of targe” = (X, X® .. X®)T ¢ R" and en-

vironmental observation&" — (EW EW BT e R™ (k= 0,1,...,N)
obtained from measurements at sampling times ¢, < ... < ty. By inserting these
measurements into model (RM) we obtain the following preaoins:

“ (2.11)

wherek =0,1,..., N — 1. We refer to initial valuest " := X andE O ._ g%

as we define the vectos " :(Xl(k),f(ék),...,Xé’f)) and B :(Ef), §>,...,
BN, wherek = 0,1,...,N;i=1,2,...,m;j =1,2,...,n

If now the entries of the matrices encoding regulatory nekveme specified by spline
functions for being more flexible in approximating the datad if we encounter in-
teraction between the input variables, then this leads esijgoy models that will be
based on (R)MARS and (R)CMARS. Here, splines, as function of thetimariable,
are piecewise polynomials. If we only used polynomialsnttieey would generally
converge to plus or minus infinity while the absolute valukthe input variables grow
large.

Since real-world processes usually stay in bounded maegis though these bounds
are very large, polynomials would require being of a highrdedo turn around or os-
cillate enough to stay in that margin. However, it is not e@aswork with high-degree
polynomials as the real-world problems are multivariateé timis may imply multipli-
cation effects. Instead of this, using splines lets us kkemlegree of the polynomial
pieces very low in each dimension. Indeed, splines are fakible, such to say, elas-
tic. We frequently call them smoothing splines even, sihey smoothly approximate
the discrete data. Therefore, in this thesis, we analyze-tiecrete TE regulatory sys-
tems with spline entries and introduce new regression aamsbification models that
allow us to define the unknown system parameters by applyiag R)MARS and
(R)CMARS techniques.

2.3 Inverse Problems and Parameter Estimation

An Inverse Problemnvolve to use the actual result of some measurements tcefigur
out the values of the parameters that characterize thensydtean inverse problem,
one has necessity to make explicit any available a prioormftion on the model
parameters. One also needs to be careful in the representdtthe data uncertain-
ties [3,/128].

Parameter estimation is one of the main tasks of the sciengngineer. Mathematical
modeling via parameter estimation is one of the approadhegsprovides a deeper
understanding of the characteristics of a regarded sysidmse parameters usually
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defined the stability and control behavior of the system.r&toee, prediction of these
parameters from input-output data of the system is an dakstep in the analysis of
the dynamic system. Indeed, analysis refers to the prodesmetructing the system
response to a specific input, given the knowledge of the nregeésenting the system.
Hence, in this process, knowledge of the mathematical madelits parameters is
of primer significance. Our problem of parameter estimabielongs to the class of
“inverse problems” in which the knowledge of the dynamigadtem is derived from

the input data and the associated derivative of the systém [1

Most attention is drawn to the detailed definition of methfmparameter estimation,
involving ordinary and weightelast-square$LS) and maximum likelihood with and
without prior information. Least-squares estimation (L8Ewidely preferred to use
for solving inverse problems because they enable to thesasimputation$ [17]. The
only drawback of these methods is their lack of robustness their strong sensitivity
to a small number of large errors (outliers) in a data set.nipley the LS method, the
model should be written on the regression model of the neagtein in Eqn.[(2.12).

2.3.1 Least-Squares Estimation

In this section, we consider multiple linear regression el¢d apply LS method. We
start with describing the multiple regression model anchtlvge give the LS method
to estimate the parameters of the multiple linear regrassiodel.

In general, the response variabfemay be related t@ regressor variables. With the
observations presented by the data,@¢/.) (k = 1,2, ..., N), the form of the models
is follows:

Y. = oo+ Q1T + QpoXo + ... + QpTky + Ek,y (2.12)

are called amultiple linear regression modelsith p regression variables. The pa-
rametera, means the intercept and the other parametefg = 1,2, ..., p) are the

regression coefficients. To select thest-fitting line for a set of data, the unknown
parameters of the multiple linear regression modglo, ..., o, should be estimated.

LS method is widely applied to predict the parameters inaggjon models and de-
scribe the statistical properties of estimates. Assumietha p observations on the

response variable are given@sys, . .., yy. For each observed responge we have
an observation on each dependent variable ang,letndicate thepth observation of
variablez; (j =1,2,...,p; k=1,2,..., N). Here, we firstly suppose that true rela-

tionship between the dependent variable and independeables are linear. We also
suppose that the noise teemin the model hag2(e;,) = 0 andV (¢;,) = o2 and that
the ¢, are uncorrelated random variables|[87], 88]. We may writentbelel of Eqn.
(2.12) based on observations included as

Y = Qo + Q1T 1 + QoTpo + ... + QpTpp + Tk,

p
2.13
:a0+2aj3:k7j—|—rk (k=1,2,...,N). ( )

J=1
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The estimation method of least-squares selects the ceiféci; in Eqn. [2.1B) pro-
vided that the sum of the squares of the errors, cals@tluals r;. is minimized. The
least-squares function is

L=> "= (y—oa0— Zajxk,j)? (2.14)

Turning this into the matrix notation, the least-squaresregors should satisfy

L
g—(d) = 2XTy+2XTXa =0, (2.15)
(8%

which simplifies to
XTXa=X"y. (2.16)

Eqn. [Z2.16) is the matrix form of the least-squares normak#qgns. To solve the
normal equations, multiply both sides of Eqh._(2.16) by theeise of X X, which
exists if V > (p + 1) and the design matriX has full rank. In this form it is obvious
that X7 X is a symmetric(p+1) x §p+ 1))-matrix andX "y is a column((p+1) x 1)-
vector. The diagonal elements &F° X are the sums of squares of the elements in the
columns of X, and the off-diagonal elements are the sums of cross prediiche
elements in the columns oX and the observationg, [88]. The fitted regression
model is

Y = Xa. (2.17)

In scalar notation, the fitted model is

P
ge=do+ Y drp; (k=12 N).

j=1

The difference between the real observatipand the corresponding predicted value
y; is the residual (estimation errors), = y, — yx. The (N x 1)-vector of residuals is
implied by

r=y—19. (2.18)

To develop an estimator of the parameter, take into account the sum of squares of
the residuals [88]:

N

N
SSp=> (e —4i)" =Y ri=r"r, (2.19)

k=1 k=1

Because ofX” X & = X'y, this last equation can be rewritten
SSp=yTy—a"X"y. (2.20)
Eqn. [2.20) is called therror or residual sum of squaregRSS.
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2.3.2 Regression and Classification

Regression analysis is a mathematical and statistical iggobvhich is very useful for
many types of problems in engineering, science and alsodenamalyzing the relation-
ship between dependent variable and one or more indepevaiegibles. Regression
analysis is widely used for prediction and estimation andtmommonly estimates the
conditional expectation of the dependent variable giveririiependent variables [87].
There exist many regression methods such as Linear Regrg&s$t), Logit Regres-
sion, Nonlinear Regression, Generalized Linear Models, &Rggression and Non-
parametric Regression. We explained the linear regressiomehin Subsection 2.3.1.
In that part, we gave the least-squares method to estimateattameters of multiple
linear regression model. The present part starts with LiRggression.

2.3.2.1 Logit Regression Models

Multivariate linear regression cannot be used to approteéncategorical dependent
variables, while it can be adequately used to investigager¢fationship between a
continuous (interval-scale) dependent variable, such@sme or examination score.
For that reason, instead of LR, Logit Regression is usefuk@ally, to model socio-
economic variables [130]. It is commonly employed, esgbgis GPLM, to predict
sovereign debt and defaults when the dependent variabieasybsuch as “default”
or “nondefault”. Since binary values (proportions) are maed by 0 and 1, in logit
regression, dependent variables do not show normal distsibproperties. However,
it can be assumed as Binomial distribution and, because afanea ofy - (1 — ) /n
and a mean ofi, it is assumed as a special case of Binomial distributi®ernoulli
distribution, wherey is the mean and also the probability of an event occurfin@][13
In this method, the maximum-likelihood estimation is usédrdogit transformation
to the dependent variable, using the formula:

1

E(Y|x) =P =1|z) = Hx"a) = T exp—aTa) I, (2.21)

wherex € R”. Here,H is inverse link function (the cumulative distribution furam),
a is the unknown parameter vector of the modeis the probability of the depen-
dent variable to take value “1 [60]. To estimate the unknguanameter vectos, a
likelihood function is needed using the Bernoulli assumnqtio

L(a) = [ [ (s ) (1 — m(ap; )%, (2.22)

k=1

wherer (x; ) is the probability of each observation taking the value “4dapendent
variable with independent variable vectey. To facilitate the maximization of the
likelihood function, the natural algorithm is applied [60]

N

(o) = (g In(m(@i; @) + (1= yi) (L = my (s @), (2.23)
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The unknown parameter vectaris obtained by solving the following equation:

VL(é&) (:: a—a(a)) — 0. (2.24)

To optimize the solution, iterative optimization methodsch as Newton-Raphson
type method, can be used.

2.3.2.2 Nonlinear Regression Models

If there is at least one nonlinearly involved parameter incaleh, this model is called

as aNonlinear Model This means that in a nonlinear model at least one derivative
with respect to a parameter must include that parametere&xamples for nonlinear
regression models are given as follolws [121]:

2
Y = eaa:—l—bz + £,

2.25
Y =ar+e % +e. ( )

Some examples for nonlinear functions are: exponentiaitions, logarithmic func-

tions, trigonometric functions, power functions, Gaussianction and Lorentzian

curves. Some functions, such as the exponential or logaiGtfunctions are assumed
to be linear because they can be transformed. Here, whesidrared, standard linear
regression may be performed but should be employed withorafi21]. Those mod-

els which define the growth behavior over time are used in naaags. In the field

of population biology, growth occurs in organisms, pla@tsimals, etc.[[115]. The

type of model which is needed in a specific situation relieshentype of growth that

occurs.

In the nonlinear case, parameter estimates can also bewtestby the method of LS
like in linear regression. Minimization of the RSS yields mat equations which can
be nonlinear in the parameters. It is not always possibl®lieesonlinear equations
exactly. For this reason, the next alternative is to obtaipraximate analytic solu-
tions by using iterative procedures. For this approximatet®n, three main methods

are [114]:

(a) Linearization method,
(b) Steepest-Descent method, and
(c) Levenberg-Marquardt’'s method.

Thelinearization metho@pplies the results of least-squares estimation theorguca
cession of stages, but neither this method nor the steepsstat method is ideal. The
linearization method converges very rapidly provided tloénity of the true parame-
ter values are reached.However, if initial trial valuestaefar removed, convergence
may not occur at all, whereas teteepest-descent methigcable to converge on true
parameter values even though initial trial values are famfthe true parameter val-
ues [114]. However, this convergence tends to the ratheralahe later stages of the
iterative process.
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The most widely applied technique of computing nonlineaekfmators it evenberg-
Marquardt'smethod. This method presents a compromise between thetathereth-
ods and combines successfully the best features of both\emdisetheir serious dis-
advantages. Itis good in the sense that it almost alwaysecges and does not “slow
down” at the latter part of the iterative process. The sysgegiven by mﬂ

Here,Y}, is thekth observation of the dependent variahl, is the input part of the
kth observation: X, = (X1, Xxo,...,Xy,)! regarded as a random vecter, =
(a1, 0,...,a,)T consists of the parameters, andis the noise variable. Let the
noise terms be independent and follow &, o) distribution. Inserting the data
(g, yx) (k=1,2,..., N), the residual sum of squares is given by [114]:

N
S(e) =Y (e — flap, @), (2.27)
k=1
whereayy = (g1, o2, ---,00,)" is the vector of initial parameter values. The algo-
rithm for constructing successive estimates is repredeagdollows:
(H+71I) (g — 1) = g, (2.28)
where
g =VS(ag), H=VS(a). (2.29)

Here, I is the identity matrix and is a suitable multiplier.

2.3.2.3 Generalized Partial Linear Models

A particular semiparametric model class of interest aré3aereralized Partial Linear
Models(GPLMS; they extend the Generalized Linear Models (GLMSs) [87hattthe
usual parametric terms are enlarged by a nonparametricauenp GPLMs do not
force data into any unnatural scale and so, they allow totoactsa bipartite model
with linear and nonlinear parts. If the normality and constariance assumptions are
not satisfied, then this approach can be applied [59].

By using a link function, GPLM makes it possible to searchdinend nonlinear rela-
tionships between the mean of the response variable anché@ tombination of the
explanatory variables [59]. The mean value of a dependetdbla rely on a linear
predictor through a nonlinear link function and allows tlesponse variabl®. For,
the ease of exposition, we considéto follow general model that does not depend on
some observation numbér In fact, the probability distribution is assumed to be any
member of an exponential family of distributions GeneralEPLM has the following

form [92]:
EY|X,T)=G(X a+~(T)). (2.30)

L As we use many mathematical symbols in this thesis, we have a slight atumabte use of the symbadX,,
namely, as a vector of random input variables and as a design magjpeaté/ely, which should not lead to any
confusion.
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When we use a link functio6’ = H(", which links the mean of the dependent vari-
able to the predictor variables, GPLM, including both pagtim and nonparametric
models, can be considered as an additive semiparametrielmod

H(p) =v(X,T) = X"a+(T)=>_ X;a; +y(T). (2.31)

Here, the vectorsX andT represent our decomposition of variables. Wh¥ede-
notes anm-variate vector of linear variableg; denotes aj-variate vector of non-
linear variables within a nonparametric model to be estwahatFurthermoreqx =
(a1, 0,...,a,)" is the coefficient vector ofX estimated by a linear (logit in our
study) regression model and-) is a smooth function estimated by the nonparametric

model [92].

2.3.2.4 Nonparametric Regression

Nonparametric regression analysis traces the dependéacesponse variablé},, on
one or several predictorsy, ; (j = 1,2,...,p; k = 1,2,..., N), without specifying
in advance the function which relates the predictors toéspanse [47]:

E(Yy) = f(zp1, Tro, -, Trp) (= flxr)). (2.32)

For the sake of a compact notation, here, we wkit&’,) for the conditional expec-
tation E(Yy |2k 1, Tk 2, ..., Tkp). It is supposed that the conditional varianceYgf
Var(Yy |z, xro, - - ., Tk,p) 1S @ constant, and that the conditional distributiory pfis
normal.

Nonparametric regression is differentiated from linegression, in which the function
relating the mean o}, to thex,; is linear in the parameteris [47]:

E(Yy) = ap+ a1 + Qoo + . ..+ plpy, (2.33)

and from traditional nonlinear regression, in which thechion relating the mean of
Y to thez;, though nonlinear in its parameters, is specified clearly,

E(Yy) = f(Te1, Thos - Thp; 1, Qo .., ) (= fg, ). (2.34)

The easiest use of nonparametric regression consists iotBimg scatterplots. Three
splines widely applied methods of nonparametric regresai@ kernel estimation,
local-polynomial regression that is a generalization ohkéestimation, and smooth-
ing [47]. The generalization of nonparametric regressoomany predictors is math-
ematically straightforward. However, it is often probldian practice.

(i) Multivariate data are affected by the so-calteaise of dimensionalityMultidimen-
sional spaces grow exponentially sparser with the numbeliroénsions, requiring
very large samples to estimate nonparametric regressiatelsaith several predic-

tors [47].
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(i) It is difficult to visualize a regression surface in morerthiaree dimensions (i.e.,
for more than two predictors) though slicing the surface bmagf some helpAdditive
regression modelsare an alternative to unconstrained nonparametric ragressth
many predictors. This regression model has the followimmff7]:

E(Yy) =7+ filzga) + folzro) + ..o+ fol@ry) (2.35)

(k = 1,2,...,N). Here, f; are smooth partial-regression functions, estimated with
smoothing splines or by local regression. Additive Model(AM) can be extended in
two directions:

1. To include interactions among specific predictors; foranse,

E(Yy) =7+ filzeq) + fos(Tr2, Tr3), (2.36)
which is not as general as the unseparated mbdel) = v + f(vx.1, Tr2, Tk3)-

2. To include linear terms, as in the model
E(Yy) =7+ a1z + folvr2), (2.37)

semiparametric modekre useful for containing dummy regressors or other catstras
derived from categorical predictors. There exist someratiwdels such as projection-
pursuit regressiorGlassification and Regression Tr§€ART) andMultivariate Adap-
tive Regression Spline MARI® MARS, functions are of a multiplicative nature and
nonsmooth.A main issue in nonparametric regression issleetson of smoothing pa-
rameters such as the span in kernel and local polynomia¢ssmgm, the roughness
penalty in smoothing-spline regression or equivalent elegjrof freedom for any of
those [47]. The statistical balance is between variancebéas] and some methods
such as Cross-Validation (CV) aim to choose smoothing paems& minimize esti-
mated mean-square error, e.g., the sum of squared bias aadoea

2.3.3 Multivariate Adaptive Regression Splines

MARS introduced by Friedman in 1991 [48] may be presented asxénsion of
linear models that “automatically” models nonlinearitéa®l interactions. It generates
a multivariate-additive (multiplicative) model in a tweage process which consists of
forward and backward stage. In tfegward stage, MARS find$asis functiongBF9)
that are added to the model by a fast searching algorithm anstructs a possibly
large model that overfits the dataset. The process stops thikemodel reaches the
maximum number of BFs. However, this model at the same tim&aamBFs which
contribute most and least to the overall performance. Tthisforward model is quite
complex and includes many incorrect terms. Inblaekwardstage, the overfit model
is pruned to decrease the complexity while supporting trexalvperformance with
respect to the fit to the data. In that stage, the BFs which ibomér smallest to the
increase in the residual sum of squares are removed fromakelrat each stage and,
eventually, an optimally estimated model is generatedgdB, MARS uses expansions
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of piecewise linear BFs created by dataset. The BFfs, )] and[z — ¢|_, have the
following form [60Q]:

B Jr—p, x>0 B Je—z, itz <o
v =l = {0, otherwise’ v == {O, otherwise’ (2.38)

where ¢ is a univariate knot obtained from the dataset. These twatioms are
calledtruncated linear functions Each function is piecewise linear, with a knot at
the valueyp, and both function together are callededlected pair The aim is to
construct reflected pairs for each inpyt(; = 1,2,. .., q) with ¢g-dimensional knots
o, = (Pr1,ro, -, 0rq)’ ateach observed valug ; (k= 1,2,...,N). Thus, the
collection of BFs is written by a set ¢f, defined as

S = {[x] — goh, [xj — goL lpe{x1j,204,....aNn,}, ] = 172,...,q}, (2.39)

whereN is the number of observations an the dimension of the input space. There
are2Np BFs if all of the input values are distinct. the forward stagef MARS, the
model that fits the data is built by using BFs from the $aind their products.

Note. From now on we confine ourselves to a generic respdnaed a generic noise
e, which do not depend on the particular observation nurber

So, the model has the form
M
Y =ag+ Y antn(x™) +e, (2.40)
m=1

with an underlying vectox = (x1, zs, ..., x,)”. Here,e is uncorrelated random error
term that is supposed to have a normal distribution with reean and finite variance,
M is the number of BFs in the current model. Moreowgy(x™) are BFs from the
setS in Egn. [2.39) omultivariate products of two or more such functions is a
subvector ofr that contributes to the the functiah,, andq,,, are the unknown coeffi-
cients for the constant(n = 0) or for themth BF. Given the observations represented
by the datgxy, yx) (k = 1,2,..., N), the form of thenth BF is as follows[[6D]:

Km

I (@™) = [ [[sjm - (To(im) = Potiom)]- (2.41)

j=1

Here, K, is the number of truncated linear functions multiplied ia thth BF, z,,(; ,.,)
is the input variable corresponding to thih truncated linear function in theth BF,
©u(;,m) 1S the knot value corresponding to the variablg .., ands;,, = £1.

To generate the model, the MARS forward stepwise algoritlarisstvith the constant
function Ty(x") = 1 to estimatev,, and all functions in the s& are candidate func-
tions. Possible forms of the BRs, (™) are 1,2, [z, — @i+, T2y, [T, — @i] 42 @nd

[, — il + [z — 4]+ [70,[124]. For each BF, input variables cannot be the same in
the MARS algorithm. Therefore, the BFs above use differerttinvariables;z,, and

z;, and their knotsy; andy;. At each stage, all products of a functiop,(z™) in
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the model set are regarded as a new BF and this term is addeel taootltel set. That
term which produces the largest decrease in the trainirg eontains the following

form [60]:

an 10 (™) - (25 — )y + an2dn(@™) - [ — 244

Here, a1 anday,, o are coefficients and they are determined by least-squares es
timation, along with all othen\/+1 coefficients in the model. Then, the “winning”
products are added to the model and the process stops asssthemaodel set reaches
some present maximum number of terms. At the end of this fahs#pwise process,

a large model of the form is obtained. This model does typiaalerfitthe data, and

so a backward deletion procedure is applied.

The backward stepwise algorithmemoves the terms that contribute the smallest in-
crease in the residual squared error from the model at eage,sand this iterative
procedure continues until an optimal number of effectivengeare present in the final
model [48]. So, an estimated best mogiebf each number of terms is produced at
the end of this process. In the MARS modgéneralized cross-validatiofGCV) is
used to find the optimal number of terms It also shows the lack of fit when using
MARS. The GCYV criterion defined by Friedmah _[48] is defined alofus:

LOF(f3) = GCV (a) := Zéffl_(y&z 6@53’)’?2))2. (2.42)

Here, M () is the effective number of parameters in the model, &nid the number
of sample observations, i.e., of the dafal [60].

2.3.4 Tikhonov Regularization

A problem is defined adl-posed problenif a solution is not existing or not unique or
if it is not stable under perturbation on data - that is, if anitearily small perturbation

of the data can cause an arbitrarily large perturbation efsthiution [55]. Tikhonov
RegularizationTR) is the most common and well-known form to make these problem
regular and stable. For statistics, it is also knownidge regression

TR method searches the regularized solution as a minimizemeeighted combina-
tion of the residual norm and a side constraint. The regadéidn parameter controls
the weight given to the minimization of the side constraiflherefore, the quality of
the regularized solution is controlled by the regularmagparameter. An optimal reg-
ularization parameter should fairly balance between the sf the residual error and
the stabilizing of the approximate solution [69]. A suibhlue of the regularization
parameter is considered and computed when the norm of tbeierthe data or the
norm of the solution of the error-free problem are available

The regularization parameter brings the optimal rate oveayence for the approx-
imations, which are generated by the application of TR tpadéed equations [93].
However, when we derive rates of convergence, we must makergions about the
nature of the stabilization (i.e., the choice of the semimar the TR) and the regu-
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larity imposed on the solution. In fact, there israde-off between stabilization and
regularity in terms of the rate of convergence.

TheL-curve criterionis a practical method for choosing regularization parameiten
data are noisy. The method is based on the plot of the normeattjularized solution
versus the norm of the corresponding residual [56]. The ale¢he L-curve criterion
is to select a regularization parameter related to the ctexratic L-shaped corner of
the graph. The corner shows where the curve is closest toritp@ @and where the
curvature is maximal. However, when it is plotted in a linsaale, it is difficult to
inspect the features of the L-curve because of the largeerahgalues for the two
norms. The features become easier to inspect when the @upletied in the double
logarithmic scale([56]. Therefore, in many cases it is wdtieanalyze the L-curve in
the log-log scale.

For TR, the L-curve is important in the analysis of discretg@dsed problems. The

L-curve shows how the regularized solution changes as thdaezation parameter

changes. The corner of the L-curve corresponds to a gooddmalzetween the min-

imization of the sizes, and the corresponding regulanpapiarameter is a good one,
because a distinct L-shaped corner of the L-curve is locexedtly where the solu-

tion changes, from being dominated by the regularizatiooreto being dominated by
right-hand side errors [69].

Tikhonov solution can be expressed easily in terms ofSimgular Value Decomposi-
tion (SVD of the coefficient matrixA of regarded linear systems of equations

Az =b, (2.43)

whereA is anill-conditioned N x n)-matrix. The standard approach to approximately
solve this system of equations is known lsgar) LS estimation. It seeks to minimize
the residual|b — Az||5. There can be infinitely many solutions for a general line@r L
problem. If it is considered that the data contain noisehat situation, the data points
cannot be fitted exactly because of noise. It becomes eviblahthere can be many
solutions, which can adequately fit the data in the sensetlteaEuclidean distance
|b — Ax||, is smallest. Theliscrepancy principlg5] can be used to regularize the
solution of a discrete ill-posed problem based on the assamghat a reasonable
level forc = ||b — Ax||, is known.

Different kinds of TR are represented as minimization peats. Under the discrep-
ancy principle, all solutions witljb — Az||, < ¢ are considered, and we select the
one that minimizes the norm of:

minimize||x||,,
® (2.44)
subject tg|b — Ax||, <c,

or we minimize the norm of residual vector under some tolezamith respect to the
norm of x:
minimize||b — Ax|,,
z (2.45)
subject tg|x|, < d.
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In the first optimization problem in Eqn[_(2]44), any impaoitaonzero feature that
appears in the regularized solution increggel,. However, these features existin the
solution because they are necessary to fit the data. Theref@ minimum of|z||,
guarantee that unimportant features should be removedeimetjularized solution.
As c increases, the set of feasible models expands, and the orinivalue of||z||,
decreases.

In the second optimization problem in Eqph.(2.45), it is veahtio choose the minimum
norm solution among those parameter vectors, which adelgu#tthe data, because
any important nonzero feature that appears in the regelrsolution must not be
ignored to fit the data, and unimportant data must be remoyedtidregularization.
As d decreases, the set of all feasible solutions becomes speié the minimum
value of increases.

There is also a third option which is considered a dampenegraSlem:

minimize ||b — Az + X |||, (2.46)

arising when the method of Lagrange multipliers is appledroblem in Eqn.[(2.45).

Here, \ is the tradeoff parameter between the first and the secondTgae problems

in Eqns. [2.44)[(2.46) have the same solution for some gpjate choice of the values
a, 5 and X [B].

To solve different kinds of TR problem discussed above, we Sisgular Value De-
composition (SVD) to have a solution that minimizes the otiye function including
|x||,. However, in many cases, it is preferred to achieve a solutiat minimizes
some other measure gf such as the norm of first- or second-order derivatives. &hes
derivatives are, in an approximative sense, given by firssecond-order difference
guotients otr which is considered as a function that is evaluated at theetes points

k andk + 1. These difference quotients approximate first- and secoddr derivates;
altogether, they are comprised by produEts of « with matricesL. These matrices
represent the discrete differential operators of first- sgwbnd-order, respectively [5].
Hereby, the optimization problem is of the following form:

minimize ||b — Ax||; + Ay || Lz|f;. (2.47)

The optimization problem of Eqn[_(Z}47) turns into the optiation problem of Eqgn.
(2.48) whenL = I. Then, itis calleczeroth ordefTR, which is a special case of Egn.
(2.47). Generally, EQn[[(Z.47) consists of high order TRoprms. Although zeroth-
order TR is solved based on SVD, to one concerned with highaer TR,generalized
SVDis used. In many situations, to obtain a solution which min@s some other
measurex, the norm of the first- or second-order derivatives is pref&{57].
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CHAPTER 3

NEW ROBUST ANALITIC TOOLS

In the previous chapter, we mentioned about some matheahatiethods that are
used in this thesis. In present chapter, we introduce owstotmols, R(C)MARS
and R(C)GPLM, in theory and method.

3.1 Robust (Conic) Multivariate Adaptive Regression Spline

3.1.1 Introduction

(C)MARS models depend on parameters, and small perturbadtiaghe data may re-
sult in different parameter estimates, and hence, may latrogit unstable solutions.
Indeed, measurement error that affects the independeables in regression models
iIs a common problem in many scientific areas. It is well knohat the implications
of ignoring measurement errors in inferential procedurayg be substantial, often re-
sulting in unreliable results [8, 30]. In order to reduce #stimation variance while
keeping the efficiency as high as possible, we robustified @®ARS method by
using approaches such as scenario optimization and robusterpart. We are inter-
ested in the multicriterizradeoff (antagonism) betweesccuracyandrobustnessin
the line of our research [98,199, 100, 101,1103,1104], rolesstinas become, in some
sense, an extension of stability or regularity. Stabiligopameans a small complexity
of the model, or: @mall varianceof the estimation.

ThroughRCMARSwe are also permitted to involve uncertainty in the inputataes
into regression and classification modeling; that uncetyas typical for real-world
challenges, too. In fact, in RCMARS, we have implied uncerjaintooth input and
output variables. This means that in RCMARS, there is a doubleafabustifica-
tion: (@) The regularization (stabilization) in integral form tretpresses itself in the
involvement of the (squared) first- and second-order galtiavatives of the multivari-
ate basis functions; after discretization of the integnais arrive at a TR problem [5]
with first- and second-order complexity terms. This TR peoblis turned into a CQP
problem [129] 138]. if) The robustification is performed with respect to the input
variables and output or response variable, all of them wviglir town uncertainty sets.

In (a), via those first- and second-order terms, we aim at a flat haoaka one where

29



high energyin the model (curvature) is penalized so that we could spéak‘damp-
ened” or “tamed” model, respectively. This also means thhi@CMARS, we have, in
addition to the robustification, an additional support @ tbbustification agenda, an
increaseof robustness, whereby that support is of a fine-tuned kirdhafacter which
Is parametric through the bounds of complexity in the CQP ianog For our RC-
MARS, we conduct a penalization in the form of TR and study i &CQP problem
in order to achieve a reduction in the complexity of the regi@ method MARS that
especially means sensitivity with respectimsein the data.

In contrast, in ouRMARS, we only have the robustification step),(whereas the
aforementioned fine-tuning optioa)(dropped. At the first glance, this seems to be a
gualitative loss. However, RCMARS is leading to a very large potational effort,
and parametric studies which are enabled by @grti¢ even increase those compu-
tational costs. It belonged to the main ideas of MARS and CMARS&aee () a
“doable” methods, even with an effect ifl  a variance reduction for the estimated
model. Here, we pay tribute to these important ailsagd (1), in the form of our
simplified and “handy” alternative of RCMARS, called RMARS.

Briefly, (C)MARS are robustified through the robust optimizatipproach, which
IS some rigorous kind of regularization in the input and atitgomain. We have
some generalization effect now in the part|jaf — 19(b)a||§, when we conduct our
R(C)MARS for both input and output variables by including utaty, via RO [10,
11,14/ 15]. However, in RCMARS, we need not to make any chandeiadditional
integration term on the complexity, or “energy”. By introdhug R(C)MARS, we aim
to decrease thestimation variance

3.1.2 The Procedure

The MARS [60] method supposes the following general model
Y = f(X) +e, (3.1)

whereY is the response variableX = (X, X,,...,X,)T is a vector of predic-
tor variables;s is an additive stochastic component with zero mean and fuaite
ance. It aims to build reflected pairs for each inpat(; = 1,2,...,q) with ¢-
dimensional knotsp = (1, ¢a,...,p,)" at or just nearby each of the input data
vectorszy = (zx1,Tkos .-, Tkg)’ (K =1,2,...,N), whereq and N represent the
number of predictors and observations, respectively. Ikergurpose, first, the set of
BFs is formed by an intensive but a fast search procedure lag/&l

S = {[Xj — 0] [X =] le e oz, an;} i = 172,---,Q}- (3.2)

Each function inS, areflected pairis piecewise linear with a knot valug, Then,Y
becomes

M
Y =ag+ Y antn(z™) +e. (3.3)
m=1

30



Here,d,, (m = 1,2,..., M) is a basis function (BF) fron$' or products of two or
more such functionsy,, is the unknown coefficient associated with théh BF (m =
1,2,..., M), wherem equals zero for the constant one andis the number of BFs.
When the data is represented ., yx) (kK = 1,2,...,N), the mth BF takes the
following form

Kom

ﬂm<wm) = H[sjm ' (xv(j,m) - va(j,m)}—i-‘ (34)

7j=1
In the CMARS method, to estimaté in Eqn. [3.1), instead of the backward stepwise
algorithm of MARS, an alternative method [129] is utilized,which penalty terms
are used in addition to the least-squares estimation (L&€Qritrol the lack-of-fit with
regard to the complexity and stability. Consequently, Beealized Residual Sum of
Square(PRS$with M,,.. BFs is formed as

N Minax
PRSS = (y — a"9(by))* + Z O Z > / O (E™)2dE™,
k=1 |6|=1 r<f ,Qm
0T —(0y,0 )TSEVm
(3.5)
whered (by,) := (1,9, (x}), ..., Om(xr™)); V(m) = {v(k,m) | j = 1,2,..., K}
is the variable set associated with theh BF called?,,; t™ = (t,,, ... ,thW)T

represents the vector of variables that contribute torttteBF, ¥,,,; av is an((Mpax +
1) x 1)- parameter vector to be estimated using the data paeipts: 0 are thepenalty
parameters(m = 1,2,..., My.x). Moreover,Q™ is some appropriately larg&,,
-dimensional parallelpipe where the integration occutsttfermore,

DY (™) = (010, /(D" 70 47 )

expresses the first- or second-order derivatives, wherg6,, 0;)7, |0| := 6, + 6, and
01,05 € {0,1}. Since it is not easy to evaluate the multi- dimensionalg'rabs in Eqgn.
(3.8), a discretization is applied to approximate the wabQQm 0 9 (E™)]2dt™
(cf. [98,[129] for more details). Therefore, the approximatof PRSS in Egn.[(315)
can be rearranged as

PRSS ~ [ly — 9(b)a||,+¢|| Lalf;,

(3.6)

whereL is an ((Mpax + 1) X (M. + 1))-diagonal matrix. Afterwards, thBRSS
problem turns into a classic@lkhonov Regularizatio(rR) [5] problem if we employ
only one penalty factop > 0, ¢ = \? for some) € R instead of using different
penalty parameters. So, the PRSS form in Egn] (3.6) may beufated as a CQP[13,
:37] and, using an appropriate boufd> 0, the following optimization problem can
be stated [138]:

minimize w

subject to||ly — ¥(b)a||,< w, (3.7)
Lo, VE.

Here, the choice of the parameféihas to be the outcome of a careful learning process,
with the help of model-free or model-based methads [5].
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Remark 1: In future studies, we go on facing the complexity of our madel trying
to turn all model-free, e.qg., trial-and-error, sides of treatment, into a model-based
form. In particular, we plan to reinterpret a parametric twbsuch akK as another
state variable (unknown), including it into the objectivanétion also. Herewith, we
would still remain in our “conic” setting of CQP. This couldiéto another support and
strengthening of the model-basedness of our approach auldl weake it even more
rigorous mathematically. Modern continuous and globaihogation will certainly be

a key-technology for this. We can also diversify our optiatian by differentiating
between different values of the penalty parameters. Thiddvead to furthercontrol
variables.

In R(C)MARS, we assume that the input and output variables ofrmgel areandom
variablesall. They lead us toaincertainty setghose are assumed to contaonfidence
intervals(Cls) (we refer to[[100, 103] for more details). For CMARS, the langadel
that has the maximum number of BRY,,.,, is created by Salford MAR® [85].
The following general model represents the relation betwseh therandominput
variables and the response, itself being affected withenois

Y=f X )+e¢, (3.8)
noisy variable
where X = (X1, Xo,...,X,)" is a vector of random predictor variables. The ran-

dom variablesX; are assumed to be normally distributed. Here, the follovgegeral
model is considered for each inpit; [99,100]:

When considering that we hayedimensional input data and incorporatepefturba-
tion” (uncertainty into the input data, each input data veeter= (1, Zx2, - - -, Trq)’
is represented ag;, = (741, T2, ..., Tky)" , including the perturbation\, = (A, 1,

Aga, ..., Apg)T (K =1,2,...,N). Since, in each coordinate, some valugs can
be outlier, but the perturbation of an outlier is not meafuhdgor our problem, we,
instead, refer ta; = (1/N) - S, x;, the mean (average) of the input vecigr as
the reference value wherever we use Here,A; is a generic element df;, which
is the uncertainty set for our input data. Herewith, our nedu&s of piecewise linear
BFs are shown in the following:

Tk 5 — *’fk:,j; Ek,j = J_/’j + Akyj, ’Ak,j| S Pk.j (l{i = 1, 2, ceey N,j = 1, 2, ce ,q),
(3.10)
wherex, ; is an noisy input valueg,, ; is an input value that has uncertainty;, ; is
a perturbation ofz;, ;; p. ; is the semilength of the CI for input data, and the amount
of perturbation in each dimension is restricted Ay;. Similarly, when we incor-
porate a perturbatiori (uncertainty into output data, our output data vectgr=
(Y1, Y2, - - yn) T is stated ay = (y1,%0,...,yn)? including the perturbationr =
(11,72,...,75)%. As, again, some valugscan be outlier and the perturbation of an
outlier is not meaningful, for our problem, we refergo= (1/N) - ch\’zl Yk, the av-
erage of the output vectay, as the reference value wherever we refegtdiere, we
restrict the vectot- to be elements df,, being the uncertainty set for our output data.
So, our new output values can be represented by [103]:

yk%gk; §k2§+7'k, ’Tk|§Vk (/{321,2,,]\7) (311)
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Here, the amount of perturbation is limited bywhich is the semilength of the CI for
the output data. In order to robustify (C)MARS, we employ sopirist optimization
on the BFs provided by the MARS model. MARS method constructaesipns of
piecewise linear BFs; by this, it will be based on the new cdttsat includes un-
certainty. Aiming at the variable we prefer the following notation for the piecewise
linear BFs[[60]:

(T,0) = [T —¢ly, ¢ (T,90)=[T—¢]. (3.12)

Incorporating the uncertainty sdts C RV*Mmax andl, C RV, determined below in
Subsection 3.113, into the data,, yx), the multiplicative form of thenth BF can be

stated as
KTIL

ﬁm(avjzl) - H[i’/k,v(j,m) - <)01)(j,’rn)}:|: (k = 17 27 s 7N> (313)

J=1

When estimating the BFS . v(j,m) — ¥u(im)]+ in Eqn. [3.1B), we can evaluate them
by the following special terms of estimatidn [100]:

[\jk’,v(j,m) - (;Dv(j,m)]:t S [xk:,v(j,m) - va(j,m)]:t + [Ak,v(j,m) + (:l:Ak,v(j,m))]:l:- (314)
Here, A, .(;m) is interpreted and employed asntrol parameters|f we consider the
risk friendly case, we select the value of, 4&; .., between0 and the absolute value
of Akuim)r 1€ Aruiim) € [0, [Akuim)l]- Now, to simplify the notation, we still
preserve the notion A, ) for Ay ,(jm). To estimate the value§x;) andd(x;), we

can employ Eqn[(3.13) in the subsequent form, where all+hafid “-” signs belong
to each other, respectively:

Km K7n,
[T wim — 2oGmle < T 1EroGm) — Pogm)e +
j=1 j=1
=n9,:(§k) — O (1) (3.15)
Z H[gjka_Ta]ﬂ: H [ iAkb)"‘Akb]ﬂ: (k: 1727"'aN)'
A%{l ..... K} acA be{l,...K}/A

Then, for each BF, the uncertainty valug,,| can be estimated in the subsequent way:

|| < Z H |Zka — Ta H £| £ Ako(gm) + Do)

AC{1,...K} a€A
%

< Dkapka

Z H Brafra H (Vib + Prb)

AC{L,...K} a€A be{l,...,K}/A
#

Z H E’j‘}, H Pka H (Vb + Prb)

AC{1,..K}a€A <B, a€A  be{l,..K}/A
c <

Z BLAM H Pka H (Veo + Prb)

AC{l,... K} a€A  be{l,...K}/A
#

<Vkb+Pkb

IN

(3.16)
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where the amount of the value of.4; ..., is restricted byy, the cardinality of the set
A has been denoted through|, and B, is also considered to be applied asamtrol
parameter The value of B is equal to 2 in cases without outliers, but for outliers, it
will be greater than 2. For such a case, we will have to selddferent value for B.
Now, for RCMARS, PRSS in Eqn[(3.6) will have the following approate repre-
sentation: o ,

PRSS = ||y — 9(b)a|,+¢| La,. (3.17)

Herewith, thePRSSninimization problem again looks like a classical TR probli]
with ¢ > 0, i.e.,¢ = A\? for some)\ € R, and then, it can be coped with through
CQP [13/3¥7]. The second (complexity) part of the PRSS appratkan remains the
same as it is in CMARS after we incorporateetturbatiori into the real input data
xy, in each dimension, and into the output datasince we do not make any changes
for the function in the multi-dimensional integrals.

3.1.3 Polyhedral Uncertainty and Robust Counterparts

As it is known, robustification is more successful when shijlal uncertainty sets
are employed, rather than polyhedral uncertainty setseftfesless, using ellipsoidal
uncertainty sets can increase the complexity of our opttion models([148]. We
studyrobust CQP(RCQB(or robust second-order optimization probleRSCOR un-

der polyhedral uncertainty and we shall find out that it egl@atly means atandard
CQP. To analyze the robustness problem, we assume that the mivdal uncertainty

is represented by a family of matricé$x) = ¥(x)+ U and vectorgy = y+v, where

Ui, containingU, andUs, containingv, are bounded sets which need to be specified
first. Here, the uncertainty matri¥ € U; and uncertainty vectos € U, are of the
formats

Ul U2 o UL Moy U1
U211 U2 ... UMy, V2

Uu=| . . S andv = | . (3.18)
UN1 UN2 -+ UN Mpax UN

As we do not want to increase the overall complexity of outirofation problems,
we select the uncertainty sdts andU, of type polyhedralfor both input and output
data in our model, to study our robustness problem. Basedease thets, theobust
counterpartof CMARS is defined as

minimize VLnee[nyz — WaHerngLaH;. (3.19)
zeUg,

with some¢ > 0. Now, we can receive thbust counterparbf MARS if we drop
the second part (complexity part) of Eqri._(3.19). Here, theeutainty sef/; is a

polytope with2" Mmax verticesW!, W2, ..., W2 ™ In fact, although it is not a
known singleton, it allows a representation:

2N~]\Imax QN‘]V[max
U = { Z nnWH“?HZO (liG {1a27"'72N.Mmax})7 Z nﬁ:l}’ (320)
k=1

k=1
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9N Mmax

e, U = confW! W? .. W } is the convex hull. Furthermorél, is a
polytope with2" verticesz!, 22, ..., 22" having the form

oN oN
Uy = { Z%zulw >0 (pe{1,2,...,2V), Z% — 1}, (3.21)
pn=1

pn=1

wherel, = con\{z!,..., 22"} is the convex hull. Here, any uncertainty s&isand

U, can be represented as a convex combination of veMicesx € {1,. .., 2N Mmax1)
andz* (u € {1,...,2V}) of the polytope, respectively. The entries are found to
have become intervals. Therefore, our ma¥¥k and vectorz with uncertainty are
lying in the Cartesian product of intervals that are parpifes (se€ [98, 100] for more
details). To give an easy illustration, the Cartesian prodtimtervals in general and,
especially, for three entries can be represented by Figdire 3

vertex

rolr 10 1o, ]
L'?'JXL':"JXL'?'JX ><L')'J

1 4~— / ‘ vertices

L{ /7/

[ il .
L _

Figure 3.1: Cartesian product of intervals for three en{9&3.

Here, we represented the mat#k as a vector with uncertainty which generates a
parallelpipe. We have @V X M. )-matrix W = (wy;) k=12 n andwe can write

j=1,2,...,Mmax
it as a vectort = ({;);=12.. N-Mu.. Wheret, := u; with ! = k + (j — 1)N. So,
our matrixW can be canonically represented as a vetter(t,, ty, ..., tx.a,.. )~ bY
putting the columns oW behind each other.

Remark 2: Whenever we use polyhedral uncertainty sets, we have a dckib
practice since there may be too many vertices to handle tloenpatationally or we
might not know them exactly. That drawback comes from a vagit bomplexity and
consists in the resulting storage and and computing prabémommon workstations.
In fact, with polyhedral uncertainty, our matrtd” represented as a vectbihas a
very big dimension in our applications and our computer cayas not enough to
solve our optimization problem withV. Because of this, we need to discuss weak
robustification case in our applications (cf. Subsectiafs335.2.1[6.1]7). That weak
robustification encounters a data-wise robustificatiorctvinefers to all the other data
according to the interval midpoints (“ceteris paribusfdat eventually addresses the
worst case with respect to all the data-wise robustification
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3.1.4 Robust Conic Quadratic Programming with Polyhedral Unhcertainty

ForRCMARSNodel, the optimization problem is written as follows:
minimize w
subject to]|g — I(b)ex|,< w, (3.22)
|Lal,< VE,

with some parametek” > 0. Via the height variablev (by an epigraph argument), re-
calling thatl/; andU, are polytopes, described by their vertices in Eqns. {3@2213),
the RCQP for our optimization problem is equivalently repnéseé as a standard CQP
in the following form:

minimize w
subject o Wee—zll,<w v W€l z, €lh (g
AT S i
|Le,< VK.

Here,U; andU; are polytopes which are described by their vertices as
Uy =con W' W2 .. W» "1 U, =convz',2?,...,22"}.  (3.249)
Therefore, our RCQP can be equivalently stated by a standardeS @fHows:

minimize w

w,o

subject to|| z* — Wra|,<w (k=1,2,...,2Y;k =1,2,... 2" Mmax) - (3.25)
|La,< VK.

For our RMARSmodel, we ignore the second constraint of RCQP in Eqghs. 1(3.22),
(3:23) and[(3.25). Afterwards, we can solve our RCQP by usingSEKI™ [89]
software program. Here, we recall that the valyds are determined by a model-free
method (cf. Remark 1). When we employ thevalues in our RCMARS code and
solve by using MOSEK, we apply th& value that has the minimum value of PRSS

in Eqn. [3.17).

3.1.5 Numerical Experience with RMARS in the Financial Economis

As a numerical experiment that may serve to illustrate th@ementation of RMARS
algorithm developed, in the study [103], we use a small datas a sample from the
real-world financial market data. It is chosen for our engairpart as time-series data
from the website of Central Bank of the Republic of Turkey! [27heTdata contain
four economic indicators (independent variables) whi@the most commonly used
ones for the interpretation of an economic situation. Tlaese

x1 : ISE Trading Volume =z, : Capacity Usage Ratio
x3 : Credit Volum z, : Federal Funds Interest Rate

36



Here, ISE Trading Volume stands for the number of shares wiracts of a security
traded within of a predefined time-window for a month; Capadisage Ratio means
the ratio of the production capacity of the regarded econtantlye maximum capacity
of that economy. ISE 100 stock index is the dependent (owpresponse) variable
Y that we try to assess based on our dataset. It consists otd€isghat have been
chosen among the stocks of companies which are listed ondkierdl Market, and
the stocks of real estate investment trusts and venturéatapiestment trusts, which
are listed on the Corporate Products Market. It covers ISENBOI&E 50 stocks. As
it is a statistical measure of change in an economy or a sesurnarket, we will
use that index. For financial markets, iadexis an imaginary portfolio of securities,
representing some market or a portion of it. It possessemitstraditional methods
of calculation and, in general, it is represented by a dendtom a base value. Thus,
the relative change (in percentage terms) is more impottiant the absolute value (in
actual numerical terms). This dataset includes 24 obsensand the characteristics
of our independent variables in time can be seen in Figu@8.3. for a visualization
of the dataset.

ISE Trading Volume Capacity Usage Ratio
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Figure 3.2: Graph for the characteristic of variablegndz,.
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Figure 3.3: Graph for the characteristic of variablggandz,.

With this data the largest model is constructed by the fodvséepwise stage of Salford
MARS Version 3[85]. After backward stepwise elimination oARS, the final model
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is represented as follows:

U=ap+ Z A Um(x™) = ap + a; max{0, x3 — 0.1672}

+ apmax{0, 0.1672 — x3} + ag max{0, x4 + 0.4200}
+ aymax{0, x; + 0.6803}.

To apply the RO technique on MARS model, firstly uncertainties evaluated for
all input values using Eqn[{3.116) and all output values.eHbese input and output
values presented by Cls. Next, we include perturbationseftiminties) into the real
input datax;, in each dimension and into the output datak = 1,2,...,24). For
this aim, using Eqns. [(3.20)-(3]21), the uncertainty nsagiand vectors based on
polyhedral uncertainty set@re built. Consequently, we construct different unceryaint
matrices,U and W, for the input data and different uncertainty vectergndw, for
the output data by using six different uncertainty scersanhich are given by the Cls
+3, £3/2, £3/4, £3/6, £3/8 and as a special case, the mid-point (zero) value of our
interval. For instance, according to €B, the matrices of input dat&/, W ,,,, W,
which will be addressed in Section 3.2, are of the followiogris:

Uy ... uig 0 [—2.46, 2.46] 0 0
U211 oo U2y 0 [—248, 248] 0 0

U= : : : | € : : : : ;
Usy .. sz [—2.30,2.30] 0 [—2.45,2.45] [—3.05,3.05]
U241 .- U244 [—217, 217] 0 [—260, 260] [—2557 255]

1 0 3.89 0 0
1 0 3.89 0 0
Wy=9x)+Uy,=|: : : o
1 3.85 0 4.12 4.42
1 3.85 0 412 4.42

1 0 —1.03 0 0

1 0 —1.07 0 0
Wlow = ﬁ(m) + Ulow = |:

1 —0.75 0 —0.77 —1.68

—_

—0.50 0 —-1.07 —2.68

Likewise, based on Ck3, the uncertainty vectors of output data, v, V.., are
represented as follows:

2 (-3, 3] 1.61 439

2 -3, 3] 1.76 —4.27
z = € y Oup = y+zup - y Vlow = y+zlow -

224 [—3, 3] 2.88 —3.12
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As the uncertainty matrix for input data has a very big dinn@msand our computer
capacity is not enough to solve our problem for this uncetyanatrix (cf. Subsection
[3.1.3), we formulate RMARS for each observation using a gedambinatorial ap-
proachwhich is called asveak robustification Therefore, we obtain differenteak
RMARSWRMAR$models to handle that difficulty of complexity. Actuallygvihave
atradeoff between tractability and robustification. As a result, weaob24 different
WRMARS models and solve them with MOSEK program[89]. Then, viienege the
parameters’ values,, o, as, a3 anday using a selected WRMARS model which has
the highestw value in Eqn. [(3.25) by applying theorst-caseapproach. Finally, we
evaluate the regression coefficients and estimation eb@sed orAverage Absolute
Error (AAE) andRoot Mean Squared ErraqiRMSH for different uncertainty scenar-
ios. All of the parameter values and estimation errors forR#Aand RMARS are

represented in Table 3.1.
Table 3.1: Parameter values and estimation errors of MARSRAMIRS.

U,v +3 +3/2 =+3/4 +3/6 =+3/8 zero MARS
o0y} -0.6197 -0.7644 -0.6660 -0.5111 -0.4418 -0.3470 -0.3470
(e 71 0.3348 0.2501 -0.3292 -0.5921 -0.7074 -0.8843 -0.8843
Q 0.0000 0.0000 -0.1852 -0.3686 -0.4494 -0.5722 -0.5722
(e ) 0.0000 0.0000 0.4600 0.6262 0.6986 0.8120 0.8120
oy 0.6529 0.8691 0.7403 0.6508 0.6121 0.5498 0.5498
AAE 0.4048 0.3215 0.1937 0.1385 0.1254 0.1123 0.1123
RMSE 0.4880 0.4204 0.2496 0.1781 0.1559 0.1414 0.1414

As we can see in Table 3.1, RMARS produces less accurate résaftsVIARS in
terms of AAE and RMSE when the Cls on the variable are very widsvéver, as the
Cls are narrower, the performance results approach to tha&S. According to our
main purposewe also calculatestimation variancegEVs) for different uncertainty
scenarios. EV is the variance of the estimated responses/ahd smaller value of EV
provide us the better result. It is evaluated using the ¥ahg formula:
(G —9)

BV = S0,
whereN is number of observationg; being thekth estimated response value, and
being the mean of the estimated response values. Based oifferertt uncertainty
scenarios, the values of EV evaluated for our numerical x@at are presented in

Table[3.2.
Table 3.2: Estimation variance of MARS and RMARS.

U,v +3 *+3/2 =+3/4 +3/6 +3/3 zero MARS
EV  0.447 0.706 0.811 0.88 0.918 0.979 0.979

As we may deduce from the results in Tablg 3.2, RMARS has a muahesmaariance
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than MARS if the CIs on the variable are very wide. As the Cls ameomger, EV
increases but, RMARS still has a smaller variance than MARSrefbree, we can
say that RMARS has a considerably smaller EV than MARS for difieuncertainty
scenarios, as we expect.

While developing RMARS models, a sensitivity study is conddd¢tedefine the most
suitable confidence limits on both input and output data. tRigr purpose, different
uncertainty matrices for the input data, and different uncertainty vectors for the
output datay, are obtained by using six different intervals. Above resird Tables
3.1 and3.P indicate that solutions obtained are sensiitieet limits of Cls. When we
use the mid-point of our interval values for both input andpaoiti data, which is the
certain data case (zero interval), we receive the same pteamstimates, and thus,
the same model performances and EV values as the ones by MARScan disclose
that MARS is aspecial cas®ef RMARS.

We have a smaller EV when the lengths of the Cls are wide whereasceive better
performance results when the lengths of the Cls are narrosomling to these result,
we can observe the tradeoff betwestturacy(expressed by AAE and RMSE) and
robustnesggiven by EV). Also, to analyze this tradeoff clearly, we kexdied the val-
ues of Residual Sum of Squares (RSS) and EV based on varioagedifuncertainty
scenarios, and we represented the results graphicallyginéB.4.

0.95r

0.9

0.85

0.8

RSS

0.751

0.7

0.651

0.8 1 1.2 14 1.6 1.8 2
EV

Figure 3.4: The efficiency frontier between estimation eard estimation variance.

This figure demonstrates the tradeoff between accuracgrigis RSS) and robustness
(represented by EV). In economics and finance, this is theaiedefficiency frontier
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3.1.6 Simulation Study for RMARS

In the study[[108], we compare MARS and RMARS methods usingrdiffedatasets
created by Monte-Carlo simulation basedvamiation of the parameter estimates. Fur-
thermore, in order to see the variation of model performavitteparameter estimates,
the estimation errors of simulation models are evaluatesg@d@n AAE and RMSE.
Monte-Carlo simulatiorpermits to model situations which present uncertainty and t
conduct them many times on a computer. It also includes astigky through a prepa-
ration of models of possible results by substituting a ramigealues - we may say: a
probability distribution - for any factor which implies uextainty. Monte-Carlo sim-
ulation generates distributions of possible outcomes.oddin the use of probability
distributions, variables may have different probabisitief the outcomes that occur.
Probability distributionsmean a much more realistic kind of representing uncertainty
in variables of a risk analysis that belongs to each decisibith we are making.
Continuously, we are confronted with uncertainty, with aguitty and variability. It

is impossible to precisely estimate the future, even if ritaya we can access an un-
precedented amount of information. Monte-Carlo simulapenmits us a survey of
nearly all the outcomes of our possible decisions and andimgesessment of risk;
this allows for a more qualified decision making in the preseof uncertainty [118].
We select normal distribution as a probability distribatto obtain random input vari-
ables. For the simulation study of MARS, firstly, we develop amematical model.
This model is theorocess modednd represented as follows:

Y = —3050 + 0.02z1 + 5022 — 0.000923 + 8400z, + 30z224 + €. (3.26)

Afterward, using Minitab package program [86] generatedl cen input variables cho-
sen from suitable distribution function which are expedtedetermine the variables.
Here we simulate values ofreormal random variable Then, using Eqn.[{3.26), we
monitor preferred output variables which become distrdng whose properties are
described by the model and the distributions of the randonabigs. So, we gener-
ate 30 different simulated datasets to employ simulatiorMARS and 30 different
MARS models are constructed using Salford Systems MARS [85]fadt, the pa-
rameter values of MARS models are estimated according te thiesulated datasets.
Some selected MARS models obtained are of the following form:

g = ap + a; max{0, x; — 2.25} + ay max{0, x3 + 1.86} + a3 max{0, x, + 2.18},

g = ap + oy max{0, x; — 1.47} + ay max{0, x3 + 2.84} + a3 max{0, x4 + 2.45},

g = ap + oy max{0, x; — 3.07} + ay max{0, x3 + 1.78} + a3 max{0, x, + 2.63},

U = ap + ag max{0, z1 — 2.39} + ap max{0, x5+ 1.62} + a3 max{0, x4 + 1.51},

U = ap + ag max{0, z; — 2.21} + g max{0, x5 + 1.98} + a3 max{0, x4 + 3.27},

U = ap + ag max{0, z; — 1.98} + ap max{0, x5 + 2.07} + a3 max{0, x4 + 1.49},

U = ap + oy max{0, x; — 2.74} + ap max{0, x3 + 2.20} + a3 max{0, z, + 1.70}.
For simulation study of RMARS, firstly, 30 different intervadlues are determined
and, hence, under polyhedral uncertainty sets, thirtgifit uncertainty scenarios are

obtained by using these values. The values of the Clsaye, +3/2.1, £3/2.2,...,
+3/4.6, £3/4.8, £3/5. Then the RMARS model frames are constructed by running
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a MATLAB code written by us and MOSEK software [89] is used tdve the CQP
problems for RMARS models. Hereby, parameter values of RMARSetsaate also
predicted based on 30 different uncertainty scenarios.

In RMARS, our aim is to decrease tlstimation variancéy implying full robustifi-
cation in MARS even though the estimation errors of RMARS canligatly higher
than those of MARS when we incorporate perturbation (unicgyeusing Eqn. [(3.16)
into the input and output data based on polyhedral unceytaets, defined in Eqns.
(3.20)-[3.21). For this simulation study, the results fug variance of parameter esti-
mates can be understood by Figurd 3.5.

Boxplot of coefficients for MARS Boxplot of coefficients for RMARS
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Figure 3.5: The graphical representation for the variarfcgabameter estimates of
MARS and RMARS.

As we observe in Figurie 3.5, the variability of the model paeger estimates of the
RMARS is much less than that of MARS. For this simulation stublg, variance of
model performance can be learned from Fiduré 3.6 for our twthods.

Boxplot of estimation errors for MARS Boxplot of estimation errors for RMARS
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Figure 3.6: Based on AAE and RMSE, the graphical representairdhe variance of
model performance criteria of MARS and RMARS.

As we can deduce from Figuke B.6, similar to the variabilityh® model parameter
estimates, the variability of model performance in term&stimation errors of the
RMARS is less than that of MARS.
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Remark 3: In Figured 3.H-3]6, we just give a graphical represemdimsed on MARS
and RMARS with considering that we receive similar results@GMARS and RC-
MARS.

3.2 Robust (Conic) Generalized Partial Linear Models

3.2.1 Introduction

In previous sections, we upgraded the (C)MARS model to be ali®del the datasets
including uncertainty for future scenarios and constrdid@C)MARS method with
the help of robust optimization. Although, in the real lif@riables are generally non-
linearly implied and, in this case, we need nonlinear motigd$ can minimize the
error term, knot selection is an extra important point imtgof complexity to solve
the problem (by Software MARS [85]), etc.) in (C)MARS and R(C)MAR®Iat is
not necessary for their linear part. Since a dataset caraicolmear and nonlinear
variables and linear regression is very successful in oeténg a linear relationship
between the variables, in this section, a new model, R(C)GP_ptesented with es-
sential contributions of R(C)MARS and Linear (or Logistic) Reggion as a developed
version of GPLM to partially reduce the complexity of R(C)MARS.

GPLM [92] is a combination of two different regression madeach of which is used
to apply on different parts of the data set. Generalizedarimdodels (GLMs) have
been advanced to constitute GPLMs enlarging the linearseéhmough a nonlinear
component, P’ meaning partial. Such semiparametric models are needeeMelop,
because of the inflexibility of simple linear and nonlineavdals to show the trends,
relations and anomalies buried in real-life datasets. G 8lequate to high dimen-
sional, non-normal and nonlinear data sets having the fleyito reflect all anomalies
effectively. In the study [139], Conic GPLM (CGPLM) was intkgzkd using CMARS
and Logistic Regression. According to a comparison with CMARSPLM gave
better results. In the studies [101, 102], we include theterice of uncertainty in the
future scenarios into (C)MARS and the linear/logit regresgarts in (C)GPLM and
we robustify entire terms with robust optimization whichlesalt with data uncertainty.

3.2.2 General Description of (C)GPLM

GPLMs apply a bipartite model separately on linear and neali parts, and they have
a general form[92]:

E(Y|X,T)=G(X"B+¢(T)), (3.27)
where the vectorX andT represent a decomposition of variables whose parameters
and further unknowns would be assessed by linear and nanlmedels, respectively.

Furthermoreg(-) is a smooth function estimated for the nonlinear model. I§ina
link function G = H—Y makes the connection between the mean of the dependent
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variabley = E(Y| X, T') and the predictor variables:
H(p) = v(X.T) = X784 <(T) = 3 X,6, + < (T). (3.28)
j=1
In (C)GPLM, the LR model constitutes the linear part of thenestion:
Y =B+ Xp: X,B; + ¢, (3.29)
j=1

wheref, is the intercept termy3; are the coefficients ok; (j = 1,2,...,p), ¢ is the
noise termy is the dependent variable aiid are the independent variables.

In the nonlinear part of the (C)GPLM [32, 133,165, 139], a newialale Y7 "¢ js
defined by the help of},, 5, and the variables{; (j = 1,2,...,p), which would
determine the knots of MARS on the residuals, wjthonlinearly involved variables
T; that are not used in the linear part:

p
yPrerroe — X @PTerToC o = 3, + Z Xjﬁj + €. (3.30)

J=1

After the evaluation of linear part and getting the regr@sspefficients’ vectoB” ",
which is an optimal vector found as a result of the lineartksgsiares model, the resid-
ual g is defined by the subtraction & 37"*"*¢ from y:

y — X —; . (3.31)

In Egn. [3.31)y is the given response data vectgiis the resulting vector of residuals
which is constructed to develop the knot selection by MARS apyly the backward
process with CMARS. Furthermore, in Eqh.(3.3X),stands for the design matrix of
input data due to the linear model.

The smooth functiog(-) of GPLM is estimated by (C)MARS during the forward pro-
cess. This function, which is a linear combination of bagmsctionsy,, and the inter-
ceptay, can be represented by MARS and also the alternative model #&R3/Ahat

Is considered as a substitute of the backward process of MARS:

v =H(p) =Y amtn(t™). (3.32)

We note that the “bias” termy, is not needed in Eqn[_(3.82) since it already entered as
a part, namelyp,, of the linear model. Next, for the alternative model of CMARS a
a component of the nonlinear part of CGPLM, the Penalized RakBum of Square
(PRSS) in Eqn.[(3]6) will be constructed by the equation:

N Mmax 2

PRSS = (1 —a"9b) + > b > Y. / a2,[D8 0, ()2 dt™.
k=1 m=1 |6]=1 r<s Qm
BT:(91,92) r,s€V(m)

(3.33)
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The multi-dimensional integrals of PRSS are approximateddiyg the discretization
to represent it as follows, where> 0:

PRSS =~ ||y — 9(b)ax|;+0|| L] (3.34)
3.2.3 Robustification of (C)GPLM

Here, we include the existence of uncertainty in the futwenarios into (C)GPLM,
which can be represented in the following form [101,1102]:

EYIX.T)=G( X B+ T )), (3.35)
noisy variable noisy variable

where X = (X, X,,...,X,)" andT = (T}, T»,...,T,)" are a decomposition of
variables, whenX denotes arp-variate vector showing the variables with a linear
pattern,T" denotes g-variate vector showing the variables with a nonlineargrattto

be estimated with a nonlinear model. In EJn.(8.35)+ (51, 52, - - -, 3,)" consists of
the coefficient vector o, estimated by a linear (or logit) regression model, andl

is a smooth function estimated by a nonlinear model. In thidys we focus on special
types of estimatior(-) by R(C)MARS.

The variablesX; (j = 1,2,...,p) andT; (j = 1,2,...,q) are supposed to be nor-
mally distributed random variables. For each input vagab) and7j, a transforma-
tion is made through uncertainties:

X;j=z;+§ (1=12,...,p), (3.36)

ﬂ:t3+<j (j:1,2,,q)

To robustify (C)GPLM, with similar idea of R(C)MARS, we apply nadi optimization
on linear and nonlinear parts in the (C)GPLM, and, in Eqn._gB.8%e assume that
the input and output variables of our (C)GPLM are represebyedhindom variables.
They lead us to uncertainty sets, which are assumed to coctaifidence intervals
(Cls) [103]. We incorporate a “perturbation” (uncertaintgjo the real input data
(zx, t;) in each dimension, and into the output dgta Therefore, our new values of
R(C)GPLM are shown in the following:

Trj — Tryi Try = T+ 0k, |On] Svgy (B=1,2,...,N;j5=1,2,...,p),
tk,j%tk,j; tk,jZEj—i-Ak’j, |Akj| Spkj (k‘z1,2,...,N;j=1,2,...,q),
Y = Uk; Yk = U + Ti, 7| < v (k=1,2,...,N).

With the uncertainty set§] C RY? U2 C RN Mmaz andU}, U2 C RY applied on
the data(xy, y,) and (¢, yx) (K = 1,2,..., N), our model of Eqn. [(3.28) implies
uncertainty, can be represented as an additive semiparameidel:

H(i) = v (X:T’) — XT3+ (T) - ij X8+ (T) . (3.37)
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The observation value and vectoig, Zx, ¢ (k = 1,2,...,N) with uncertainty, re-
spectively,n = G(v,) andy, = H () = 1 8 + <(t) with a smooth function(-)
are considered in the form of a RCGPLM.

3.2.4 Linear (Logit) Regression Model for the Linear Part

In the linear part of the estimation, a new variable?™*¢ is constructed by the help
of the coefficientsy,, §; andX; (j = 1,2,...,p). This variable would be later used

in MARS with reminded nonlinear variablé% (7 =1,2,...,q) onresiduals to deter-
mine the knot value$ [10L, 104]:
p
ypreproc _ XTﬁpre;Droc +e= 60 + Z Xjﬁj +e. (338)

j=1
With an appropriate bound df, LR model may be solved with a continuous opti-
mization technique, CQP and have the following form:

minimize w;

w1,

subjectto ||y — XB||,< w, (3.39)

1Z1e,< VL

For our RGPLM model, we ignore the second constraint of RCQP m E§39). To
obtain the response variabjefor the nonlinear part, the same procedure with Subsec-
tion[3:2.2 can be applied.

3.2.5 R(C)MARS Method for the Nonlinear Part

The smooth functior(-) to be estimated by R(C)MARS in the Eqi._(3.28), is repre-
sented as a linear combination of basis functigpsto transform the model of Eqgn.
(3.31) into the form:

M
Y =Hp) = amtn(t™). (3.40)

Then, for RCGPLM, PRSS in Eqn_(3134) with uncertainty can bevedad into the
following form:

PRSS = |5 — 9(t)a||s+¢| Le|2- (3.41)
With an appropriate bound ok;, PRSS can be easily solved with our continuous
optimization technique, CQP, in terms of TR, and have the sulegd form [101]:

minimize wsy

w2,

subject to ||y — 9(b)a|,< w, (3.42)

ILall,< VK.
We underline that we receive robust CQP for RGPLM model, we da@oosider the
second constraint in Eqri.(3142).
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3.2.6 R(C)GPLM with Polyhedral Uncertainty

In this subsection, the form of polyhedral as uncertaintg seemployed to be able to
continue our study with standard CQP.

3.2.6.1 Robust Counterpart for Linear Part

In this part, uncertainty is constructed by a family of na@sW = W + U, and vec-
torsz = z + v,, whereU, € U} andv, € U; are unknown and lying in bounded un-
certainty sets represented in Subsedfion B.1.3, with tindesegthsp, v, of confidence
sets, respectively. As we use polyhedral uncertainty feritear part of RCGPLM,
with the uncertainty set§] andUs;, the robust counterpart can be expressed byl [104]

miniﬁmize V;ne%?Hﬁ — WzHiJrquLl[iH;, (3.43)
2€U3

with the polytoped/] andU.} described by their vertices:

2N

Ul =conWi W2 .. W7}, U =conv{z!, 22, 22"} (3.44)
The linear part of RCGPLM can be represented as a standard CQlemril3,/104]:

minimize w;

wi,B

subjectto |24 — W[, <wi (n=1,2,....2%;k =1,2,...,2V7),  (3.45)
1Lrall,< Vi,

wherek; > 0is an appropriate bound value. We recall that, along of tharpaterk’,
we obtain an efficiency frontier of solutions of Eqh._(3.4bhere a special selection
can be chosen via statistical and, further performance angbarison criteria.

For linear part in the(RGPLM model, we just have to drop the second part in Eqns.

(3.43) and[(3.45).

3.2.6.2 Robust Counterpart for Nonlinear Part

Here, uncertainty is constructed by a family of matriéés) = 9(t) + U, and vectors
~y =~ + vy, WhereU, € U? andv, € UZ within bounded uncertainty sets, identified
in Subsection 3.113, with the semilengihs, of our confidence sets, respectively.

When we use polyhedral uncertainty for the nonlinear part dPCi8, with the uncer-
tainty setd/? andU?%, the robust counterpart can be represented as

minimize max ||z, — Wg@H;+¢HL2a z, (3.46)
e} Weuz,
z€U22
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with the polytopes
Ul = cond Wi, W2, ... W2 Ul = conv{zl, 22,..., 22"}, (3.47)
We can express our robust problem of Eqn. (B.46) as a sta@@Rdproblem:
minimize w-

wa,0

subjectto ||z% — Wra|,<ws (n=1,2,...,
|Eal,= VS,

where K, > 0 is an appropriate bound value. We recall that, for the nealirpart
of our RGPLMmodel, we have not taken into consideration the second p&t|ns.

(3.48) and[(3.48).

2V =1,2,...,2N M) - (3.48)

=
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CHAPTER 4

SPLINE REGRESSION MODELS FOR COMPLEX
MULTI-MODEL REGULATORY NETWORKS

4.1 Introduction

In the previous chapter, we gave some details on theory anidoae of regression
and classification, (C)MARS, and their robust counterpart, RIERS. and we rep-
resented and applied our methods to real-world data froferdifit sectors. In this
chapter, we apply the data mining tool of regression anditieation, (C)MARS, on
a dynamics. By this, the amount of condition grows, since ¢iach point (a discrete
time, in our case) can be regarded as an extra “conditionthisyway, there would
be unknown parameters needed in order to balance the nurhbenstraints, i.e., to
close the gap of “degree of freedom”. In this respect, thelmamof unknown parame-
ters would need to be relatively high, necessarily. Howeweour research, we try to
gain from the dataset topologically and geometrically fstget into” the dynamics
smartly, benefiting from structural features of the datdsethis respect, the algorithm
of MARS and CMARS seems to be an excellent choice as, e.g., inddaEnsion of
the input variables, we get a piecewise linear “zig-zag'ttion, where the linear parts
present and approximate the data over whole intervals.prbisess is done adaptively,
which also means: smartly.

We note that the use of CMARS instead of MARS allows for an integreaepresenta-
tion of the entire parameter identification task as an o@tnon program in the sense
of a model-based problem rather than a model-free one. BYCIMIARS permits to
employ the rigor of optimization theory and it also gives amte for future general-
izations of this research which might benefit from furthezear of optimization theory,
such as Stochastic Programming and, especially, RO. Indachewly developed RC-
MARS aims at a rigorous regularization not only with respedtie output variables
but also in the input variables, we might say: in the desigthefprogram, with the
help of Robust Optimization. For any case of such furtherresitas which is repre-
sented in following chapter, we need not newly return from @rodel freeness to an
optimization theoretical model, since we are here in a mbdskd setting already.

Since we regularize the model of CMARS, including first- andoseleorder deriva-
tives, we go for “easy” models, by penalization; we turn tt@gularization into the
mathematical language of CQP. One expression of that easgt® - to some sense
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enforced (entire complexity bounded) - “flatness” of the elodn tendency, we can
say: we force the components of the vector of unknown parensiéd be as much as
possible nearby to vanish. But this also means: we try to hawmall as possible a
number of “significant” parameters in our model. MARS does thith the help of an
“index” called GCV (cf. Sectioh 2.313) we, with CMARS, do this &dynore integrated
optimization theory framework. We remark that these refbasthold true for the two
classes of variables, respectively, namely, the targeabias and the environmental
variables. Furthermore, the introduction of the environtrend its items themselves
into the model, in addition to the target variables, alreagans some kind of regular-
ization, i.e., a reduction of complexity. In fact, the emvimental variables take away
from the target variables some of the huge modeling load pie@x “alone” the data
accurately by the model.

Another class of parameters in this chapter are the penatgnpeters or, in terms rep-
resentation, equivalently, upper bounds of the complexitfg already reduced these
parameters just by single values, per class of variablelspatper basis functions indi-
vidually. This means a strong reduction of the entire numbéparameters. However,
we do still have the option of employing these parameterthéurin a more refined,
individual manner, depending on the entire model and itsptexity. In this respect,
we can “tune”. In fact, we would like to mention that this wask the number of
parameters can also be called as@del selectionincluding the suitable choice of di-
mensions. Regarding the choice of the upper bound paranmetlsave an experience
in the use of statistical “performance” or “comparison” regia@s through a number of
research works on CMARS and its robust counterpart RCMARS.

Finally, the knot points are another large group of furthemameters. In MARS, these
knots are selected automatically in a forward stepwise mawhen fitting a MARS
model. We may also approach them from the perspective ofldtiisg’ between the
classesn each input dimension which reveals a large variation betwthe classes, as
we know it from the famous classification method CARTI|[26]. In B8RS, we propose
to choose the knot points projectively, in each dimensiearby to the data points or,
to be more precise, to the grid points canonically generayetie data points.

We underline that all these intentions and efforts to impraim at an accurate and,
at the same time, “doable”, not too complex but for futurel@pgions well-prepared
methodology of CMARS and of its emerging and forthcoming \t&e In this chap-
ter, we represent and investigatedytiamical counterpart of this research agenda.
We analyze time-discrete target-environment regulatgstesns (TE systems) with
spline entries, and we present and solve new regressiofepmsly using MARS and
CMARS. We apply these methods on small artificial datasetsiwih&ve 4 variables
(2 targets and 2 environmental factors) and 25 samples, rasumoerical experience
prepared. We also obtain a simulation study based on 5 eliffelatasets and compare
the performances of MARS and CMARS.
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4.2 Regression Problem for Regulatory Network with Spline Efries

4.3 Introduction

Here, the use of spline function possesses great and, inrfaaluable advantages, in
general, and, especially, in the context or our modelingafreamics([105]. Indeed,

(i) Splines, from the viewpoint of a single dimension (inputiaale), are piecewise
polynomials. If we just used polynomials, then they wouldalk/ converge to plus
or minus infinity when the absolute values of the (input) abaleés grow large. As
many real-world processes generally stay in bounded nagen if these bounds
and the time horizons are very large, polynomials would rtedeke of a high degree
to “turn around” or oscillate enough in order to stay in thargin. But with high-
degree polynomials it is not that easy to work, especialhgesthe real-world problems
are multivariate, which can imply multiplication effectsch hence, a fast increase of
the degree of the occurring multidimensional splines. eadf using our elementary
(C)MARS splines allows us, in each dimension, to keep the @egfréhe polynomial
“pieces” very low. The splines are quite “flexible” indeedch to say, “elastic”. Often,
we call splines “smoothing splines” as they “smoothly” appmate the discrete data.

(i) Splines of CMARS are even more “smooth” as their oscillatalydwvior is kept un-
der control through a penalization of their complexity €gptal of squared first- and, in
particular, second-order derivatives); then we discedtie integral, receive a problem
of Tikhonov regularization which we finally represent as aljem of CQP.

(iii) The multivariate splines of (C)MARS are products of “zig-ga”, i.e., piece-
wise linear functions, which are piecewise of degree 1 (pra@y we can carefully
decide on how many dimensions we include into the processulfipfications of
these one-dimensional splines. In fact, both the low 1-dsienal degrees and the
controlled multiplication amounts to an additional careathat the complexity of
our model will not be too high. We recall that a reduction ofgexity may also be
named an increase of stability.

(iv) That we perform those multiplications is an expressiorheffact that the input
variables are dependent and together, in groups, corgriibuan explanation of the
response variable by those explanatory input variables.

(v) Finally, differently from the use of a “stiff” model formal(which are motivated
by the tradition of physical sciences), our approach by CMAR®&ry adaptive and is
getting “into” the dataset with its particular subsets ahdracteristics of shape.

Therefore, in the study [105], we introduce a regulatoryteyswith (C)MARS spline
entries. Our research on regulatory systems started witagisessment of the dy-
namics of genetic networks, gene-environment networkseaudfinance networks.
Those dynamical models were introduced in the time-contisuversion first, and
then treated time-discretely; careful discussions onithe-tontinuous vs. -discrete
nature of the dynamical model were made. By that we move froniR4Ao the more
“continuous” (in terms of the model and of the continuousroation methods used)
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alternative CMARS, we are staying closer to the originallytoarous nature of the
subject of our study.

4.4 The Dynamical Procedure

Selecting the entries of the matrix that encode our reguylatetwork as splines,
MARS, or alternatively, CMARS can be used to find the unknown mpatars in
TE networks. By inserting splines in Eqn_(2.11), we obtaia tbllowing predic-

tions [105]:
XEHD — a;l-o + ﬁa]ﬁ ()N((k)) + 19QIJ$T (E(k)),

J

A1) _ g () = (4.1)

Ei = Qyy + ﬁaZTE (X ) + 19aZEE(E( )).
When we compare measurements and predictions and use tHel¢gag||-||,-norm,
we can identify our model by solving the following least-ages (or in some proba-
bilistic setting, maximum-likelihood) estimation probie

N
minimize Z (
k=0

After using the form of BFs in Eqn[_(3.1L.3) and adding penaltynein the regression
model of TE networks to control the lack of fit from the viewpbof the complex-
ity and stability, the discretized form of PRSS in Egih._|3.6h de approximately
represented as follows:

Xk _ X(k)Hng

Bk _ gk H;)

PRSS & | X — X|3+||E — E|+¢r1 | Lrar|? + ¢ | Leae|?.  (4.2)

By this representation, the PRSS minimization problem loikesd classical TR prob-
lem and it can be coped with CQP_[98, 138]. Using suitable bsutidand K¢, we
may rewrite our optimization problem in the subsequent form

minimize wt + wg

WT,WE,

subject to]| X — X ||,< wr (cf. Eqn.(@&I)),
|E - E|,<we (cf. Eqn.@&I), (4.3)
[ Lroer|, < v/ KT,
[ Lecee||, < v/ K.

However, to simplify our model in Eqn[(4.2) by a single pén@arameter), PRSS
can be approximately given as follows:

=Accuracy ~Complexity
o 112 2
PRSS~ | X — X|[>+ ¢ | La|?, (4.4)

wherea = (af, al)? is an((Mmax.1) X 1)-parameter vector, to be estimated through

~

the given data points. Her& = (X7, ET)”, X = (X", E")"andL = (Lr, Lg).
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Therefore, for target-environment networks, we may presenoptimization problem
as given below:
minimize w

subjectto || X — X||,<w (cf. Eqn.(@&I)), (4.5)
ILal, < VK.

In CMARS approach, via the “control parameter” given by sompangpound of the
complexity term in our CQP optimization problem in Eqh._{4.%F can tune and
define the importance which we grant for the goal of lack of ptaxity and, by this,
for the antagonistic goal of accuracy.

4.5 Numerical Experience on a Complex Multi-Model Regulatory Networks

4.5.1 Data Description

To exemplify the implementation of MARS and CMARS algorithms use an ar-
tificial dataset which has two targets and two environmewdaiables and we have
four predictor variable$z,, 72, €1, €5) with 25 measurement values for all target and
environmental variables. For MARS and CMARS algorithm, firse MARS mod-
els are constructed for each targets and environmentalblarby using the Salford
MARS [85] and, then, the maximum number of BRd{.,) and the highest degree of
interactions are defined.

For the first targets;, Mmax iS assigned to be 11, and the highest degree of interac-
tion is assigned to be 1 which is the main model. Thereford,@ovided the knot
values (through MARS software), the largest model involvessubsequent BFs (for
simplicity, we suppress the arguments of the model funsejion

Y1 = max{0, €3 + 2.045}, ¥y = max{0, €; + 2.056},
V3 = max{0, ¥, + 2.280}, vy = max{0, Zo — 0.029},
95 = max{0,0.020 — ¥,}, Y6 = max{0, 71 + 0.293},
97 = max{0, —0.293 — #,}, ¥s = max{0, & + 0.093},
g = max{0, —0.093 — €5}, Y19 = max{0, e; + 0.186},

1911 = maX{O, —0.186 — 51}

For the second target;, MmaxiS assigned to be 10, and the highest degree of interac-
tion is assigned to be 1. So, the largest model includes tleviog BFs:

Y1 = max{0, €; + 2.056}, 9 = max{0, €5 — 0.386},
¥3 = max{0,0.386 — €3}, Yy = max{0,2; + 1.791},
V5 = max{0, 2, + 0.293}, U6 = max{0, —0.293 — 7 },
V7 = max{0, o — 0.029}, s = max{0,0.029 — 75},
g = max{0, Zo + 0.332}, Y19 = max{0, —0.332 — Z5}.
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For the first environmental factoé; , Mmax and the highest degree of interaction is
assigned to be 7 and 2, respectively. Consequently, the BFe datgest model are
represented as

'191 = maX{O, 55'1 + 2280}, 192 = maX{O, 51 + 2056},
193 = maX{O, 5;:’2 -+ 1791}, '194 = max{(), 52 -+ 0017} : 192,
5 = max{0, —0.017 — &3} - ¥y, Y = max{0, 7y + 0.293} - V3,

’197 = maX{O, —0.293 — ‘%1} : ’193.

For the second environmental factés, M.y, IS assigned to be 11, and the highest
degree of interaction is assigned to be 1. Therefore, tlgesamodel involves the
following BFs:

Y = max{0, €; + 2.045}, ¥y = max{0,e; — 0.443},
Y5 = max{0,0.443 — ¢, }, Yy = max{0, 2, + 0.293},
U5 = max{0, —0.293 — 7 }, Vg = max{0, 7o — 0.029},
97 = max{0,0.020 — &, 1, ¥s = max{0, & + 0.1861,
Y9 = max{0, —0.186 — ¢, }, Y19 = max{0, zo + 0.332},

1911 = max{(), —0.332 — JNZQ}

For all target and environmental variables, using these BBse the largest models
with M,,.. BFs and the final (optimally estimated) models with the redunember
of BFs are constructed after the forward and the backwardd$t8pARS by its soft-
ware. At the end, the final models used for MARS algorithm amdlaéingest models
used for CMARS algorithm are found and represented in Suloseti.5.2 and4.5.3,
respectively.

4.5.2 MARS Models

After the backward stepwise elimination of MARS, for botlgetis and environmental
factors, the numbers of BFs are reduced to 5, 5, 5 and 6, resgdgciConsequently,
for this study, the final models of MARS are obtained in the sgbent form of esti-
mations:

1 = ap + ag max{0, &3 + 2.045} + ap max{0, €; + 2.056}
+ ag max{0, 71 + 2.280} + oy max{0, 2 + 0.029}
+ a; max{0, —0.029 — 5},

To = ap + a3 max{0, &; + 2.056} + ap max{0, €5 — 0.386}
+ a3 max{0, 0.386 — €>} + a4 max{0, —0.293 — 7, }
+ as max{0, 75 + 0.029},
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é1 = ap + a;max{0, Z; + 2.280} + as max{0, €; + 2.056}
+ azmax{0, 2 + 1.791} + oy max{0, —0.017 — €5} - max{0, €; + 2.056}
+ a; max{0, —0.293 — 1} - max{0, 2o + 1.791},

€y = ap + a3 max{0, €y + 2.045} + ap max{0,e; — 0.443}
+ a3 max{0,0.443 — €, } + oy max{0, 2, + 0.293}
+ a; max{0, —0.293 — 71} + o max{0, 2 — 0.029}.

For each target and environmental factor, the unknown petersare determined and
represented in Table4.1.

Table 4.1: For targets and environmental factors, paranvelees of MARS algo-
rithm.

(8 %)) (0 5} (8 %)) (8 %} (8 7] (8451 (8 74 (8 44
xr, -0452 0298 -0959 0788 -0.152 0.184
T, 1135 -0.626 -0.859 0.548 0.181 -0.206
€, -3939 0749 0.764 0.360 -0.096 0.155

ey, -2.134 0672 -0448 1.087 0.634 -0.252 -0.369

4.5.3 CMARS Models

For CMARS algorithm, to prevent from nondifferentiability aur optimization prob-
lem, we choose the knot values different from data pointsyéry much nearby to the
corresponding input data. For the first part of our optimaraproblem in Eqn.[(414),
usingM,,.... BFs represented in Subsectlon 4.5.1, the largest modelsigeco

1 = ap + ag max{0, €3 + 2.046} + a max{0, €; + 2.057}
+ a3 max{0, 1 + 2.281} + oy max{0, 22 + 0.030}
+ a; max{0, —0.030 — 22} + o max{0, 2, + 0.294}
+ a7 max{0,0.030 — Z2} + ag max{0,€; + 0.186}
+ agmax{0, —0.186 — €} + a9 max{0, To + 0.333}
+ ap; max{0,—0.186 — €, },

To = ap + ag max{0, &; + 2.057} + ap max{0, €5 — 0.387}
+ a3 max{0,0.387 — €3} + oy max{0, ¥y + 1.792}

+ a; max{0, 1 + 0.294} 4+ o max{0, —0.294 — 7 }+
+ ay max{0, Z3 + 0.030} 4+ ag max{0,0.030 — z5}

+ ag max{0, 3 + 0.333} 4+ a9 max{0, —0.333 — 25},
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é1 = ap + a; max{0, 71 + 2.281} + a, max{0, é; + 2.057}
+ azmax{0, 3 + 1.792} + a4 max{0, €5 + 0.018} - max{0,€; + 2.057}
+ a; max{0, —0.018 — €, } - max{0, €; + 2.057}
+ ag max{0, 21 + 0.294} - max{0, Zo + 1.792}
+ aymax{0, —0.294 — 71} - max{0, ¥y + 1.792},

éy = ap + a3 max{0, ey + 2.046} + a, max{0,e; — 0.444}

+ a3 max{0,0.444 — ¢, } + oy max{0, z1 + 0.294}

+ as max{0, —0.294 — 7 } + o max{0, 2o — 0.030}

+ a7z max{0,0.030 — Z2} + ag max{0, e; + 0.187}

+ ag max{0, —0.187 — €1} + a9 max{0, ¥5 + 0.333}

+ ajpmax{0, —0.333 — Zo}.
After the discretized form of multi-dimensional integraisEqn. [3.5) is denoted by
L, for the second part of our optimization model in Eqn.](4tH¢, L matrices of each
target and each environmental factor become diagdnak 12)-, (11 x 11)-, (8 x 8)-

and(12 x 12)-matrices, and the first column elementsloére all zero. For instance,
the L matrix of first environmental item can be presented as fatow

0 0 0
0 1.9671 ... 0
0 0 ... 1.3287

and || Lo is given as

| La|; =(1.967 - a1)? + (1.972 - ) + (1.911 - a3)?
+ (1.401 - cg)* + (1.381 - av5)* + (1.502 - )
+ (1.329 - ay)?.
After we obtain largest models for the accuracy part anduataltheL matrices for

complexity part of PRSS in Eqnl_(4.4) for the first environnad¢factor, we reformu-
late PRSS as a problem of CQP by using Efnl (4.5) as follows:

minimize w,

subject to
1.4624 — g — 3.788cr; — 3.461an — 1.165a3 — 5.114a5 — 2.099a = [,
0.3915 — ap — 1.737a; — 3.384a — 1.821a3 — 3.309a5 — 0.45507 = s,

—0.637 — ag — 1.778c; — 1.877ay — 1.548c3 — 0.883c5 — 0.33207 = (35,
(BE+ B3+ ...+ ) < w,
(B35 + B3 + B + B2 + B2 + B2 + BH)V? < (K)'2.
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Here, we recall that the valuds are determined by a model-free (train and error)
method (cf. Remark 1). After solving this problem for all targind environmental
factors, we receive unknown parameters which are presastgiven in Table 4]12. For
all computations, the code written in MATLAB is run MOSEK seére [89] is used
for CQP.

Table 4.2: For targets and environmental factors, paramataes of CMARS algo-
rithm.

(8 7)) aq Oy (8 %3 QY (074
x; -0373 0.127 -0.108 0.119 0.193 -0.059
x5 0.268 -0.230 -0.389 0.229 0.112 -0.241
e; -0506 0.084 0.068 -0.027 0.168 0.019
e, -0.801 0.273 -0.090 0.099 0.247  -0.153
(873 (8 %4 asg (8 7¢) (8310 (8251
x; 0129 -0.104 0.122 -0.125 -0.134 0.079
xrs 0122 0.145 -0.086 0.109 -0.110
e; 0117 -0.153
e, 0203 -0.052 -0.120 -0.075 0.153 -0.047

4.5.4 Results and Comparison

The prediction results for targets and environmental faatan be seen in Figures¥4.1-
4.4, where “blue line” present real values, “red line” iraties the estimated values by
MARS model and “green line” represents the predicted valygSMARS model.
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Figure 4.1: True and predicted expression values of thetdirget.
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Figure 4.2: True and predicted expression values of thensktzoget.
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Figure 4.4: True and predicted expression values of thenseenvironmental factor.
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As we may deduce from Figures ¥.114.4, with the real expoessilues of targets and
environmental factors, the predicted values of CMARS modétmmuch better than
that of MARS model. In fact, this indicates that CMARS can reallgdict the trend
of the target-environment interaction successfully basethe expression values of all
targets and environmental factors, especially, when coadpaith MARS.

4.6 Simulation Study

In previous sections, we represented and investigatedtgmally MARS, CMARS
and two-model regulatory systems with spline entries. Bvjous subsections, using
an artificial data set, we introduced MARS and CMARS models fargdt and 2 en-
vironmental factors as a numerical example and presengegiults obtaining figures
for each target and each environmental item. Now, in ordehtov the performance of
MARS and CMARS for regulatory system based on replicated dstase constructed
different MARS and CMARS models through 5 different simulatededets for each
of the target and environmental items, as we described wiqus Subsectiorls 4.5.1-
[4.5.3. Therefore, unknown parameters are determined asémped in Tablés A.1 and
[A2. Afterwards, these models are evaluated with respettte@riteria by using the
formulas as given in Table D.1. To compare the results comugrthe accuracy of
MARS and CMARS, the models are calculated based on the adjustiiglen coeffi-
cients of determinationRZdj), average absolute errohAE), root mean squared error
(RMSB, and the correlation coefficient)( The explanations, interpretations and for-
mulas of these measures are represented in Table D.1, arebtiies are displayed in

Table[A3.

According to these accuracy criteria, we understand that REA&an perform better
than MARS for all target and environmental items with respedll measures vali-
dated through simulated datasets.

In spite of the recorded successes, the statistical metil@®ARS and CMARS,
which assume the input data are usually known precisely weldping models, may
not give trustworthy results since, in reality, the dataolmed in regression problems
can contain noise. Therefore, it has been realized thatelersents of a new global
regulatory framework have to be created to make these sgstesre robust and suit-
able for serving the requirements of the real world. In otdeeveal this expectation,
in the following chapter, a new robust optimization teclhug@dor solving and optimiz-
ing models implying nonlinearity and uncertainty by usindCRMARS is presented
with an implementation on two-factor regulatory systemshistwill allow us to in-
volve into our modelingincertaintyin the input variables, which is typical for so many
real-life problems.
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CHAPTER 5

ROBUST OPTIMIZATION IN SPLINE REGRESSION MODELS
FOR REGULATORY NETWORKS UNDER
POLYHEDRAL UNCERTAINTY

In the previous chapter, we introduced and investigated dymamical regression
problems by using splines for the entries of regulatory netwand we demonstrated
the effectiveness of these approaches by a numerical exgeti For that study [105],
CMARS provides better results than MARS and gives us betteigireas than MARS
of the trend of the TE interaction based on the expressiamegabf all targets and all
environmental factors. These systems appear in the filasgtor, in banking, envi-
ronmental protection, system biology, medicine, etc. Ascptioners in these fields
need to be aware that the evaluation of probabilities basddstory could be funda-
mentally inaccurate, uncertainties have a great impogtémcactors in these sectors.
Therefore, in this chapter, our new robust optimizatiomtegue for solving and opti-
mizing models having nonlinearity and uncertainty by udR{¢)MARS is discussed
with an implementation on two-factor TE systems [108].

5.1 Robustification of Regression for Regulatory Networks

Identification of a regulatory network from given real-wibdata is a mathematical
problem that has to be solved both theoretically and contiputzly, especially, if
there exists noise in the data. Given this motivation weudisand newly present
a robustification of regression problems for time-disciE&eregulatory systems un-
der polyhedral uncertainty by using RCMARS. In our considersbaf uncertainty
existing in all kinds of the expression data, where the uagdy sets are defined in
Eqns. [5.117)i(5.18), RCMARS is applied to guarantee a robeestifin of our target-
environment networks.

For RCMARS, the large model that has the maximum number of BES,., is created
by Salford MARS [85]. In that process, the input and outputaldes of our model
are all assumed as random variables for target-environnewborks. They lead us to

uncertainty sets; those are assumed to contain Cls. Furtblne,rfﬁj? E; and, in vector
form: X and E, are considered to be normally distributed. So, the follmageneral

61



model is considered for input data value?s, andE;:

+¢ (j=12,...,n),
e (5.1)
=4+ CE (i=1,2,...,m).

Here,z,; andé; denote the sample mean (average) of the input vecf@rand E;,
respectively. When considering that we haﬂle: n 4+ m)-dimensional input data,
each input vectoit, = (Zy1,Zr2,-..,2r,)" for target and each |nput vectef =
(€k1,€k2,---,Ckm)’ for environment are represented@s (:ck 15 Th2y - - :c,m)T
ande, — (gkyl,gm, . ,gk,m)T including the perturbationa] = (AL, - .,szn)T
andAf = (AF, ... AF T respectivelyk = 0,1,...,N). Here,A] and A} are
generic elements af’| and UE, which are the polyhedral uncertainty sets that will

later on be described for our input data (cf. Eqn. (5.17)).f&0T E networks, the new
values of piecewise linear BFs are represented as follows:

:T:M%%k?j; :U/”—xj%—A,w? |AT~]<ij (j=1,2,....,n;k=0,1,...,N),

Chi — ki e;“—el—kA,“, IAE |<p,“ (i=1,2,...,m;k=0,1,...,N),

Similarly, after we incorporate a perturbation into outpatiables, the output vectors

T = (T1,29,... in)T fortargetandé (é1,6s,...,é,)T for environment are repre-
sented agx = (:cl,xQ, .. ) ande = (éx, e, - - -, ex) T including the perturbations
T = (TlT,TQT,..., T andr = (tE, 75, ..., m)T respectlvely Here, we restrict the

vectorsT ' andE to be elements of/| andUE, which are the polyhedral uncertainty
sets that will later on be defined for our output data (cf. EfnI8)). So, our new
output values can be expressed as follows:

A \2. Q_g T T T . i o

=y vy=rt+T, || <y (G=1,2,...,nk=0,1,...,N),
s LS. S s E E E (s .

€ — e € =¢€ +T;, 7| <vi (i=1,2,...,m; k=0,1,...,N),

wherez; ande; express the sample mean (average) of the output vedfoasd E,
respectively. When we estimate the BFs in Edn._(3.13) with tacgy for TE, we
can evaluate them through the subsequent estimations:

[xk v(gm) = T(] n)] S [%k,v(j,n) - Tzlr(j,n)} [Ak} v(g,n) + (iAk w(d, n))} )

Sy — 75 ] < _E AE +AE - ©9
kv (i,m) Tv(i,m) = [6/*3 v(i,m) Tv(i,m)} [ k,v(im) + ( k,v(i,m) )} 40

here, Al () @nd Aﬂ w(i,m) are interpreted and employed@mtrol variables[] Since
the values of these control variable directly influence the sf our uncertainty séf;,
and our uncertainty sets are unknown but bound%g (/) and A,w (i,m) @re restricted

by valuesy; ;,, and~; ..., respectively. If we encounter the very conservative
(risk-averse) position, the so-callasrst casdor the values of @ ) and A,C w(im)

L There should be no confusion by double use of the lettensdm for both number of variables and dimension
of subvectors in R(C)MARS model.
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they will be equal toy] ., ,, andv; ;. ,.,, respectively. But if the absolute value of our
uncertainty is very high, we might not find any meaningfulusioin for our problems.
For this reason, we may allow for a more risk-friendly casesélgcting the values of
AL @nd A; ;) between 0 and the absolute value gf A, and A; ;). This

—T —E
meansA, ;.. [0 ]andAk’U(i,m) € [0,

‘], respectively. To make

: . =T
our notation a bit easier, we still keep the nam%g(,ﬁ\n) and A,E,U(i,m) for Ay ;) and
—~E . ~ s

Ay .im)- Now, to evaluate the values and differences)pfz;) andd,(z}) for the

targets,,(ef*) andd,,(e}) for the environmental items in Eqri.(8.5), we can apply
Eqgn. [5.2) in the following way, where all the “+” and “-” sigrcorrespond to each
other, respectively: the values of these control varialmectly influence the size of
our uncertainty set/| andUF, A] ;) and A; are restricted by valueg'

_ w(i,m) (i)
andvyy,; .)» respectively:
Kn N Ky
[Tz — eogmls < J[Erwin) — Cogm)s +
j=1 j=1
0 (D) =10 (&) (5.3)
> e —wle I &AL + AL
AC{1,...,Kn} a€A be{l,...Kn}/A
#
Km K
H[gk,v(i,m) - Sov(i,m)]i < H[gk,v(i,m) - Spv(i,m)]i +
i=1 i=1
— O (&) =0 (eF) (5.4)
Z H[gk,a — ¥El+ H [(£AL,) + A%+
AC{L,... K} a€A be{l,....Km}/A
#

Here, we may achieve a bounding given below via symmetrygham

=n ) < oF >
z?n(ofk) ﬁn(cgk) =k Uy @) — 0,3 < max{ukn,ukn}, (5.5)
On(27) — On(2]) < 0f,,
\N/m o ~m < ~E ~
ﬁm(fk) ﬁm(gk) < ukm = (O (€]) — (& )‘ < max{ukm,u,'fm}.
O (E7) — V() < 4f,,

(5.6)
Therefore, our uncertainty valugs;,| for target andut, | for environment can be
estimated in the subsequent manner for every BF:

‘u}c—,n‘ S Z B‘kA;Iil H p}f—,a ’ H (’Yl;r,b + p-lg,b)a

AC{1,. K} acA be{l,.. K} /A
=
(5.7)
Al—1
W< > BE [k T OF+eE):
AC{L, Ko} acA be{l, . Km}/A
=
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Here, by|A| we imply the cardinality (size) of the set. The values of Br and B
are regarded and applied againcamtrol variables The values of Br and B,s are
equal to 2 in cases without outliers, while, given outliengy will be greater than 2.
In those situations, we shall choose different values fard®d Be. If we allow for a
very conservative case, we do not wish to exclude any ostlldowever, the values of
B, and B,z could be rather large for some variables in the input datlad absolute
values of our uncertainty sets might be quite high becaueofalues of these control
variables. If the absolute value of any uncertainty set g tagh, it can take too much
time to catch a solution or we could not find a meaningful sotufor our problem at
all. For those reasons, rather than choosing a very conseryesition, we may take
into account a more risk-friendly position by choosing tladues of Br and B.e with

a possible exclusion of the outliers. In our novel study, veeild like to visualize the

concept of robustification for the targets and environmatems by Figure§ 5][-5].2,
respectively.

confidence interval

outlier outlier

X —rr‘ <B_.p’
N

T control variable

Yo,

semi-length of confidence interval

Figure 5.1: The Cls for BF and perturbational term for targeiaides.

confidence interval

e

[e —77].

outlier outlier

L
I
|
I
|
I
|
by

E
T A = E E
£ : e—17 |£B.p
e
pE control variable

semi-length of confidence interval

Figure 5.2: The Cls for BF and perturbational term for envirental variables.
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After implying uncertainty into Eqn.[(4].1) of Sectibn #.4ewnay state the following
prediction equations:

~

X(k+1) ]0 + 19, TT(N ) + ﬁa.ET(E(k)) (5.8)

E+D af + 9, (X®) 109, EE(E )

)

Hence, we can compare data and model predictions undertaimtgrand obtain the
following regression problem:
2
). (5.9)

m|n|m|zez (
2

Inserting splines and, then, including uncertainty exgpeddypolyhedral uncertainty
sets and constructing the PRSS form of TE networks, the disedeform of PRSS of
Eqn. [3.17) attains the following expression:

piss =3 (SKP - X0 YUY - 07

=0 " j=1 i=1

2

+
2

~

x (k)

~

x®) £ _ gk

Mlo  (N+D)K2 Mo (N+1)Km (5.10)
+2 on Z A DELND DR
where
2 1/2
(X X ntoanr)set]  and
|6|=1 r<s
0—(01,0 >T'rsEV(n)
1/2
=[S whaenr)ae]
|0]=1 r<s
0=(0,,0 )Tr.sEV(m)
Here, we havex" := (ay, .. a}N )T related with the "point” (consisting of vectors
of different dimensionsj] = (zl, ... a:],ymaX)T anda® = (ag,af,.... a5 )"
related with the “point’e; el = (er,... ,ekaaX) . Then, our approximation of PRSS
may be written as:
2 ~ ~ 2
PRSS ~ +||E - E|| + ¢1 | Lroxll; + ¢e || Lecell; , (5.11)
2 2

whereL+ and Lg are diagonal M, + 1) x (M 5+ 1)- and(MrEaXJr 1) x (ME +1)-
matrices, andr and ag are (M, + 1) x 1)- and (M5, + 1) x 1)-vectors of
parameters, respectively. However, to simply our modelgn.H5.11), PRSS can be

approximated subsequently by using a single multiplierasfglization:

2

+¢||Lalf;, (5.12)

2

~ ~

PRSS ~
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whereX = (XT,ET)", X = (X",E")" andL = (L, Lg). Here, Mmax =
M+ ME,, anda = (af, af)” is an((Mmax + 1) x 1)-vector of parameters to
be estlmated with the help of the data points. Consequemwtiytafget-environment
networks, we may represent our optimization problem in tiewing form (with
reference to Eqn[(5.8)):

minimize w,
subject to < w, (5.13)
2
ILal, < VK,

with some chosen parametg&r > 0.

5.1.1 Polyhedral Uncertainty and Robust Counterpart for Reyulatory Networks

To evaluate and solve the robustness problem, for targéteemment networks we
suppose that the model uncertalnty is represented by ayfaxhhatrlcesX X +

Uq, E=FE~+ Ug and vectorsX = X + vr, E=FE+ vg, WhereU = (U+,Ug) €

U, .= (U] x UF) andv = (vt,vg) € Uy := (U] x UE) are unknown matrices and
vectors but they are situated in bounded sets, respectiVbse uncertainty matrices
U € U, and uncertainty vectors € U, are by

T T T E E E
u-0|-71 u-0r72 . .. u-(%’MmaXu%’l u(%,z . .. u%7]\/[1’]’]3)(
1,1 1,2 1, Mmax 1,1 1,2 1, Mm:
U — ] ] ] max : ] . max , (5.14)
T T T E E E
UNi UNz - UNMpaUN1 UN2 o UN Mo
o T, T T\T E E ENT
v= ((UO v ..oun) T, (Vg T L UR) ) (5.15)

Based on those underlying séts and U,, the robust counterpart is determined as
follows:

~ 2 ~ 2
minimize _ max HzT — WTaTH +H25 — WEaEH +¢r1 || Lroer||5+de || Leae| 5
aT,ae (W W e, 2 2

(ZT 2p)eUs
(5.16)
Namely,U, is a polytope witr2(¥+DMmax verticesW, W2, ..., W2 "™ and rep-
resented as
2(N+1) Mmax 2(N+1) Mmax
U, = > 6 W6, 20 (ke (1,2, 20N DMmdy NG =1
r=1 k=1
(5.17)
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~ 2(N+1)1\/Imax}. Furthermore[/; is a polytope with

wherelU; = conv{ﬁ/, w2 ... W

oN+1 verticesz!, 22, ..., 22" and it can be expressed as
9(N+1) 2(N+1)
Up=14 > 0u2" 0, >0 (e {1,228 3" o, =15, (5.18)
p=1 p=1

e, U, = conv{21,22, o 22“”1)}. The uncertainty sets§; andU, have the form
of polytopes and they can be presented as a convex combirudti@rticesi (k =
1,2,...,20W+DMma) and 2# (= 1,2,..., 200D, respectively. Now, the entries of
W andz may be thought to have become intervals, in fact, our Cls. Tthenmatrix

W and vecto with uncertainty are lying in the Cartesian products of vas; those
are parallelpipes (for visualization, cf. Subsecfion3)1.

5.1.2 Robust Conic Quadratic Programming with Polyhedral Uncertainty

Whenpolyhedraluncertainty is employed by uncertainty sétsandU,, for our RC-
MARS model on target-environment networks, the robust CQBraru is represented
in the following manner:

minimize wr + we,

WT,WE, T, XE

SUbjeCt t(ﬂ,%'r — VNVTOéTH < wr,
2

H'%E - WEO‘EH S WEe, v (WTv WE) € U17 (2T7 QE) € U27
2

—— ——
N+41)M, ~ N+1 o
:Zi(:1+ ) Mmax 5. W* :Zizl Puzh

[ Larly < VK,

| Loell, </ Ke.
(5.19)
SincelU; andU, are polytopes, described by their vertices as

~ ~ ~ _o(N+1)M, 1~ ~oN+1
U, = conv{Wl,W2, WP ”‘} U, = conv{zl,z2, 3 }

then our robust CQP can be equivalently expressedstaralardCQP [37] with the
subsequent form:

minimize wt + wg

WT,WE, T, XE

subject tc{

2r — VNV?aTH <wr(p=1,2,...,2V" k= 1,2,..., 20D Mra
2

I

2 2(N+1)Mr|751ax)

» =yt )

P W’EQaEHQ <we(p=1,2,...,2% " g, = 1

[ Lartll, < v A,

| Lo, < V/Ee.
(5.20)
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Then, to facilitate our representation in Eqn._(5.20), prizblem can be rewritten as

mirl!rl}izew,
subject t# - Wra LS (5.21)
ILall, < VK,
wherep = 1,..., 2V K = (k1 h2) € [[q {1,..., 20+ DM, Hence,W" =
Vw‘fl VN‘(’)EQ Can = (20T ATV o — (of,al)T andL = (L, Le). Here,0,

which can have different formats, is used a dummy variablg ohatrices to simplify
notation.

5.2 Numerical Experience

5.2.1 Developing RCMARS models for Regulatory Networks

For an implementation example of the RCMARS algorithm withim dynamical
model application, we refer to an artificial dataset thathtsgets and 2 environmen-
tal variables. So, we have 4 predictor variahlés, z,, €, €;) with 25 measurement
values for each of them. Based on that, the maximum number of BEs,, and the
highest degree of interaction are determined for eachtsegel environmental items,
and the largest models are constructed in the forward MARSridthgn by its soft-
ware, Salford MARS85] (cf. Subsectioh 2.313). To prevent from nondifferabtlity
in our optimization program, we choose the knot values dfiefrom the data points,
but these values to be very much nearby to the correspondmg data. Hence, for
both targets and environmental factors, the numbéyfof BFs are 11, 10, 8, and 11,
respectively, and the largest models of RCMARS become

A

1 = ap + a3 max{0, €3 + 2.113} + g max{0, €; + 2.106} + a3 max{0,z; — 2.337}
+ oy max{0, #2 — 0.058} + as max{0,0.058 — F2} + ag max{0, 7, + 0.295}

+ a7 max{0, —0.295 — 7 } + agmax{0, ez + 0.079} + a9 max{0, —0.079 — ¢, }
+ a9 max{0,€; + 0.195} + a1 max{0, —0.195 — e },

Ty = o — ap max{0,€; + 2.106} + a max{0, & — 0.392} + a3 max{0,0.392 — é5}
+ ay max{0, Zo + 1.838} 4+ a5 max{0,Z; + 0.295} + ag max{0, —0.295 — 71 }
+ a7 max{0, o — 0.058} 4+ ag max{0,0.058 — Zo} + g max{0, Zo + 0.347}
+ ajpmax{0, —0.347 — Ty},

é1 = ap + a; max{0, 7 + 2.337} + s max{0, €; + 2.195} + a3 max{0,—0.195 — €; }

+ aymax{0, 5y + 1.838} + a5 max{0, € + 0.010} - max{0, z1 + 2.337}

+ agmax{0, —0.010 — e} - max{0, zy + 2.337}
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+ ay max{0,z; + 0.295} - max{0, z5 + 1.838}
+ agmax{0, —0.295 — 7, } - max{0, zo + 1.838},

és = ap + a3 max{0, é; + 2.113} + ap max{0, €; — 0.450} + a3 max{0,0.450 — €, }
+ ay max{0, 21 + 0.295} + a5 max{0, —0.295 — 1} + ag max{0, 2 — 0.058}
+ a7 max{0,0.058 — T2} + ag max{0, €; + 0.195} + a9 max{0, —0.195 — €, }
+ ajo max{0, Ty + 0.347} + ay; max{0, —0.347 — 25 }.

As our next step, for the second part of our optimization rhodEqn. (5.12) the ma-
trices L are obtained, related to all targets and environmentabfactespectively. To
introduce the robust optimization approach into the RCMARSehdwy applying Eqn.
(B.1), uncertainties are calculated for all input and ottailues which are represented
by Cls, and these uncertainty values evaluated are insettiethie real input data,,
and e, in each dimension, and into the output dataande, (k = 0,1,...,24).
Therefore, for both targets and environmental items, tleedainty matrices and vec-
tors based on polyhedral uncertainty sets are construgtadibg Eqns.[(5.17)-(5.18).
Indeed, we have a tradeoff here between tractability andstification, because , the
uncertainty matrices of the input data have huge dimensems we do not possess
enough computer capacity to solve our problem with resjpdbise uncertainty matri-
ces. To cope with this difficulty, for all targets and envimoental items, we formulate
the minimization of PRSS as a CQP problem in Eqn._(5.21) for ah d/alues by
following a combinatorial approacthat we callweak robustificatioricf. Remark 2).

As aresult, we obtain 25 differemteak RCMARS (WRCMARSddels for both targets
and environmental items. These 1@9 25 - 4) sub-models are solved independently
by running the program code of RCMARS algorithm written in MATBAaNd using
MOSEK software[[89] for CQP problem, and we receive thealue for each of our
auxiliary problems. Eventually, as an expression ofiearstcase approach, we chose
the solution that has thmaximumw value, in terms of all targets and environmental
factors. For our RCMARS involvement, Taljle]5.1 displays thénogitparameters of
targets and environmental factors found.

Table 5.1: For targets and environmental factors, predipsggameter values by RC-
MARS algorithm.

(870} (8 4] (8 %) (8 %} ay (873
x, -0.247 0.111 -0.326 0.269 0.191 -0.050
xro, 0711 -0.448 -0.924 0.366 0.130 -0.097
e; -2.258 0.782 0549 -0.392 0.147 0.000
e, -1.708 0.616 -0.077 0.434 0.522 -0.230
O a7 Qg Qg Qo anq
xr; 0382 -0.314 0.201 -0.217 -0.444 0.215
x, 0.000 0.104 0.030 0.033 -0.112
e; -0.056 0.000 0.066
ey, -0.080 -0.085 -0.292 0.384 0.013 -0.015
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5.2.2 Results

The prediction results for targets and environmental factan be seen in Figures
B.315.6; here, the “red line” presents exact values, andhhe line” indicates the
predicted values by RCMARS model.

- Exact
15k RCMARS_
approximation
l -
0.5
0 .
-0.5
_l .
-1.5}
_2 -
-2.5

Figure 5.3: True and predicted expression values of thetdirget.

—&8— Exact
RCMARS |
approximation

Figure 5.4: True and predicted expression values of thensktzwget.
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-0.5
_1 -
-1.5F
_2 .
-25

Figure 5.5: True and predicted expression values of thedimgtonmental item.
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Figure 5.6: True and predicted expression values of thenskeovironmental item.

From Figure§ 5]8-516, with the exact expression data oétargnd environmental fac-
tors, we may deduce that the predicted values of RCMARS modealhmveatry well.
This implies that with RCMARS ounew robustregression model for regulatory sys-
tems can predict the trend of the target-environment intena very successfully.
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5.2.3 Simulation Study and Comparison

In previous subsections, we presented and scientificadllyaead R(C)MARS and two-
model regulatory systems under polyhedral uncertainty. tWéhaore, using an artifi-
cial data set, we introduced RCMARS models for 2 targets andiogmmaental factors
as a numerical experience and represented the resultsiogtéigures for each target
and each environmental items. In this subsection, to detradiasthe performance
of RCMARS for a regulatory system based on replicated datasets@mpare this
method with other related methods. We construct differéitMARS and RCMARS
models through 5 different simulated datasets for eacletangd each environmental
item as we defined in Sectign b.2. In the study [108], our bpsiformance measure
to calculate the precision of the modele®&imation variance (EV)According to our
main aim, we evaluate EVs for LR, MARS and RCMARS models. Also, togare
the results concerning the accuracy of LR, MARS, and RCMARS, thesgels are
evaluated based on some accuracy measures sutf},a8AE, RMSE andr. The ex-
planations, interpretations and formulas of these measrepresented in Talile D.1.
When developing RCMARS models, a sensitivity study is conduitetbtermine the
most appropriate confidence limits on both the input and wutiata. For this aim,
different uncertainty matriceg/, for the input data and different uncertainty vectors,
v, for the output data in Eqns[_{5]14)-(5.15) are obtained siggudifferent intervals
and R(C)MARS results are represented baseiondifferent uncertainty scenarios

Table 5.2: Performance measures of LR, MARS, RMARS and RCMARS méalels
the first target variable.

L1
LR MARS RMARS RCMARS
EV 0.736 0938 0635 0.789 0.816 0.887 0.562 0.666 0.817 0.852
dej 0.684 0.925 0.740 0820 0.875 0.920 0.761 0.840 0.926 0.940
AAE 0333 0.175 0.281 0.275 0.231 0.187 0.317 0.257 0.169 0.151
RMSE 0503 0.244 0.456 0.380 0.317 0.254 0.379 0.310 0.211 0.190
r 0.858 0.968 0.890 0.922 0.947 0.966 0.942 0.959 0.979 0.983

Table 5.3: Performance measures of LR, MARS, RMARS and RCMARS mdéalels
the second target variable.

T2
LR MARS RMARS RCMARS
EV 0.871 0917 0813 0835 0.844 0.878 0.697 0.748 0.819 0.866
Rgdj 0.859 0901 0824 0865 0.880 0.896 0.824 0.860 0.902 0.925
AAE 0231 0.189 0.288 0.226 0.212 0.195 0.220 0.195 0.173 0.161
RMSE 0.336 0.282 0.376 0.328 0.310 0.288 0.335 0.299 0.251 0.219
r 0.939 0.958 0924 0943 0949 0.856 0.946 0.957 0.969 0.976
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Table 5.4: Performance measures of LR, MARS, RMARS and RCMARS méalels

the first environmental variable.

€1
LR MARS RMARS RCMARS
EV 0.839 0912 0665 0.682 0.775 0.888 0590 0.664 0.888 0.907
dej 0.809 0.894 0.810 0.842 0.877 0.893 0.780 0.810 0.895 0.901
AAE 0.268 0.243 0.328 0.308 0.265 0.247 0.268 0.241 0.201 0.196
RMSE 0.391 0.291 0.390 0.356 0.314 0.292 0.375 0.349 0.260 0.252
r 0.917 0955 0925 0940 0951 0955 0939 0943 0.965 0.966

Table 5.5: Performance measures of LR, MARS, RMARS and RCMARS méalels
the second environmental variable.

€2
LR MARS RMARS RCMARS
EV 0.848 0.860 0.665 0.727 0.748 0.814 0.620 0.667 0.704 0.834
Rﬁdj 0.818 0.840 0.784 0.818 0.825 0.838 0.785 0.819 0.842 0.910
AAE 0275 0.285 0.339 0.310 0.302 0.287 0.241 0.221 0.211 0.166
RMSE 0.382 0.367 0.426 0.391 0.383 0.369 0.382 0.351 0.328 0.248
r 0.921 0.927 0905 0919 0.922 0927 0932 0.942 0.949 0.969

According to all the aforementioned computations and campas, our R(C)MARS
method proves to be very competitive with the other meth@dsare able to achieve a
variance reduction which is very important in practice, andadditional advantage,
especially, when comparing with our predecessor method ARBL On the other
hand, as it is deduced in Tables]5.2}5.5 and those perfoeneriteria, in general,
RCMARS produced more accurate models with smaller varianesesltR and MARS
and RMARS with respect to precision and accuracy. Consequ&(G)MARS can
provide us very good predictions for the dynamics of thegaemvironment interac-
tion based on the expression values of both all targets dresh@ronmental factors.
Therefore, we indicate that RCMARS can perform better than LRR8Aor all tar-
get and environmental items with respect to any of our megsas validated through
simulated datasets.

Here, the performance of RMARS and RCMARS are compared by usiggpaelsim-
ulated dataset and the results of RMARS and RCMARS models with I0RVERRS
are demonstrated in Tables15.215.5 basedioon different uncertainty scenariodn-
deed, these results and the results which we demonstratedr iprevious chapter
deduce that CMARS performs better than MARS, and thus RCMARS pesfoetter
than RMARS for all target and environmental items with respeetll measures vali-
dated through simulated datasets. Therefore, we contionparing the performance
of RCMARS with LR and MARS through the remaining 4 different siated datasets
and represent the results of LR, MARS and RCMARS models in TabléaRi{B.2.
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CHAPTER 6

REAL-WORLD APPLICATION WITH OUR ROBUST TOOLS

6.1 A Real-World Application of RCMARS in the Financial Sectar

6.1.1 Introduction

One of the fundamental concepts in finance theory is optimizaand the financial

decision making for a rational agent is essentially a qoestf achieving an optimal

trade-off between risk and return. In this way, robustif@mais starting to draw more
attention in finance; in particular, some studies reportmsng results using robust
statistical techniques in financial markets. In the studB[1we used data from Is-
tanbul Stock Exchange like ISE 100 index, ISE transactiamlver and so on, from

Turkish economy like TUFE and TEFE indexes, and also dataeofFed Funds Interest
Rate and VIX Index which have been obtained from the US mabestause of their

strong effect on the economy of Turkey. ISE 100 index has leemn as the depen-
dent variable, and others as the independent variables.ui\& qgorrelation threshold
in order to limit the unnecessary and meaningless calouatand eliminated several
variables which do not satisfy this requirement. Aftervg&ange applied RCMARS to

the remaining independent variables.

6.1.2 Data Description

We selected our time-series data for the empirical part floenwebsite of Central
Bank of the Republic of Turkey [27]. The data contain the ecaoongicators which
are the most commonly used ones for the interpretation ofcamamic situation.
Monthly data have been preferred in order to have more defamtl stationary results,
relative to daily or weekly data. If we could not find the mdwgttata, we used daily
data and converted them to monthly data by taking averagdésy eome of them the
last data of the month were taken as the data of the monthi\NEtd-oreign Exchange
Reserves and International Gold Resery&& 100 stock indeis the dependent vari-
able in our dataset. We used tliglex because it is a statistical measure of change
in an economy or a securities market. For financial marketg&dex is an imaginary
portfolio of securities representing a particular marked portion of it. It has its own
calculation methodology and is usually expressed in terfives @hange from a base
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value. Thus, the percentage change is more important tiesactinal numerical value.

The independent variables al®E Transaction Numbefthe number of transaction
during a defined time period, in our case during the mong#, Trading Voluméthe
number of shares or contracts of a security traded durindiaedktime period, again
for a month),Capacity Usage Rati¢the ratio of the production capacity of the econ-
omy to the maximum capacity of economigro and Dollar Exchange Ratdlet For-
eign Exchange Reserves and International Gold Rese@@sd Price Credit Volume
Price Indexedike Wholesale Price IndefVP1) andConsumer Price Inde¢CPl) (in
Turkey: TEFE and TUFE, respectively). WPI is the price of aespntative basket of
wholesale goods, while a CPI measures changes in the prigledieeonsumer goods
and services purchased by households. Two indicators tnerySA are taken to our
analysis:Fed Funds Interest Rat@ndVIX Index(a measure of the market's expecta-
tion of stock market volatility over the next 30 day perido@cause of the strong effect
of the USA on the economy of Turkey and the world. We use ISESi@@k Market
index as a dependent variable. This is the successor dConeposite Indexwhich
was introduced in 1986 including the stocks of 40 compamnmelveas in time limited
to the stocks of 100 companies. It consists of 100 stocksgiwhave been selected
among the stocks of companies listed on the National Maget,the stocks of real
estate investment trusts and venture capital investmesiistrlisted on the Corporate
Products Market, and it covers ISE 30 and ISE 50 stocks.

The data cover the time horizon between January 1999 andnibere2009. Some
of the series do not contain the data of December 2009; threxethe absent values
are calculated in Excel using interpolation. We also cheédke correlation among
these series, in order to prevent from unnecessary and ngess calculations. We
assumed a correlation threshold of 0.90 to decide abouttteagsh of correlation.
The most correlated factors are ISE Trading Volume, Intgwnal Gold Reserves, Net
Foreign Exchange Reserves and WPI (TEFE). For example, thereorrelation of
0.94 between ISE Transaction Number and ISE Trading VoluiBoelSE Transaction
Number is taken out from the list. Eventually, our datasetsests of ISE Trading
Volume, Capacity Usage Ratio, Euro and Dollar Exchange RatesljiGfolume, Gold
Price, WPI (TEFE), Fed Funds Interest Rate and VIX Index.

6.1.3 Obtaining Large Model from MARS Program

For the implementation of our RCMARS algorithm developed, wexlissdataset from
the financial market and, eliminating some of the predictotables which have the
correlation. At the end we have 8 predictor input variables:

X : ISE Trading Volume X, : Capacity Usage Ratio
X3 : Euro Exchange Rate X4 : Credit Volume
X5 : Dollar Exchange Rate X : Price Index (TEFE)

X : Federal Funds Interest Rate X : VIX Index,

with 76 observations. However, we do not have enough compgajgacity to solve
our problem in Eqgn. [(3.19) that is given adradeoff between tractability and ro-
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bustification. Therefore we divide our dataset into two stfyseach of which has 38
observations. Firstly, we validate our assumption thairpet variables and the out-
put variable are distributed normally, usibgotstrapping methofB6] from statistics.

In order to implement RCMARS algorithm, first, the MARS models ewastructed
for each subset by using the Salford MARS version 3 [85] aneh,tlhe maximum
number of BFs {/,,.,) and the highest degree of interactions are determinedaddy tr
and error. In first part of our datasét/,,... is assigned to be 12, and the highest de-
gree of interaction is assigned to be 3. Then, the largesetaddr the first part and
the second part of the dataset are constructed in the folARS algorithm by its
software.

To prevent from nondifferentiability in our optimizatiomgblem, we choose the knot
values different from data points. However, these valuesvary much nearby to
the corresponding input data. Then, the BFs for the first platthe dataset can be
introduced into the largest model subsequentﬂvay

M
Q =g+ Z amﬁm(w)
m=1

= ag + oyt () + asts(x) + azdz(@) + agdy(x) + asds(x) + agds(x)
+ azV7(x) + agls(x) + age(x) + arotio(x) + annti(x) + antha(x)
= ap + ag max{0, zg — 0.365} + as max{0,0.365 — zg}
+ a3 max{0, 1 + 0.567} 4+ oy max{0, —0.567 — x, }
+ a5 max{0, z3 + 0.542} 4+ ag max{0, —0.542 — x5}
+ aymax{0, z4 + 2.187} - max{0, —0.542 — x5}
+ ag max{0, z4 + 0.098} - max{0,0.365 — zs}
+ ag max{0, —0.098 — x4} - max{0,0.365 — xs}
+ ajomax{0,x7 + 2.216} - max{0, z; + 0.567}
+ ag; max{0, zg — 0.542} - max{0, z7 + 2.216} - max{0, x; + 0.567}
+ ajs max{0,0.542 — xg} - max{0, x7 + 2.216} - max{0, z; + 0.567}.

Likewise, the BFs for the second part of the dataset beconst@tsin the largest
model in the following manner:

M

@ = oo+ Z O‘mﬁm(w)

m=1
= oo + a1 (x) + agte(x) + azs(x) + ayty(x) + as95(x) + ags(x)

+ a7¥7(x) + agls(x) + age(x) + a1ptio(x) + 111 (x) + arai2(x)
= ap + ag max{0, z4 — 0.575} + @y max{0,0.575 — x3}

+ a; max{0, z; — 0.019} - max{0,0.275 — x3}

+ agmax{0,0.019 — 21} - max{0,0.275 — x3}

L For the ease of representation, here and subsequently, we supjragsexm of the subvectors™ and just
write x.
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+ ay max{0, z; + 2.172} - max{0, x4 — 0.575}

+ agmax{0, z7 + 0.583} - max{0,0.575 — x4}

+ ag max{0, z5 + 0.309} - max{0, z7 + 2.583} - max{0,0.575 — x4}

+ agomaxq{0,—0.309 — x5} - max{0, z7 + 2.583} - max{0,0.575 — x4}
+ ag; max{0, xs + 0.499} - max{0,0.575 — x4}

+ agp max{0, —0.499 — x5} - max{0,0.575 — x4}.

6.1.4 Bootstraping

In general, bootstrapping is used for statistical infeeeme the basic idea of building a
sampling distribution for a statistic by resampling frore thata at hand. It is also used
to anticipate important characteristics of the populatiBrequently mentioned com-
ment about bootstrap is the followingThe population is to the sample as the sample
Is to the bootstrap samplésThe bootstrap provides correct statistical inference an
is useful in driving accurate standard errors, confidentavals and hypothesis tests
for most statistics. It has also applicability in stratifioa, clustering by resampling
from the sample data in the same wise as the original samelésted from the

population [36] 46].

6.1.5 Evaluating Accuracy and Complexity of PRSS Form

For this numeric example, we approximate the PRSS formulalias\k:

=Accuracy =Complezity
2 2
PRSS ~ ||y — 9(b)a|,+ ¢||Lalf; - (6.1)

Herein, the first part of the TR term, which is the right-hartésand that of the PRSS
function, are equal to each other, whereas, their secons @@ equal approximately.
Subsequently, all those parts are stated:

Accuracy.

ly — 9®)alf; = (y—a"d(b))" (y—aTB(b)) = > (g—a’B(by))* =: (+), (6.2)

Complexity

Z Z /m a2 [DE0, (E™)Pdt™ =: (%), (6.3)

|6]=1 r<s
9T=(91,€2) r,s€V(m)

12
6| Lo~ b
m=1

where, indeedPRSS := (x) + (xx) and¢ = ¢, (m = 1,2,...,12). Having dis-
cretized all the multi-dimensional integrals in themplexity part, they jointly turn
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into the form of Eqn. [(3.17) and, finally, the discretizednfois indicated byL. As a
result, the matrix. becomes a diagonal matrix and the first column elemenisare
all zero. The diagonal elements of this matiix, (m = 1,2,...,12), are given below
for the first part of our dataset:

0 0 0

0 1.30 0
L= : :

0 0 . 0.29

For the second part of our dataset, the diagonal elemedisiof, (m = 1,2,...,12)
are comprised as follows:

0 0 0

0 1.18 0
L= : :

0 0 . 234

6.1.6 Calculating Uncertainty Values for Input and Output Data under Polyhe-
dral Uncertainty

We incorporate a perturbation (uncertainty) into the replit data in each dimension
and into the output data, after we obtaitcuracyandcomplexityterms, to employ our
robust optimization technique on the CMARS model. For thippsee, the right-hand
side on an uncertainty bound from Eqgh._(3.16) is evaluatedtdnput and output
values which are represented 6ys, and the uncertainty matrices and vectors based
on polyhedral uncertaintgets are obtained by using Eqris. (3.20) and {3.21).

Furthermore, to perform the given calculations, we needhadly distributed data and,
since in our dataset some variables are not normally dig&dy we use the bootstrap-
ping method of statistics [36], which is the general apphotacstatistical inference
based on building a sampling distribution for a statisticreyampling from the data
at hand. With our worst case approach, for the each obsenvatie use the Eqn.
(3.186) to receive the uncertainty vectors with their estrig,, (k = 1,2,...,38;m =
1,2,...,12):

(k| = [0 (@) = Om(@) = D BT [ [] (motom) (64)

AC{1,...K} acA be{l,...K}/A
#

Now, we can write our uncertainty matrix for the input datdalews:

Uy U2 <o U129 [35, —35] 0 Ce 0
U — U2.71 U,Q.,g .. .. UQ:]_Q c [38, —38] 0 . 0
Uzg,1 U3g2 ... U312 0 [32, —32] R [464, —464}
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After we have incorporated uncertainty for each input vataatrices of our BFs can
be expressed in the following forms, just by concentratingttte lower and upper
interval boundaries, respectively:

1 382 ... 0
— 1 3.82 ... 0
W, =00)+U,=|. . . .|
1 0 ... 47.36
1 =323 ... 0
_ 1 =379 ... 0
Wlow - ﬂ(b) + Ulow - . . . .
1 0 ... —4b.47

The output data, the uncertainty vector and the vectorsumtertainty are represented
below, respectively:

U1 3, —3] —4.49 1.51

v 3, 3] - 356 B 2.44
V= . € . y Rup = y+vup = . s Zlow = Y1+ Viow = :

U3 [3, —3] —1.87 4.13

The calculation done above is applicable for both parts otr@ining dataset.

6.1.7 Receiving Weak RCMARS Models Using Combinatorial Apprach

As we mentioned in the previous section, PRSS is approxinigtedl' R problem, and
we can easily formulate it as a CQP problem. Moreover, we pmate a perturbation
(uncertainty) into the real input data, (k = 1,2, ...,38), in each dimension and into
the output datay, by using our robust optimization approach for a robustibcaof
CMARS. For this aim, by applying Eqng._(3113) afd (3.17) we iokttae uncertainty
matrices and vectors based on polyhedral uncertainty. ,Timgng relation in Eqn.
(&.4) we evaluate uncertainty for all input and output valugich are represented by
Cls.

For our example, the uncertainty matrix of input data presgas a vector has a huge
dimension £4°6(=3812)) with polyhedral uncertainty, and we do not have enough com-
puter capacity to solve our problem for this matrix. In faet, have dradeoff between
tractability and robustification (cf. Subsectlon 3]1.3).0Vercome that obstacle, in this
example, we robustify our CQP problem for each sample valogsefwation) using the
combinatorial approach, which we calieak robustification That weak robustifica-
tion encounters a data-wise robustification that referdlttha other data according

to the interval midpoints (“ceteris paribus”), and it firalhddresses the worst case
with respect to all the data-wise robustifications. Consetiyewve obtain 38 differ-
entweak RCMARSWRCMARYPmModels, for each part of our dataset, and solve them
with MOSEK [89]. Based on polyhedral uncertainty sets, toresaur problem, we
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use their vertices. In order to find them, we need especiallgpply the Cartesian
product of all the intervals of input data in the observatioHence, our WRCMARS
models have different structures depending on the numbentaes (BFs), which are
used to explain the observations. For instance, we cangeptréhe last observation’s
WRCMARS model, which has 3 entries, in the following form:

minimize w,

w,o

subject to 1.51069 — ap — 0.29234ay — 0.3553904 = [,
2.43887 — g — 0.01516; — 0.10152a3 = fo,

— 1.87353 — g + 2.677cy + 3.090a3 + 45.47405 = Segos,
(B2 4 B2+ ... 4 f2)? < w,
(53?9 + 5222 + ...+ 5?6)1/2 < w,

(55?71 + 55?72 + ...+ 56208)1/2 < w,
(Bago + Baro + -+ + Bogg) /2 < K2,

refering the some&< > 0. In order to solve this problem, we transform it into the
MOSEK format above. For this transformation, we attribuéeyrunknown variables
in the linear terms which are lying in these 17 cones. By thisact, we simplify the
notations in the cones and write them as equality and ingguaistraints. Therefore,
for our last sample, our problem includes 620 linear congBa@and 17 quadratic cones.

We write this formulation for each value of our sampl€ & 38) and solve them
separately by using MOSEK program [89]. MOSEK apply an iotepoint optimizer,
which is an implementation of a homogeneous and self-dgaridhm. We obtain
MOSEK results and find the values for all auxiliary problems; then, using the worst-
case approach, we select the solution which hasritbgimum walue. Then, we
continue with our calculations using the parameter valug§ = 1,2,...,12) that
we find from the auxiliary problem which has the highestalue.

6.1.8 Sensitivity to the Changes in the Confidence Interval Innits of RCMARS

In order to represent sensitivity to the changes in the Cltéiraf the input data and
output data and to find suitable interval limits for us, weaabtdifferent uncertainty
matricesU, for the input data and different uncertainty vectarsfor the output data
as the form of Eqgn.[{3.18) by using 7 different intervals. Jdenes are given by
the pairs+3,+3/2, £3/4, £3/6,+£3/8,4+3/10 and, as a special case, the mid-point
value of our interval (i.e., zero lengths interval). In tlagter case it reduces to the
CMARS model. This shows that CMARS isspecial casef RCMARS. Therefore,
we calculate our parameters with 7 different uncertaingnsacios using these values
under polyhedral uncertainty sets for our training data set
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In Subsectioh 6.119, all of the parameter estimates as wetlalel accuracies for dif-
ferent uncertainty scenarios are shown. When we applytiealues in our RCMARS
code and solve it by MOSEK, we use thét value which has the minimum value
of PRSS approximately in Eqn[(3]22). In order to compare #seilts concerning
accuracy for RCMARS and CMARS, we empldyerage Absolute ErrofAAE) and
Root Mean Squared ErrdiRMSE. Also, we represent variances’f of CMARS and
RCMARS in Subsection 6.1.9.

6.1.9 Results and Discussion

In this study, we construct uncertainty matrices, for the input data and uncertainty
vectors,v, for the output data and, we recieve 7 different uncertagtgnarios by
using the interval values;3, +3/2,+3/4, £3/6, £3/8, £3/10 and zero.

From Table§ 6]1 arld 8.2 it seems that the solutions obtaireskeasitive to the limits
of Cls. When the lengths of the ClIs are narrow, we evaluate @#tésrmance results.
Moreover, as in our previous study [100], when we usentid-point(zero value) of
our interval values for both input and output data, whichhis ¢tertain data case; we
receive the same parameter estimates as we obtained for CMAIRSs our particular
special case When we assess thg, (x) values in our RCMARS code and employ
MOSEK, RCMARS provides us several solutions, each of them baisd@ BFs.

Table 6.1: Parameter estimates and the model performaoicégeftraining data.

U,v +3 +3/2 +3/4 +3/6 +3/8 =+3/10 zero
RCMARS CMARS
ay  -0.053 0.013 0135 0.139 0.151  0.139 0.110
o 0.078 0.050 -0.040 -0.051 -0.065 -0.063  -0.061
s 0.008 0.016 0.009 0.010 0.006 -0.006  -0.024
a3 -0.045 -0.059 -0.091 -0.103 -0.119 -0.138  -0.139
a, -0,021 -0.101 -0.175 -0.166 -0.164 -0.163  -0.155
as 0.000 -0.058 -0.113 -0.117 -0.122 -0.124  -0.118
o 0.031 0.052 0.066 0063 0063 0.072 0.085
oz 0.054 0.016 -0.018 -0.011 -0.013 -0.007 0.008
asg 0.216 0451 0.497 0470 0.473  0.474 0.453
a9  -0.003 -0.008 -0.013 -0.007 -0.021 -0.001 0.082
ajp  0.001 0.001 0.002 0002 0.002 0.004 -0.024
a;;  -0.002 -0.018 -0.031 -0.022 -0.013 -0.007  -0.066
aj;  -0.005 -0.005 -0.004 -0.004 0.006 0.012 0.038
o? 0.028 0.057 0.085 0.085 0.092 0.101  0.165
AAE 0735 0.707 0.678 0.673 0.662  0.656 0.627
RMSE 1.175 1.121 1.078 1070 1.052  1.037 0.999

For the training data, models for RCMARS have a smaller variabgea lower ac-
curacy than CMARS, which is consistent with our expectatiorowklver, we have
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unexpected results for the testing data.

Table 6.2: Parameter estimates and the model performamicégeftesting data.

U,v +3 +3/2 +£3/4 +£3/6 +£3/8 +£3/10 zero
RCMARS CMARS
o? 0.005 0.006 0.005 0.005 0.005 0.006 0.012
AAE 0830 0.831 0.818 0.818 0.812 0.814 0.825
RMSE 1.156 1.163 1.146 1.145 1.138 1.145 0.168

For the test data and for some suitable uncertainty values, A&&3/produced more
accurate model with a smaller variance than CMARS, which caseba in Tablg 6]2.
This is mainly due to the randomness involved in the inpupotvariables. According
to the above results, we can say that RCMARS can be a aumérate modeWith a
smaller variancethan CMARS.

6.2 A Real-World Application of RCMARS in the Energy Sector

Electricity price forecasting models have recently bearsticted in Turkey since the
electricity market evolved into a competitive form. New kedrstructure is based on a
day-ahead price forecasting. Electricity price modelingldes decision makers to see
projections for the future. Since the fluctuations in eleitir demand affect electricity
prices, the prices can change in short-term periods evendaya Fluctuations in
the electricity consumption show that there #reee periods day, peak andnight,
according to the demand. Therefore, the aim of the study][ik4® make short-term
projections for competitive Turkish electricity marketevk only day-ahead prices are
forecasted, and to propose a customized approach forieigcprice modeling of
Turkey.

Several models are studied in the literature for competigilectricity markets. The
categorization of models is based on three main approadyese theory models,
time series models, and production cost models [52]. Comynaekt-day’s electric-
ity prices are predicted by using time series models, spadifidynamic regression
model [96]. The approach proposed here is based on robustoaticiuous optimiza-
tion techniques via our new robust tool, RCMARS. One traditi@mal one new ap-
proaches are proposed and then analyzed considering iffezert types of period in
a day. The results show that with small variance RCMARS perfdetier than the dy-
namic regression (DR). Although dynamic regression is npt@griate for small-sized
data sets, it is used in order to compare the traditionalagmbr and the customized ap-
proaches.

83



6.2.1 Dynamic Regression Approach

One of the effective methods for price modeling is using aadyic procedure, since
the behavior of the variables over time changes the streictthe price models. The
model in Eqn. [(65) is a dynamic regression model that ctnsiselectricity price
pyo1 at timet + 1 explained by past prices attimes — 1, ..., ¢ — k and the values of
demand atthe timet —1,...,t — k:

Py = Body + Prdi—1 + ...+ Bpdi—i + dopt + 01pe—1 + ... + 0kpi—i + £, (6.5)

whereg;, §; represent the coefficients andstands for the noise terms. This method
is used in order to overcome the serial correlation in e%8([P6]. Here, the DR ap-
proach is used for the prediction of electricity price inKey as a traditional approach.
Since the efficiency of the method depends on the selectiexmi&natory variables,
the appropriate model for Turkish electricity market is deél by using the real data
set of March 2011. The resulting model is

P11 = Body + Prdi—7 + dopr + 4. (6.6)

Here, the model relates next day’s price to current day'satehand price as well as
the demand of the same day of the previous week.

6.2.2 CMARS

In order to implement the second step of the algorithm, thdR@Anodels are obtained
for each subset by using the Salford MARS System, then themmami number of
BFs M,,.. and the highest degree of interactions are determined. argedt model
for the first period, i.e., day, is found to be In order to impént the second step of
the algorithm, the MARS models are obtained for each subsetsing the Salford
MARS System, then the maximum number of BHs,,, and the highest degree of
interactions are determined. The largest model for thegegsbd, i.e. a day, is found
to be
U4 =0 + oy max{0, z3 — 0.63} + g max{0,0.63 — x3}+

azmax{0, s + 2.04} max{0,0.63 — z3}+

agmax{0,z; + 2.7} max{0, x5 — 0.63} + a5 max{0, z; + 2.7}+

agmax{0, 1 — 0.51} + ay max{0,0.51 — 21} + ag max{0, z; + 0.28}+

agmax{0, —0.28 — z1 }.
CMARS algorithm is performed for various values of the boutido find the mini-

mum PRSS in Egn.[{3.6). The model is solved in MATLAB enviromtnf®r three
explanatory variables and the results are given in the Stibsé.2.4, below.

6.2.3 RCMARS

Electricity price models include uncertain parametersr iRstance, small perturba-
tions in electricity price and demand may cause differeytal@ead electricity price
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models. In order to avoid unstable solutioad, input and output variables are as-
sumed as random variables, opposite to DR and CMARS, wherdloalyutput vari-
able (dependent variable) is regarded as random througk;nww, our RO approach
is applied to refering to BFs obtained from MARS. By using EqnI83, uncertainty
matrices and vectors for the input and output parameters@structed based on
polyhedral uncertainty sets that are represented by stécdafidence intervals. RC-
MARS model takes its general form with the vector of explanat@riables under
uncertainty [[13,98]. To solve the problem, PRSS in Egn. {8id7eformulated as a

RCQP in Eqn.[(3.23).

6.2.4 Results and Comparison

Proposed models, CMARS-RCMARS, and the traditional model, DRajppéed to
predict day-ahead electricity prices of Turkey. One mostthiosen and daily periodic
data are used to forecast the electricity prices. Numeresllts are represented in
Tabl€e[6.3B for one period. Here, we consider to present efarlonly one period (e.g.,
peak) since the models give similar results for the other penods (e.g., day and
night).

Five different performance measures, namély, which is our main performance
measure M AE, RMSE, R., andr, are used to assess the prediction performance
of the methods. These measures, their abbreviations,rexjgas, interpretations and
formulas are represented in Table D.1. Moreover, in RCMARSapaters are evalu-
ated for four uncertainty scenarios using the values undighpdral uncertainty sets.
The results are represented in the Tablé 6.3 with RCMARS1 (CMARSMARS?2,
RCMARS3 and RCMARSA4.

Table 6.3: Comparison of electricity price models base&Ak, RMSE Rﬁdj, EV and

DR RCMARS1 RCMARS2 RCMARS3 RCMARS4

EV  0.33 0.34 0.007 0.25 0.32
AAE 075 0.53 0.82 0.57 0.54
RMSE  0.99 0.86 1.19 0.88 0.86
R?, 013 0.26 0.42 0.23 0.26
r 033 0.73 0.35 0.74 0.73

According the results, when RCMARS is applied in Turkish eleityr market, bet-
ter predictions can be received with smaller variance. Aisoan be deduced that
RCMARS performs better when the length of confidence interngteduced for our
performance measures, except EV; it is better when theHesfgtonfidence intervals
is increased.
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6.3 A Real-World Application of RCMARS in the Environmental Sector

6.3.1 Introduction

Climate change has been happening for decades, but it haseaelytly begun to spark
more serious concern due to the severity of the disasterkitdw has been attributed.
Climate change causes a change in the mean (i.e., the cetweatbn) as well as an
increase in the variability (i.e., the spread) of meteagwlal variables. These changes
to the climate might result in, for example, extreme amowftgrecipitation occur,
which may lead to floods and droughts, which in turn, affeet énvironment, agri-
culture and the economy. Thus, the ability to forecast wiatezls and manage water
resources has also gained in significaince[106].

Precipitationis a very complicated physical process in nature, which méldifficult

to forecast. Nevertheless, recent positive developmarnsadictive data mining tech-
niques, which are used in early warning systems [7], aredripg the accuracy of pre-
cipitation forecasts. This assists in the decision to imm@et action plans in advance
of any predicted potential disaster. The methods used fostoacting precipitation
models include statistical models, like LR models, splirtese-series models (e.qg.,
ARIMA), computational models, such as Artificial Neural Netks (ANNSs) [79],
MARS [31], wavelet-ANNs and soft computing models, like refuzzy and wavelet-
neuro-fuzzy models.

Comparison studies reveal that statistical models are mata®ssful as computational
models([76, 79, 97, 100, 186]. The neuro-fuzzy approactopas well, but only when
combined with wavelet transforms. Similarly, even thoudiiMs are used extensively
in predicting precipitation, they do not perform well urdagbey are used in conjunc-
tion with another method such as wavelet transformation. R8Aconsidered to be
the best performing method compared to the other methodtsened abovel[1,2,16].
Because of successful track record of the MARS method in ptatign modeling, in
the study[[106], we attempted our technique based on RCMARS,ibdheory and
application to be used for the aforementioned purpose.tfi®gbal, a dataset consist-
ing of seven meteorological variables recorded at 43 statiothe continent&entral
Anatolia (CCA) region of Turkey over the period 1976-2010 was selectedail3eof
the dataset studied are presented in the following Sulosé6iB.2.

6.3.2 Dataset and Its Preprocessing

The dataset studied involves seven meteorological vasabamely, the monthly pre-
cipitation total (in millimeters), monthly mean tempena&umonthly relative humidity
(in percent), cloudiness, vapor pressure, surface air éemtyre, mean pressure and
mixing ratio. Here, the mixing ratio is a derived variablg¢ahbed as the ratio of (0.622
vapor pressure)/(pressure-vapor pressure) [132]. Iriaddtime is also considered as
anotherindependent variable in the model development due to tinm@vament in the
data. The data consists of the values of the above namedleigecorded at the 43
stations of the CCA region of the Turkish State Meteorolog®ativice (TSMS) over
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the period 1976—-2010. Note here that the stations takeraggount in the study were
determined as a result of another study [62, 150].

In RCMARS methodology, since there is a tradeoff between todittaand robustifi-
cation, we had difficulties regarding computer capacityolwesthe optimization prob-
lem using uncertainty matrices on a large amount of dataagung seven variables
with 420 rows (one for every month in 35 years), for each onth@#3 recording sta-
tions. To handle this problem, the size of data was reducddkigg yearly averages
of each meteorological variable over all stations. Henle,dataset was decreased
to a size that was more suited to the available computer ggpdeurthermore, the
variables were normalized to construct Cls in the inten@| 3].

In this application, to compare the performances of premictodels obtained, we
also employed théold-out methodhs the validation technique, where the dataset is
divided into two subsamples asaining andtestsets. As the dataset incorporates a
time series of meteorological variables, it was not sulgigigirandomly. Instead of
this, the first 30 years (from 1976-2005) of each variablarggd were assigned to be
the training dataset whereas the last 5 years of the seriesagsigned to be the test
dataset.

6.3.3 Criteria and Measures Used in Performance Evaluations

Our basic performance measure to evaluate the precisidreohbdels was theari-
anceand, in this study, it was measured in particular bygsemation varianc€gV).
Additionally, to compare the results concerning the acdesaof RCMARS, CMARS
and MARS methods, the models developed were further evallased on some ac-
curacy measures lik&;, AAE, RMSEandr. These measures, their abbreviations,
explanations, interpretations and formulas are presentddble[D.1. Besides, the
models were evaluated with respect to the stabilities ofh@llmeasures considered.
Here, the stability criterion of a measure compares theopmdnce of a method on
both the training and test data. The stable methods are #mtbat perform equally
well on both training and test datasets.

6.3.4 Developing Precipitation Models

First, using the training dataset described above, selA®S models were devel-
oped using Salford System’s MARS softwarel[85]. After pickthe best one among
them, the CMARS model was constructed and robustified undgthedtal uncer-
tainty as described in Section B.1. While developing RCMARS rispdesensitivity
studywas conducted to define the most suitable confidence limitsodim the input
and output datax, yx(k = 1,2,...,30). For this aim, different uncertainty matrices,
U, for the input datag,, and different uncertainty vectors, for the output datayy,
were constructed by using four different intervals. Thegerapresented by the pairs
+3/5,+3/10,43/20 and O (i.e., zero-length interval). Here, the zero-lengthrval
refers to a special case where the RCMARS model reduces to the CVAIREl. We
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estimated our parameters with four different uncertaisgngarios using PRSS values
of the Eqn. [(3.IB) under polyhedral uncertainty sets fortining data set (see Table
[C.1). Here, the values of bourdd were determined by a model-free method, and the
one having the minimum value of approximate PRSS given in Egd1) was used.

Owing to the tradeoff between tractability and robustiimatn RCMARS method-
ology, difficulties arise that stem from having insufficieamputer capacity to solve
the RCMARS model using uncertainty matrices and a huge amounpof data (cf.
Subsectiofi 3.113). To overcome this problem, our combir@i@mpproach, calledieak
robustificationwas employed on each sample value (observation) to cormheRC-
MARS into a CQP problem under polyhedral uncertainty . In thelst{106], for
each observation, we include perturbation (uncertaintig the input datagx,, for
each dimension, and also in the output data(k = 1,2,...,30), with the help of
uncertainty the matrices and vectors constructed acaptdifeqn. [3.1B). Thus, 30
different submodels, oveakRCMARS (WRCMARS) models, were built as a result.
In the WRCMARS algorithm, the MARS models were obtained by usintp&hSys-
tem’s MARS software, and then, the maximum number of BHs (,) and the highest
degree of interactions were defined. For this data’kkt,., and the highest degree
of interaction are assigned to be 12 and 1, respectively. d¥e thata main effect
modelis developed as a result. Thus, the largest model obtaindteldprward MARS
algorithm involves the following BE

Y1 (x) = max{0, x5 + 2.0927}, o(x
Y3(x) = max{0, z7 + 0.6001}, V4(x) = max{0, —0.6001 — x7},
5(x) = max{0, z¢ — 0.2563}, 6 max{0,0.2563 — x4},
) (
)

2

max{0, r3 + 1.4227},

)
<

r Zr

>

)
)
)
max{0,z5 + 0.0875}, Vs(x) = max{0,—0.0875 — x5},

o(x) = max{0, x4 + 2.3288}, Vip(x) = max{0,x; + 2.4477},
Y11(x) = max{0, Xy + 0.1409}, ¥12(x) = max{0, —0.1409 — z4}.

>

(

(
7(33

(

Here,z, o andxs are the normalized mean temperature, cloudiness, and pag®r
sure; x4, andz; are the first-order lagged cloudiness and mean pressyrand x-;
are the fifth-order lagged cloudiness and vapor presswspectively. Hence, the RC-
MARS model obtained is a “distributed lag” model due to thet that it includes
lagged independent variables. To prevent nondiffereititialm the optimization prob-
lem, the knot values selected are different from but verymualose to the correspond-
ing input data. As a result, the largest model can be destabédollows:

U=ap+ Z AU () = ap + a1 () + agta(x)+

m=1
azVs(x) + auy(x) + asds(x) + agds(x) + azd7(x)+
aglg(@) + age(x) + a19¥10(x) + 11911 (x) + a1212(x)
= ap + a1 max{0, zy + 2.09278} +
ap max{0, z3 + 1.4228} + a3 max{0, z7 + 0.6002}+
agmax{0, —0.6002 — z7} + a5 max{0, zg — 0.2564}+

2 For the ease of representation, here and subsequently, we supgrestexm of the subvectors™ and just
write .
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agmax{0,0.2564 — x6} + ay max{0, x5 + 0.0876 }+
ag max{0, —0.0876 — x5} + a9 max{0, x4 + 2.3289}+
aomaxq{0, x; + 2.4478} + ay; max{0, x4 + 2.76403}+
aq; maxq{0, —0.1410 — x4 }.

Thirty different submodels were solved individually by ngithe MOSEK program
and, thus, thev values were determined for all auxiliary problems. Thennaishe
worst-case approach, the solution chosen was the one withmam w value, and the
parameters; (j = 1,2,...,12) were estimated (see Taljle C.1).

6.3.5 Results and Discussion

The models developed as defined in the previous section, evateated with respect
to the criteria by using the formulas represented in Table Dhe results are given in
Table[C.2. According to them, the following findings can bedated.

e ForU = £3/5, the best measure values for training data were constrticted
v = +3/20 other than PV measure; it was best for +0.

e ForU = +3/10 and+3/20, the same best values for training data were obtained

for v = £3/20.

e ForU = +£3/5, £3/10 and+3/20, the best values for test data were obtained

for v = £0.

e ForU = +3/5, the best values for the stabilities of measures were ealua

for v = £3/20, whereas fot/ = +3/10 and+3/20, the best values for the
stabilities of measures were calculateddor +0.

e ForU = £0, all measures were the same for the training, test and isiedil

e The best values for the training data were received for +3/10 or +3/20
andv = £3/20.

e The best values for test data were constructed/fer £3/5 andv = £0, while
the best stabilities of measures were obtainedfor +3/10 or +3/20 with
v = =0.

Based on the above findings, the best RCMARS solution was detednfian U =
+3/5, £3/10 or £3/20 andv = +0. For the goal of comparison, we toék= +3/10

or £3/20 andv = +0. The performance measures of MARS, CMARS and RCMARS
are given in Table6l4. Noté:indicates the best performance for train, test and stabilit

(st), with respect to the corresponding performance measur
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Table 6.4: Performance measures of the precipitation nrsodel

MARS CMARS RCMARS.
train  test st train test st train  test st
R? 0.957 0.139 0.145 0.971* 0.225 0.231 0.876 0.789* 0.901*
AAE 0165 0.701 0.235 0.131* 0.6463 0.203 0.273 0.311* 0.877*
RMSE 0.204 0.830 0.246 0.166* 0.788 0.211 0.346 0.411* 0.842*
r 0.978 0.652 0.666 0.986* 0.672 0.680 0.950 0.900* 0.947*
EV 0957 1.324 0.723 0953 1241 0.768 0.628* 0.687* 0.914*

The results implied the following conclusion:

e For the training data, CMARS performed better than the othemhethods with
regard to all measures except EV; it was the best for RCMARS.

e For the test data and stabilities, RCMARS considerably outpe€d the other
two methods with respect to all measures.

6.4 A Real-World Application with RCGPLM in the Financial Sector

6.4.1 Introduction

In recent years, sovereign debt-servicing difficulties anttight defaults have been
observed more frequently than before even though the memnoenic misalignments
causing debt crises are still not well understood. In orddotecast several kinds of
crises, the literature has focused on especially “twintency and banking crises, but,
not on the prediction of sovereign debt crises. Sovereidgm deses usually occur as
the result of outright default on domestic and external delbollover/liquidity crises,
when investors of a country, which is solvent, but illiquiddaalso on the verge of
default on its debt, are unwilling to roll over short-termbtke coming to maturity.
Since several countries have large debt burdens and carbfeeisto debt-servicing
problems in the foreseeable future, assessing and fomegakbt sustainability has
great empirical and policy importande [35,84]. In addittorthese, internationalism
and integration of economies are also essential factorsioftey risk.

Especially, decision makers and investors should expectdiming risks in the in-

ternational area to make decisions, take measures and makalge investments in
the right places all over the world. Through the world, enmeggnarkets draw at-
tention due to their high growth potential and high profit @sgancies. On the other
hand, they are relatively higher risky markets because latNity of economic poli-

cies, weak banking sector, high dependence on externaatépivs and uncertain
growth prospects. Therefore, they are more prone to thexffs]. As a classification
tool, Logistic Regression models and algorithms are oftgrieghto predict defaults /

90



nondefaults or success / unsuccess, developed by usingwnaxiikelihood method.
Although they do not have assumptions like normality anddnity, they have some
deficiencies, especially, in correlated variables andrmalete datasets [35, [78].

In the previous study [139], unlike Logistic Regression,dhtasets which include both
linear and nonlinear variables, are tried to be explainédiefitly using a semipara-
metric model:CGPLM (cf. Subsectiof 3.212). Here, it is constructed as a contbima
of a discrete model of Logistic Regression and a continuousetnaf CMARS. Com-
paring CMARS and CGPLM, itis clearly seen that CGPLM has an adgann terms
of reducing the complexity and increasing the rate of aayuiathe results.

In the work [104], we represent a newly developed RCGPLM witlea-world ap-
plication in finance to predict the default probabilities4b emerging markets. In
RCGPLM, the linear part consists of a discrete regression hiamgstic Regression
and the nonlinear part consists of a continuous regressate MPRCMARS. The aim
of RCGPLM is to decrease the complexity of RCMARS, reducing thebeirof vari-
ables by transferring the linear ones to Logistic Regressibhis section employs
RCGPLM with a variety of macroeconomic factors to assess @dfeon the risk of
sovereign default and on a debt crisis, for a large samplewtiries.

6.4.2 Data

In the application part of the model, we used the same datassét our previous
study [32] 139], where we employed Conic Generalized Paritedar Model, to have

a chance to compare the results of the two models. The datseetin this study is
guoted, originally, from Fioramanti’'s papeér_[45], and ittemprised of some impor-
tant macroeconomic determiners of debt crises in 45 engmiarkets between the
years 1980 and 2005. The time-series data contain 1019waltiees with a depen-
dent variable that shows whether the country is in a debiscigking the value “0”

(non-default) or the value “1” (default) values, and withih@8ependent variables:

X, : Bank liquid reserves to bank assets ratio

X5 : Changes in net reserves / GDP (Gross Domestic Praduct)

X3 : Current account balance (% of GDP)

X, : Exports of goods and services (% of GDP)

X5 : External debt total / Total Reserves

X¢ : Long-term debt / GDP

X7 : GDP growth (annual %)

Xs : Liquid liabilities as % of GDP

Xy : Total debt servic (% of exports of goods services and income)
X1 : Short-term debt (% of exports of goods services and income)
Xy : Trade (% of GDP)

X1o : Use of IMF credit / GDP

X3 : Inflation consumer prices (annual %)
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In Figures 6.l[-65,
a selected country
above.

we can see the character of some of owables belonging to
among 45 countries, for a visualizatioth® dataset described
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Figure 6.5: True and predicted expression values of thenskeovironmental factor.

Our training sampleis beneficial to construct the model based on 757 obsengtion
which belong to the years 1980-1999, whil¢eating(validation) sampleis used to
test the model including 262 observations which belongeoydars 2000-2005. Here,
to overcome the capacity problem in MATLAB, we need again sivapping to re-
duce the number of observations to an applicable numbercacaniserve all specific
properties of the data.

6.4.3 Application

Derivation of the model from th&aining sample

To predict the default probabilities of emerging marketg, wge a large sized real-
world financial data as an application of RCGPLM. In our methogy we use a
tradeoff between tractability and robustification leading us to &alifty about com-
puter capacity to solve the problem equipped with uncestairatrices and a huge size
input data. Therefore, on each sample value (observatiothei linear and nonlinear
parts, our combinatorial approackeak robustificatioms applied to convert the RCG-
PLM into a CQP problem. In addition to that, to overcome thybem, we divide the
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training data set into 2 subsets which have 378 and 379 ddusams. After applying
bootstrapping, we obtain 2 normally distributed samples raluce the size of each
subset to 60 observations.

On each of these subsets, we insert perturbation (uncgitamthe input datac, for
each dimension, and also in the output data(k = 1,2,...,60) with the help of
the uncertainty matrices and vectors which are basegotyhedral uncertainty sets
constructed in Eqns[(3.20) arld (3.21). In that way, thealdes are converted into
standard normal distribution to obtain Cls in the interval [3]. Then, different so-
calledWRCGPLM4103] appear for both the linear and nonlinear parts.

After that, we can continue on the linear part of RCGPLM, whitefined in Subsec-
tion[3.2.4. The linear variables are determined’&s{liquid liabilities as % of GDP),
Xy (total debt service: % of exports of goods services and i, (use of IMF
credit/ GDP) andX; (inflation consumer prices) which have a linear relatiopstith
the dependent variable™. Then 757 different models are constructed to constitute
our WRCGPLM. After the solution of these models in MOSEK and fiigdihe w,
values for all auxiliary problems, we obtain the solutionsieh have themaximum
wy value with respect to the Eqrl._(3145), herewith applyingwiest-caseapproach.
The linear least-squares systexi3” ", whereB" "¢ is the optimal vector of the
regression an is the design matrix, is subtracted from the respapse derive the
vector~ of the nonlinear model (for closer details see the proceduf@ubsections
[3.2.2[3.2.b and Subsubsection 3.2.6.2). As a result, taerégression model can be
expressed as in Eqri._(3]30).

To prevent from any damage to the binary structure of the ridg& variablegy in
Eqn. [3.31), which employs a subtraction of the results ftoenoriginaly values, we
separate the data set into Group | and Group Il. Group | ctnefshe observations
giving a result of “0” after the linear regression, while @poll comprised of the
observations giving a linear regression result of “1”. Frapw on, the nonlinear
process will be separately applied on these 2 groups of eamtistibapped subsets with
the binary residual vectoy. Then, we construct the largest model for Group | and
Group Il by using the Salford MARS. For example, the largestiehoncludes the
following BFs for Group B:

V1(t) = max{0,ty + 1.597},  ¥9(t) = max{0,t; + 1.798},
U3(t) = max{0,t5 + 1.395},  94(t) = max{0,ts + 1.529},
U5(t) = max{0, ¢, + 2.764}.

Thus, the large model is represented as follows:

5
)=+ Z amUm(t) + € = ag + a1 (t) + asta(t) + azds(t) + agd4(t) + as5(t)
m=1

= ag + a; max{0, ty + 1.597} 4+ ap max{0, t; + 1.7978} + a3z max{0, t3 + 1.395}+
aymax{0,ts + 1.529} 4+ oy max{0,¢; + 2.764}.

3 For the ease of representation, here and subsequently, we supgrestexmn of the subvectors™ and just
write ¢.
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On the nonlinear part of the model, our RO technique is engulagserting perturba-
tion (uncertainty) in the real input datg, in each dimension, and into the output data
v (k= 1,2,...,60). To reach this goal, similarly to the linear part, Cls are defin
for all input and output values by the help of the uncertaimigtrices and vectors,
which are based opolyhedral uncertainty setebtained by Eqns[(3.20) ard (3.21).

Subsequently, as we did in the linear part, we derive 60r@iffeWRCGPLMs for the
nonlinear part. Among the solutions, which arethevalues for all auxiliary problems
in Egn. [3.48), found in MOSEK program, we decide the optimagiution which has
the maximumuw,, value in the Eqn[_3.48 with theorst-caseapproach (see Subsection
[3.2.5 for more details). From now on, the calculations wél dbmpleted with the
parameter vectowr which is obtained from the auxiliary problem with the highes
value.

6.4.4 Application of the Model on the Testing Sample

In this part, the methodology how to measure the effectissinéthe RCGPLM model
on the validation sample is discussed. From the trainingpgam models have been
derived by 4 sets which are constructed according to thadinegression results of
2 bootstrapped samples. Firstly, the testing sample igatguhinto 2 groups each of
which exists of 131 observations. Then, to provide the nygf application with the
training sample, bootstrapping method is employed to rediae number of observa-
tions to 60.

For the linear part, on each of these 60-membered subsetéindar regression pa-
rameters are employed on the linear varialflegk = 1,2,...,4) to determine “0”
and “1” results and to separate any subset into Group | and=ito For each coun-
terpart of the training subsets, previously obtained RCMARS8et®and parameters
are implemented on the nonlinear variablés (j = 1,2,...,9). The final output
of the model is achieved by summing up the results of our tia@a nonlinear parts.
However, RCMARS results are standardized to be able to prok&edrrespondence
with the linear regression results which are situated atdQh For further details, we
refer to [104[ 139]. The results of this application can kensieom Table§ 615 arid 6.6.
Note: CRR indicates Correct classification rate.

6.4.5 Results and Comparison

Table 6.5: Results of RCGPLM.

Training sample Validation sample.
D ND D ND
Default 87.80% 3.80%  96.88% 10.29%
Non-Default 12.20% 96.206  3.13% 89.71%
CCR 93.3%% 92.00%
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Table 6.6: Comparison of results of CGPLM and RCGPLM.

Training sample Validation sample
D-D ND-ND CCR D-D ND-ND CCR
LR 69.9% 87206 79.39% 82.3%; 89.10r 87.7%

CMARS 8189 9258 87.64% 86.2% 87.10h  86.94%
CGPLM  90.09% 93.24% 91.8% 86.2%  90.05%  89.31%
RCGPLM 87.80%t 96.20% 93.33% 96.88% 89.7%  92.00%

In Table[6.5, we present the obtained numerical results of RGGI®r training and
validation sample. Table 8.6 explains the comparison oféselts of Logit Regres-
sion, CMARS, CGPLM and RCGPLM. Here, D-D and ND-ND show the crisid a
non-crisis situations, which our model predicts truly,pedively. As it can be seen
in Table[6.6, RCGPLM provides a 93.33% accuracy rate, whileitLBggression,
CMARS and CGPLM give 79.39%, 87.64%,91.81%, respectively,ofar training
data set. Similarly, for the validation data set, we have @%uracy rate for RCG-
PLM, whereas Logit Regression, CMARS and CGPLM result with 8%,786.941%,
89.31% accuracy, respectively.

In fact, RCGPLM provides better results for both training aatidation samples in
terms of accuracy rates. In the training sample, RCGPLM ex@t80% of crises and
96.20% of non-crisis situations in emerging markets, g\antotal 93.33% accuracy
rate. For our validation sample, the model forecasts 96.8886bt crises and 89.71%
of non-crisis situations emerging markets, giving a to2¥®accuracy rate. Here,
our variance valuesre 0.0513 for training data and 0.0935 for testing data.h /it
smaller variance, models for RCGPLM have a higher accuraagy it@dels of Logit
Regression and CMARS, and it is considerable higher than méale3GPLM over
both the training and validation data. Similarly, regagdthe validation sample, the
accuracy rate increases. This means that RCGPLM is a funttoetodology in
datasets of noisy variables with a possibly higher accuraty and, in particular, a
smaller variance
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CHAPTER 7

CONCLUSION AND OUTLOOK

The great national and international crisis which resulitér the earthquake and
tsunami in Japan in 2011 disclosed again the high interabpere of environmental,
technological and economical states, and it underlinechéoessity for an essential
restructuring of the approach to risk and regulation inéhe®as to cope with uncer-
tain data. Consequently, core elements of a new global regulkamework have to
be established in order to make these systems more robustigadle for serving the
requirements of the real life. Thus, robust optimizatios hagreat importance as a
modeling framework for immunizing against parametric utaiaties, and the integra-
tion of uncertain data is of considerable importance forrdtiability of any model of

a highly interconnected system.

In this thesis, R(C)MARS is worked on in theory and applicatigniaportant Ro-
bust Optimization, and a time-dependent counterparts of RARS has been further
extended and proved to be a general framework of multi-medallatory systems un-
der polyhedral uncertainty in this respect. Because of thepcwational effort which
R(C)MARS easily needs, we also describe our new concept of a vebalktification
that is called as WR(C)MARS. We study on R(C)MARS in terms of polyakuaincer-
tainty. This brings us back to CQP naturally. Through R(C)MAR Sane=also permit-
ted to involve uncertainty in the input variables to regi@ssind classification within
modeling; that uncertainty is typical for real-world cleadges, too. By conducting
a robustification in (C)MARS, we aim to reduce the estimationavece. In RMARS
and RCMARS, however, we have an extra problem to solve (by St#tMARS, etc.),
namely the knot selection (which is not needed for the lipeat). Therefore, we an-
alyze GPLMs, and introduce a newly developed CGPLM and R(C)GHhwblving
the contribution of (C)MARS and R(C)MARS. As semiparametric medeGPLM
and RCGPLM lead to reduce the complexity of (C)MARS and (R)CMARS, itha
given by the number of variables used in (C)MARS and R(C)MARS dlgor In
RCMARS, we imply the integral terms as a “complexity”, too.

We analyze the regression models of regulatory systems thieeantries of the regula-
tory network are splines as an advanced case, using (C)MARSramgter estimation
for TE networks. We also apply our methods of R(C)MARS in the céisige existence
of noise in the expression data which translates into theatadd thus employing ro-
bust optimization. In fact, here, the states of target andr@mmental items depend
on uncertain states of target and environmental factors. préadiction of the TE reg-
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ulatory networks and the following comparison with the uhylag data leads to an
analysis of regression and classification models for pa@ansstimation. As an ad-
vanced approach to obtain a more flexible model, we consadgession problems for
TE regulatory systems when the entries of the regulatonyarétare splines, and we
derive a corresponding robust counterpart program undghedral uncertainty. We
have introduced a new implementation area of R(C)MARS by a diseamodeling of
regulatory networks, which also include eco-finance neét&@nd gene-environment
networks. R(C)MARS method is able to deal with uncertainty itadand, thus, itis a
more realistic alternative to modeling of real-life data.

In the thesis, we briefly review on theory and methods of R(C)MARGR(C)GPLM.
We also conduct applications on data in further areas sutheasectors of energy,
finance, biotechnology and ecology. We run the correspgnebde for different kinds
of data that include uncertainties and, then, evaluatesthdts with respect to accuracy
and stability. Next, the results of the accuracy and sefitgitinalysis on the parameter
estimates and, thus, the model performances are preseWfedsolve our optimal
problem of R(C)MARS and R(C)GPLM by using the continuous RO apgraand
a combinatorial variety of them, the weakly robust case,andte uncertainties that
may exist in data and to make our rich approach meaningfulsasthinable. In this
way, we aim to decrease the estimation variance. Resultsatgdihat for the training
data, R(C)MARS models have smaller variances but slightly tcaaeeuracies than
(C)MARS models; here, this finding is consistent with our exgiéan. However, for
the testing data and for some suitable uncertainty valugS)NRARS produced more
accurate models with smaller variances than (C)MARS. In tinicodar application of
precipitation forecasting, the RCMARS model developed isaveis much accurate as
MARS and CMARS models with respect to MAE and RMSE measures, amtivtice
as precise as MARS and CMARS models with respect to predictioan@e measure.
Furthermore, it has a considerably high stability when carag to those of other two
models. To conclude, it can be said that both R(C)MARS produedd&st model for
the data studied when compared to the MARS and CMARS with respgeecision
and stability.

According to all the aforementioned computations and caispas, our R(C)MARS
methods prove to be very competitive with the other meth¥ds are able to achieve
a variance reduction, which is very important in practicd an additional advantage,
especially, when comparing with our predecessor method ARB. Given the exis-
tence of uncertainty and noise in real-world data, R(C)MARSR(@)GPLM model
approaches gain importance to reduce complexity and \@iahestimation. In fu-
ture studies, we will investigate on real-world applicas@f these approaches in some
areas, such as regulatory network systems, like geneesyrment and eco-finance net-
works, quality management, biotechnology and financiadasting, to validate and
to investigate the performance of our R(C)MARS and R(C)GPLM.

In all these studies, although we have small datasets foapplications, the uncer-
tainty matrices for the input data have huge dimensionsyantiave not had enough
computer capacity to solve our problems for those unceytairatrices. Indeed, we
have a tradeoff between tractability and robustification. oVercome this difficulty,
we obtain different WR(C)MARS models for all sample values (olestBons) apply-
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ing a combinatorial approach, and solve them by running ode@nd using MOSEK
program. In our future studies, we will discuss about how wae @btain a more ro-
bust model using different methods and about what furthesarch will consist of in
this respect. We plan to also apply parallel computing teesolur problem with the
computer capacity.

In our investigated version of R(C)MARS, for convenience, tléylpedral type of
uncertainty and normally distributed data are assumedidDbly, these assumptions
lead to some weaknesses on R(C)MARS modeling. In our futureestuellipsoidal
uncertainty will be considered since it uses a more realassumption, which leads
to a more robust approximation, although it may cause arasad model complex-
ity. Distributional assumptions other than normal or rdbestimators may also be
considered in the construction of confidence intervals.

In Chapter 2, some background information about multi-medgulatory networks,
optimization and regression is given. Theory and appraadieR(C)MARS and
R(C)GPLM method under polyhedral uncertainty are presemtechapter 3. Then,
in Chapter 4, spline regression models for complex multi-eheegulatory networks
are introduced in theory and methods. (C)MARS results basetiftement datasets
for the simulation are also demonstrated in this chapteCHapter 5, RO for spline
regression models of multi-model regulatory networks ateoduced in theory and
methodology. R(C)MARS results with different uncertaintyremgos for our numer-
ical example are also studied here. Real-world applicatiawm different sectors are
represented in Chapter 6. Finally, the conclusion and okittodurther studies are
stated in Chapter 7.

99



100



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

A. Abraham and D. Steinberg, Is neural network a relidbtecaster on earth?
A MARS query!, Bio-Inspired Applications of Connectionism,88) pp. 679-
686, 2001.

A. Abraham, D. Steinberg and N.S. Philip, Rainfall forstiag using soft com-
puting models and multivariate adaptive regression sgjiteEE SMC Trans-
actions, 1, pp. 1-6, 2001.

K. D. AndersenMinimizing a Sum of Norms (Large Scale solutions of symmet-
ric positive definite linear systemg$)hD thesis, Odense University, 1995.

E. D. Andersen, C. Roos and T. Terlaky, On implementing anpkdual
interior-point method for conic quadratic optimizationaMematical Program-
ming, Ser. B 95, pp. 249-277, 2003.

R. C. Aster, B. Borchers and C. Thurbé&tarameter Estimation and Inverse
Problems Academic Press, 2004.

F. Aykan, E. Kartal-Kog, C. Yozgatligil, Clyigun, V. Purutcuoglu and¢l Bat-
maz, Developing precipitation models for continental cam\natolia, Turkey,
25th European Conference on Operational Research, Vilnitigjdnia, pp. 8-
11 July. 208, 2012.

|. Batmaz and G. Kksal, Overview of knowledge discovery in databases pro-
cess and data mining for surveillance technologies and EWSurveillance
Technologies and Early Warning Systems: Data Mining Apians for Risk
Detection, A.S. Koyuncugil and NDzgilbas (Eds.), Hershey, PA: IGI Global
Publisher (Idea Group Publisher), pp. 1-30, 2011.

P.A. Bekker, Comment on identification in the linear erroryariables model,
Econometrica, 54 (1), pp. 215-217, 1986.

[9] A. Ben-Tal and A. Nemirovski, Robust truss topology desiga semidefinite

[10]

[11]

[12]

programming, SIAM Journal on Optimization, 7(4), pp. 990t&, 1997.

A. Ben-Tal and A. Nemirovski, Robust convex optimizatidMathematics of
Operations Research, 23, pp. 769-805, 1998.

A. Ben-Tal and A. Nemirovski, Robust solutions to uncerenear programs,
Operations Research Letters, 25(1), pp. 1-13, 1999.

A. Ben-Tal and A. Nemirovski, Robust solutions of lineaogramming prob-
lems contaminated with uncertain data, Mathematical Rwrogring, 88, pp.
411-424, 2000.

101



[13] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convexti@jzation:
Analysis, Algorithms, and Engineering Applications, MPRBI Series on
Optimization, SIAM, Philadelphia, 2001.

[14] A. Ben-Tal, L. EI-Ghaoui and A. NemirovskRobust semidefinite program-
ming, R. Saigal, H. Wolkowitcz, L. Vandenberghe, Eds. Handbookemidef-
inite programming and applications, KluwerAcademic Pslodirs, pp. 139-162,
2000.

[15] A. Ben-Tal and A. Nemirovski, Robust optimization - medlotogy and appli-
cations, Mathematical Programming, 92(3), pp. 453-480220

[16] A. Ben-Tal, L. EI-Ghaoui, and A. NemirovskrRobust OptimizationPrinceton
University Press, 2009.

[17] V.J. Beck and K. J. ArnoldParameter Estimation in Engineering and Science
John Wiley and Sons, 1977.

[18] D.P. Bertsekad)ynamic Programming and Optimal Contr@éthena Scientific,
Belmont, Mass., 1995.

[19] D. Bertsimas and M. Sim, Robust Discrete Optimization &ledwork Flows,
Mathematical Programming, 98, pp. 49-71, 2003.

[20] D. Bertsimas, M. Sim, Price of Robustness, Oper. Res. 5gfl)35-53, 2004.

[21] D. Bertsimas and M. Sim, Tractable Approximations to Rsilitonic Optimiza-
tion Problems, Mathematical Programming, Ser. B, 107, g§6,52006.

[22] D. Bertsimas, D.B. Brown, C. Caramanis, Theory and appboatiof Robust
Optimization, Technical Report, University of Texas, Aasii X, USA, 2007.

[23] O. Boni,Robust Solutions of Conic Quadratic ProbleR&D Thesis, Technion,
Israeli Institute of Technology, IEM faculty, 2007.

[24] B. Bower. Banks err by confusing risk, uncertainty, SceeNews, 182(10), pp.
13, 2012.

[25] E.Borenstein and M.W. Feldman, Topological signatafegpecies interactions
in metabolic networks, Journal of Computational Biology, 26¢p.191-200,
2009.

[26] L. Breiman, J. Friedman, R. Olshen and C. StdPlessification and Regression
Trees Belmont, CA: Wadsworth Int. Group, 1984.

[27] Central Bank of the Republic of Turkey: http://www.tcmawvgr.

[28] A. Charnes and W.W. Cooper, Chance constrained progragyivianagement
Science, 6, pp. 73-89, 1959.

[29] T.Chen, H. L. He and G. M. Church, Modeling gene expressibim differential
equations, Pacific Symposium on Biocomputing, 4, pp. 29-8091

102



[30] A. Chesher, The effect of measurement error, Biometii&43), pp. 451-462,
1991.

[31] J. Corte-Real, X. Zhang and X. Wang, Downscaling GCM infation to re-
gional scale: a non- parametric multivariate regressigr@gch, Climate Dy-
namics, 11, pp. 413-424, 1995.

[32] Z. Cavusd@lu, Predicting Debt Crises in Emerging Markets Using Generalize
Partial Linear Models Term Project, Institute of Applied Mathematics, Middle
East Technical University, Ankara, 2010.

[33] G. Celik, Parameter Estimation in Generalized Partial Linear Modelgh
Conic Quadratic ProgrammingVl.Sc. Thesis, Institute of Applied Mathemat-
ics, METU, Ankara, 2010.

[34] K. Deb,Multi Objective Optimization using Evolutionary Algonitts John Wi-
ley and Sons, 2001.

[35] E. Detragiache and A. Spilimbergo, Short-Term Debt @nides, International
Money Fund. European Summer Symposium in Internationakb&onomics,
Israel, 2001.

[36] B. Efron, R. Tibshirani,An Introduction to the BootstrgpBoca Raton, FL:
Chapman and Hall/CRC, 1993.

[37] L. EI-Ghaoui, Robust Optimization and Applications, AVI'utorial, 2003.

[38] L. EI-Ghaoui and H. Lebret, Robust solutions to leasiesg problems to uncer-
tain data matrices, SIAM Journal on Matrix Analysis and Apgtions, 18, pp.
1035-1064, 1997.

[39] L. EI-Ghaoui, F. Oustry and H. Lebret, Robust solutiomsihcertain semidefi-
nite programs, SIAM Journal on Optimization 9, pp. 33-5298.9

[40] I. Elishakoff, Whys and Hows in Uncertainty Modellingsdbability, Fuzziness
and Anti-Optimization, 1999.

[41] S.V. Emmerik, Risk, uncertainty and the financial crisis Re-
flexivity in  Finance, January 20, 2009. Page available at:
http://reflexivityfinance.blogspot.com/2009/01/riskeertainty-and-financial-
crisis.html.

[42] F.J. Fabozzi, P.N. Kolm, D.A. Pachamanova and S.M. EbcRobust Portfolio
Optimization and Managemenwilley Finance, 2007.

[43] J.E. Falk, Exact solutions of inexact linear progra@perations Research, 24,
pp. 783-787, 1976.

[44] J.A. Filar and A. Haurie,Uncertainty and Enviromental Decision Making
Springer, 2010.

[45] M. Fioramanti, Predicting Sovereign Debt Crises Usingfi&ial Neural Net-
works: A Comparative Approach, Journal of Financial Stabi#(2), pp. 149-
164, 2008.

103



[46] J. Fox, Bootstrapping Regression Models: An R and S-PLUS Companion t
Applied Regressigrsage Publications, CA, USA, 2002.

[47] J. Fox,Nonparametric Regressiom: B. Everitt and D. Howell eds., Encyclo-
pedia of Statistics in the Behavioral Sciences, London: YWR2605.

[48] J.H. Friedman, Multivariate adaptive regressionrsggdi, The Annals of Statis-
tics, 19(1), pp. 1-141, 1991.

[49] J. Gebert, M. latsch, S.W. Pickl, G.-W. Weber and R.iM5schiers: An algo-
rithm to analyze stability of gene-expression pattern, lnAvithony, E. Boros,
P.L. Hammer, and A. Kogan (guest eds.), special i€3iserete Mathematics
and Data Mining llof Discrete Applied Mathematics, 154(7), pp. 1140-1156,
2006.

[50] G. Gigerenzer, Cognitive foundations of risk judgmen#&h DFG-NSF
conference -Reckoning with the risk of catastrophe, WasbmgD.C.,
October 4, 2012, abstract available at: http://dfg-nsg2eit.edu/wp-
content/uploads/2012/09/Conference-brochure.pdf.

[51] A. Gokmen, S. Kayalgil, G.-W. Weber, |.@kmen, M. Ecevit, A. 8rmeli, T.
Bali, Y. Ecevit, H. @kmen and D.J. DeTombe, Balaban Valley Project: Improv-
ing the quality of life in rural area in Turkey. Internatidr&cientific Journal of
Methods and Models Complexity, 7(1), 2004.

[52] A.M. Gonzalez, A.M.S. Roque and J. Garcia-Gonzalez, liog and forecast-
ing electricity prices with input/output hidden Markov nedsl. IEEE Transac-
tion on Power Systems, 20, pp. 13-24, 2005.

[53] D.N. Gujarati and D.C. Porter, Basic Econometrics, Mattill, Boston,
20009.

[54] O. Gller, Barrier functions in interior-point methods, Mathdios of Opera-
tions Research, 21, pp. 860-885, 1996.

[55] J. Hadamardpn Cauchy’s Problem in Linear Partial Differential Equatgn
Yale University Press, New Haven, 1923.

[56] P.C. Hansen and D. P. O’Leary, The use of the L-curve indigelarization of
discrete ill-posed problems, SIAM Journal on Scientific Catimg, 14(6), pp.
1487-1503, 1993.

[57] P.C. Hansen, Regularization tools: A Matlab package falysis and solution
of discrete ill-posed problems, Numerical Algorithms,-8f| pp. 1-35, 1994.

[58] J.R. Harris, W. Nystad and P. Magnus, Using genes andanwients to define
asthma and related phenotypes: applications to multieadata. Clinical and
Experimental Allergy, 28(1), pp. 43-45, 1998.

[59] T.J. Hastie and R.J. TibshiranGeneralized Additive ModelsChapman and
Hall, London, 1990.

104



[60] T.Hastie, R. Tibshirani and J. H. Friedmdine Element of Statistical Learning
Springer Verlag, New York, 2001.

[61] M.D. Hoon, S. Imoto, K. Kobayashi, N. Ogasawara and Syavip, Inferring
gene regulatory networks from time-ordered gene expressaba of Bacillus
Subtilis using differential equations, Pacific SymposiumBiocomputing, 8,
pp. 17-28, 2003.

[62] C.lyigun, M. Turkes,l. Batmaz, C. Yozgathgil, V. Purutcuoglu, E. Kartal-Kog
and M. Z.0ztirk, Clustering current climate regions of Turkey by usingud-m
tivariate statistical method, Theoretical and Applied Glinlogy, 114 (1-2), pp.
95-106, 2013.

[63] H.D. Jong, Modeling and simulation of genetic reguigtsystems: a literature
review, Journal of Computational Biology, 9, pp. 103-129,200

[64] N.Karamakar, A new polynomial-time algorithm for lisweprogramming, Com-
binatorica, 4, pp. 373-395, 1984.

[65] B. Kayhan,Parameter Estimation in Generalized Partial Linear Modelgh
Tikhonov Regularization Methot¥.Sc. Thesis, Institute of Applied Mathemat-
ics, METU, Ankara, 2010.

[66] A. Kibzun, Y. Kan, Stochastic Programming Problems with Probability and
Quantile FunctionsWiley, 1996.

[67] M. Kojima, S. Mizuno and A. Yoshise, A primal-dual inter point algorithm
for linear programming, In N. Megiddo, editor, Progress iathematical Pro-
gramming: Interior-Point Algorithms and Related Methods,29-47, Springer
Verlag, Berlin, 1989.

[68] W. Krabs and S. Pickl, A game-theoretic treatment ohaetidiscrete emission
reduction model, International Game Theory Review, (6)1,21p34, 2004.

[69] D. Krawczyk-Stando and M. Rudnicki, Regularization Paeger Selection In
Discrete Ill-Posed Problems -The Use Of The U-Curve, Intégwnal Journal of
Applied Mathematics and Computer Science, 17(2), pp. 15%-2@07.

[70] M. Kriner, Survival Analysis with Multivariate adap® Regression Splines,
Dissertation, LMU Munchen: Faculty of Mathematics, Comp@eience and
Statistics, 2007.

[71] E. Kropat, S. Pickl and A.Bssler, G. W. Weber, On theoretical and practical re-
lations between discrete optimization and nonlinear ogtition, Special issue
Colloquy Optimization Structure and Stability of Dynami&istems (at the oc-
casion of the colloquy with the same name, Cologne, Octob@®d)26f Journal
of Computational Technologies, 7, pp. 27-62, 2002.

[72] E. Kropat and G.-W. Weber, Robust regression analysigénme-environment
and eco-finance networks under polyhedral and ellipsoide¢dainty, preprint
2 at Institute of Applied Mathematics, METU, submitted tot@pzation Meth-
ods and Software, 2010.

105



[73] E. Kropat, G.-W. Weber and J.-JiBkmann, Regression analysis for clusters
in gene-environment networks based on ellipsoidal cagcahd optimization,
in the special issue in honour of Professor Alexander Rubofdyynamics of
Continuous, Discrete and Impulsive Systems, Series B: Agipdins & Algo-
rithms17, 5, pp. 639-657, 2010.

[74] E. Kropat, G.-W. Weber and B. Aktek®ztiirk, Eco-Finance networks un-
der uncertainty. Proceedings of the International Confeern Engineering
Optimization (CD), Engineering Optimization Rio de JaneiByazil, ISBN
978857650156-5, 2008.

[75] E. Kropat, G.-W. Weber and C.S. Pedamallu, Regulatorywords under ellip-
soidal uncertainty — Data Analysis and Prediction by Optation theory and
dynamical systems, in the book on Data Mining: Foundatiors latelligent
Paradigms, 24, pp. 27-56, Springer-Verlag, Berlin, Heidejh2012.

[76] R.J. Kuligowski and A.P. Barros, Localized precipitatiforecasts from a nu-
merical weather prediction model using artificial neuraiverks, Weather and
Forecasting, 13(4), pp. 1194-1204, 1998.

[77] Kyoto (1997), Kyoto Contract, Page available at
http://www.unfccc.org/resource/convkp.html

[78] G. Lee, T.K. Sung and N. Chang, Dynamics of Modeling indéining: Inter-
pretive Approach to Bankruptcy Prediction, Journal of Maragnt Informa-
tion Systems, 16, pp. 63-85, 1999.

[79] S. Lee, S. Cho and P.M. Wong, Rainfall prediction usingfierdl neural net-
works, Journal of Geographic Information and Decision Asi, 2 (2), pp.
233-242, 1998.

[80] Y.F. Li, S. Venkatesh and D. Li, Modeling global emisssoand residues of
pesticides, Environmental Modeling and Assessment, L3p-243, 2004.

[81] M.S. Lobo, L. Vanderberghe, S. Boyd and H. Lebret, Apgiicns of second-
order cone programming, Linear Algebra and its Applicagiopp. 193-228,
1998.

[82] J.Lofberg, YALMIP: A Toolbox for Modeling and Optimization in MI'LAB,
2004. http://users.isy.liu.se/johanl/yalmip.php.

[83] I.J. Lustig, R.E. Marsten, D.F. Shanno, Interior poirgthods for linear pro-
gramming: Computational state of the art, ORSA Journal on Comgpus(1),
pp. 1-15, 1994.

[84] P. Manasse, N. Roubini and A. Schimmelpfennig, Predlictovereign Debt
Crises, IMF Working Paper 03/221, International Monetarpd;l2003, ISBN:
978-1-45187-525-6.

[85] MARS Salford Systems, software available at http://wsadfordsystems.com.

[86] Minitab, software available at http://www.minitabro.

106



[87] D.C. Montgomery and G.C. Rungexpplied Statistics and Probability for En-
gineers New York: John Wiley and Sons, 2007.

[88] D.C. MontgomeryDesign and Analysis of Experimefeventh Edition, Wiley,
20009.

[89] MOSEK, A very powerful commercial software for CQP,
http://www.mosek.com (accessed 05 Sep. 2008).

[90] R.D.C. Monteiro and I. Adler, Interior path following pnal-dual algorithms.
Part I: Linear programming, Mathematical Programming,pft,27-41, 1989.

[91] R.D.C. Monteiro and T. Tsuchiya, Polynomial convergeoigerimal-dual algo-
rithms for the second order cone program based on the MZifarhdirections,
Mathematical Programming, 88(1), pp. 61-83, 2000.

[92] M. Miller, Estimation and Testing in Generalized Partial Lmstdels — A
Comparive Study, Statistics and Computing, 11, pp. 299-30@]1 2

[93] M.T. Nair, M. Hegland and R. S. Anderssen, The Trade-effAeeen Regular-
ity and Stability in Tikhonov Regularization, MathematidsGomputation, 66,
217, pp. 193-206, 1997.

[94] Y.E. Nesterov and A. Nemirovskinterior Point Methods in Convex Program-
ming, SIAM, 1993.

[95] Y. Nesterov and M. J. Todd, Self-scaled barriers aneriat-point methods for
convex programming, Mathematics of Operations Researdl,),2@p. 1-42,
1997.

[96] F.J. Nogales, J. Contreras, A. J. Conejo and R. Espinol&cBeting next-day
electricity prices by time series models, IEEE TransastiohPower Systems,
17, pp. 342-348, 2002.

[97] B.W. Otok, Development of rainfall forecasting modelimdonesia by using
ASTAR, transfer function, and ARIMA methods, European Jouoh&cientific
Research, 38(3), pp. 386-395, 2009.

[98] A. Ozmen, Robust Conic Quadratic Programming Applied to Quality
Improvement- A Robustification of CMARBs. Thesis, METU, Ankara,
Turkey, 2010.

[99] A. Ozmen, G.-W. Weber and Batmaz, The new robust CMARS (RCMARS)
method, in ISI Proceedings of 24th MEC-EurOPT 2010-Contisu@ptimiza-
tion and Information-Based Technologies in the Financiat&@elzmir, Turkey,
pp. 362-368, 2010.

[100] A. Ozmen, G.-W. Webet, Batmaz, and E. Kropat, RCMARS: Robustification
of CMARS with Different Scenarios under Polyhedral UnceitiaiBet, Com-
munications in Nonlinear Science and Numerical Simulatié(12), pp. 4780-
4787, 2011.

107



[101] A. Ozmen and G.-W. Weber, Robust conic generalized partiaadineodels
using RCMARS method, AIP Conference Proceeding 1499, pp. 337284.2.

[102] A. Ozmen, G.-W. Weber and E. Kropat, Robustification of conicegaiized
partial linear models under polyhedral uncertainty, Inéional IFNA-ANS
scientific Journal “Problems of Nonlinear Analysis in Erggning Systems”,
2(38), 18, pp. 104-113, 2012.

[103] A. Ozmen, G.-W. Weber and A. Karimov, A new robust optimizatioal ap-
plied on financial data, to appear in Pacific Journal of Ogation, 9(3), pp.
535-552, 2013.

[104] A. Ozmen, G.-W. Weber, Z. Cavuglo andO. Defterli, The new robust conic
GPLM method with an application to finance: prediction ofditeefault, Jour-
nal of Global Optimization, 56(2), pp. 233-249, 2013.

[105] A. Ozmen, E. Kropat and G.-W. Weber, Spline Regression ModelSdmplex
Multi-modal Regulatory Networks, Optimization Methods &waftware, 29(3),
pp. 515-534, 2014.

[106] A. Ozmen,l. Batmaz and G.-W. Weber, Precipitation Modeling by Polyiaéd
RCMARS and Comparison with MARS and CMARS, Environmental Modeling
and Assessment, 19(5), pp. 425-435, 2014.

[107] A. Ozmen and G.-W. Weber, RMARS: Robustication of Multivariateapiive
Regression Spline, and an application in finance, Journal ofg¢ational and
Applied Mathematics, 259, pp. 914-924, 2014.

[108] A. Ozmen, E. Kropat and G.-W. Weber, Robust Optimization in r&pRe-
gression Models for Multi-model Regulatory Networks undetyRedral Un-
certainty, preprint at IAM of METU, submitted to Optimizati Methods and
Software.

[109] T. Partal and H.K. Cigizoglu, Prediction of daily prpitation using
wavelet—neural networks, Hydrological sciences jourr@d(2), pp. 234-
246,20009.

[110] M. Partner, N. Kashtan and U. Alon, Environmental &hiiity and modularity
of bacterial metabolic network, BMC Evolutionary Biology 8d), 2007.

[111] S. Pickl and G.-W. Weber, Optimization of a time-deter nonlinear dynami-
cal system from a problem of ecology - an analytical and nicakapproach,
Journal of Computational Technologies, 6(1), pp. 43-521200

[112] S. Pickl, An iterative solution to the nonlinear tirdescrete TEM model - the
occurence of chaos and a control theoretic algorithmic egagr, AIP Confer-
ence Proceedings, 627(1), pp. 196-205, 2002.

[113] I. Popescu, Robust mean-covariance solutions fohsaii@ optimization, Op-
erations Research, 55 (1), 98-112, 2007.

[114] Prajneshu, Cautionary note About Nonlinear Modelsighé&ries, Indian Jour-
nal of Fisheries, 38, pp. 231-33, 1991.

108



[115] Prajneshu, A Nonlinear statistical Model for Aphiddedation Growth, Journal
of the Indian Society of Agricultural Statistics, 51, pp-83, 1998.

[116] C. Roos, T. Terlaky and J. Vidhterior point approach to linear optimization:
theory and algorithmsJohn Wiley and Sons, New York, 1997.

[117] C. Roos, T. Terlaky and J. Vidhterior Point Methods for Linear Optimization
Springer Science, Heidelberg/Boston, 2006.

[118] R.Y. Rubinstein and D.P. Kroeseimulation and the Monte Carlo Metha@nd
ed.), New York: John Wiley and Sons, 2007.

[119] E. Sakamoto and H. Iba, Inferring a system of diffela@rgquations for a gene
regulatory network by using genetic programming, Proaagdf Congress on
Evolutionary Computing 01, pp. 720-726, 2001.

[120] S.H. Schmietaand F. Alizadefssociative algebras, symmetric cones and poly-
nomial time interior point algorithmsTechnical Report RRR 17-98, RUTCOR,
Rutgers Center for Operations Research, P.O. Box 5062, New Bickyswew
Jersey, 1998.

[121] G.F. Seber and C. J. Wiltllonlinear Regressigrdohn Wiley and Sons, 1989.

[122] M. Sim,Robust OptimizationPhD Thesis, Massachusetts Institute of Technol-
ogy, Cambridge MA, 2004.

[123] A.L. Soyster, Convex programming with set-inclusianstraints and applica-
tions to inexact linear programming, Operations Researthp@. 1154-1157,
1973.

[124] Copyright StatSoft, Inc. Multivariate Adaptive Regses Splines,
http://lwww.statsoft.com/textbook/stmars.html (aceels85 Sep. 2008).

[125] R.E. SteuerMultiple Criteria Optimisation: Theory, Computation and App
cation, New York: John Wiley and Sons, NY, 1986.

[126] J.F. Sturm, Primal-Dual Interior Point Approach tai8eefinite Programming,
\Vol.156 of Tinbergen Institute Research Series, Thesisishdals, The Nether-
lands, 1997.

[127] J. Sturm, Using SeDuMi 1.02 a MATLAB Toolbox for Optiraition Over Sym-
metric Cones, Optimization Methods and Software Researci2]lpp. 625-
653, 1999.

[128] A. Tarantoldnverse Problem Theory and Methods for Model Parameter- Esti
mation SIAM, 2005.

[129] P. Taylan, G.-W. Weber and A. Beck, New approaches teessipn by gener-
alized additive models and continuous optimization for eradapplications in
finance, science and technology, Journal Optimization &9,dp. 1-24, 2007.

[130] M. Tranmer and M. Elliot, Binary logistic regression,t@i@ Marsh for Census
and Survey Research, Paper 20, 2008.

109



[131] T. Tsuchiya,A polynomial primal-dual path-following algorithm for seud
order cone programmingTechnical report, The Institute of Statistical Mathe-
matics, Tokyo, Japan, 1997.

[132] M. TurkesKlimatoloji and meteorolojilstanbul, Turkey: KriterYayinevi, 2010.

[133] R. H. Tutundi, K.C. Toh and M.J. Todd, Solving semidefinite-quadratedr
programs using SDPT3, Mathematical Programming Series,Bp©389- 217,
2003.

[134] O. Ugur, S. W. Pickl, G.-W. Weber and R.Wdschiers, An algorithmic approach
to analyze genetic networks and biological energy prodactan introduction
and contribution where OR meets biology, Optimization138¢p. 1-22, 2009.

[135] O. Wjur and G.-W. Weber, Optimization and dynamics of generenment
networks with intervals. Journal of Industrial Managemant Optimization
3(2), pp. 357-379, 2007.

[136] C. Venkatesan, S.D. Raskar, S.S. Tambe, B.D. KulkarnRaNdKeshavamurty,
Prediction of all summer monsoon rainfall using error- bpaopagation Neural
Network, Meterology and Atmospheric Physics, 62, pp. 228;2997.

[137] G.-W. Weber, S. Z. Alparslandk and B. $yler, A new mathematical approach
in environmental and life sciences: gene-environment adtsvand their dy-
namics, Environmental Modeling and Assesment, 14(2), fp-288, 2007.

[138] G.-W. Weber]. Batmaz, G. Koksal, P. Taylan and F. Yerlikaya, CMARS: a new
contribution to nonparametric regression with multivegiadaptive regression
splines supported by continuous optimization, IPSE 20(8)371-400, 2012.

[139] G.-W. Weber, Z. Cavugpu and A.Ozmen, Predicting Default Probabilities in
Emerging Markets by New Conic Generalized Partial Linear 8i@@nd Their
Optimization, Optimization, 61(4), pp. 443-457, 2012.

[140] G.-W. Weber, A. Tezel, P. Taylan, Ad®ler and M. Cetin, Mathematical con-
tributions to dynamics and optimization of gene-environmeetworks, Opti-
mization, 57(2), pp. 353-377, 2008.

[141] G.-W. Weber, S.Z. Alparslank and N. Dikmen, Environmental and life sci-
ences: gene-environment networks - optimization, gamesantrol - a survey
on recent achievements, Journal of Organisational Tramsfiton and Social
Change, 5(3), pp. 197-233, 2008.

[142] G.-W. Weber, P. Taylan, S.-Z. Alparslardig S.Ozogir and B. AktekeOztiirk,
Optimization of gene-environment networks in the presafiegrors and uncer-
tainty with Chebychev approximation. TOP, the Operationad&ech journal of
SEIO (Spanish Statistics and Operations Research Soc&®), pp. 284-318,
2008.

[143] G.-W. Weber, SOzbgiir-Akyliz and E. Kropat, A review on data mining and
continuous optimization applications in computationaildgy and medicine.
Embryo Today, Birth Defects Research (Part C) 87, pp. 165-119.2

110



[144] G.-W. Weber, O. gur, P. Taylan and A. Tezel, On optimization, dynamics and
uncertainty: a tutorial for gene-environment networkssddete Applied Math-
ematics, 157(10), pp. 2494-2513, 2009a.

[145] G.-W. Weber, S. Akiiz-Ozogir and E. Kropat, A review on data mining and
continuous optimization applications in computationaldgy and medicine,
Birth Defects Research (Part C)-Embryo Today, 87(2), pp. 185-2009b.

[146] G.-W. Weber, E. Kropat, A. Tezel, and S. Belen, Optirtic@aapplied on regu-
latory and eco-finance networks - survey and new develomnBatific Journal
of Optimization, 6(2), pp. 319-340, 2010.

[147] G.-W. Weber, E. Kropat, B. Aktek@ziiirk and Z.-K. Gyrgulii, A survey on
OR and mathematical methods applied on gene-environménbries, Central
European Journal of Operations Research (CEJOR), 17, pp.4311,%3009.

[148] R. Werner, Cascading: an adjusted exchange methodldastraonic program-
ming, CEJOR, 16, pp.179-189, 2008.

[149] M. H. Yildinm, A.OzmenQ. Turker Bayrak and G.-W. Weber, Electricity price
modeling for Turkey, Operations Research Proceedings 2Bdlécted Papers
of the International Conference on Operations Research (QR)28ugust 30
- September 2, 2011, Zurich, Switzerland, D. Klatte, K. Setders and Hans-
Jakob Luethi, eds., pp. 39-44, 2012.

[150] C. Yozgatligil, S. Aslan, Ayigiin andi. Batmaz, Comparison of missing value
imputation methods for Turkish meteorological time sediats, Theoretical and
Applied Climatology, 112 (1-2), pp. 143-167, 2012.

111



112



APPENDIX A

Coefficients and Performance of
MARS-CMARS Models for TE Networks

Table A.1: For targets and environmental factors: parametieies of MARS algo-
rithm through 5 different simulated datasets.

[6 7)) aq (6 D)) [0 %3 Oy (8751 Qg (074 asg (8 76)
xr, -0.982 2.458 1.193 -1.593 1.191
T, 0.396 1.071 1.269 1.516
€ -1.244 0.661 0.425 0.471
€y 1.763 -1.553 -0.729
x; -1.020 0.992 0.484 1.687
o,  0.370 -0.910 1.193 -0.747 1.962
€, -2.094 0.608 1.074 0.591 -0.880
€y, -0.454 1.190 -0.527 -0.688
xr; -1.915 0.588 0.512
) 0.340 -2.115 2.409 -0.126 -0.838
€ 1.377 -2596 -0.815 -0.753 1.094 1.077
é; -0.085 -0.844 1.409 -0.460 -1.485 1.029
x, -0.217 0.604 -1.022 0.600
Ty -0.355 -0.740 0.450 -0.281
€ 2916  -1.433 -1.198 -0.802 -0.864 1.415
ey, -1744 0.802 0.312 0.460
T, 1.087 -0.648 -1.010 0.886
x, -0.337 -0.545 0.833
e; -0.768 0.843 -0.481 -0.433
é;, -0.661 2.019 -0.592 0.680

113



Table A.2: For targets and environmental factors: parametees of CMARS algo-

rithm through 5 different simulated datasets.

Qg o o Qs oy Qs o o Qs Qg apy  ogp
Z, -1.690 0301 -0.238 1.362 1.280 1.011 0.266 -0.342 -2.3116220. 0.296
Z, -0.854 -0.075 -0.174 1.076 -0.254 0.438 0.737 0.397 1.408 .61€0 -0.243 -0.122
é, -3525 0200 0098 -0.557 0.416 0.605 2.114 0.463 -0.2592842. 0.499 -0.226
é, 1618 3.071 -1.217 -1.216 -1.236 0.191 -1.093 0.140
Z, -3545 1489 00938 0486 0.733 -0.494 -0.090 2.006 -0.0467671. -0.519 -0.835
Z, -1.789 0.037 0012 1.150 -0.542 -0.946 0.295 0.310 0.885 491.0 0.703
é, -1931 0385 1.169 -0.027 0502 -0578 -1.133 0.343 0.248
é, -0.839 1216 -0.282 -0.658 0.680 -0.224 -0.186 -0.398
&, -2253 0249 1.096 0.307 -0.332 0.074 0.522 -2.253
Zy 0.418 -2.430 2113 0.082 -0.272 0.130 -0.701 0478 0.133 180.4
é, 1323 0451 -2.712 -0.843 -1.019 0512 1216 0.985 1.323
é, -0069 -0578 -1.188 1.462 -0.412 -2.311 0.231 1.615 -0.069
Z, 0238 -0.067 -0.609 -0.553 0.559 -1.222 0.438 0.484 0.3242091. -0.123 -0.426
Z, -0.083 -0.618 -0.748 0.192 0.557 -0.361 -0.353 -0.267 &.08
é, 1460 -0.197 -0.891 -0.496 -0.455 -0.806 -0.700 0.377 0.7960.289 -0.006
é, -1721 -0101 0786 0.781 0.150 0.423 0.246 0.196
Z, 0.644 -0.464 0262 -0.881 0.807 -0.045 0.388 0.008
Z, -0.881 -0.106 -0.174 -0.095 0.216 0.311 -0.060 0.501
é, 0037 -0.330 -0.093 -0.101 0.645 -0.345 -0.278 -0.170 .40
é, 0543 0343 -0.961 -0.327 1.287 0.043 -0.255 0.629 -1.4265220. 0.664 1.186
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Table A.3: Performance measures of MARS and CMARS models basgdlifferent
simulated datasets.

MARS CMARS

531 CZ’Q él ég il 3752 él €9

1 dej 0.8639 0.9004 0.8639 0.8167 0.8835 0.9005 0.9064 0.8897
AAE 0.2474 0.2398 0.2178 0.3437 0.1911 0.1870 0.1750 0.2573
RMSE 0.3124 0.2976 0.3159 0.4383 0.2419 0.2340 0.2061 0.2989

r 0.9416 0.9554 0.9386 0.9121 0.9654 0.9727 0.9743 0.9601

adj 0.9017 0.9481 0.9415 0.8946 0.9057 0.9607 0.9652  0.9523
AAE 0.2059 0.1773 0.1859 0.2366 0.1330 0.1203 0.1276 0.1587
RMSE 0.2662 0.2134 0.2140 0.3261 0.2052 0.1553 0.1476 0.1974
r 0.9560 0.9781 0.9753 0.9528 0.9741 0.9885 0.9883 0.9830
adj 0.8601 0.9422 0.8532 0.9574 0.9018 0.9426 0.9289 0.9654
AAE 0.1609 0.0911 0.1460 0.0924 0.1141 0.0803 0.0850 0.0883
RMSE 0.2147 0.1267 0.1921 0.1369 0.1627 0.1129 0.1265 0.1167

r 0.9337 0.9756 0.9401 0.9830 0.9625 0.9807 0.9745 0.9877

4 Ridj 0.8905 0.9559 0.8110 0.9345 0.9315 0.9837 0.8141 0.9525
AAE 0.1694 0.1413 0.1940 0.1687 0.1095 0.0891 0.1664 0.1273
RMSE 0.2088 0.2027 0.2328 0.2100 0.1299 0.1075 0.1982 0.1608

r 0.9509 0.9805 0.9222 0.9709 0.9813 0.9945 0.9442 0.9830

adj 0.9084 0.9162 0.9025 0.9125 0.935 0.9512 0.95 0.9605
AAE 0.1658 0.1700 0.1554 0.2007 0.1227 0.1133 0.095 0.0935
RMSE 0.2043 0.2314 0.1958 0.2508 0.1547 0.155 0.122 0.1274
r 0.9591 0.9608 0.9564 0.9609 0.9768 0.9825 0.983 0.9901
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APPENDIX B

Performance of R(C)MARS models for TE Networks

Table B.1: Performance measures of LR, MARS and RCMARS models loaseid
ferent simulated data for each target.

L1 )
LR MARS RCMARS LR MARS RCMARS
EV 0.736 0.938 0.562 0.666 0.817 0.852 0.871 0.917 0.697 0.748190 0.866
Rgdj 0.684 0.925 0.761 0.840 0.926 0.940 0.859 0.901 0.824 0.868020 0.925
AAE 0.333 0.175 0.317 0.257 0.169 0.151 0.231 0.189 0.220 0.196730 0.161
RMSE 0.503 0.244 0.379 0.31 0.211 0.190 0.336 0.282 0.335 0.298510.0.219
r 0.858 0.968 0.942 0.959 0.979 0.983 0.939 0.958 0.946 0.959690 0.976
LR MARS RCMARS LR MARS RCMARS
EV 0.666 0.869 0.431 0.563 0.748 0.864 0.794 0.930 0.584 0.724110 0.926
Rgdj 0.598 0.843 065 0.75 0845 0.896 0.753 0.916 0.754 0.831170.9.920
AAE 0.376 0.268 0.375 0.305 0.244 0.181 0.314 0.187 0.255 0.211%660 0.163
RMSE 0.567 0.354 0.488 0.412 0.325 0.266 0.444 0.259 0.371 0.308160 0.212
r 0.816 0.932 0.901 0.924 0.947 0.963 0.891 0.965 0.942 0.95%760 0.976
LR MARS RCMARS LR MARS RCMARS
EV 0.776 0.939 0.519 0.726 0.906 0.92 0.797 0.904 0.582 0.719420.0.856
Ridj 0.733 0.926 0.734 0.822 0.927 0.938 0.757 0.891 0.758 0.818920 0.902
AAE 0.303 0.193 0.341 0.259 0.153 0.143 0.305 0.211 0.270 0.228810 0.179
RMSE 0.462 0.243 0.413 0.338 0.217 0.200 0.441 0.303 0.406 0.352720 0.259
r 0.882 0.969 0.931 0.943 0.975 0.979 0.893 0.951 0.924 0.93820 0.965
LR MARS RCMARS LR MARS RCMARS
EV 0.860 0.870 0.598 0.748 0.779 0.850 0.862 0.927 0.599 0.748850 0.905
Ridj 0.831 0.852 0.756 0.832 0.853 0.914 0.835 0.913 0.746 0.83®140 0.92
AAE 0.255 0.251 0.277 0.208 0.194 0.156 0.193 0.204 0.169 0.131290 0.128
RMSE 0.367 0.353 0.396 0.328 0.307 0.235 0.363 0.264 0.363 0.292120 0.205
r 0.927 0.933 0.928 0.946 0.952 0.972 0.929 0.963 0.944 0.96@770 0.978
LR MARS RCMARS LR MARS RCMARS
EV 0.935 0.965 0.587 0.719 0.835 0.953 0.847 0.938 0.490 0.568410 0.882
RZdj 0.922 0.960 0.875 0.923 0.945 0.960 0.816 0.926 0.772 0.819270 0.960
AAE 0.204 0.153 0.253 0.195 0.168 0.149 0.263 0.182 0.264 0.211040 0.086
RMSE 0.250 0.182 0.30 0.236 0.200 0.171 0.383 0.244 0.394 0.353240.0.166
r 0.967 0.983 0.974 0.979 0.981 0.985 0.920 0.969 0.949 0.9331760 0.987
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Table B.2: Performance measures of LR, MARS and RCMARS models losseid-
ferent simulated data for each environmental item.

€] €9
LR  MARS RCMARS LR  MARS RCMARS
EV 0.839 0.912 0.590 0.664 0.888 0.907 0.848 0.860 0.620 0.667040 0.834
dej 0.809 0.894 0.780 0.810 0.895 0.901 0.818 0.840 0.785 0.81®420 0.910
AAE 0.268 0.243 0.268 0.241 0.201 0.196 0.275 0.285 0.241 0.222110 0.166
RMSE 0.391 0.291 0.375 0.349 0.260 0.252 0.382 0.367 0.382 0.353280 0.248
r 0.917 0.955 0.939 0.943 0.965 0.966 0.921 0.927 0.932 0.942490 0.969
LR MARS RCMARS LR MARS RCMARS
EV 0.805 0.853 0.551 0.634 0.694 0.835 0.564 0.863 0.380 0.558490 0.825
dej 0.765 0.832 0.704 0.781 0.834 0.920 0.478 0.835 0.661 0.778290 0.835
AAE 0.274 0.251 0.335 0.273 0.233 0.173 0.407 0.273 0.404 0.332890 0.277
RMSE 0.434 0.376 0.449 0.386 0.336 0.234 0.646 0.363 0.521 0.423700 0.364
r 0.897 0.924 0.903 0.929 0.946 0.973 0.751 0.929 0.890 0.919280 0.929
LR MARS RCMARS LR MARS RCMARS
EV 0.691 0.917 0.483 0.662 0.883 0.897 0.846 0.839 0.585 0.75800 0.817
thzdj 0.629 0.895 0.630 0.800 0.896 0.900 0.815 0.816 0.752 0.818320 0.840
AAE 0.295 0.207 0.277 0.200 0.174 0.171 0.185 0.221 0.250 0.198340 0.179
RMSE 0.545 0.282 0.487 0.358 0.259 0.254 0.385 0.393 0.423 0.362480 0.340
r 0.831 0.958 0.889 0.939 0.965 0.966 0.920 0.916 0.914 0.93360 0.939
LR MARS RCMARS LR MARS RCMARS
EV 0.702 0.908 0.431 0.586 0.790 0.884 0.874 0.860 0.640 0.772810 0.856
Ridj 0.640 0.889 0.641 0.777 0.890 0.921 0.850 0.847 0.752 0.848510 0.900
AAE 0.398 0.244 0.361 0.285 0.196 0.159 0.185 0.223 0.233 0.188810 0.162
RMSE 0.536 0.297 0.480 0.378 0.266 0.226 0.347 0.367 0.359 0.282790 0.229
r 0.837 0.953 0.907 0.939 0.966 0.974 0.935 0.927 0.941 0.963620 0.974
LR MARS RCMARS LR MARS RCMARS
EV 0.561 0.711 0.411 0.639 0.696 0.754 0.872 0.910 0.656 0.82%6710 0.908
dej 0.474 0.685 0.530 0.686 0.709 0.720 0.846 0.892 0.750 0.848930 0.910
AAE 0.520 0.446 0.476 0.370 0.354 0.345 0.284 0.241 0.305 0.228890 0.176
RMSE 0.649 0.527 0.565 0.462 0.445 0.437 0.351 0.294 0.361 0.282360 0.217
r 0.749 0.843 0.841 0.886 0.893 0.896 0.934 0.954 0.939 0.959710 0.975
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Note: *indicates the best performance Gf for train data, test data and stability (st)

APPENDIX C

Sensitivity and Performance of RCMARS
for Forecasting of Precipitation

with respect to the related performance measure.

Table C.1: For sensitivity analysis: parameter values of RCMARSslel based on

different uncertainty scenarios.

U +3/5 +3/10

v +3/5 +3/10 +3/20 =+0 +3/5 +3/10 +3/20 =+0

o -0.707 -0.729 -0.735 -0.788 -0.339 -0.329 -0.353 -0.590
ay 0.410 0411 0408 0.366 0412 0403 0395 0.379
s 0371 0440 0480 0422 0546 0581 0613 0516
as -0.334 -0.376 -0.391 -0.322 -0.276 -0.271 -0.271 -0.298
oy 0.390 0551 0.651 0571 1.274 1.425 1545 1.030
as 0.132 0.105 0.086 0.086 0.030 0.007 -0.014 0.052
g -0.289 -0.355 -0.386 -0.241 -0.540 -0.555 -0.564 -0.374
ar -0.291 -0.322 -0.335 -0.297 -0.350 -0.358 -0.365 -0.329
as -0.163 -0.243 -0.286 -0.200 -0.393 -0.434 -0.471 -0.332
o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001
a0 0.000 0.000 -0.004 0.000 -0.187 -0.203 -0.211 -0.102
ai -0.240 -0.212 -0.192 -0.128 -0.396 -0.371 -0.336 -0.252
ais -0.124 -0.112 -0.096 -0.065 -0.100 -0.070 -0.039 -0.066
U +3/20 +0

v +3/5 +3/10 +3/20 =+0 +3/5 +3/10 +3/20 =+0

ao -0.255 -0.256 -0.367 -0.367 -0.187 -0.187 -0.187 0.065
a; 0.402 0390 0.386 0.386 0.398 0.398 0.398  0.390
Qs 0551 0.603 0558 0559 0550 0550 0550 0.675
as -0.245 -0.251 -0.268 -0.268 -0.233 -0.233 -0.233  -0.181
o 1.363 1528 1.288 1.288 1384 1384 1.385 2.065
as 0.034 0.005 0.034 0.034 0.036 0.036 0036 -0.062
ag 0512 -0.531 -0.453 -0.453 -0.500 -0.500 -0.500 -0.665
ar -0.345 -0.360 -0.343 -0.343 -0.342 -0.342 -0.342 -0.377
as -0.402 -0.454 -0.395 -0.395 -0.406 -0.406 -0.406 -0.562
o -0.020 -0.027 -0.029 -0.029 -0.051 -0.051 -0.051 -0.080
aio -0.219 -0.233 -0.178 -0.178 -0.230 -0.230 -0.230 -0.351
ai -0.407 -0.359 -0.315 -0.315 -0.390 -0.390 -0.390 -0.386
ais -0.110 -0.086 0.094 -0.094 -0.134 -0.134 -0.134 -0.104
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Table C.2: Performance measures of RCMARS for different unioéytacenarios.

U +3/5
v +3/5 +3/10 +3/20 +0

train test st train test st train test st train test st
R? 0.782 0.833 0.939 0.813 0.849 0.958 0.823* 0.846 0.972* 0.76.850* 0.902
AAE 0.360 0.256 0.710* 0.327 0.206 0.631 0.312* 0.200* 0.641 74€.30.256 0.683
RMSE 0.459 0.366 0.796 0.426 0.348 0.818 0.414* 0.351 0.848* 9.4@.347* 0.730

r 0.907 0.942 0962 0914 00935 0.977 0.916* 0.931 0.984* §.80.944* 0.952
EV 0504 0523 00963 0.602 0.669 0.899 0.649 0.741 0.876 0.495850 0.846
U +3/10

v +3/5 +3/10 +3/20 +0

train test st train test st train test st train test st
R? 0.934 0.649 0.695 0.941 0.609 0.647 0.943* 0.588 0.623 0.87.889* 0.901*
AAE 0.198 0.410 0.482 0.181 0.441 0.410 0.172* 0.462 0.372 0.2r311* 0.877*
RMSE 0.253 0.530 0.477 0.238 0.559 0.426 0.234* 0.574 0.408 0.32811* 0.842*

r 0973 0823 0846 0975 0811 0.831 0.975* 0.808 0.828 0.95Q00* 0.947*
EV 0752 0.800 0.940* 0.788 0.880 0.894 0.820 0.954 0.859 0.62687* 0.914
U £3/20

v +3/5 +3/10 +3/20 +0

train test st train test st train test st train test st
R? 0.934 0.649 0.695 0.941 0.609 0.647 0.943* 0.588 0.623 0.87889* 0.901*
AAE 0.198 0.410 0.482 0.181 0.441 0.410 0.172* 0.462 0.372 0.2r311* 0.877*
RMSE 0.253 0.530 0.477 0.238 0.559 0.426 0.234* 0.574 0.408 0.321811* 0.842*

r 0973 0823 0.846 0.975* 0811 0.831 0.975 0.808 0.828 0.95Q00* 0.947*
EV 0752 0.800 0.940* 0.788 0.880 0.894 0.820 0.954 0.859 0.62687* 0.914
U +0

v +3/5 +3/10 +3/20 +0

train test st train test st train test st train test st
R? 0.941 0.563 0.598 0.941 0.563* 0.598 0.941 0.563 0.598* 13.90.225 0.231
AAE 0.186 0.468 0.398 0.186 0.468 0.398 0.186 0.468* 0.398* 13.13.646 0.203
RMSE 0.239 0.591 0.404 0.239 0.591 0.404 0.239 0.591* 0.404* 63.16.788 0.211
r 0.977 0.769 0.787* 0.977 0.769 0.787* 0.977 0.769* 0.787%86* 0.672 0.682
EV 0.735* 0.788* 0.932* 0.735* 0.788 0.932* 0.735* 0.789 0.930.953 1.241 0.768
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APPENDIX D

Prediction Performance Criteria and Related Measures

Notes:

N: number of observations;

p: number of terms in the model;

yx. kth observed response value;

Ux. kth estimated (fitted) response value;

y. mean of the observed values;

y: estimated response variable;

y: mean of the estimated response variable;

s(y)?: standard deviation of the observed response variable;
s(¢)?: standard deviation of the estimated response variable;
Mrr andMrg: the measure values for training and test data, respegtivel
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act

Table D.1: Prediction performance criteria and relatedsuess.

Criterion Abbreviation Measure (M) | Explanation Interpretation Formula
Multiple Co- | Percentage of variation
5 - : .|, Values closer to SN (yp—ik)?
Accuracy R efficient  of | in response explained one are better R2.=1— 721;;1(%}")2 .
Determination| by the model R TR
Adjusted .
) Percentage of variation
9 Multiple Co- | . . Values closer to SN (ye—in)? B
RZ . - in response explained R2, =1-— k=1 Yk Tk A=),
ady efficient  of by the model one are better adj w1 (U —0r)? N—p—1
Determination| Y
Average .
Average magnitude of Smaller values
N ~
AAE éﬁi?lme errors are better AAE = 537 lyk — Gkl
RMSE Root  Mean| Average magnitude of Smaller  values ~
Square Error | errors are better RMSE := \/ﬁ > k=1 Wk — k)2
Correlation Linear relation betweer Values closer to =
r - observed and predicted o= Zhe =DEP/(N-1)
coefficient one are better Vs@)2s()?
response
. Estimation Variance of the esti{ Smaller values N . s
Precision BV Variance mated response values are better EV := Zk:}v(f’i 0
Compares the perfort
. Values closer to
Stability _ Stability of a| mance of a method on one indicate mord nriys Mee Mz
measure both training and test Min {375 ars )

data

stable models
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