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ABSTRACT

ADVANCES IN ROBUST IDENTIFICATION OF SPLINE MODELS
AND NETWORKS BY ROBUST CONIC OPTIMIZATION,

WITH APPLICATIONS TO DIFFERENT SECTORS

Özmen, Ayşe

Ph.D., Department of Scientific Computing, METU

Supervisor : Prof. Dr. Gerhard Wilhelm Weber

February 2015, 130 pages

Uncertainty is one of the characteristic properties in the area of high-tech engineering
and the environment, but also in finance and insurance, as thegiven data, in both input
and output variables, are affected with noise of various kinds, and the scenarios which
represent the developments in time, are not deterministic either. Since the global envi-
ronmental and economic crisis has caused the necessity for an essential restructuring
of the approach to risk and regulation in these areas, core elements of new global regu-
latory frameworks for serving the requirements of the real life have to be established in
order to make regulatory systems more robust and suitable. Modeling and prediction of
regulatory networks are of significant importance in many areas such as engineering,
finance, earth and environmental sciences, education, system biology and medicine.
Complex regulatory networks often have to be further expanded and improved with
respect to the unknown effects of additional parameters andfactors that can emit a
disturbing influence on the key variables under consideration. The concept of target-
environment (TE) networks provides a holistic framework for the analysis of such
parameter-dependent multi-modal systems. Data-based prediction of complex regula-
tory networks requires the solution of challenging regression problems for an estima-
tion of unknown system parameters; however, given statistical methods which assume
that the input data are exactly known, may not provide trustworthy results. Since the
presence of noise and data uncertainty raises serious problems to be coped with on the
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theoretical and computational side, the integration of uncertain is a significant issue for
the reliability of any model of a highly interconnected system. Therefore, nowadays,
robustification has started to attract more attention with regard to complex interdepen-
dencies of global networks and Robust Optimization (RO) has gained great importance
as a modeling framework for immunizing against parametric uncertainties. In this the-
sis, Robust (Conic) Multivariate Adaptive Regression Splines(R(C)MARS) approach
has worked out through RO in terms of polyhedral uncertaintywhich brings us back to
CQP naturally. By conducting a robustification in (C)MARS, the estimation variance
is aimed to be reduced. Data uncertainty of real-world models is also integrated into
regulatory systems and they are robustified by applying R(C)MARS. For this purpose,
firstly, time-discrete TE regulatory systems are analyzed with spline entries, and a new
regression model for these particular two-modal systems that allows us to determine
the unknown system parameters is introduced by applying MARSand CMARS as an
alternative to classical MARS. CMARS elaborates a regularization by means of con-
tinuous optimization, especially, conic quadratic programming (CQP) which can be
conducted by interior point methods. Then, time-discrete target-environment regula-
tory systems are newly introduced and analyzed under polyhedral uncertainty through
RO. Besides, some numerical examples are presented to demonstrate the efficiency of
our new (robust) regression methods for regulatory networks. The results indicate that
our approach can successfully approximate the TE interaction, based on the expression
values of all targets and environmental items. In (R)MARS and (R)CMARS, however,
an extra problem has to be solved (by Software MARS, etc.), namely, the knot selec-
tion, which is not needed for the linear model part. Therefore, in this thesis, Robust
(Conic) Generalized Partial Linear Models (R(C)GPLMs) are also developed and in-
troduced by using the contributions of both regression models Linear Model/Logistic
Regression and R(C)MARS. As semiparametric models, (C)GPLM and R(C)GPLM
lead to reduce the complexity of (C)MARS and R(C)MARS in terms of the number
of variables used in (C)MARS and R(C)MARS. Moreover, our methods are applied
on real-world data from various areas, e.g., the financial sector, meteorology and the
energy sector. The results indicate that RMARS and RCMARS can build more precise
and stable models with smaller variances compared to those of MARS and CMARS.

Keywords: Robust (Conic) Multivariate Adaptive Regression Splines, Robust (Conic)
Generalized Partial Linear Models, Robust Optimization, Robust Conic Quadratic
Programming, Polyhedral Uncertainty, Robustification, Networks, Regulatory Sys-
tems.
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ÖZ

DEĞİŞİK SEKTÖRLERE UYGULAMALARIYLA B İRLİKTE SAĞLAM KONİK
OPṪIMİZASYON İLE EĞṘI MODELLERİ VE AĞLARIN SAĞLAM

TANIMLANMASINDAK İ GELİŞİMLER

Özmen, Ayşe

Doktora, Bilimsel Hesaplama B̈olümü

Tez Yöneticisi : Gerhard Wilhelm Weber

Şubat 2015, 130 sayfa

Hem girdi hem de çıktı dĕgişkenlerindeki veriler çeşitli türlerdeki kontrols̈uz dĕgişim-
lerden etkilendĭgi ve zaman içinde gelişim gösteren senaryolar da belirli olmadığından
belirsizlik, yüksek teknoloji m̈uhendislĭgi ve çevre alanlarında ve aynı zamanda finans
ve sigorta alanlarındaki karakteristik̈ozelliklerden biri durumundadır. Çevresel ve
ekonomik alandaki k̈uresel kriz bu alanlardaki risk ve düzenleme yaklaşımına gerekli
bir tekrar yapılandırılmanın kaçınılmaz olmasına yol açtığından, yeni k̈uresel d̈uzen-
leyici yapıların ana elemanları gerçek hayatın gereksinimlerine hizmet vermek̈uzere
düzenleyici sistemleri daha sağlam ve uygun yapmak amacı ile kurulmalıdır. Düzen-
leyici ağların tahmin ve modellenmesinin mühendislik, finans, yerÿuzü ve çevresel
bilimler, eğitim, sistem biyolojisi, tıp gibi birçok alanda kayda değer birönemi vardır.
Karmaşık d̈uzenleyici ăglar, d̈uş̈unülen anahtar dĕgişkenlerüzerinde rahatsız edici
bir etkiyi açı̆ga çıkarabilecek ek parametre ve faktörlerin bilinmeyen etkisini dikkate
alarak sıklıkla daha fazla genişletilmesi ve geliştirilmesi gerekir. Hedef-çevre ağları
kavramı, b̈oyle parametre băgımlı çok modelli sistemlerin analizi için bütünc̈ul bir
yapı săglamaktadır. Karmaşık d̈uzenleyici ăgların veri tabanlı tahmini, bilinmeyen sis-
tem parametrelerinin tahmini için zorlu regresyon problemlerinin ç̈ozümünü gerekti-
rir; ancak, girdi verilerinin kesinlikle bilindĭgi varsayımında bulunan istatistik metod-
ları güvenilir sonuçlar vermeyebilir. Kontrolsüz dĕgişimin varlı̆gı ve veri belirsizlĭgi
teorik ve hesaplamalı alanlarda ilgilenilmesi gereken ciddi problemlere yol açtı̆gından
belirsiz verilerin entegrasyonu, son derece birbirine bağımlı sistem modellerinin g̈uve-
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nilirli ği için önemdir. Bu nedenle, k̈uresel ăgların karmaşık karşılıklı băgımlılıkları
ile ilgili olarak săglamlaştırma, bug̈unlerde daha fazla dikkat çekmeye başlamış ve
parametrik belirsizlĭge karşı băgışıklık kazandıran bir modelleme yapısı olduğundan
săglam optimizasyon b̈uyük bir önem kazanmıştır. Bu tezde, sağlam (konik) çok
dĕgişkenli uyarlanabilir regresyon eğrileri (R(C)MARS) yaklaşımı săglam optimizas-
yon aracılı̆gı ile standart konik karesel programlama (CQP) kullanımınaimkan săgla-
yan çokd̈uzlemli belirsizlik altında ç̈ozülmektedir. (C)MARS’da yapılan bir sağlam-
laştırma ile tahmin dĕgişiminin d̈uş̈urülmesi amaçlanmıştır. Ayrıca, gerçek hayat mo-
dellerinin veri belirsizlĭgi de d̈uzenleyici sistemlere entegre edilmiş ve R(C)MARS
uygulayarak bu sistemler sağlamlaştırılmıştır. Bu amaç için,̈oncelikle, ĕgri girdile-
riyle kesik zamanlı hedef-çevre düzenleyici sistemler analiz edilmiş, MARS ve klasik
MARS’a bir alternatif olan CMARS metodlarını uygulanarak bu belirli ikili-model
sistemleri için bilinmeyen sistem parametrelerini belirlememize olanak sağlayan yeni
bir regresyon modeli sunulmuştur. CMARS, sürekli optimizasyon,̈ozellikle iç nokta
yönteminin kullanıldı̆gı CQP aracılı̆gıyla bir d̈uzenlemeyi detaylandırmaktadır. Daha
sonra çokd̈uzlemli belirsizlik altında săglam optimizasyon yoluyla yeni kesikli zaman
hedef-çevre d̈uzenleyici sistemleri tanıtılmış ve analiz edilmiştir.Bununla birlikte,
düzenleyici ăglarda yeni (săglam) regresyon metodunun etkinliğini göstermek amacı
ile birkaç sayısal̈ornek de sunulmuştur. Sonuçlar, tüm hedef ve çevresel faktörlerin
ifade dĕgerlerine dayanarak, bizim yöntemimizin hedef-çevre etkileşimine başarılı bir
şekilde yaklaşabildiğini göstermektedir. Ancak, (C)MARS ve R(C)MARS model-
lerinde, dŏgrusal kısımda ihtiyaç duyulmayan düğüm noktası seçimi olarak adlandırılan
fazladan bir problemin ç̈ozülmesi gerekir. Bundan dolayı, doğrusal/lojistik regresyon
ve R(C)MARS katkılarıyla săglam (konik) genelleştirilmiş parçalı doğrusal model
(R(C)GPLM) de geliştirilmiş ve sunulmuştur. Yarı-parametrik modeller olan (C)GPLM
ve R(C)GPLM, (C)MARS ve R(C)MARS algoritmalarında kullanılan değişken sayıları
yönünden (C)MARS ve R(C)MARS’ın karmaşıklığını azaltmamıza olanak sağlamıştır.
Ayrıca, metodlarımız, finansal sektör, meteoroloji ve enerji sektörü gibi çeşitli alan-
lardaki gerçek hayat verilerïuzerine uygulanmıştır. Sonuçlar, MARS ve CMARS
methodlarıyla karşılaştırıldığında, RMARS ve RCMARS’ın daha küçük dĕgişim ile
daha dŏgru ve daha kararlı modeller kurabildigini göstermektedir.

Anahtar Kelimeler: Săglam (Konik) Çok Dĕgişkenli Uyarlanabilir Regresyon Eğrileri,
Săglam Genelleştirilmiş (Konik) Parçalı Linear Modeller, Săglam Optimizasyon, Săg-
lam Konik Karesel Programlama, Çokdüzlemli Belirsizlik, Săglamlaştırma, Ăglar,
Düzenleyici Sistemler.
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for their essential remarks, suggestions and corrections that are important and useful
for the improvement of this thesis.

I am very glad to collaborate with Assist. Prof. Dr. Fehmi Tanrısever, Assist. Prof.
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CHAPTER 1

INTRODUCTION

Multivariate adaptive regression splines (MARS) [48] is a form of non-parametric re-
gression analysis for building high-dimensional and nonlinear multivariate functions
and applied in many fields of science, engineering, technology, finance and control de-
sign in recent years. It is a modern methodology of statistical learning, data mining and
mathematical estimation theory which is important in both regression and classifica-
tion, and develops an multiplicative-additive model in a two-stage process, namely, for-
ward and backward, without specific assumptions about the underlying functional rela-
tionship between the variables [60, 70]. Continuing on the success of MARS in model-
ing real-life problems, as an alternative to MARS, Conic MARS (CMARS) [129, 138]
was developed for the backward part of the MARS algorithm in a previous study. For
this approach, a Penalized Residual Sum of Squares (PRSS) is employed for MARS as
a Tikhonov regularization (TR) problem [5], and then, it is treated with a continuous
optimization technique, namely, Conic Quadratic Programming (CQP) [13].

For both the MARS and CMARS models, however, data are assumed to contain fixed
input variables whereas, in reality, the data involved in regression problems contain
noise. Therefore, these regression models are not capable of handling data uncer-
tainty. Indeed, in inverse problems of modeling and data mining, solutions can rep-
resent a remarkable sensitivity with respect to perturbations in the parameters which
base on the data, and a computed solution can be highly infeasible, suboptimal, or
both. Since, with increased volatility and further uncertainties, economical, environ-
mental and financial crises translated a high “noise” withindata into the related models,
the events of recent years in the world have led to radically untrustworthy representa-
tions of the future, and robustification has started to attract more attention in many
areas. Hence, we include the existence of uncertainty considering future scenarios into
MARS and CMARS, and robustify them throughRobust Optimization(RO) [15, 16],
proposed to cope with data uncertainty. We represent the newRobust (C)MARS
(R(C)MARS) [98, 99, 100, 103] in theory and method, and apply R(C)MARS on some
different kinds of datasets.
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1.1 Purpose of the Study

The presence of noise and data uncertainty rises critical problems to be coped with on
the theoretical and the computational side. In order to overcome that difficulty, new
models have to be developed where optimization results are combined within real-
life applications. For immunizing against parametric uncertainties, RO, developed by
Ben-Tal and Nemirovski [10, 11, 15], and El-Ghaoui et al. [38,39], has gained in great
importance as a modeling framework from both a theoretical and a practical point of
view. RO aims to find an optimal or near optimal solution that is feasible for each
possible realization of the uncertain scenarios.

In order to make MARS and CMARS models more generalized and prepared to deal
not only with fixed but also random type of input data, we introduce the new methods
called RMARS and RCMARS by further enhancing the MARS and CMARS methods
to handle data uncertainty [98, 107]. Because of the computational effort which our
robustification of (C)MARS easily needs, we also describe our new concept of a weak
robustification that is called as WR(C)MARS. In our thesis, we focus on the polyhedral
type of uncertainty which brings us back to CQP naturally. By using robustification
in (C)MARS, we aim to reduce the estimation variance. Furthermore, we analyze
Generalized Partial Linear Models (GPLMs), and we introduce a newly developed Ro-
bust (Conic) Generalized Partial Linear Model (R(C)GPLM) [101, 102, 104] using the
contribution of a continuous regression model R(C)MARS and a parametric/discrete
regression model Logistic/Linear Regression. A R(C)GPLM leads to reduce the com-
plexity of (C)MARS consisting in the number of variables used in R(C)MARS algo-
rithm.

In our thesis, the robust optimization technique of solvingand optimizing the mod-
els having nonlinearity and uncertainty by using R(C)MARS is also discussed with an
implementation on two-model regulatory systems (Target-Environment (TE) systems)
that appear in the financial sector and in banking, in environmental protection, system
biology, medicine and so on. Since practitioners in these fields need to be aware that
evaluation of probabilities based on history may be fundamentally inaccurate, uncer-
tainty has importance for players in these sectors. The practice of using models of
risks in a world of uncertainty is one of the reasons for the recent environmental and
financial crisis [40, 41]. We have presented a regression model by using splines for the
entries of regulatory network and achieved a relaxation by means of robust and con-
tinuous optimization, especially, Robust Conic Quadratic Programing (RCQP). That
model of a TE regulatory system allows us to determine the unknown system param-
eters from uncertain measurement data by applying interiorpoint methods [116, 117].
In case of uncertain data, polyhedral sets are used to encompass errors, what refers us
to particular robust counterpart programs.

We are interested in the multicriteriatradeoff (antagonism) betweenaccuracyandro-
bustness. In the line of our research [98, 99, 100, 103], robustness has become, in
some sense, an extension of stability or regularity. Stability also means asmall com-
plexityof the model, or: asmall varianceof the estimation. Through R(C)MARS, we
have included uncertainty into our regression and classification modeling not only in
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the output variable but especially in the input variables also. This type of uncertainty
is typical for real-life applications. So, in RCMARS, there exists a double way of ro-
bustification: (i) The robustification is performed with respect to the input variables
and output variable, all of them with their own uncertainty sets. (ii ) The regulariza-
tion in integral form that expresses itself by the involvement of the (squared) first- and
second-order partial derivatives of the multivariate basis functions; after discretization
of the integrals, we reach a TR problem with first- and second-order complexity terms.
Then, this TR problem is turned into a CQP problem. In our RMARS, we only have
the robustification step (i), whereas the fine-tuning option (ii ) dropped. We underline
the core importance of the target of numerical accuracy (precision) as a central goal
in of our tradeoff that it establishes together withregularity and robustness, respec-
tively. Within the RCMARS concept and its RCQP optimization program, through the
“control parameter” which is represented by the upper boundof the complexity term,
one can regulate and “tune” the importance that one assigns for the stability (lack of
complexity) goal and, by this, for the antagonistic precision target. Moreover, we got
the promise of gaining from the “power” of RO to our R(C)MARS [98,103]. We
demonstrate the well performance of our models with numerical experiences, simula-
tion studies and real-world applications.

1.2 The Significance of Uncertainty

Since the global economic crisis has caused the necessity for an essential restructur-
ing of the approach to risk and regulation, core elements of anew global regulatory-
framework have become needed to establish in order to make the financial system more
robust and suitable for serving the requirements of the realeconomy. For this reason,
many scientists try to find ways to measure the probability offinancial calamities, natu-
ral disasters and other catastrophes [41]. They draw attention to the difference between
known risksanduncertainty. The problem to be thought about is that most economists
and other risk modelers do not separate uncertainty from risk. Economic models sup-
pose that the financial world contains known risks that can beevaluated depending on
prior behavior of stock markets and other elements of the monetary system. Neverthe-
less, there is genuineuncertainty, which is the impossibility of knowing exactly what
the future keeps even in a probabilistic sense, as well as therisk that is the range of
probabilities of outcomes pointed out by past events, whichmay serve as an unreliable
guide for the future in an uncertain environment [24, 40, 50]. In other words, there are
some sources of uncertainty: the data of the problem are not exactly known or may
not be exactly measured, or the exact solution of the problemmay not be implemented
because of inherent inaccuracy of the devices [23], and datauncertainty results in un-
certain constraints and in the objective function. This means that the known statistical
models may not give trustworthy results.

Uncertaintyis often presented in the sectors of energy, economics, finance, insurance,
but also in high-tech and the environmental studies. It is one of the characteristic
properties in these sectors since the given data, in both input and output variables, are
affected with “noise” of various kinds, and the scenarios which represent the devel-
opments in time, are not deterministic either. Traditionalapproaches to optimization
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under uncertainty such as stochastic programming [66, 113], chance-constrained pro-
gramming [28] or stochastic dynamic programming [18] generally have most serious
numerical difficulties as the models in these areas are largeand complex, already in
their deterministic formulation. Therefore, as an alternative to traditional methods, RO
is introduced to handle the complexity issue in adopting a non-probabilistic formula-
tion of the uncertainty. RO does not have recourse to the calculus of probability that
makes it immune against the curse of dimensionality and computational intractabil-
ity [44].

In this thesis, the existence of uncertainty has a strong impact on the way of mod-
eling which, then, becomes the basis of regression and classification and, eventually,
of decision making. In this way, the uncertainty phenomenonenters all parts of the
model and its mathematical treatment, and one of the prominent techniques to address
this situation is RO. In fact, it refers toworst-case scenarios. In our study, we have at
hand control parameters in order to regulate the amount of skepticism and optimism
or, in other words,risk-aversionandrisk-friendlinessin the modeling process. Here,
risk expresses itself in terms of variance, namely, the estimation variance, as we shall
explain. We wish to underline that by all these considerations and measurements, with
our robustification we are going much beyond of the concept ofregularization which
just relates to the output data and the complexity of the modeling functions.

1.3 Robust Optimization

Optimizationhas been a leading methodology in many fields such as engineering, fi-
nance and control design, and most applications suppose complete knowledge of the
data which are underlying the optimization problem. In other words, it is assumed that
to develop a model, the input data are known exactly (fixed). Nevertheless, solutions
to optimization problems can represent a significant sensitivity to perturbations in the
parameters of the problem. Optimization affected by parameter uncertainty is a focus
of the mathematical programming community and a necessity to tackle uncertain data
arises to develop models where optimization results are combined within real-world
applications [20, 22].

RO is a method to address data uncertainty in optimization problems. The RO approach
aims to make the optimization model robust, considering constraint violations by solv-
ing robust counterparts(RCs) of these problems in prespecified uncertainty sets for
the uncertain parameters. These counterparts are solved for theworst-caserealization
of the uncertain parameters based on uncertainty sets for the random parameters [42].

RO has gained a lot of attention from both a theoretical and a practical point of view
as a modeling framework for “immunizing” against parametric uncertainties in math-
ematical optimization. It is a methodology to model, evaluate and solve optimization
problems in which the data are uncertain and only known to belong to some uncer-
tainty set. RO purposes to receive an optimal or near optimalsolution that is feasible
for each possible realization of the uncertain scenarios [15, 148].

In this study, we work on R(C)MARS with the help of an RO approach which makes
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(C)MARS robust in view of constraint violations by solving RCs ofthese problems
within uncertainty sets. Although these counterparts are solved for the worst-case
realization of those uncertain parameters based on suitably defined uncertainty sets,
we shall weaken the concept of “worst case” for reasons of computational complexity.
Moreover, we have at hand control parameters which help to assess risk-friendliness-
vs. -aversity. We study on robustification in terms ofpolyhedral uncertaintywhich
enables us to return back to standart CQP naturally [98, 100, 103].

1.4 Complex Multi-modal Regulatory Networks

The identification of the underlying network topology permits us to gain insights into
the regulating effects and the hidden relationships between the variables. Many theo-
retical contributions from various disciplines concentrate on the analysis of such sys-
tems. Nevertheless, the identification of regulatory networks from real-world data is
still a challenge in mathematics. This shows even more promise as the technical devel-
opments of the last decades have obtained a large number of data that are still waiting
for a deeper analysis [29, 49, 58, 61, 63, 71, 111, 119, 134]. TE regulatory systems
arise in many application areas in which they are more and more referred to as gene-
environment or eco-finance networks. TE regulatory networks can be analyzed as
gene-environment networks, for instance, to define the complex interactions between
genes and other components of cells and tissues in modeling and prediction of gene-
expression patterns from microarray experiments, regarding in a wider frame. The
target variables are the expression values of the genes, whereas radiation, toxins, tran-
scription factors, etc., additionally become environmental items [72, 73, 75, 80, 135,
137, 141, 146]. Today, it is obviously understood that environmental factors comprise
an essential group of regulating components and the performance of the models may
be significantly improved by including these additional variables. The benefit of such
a refinement has been shown, for example, in [143], where prediction and classifica-
tion performances of supervised learning methods of the most complex-genome-wide
human disease classification can be made better by taking into account environmental
aspects.

TE regulatory networks may be extended with eco-finance networks (ecoabbreviating
“ecology”) by the important example in the area of CO2-emissions-control; another
example consists of operational planning and portfolio optimization for natural gas
transportation systems. The interdisciplinary implications in economics, technology
and Operational Research can be successfully explained by these kinds of network
models [74, 80, 141, 146]. Furthermore, TE regulatory networks may be applied to an
extension of the Technology-Emissions-Means (TEM) Model [112] that was prepared
with the occasion of the Kyoto protocol [77]. The TEM model leads to a simula-
tion of the cooperative economic behavior of countries or enterprises with the purpose
decreasing the greenhouse gas emissions. Here, the target variables are the emissions
which some countries have to diminish, and the financial expenditures act as additional
environmental items [68, 111, 112]. There exist many other examples from biology and
life sciences, which refer to TE-regulatory systems, with environmental effects being
strongly included. Among them are, e.g., metabolic networks [25, 110, 142], immuno-
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logical networks [58], social- and ecological networks [51]. Modeling and prediction
of such regulatory systems and the problem of identifying the regulating effects and in-
teractions between the targets and other components of the network have a significant
importance in the mentioned areas.

The comparison of measurements and predictions of the TE regulatory networks lead
to a regression models for parameter estimation. In most of the applications from these
fields, it is assumed that the input data are not random but known (fixed) in developing
models. Additionally, the data can undergo small changes byvariations in the opti-
mal experimental design. Therefore, all of these conditions cause uncertainty in the
objective function and in possible constraints, and they introduce some kinds of weak-
nesses to the methods, because real-life data involve uncertainty in the form of noise.
Here, since the regression models of target-environment networks can be affected by
noise and errors, presented byintervals, the uncertain multivariate states are in to-
tal represented bypolyhedra, and accordingly, our newly developed robust modeling
techniques R(C)MARS, which can handle random inputs is used. This employs the
concept of robustness through RO problems.

1.5 Scope of the Thesis

This thesis is comprised of seven main chapters and four Appendices. Briefly summa-
rizing, the contents are organized as follows:

Chapter1: Introduction of the thesis. The objectives and outlines of the study is given
in this chapter.

Chapter2: The background information about Multi-Model RegulatoryNetworks,
Optimization and Regression is provided.

Chapter 3: Theory and approaches of R(C)MARS and R(C)GPLM method under
Polyhedral Uncertainty are demonstrated here.

Chapter4: Spline Regression Models for Multi-Model Regulatory Networks are in-
troduced in theory and methods. (C)MARS results based on different datasets for the
simulation are represented.

Chapter5: Robust Optimization in Spline Regression Models for Multi-Model Reg-
ulatory Networks is introduced in theory and methodology. R(C)MARS results with
different uncertainty scenarios for the numerical exampleare studied here.

Chapter6: Real-world applications from different sectors are presented in this chapter.

Chapter7: A conclusion and an outlook to further studies are stated in the last chapter.
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CHAPTER 2

MATHEMATICAL METHODS USED

In this chapter, we introduce some preliminaries related with our studies.

2.1 Optimization

2.1.1 Robust Optimization

Robust optimization (RO) has gained a lot of attention both from a theoretical and
practical point of view as a modeling framework for immunizing against parametric
uncertainties in mathematical optimization. It is a modeling methodology to process
optimization problems in which the data are uncertain and isonly known to belong
to some uncertainty set. Robust optimization purposes to receive an optimal or near
optimal solution that is feasible for every possible realization of the uncertain data [15,
148].

In the early 1970s, Soyster [123] was one of the first researchers to investigate explicit
approaches to RO. This short note focused on robust linear optimization in the case
where the column vectors of the constraint matrix were constrained to belong to ellip-
soidal uncertainty sets. He suggested a linear optimization model to create a solution
that was feasible for all input data such that each uncertaininput data point could take
any value from an interval but, this approach tended to find solutions that were over-
conservative. Even though Falk [43] followed this a few years later with more work on
inexact linear programs, the optimization community was relatively quiet on the issue
of robustness until the work of Ben-Tal and Nemirovski [10, 11, 12] and El Ghaoui et
al. [38, 39] in the late 1990s.

The RO approach makes the optimization model robust regarding constraint violations
by solvingrobust counterpartsof these problems within prespecified uncertainty sets
for the uncertain parameters. These counterparts are solved for the worst-case realiza-
tion of those uncertain parameters based on appropriately determined uncertainty sets
for the random parameters [42]. The general uncertain optimization problem is defined
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as follows:

minimize
x∈Rn

cTx

subject tofi(x,ϕ) ≤ 0 (i = 1, 2, . . . ,m),
(2.1)

wherefi(x,ϕ) are given constraint functions,ϕ ∈ R
K is a vector of uncertain param-

eters andc ∈ R
n as well. Ben-Tal and Nemirovski [10, 11, 12] and, independently, El

Ghaoui et al. [38, 39] have taken a significant step forward ondeveloping theory for ro-
bust optimization. Indeed, the uncertain optimization problem is a family of problems
- one for each realization ofϕ. In the RO framework the information related toc and
ϕ are modeled as geometric uncertainty setsU1 ⊂ R

q andU2 ⊂ R
K . Therefore, the

family of problems of Eqn. (2.1) is rewritten by itsrobust counterpartin the following
form:

minimize
x

max
c∈U1

cTx

subject tofi(x,ϕ) ≤ 0, ∀ ϕ ∈ U2 (i = 1, 2, . . . ,m),
(2.2)

whereU1 andU2 are given uncertainty sets. Let any minimal value be calledz∗. The
motivation is to find a solution of the stated problem in Eqn. (2.2) that “immunizes”
the problem Eqn. (2.1) against parameter uncertainty. Here, the objective function
is guaranteed to be no worse thanz∗ and a solution of Eqn. (2.2) is feasible to Eqn.
(2.1) for any realization ofϕ ∈ U2. Anyone of the two uncertainty setsU typically
is a polytope or an ellipsoid or an intersection of such sets.In the robust optimization
literature, a general form of uncertainty set,U , e.g.,U , is given as follows:

U =

{

ϕ = ϕ+

q
∑

κ=1

ρκϕ
κ ∈ R

K
∣
∣ ρ ∈ Z

}

, (2.3)

whereϕ is the nominal value of the uncertain vectorϕ, the vectorsϕK are possible
scenarios of it, andρ = (ρ1, ρ2, . . . , ρq)

T is a perturbation vector. The setZ determines
what type of uncertainty set we have. These sets may be

box uncertainty set: Z =
{
ρ ∈ R

q
∣
∣ ρ ≥ 0, eTρ ≤ 1

}
,

convex combination of scenarios: Z =
{
ρ ∈ R

q
∣
∣ − 1 ≤ ρi ≤ 1 (i = 1, 2, . . . , q)

}
,

ellipsoid uncertainty set: Z =
{
ρ ∈ R

q
∣
∣ ρTρ ≤ 1

}
.

(2.4)
wheree = (1, 1, . . . , 1)T ∈ R

q.

These sets yield useful models of uncertainty, which lead totractable optimization
problems [16]. For a visualization see Figure 2.1.
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Figure 2.1: Approximating a robust solution [37].

2.1.2 Conic Optimization

A generalprimal conic(CP) optimization problem is a problem in the conic form

minimizecTx
subject toAx = b, x ∈ K,

(2.5)

whereK is a closed, pointed (which means thatK contains no line), non-empty, con-
vex cone,x is the design vector andc is a given vector of coefficients of the objective
function. In fact we assume thatK is some product of the following cones [13]:

i) Thenonnegative orthantRn
+. The non-negative orthant consists of all vectors inR

n
+

whose elements are all non-negative:R
n
+ =

{
x
∣
∣xk ≥ 0 ∀k = 1, 2, . . . , n

}
.

ii ) TheLorentz(or second order, or ice-cream) cone:

Ln :=

{

x = (x1, x2, . . . , xn)
T ∈ R

n
∣
∣ xn ≥

√

x21 + x22 + . . .+ x2n−1

}

(n ∈ N \ {1}).

iii ) The positive semidefinite cone:

Ln+ :=
{
A ∈ R

n×n
∣
∣ A = AT , xTAx ≥ 0 ∀x ∈ R

n
}
. (2.6)

A generaldual conic(CD) optimization problem is a problem in the conic form

minimizebTy

subject toc−ATy ∈ K.
(2.7)

Here, (CD) is just called thedual problemof (CP), the constraint is called a linear
matrix inequality. For a conic problem, there exist the following properties of the
duality [13]:
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1. The value of the dual objective at every dual feasible solution is the value of the
primal objective at every primal feasible solution (weak duality).

2. The following two properties are equivalent to each other:
(a) The primal problem is strictly feasible and below bounded,
(b) The dual problem is solvable.

3. The following two properties are equivalent to each other:
(c) The dual problem is strictly feasible and bounded from below,
(d) The primal problem is solvable.

Strong Duality property: Whenever(a)(⇔ (b)) or (c)(⇔ (d)) is the case, the optimal
values in the primal and the dual problems are equal to each other (strong duality):

Opt(CP ) = Opt(CD).

4. The duality issymmetric: the problem dual to the dual is equivalent to the pri-
mal. There are different conic optimization problems considered and coped with such
as Linear Programming (LP), Second-Order Cone Programming (SOCP), Semidefi-
nite Programming (SDP). In all these cases, these conic optimization problems can be
solved efficiently by aninterior Point Method(IPM) [116, 117]. For our study, we will
mainly focus on SOCP, also called asConic Quadratic Programming(CQP) [13, 21].
Here, to find a solution for conic optimization problem, MOSEK [89], SeDuMi [127],
SDPT3 [133] can be used as a solver.

2.1.2.1 Conic Quadratic Programming

CQP is the problem of minimizing a linear objective function subject to the intersection
of an affine set and the direct product of quadratic cones of the form

Ln =

{

x ∈ R
n
∣
∣ x2n ≥

n−1∑

j=1

x2j , xn−1 ≥ 0

}

.

We recall that the quadratic cone is also known as the second-order (Lorentz or ice-
cream) cone. Many optimization problems can be constructedin this form. Some ex-
amples are linear, convex quadratic and convex quadratically constrained quadratic op-
timization. Various applications of conic quadratic optimization are presented in [13,
81]. A conic optimization problem can be represented in the following form:

minimizecTx
subject toAx = b, x ∈ K,

associated with a coneK, represented asK = Ln1 × Ln2 . . . × Lnr ⊆ E. Canoni-
cally turning to inequalities rather than equalities, in general, a CQP is an optimiza-
tion problem with linear objective function and finitely many “ice-cream constraints”
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bi−Aix ≥
Lni

0, defined bybi−Aix ∈ Ln (i = 1, 2, . . . , r). Therefore, a CQP problem

can be written as [13]

minimize
x

cTx

subject to bi −Aix ≥
Lni

0 (i = 1, 2, . . . , r).

If we subdivide the data matrix,[Ai, bi], as follows:

[Ai, bi] =

[
Di di
pTi qi

]

,

whereDi is of the size ((mi − 1)× dimx), the problem can be written as follows:

minimize
x

cTx

subject to‖Dix− di‖2 ≤ pTi x− qi (i = 1, 2, . . . , r).

That is the most explicit form which is used. In that form,Di are matrices with the
row dimensions being the dimension ofx, di are vectors of the same dimensions as
the column dimensions of the matricesDi, pi are vectors of the same dimensions as
x, andqi are real numbers.

2.1.2.2 Interior Point Methods

Convex optimization problems like semidefinite programming, geometric program-
ming and, in particular, CQP problems are very essential in data mining and classi-
cal polynomial-time algorithms may be employed to solve these kinds of problems.
Nevertheless, these algorithms have some disadvantages since they use local infor-
mation on the objective function and the constraints. Therefore, Interior Point Meth-
ods(IPMs) [94], firstly introduced by Karmarkar [64], are employed tosolve “well-
structured” convex problems, like CQP problems. There has been done comprehensive
research on interior-point methods for linear optimization. One result of this research
is the development of a primal-dual interior-point algorithm [67, 90] that is highly ef-
ficient both in theory and in practice [3, 83]. Consequently, some authors have studied
to drive this algorithm for other problems. An important work in this direction is the
paper of Nesterov and Todd [95] which represents that the primal-dual algorithm keeps
its theoretical efficiency when the nonnegativity constraints are replaced by a convex
cone as long as the cone is homogeneous and self-dual, or in the terminology of Nes-
terov and Todd, a self-scaled cone [4]. It has subsequently been implied by G̈uler [54]
that the only interesting cones having this property are direct products of the quadratic
cone and the cone of positive semi-definite matrices. For ourstudy, we mainly focus
on conic quadratic optimization and on an algorithm for thisclass of problems.

For CQP, many authors have already worked algorithms. In particular, Tuschiya [131],
Monteiro and Tuschiya [91] have analyzed the complexity of different variants of the
primal-dual algorithm. Schmieta and Alizadeh [120] have represented that many of
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the polynomial algorithms developed for semidefinite optimization [126] may imme-
diately be translated to polynomial algorithms for conic quadratic optimization [4].
Sturm [127] has reported that his code SeDuMi may solve conicquadratic and semidef-
inite optimization problems. We take into consideration anoptimization problem given
by [4, 13]

minimize
x∈℘

cTx,

where℘ ⊆ R
n. Here, IPMs base on the interior point of the feasible set℘. We suppose

that this feasible set is closed and convex. An interior penalty function (barrier) F (x)
is selected, well defined, smooth and strongly convex, in theinterior of℘ and blowing
up as a sequence from the interior int℘ approaches a boundary point of℘:

xr ∈ int ℘ (n ∈ N0), lim
r→∞

xr ∈ ∂℘ ⇒ F (xr) → ∞ (r → ∞).

Now, we take into account one parametric family of functionsgenerated by our objec-
tive and interiorpenalty function

Fp(x) := pcT + F (x)|int ℘→ R.

The penalty parameterp is supposed to be nonnegative. Under mild regularity assump-
tions [4],
i) every functionFp(·) attains its minimum over the interior of℘, the minimizersx∗(p)
being unique;
ii ) the central pathx∗(·) is a smooth curve, and all of the variablesp, its limiting points
(asp→ ∞), belong to the set of optimal solution of above optimization problem.

These algorithms have the advantage of employing the structure of the problem, of
allowing better complexity bounds and exhibiting a much better practical performance.
In the so-calledprimal-dual IPMs, both the primal and the dual problems and their
variables are regarded, the joint optimality conditions perturbed, parametrically solved
and followed towards a solution along acentral path.

2.1.3 Robust Conic Optimization

For all (or most) possible realizations of the data, the solution should satisfy the real
constraints despite of the data uncertainty. Such a solution is called arobust feasi-
ble solution. The problem of receiving an optimal robust solution is called the robust
counterpart of the original problem. Indeed, it is the problem of minimizing the ob-
jective function over the set of robust feasible solutions.In this study, we deal with an
uncertain conic problem which has the following form [21]:

minimize
x

cTx,

subject to Akx− bk ∈ Kk (k = 1, 2, . . . , N),

whereKk (k = 1, 2, . . . , N) are closed, pointed, non-empty, convex cones, andA, b, c
are subject to data uncertainty. It is necessary that the robust counterpart is computa-
tionally tractable, that is, solvable in polynomial time with respect to the problem size

12



for RO, which is an applicable methodology for real-life large-scale problems [38].
We note that tractability of the robust counterpart dependson the original optimization
problem and the uncertainty set considered.

The robust optimization problem can be solved efficiently when the uncertainty set has
a special shape. These special shapes for uncertainty sets can be either ellipsoidal or
polyhedral. If ellipsoidal uncertainty sets are applied, the robustification is more suc-
cessful than the employing of polyhedral uncertainty sets.However, the complexity of
optimization problems increases when an ellipsoidal, rather than a polyhedral uncer-
tainty set is applied. Indeed, ourrobust CQP(RCQP) problem becomes a problem of
Semidefinite Programming(SDP) [9, 14, 39] under ellipsoidal uncertainty.

To not increase the complexity of optimization problems involved, in this study, we
only focus on polyhedral uncertainty with different uncertain scenarios. We study our
RCQP problem (robust second-order optimization problem (RSCOP)) and we shall
find out that it remains CQP. Consequently, we will guarantee polyhedral uncertainty
sets by an interval concept for input and output data in our model; our RCQP problem
will be traced back directly as CQP programs.

2.1.4 Multi-Objective Optimization

In general optimization problems, there is a single objective function and the aim is
to find a solution which optimizes the objective function value subject to some con-
straints by using single-objective optimization method. Nevertheless, most real-world
problems have several objectives, and decisions must be made by regarding these ob-
jective functions at the same time [125]. When an optimization problem includes more
than one objective function, this problem is called asMulti-Objective Optimization
(MOO) problem that has the task of finding one or more optimum solutions [34]. If
optimization problems contain multiple objectives, we cannot use single-objective op-
timization methods. In fact, different objectives are commonly conflicting with each
other. Therefore, a solution which performs well in one objective cannot do as good as
in the other objectives [34]. There exist several solutionsthat do not perform suitably
in all objectives. It is not clear which of these solutions are better until the decision
maker computes them. An MOO problem can be written as following form [125]:

minimize
x

(f1(x), f2(x), . . . , fq(x))
Tsuch thatx ∈ X,

wherex ∈ R
n is a feasible solution andX ⊆ R

n is the set of all feasible solutions.
In this problem, there areq objective functions to be minimized. Sometimes the MOO
problem issymbolicallywritten with a (q × n)-matrix A, where theith row of A
corresponds to theith objective function,fi(x).

The pointy = (y1, y2, . . . , yq)
T ∈ R

q such thaty = Ax is the outcome of the solution
x ∈ X. The setX is called decision space, andY =

{
y ∈ R

q
∣
∣ y = Ax,x ∈ X

}
is

called the objective (criterion) space. A pointx is called todominate pointx′ if and
only if the correspondingyq ≤ y′q for all q andyq < y′q for at least oneq. If there is
nox′ ∈ X such thatx′ dominatesx, thenx is callednon-dominatedor efficient. The
complete set of non-dominated solutions is also known as thePareto-optimalset.
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2.1.5 Optimization Softwares

It is important to make distinction between optimization solvers (optimizer) and opti-
mization modeling languages [42]. An optimization solver is a software that carries
out numerical routines to obtain the optimal solution of an optimization problem. Op-
timization modeling languages appeared as user-friendly platforms that permit the user
to specify optimization problems. AMPL and GAMS, communicating with a diversi-
fied amount of solvers, are two popular modeling languages. Also, there are lots of
languages which give modeling interfaces for particular types of optimization prob-
lems or solvers [42]. For example, YALMIP let Matlab users topreprocess SDPs and
CQPs. Then, these are passed to semidefinite solvers like SDPT3 and SeDuMi.

SDPT3 [133] and SeDuMi [127] can handle linear constraints,quasi-convex quadratic
constraints and positive semidefinite constraints. Two of them use a primal-dual inte-
rior points method implied as the centering-predictors-correctors method, and may ex-
ploit sparse matrix structure, making them very efficient [126]. For these semidefinite
programming solvers, creating the inputs may be very time consuming, and can need
substantial background in optimization modeling. YALMIP [82] and PROF which are
obtained as layers on top of these solvers in Matlab permit for intuitive formulation
of SDPs and SOCPs, and help the user retrieve the results from the solvers very eas-
ily [42].

MOSEK is a useful optimizer for linear, quadratic and convexquadratically con-
strained optimization problems, well-known for speed and numerical stability [42].
It enables solvers for the optimization problems which havethe types of the linear,
conic quadratic (CQ), convex quadratic, general convex and mixed integer. MOSEK
optimization tool consists of interfaces to make it easy to employ the functionality
of MOSEK from programming languages such as C, C++, MATLAB Toolbox, Java,
NET, and Python [89]. MOSEK technique has some technical benefits and an opti-
mization tool to solve large-scale mathematical optimization problems, but the prob-
lem size is only limited by the available memory. MOSEK is of an interior-point
optimizer with basis identification and it is well known owing to its excellent speed
and stability [89]. The software uses problem sparsity and structure automatically to
receive the best possible efficiency. It also has both primaland dual simplex optimizers
for Linear Programming (LP) and corrects sensitivity analysis for linear problems. It
has an efficient presolver to decline problem size before optimization. It can tackle
primal and dual infeasible problems in a systematic way [89]. Furthermore, MOSEK
contains tools for infeasibility diagnosis and repair and,it may read and write industry
standard formats such as MPS, LP and XML.

2.2 Dynamical System of Complex Multi-Modal Regulatory Networks

Dynamic systems abound in the real-life practical environment as biological, mechan-
ical, electrical, civil, aerospace, medicine, environmental sciences, finance and econ-
omy and a variety of other systems. Understanding the dynamic behavior of these
systems is of primary interest to scientists as well as engineers. The availability of
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large data sets now allows to gain deeper insights in the dynamic behavior of complex
systems and opens promising avenues for further scientific progress. These systems
often involve two different kinds of data sets in form of certain key or target variables
and additional environmental variables. For a deeper analysis one has to describe and
investigate the interactions and regulating effects between data items of interest and
the environmental items, encoded in the regulation-network. Modeling and anticipa-
tion of such systems and the problem of identifying regulating effects and interactions
between the targets and the other components of the network have a remarkable signif-
icance in the mentioned areas [15, 70]. As these models are based on real-world data,
errors and uncertainty have to be considered.

Examples:

(a) The models under consideration is developed in the contextof modeling and pre-
diction of gene-expression patterns [135, 137, 140, 141, 144, 147]. In these gene-
environment networks, the target variables represent the expression levels of then
genes, whereas them environmental factors denote external items (e.g., radiation or
toxins).

(b) TE regulatory-networks may be extended with eco-finance networks (“eco” abbre-
viating “ecology”) with an important example in the area of CO2-emissions-control;
another example of operational planning and portfolio optimization for natural gas
transportation systems. In [68, 111, 112, 141], the Technology-Emissions-Means Model
(in short: TEM-model) is investigated, which lets a simulation of the cooperative
economic behaviour of countries/enterprises with the purpose of a reduction of CO2-
emissions. Here, the target variables are the emissions that the actors wish to decrease
and the required financial means act as additional environmental items.

2.2.1 Time-Continuous Regulatory Networks

With regard to different stages of modeling we can categorized two situations:
(i) Networks withn targets (by disregarding the environmental factors),
(ii ) Networks withn targets as well asm environmental factors.

For this, we divide the vectorE of concentration levels into two parts and construct
E = (E1,E2, . . . ,En,En+1,En+2, . . . ,En+m)

T , whereE1,E2, . . . ,En refer to then
targets andEn+1, En+2, . . . ,En+m to them environmental factors, respectively. If we
deal with models of type (i),Ei indicates the expression level of targeti andE denotes
the firstn coordinates of thed = n+m-vectorE [147].

A dynamical system ofn targets (without any environmental factors) can be stated by
the continuous differential equation

Ė = A(E)E, (2.8)

where the matrixA can depend onE (cf. [135, 140]).
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To involve environmental factors into continuous model under the presence of noise
and uncertainty we extended in [135, 140] the model from [49]and provided the con-
tinuous equation, equipped with an initial vector:

Ė
(k+1) = A

(k)
E

(k), E(t0) = E
(0). (2.9)

The associated system matrixA(X) is a (d× d)-matrix described by a family of func-
tions which have unknown parameters. Now, intervals present uncertainty in the states,
partially caused by uncertainty in the interactions. We refer to the interactions be-
tween the targets, to the effects between the environment and the targets, or between
environmental factors. The initial valueE(0) = (E

(0)
1 ,E

(0)
2 , . . . ,E

(0)
d )T contains the

interval-valued levels obtained by the first measurement,Ē(t0) = Ē(0). Since this can
result in a large and highly interconnected network, we needto restrict on an approxi-
mate model and network. Here, polynomial, trigonometric, exponential but otherwise
logarithmic, hyperbolic, spline, etc., entries present any kind of a prior information,
observation or assumption, in terms of growth, cyclicity, piecewise behavior, etc.. In
this thesis, we analyze regulatory systems withsplineentries as an advanced case.

2.2.2 Time-Discrete Regulatory Networks

The time-discrete TE regulatory systems under consideration consist ofn targets and
m environmental factors. The expression values of the targetvariables are given by the
vectorX = (X1, X2, . . . , Xn)

T and the vectorE = (E1, E2, . . . , Em)
T denotes the

states of the environmental variables. The intricate interactions and synergistic con-
nections between variables - targets as well environmentalfactors - of the regulatory
system depend on four types of regulating effects, respectively [72, 75]:

(TT) target variable→ target variable,
(ET) environmental factor→ target variable,
(TE) target variable→ environmental factor, and
(EE) environmental factor→ environment variable.

Predictions of the time-dependent states of targetsXj and environmental factorsEi

can be calculated through the following parametrized time-discrete model:

X
(k+1)
j = αT

j0 +
(
X(k)

)T
αTT
j +

(
E(k)

)T
αET
j ,

E
(k+1)
i = αE

i0 +
(
X(k)

)T
αTE
i +

(
E(k)

)T
αEE
i ,

(2.10)

with k ∈ N0. Here,αTT
j , α

ET
j ∈ R

n andαTE
i , α

EE
i ∈ R

m stand for the vectors of
parameters andαT

j0, α
E
i0 ∈ R are intercepts, respectively. The initial vectorsX(0)

andE(0) can be given by the first measurements of targets and environmental factors:

X(0) := X̃
(0)

andE(0) := Ẽ
(0)

.

Theregulatory model(RM) in Eqn. (2.10) depends on(n+m)(n+m+ 1) unknown
parameters. These parameters have to be assessed on the basis of noisy measurements.
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The fundamental idea of our regression analysis is to compare the predictions of (RM)

with the (uncertain) states of targets̃X
(k)

= (X̃
(k)
1 , X̃

(k)
2 , . . . , X̃

(k)
n )T ∈ R

n and en-

vironmental observations̃E
(k)

= (Ẽ
(k)
1 , Ẽ

(k)
2 , . . . , Ẽ

(k)
m )T ∈ R

m (k = 0, 1, . . . , N)
obtained from measurements at sampling timest0 < t1 < . . . < tN . By inserting these
measurements into model (RM) we obtain the following predictions:

X̂
(k+1)
j = αT

j0 +
(
X̃

(k))T
αTT
j +

(
Ẽ

(k))T
αET
j ,

Ê
(k+1)
i = αE

i0 +
(
X̃

(k))T
αTE
i +

(
Ẽ

(k))T
αEE
i ,

(2.11)

wherek = 0, 1, . . . , N − 1. We refer to initial valuesX(0)
j := X̃

(0)

j andE(0)
i := Ẽ

(0)

i ,

as we define the vectors̃X
(k)

=
(
X̃

(k)
1 , X̃

(k)
2 , . . . , X̃

(k)
n

)T
andẼ

(k)
=
(
Ẽ

(k)
1 , Ẽ

(k)
2 , . . . ,

Ẽ
(k)
m

)T
, wherek = 0, 1, . . . , N ; i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

If now the entries of the matrices encoding regulatory network are specified by spline
functions for being more flexible in approximating the data,and if we encounter in-
teraction between the input variables, then this leads us toemploy models that will be
based on (R)MARS and (R)CMARS. Here, splines, as function of the input variable,
are piecewise polynomials. If we only used polynomials, then they would generally
converge to plus or minus infinity while the absolute values of the input variables grow
large.

Since real-world processes usually stay in bounded marginseven though these bounds
are very large, polynomials would require being of a high degree to turn around or os-
cillate enough to stay in that margin. However, it is not easyto work with high-degree
polynomials as the real-world problems are multivariate and this may imply multipli-
cation effects. Instead of this, using splines lets us keep the degree of the polynomial
pieces very low in each dimension. Indeed, splines are quiteflexible, such to say, elas-
tic. We frequently call them smoothing splines even, since they smoothly approximate
the discrete data. Therefore, in this thesis, we analyze time-discrete TE regulatory sys-
tems with spline entries and introduce new regression and classification models that
allow us to define the unknown system parameters by applying the (R)MARS and
(R)CMARS techniques.

2.3 Inverse Problems and Parameter Estimation

An Inverse Probleminvolve to use the actual result of some measurements to figure
out the values of the parameters that characterize the system. In an inverse problem,
one has necessity to make explicit any available a priori information on the model
parameters. One also needs to be careful in the representation of the data uncertain-
ties [3, 128].

Parameter estimation is one of the main tasks of the scientist or engineer. Mathematical
modeling via parameter estimation is one of the approaches that provides a deeper
understanding of the characteristics of a regarded system.These parameters usually
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defined the stability and control behavior of the system. Therefore, prediction of these
parameters from input-output data of the system is an essential step in the analysis of
the dynamic system. Indeed, analysis refers to the process of constructing the system
response to a specific input, given the knowledge of the modelrepresenting the system.
Hence, in this process, knowledge of the mathematical modeland its parameters is
of primer significance. Our problem of parameter estimationbelongs to the class of
“inverse problems” in which the knowledge of the dynamical system is derived from
the input data and the associated derivative of the system [17].

Most attention is drawn to the detailed definition of methodsfor parameter estimation,
involving ordinary and weightedleast-squares(LS) and maximum likelihood with and
without prior information. Least-squares estimation (LSE) is widely preferred to use
for solving inverse problems because they enable to the easiest computations [17]. The
only drawback of these methods is their lack of robustness, i.e., their strong sensitivity
to a small number of large errors (outliers) in a data set. To employ the LS method, the
model should be written on the regression model of the next chapter in Eqn. (2.12).

2.3.1 Least-Squares Estimation

In this section, we consider multiple linear regression model to apply LS method. We
start with describing the multiple regression model and then, we give the LS method
to estimate the parameters of the multiple linear regression model.

In general, the response variableY may be related top regressor variables. With the
observations presented by the data (xk, yk) (k = 1, 2, . . . , N ), the form of the models
is follows:

Yk = α0 + α1xk,1 + αk,2x2 + . . .+ αpxk,p + εk, (2.12)

are called amultiple linear regression modelswith p regression variables. The pa-
rameterα0 means the intercept and the other parametersαj (j = 1, 2, . . . , p) are the
regression coefficients. To select thebest-fitting line for a set of data, the unknown
parameters of the multiple linear regression model,α0, α1, . . . ,αp should be estimated.

LS method is widely applied to predict the parameters in regression models and de-
scribe the statistical properties of estimates. Assume that N ≥ p observations on the
response variable are given asy1, y2, . . . , yN . For each observed responseyk, we have
an observation on each dependent variable and letxk,j indicate thepth observation of
variablexj (j = 1, 2, . . . , p; k = 1, 2, . . . , N). Here, we firstly suppose that true rela-
tionship between the dependent variable and independent variables are linear. We also
suppose that the noise termεk in the model hasE(εk) = 0 andV (εk) = σ2 and that
the εk are uncorrelated random variables [87, 88]. We may write themodel of Eqn.
(2.12) based on observations included as

yk = α0 + α1xk,1 + α2xk,2 + . . .+ αpxk,p + rk,

= α0 +

p
∑

j=1

αjxk,j + rk (k = 1, 2, . . . , N).
(2.13)
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The estimation method of least-squares selects the coefficientsαj in Eqn. (2.13) pro-
vided that the sum of the squares of the errors, calledresiduals, rk is minimized. The
least-squares function is

L =
N∑

k=1

r2k =
N∑

k=1

(yk − α0 −
p
∑

j=1

αjxk,j)
2. (2.14)

Turning this into the matrix notation, the least-squares estimators should satisfy

∂L

∂α
(α̂) = −2XTy + 2XTXα̂ = 0, (2.15)

which simplifies to

XTXα̂ = XTy. (2.16)

Eqn. (2.16) is the matrix form of the least-squares normal equations. To solve the
normal equations, multiply both sides of Eqn. (2.16) by the inverse ofXTX, which
exists ifN ≥ (p+ 1) and the design matrixX has full rank. In this form it is obvious
thatXTX is a symmetric((p+1)×(p+1))-matrix andXTy is a column((p+1)×1)-
vector. The diagonal elements ofXTX are the sums of squares of the elements in the
columns ofX, and the off-diagonal elements are the sums of cross products of the
elements in the columns ofX and the observationsyk [88]. The fitted regression
model is

Ŷ = Xα̂. (2.17)

In scalar notation, the fitted model is

ŷk = α̂0 +

p
∑

j=1

α̂jxk,j (k = 1, 2, . . . , N).

The difference between the real observationyi and the corresponding predicted value
ŷi is the residual (estimation errors),rk = yk − ŷk. The(N × 1)-vector of residuals is
implied by

r = y − ŷ. (2.18)

To develop an estimator of the parameter,σ2, take into account the sum of squares of
the residuals [88]:

SSE =
N∑

k=1

(yk − ŷk)
2 =

N∑

k=1

r2k = rTr. (2.19)

Because ofXTXα̂ = XTy, this last equation can be rewritten

SSE = yTy − α̂TXTy. (2.20)

Eqn. (2.20) is called theerror or residual sum of squares(RSS).
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2.3.2 Regression and Classification

Regression analysis is a mathematical and statistical technique which is very useful for
many types of problems in engineering, science and also finance analyzing the relation-
ship between dependent variable and one or more independentvariables. Regression
analysis is widely used for prediction and estimation and most commonly estimates the
conditional expectation of the dependent variable given the independent variables [87].
There exist many regression methods such as Linear Regression (LR), Logit Regres-
sion, Nonlinear Regression, Generalized Linear Models, Ridge Regression and Non-
parametric Regression. We explained the linear regression model in Subsection 2.3.1.
In that part, we gave the least-squares method to estimate the parameters of multiple
linear regression model. The present part starts with LogitRegression.

2.3.2.1 Logit Regression Models

Multivariate linear regression cannot be used to approximate categorical dependent
variables, while it can be adequately used to investigate the relationship between a
continuous (interval-scale) dependent variable, such as income or examination score.
For that reason, instead of LR, Logit Regression is useful, especially, to model socio-
economic variables [130]. It is commonly employed, especially, in GPLM, to predict
sovereign debt and defaults when the dependent variable is binary, such as “default”
or “nondefault”. Since binary values (proportions) are bounded by 0 and 1, in logit
regression, dependent variables do not show normal distribution properties. However,
it can be assumed as Binomial distribution and, because of a variance ofµ · (1− µ)/n
and a mean ofµ, it is assumed as a special case of Binomial distribution:Bernoulli
distribution, whereµ is the mean and also the probability of an event occurring [130].
In this method, the maximum-likelihood estimation is used after logit transformation
to the dependent variable, using the formula:

E(Y |x) = P (Y = 1|x) = H(xTα) =
1

1 + exp(−xTα)
= µ, (2.21)

wherex ∈ R
n. Here,H is inverse link function (the cumulative distribution function),

α is the unknown parameter vector of the model,µ is the probability of the depen-
dent variable to take value “1” [60]. To estimate the unknownparameter vectorα, a
likelihood function is needed using the Bernoulli assumption:

L(α) =
N∏

k=1

π(xk;α)yk(1− π(xk;α))1−yk , (2.22)

whereπ(xk;α) is the probability of each observation taking the value “1” as dependent
variable with independent variable vectorxj. To facilitate the maximization of the
likelihood function, the natural algorithm is applied [60]:

l(α) =
N∑

k=1

(yk ln(πk(xk;α)) + (1− yk) ln(1− πk(xk;α))). (2.23)
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The unknown parameter vectorα̂ is obtained by solving the following equation:

∇L(α̂)

(

:=
∂lnL
∂α

(α̂)

)

= 0. (2.24)

To optimize the solution, iterative optimization methods,such as Newton-Raphson
type method, can be used.

2.3.2.2 Nonlinear Regression Models

If there is at least one nonlinearly involved parameter in a model, this model is called
as aNonlinear Model. This means that in a nonlinear model at least one derivative
with respect to a parameter must include that parameter. Some examples for nonlinear
regression models are given as follows [121]:

Y = eax+bx
2

+ ε,

Y = ax+ e−bx + ε.
(2.25)

Some examples for nonlinear functions are: exponential functions, logarithmic func-
tions, trigonometric functions, power functions, Gaussian function and Lorentzian
curves. Some functions, such as the exponential or logarithmic functions are assumed
to be linear because they can be transformed. Here, when transformed, standard linear
regression may be performed but should be employed with caution [121]. Those mod-
els which define the growth behavior over time are used in manyareas. In the field
of population biology, growth occurs in organisms, plants,animals, etc. [115]. The
type of model which is needed in a specific situation relies onthe type of growth that
occurs.

In the nonlinear case, parameter estimates can also be constructed by the method of LS
like in linear regression. Minimization of the RSS yields normal equations which can
be nonlinear in the parameters. It is not always possible to solve nonlinear equations
exactly. For this reason, the next alternative is to obtain approximate analytic solu-
tions by using iterative procedures. For this approximate solution, three main methods
are [114]:

(a) Linearization method,
(b) Steepest-Descent method, and
(c) Levenberg-Marquardt’s method.

Thelinearization methodapplies the results of least-squares estimation theory in asuc-
cession of stages, but neither this method nor the steepest descent method is ideal. The
linearization method converges very rapidly provided the vicinity of the true parame-
ter values are reached.However, if initial trial values aretoo far removed, convergence
may not occur at all, whereas thesteepest-descent methodis able to converge on true
parameter values even though initial trial values are far from the true parameter val-
ues [114]. However, this convergence tends to the rather slow at the later stages of the
iterative process.
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The most widely applied technique of computing nonlinear LSestimators isLevenberg-
Marquardt’smethod. This method presents a compromise between the othertwo meth-
ods and combines successfully the best features of both and avoids their serious dis-
advantages. It is good in the sense that it almost always converges and does not “slow
down” at the latter part of the iterative process. The systemis given by [114]1

Yk = f(Xk,α) + εk (k = 1, 2, . . . , N). (2.26)

Here,Yk is thekth observation of the dependent variable,Xk is the input part of the
kth observation:Xk = (Xk,1, Xk,2, . . . , Xk,p)

T regarded as a random vector,α =
(α1, α2, . . . , αp)

T consists of the parameters, andεk is the noise variable. Let the
noise terms be independent and follow anN(α, σ2) distribution. Inserting the data
(xk, yk) (k = 1, 2, . . . , N), the residual sum of squares is given by [114]:

S(α) =
N∑

k=1

(yk − f(xk,α))2, (2.27)

whereα0 = (α0,1, α0,2, . . . , α0,p)
T is the vector of initial parameter values. The algo-

rithm for constructing successive estimates is represented as follows:

(H + τI)(α0 −α1) = g, (2.28)

where
g = ∇S(α0), H = ∇2S(α0). (2.29)

Here,I is the identity matrix andτ is a suitable multiplier.

2.3.2.3 Generalized Partial Linear Models

A particular semiparametric model class of interest are theGeneralized Partial Linear
Models(GPLMs); they extend the Generalized Linear Models (GLMs) [87] in that the
usual parametric terms are enlarged by a nonparametric component. GPLMs do not
force data into any unnatural scale and so, they allow to construct a bipartite model
with linear and nonlinear parts. If the normality and constant variance assumptions are
not satisfied, then this approach can be applied [59].

By using a link function, GPLM makes it possible to search linear and nonlinear rela-
tionships between the mean of the response variable and the linear combination of the
explanatory variables [59]. The mean value of a dependent variable rely on a linear
predictor through a nonlinear link function and allows the response variableY . For,
the ease of exposition, we considerY to follow general model that does not depend on
some observation numberk. In fact, the probability distribution is assumed to be any
member of an exponential family of distributions Generally, a GPLM has the following
form [92]:

E(Y |X,T ) = G(XTα+ γ(T )). (2.30)
1 As we use many mathematical symbols in this thesis, we have a slight abuse of double use of the symbolX,

namely, as a vector of random input variables and as a design matrix, respectively, which should not lead to any
confusion.
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When we use a link functionG = H(−1), which links the mean of the dependent vari-
able to the predictor variables, GPLM, including both parametric and nonparametric
models, can be considered as an additive semiparametric model:

H(µ) = ν(X,T ) = XTα+ γ(T ) =

p
∑

j=1

Xjαj + γ(T ). (2.31)

Here, the vectorsX andT represent our decomposition of variables. WhileX de-
notes anm-variate vector of linear variables,T denotes aq-variate vector of non-
linear variables within a nonparametric model to be estimated. Furthermore,α =
(α1, α2, . . . , αp)

T is the coefficient vector ofX estimated by a linear (logit in our
study) regression model andγ(·) is a smooth function estimated by the nonparametric
model [92].

2.3.2.4 Nonparametric Regression

Nonparametric regression analysis traces the dependence of a response variable,Yk, on
one or several predictors,xk,j (j = 1, 2, . . . , p; k = 1, 2, . . . , N), without specifying
in advance the function which relates the predictors to the response [47]:

E(Yk) = f(xk,1, xk,2, . . . , xk,p) (= f(xk)). (2.32)

For the sake of a compact notation, here, we writeE(Yk) for the conditional expec-
tationE(Yk|xk,1, xk,2, . . . , xk,p). It is supposed that the conditional variance ofYk,
Var(Yk|xk,1, xk,2, . . . , xk,p) is a constant, and that the conditional distribution ofYk is
normal.

Nonparametric regression is differentiated from linear regression, in which the function
relating the mean ofYk to thexkj is linear in the parameters [47]:

E(Yk) = α0 + α1xk,1 + α2xk,2 + . . .+ αpxk,p, (2.33)

and from traditional nonlinear regression, in which the function relating the mean of
Y to thexi, though nonlinear in its parameters, is specified clearly,

E(Yk) = f(xk,1, xk,2, . . . , xk,p;α1, α2, . . . , αp) (= f(xk,α)). (2.34)

The easiest use of nonparametric regression consists in smoothing scatterplots. Three
splines widely applied methods of nonparametric regression are kernel estimation,
local-polynomial regression that is a generalization of kernel estimation, and smooth-
ing [47]. The generalization of nonparametric regression to many predictors is math-
ematically straightforward. However, it is often problematic in practice.

(i) Multivariate data are affected by the so-calledcurse of dimensionality: Multidimen-
sional spaces grow exponentially sparser with the number ofdimensions, requiring
very large samples to estimate nonparametric regression models with several predic-
tors [47].
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(ii ) It is difficult to visualize a regression surface in more than three dimensions (i.e.,
for more than two predictors) though slicing the surface maybe of some help.Additive
regression modelsare an alternative to unconstrained nonparametric regression with
many predictors. This regression model has the following form [47]:

E(Yk) = γ + f1(xk,1) + f2(xk,2) + . . .+ fp(xk,p) (2.35)

(k = 1, 2, . . . , N ). Here,fj are smooth partial-regression functions, estimated with
smoothing splines or by local regression. AnAdditive Model(AM) can be extended in
two directions:

1. To include interactions among specific predictors; for instance,

E(Yk) = γ + f1(xk,1) + f23(xk,2, xk,3), (2.36)

which is not as general as the unseparated modelE(Yk) = γ + f(xk,1, xk,2, xk,3).

2. To include linear terms, as in the model

E(Yk) = γ + α1xk,1 + f2(xk,2), (2.37)

semiparametric modelsare useful for containing dummy regressors or other contrasts
derived from categorical predictors. There exist some other models such as projection-
pursuit regression,Classification and Regression Trees(CART) andMultivariate Adap-
tive Regression Spline MARS. In MARS, functions are of a multiplicative nature and
nonsmooth.A main issue in nonparametric regression is the selection of smoothing pa-
rameters such as the span in kernel and local polynomial regression, the roughness
penalty in smoothing-spline regression or equivalent degrees of freedom for any of
those [47]. The statistical balance is between variance andbias, and some methods
such as Cross-Validation (CV) aim to choose smoothing parameters to minimize esti-
mated mean-square error, e.g., the sum of squared bias and variance.

2.3.3 Multivariate Adaptive Regression Splines

MARS introduced by Friedman in 1991 [48] may be presented as anextension of
linear models that “automatically” models nonlinearitiesand interactions. It generates
a multivariate-additive (multiplicative) model in a two-stage process which consists of
forward and backward stage. In theforward stage, MARS findsbasis functions(BFs)
that are added to the model by a fast searching algorithm and constructs a possibly
large model that overfits the dataset. The process stops whenthe model reaches the
maximum number of BFs. However, this model at the same time contains BFs which
contribute most and least to the overall performance. Thus,this forward model is quite
complex and includes many incorrect terms. In thebackwardstage, the overfit model
is pruned to decrease the complexity while supporting the overall performance with
respect to the fit to the data. In that stage, the BFs which contribute smallest to the
increase in the residual sum of squares are removed from the model at each stage and,
eventually, an optimally estimated model is generated [48,60]. MARS uses expansions
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of piecewise linear BFs created by dataset. The BFs,[x− ϕ)]+ and[x− ϕ]−, have the
following form [60]:

[x− ϕ]+ =

{

x− ϕ, if x > ϕ

0, otherwise
, [x− ϕ]− =

{

ϕ− x, if x < ϕ

0, otherwise
, (2.38)

whereϕ is a univariate knot obtained from the dataset. These two functions are
called truncated linear functions. Each function is piecewise linear, with a knot at
the valueϕ, and both function together are called areflected pair. The aim is to
construct reflected pairs for each inputxj (j = 1, 2, . . . , q) with q-dimensional knots
ϕk = (ϕk,1, ϕk,2, . . . , ϕk,q)

T at each observed valuexk,j (k = 1, 2, . . . , N). Thus, the
collection of BFs is written by a set ofS, defined as

S :=
{[
xj − ϕ

]

+
,
[
xj − ϕ

]

−
| ϕ ∈ {x1,j , x2,j , . . . , xN,j}, j = 1, 2, . . . , q

}

, (2.39)

whereN is the number of observations andq is the dimension of the input space. There
are2Np BFs if all of the input values are distinct. Inthe forward stageof MARS, the
model that fits the data is built by using BFs from the setS and their products.

Note. From now on we confine ourselves to a generic responseY and a generic noise
ε, which do not depend on the particular observation numberk.

So, the model has the form

Y = α0 +
M∑

m=1

αmϑm(x
m) + ε, (2.40)

with an underlying vectorx = (x1, x2, . . . , xq)
T . Here,ε is uncorrelated random error

term that is supposed to have a normal distribution with zeromean and finite variance,
M is the number of BFs in the current model. Moreover,ϑm(x

m) are BFs from the
setS in Eqn. (2.39) ormultivariateproducts of two or more such functions,xm is a
subvector ofx that contributes to the the functionϑm, andαm are the unknown coeffi-
cients for the constant 1(m = 0) or for themth BF. Given the observations represented
by the data(xk, yk) (k = 1, 2, . . . , N), the form of themth BF is as follows [60]:

ϑm(x
m) :=

Km∏

j=1

[sjm · (xv(j,m) − ϕv(j,m))]+. (2.41)

Here,Km is the number of truncated linear functions multiplied in themth BF,xv(j,m)

is the input variable corresponding to thejth truncated linear function in themth BF,
ϕv(j,m) is the knot value corresponding to the variablexv(j,m) andsjm = ±1.

To generate the model, the MARS forward stepwise algorithm starts with the constant
functionT0(x0) = 1 to estimateα0, and all functions in the setSare candidate func-
tions. Possible forms of the BFsϑm(xm) are 1,xn, [xn−ϕi]+, xnxl, [xn−ϕi]+xl and
[xn − ϕi]+[xl − ϕj]+ [70, 124]. For each BF, input variables cannot be the same in
the MARS algorithm. Therefore, the BFs above use different input variables,xn and
xl, and their knots,ϕi andϕj. At each stage, all products of a functionϑm(xm) in
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the model set are regarded as a new BF and this term is added to the model set. That
term which produces the largest decrease in the training error contains the following
form [60]:

αM+1ϑm(x
m) · [xj − ϕ]+ + αM+2ϑm(x

m) · [ϕ− xj]+.

Here,αM+1 andαM+2 are coefficients and they are determined by least-squares es-
timation, along with all otherM+1 coefficients in the model. Then, the “winning”
products are added to the model and the process stops as soon as the model set reaches
some present maximum number of terms. At the end of this forward stepwise process,
a large model of the form is obtained. This model does typically overfit the data, and
so a backward deletion procedure is applied.

The backward stepwise algorithmremoves the terms that contribute the smallest in-
crease in the residual squared error from the model at each stage, and this iterative
procedure continues until an optimal number of effective terms are present in the final
model [48]. So, an estimated best modelf̂β of each number of termsβ is produced at
the end of this process. In the MARS model,generalized cross-validation(GCV) is
used to find the optimal number of termsβ. It also shows the lack of fit when using
MARS. The GCV criterion defined by Friedman [48] is defined as follows:

LOF (f̂β) = GCV (α) :=

∑N
k=1(yk − f̂β(xk))

2

(1−M(β)/N)2
. (2.42)

Here,M(β) is the effective number of parameters in the model, andN is the number
of sample observations, i.e., of the data [60].

2.3.4 Tikhonov Regularization

A problem is defined asill-posed problemif a solution is not existing or not unique or
if it is not stable under perturbation on data - that is, if an arbitrarily small perturbation
of the data can cause an arbitrarily large perturbation of the solution [55]. Tikhonov
Regularization(TR) is the most common and well-known form to make these problems
regular and stable. For statistics, it is also known asridge regression.

TR method searches the regularized solution as a minimizer of a weighted combina-
tion of the residual norm and a side constraint. The regularization parameter controls
the weight given to the minimization of the side constraint.Therefore, the quality of
the regularized solution is controlled by the regularization parameter. An optimal reg-
ularization parameter should fairly balance between the size of the residual error and
the stabilizing of the approximate solution [69]. A suitable value of the regularization
parameter is considered and computed when the norm of the error in the data or the
norm of the solution of the error-free problem are available.

The regularization parameter brings the optimal rate of convergence for the approx-
imations, which are generated by the application of TR to ill-posed equations [93].
However, when we derive rates of convergence, we must make assumptions about the
nature of the stabilization (i.e., the choice of the semi norm in the TR) and the regu-
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larity imposed on the solution. In fact, there is atrade-off between stabilization and
regularity in terms of the rate of convergence.

TheL-curve criterionis a practical method for choosing regularization parameter when
data are noisy. The method is based on the plot of the norm of the regularized solution
versus the norm of the corresponding residual [56]. The ideaof the L-curve criterion
is to select a regularization parameter related to the characteristic L-shaped corner of
the graph. The corner shows where the curve is closest to the origin and where the
curvature is maximal. However, when it is plotted in a linearscale, it is difficult to
inspect the features of the L-curve because of the large range of values for the two
norms. The features become easier to inspect when the curve is plotted in the double
logarithmic scale [56]. Therefore, in many cases it is better to analyze the L-curve in
the log-log scale.

For TR, the L-curve is important in the analysis of discrete ill-posed problems. The
L-curve shows how the regularized solution changes as the regularization parameter
changes. The corner of the L-curve corresponds to a good balance between the min-
imization of the sizes, and the corresponding regularization parameter is a good one,
because a distinct L-shaped corner of the L-curve is locatedexactly where the solu-
tion changes, from being dominated by the regularization errors to being dominated by
right-hand side errors [69].

Tikhonov solution can be expressed easily in terms of theSingular Value Decomposi-
tion (SVD) of the coefficient matrixA of regarded linear systems of equations

Ax = b, (2.43)

whereA is an ill-conditioned(N×n)-matrix. The standard approach to approximately
solve this system of equations is known as (linear) LS estimation. It seeks to minimize
the residual‖b−Ax‖22. There can be infinitely many solutions for a general linear LS
problem. If it is considered that the data contain noise, in that situation, the data points
cannot be fitted exactly because of noise. It becomes evidentthat there can be many
solutions, which can adequately fit the data in the sense thatthe Euclidean distance
‖b−Ax‖2 is smallest. Thediscrepancy principle[5] can be used to regularize the
solution of a discrete ill-posed problem based on the assumption that a reasonable
level for c = ‖b−Ax‖2 is known.

Different kinds of TR are represented as minimization problems. Under the discrep-
ancy principle, all solutions with‖b−Ax‖2 ≤ c are considered, and we select the
one that minimizes the norm ofx:

minimize
x

‖x‖2 ,
subject to‖b−Ax‖2 ≤ c,

(2.44)

or we minimize the norm of residual vector under some tolerance with respect to the
norm ofx:

minimize
x

‖b−Ax‖2 ,
subject to‖x‖2 ≤ d.

(2.45)
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In the first optimization problem in Eqn. (2.44), any important nonzero feature that
appears in the regularized solution increases‖x‖2. However, these features exist in the
solution because they are necessary to fit the data. Therefore, the minimum of‖x‖2
guarantee that unimportant features should be removed in the regularized solution.
As c increases, the set of feasible models expands, and the minimum value of‖x‖2
decreases.

In the second optimization problem in Eqn. (2.45), it is wanted to choose the minimum
norm solution among those parameter vectors, which adequately fit the data, because
any important nonzero feature that appears in the regularized solution must not be
ignored to fit the data, and unimportant data must be removed by the regularization.
As d decreases, the set of all feasible solutions becomes smaller, and the minimum
value of increases.

There is also a third option which is considered a dampened LSproblem:

minimize
x

‖b−Ax‖22 + λ2 ‖x‖22 , (2.46)

arising when the method of Lagrange multipliers is applied to problem in Eqn. (2.45).
Here,λ is the tradeoff parameter between the first and the second part. The problems
in Eqns. (2.44)-(2.46) have the same solution for some appropriate choice of the values
α, β andλ [5].

To solve different kinds of TR problem discussed above, we use Singular Value De-
composition (SVD) to have a solution that minimizes the objective function including
‖x‖2. However, in many cases, it is preferred to achieve a solution that minimizes
some other measure ofx, such as the norm of first- or second-order derivatives. These
derivatives are, in an approximative sense, given by first- or second-order difference
quotients ofx which is considered as a function that is evaluated at the discrete points
k andk+ 1. These difference quotients approximate first- and second-order derivates;
altogether, they are comprised by productsLx of x with matricesL. These matrices
represent the discrete differential operators of first- andsecond-order, respectively [5].
Hereby, the optimization problem is of the following form:

minimize
x

‖b−Ax‖22 + λ2 ‖Lx‖22 . (2.47)

The optimization problem of Eqn. (2.47) turns into the optimization problem of Eqn.
(2.46) whenL = I. Then, it is calledzeroth orderTR, which is a special case of Eqn.
(2.47). Generally, Eqn. (2.47) consists of high order TR problems. Although zeroth-
order TR is solved based on SVD, to one concerned with higher-order TR,generalized
SVD is used. In many situations, to obtain a solution which minimizes some other
measurex, the norm of the first- or second-order derivatives is preferred [57].
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CHAPTER 3

NEW ROBUST ANALITIC TOOLS

In the previous chapter, we mentioned about some mathematical methods that are
used in this thesis. In present chapter, we introduce our robust tools, R(C)MARS
and R(C)GPLM, in theory and method.

3.1 Robust (Conic) Multivariate Adaptive Regression Splines

3.1.1 Introduction

(C)MARS models depend on parameters, and small perturbationsin the data may re-
sult in different parameter estimates, and hence, may bringabout unstable solutions.
Indeed, measurement error that affects the independent variables in regression models
is a common problem in many scientific areas. It is well known that the implications
of ignoring measurement errors in inferential procedures may be substantial, often re-
sulting in unreliable results [8, 30]. In order to reduce theestimation variance while
keeping the efficiency as high as possible, we robustified the(C)MARS method by
using approaches such as scenario optimization and robust counterpart. We are inter-
ested in the multicriteriatradeoff (antagonism) betweenaccuracyandrobustness. In
the line of our research [98, 99, 100, 101, 103, 104], robustness has become, in some
sense, an extension of stability or regularity. Stability also means a small complexity
of the model, or: asmall varianceof the estimation.

ThroughRCMARSwe are also permitted to involve uncertainty in the input variables
into regression and classification modeling; that uncertainty is typical for real-world
challenges, too. In fact, in RCMARS, we have implied uncertainty in both input and
output variables. This means that in RCMARS, there is a double way of robustifica-
tion: (a) The regularization (stabilization) in integral form thatexpresses itself in the
involvement of the (squared) first- and second-order partial derivatives of the multivari-
ate basis functions; after discretization of the integrals, we arrive at a TR problem [5]
with first- and second-order complexity terms. This TR problem is turned into a CQP
problem [129, 138]. (b) The robustification is performed with respect to the input
variables and output or response variable, all of them with their own uncertainty sets.

In (a), via those first- and second-order terms, we aim at a flat model and a one where
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high energyin the model (curvature) is penalized so that we could speak of a “damp-
ened” or “tamed” model, respectively. This also means that in RCMARS, we have, in
addition to the robustification, an additional support of the robustification agenda, an
increaseof robustness, whereby that support is of a fine-tuned kind ofcharacter which
is parametric through the bounds of complexity in the CQP program. For our RC-
MARS, we conduct a penalization in the form of TR and study it asa RCQP problem
in order to achieve a reduction in the complexity of the regression method MARS that
especially means sensitivity with respect tonoisein the data.

In contrast, in ourRMARS, we only have the robustification step (b), whereas the
aforementioned fine-tuning option (a) dropped. At the first glance, this seems to be a
qualitative loss. However, RCMARS is leading to a very large computational effort,
and parametric studies which are enabled by part (a) do even increase those compu-
tational costs. It belonged to the main ideas of MARS and CMARS tohave (I ) a
“doable” methods, even with an effect in (II ) a variance reduction for the estimated
model. Here, we pay tribute to these important aims (I ) and (II), in the form of our
simplified and “handy” alternative of RCMARS, called RMARS.

Briefly, (C)MARS are robustified through the robust optimization approach, which
is some rigorous kind of regularization in the input and output domain. We have
some generalization effect now in the part of

∥
∥y − ϑ(b)α

∥
∥
2

2
, when we conduct our

R(C)MARS for both input and output variables by including uncertainty, via RO [10,
11, 14, 15]. However, in RCMARS, we need not to make any change in the additional
integration term on the complexity, or “energy”. By introducing R(C)MARS, we aim
to decrease theestimation variance.

3.1.2 The Procedure

The MARS [60] method supposes the following general model

Y = f(X) + ε, (3.1)

whereY is the response variable;X = (X1, X2, . . . , Xq)
T is a vector of predic-

tor variables;ε is an additive stochastic component with zero mean and finitevari-
ance. It aims to build reflected pairs for each inputXj (j = 1, 2, . . . , q) with q-
dimensional knotsϕ = (ϕ1, ϕ2, . . . , ϕq)

T at or just nearby each of the input data
vectorsxk = (xk,1, xk,2, . . . , xk,q)

T (k = 1, 2, . . . , N), whereq andN represent the
number of predictors and observations, respectively. For this purpose, first, the set of
BFs is formed by an intensive but a fast search procedure as follows:

S :=
{[
Xj − ϕ

]

+
,
[
Xj − ϕ

]

−
| ϕ ∈ {x1,j , x2,j , . . . , xN,j}, j = 1, 2, . . . , q

}

. (3.2)

Each function inS, a reflected pair, is piecewise linear with a knot value,ϕ. Then,Y
becomes

Y = α0 +
M∑

m=1

αmϑm(x
m) + ε. (3.3)
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Here,ϑm (m = 1, 2, . . . ,M) is a basis function (BF) fromS or products of two or
more such functions:αm is the unknown coefficient associated with themth BF (m =
1, 2, . . . ,M), wherem equals zero for the constant one andM is the number of BFs.
When the data is represented by(xk, yk) (k = 1, 2, . . . , N), themth BF takes the
following form

ϑm(x
m) :=

Km∏

j=1

[sjm · (xv(j,m) − ϕv(j,m)]+. (3.4)

In the CMARS method, to estimateY in Eqn. (3.1), instead of the backward stepwise
algorithm of MARS, an alternative method [129] is utilized, in which penalty terms
are used in addition to the least-squares estimation (LSE) to control the lack-of-fit with
regard to the complexity and stability. Consequently, thePenalized Residual Sum of
Square(PRSS) with Mmax BFs is formed as

PRSS :=
N∑

k=1

(yk −αTϑ(bk))
2 +

Mmax∑

m=1

φm

2∑

|θ|=1
θT=(θ1,θ2)

∑

r<s
r,s∈V (m)

∫

Qm

α2
m[D

θ
r,sϑm(t

m)]2dtm,

(3.5)
whereϑ(bk) := (1, ϑ1(x

1
k), . . . , ϑm(x

Mmax
k )); V (m) := {v(k,m) | j = 1, 2, . . . , Km}

is the variable set associated with themth BF calledϑm; tm = (tm1 , . . . , tmKm
)T

represents the vector of variables that contribute to themth BF,ϑm; α is an((Mmax +
1)×1)- parameter vector to be estimated using the data points;φm ≥ 0 are thepenalty
parameters(m = 1, 2, . . . ,Mmax). Moreover,Qm is some appropriately largeKm

-dimensional parallelpipe where the integration occurs. Furthermore,

Dθ
r,sϑm(t

m) = (∂|θ|ϑm)/(∂
θ1tmr ∂

θ2tms )t
m

expresses the first- or second-order derivatives, whereθ = (θ1, θ2)
T , |θ| := θ1+θ2 and

θ1, θ2 ∈ {0, 1}. Since it is not easy to evaluate the multi-dimensional integrals in Eqn.
(3.5), a discretization is applied to approximate the integral

∫

Qm α
2
m[D

θ
r,sϑm(t

m)]2dtm

(cf. [98, 129] for more details). Therefore, the approximation of PRSS in Eqn. (3.5)
can be rearranged as

PRSS ≈
∥
∥y − ϑ(b)α

∥
∥
2

2
+φ
∥
∥Lα

∥
∥
2

2
, (3.6)

whereL is an((Mmax + 1) × (Mmax + 1))-diagonal matrix. Afterwards, thePRSS
problem turns into a classicalTikhonov Regularization(TR) [5] problem if we employ
only one penalty factorφ > 0, φ = λ2 for someλ ∈ R instead of using different
penalty parameters. So, the PRSS form in Eqn. (3.6) may be formulated as a CQP [13,
37] and, using an appropriate boundK ≥ 0, the following optimization problem can
be stated [138]:

minimize
w,α

w

subject to
∥
∥y − ϑ(b)α

∥
∥
2
≤ w,

∥
∥Lα

∥
∥
2
≤

√
K.

(3.7)

Here, the choice of the parameterK has to be the outcome of a careful learning process,
with the help of model-free or model-based methods [5].
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Remark 1: In future studies, we go on facing the complexity of our model and trying
to turn all model-free, e.g., trial-and-error, sides of ourtreatment, into a model-based
form. In particular, we plan to reinterpret a parametric bound such aK as another
state variable (unknown), including it into the objective function also. Herewith, we
would still remain in our “conic” setting of CQP. This could lead to another support and
strengthening of the model-basedness of our approach and would make it even more
rigorous mathematically. Modern continuous and global optimization will certainly be
a key-technology for this. We can also diversify our optimization by differentiating
between different values of the penalty parameters. This would lead to furthercontrol
variables.

In R(C)MARS, we assume that the input and output variables of ourmodel arerandom
variablesall. They lead us touncertainty sets; those are assumed to containconfidence
intervals(CIs) (we refer to [100, 103] for more details). For CMARS, the largemodel
that has the maximum number of BFs,Mmax, is created by Salford MARSR© [85].
The following general model represents the relation between both therandominput
variables and the response, itself being affected with noise:

Y = f( X
︸︷︷︸

noisy variable

) + ε, (3.8)

whereX = (X1, X2, . . . , Xq)
T is a vector of random predictor variables. The ran-

dom variablesXj are assumed to be normally distributed. Here, the followinggeneral
model is considered for each inputXj [99, 100]:

Xj = x̄j + ξj. (3.9)

When considering that we haveq-dimensional input data and incorporate a “perturba-
tion” (uncertainty) into the input data, each input data vectorxk = (xk,1, xk,2, . . . , xk,q)

T

is represented as⌣xk = (
⌣
xk,1,

⌣
xk,2, . . . ,

⌣
xk,q)

T , including the perturbation∆k = (∆k,1,
∆k,2, . . . ,∆k,q)

T (k = 1, 2, . . . , N). Since, in each coordinate, some valuesxk,j can
be outlier, but the perturbation of an outlier is not meaningful, for our problem, we,
instead, refer tōxj = (1/N) ·∑N

k=1 xkj, the mean (average) of the input vectorxj, as
the reference value wherever we usexj. Here,∆k is a generic element ofU1, which
is the uncertainty set for our input data. Herewith, our new values of piecewise linear
BFs are shown in the following:

xk,j → ⌣
xk,j;

⌣
xk,j = x̄j +∆k,j, |∆k,j| ≤ ρk,j (k = 1, 2, . . . , N ; j = 1, 2, . . . , q),

(3.10)
wherexk,j is an noisy input value;⌣xk,j is an input value that has uncertainty;∆k,j is
a perturbation ofxk,j; ρk,j is the semilength of the CI for input data, and the amount
of perturbation in each dimension is restricted byρk,j. Similarly, when we incor-
porate a “perturbation” (uncertainty) into output data, our output data vectory =
(y1, y2, . . . , yN )

T is stated as⌣y = (
⌣
y1,

⌣
y2, . . . ,

⌣
yN)

T including the perturbationτ =
(τ1, τ2, . . . , τN)

T . As, again, some valuesy can be outlier and the perturbation of an
outlier is not meaningful, for our problem, we refer toȳ = (1/N) ·∑N

k=1 yk, the av-
erage of the output vectory, as the reference value wherever we refer toy. Here, we
restrict the vectorτ to be elements ofU2, being the uncertainty set for our output data.
So, our new output values can be represented by [103]:

yk → ⌣
yk;

⌣
yk = ȳ + τk, |τk| ≤ νk (k = 1, 2, . . . , N). (3.11)

32



Here, the amount of perturbation is limited byνk which is the semilength of the CI for
the output data. In order to robustify (C)MARS, we employ some robust optimization
on the BFs provided by the MARS model. MARS method constructs expansions of
piecewise linear BFs; by this, it will be based on the new dataset that includes un-
certainty. Aiming at the variable⌣x we prefer the following notation for the piecewise
linear BFs [60]:

c+(
⌣
x, ϕ) = [

⌣
x− ϕ]+, c−(

⌣
x, ϕ) = [

⌣
x− ϕ]−. (3.12)

Incorporating the uncertainty setsU1 ⊆ R
N×Mmax andU2 ⊆ R

N , determined below in
Subsection 3.1.3, into the data(⌣xk,

⌣
yk), the multiplicative form of themth BF can be

stated as

ϑm(
⌣
xmk ) =

Km∏

j=1

[
⌣
xk,v(j,m) − ϕv(j,m)]± (k = 1, 2, . . . , N). (3.13)

When estimating the BFs[⌣xk,v(j,m) − ϕv(j,m)]± in Eqn. (3.13), we can evaluate them
by the following special terms of estimation [100]:

[
⌣
xk,v(j,m) − ϕv(j,m)]± ≤ [xk,v(j,m) − ϕv(j,m)]± + [∆k,v(j,m) + (±Ak,v(j,m))]±. (3.14)

Here, Ak,v(j,m) is interpreted and employed ascontrol parameters. If we consider the
risk friendly case, we select the value of Ak,v(j,m) between0 and the absolute value
of Ak,v(j,m), i.e.,

⌣

Ak,v(j,m) ∈ [0, |Ak,v(j,m)|]. Now, to simplify the notation, we still
preserve the notion Ak,v(j,m) for

⌣

Ak,v(j,m). To estimate the valuesϑ(xk) andϑ(⌣xk), we
can employ Eqn. (3.13) in the subsequent form, where all the “+” and “-” signs belong
to each other, respectively:

Km∏

j=1

[
⌣
xk,v(j,m) − ϕv(j,m)]±

︸ ︷︷ ︸

=:ϑm(
⌣
xk)

≤
Km∏

j=1

[xk,v(j,m) − ϕv(j,m)]±

︸ ︷︷ ︸

=:ϑm(xk)

+

∑

A⊆
6=
{1,...,K}

∏

a∈A

[xka − τa]±
∏

b∈{1,...,K}/A

[(±Akb) + ∆kb]± (k = 1, 2, . . . , N).

(3.15)

Then, for each BF, the uncertainty value|ukm| can be estimated in the subsequent way:

|ukm| ≤
∑

A⊆
6=
{1,...,K}

∏

a∈A

|xka − τa|
︸ ︷︷ ︸

≤Dkaρka

∏

b∈{1,...,K}/A

(| ± Ak,v(j,m) +∆k,v(j,m)|)
︸ ︷︷ ︸

≤γkb+ρkb

≤
∑

A⊆
6=
{1,...,K}

∏

a∈A

Bkaρka
∏

b∈{1,...,K}/A

(γkb + ρkb)

≤
∑

A⊆
6=
{1,...,K}

∏

a∈A

Bka
︸︷︷︸

≤Bk

∏

a∈A

ρka
∏

b∈{1,...,K}/A

(γkb + ρkb)

≤
∑

A⊆
6=
{1,...,K}

B|A|−1
k

∏

a∈A

ρka
∏

b∈{1,...,K}/A

(γkb + ρkb),

(3.16)
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where the amount of the value of Ak,v(j,m) is restricted byγ, the cardinality of the set
A has been denoted through|A|, and Bk is also considered to be applied as acontrol
parameter. The value of Bk is equal to 2 in cases without outliers, but for outliers, it
will be greater than 2. For such a case, we will have to select adifferent value for Bk.
Now, for RCMARS, PRSS in Eqn. (3.6) will have the following approximate repre-
sentation:

PRSS ≈
∥
∥⌣
y − ϑ(

⌣

b)α
∥
∥
2

2
+φ
∥
∥Lα

∥
∥
2

2
. (3.17)

Herewith, thePRSSminimization problem again looks like a classical TR problem [5]
with φ > 0, i.e., φ = λ2 for someλ ∈ R, and then, it can be coped with through
CQP [13, 37]. The second (complexity) part of the PRSS approximation remains the
same as it is in CMARS after we incorporate a “perturbation” into the real input data
xk, in each dimension, and into the output datayk, since we do not make any changes
for the function in the multi-dimensional integrals.

3.1.3 Polyhedral Uncertainty and Robust Counterparts

As it is known, robustification is more successful when ellipsoidal uncertainty sets
are employed, rather than polyhedral uncertainty sets. Nevertheless, using ellipsoidal
uncertainty sets can increase the complexity of our optimization models [148]. We
studyrobust CQP(RCQP)(or robust second-order optimization problem, RSCOP) un-
der polyhedral uncertainty and we shall find out that it equivalently means astandard
CQP. To analyze the robustness problem, we assume that the givenmodel uncertainty
is represented by a family of matricesϑ(⌣x) = ϑ(x)+U and vectors⌣y = y+v, where
U1, containingU , andU2, containingv, are bounded sets which need to be specified
first. Here, the uncertainty matrixU ∈ U1 and uncertainty vectorv ∈ U2 are of the
formats

U =







u1,1 u1,2 . . . u1,Mmax

u2,1 u2,2 . . . u2,Mmax

...
...

.. .
...

uN,1 uN,2 . . . uN,Mmax







andv =







v1
v2
...
vN






. (3.18)

As we do not want to increase the overall complexity of our optimization problems,
we select the uncertainty setsU1 andU2 of typepolyhedralfor both input and output
data in our model, to study our robustness problem. Based on these sets, therobust
counterpartof CMARS is defined as

minimize
α

max
W∈U1,
z∈U2,

∥
∥z −Wα

∥
∥
2

2
+φ
∥
∥Lα

∥
∥
2

2
. (3.19)

with someφ ≥ 0. Now, we can receive therobust counterpartof MARS if we drop
the second part (complexity part) of Eqn. (3.19). Here, the uncertainty setU1 is a
polytope with2N ·Mmax verticesW 1,W 2, . . . ,W 2N·Mmax

. In fact, although it is not a
known singleton, it allows a representation:

U1 =

{
2N·Mmax
∑

κ=1

ηκW
κ | ηκ ≥ 0 (κ ∈ {1, 2, . . . , 2N ·Mmax}),

2N·Mmax
∑

κ=1

ηκ = 1

}

, (3.20)
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i.e., U1 = conv{W 1,W 2, . . . ,W 2N·Mmax} is the convex hull. Furthermore,U2 is a
polytope with2N verticesz1, z2, . . . , z2N having the form

U2 =

{
2N∑

µ=1

ψµz
µ|ψµ ≥ 0 (µ ∈ {1, 2, . . . , 2N}),

2N∑

µ=1

ψµ = 1

}

, (3.21)

whereU2 = conv{z1, . . . , z2N} is the convex hull. Here, any uncertainty setsU1 and
U2 can be represented as a convex combination of verticesW κ (κ ∈ {1, . . . , 2N ·Mmax})
andzµ (µ ∈ {1, . . . , 2N}) of the polytope, respectively. The entries are found to
have become intervals. Therefore, our matrixW and vectorz with uncertainty are
lying in the Cartesian product of intervals that are parallelpipes (see [98, 100] for more
details). To give an easy illustration, the Cartesian product of intervals in general and,
especially, for three entries can be represented by Figure 3.1.

Figure 3.1: Cartesian product of intervals for three entries[98].

Here, we represented the matrixW as a vector with uncertainty which generates a
parallelpipe. We have a(N ×Mmax)-matrixW = (wkj) k=1,2,...,N

j=1,2,...,Mmax

and we can write

it as a vectort = (tl)l=1,2,...,N ·Mmax , wheretl := ukj with l = k + (j − 1)N . So,
our matrixW can be canonically represented as a vectort = (t1, t2, . . . , tN ·Mmax)

T by
putting the columns ofW behind each other.

Remark 2: Whenever we use polyhedral uncertainty sets, we have a drawback in
practice since there may be too many vertices to handle them computationally or we
might not know them exactly. That drawback comes from a very high complexity and
consists in the resulting storage and and computing problems at common workstations.
In fact, with polyhedral uncertainty, our matrixW represented as a vectort has a
very big dimension in our applications and our computer capacity is not enough to
solve our optimization problem withW . Because of this, we need to discuss weak
robustification case in our applications (cf. Subsections 3.1.5, 5.2.1, 6.1.7). That weak
robustification encounters a data-wise robustification which refers to all the other data
according to the interval midpoints (“ceteris paribus”), and it eventually addresses the
worst case with respect to all the data-wise robustifications.
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3.1.4 Robust Conic Quadratic Programming with Polyhedral Uncertainty

ForRCMARSmodel, the optimization problem is written as follows:

minimize
w,α

w

subject to
∥
∥⌣

y − ϑ(
⌣

b)α
∥
∥
2
≤ w,

∥
∥Lα

∥
∥
2
≤

√
K,

(3.22)

with some parameterK ≥ 0. Via the height variablew (by an epigraph argument), re-
calling thatU1 andU2 are polytopes, described by their vertices in Eqns. (3.20)-(3.21),
the RCQP for our optimization problem is equivalently represented as a standard CQP
in the following form:

minimize
w,α

w

subject to
∥
∥Wα− z

∥
∥
2
≤ w ∀ W

︸︷︷︸

=
∑2N·Mmax

κ=1 ηκW
κ

∈ U1, z
︸︷︷︸

=
∑2N

µ=1 ψµzµ

∈ U2,

∥
∥Lα

∥
∥
2
≤

√
K.

(3.23)

Here,U1 andU2 are polytopes which are described by their vertices as

U1 = conv{W 1,W 2, . . . ,W 2N·Mmax}, U2 = conv{z1, z2, . . . , z2N}. (3.24)

Therefore, our RCQP can be equivalently stated by a standard CQPas follows:

minimize
w,α

w

subject to
∥
∥zµ −W κα

∥
∥
2
≤ w (k = 1, 2, . . . , 2N ;κ = 1, 2, . . . , 2N ·Mmax),

∥
∥Lα

∥
∥
2
≤

√
K.

(3.25)

For ourRMARSmodel, we ignore the second constraint of RCQP in Eqns. (3.22),
(3.23) and (3.25). Afterwards, we can solve our RCQP by using MOSEKTM [89]
software program. Here, we recall that the values

√
K are determined by a model-free

method (cf. Remark 1). When we employ theK values in our RCMARS code and
solve by using MOSEK, we apply theK value that has the minimum value of PRSS
in Eqn. (3.17).

3.1.5 Numerical Experience with RMARS in the Financial Economics

As a numerical experiment that may serve to illustrate the implementation of RMARS
algorithm developed, in the study [103], we use a small dataset as a sample from the
real-world financial market data. It is chosen for our empirical part as time-series data
from the website of Central Bank of the Republic of Turkey [27]. The data contain
four economic indicators (independent variables) which are the most commonly used
ones for the interpretation of an economic situation. Theseare:

x1 : ISE Trading Volume, x2 : Capacity Usage Ratio,
x3 : Credit Volum, x4 : Federal Funds Interest Rate.
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Here, ISE Trading Volume stands for the number of shares or contracts of a security
traded within of a predefined time-window for a month; Capacity Usage Ratio means
the ratio of the production capacity of the regarded economyto the maximum capacity
of that economy. ISE 100 stock index is the dependent (outputor response) variable
Y that we try to assess based on our dataset. It consists of 100 stocks that have been
chosen among the stocks of companies which are listed on the National Market, and
the stocks of real estate investment trusts and venture capital investment trusts, which
are listed on the Corporate Products Market. It covers ISE 30 and ISE 50 stocks. As
it is a statistical measure of change in an economy or a securities market, we will
use that index. For financial markets, anindexis an imaginary portfolio of securities,
representing some market or a portion of it. It possesses itsown traditional methods
of calculation and, in general, it is represented by a deviation from a base value. Thus,
the relative change (in percentage terms) is more importantthan the absolute value (in
actual numerical terms). This dataset includes 24 observations and the characteristics
of our independent variables in time can be seen in Figures 3.2-3.3 for a visualization
of the dataset.

Figure 3.2: Graph for the characteristic of variablesx1 andx2.

Figure 3.3: Graph for the characteristic of variablesx3 andx4.

With this data the largest model is constructed by the forward stepwise stage of Salford
MARS Version 3 [85]. After backward stepwise elimination of MARS, the final model
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is represented as follows:

ŷ = α0 +
M∑

m=1

αmϑm(x
m) = α0 + α1 max{0, x3 − 0.1672}

+ α2 max{0, 0.1672− x3}+ α3 max{0, x4 + 0.4200}
+ α4 max{0, x1 + 0.6803}.

To apply the RO technique on MARS model, firstly uncertaintiesare evaluated for
all input values using Eqn. (3.16) and all output values. Here these input and output
values presented by CIs. Next, we include perturbations (uncertainties) into the real
input dataxk in each dimension and into the output datayk (k = 1, 2, . . . , 24). For
this aim, using Eqns. (3.20)-(3.21), the uncertainty matrices and vectors based on
polyhedral uncertainty setsare built. Consequently, we construct different uncertainty
matrices,U andW , for the input data and different uncertainty vectors,z andv, for
the output data by using six different uncertainty scenarios which are given by the CIs
±3, ±3/2, ±3/4, ±3/6, ±3/8 and as a special case, the mid-point (zero) value of our
interval. For instance, according to CI±3, the matrices of input data,U , W up, W low,
which will be addressed in Section 3.2, are of the following forms:

U =









u1,1 . . . u1,4
u2,1 . . . u2,4

...
...

...
u23,1 . . . u23,4
u24,1 . . . u24,4









∈









0 [−2.46, 2.46] 0 0
0 [−2.48, 2.48] 0 0
...

...
...

...
[−2.30, 2.30] 0 [−2.45, 2.45] [−3.05, 3.05]
[−2.17, 2.17] 0 [−2.60, 2.60] [−2.55, 2.55]









,

W up = ϑ(x) +Uup =









1 0 3.89 0 0
1 0 3.89 0 0
...

...
...

...
...

1 3.85 0 4.12 4.42
1 3.85 0 4.12 4.42









,

W low = ϑ(x) +U low =









1 0 −1.03 0 0
1 0 −1.07 0 0
...

...
...

...
...

1 −0.75 0 −0.77 −1.68
1 −0.50 0 −1.07 −2.68









.

Likewise, based on CI±3, the uncertainty vectors of output data,z, vup, vlow, are
represented as follows:

z =









z1
z2
...
z23
z24









∈









[−3, 3]
[−3, 3]

...
[−3, 3]
[−3, 3]









,vup = y+zup =









1.61
1.76

...
3.52
2.88









,vlow = y+zlow =









−4.39
−4.27

...
−2.49
−3.12









.
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As the uncertainty matrix for input data has a very big dimension; and our computer
capacity is not enough to solve our problem for this uncertainty matrix (cf. Subsection
3.1.3), we formulate RMARS for each observation using a certain combinatorial ap-
proachwhich is called asweak robustification. Therefore, we obtain differentweak
RMARS(WRMARS) models to handle that difficulty of complexity. Actually, we have
a tradeoff between tractability and robustification. As a result, we obtain 24 different
WRMARS models and solve them with MOSEK program [89]. Then, we estimate the
parameters’ valuesα0, α1, α2, α3 andα4 using a selected WRMARS model which has
thehighestw value in Eqn. (3.25) by applying theworst-caseapproach. Finally, we
evaluate the regression coefficients and estimation errorsbased onAverage Absolute
Error (AAE) andRoot Mean Squared Error(RMSE) for different uncertainty scenar-
ios. All of the parameter values and estimation errors for MARS and RMARS are
represented in Table 3.1.

Table 3.1: Parameter values and estimation errors of MARS andRMARS.

U ,v ±3 ±3/2 ±3/4 ±3/6 ±3/8 zero MARS
α0 -0.6197 -0.7644 -0.6660 -0.5111 -0.4418 -0.3470 -0.3470
α1 0.3348 0.2501 -0.3292 -0.5921 -0.7074 -0.8843 -0.8843
α2 0.0000 0.0000 -0.1852 -0.3686 -0.4494 -0.5722 -0.5722
α3 0.0000 0.0000 0.4600 0.6262 0.6986 0.8120 0.8120
α4 0.6529 0.8691 0.7403 0.6508 0.6121 0.5498 0.5498

AAE 0.4048 0.3215 0.1937 0.1385 0.1254 0.1123 0.1123
RMSE 0.4880 0.4204 0.2496 0.1781 0.1559 0.1414 0.1414

As we can see in Table 3.1, RMARS produces less accurate resultsthan MARS in
terms of AAE and RMSE when the CIs on the variable are very wide. However, as the
CIs are narrower, the performance results approach to that ofMARS. According to our
main purpose, we also calculateestimation variances(EVs) for different uncertainty
scenarios. EV is the variance of the estimated response values and smaller value of EV
provide us the better result. It is evaluated using the following formula:

EV :=

∑ N
k=1(ŷk − ¯̂y)

N − 1
,

whereN is number of observations,̂yk being thekth estimated response value, and¯̂y
being the mean of the estimated response values. Based on six different uncertainty
scenarios, the values of EV evaluated for our numerical experiment are presented in
Table 3.2.

Table 3.2: Estimation variance of MARS and RMARS.

U ,v ±3 ±3/2 ±3/4 ±3/6 ±3/8 zero MARS
EV 0.447 0.706 0.811 0.88 0.918 0.979 0.979

As we may deduce from the results in Table 3.2, RMARS has a much smaller variance
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than MARS if the CIs on the variable are very wide. As the CIs are narrower, EV
increases but, RMARS still has a smaller variance than MARS. Therefore, we can
say that RMARS has a considerably smaller EV than MARS for different uncertainty
scenarios, as we expect.

While developing RMARS models, a sensitivity study is conducted to define the most
suitable confidence limits on both input and output data. Forthis purpose, different
uncertainty matrices for the input data,⌣

x, and different uncertainty vectors for the
output data,⌣y, are obtained by using six different intervals. Above results in Tables
3.1 and 3.2 indicate that solutions obtained are sensitive to the limits of CIs. When we
use the mid-point of our interval values for both input and output data, which is the
certain data case (zero interval), we receive the same parameter estimates, and thus,
the same model performances and EV values as the ones by MARS. This can disclose
that MARS is aspecial caseof RMARS.

We have a smaller EV when the lengths of the CIs are wide whereaswe receive better
performance results when the lengths of the CIs are narrow. According to these result,
we can observe the tradeoff betweenaccuracy(expressed by AAE and RMSE) and
robustness(given by EV). Also, to analyze this tradeoff clearly, we evaluated the val-
ues of Residual Sum of Squares (RSS) and EV based on various different uncertainty
scenarios, and we represented the results graphically in Figure 3.4.

0.8 1 1.2 1.4 1.6 1.8 2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

EV

R
S

S

Figure 3.4: The efficiency frontier between estimation error and estimation variance.

This figure demonstrates the tradeoff between accuracy (given as RSS) and robustness
(represented by EV). In economics and finance, this is the so-calledefficiency frontier.
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3.1.6 Simulation Study for RMARS

In the study [103], we compare MARS and RMARS methods using different datasets
created by Monte-Carlo simulation based onvariationof the parameter estimates. Fur-
thermore, in order to see the variation of model performancewith parameter estimates,
the estimation errors of simulation models are evaluated based on AAE and RMSE.
Monte-Carlo simulationpermits to model situations which present uncertainty and to
conduct them many times on a computer. It also includes a riskstudy through a prepa-
ration of models of possible results by substituting a rangeof values - we may say: a
probability distribution - for any factor which implies uncertainty. Monte-Carlo sim-
ulation generates distributions of possible outcomes. Through the use of probability
distributions, variables may have different probabilities of the outcomes that occur.
Probability distributionsmean a much more realistic kind of representing uncertainty
in variables of a risk analysis that belongs to each decisionwhich we are making.
Continuously, we are confronted with uncertainty, with ambiguity and variability. It
is impossible to precisely estimate the future, even if nowadays we can access an un-
precedented amount of information. Monte-Carlo simulationpermits us a survey of
nearly all the outcomes of our possible decisions and an impact assessment of risk;
this allows for a more qualified decision making in the presence of uncertainty [118].
We select normal distribution as a probability distribution to obtain random input vari-
ables. For the simulation study of MARS, firstly, we develop a mathematical model.
This model is theprocess modeland represented as follows:

Y = −3050 + 0.02x1 + 50x2 − 0.0009x3 + 8400x4 + 30x2x4 + ε. (3.26)

Afterward, using Minitab package program [86] generated random input variables cho-
sen from suitable distribution function which are expectedto determine the variables.
Here we simulate values of anormal random variable. Then, using Eqn. (3.26), we
monitor preferred output variables which become distributions whose properties are
described by the model and the distributions of the random variables. So, we gener-
ate 30 different simulated datasets to employ simulation for MARS and 30 different
MARS models are constructed using Salford Systems MARS [85]. In fact, the pa-
rameter values of MARS models are estimated according to these simulated datasets.
Some selected MARS models obtained are of the following form:

ŷ = α0 + α1 max{0, x1 − 2.25}+ α2 max{0, x3 + 1.86}+ α3 max{0, x4 + 2.18},
ŷ = α0 + α1 max{0, x1 − 1.47}+ α2 max{0, x3 + 2.84}+ α3 max{0, x4 + 2.45},
ŷ = α0 + α1 max{0, x1 − 3.07}+ α2 max{0, x3 + 1.78}+ α3 max{0, x4 + 2.63},
ŷ = α0 + α1 max{0, x1 − 2.39}+ α2 max{0, x3 + 1.62}+ α3 max{0, x4 + 1.51},
ŷ = α0 + α1 max{0, x1 − 2.21}+ α2 max{0, x3 + 1.98}+ α3 max{0, x4 + 3.27},
ŷ = α0 + α1 max{0, x1 − 1.98}+ α2 max{0, x3 + 2.07}+ α3 max{0, x4 + 1.49},
ŷ = α0 + α1 max{0, x1 − 2.74}+ α2 max{0, x3 + 2.20}+ α3 max{0, x4 + 1.70}.

For simulation study of RMARS, firstly, 30 different interval values are determined
and, hence, under polyhedral uncertainty sets, thirty different uncertainty scenarios are
obtained by using these values. The values of the CIs are±3/2, ±3/2.1, ±3/2.2,. . . ,
±3/4.6, ±3/4.8, ±3/5. Then the RMARS model frames are constructed by running
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a MATLAB code written by us and MOSEK software [89] is used to solve the CQP
problems for RMARS models. Hereby, parameter values of RMARS models are also
predicted based on 30 different uncertainty scenarios.

In RMARS, our aim is to decrease theestimation varianceby implying full robustifi-
cation in MARS even though the estimation errors of RMARS can be slightly higher
than those of MARS when we incorporate perturbation (uncertainty) using Eqn. (3.16)
into the input and output data based on polyhedral uncertainty sets, defined in Eqns.
(3.20)-(3.21). For this simulation study, the results for the variance of parameter esti-
mates can be understood by Figure 3.5.

Figure 3.5: The graphical representation for the variance of parameter estimates of
MARS and RMARS.

As we observe in Figure 3.5, the variability of the model parameter estimates of the
RMARS is much less than that of MARS. For this simulation study, the variance of
model performance can be learned from Figure 3.6 for our two methods.

Figure 3.6: Based on AAE and RMSE, the graphical representation for the variance of
model performance criteria of MARS and RMARS.

As we can deduce from Figure 3.6, similar to the variability of the model parameter
estimates, the variability of model performance in terms ofestimation errors of the
RMARS is less than that of MARS.
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Remark 3: In Figures 3.5-3.6, we just give a graphical representation based on MARS
and RMARS with considering that we receive similar results forCMARS and RC-
MARS.

3.2 Robust (Conic) Generalized Partial Linear Models

3.2.1 Introduction

In previous sections, we upgraded the (C)MARS model to be able to model the datasets
including uncertainty for future scenarios and constructed R(C)MARS method with
the help of robust optimization. Although, in the real life,variables are generally non-
linearly implied and, in this case, we need nonlinear modelsthat can minimize the
error term, knot selection is an extra important point in terms of complexity to solve
the problem (by Software MARS [85]), etc.) in (C)MARS and R(C)MARS and it is
not necessary for their linear part. Since a dataset can contain linear and nonlinear
variables and linear regression is very successful in determining a linear relationship
between the variables, in this section, a new model, R(C)GPLM is presented with es-
sential contributions of R(C)MARS and Linear (or Logistic) Regression as a developed
version of GPLM to partially reduce the complexity of R(C)MARS.

GPLM [92] is a combination of two different regression models each of which is used
to apply on different parts of the data set. Generalized Linear Models (GLMs) have
been advanced to constitute GPLMs enlarging the linear terms through a nonlinear
component, “P” meaning partial. Such semiparametric models are needed todevelop,
because of the inflexibility of simple linear and nonlinear models to show the trends,
relations and anomalies buried in real-life datasets. GPLMis adequate to high dimen-
sional, non-normal and nonlinear data sets having the flexibility to reflect all anomalies
effectively. In the study [139], Conic GPLM (CGPLM) was introduced using CMARS
and Logistic Regression. According to a comparison with CMARS,CGPLM gave
better results. In the studies [101, 102], we include the existence of uncertainty in the
future scenarios into (C)MARS and the linear/logit regression parts in (C)GPLM and
we robustify entire terms with robust optimization which isdealt with data uncertainty.

3.2.2 General Description of (C)GPLM

GPLMs apply a bipartite model separately on linear and nonlinear parts, and they have
a general form [92]:

E (Y |X,T ) = G
(
XTβ + ς (T )

)
, (3.27)

where the vectorsX andT represent a decomposition of variables whose parameters
and further unknowns would be assessed by linear and nonlinear models, respectively.
Furthermore,ς(·) is a smooth function estimated for the nonlinear model. Finally, a
link functionG = H(−1) makes the connection between the mean of the dependent
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variableµ = E(Y |X,T ) and the predictor variables:

H(µ) = ν (X,T ) = XTβ + ς (T ) =
m∑

j=1

Xjβj + ς (T ) . (3.28)

In (C)GPLM, the LR model constitutes the linear part of the estimation:

Y = β0 +

p
∑

j=1

Xjβj + ε, (3.29)

whereβ0 is the intercept term,βj are the coefficients ofXj (j = 1, 2, . . . , p), ε is the
noise term,Y is the dependent variable andXj are the independent variables.

In the nonlinear part of the (C)GPLM [32, 33, 65, 139], a new variable Y preproc is
defined by the help ofβ0, βj and the variablesXj (j = 1, 2, . . . , p), which would
determine the knots of MARS on the residuals, withq nonlinearly involved variables
Tj that are not used in the linear part:

Y preproc = Xβpreproc + ε = β0 +

p
∑

j=1

Xjβj + ε. (3.30)

After the evaluation of linear part and getting the regression coefficients’ vectorβpreproc,
which is an optimal vector found as a result of the linear least-squares model, the resid-
ual ŷ is defined by the subtraction ofXβpreproc from y:

y −Xβpreproc =: γ. (3.31)

In Eqn. (3.31),y is the given response data vector,γ is the resulting vector of residuals
which is constructed to develop the knot selection by MARS andapply the backward
process with CMARS. Furthermore, in Eqn. (3.31),X stands for the design matrix of
input data due to the linear model.

The smooth functionς(·) of GPLM is estimated by (C)MARS during the forward pro-
cess. This function, which is a linear combination of basis functionsϑm and the inter-
ceptα0, can be represented by MARS and also the alternative model of CMARS that
is considered as a substitute of the backward process of MARS:

γ = H(µ) =
M∑

m=1

αmϑm(t
m). (3.32)

We note that the “bias” termα0 is not needed in Eqn. (3.32) since it already entered as
a part, namely,β0, of the linear model. Next, for the alternative model of CMARS as
a component of the nonlinear part of CGPLM, the Penalized Residual Sum of Square
(PRSS) in Eqn. (3.6) will be constructed by the equation:

PRSS :=
N∑

k=1

(γk −αTϑ(bk))
2 +

Mmax∑

m=1

φm

2∑

|θ|=1
θT=(θ1,θ2)

∑

r<s
r,s∈V (m)

∫

Qm

α2
m[D

θ
r,sϑm(t

m)]2dtm.

(3.33)
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The multi-dimensional integrals of PRSS are approximated byusing the discretization
to represent it as follows, whereφ ≥ 0:

PRSS ≈
∥
∥γ − ϑ(b)α

∥
∥
2

2
+φ
∥
∥Lα

∥
∥
2

2
. (3.34)

3.2.3 Robustification of (C)GPLM

Here, we include the existence of uncertainty in the future scenarios into (C)GPLM,
which can be represented in the following form [101, 102]:

E (Y |X,T ) = G( XT
︸︷︷︸

noisy variable

β + ς( T
︸︷︷︸

noisy variable

)), (3.35)

whereX = (X1, X2, . . . , Xp)
T andT = (T1, T2, . . . , Tq)

T are a decomposition of
variables, whenX denotes anp-variate vector showing the variables with a linear
pattern,T denotes aq-variate vector showing the variables with a nonlinear pattern, to
be estimated with a nonlinear model. In Eqn. (3.35),β = (β1, β2, . . . , βp)

T consists of
the coefficient vector ofX, estimated by a linear (or logit) regression model, andς(·)
is a smooth function estimated by a nonlinear model. In this study, we focus on special
types of estimationς(·) by R(C)MARS.

The variablesXj (j = 1, 2, . . . , p) andTj (j = 1, 2, . . . , q) are supposed to be nor-
mally distributed random variables. For each input variableXj andTj, a transforma-
tion is made through uncertainties:

⌣

Xj = x̄j + ξj (j = 1, 2, . . . , p),
⌣

Tj = t̄j + ζj (j = 1, 2, . . . , q).
(3.36)

To robustify (C)GPLM, with similar idea of R(C)MARS, we apply robust optimization
on linear and nonlinear parts in the (C)GPLM, and, in Eqn. (3.36), we assume that
the input and output variables of our (C)GPLM are representedby random variables.
They lead us to uncertainty sets, which are assumed to contain confidence intervals
(CIs) [103]. We incorporate a “perturbation” (uncertainty)into the real input data
(xk, tk) in each dimension, and into the output datayk. Therefore, our new values of
R(C)GPLM are shown in the following:

xk,j → ⌣
xk,j;

⌣
xk,j = x̄j + δk,j, |δkj| ≤ υkj (k = 1, 2, . . . , N ; j = 1, 2, . . . , p),

tk,j →
⌣

tk,j;
⌣

tk,j = x̄j +∆k,j, |∆kj| ≤ ρkj (k = 1, 2, . . . , N ; j = 1, 2, . . . , q),

yk → ⌣
yk;

⌣
yk = ȳk + τk, |τk| ≤ νk (k = 1, 2, . . . , N).

With the uncertainty setsU1
1 ⊆ R

N ·p, U2
1 ⊆ R

N ·Mmax andU1
2 , U

2
2 ⊆ R

N · applied on
the data(⌣xk,

⌣
yk) and (

⌣

tk,
⌣
yk) (k = 1, 2, . . . , N), our model of Eqn. (3.28) implies

uncertainty, can be represented as an additive semiparametric model:

H(
⌣
µ) = ν

(
⌣

X,
⌣

T
)

=
⌣

XTβ + ς
(

⌣

T
)

=

p
∑

j=1

⌣

Xjβj + ς
(

⌣

T
)

. (3.37)
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The observation value and vectors,⌣
yk,

⌣
xk,

⌣

tk (k = 1, 2, . . . , N) with uncertainty, re-
spectively,⌣µ = G(

⌣
γk) and⌣

γk = H(
⌣
µk) =

⌣
xTkβ + ς(tk) with a smooth functionς(·)

are considered in the form of a RCGPLM.

3.2.4 Linear (Logit) Regression Model for the Linear Part

In the linear part of the estimation, a new variableY preproc is constructed by the help
of the coefficientsβ0, βj and

⌣

Xj (j = 1, 2, . . . , p). This variable would be later used
in MARS with reminded nonlinear variables

⌣

Tj (j = 1, 2, . . . , q) on residuals to deter-
mine the knot values [101, 104]:

Y preproc =
⌣

XTβpreproc + ε = β0 +

p
∑

j=1

⌣

Xjβj + ε. (3.38)

With an appropriate bound ofK, LR model may be solved with a continuous opti-
mization technique, CQP and have the following form:

minimize
w1,β

w1

subject to
∥
∥y −

⌣

Xβ
∥
∥
2
≤ w1,

∥
∥L1α

∥
∥
2
≤
√

K1.

(3.39)

For our RGPLM model, we ignore the second constraint of RCQP in Eqn. (3.39). To
obtain the response variable⌣

γ for the nonlinear part, the same procedure with Subsec-
tion 3.2.2 can be applied.

3.2.5 R(C)MARS Method for the Nonlinear Part

The smooth functionς(·) to be estimated by R(C)MARS in the Eqn. (3.28), is repre-
sented as a linear combination of basis functionsϑm to transform the model of Eqn.
(3.31) into the form:

γ = H(µ) =
M∑

m=1

αmϑm(t
m). (3.40)

Then, for RCGPLM, PRSS in Eqn. (3.34) with uncertainty can be converted into the
following form:

PRSS ≈
∥
∥⌣
γ − ϑ(

⌣

t)α
∥
∥
2

2
+φ
∥
∥Lα

∥
∥
2

2
. (3.41)

With an appropriate bound ofK1, PRSS can be easily solved with our continuous
optimization technique, CQP, in terms of TR, and have the subsequent form [101]:

minimize
w2,α

w2

subject to
∥
∥y − ϑ(b)α

∥
∥
2
≤ w2,

∥
∥Lα

∥
∥
2
≤
√

K2.

(3.42)

We underline that we receive robust CQP for RGPLM model, we do not consider the
second constraint in Eqn. (3.42).
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3.2.6 R(C)GPLM with Polyhedral Uncertainty

In this subsection, the form of polyhedral as uncertainty sets is employed to be able to
continue our study with standard CQP.

3.2.6.1 Robust Counterpart for Linear Part

In this part, uncertainty is constructed by a family of matrices
⌣

W = W +U 1 and vec-
tors⌣

z = z + v1, whereU 1 ∈ U1
1 andv1 ∈ U1

2 are unknown and lying in bounded un-
certainty sets represented in Subsection 3.1.3, with the semilengthsρ, ν1 of confidence
sets, respectively. As we use polyhedral uncertainty for the linear part of RCGPLM,
with the uncertainty setsU1

1 andU1
2 , the robust counterpart can be expressed by [104]

minimize
β

max
W∈U1

1
z∈U1

2

,

∥
∥β −Wz

∥
∥
2

2
+φ
∥
∥L1β

∥
∥
2

2
, (3.43)

with the polytopesU1
1 andU1

2 described by their vertices:

U1
1 = conv{W 1

1,W
2
1, . . . ,W

2N·p

1 }, U1
2 = conv{z1

1, z
2
1, . . . , z

2N

1 }. (3.44)

The linear part of RCGPLM can be represented as a standard CQP problem [13, 104]:

minimize
w1,β

w1

subject to
∥
∥zµ

1
−W κ

1
β
∥
∥
2
≤ w1 (µ = 1, 2, . . . , 2N ;κ = 1, 2, . . . , 2N ·p),

∥
∥L1α

∥
∥
2
≤
√

K1,

(3.45)

whereK1 ≥ 0 is an appropriate bound value. We recall that, along of the parameterK1,
we obtain an efficiency frontier of solutions of Eqn. (3.45),where a special selection
can be chosen via statistical and, further performance and comparison criteria.

For linear part in theRGPLM model, we just have to drop the second part in Eqns.
(3.43) and (3.45).

3.2.6.2 Robust Counterpart for Nonlinear Part

Here, uncertainty is constructed by a family of matricesϑ(
⌣

t) = ϑ(t)+U 2 and vectors
⌣
γ = γ + v2, whereU 2 ∈ U2

1 andv2 ∈ U2
2 within bounded uncertainty sets, identified

in Subsection 3.1.3, with the semilengthsρ, ν2 of our confidence sets, respectively.

When we use polyhedral uncertainty for the nonlinear part of CGPLM, with the uncer-
tainty setsU2

1 andU2
2 , the robust counterpart can be represented as

minimize
α

max
W∈U2

1
z∈U2

2

,

∥
∥z2 −W 2α

∥
∥
2

2
+φ
∥
∥L2α

∥
∥
2

2
, (3.46)
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with the polytopes

U1
1 = conv{W 1

2,W
2
2, . . . ,W

2N·Mmax

2 }, U1
2 = conv{z1

2, z
2
2, . . . , z

2N

2 }. (3.47)

We can express our robust problem of Eqn. (3.46) as a standardCQP problem:

minimize
w2,α

w2

subject to
∥
∥zµ

1
−W κ

1
α
∥
∥
2
≤ w2 (µ = 1, 2, . . . , 2N ;κ = 1, 2, . . . , 2N ·Mmax),

∥
∥L2α

∥
∥
2
≤
√

K2,

(3.48)

whereK2 ≥ 0 is an appropriate bound value. We recall that, for the nonlinear part
of our RGPLMmodel, we have not taken into consideration the second part in Eqns.
(3.46) and (3.48).

48



CHAPTER 4

SPLINE REGRESSION MODELS FOR COMPLEX
MULTI-MODEL REGULATORY NETWORKS

4.1 Introduction

In the previous chapter, we gave some details on theory and methods of regression
and classification, (C)MARS, and their robust counterpart, R(C)MARS. and we rep-
resented and applied our methods to real-world data from different sectors. In this
chapter, we apply the data mining tool of regression and classification, (C)MARS, on
a dynamics. By this, the amount of condition grows, since eachtime point (a discrete
time, in our case) can be regarded as an extra “condition”; inthis way, there would
be unknown parameters needed in order to balance the number of constraints, i.e., to
close the gap of “degree of freedom”. In this respect, the number of unknown parame-
ters would need to be relatively high, necessarily. However, in our research, we try to
gain from the dataset topologically and geometrically best, to “get into” the dynamics
smartly, benefiting from structural features of the dataset. In this respect, the algorithm
of MARS and CMARS seems to be an excellent choice as, e.g., in eachdimension of
the input variables, we get a piecewise linear “zig-zag” function, where the linear parts
present and approximate the data over whole intervals. Thisprocess is done adaptively,
which also means: smartly.

We note that the use of CMARS instead of MARS allows for an integrated representa-
tion of the entire parameter identification task as an optimization program in the sense
of a model-based problem rather than a model-free one. By thisCMARS permits to
employ the rigor of optimization theory and it also gives a chance for future general-
izations of this research which might benefit from further areas of optimization theory,
such as Stochastic Programming and, especially, RO. In fact, our newly developed RC-
MARS aims at a rigorous regularization not only with respect to the output variables
but also in the input variables, we might say: in the design ofthe program, with the
help of Robust Optimization. For any case of such further extensions which is repre-
sented in following chapter, we need not newly return from any model freeness to an
optimization theoretical model, since we are here in a model-based setting already.

Since we regularize the model of CMARS, including first- and second-order deriva-
tives, we go for “easy” models, by penalization; we turn thisregularization into the
mathematical language of CQP. One expression of that easiness is the - to some sense
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enforced (entire complexity bounded) - “flatness” of the model. In tendency, we can
say: we force the components of the vector of unknown parameters to be as much as
possible nearby to vanish. But this also means: we try to have as small as possible a
number of “significant” parameters in our model. MARS does this with the help of an
“index” called GCV (cf. Section 2.3.3) we, with CMARS, do this bya more integrated
optimization theory framework. We remark that these reflections hold true for the two
classes of variables, respectively, namely, the target variables and the environmental
variables. Furthermore, the introduction of the environment and its items themselves
into the model, in addition to the target variables, alreadymeans some kind of regular-
ization, i.e., a reduction of complexity. In fact, the environmental variables take away
from the target variables some of the huge modeling load to explain “alone” the data
accurately by the model.

Another class of parameters in this chapter are the penalty parameters or, in terms rep-
resentation, equivalently, upper bounds of the complexity. We already reduced these
parameters just by single values, per class of variables, and not per basis functions indi-
vidually. This means a strong reduction of the entire numbers of parameters. However,
we do still have the option of employing these parameters further in a more refined,
individual manner, depending on the entire model and its complexity. In this respect,
we can “tune”. In fact, we would like to mention that this workon the number of
parameters can also be called as amodel selection, including the suitable choice of di-
mensions. Regarding the choice of the upper bound parameters, we have an experience
in the use of statistical “performance” or “comparison” measures through a number of
research works on CMARS and its robust counterpart RCMARS.

Finally, the knot points are another large group of further parameters. In MARS, these
knots are selected automatically in a forward stepwise manner when fitting a MARS
model. We may also approach them from the perspective of a “splitting” between the
classesin each input dimension which reveals a large variation between the classes, as
we know it from the famous classification method CART [26]. In CMARS, we propose
to choose the knot points projectively, in each dimension, nearby to the data points or,
to be more precise, to the grid points canonically generatedby the data points.

We underline that all these intentions and efforts to improve aim at an accurate and,
at the same time, “doable”, not too complex but for future applications well-prepared
methodology of CMARS and of its emerging and forthcoming varieties. In this chap-
ter, we represent and investigate a “dynamical counterpart” of this research agenda.
We analyze time-discrete target-environment regulatory systems (TE systems) with
spline entries, and we present and solve new regression problems by using MARS and
CMARS. We apply these methods on small artificial datasets which have 4 variables
(2 targets and 2 environmental factors) and 25 samples, as our numerical experience
prepared. We also obtain a simulation study based on 5 different datasets and compare
the performances of MARS and CMARS.
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4.2 Regression Problem for Regulatory Network with Spline Entries

4.3 Introduction

Here, the use of spline function possesses great and, in fact, invaluable advantages, in
general, and, especially, in the context or our modeling of adynamics [105]. Indeed,

(i) Splines, from the viewpoint of a single dimension (input variable), are piecewise
polynomials. If we just used polynomials, then they would usually converge to plus
or minus infinity when the absolute values of the (input) variables grow large. As
many real-world processes generally stay in bounded margins even if these bounds
and the time horizons are very large, polynomials would needto be of a high degree
to “turn around” or oscillate enough in order to stay in that margin. But with high-
degree polynomials it is not that easy to work, especially, since the real-world problems
are multivariate, which can imply multiplication effects and, hence, a fast increase of
the degree of the occurring multidimensional splines. Instead, using our elementary
(C)MARS splines allows us, in each dimension, to keep the degree of the polynomial
“pieces” very low. The splines are quite “flexible” indeed, such to say, “elastic”. Often,
we call splines “smoothing splines” as they “smoothly” approximate the discrete data.

(ii ) Splines of CMARS are even more “smooth” as their oscillatory behavior is kept un-
der control through a penalization of their complexity (integral of squared first- and, in
particular, second-order derivatives); then we discretize the integral, receive a problem
of Tikhonov regularization which we finally represent as a problem of CQP.

(iii ) The multivariate splines of (C)MARS are products of “zig-zagging”, i.e., piece-
wise linear functions, which are piecewise of degree 1 (or 0), and we can carefully
decide on how many dimensions we include into the process of multiplications of
these one-dimensional splines. In fact, both the low 1-dimensional degrees and the
controlled multiplication amounts to an additional care about that the complexity of
our model will not be too high. We recall that a reduction of complexity may also be
named an increase of stability.

(iv) That we perform those multiplications is an expression of the fact that the input
variables are dependent and together, in groups, contribute to an explanation of the
response variable by those explanatory input variables.

(v) Finally, differently from the use of a “stiff” model formula (which are motivated
by the tradition of physical sciences), our approach by CMARS is very adaptive and is
getting “into” the dataset with its particular subsets and characteristics of shape.

Therefore, in the study [105], we introduce a regulatory system with (C)MARS spline
entries. Our research on regulatory systems started with the assessment of the dy-
namics of genetic networks, gene-environment networks andeco-finance networks.
Those dynamical models were introduced in the time-continuous version first, and
then treated time-discretely; careful discussions on the time-continuous vs. -discrete
nature of the dynamical model were made. By that we move from MARS to the more
“continuous” (in terms of the model and of the continuous optimization methods used)
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alternative CMARS, we are staying closer to the originally continuous nature of the
subject of our study.

4.4 The Dynamical Procedure

Selecting the entries of the matrix that encode our regulatory network as splines,
MARS, or alternatively, CMARS can be used to find the unknown parameters in
TE networks. By inserting splines in Eqn. (2.11), we obtain the following predic-
tions [105]:

X̂
(k+1)
j = αT

j0 + ϑαTT
j

( ∼

X(k)
)
+ ϑαET

j

( ∼

E(k)
)
,

Ê
(k+1)
i = αE

i0 + ϑαTE
i

( ∼

X(k)
)
+ ϑαEE

i

( ∼

E(k)
)
.

(4.1)

When we compare measurements and predictions and use the (Euclidean)‖·‖2-norm,
we can identify our model by solving the following least-squares (or in some proba-
bilistic setting, maximum-likelihood) estimation problem:

minimize
N∑

k=0

(
∥
∥X̂(k) −

∼

X(k)
∥
∥
2

2
+
∥
∥Ê(k) −

∼

E(k)
∥
∥
2

2

)

.

After using the form of BFs in Eqn. (3.13) and adding penalty terms in the regression
model of TE networks to control the lack of fit from the viewpoint of the complex-
ity and stability, the discretized form of PRSS in Eqn. (3.6) can be approximately
represented as follows:

PRSS ≈
∥
∥X̂ −

∼

X
∥
∥
2

2
+
∥
∥Ê −

∼

E
∥
∥
2

2
+φT ‖LTαT‖22 + φE ‖LEαE‖22 . (4.2)

By this representation, the PRSS minimization problem looks like a classical TR prob-
lem and it can be coped with CQP [98, 138]. Using suitable boundsKT andKE, we
may rewrite our optimization problem in the subsequent form:

minimize
wT,wE,α

wT + wE

subject to
∥
∥X̂ −

∼

X
∥
∥
2
≤ wT (cf. Eqn.(4.1)),

∥
∥Ê −

∼

E
∥
∥
2
≤ wE (cf. Eqn.(4.1)),

‖LTαT‖2 ≤
√

KT,

‖LEαE‖2 ≤
√

KE.

(4.3)

However, to simplify our model in Eqn. (4.2) by a single penalty parameterφ, PRSS
can be approximately given as follows:

PRSS ≈

=Accuracy
︷ ︸︸ ︷
∥
∥X̂ −

∼

X
∥
∥
2

2
+

≈Complexity
︷ ︸︸ ︷

φ ‖Lα‖22 , (4.4)

whereα = (αT
T ,α

T
E)

T is an((Mmax+1)×1)-parameter vector, to be estimated through
the given data points. Here,

∼

X = (
∼

XT ,
∼

ET )T , X̂ = (X̂T , ÊT )TandL = (LT,LE).
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Therefore, for target-environment networks, we may present our optimization problem
as given below:

minimize
w,α

w

subject to
∥
∥X̂ −

∼

X
∥
∥
2
≤ w (cf. Eqn.(4.1)),

‖Lα‖2 ≤
√
K.

(4.5)

In CMARS approach, via the “control parameter” given by some upper bound of the
complexity term in our CQP optimization problem in Eqn. (4.5), we can tune and
define the importance which we grant for the goal of lack of complexity and, by this,
for the antagonistic goal of accuracy.

4.5 Numerical Experience on a Complex Multi-Model Regulatory Networks

4.5.1 Data Description

To exemplify the implementation of MARS and CMARS algorithms, we use an ar-
tificial dataset which has two targets and two environmentalvariables and we have
four predictor variables(∼

x1,
∼
x2,

∼
e1,

∼
e2) with 25 measurement values for all target and

environmental variables. For MARS and CMARS algorithm, first, the MARS mod-
els are constructed for each targets and environmental variable by using the Salford
MARS [85] and, then, the maximum number of BFs (Mmax) and the highest degree of
interactions are defined.

For the first target,̂x1, Mmax is assigned to be 11, and the highest degree of interac-
tion is assigned to be 1 which is the main model. Therefore, and provided the knot
values (through MARS software), the largest model involves the subsequent BFs (for
simplicity, we suppress the arguments of the model functions):

ϑ1 = max{0, ∼
e2 + 2.045}, ϑ2 = max{0, ∼

e1 + 2.056},
ϑ3 = max{0, ∼

x1 + 2.280}, ϑ4 = max{0, ∼
x2 − 0.029},

ϑ5 = max{0, 0.029− ∼
x2}, ϑ6 = max{0, ∼

x1 + 0.293},
ϑ7 = max{0,−0.293− ∼

x1}, ϑ8 = max{0, ∼
e2 + 0.093},

ϑ9 = max{0,−0.093− ∼
e2}, ϑ10 = max{0, ∼

e1 + 0.186},
ϑ11 = max{0,−0.186− ∼

e1}.

For the second target,x̂2,Mmax is assigned to be 10, and the highest degree of interac-
tion is assigned to be 1. So, the largest model includes the following BFs:

ϑ1 = max{0, ∼
e1 + 2.056}, ϑ2 = max{0, ∼

e2 − 0.386},
ϑ3 = max{0, 0.386− ∼

e2}, ϑ4 = max{0, ∼
x1 + 1.791},

ϑ5 = max{0, ∼
x1 + 0.293}, ϑ6 = max{0,−0.293− ∼

x1},
ϑ7 = max{0, ∼

x2 − 0.029}, ϑ8 = max{0, 0.029− ∼
x2},

ϑ9 = max{0, ∼
x2 + 0.332}, ϑ10 = max{0,−0.332− ∼

x2}.
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For the first environmental factor,̂e1,Mmax and the highest degree of interaction is
assigned to be 7 and 2, respectively. Consequently, the BFs of the largest model are
represented as

ϑ1 = max{0, ∼
x1 + 2.280}, ϑ2 = max{0, ∼

e1 + 2.056},
ϑ3 = max{0, ∼

x2 + 1.791}, ϑ4 = max{0, ∼
e2 + 0.017} · ϑ2,

ϑ5 = max{0,−0.017− ∼
e2} · ϑ2, ϑ6 = max{0, ∼

x1 + 0.293} · ϑ3,

ϑ7 = max{0,−0.293− ∼
x1} · ϑ3.

For the second environmental factor,ê2, Mmax, is assigned to be 11, and the highest
degree of interaction is assigned to be 1. Therefore, the largest model involves the
following BFs:

ϑ1 = max{0, ∼
e2 + 2.045}, ϑ2 = max{0, ∼

e1 − 0.443},
ϑ3 = max{0, 0.443− ∼

e1}, ϑ4 = max{0, ∼
x1 + 0.293},

ϑ5 = max{0,−0.293− ∼
x1}, ϑ6 = max{0, ∼

x2 − 0.029},
ϑ7 = max{0, 0.029− ∼

x2}, ϑ8 = max{0, ∼
e1 + 0.186},

ϑ9 = max{0,−0.186− ∼
e1}, ϑ10 = max{0, ∼

x2 + 0.332},
ϑ11 = max{0,−0.332− ∼

x2}.

For all target and environmental variables, using these BFs above, the largest models
with Mmax BFs and the final (optimally estimated) models with the reduced number
of BFs are constructed after the forward and the backward stepof MARS by its soft-
ware. At the end, the final models used for MARS algorithm and the largest models
used for CMARS algorithm are found and represented in Subsections 4.5.2 and 4.5.3,
respectively.

4.5.2 MARS Models

After the backward stepwise elimination of MARS, for both targets and environmental
factors, the numbers of BFs are reduced to 5, 5, 5 and 6, respectively. Consequently,
for this study, the final models of MARS are obtained in the subsequent form of esti-
mations:

x̂1 = α0 + α1 max{0, ∼
e2 + 2.045}+ α2 max{0, ∼

e1 + 2.056}
+ α3 max{0, ∼

x1 + 2.280}+ α4 max{0, ∼
x2 + 0.029}

+ α5 max{0,−0.029− ∼
x2},

x̂2 = α0 + α1 max{0, ∼
e1 + 2.056}+ α2 max{0, ∼

e2 − 0.386}
+ α3 max{0, 0.386− ∼

e2}+ α4 max{0,−0.293− ∼
x1}

+ α5 max{0, ∼
x2 + 0.029},
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ê1 = α0 + α1 max{0, ∼
x1 + 2.280}+ α2 max{0, ∼

e1 + 2.056}
+ α3 max{0, ∼

x2 + 1.791}+ α4 max{0,−0.017− ∼
e2} ·max{0, ∼

e1 + 2.056}
+ α5 max{0,−0.293− ∼

x1} ·max{0, ∼
x2 + 1.791},

ê2 = α0 + α1 max{0, ∼
e2 + 2.045}+ α2 max{0, ∼

e1 − 0.443}
+ α3 max{0, 0.443− ∼

e1}+ α4 max{0, ∼
x1 + 0.293}

+ α5 max{0,−0.293− ∼
x1}+ α6 max{0, ∼

x2 − 0.029}.

For each target and environmental factor, the unknown parameters are determined and
represented in Table 4.1.

Table 4.1: For targets and environmental factors, parameter values of MARS algo-
rithm.

α0 α1 α2 α3 α4 α5 α6 α7
∼

x1 -0.452 0.298 -0.959 0.788 -0.152 0.184
∼

x2 1.135 -0.626 -0.859 0.548 0.181 -0.206
∼

e1 -3.939 0.749 0.764 0.360 -0.096 0.155
∼

e2 -2.134 0.672 -0.448 1.087 0.634 -0.252 -0.369

4.5.3 CMARS Models

For CMARS algorithm, to prevent from nondifferentiability inour optimization prob-
lem, we choose the knot values different from data points, but very much nearby to the
corresponding input data. For the first part of our optimization problem in Eqn. (4.4),
usingMmax BFs represented in Subsection 4.5.1, the largest models become

x̂1 = α0 + α1 max{0, ∼
e2 + 2.046}+ α2 max{0, ∼

e1 + 2.057}
+ α3 max{0, ∼

x1 + 2.281}+ α4 max{0, ∼
x2 + 0.030}

+ α5 max{0,−0.030− ∼
x2}+ α6 max{0, ∼

x1 + 0.294}
+ α7 max{0, 0.030− ∼

x2}+ α8 max{0, ∼
e1 + 0.186}

+ α9 max{0,−0.186− ∼
e1}+ α10 max{0, ∼

x2 + 0.333}
+ α11 max{0,−0.186− ∼

e1},

x̂2 = α0 + α1 max{0, ∼
e1 + 2.057}+ α2 max{0, ∼

e2 − 0.387}
+ α3 max{0, 0.387− ∼

e2}+ α4 max{0, ∼
x1 + 1.792}

+ α5 max{0, ∼
x1 + 0.294}+ α6 max{0,−0.294− ∼

x1}+
+ α7 max{0, ∼

x2 + 0.030}+ α8 max{0, 0.030− ∼
x2}

+ α9 max{0, ∼
x2 + 0.333}+ α10 max{0,−0.333− ∼

x2},
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ê1 = α0 + α1 max{0, ∼
x1 + 2.281}+ α2 max{0, ∼

e1 + 2.057}
+ α3 max{0, ∼

x2 + 1.792}+ α4 max{0, ∼
e2 + 0.018} ·max{0, ∼

e1 + 2.057}
+ α5 max{0,−0.018− ∼

e2} ·max{0, ∼
e1 + 2.057}

+ α6 max{0, ∼
x1 + 0.294} ·max{0, ∼

x2 + 1.792}
+ α7 max{0,−0.294− ∼

x1} ·max{0, ∼
x2 + 1.792},

ê2 = α0 + α1 max{0, ∼
e2 + 2.046}+ α2 max{0, ∼

e1 − 0.444}
+ α3 max{0, 0.444− ∼

e1}+ α4 max{0, ∼
x1 + 0.294}

+ α5 max{0,−0.294− ∼
x1}+ α6 max{0, ∼

x2 − 0.030}
+ α7 max{0, 0.030− ∼

x2}+ α8 max{0, ∼
e1 + 0.187}

+ α9 max{0,−0.187− ∼
e1}+ α10 max{0, ∼

x2 + 0.333}
+ α10 max{0,−0.333− ∼

x2}.
After the discretized form of multi-dimensional integralsin Eqn. (3.5) is denoted by
L, for the second part of our optimization model in Eqn. (4.4),theL matrices of each
target and each environmental factor become diagonal(12× 12)-, (11× 11)-, (8× 8)-
and(12 × 12)-matrices, and the first column elements ofL are all zero. For instance,
theL matrix of first environmental item can be presented as follows:

L =







0 0 . . . 0
0 1.9671 . . . 0
...

...
. ..

...
0 0 . . . 1.3287






,

and ‖Lα‖22 is given as

‖Lα‖22 =(1.967 · α1)
2 + (1.972 · α2)

2 + (1.911 · α3)
2

+ (1.401 · α4)
2 + (1.381 · α5)

2 + (1.502 · α6)
2

+ (1.329 · α7)
2.

After we obtain largest models for the accuracy part and evaluate theL matrices for
complexity part of PRSS in Eqn. (4.4) for the first environmental factor, we reformu-
late PRSS as a problem of CQP by using Eqn. (4.5) as follows:

minimize
w,α

w,

subject to
1.4624− α0 − 3.788α1 − 3.461α2 − 1.165α3 − 5.114α5 − 2.099α6 = β1,

0.3915− α0 − 1.737α1 − 3.384α2 − 1.821α3 − 3.309α5 − 0.455α7 = β2,

...
− 0.637− α0 − 1.778α1 − 1.877α2 − 1.548α3 − 0.883α5 − 0.332α7 = β25,

(β2
1 + β2

2 + . . .+ β2
25)

1/2 ≤ w,

(β2
26 + β2

27 + β2
28 + β2

29 + β2
30 + β2

31 + β2
32)

1/2 ≤ (K)1/2.
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Here, we recall that the valuesK are determined by a model-free (train and error)
method (cf. Remark 1). After solving this problem for all target and environmental
factors, we receive unknown parameters which are presentedas given in Table 4.2. For
all computations, the code written in MATLAB is run MOSEK software [89] is used
for CQP.

Table 4.2: For targets and environmental factors, parameter values of CMARS algo-
rithm.

α0 α1 α2 α3 α4 α5
∼

x1 -0.373 0.127 -0.108 0.119 0.193 -0.059
∼

x2 0.268 -0.230 -0.389 0.229 0.112 -0.241
∼

e1 -0.506 0.084 0.068 -0.027 0.168 0.019
∼

e2 -0.801 0.273 -0.090 0.099 0.247 -0.153

α6 α7 α8 α9 α10 α11
∼

x1 0.129 -0.104 0.122 -0.125 -0.134 0.079
∼

x2 0.122 0.145 -0.086 0.109 -0.110
∼

e1 0.117 -0.153
∼

e2 0.203 -0.052 -0.120 -0.075 0.153 -0.047

4.5.4 Results and Comparison

The prediction results for targets and environmental factors can be seen in Figures 4.1-
4.4, where “blue line” present real values, “red line” indicates the estimated values by
MARS model and “green line” represents the predicted values by CMARS model.
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Figure 4.1: True and predicted expression values of the firsttarget.

57



-2,00

-1,50

-1,00

-0,50

0,00

0,50

1,00

1,50

2,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Real

MARS

CMARS

Figure 4.2: True and predicted expression values of the second target.
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Figure 4.3: True and predicted expression values of the firstenvironmental factor.
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Figure 4.4: True and predicted expression values of the second environmental factor.
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As we may deduce from Figures 4.1-4.4, with the real expression values of targets and
environmental factors, the predicted values of CMARS model match much better than
that of MARS model. In fact, this indicates that CMARS can reallypredict the trend
of the target-environment interaction successfully basedon the expression values of all
targets and environmental factors, especially, when compared with MARS.

4.6 Simulation Study

In previous sections, we represented and investigated scientifically MARS, CMARS
and two-model regulatory systems with spline entries. In previous subsections, using
an artificial data set, we introduced MARS and CMARS models for 2 target and 2 en-
vironmental factors as a numerical example and presented the results obtaining figures
for each target and each environmental item. Now, in order toshow the performance of
MARS and CMARS for regulatory system based on replicated datasets, we constructed
different MARS and CMARS models through 5 different simulated datasets for each
of the target and environmental items, as we described in previous Subsections 4.5.1-
4.5.3. Therefore, unknown parameters are determined and presented in Tables A.1 and
A.2. Afterwards, these models are evaluated with respect tothe criteria by using the
formulas as given in Table D.1. To compare the results concerning the accuracy of
MARS and CMARS, the models are calculated based on the adjusted multiple coeffi-
cients of determination (R2

adj), average absolute error (AAE), root mean squared error
(RMSE), and the correlation coefficient (r). The explanations, interpretations and for-
mulas of these measures are represented in Table D.1, and theresults are displayed in
Table A.3.

According to these accuracy criteria, we understand that CMARS can perform better
than MARS for all target and environmental items with respectto all measures vali-
dated through simulated datasets.

In spite of the recorded successes, the statistical methodslike MARS and CMARS,
which assume the input data are usually known precisely in developing models, may
not give trustworthy results since, in reality, the data involved in regression problems
can contain noise. Therefore, it has been realized that coreelements of a new global
regulatory framework have to be created to make these systems more robust and suit-
able for serving the requirements of the real world. In orderto reveal this expectation,
in the following chapter, a new robust optimization technique for solving and optimiz-
ing models implying nonlinearity and uncertainty by using R(C)MARS is presented
with an implementation on two-factor regulatory systems . This will allow us to in-
volve into our modelinguncertaintyin the input variables, which is typical for so many
real-life problems.
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CHAPTER 5

ROBUST OPTIMIZATION IN SPLINE REGRESSION MODELS
FOR REGULATORY NETWORKS UNDER

POLYHEDRAL UNCERTAINTY

In the previous chapter, we introduced and investigated newdynamical regression
problems by using splines for the entries of regulatory network, and we demonstrated
the effectiveness of these approaches by a numerical experiment. For that study [105],
CMARS provides better results than MARS and gives us better predictions than MARS
of the trend of the TE interaction based on the expression values of all targets and all
environmental factors. These systems appear in the financial sector, in banking, envi-
ronmental protection, system biology, medicine, etc. As practitioners in these fields
need to be aware that the evaluation of probabilities based on history could be funda-
mentally inaccurate, uncertainties have a great importance for actors in these sectors.
Therefore, in this chapter, our new robust optimization technique for solving and opti-
mizing models having nonlinearity and uncertainty by usingR(C)MARS is discussed
with an implementation on two-factor TE systems [108].

5.1 Robustification of Regression for Regulatory Networks

Identification of a regulatory network from given real-world data is a mathematical
problem that has to be solved both theoretically and computationally, especially, if
there exists noise in the data. Given this motivation we discuss and newly present
a robustification of regression problems for time-discreteTE regulatory systems un-
der polyhedral uncertainty by using RCMARS. In our considered case of uncertainty
existing in all kinds of the expression data, where the uncertainty sets are defined in
Eqns. (5.17)-(5.18), RCMARS is applied to guarantee a robustification of our target-
environment networks.

For RCMARS, the large model that has the maximum number of BFs,Mmax, is created
by Salford MARS [85]. In that process, the input and output variables of our model
are all assumed as random variables for target-environmentnetworks. They lead us to
uncertainty sets; those are assumed to contain CIs. Furthermore,

∼

Xj,
∼

Ei and, in vector
form: X̂ andÊ, are considered to be normally distributed. So, the following general
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model is considered for input data values,
∼

Xj and
∼

Ei:

∼

Xj =
∼

x̄j + ζT
j (j = 1, 2, . . . , n),

∼

Ei =
∼

ēi + ζE
i (i = 1, 2, . . . ,m).

(5.1)

Here,
∼

x̄j and
∼

ēi denote the sample mean (average) of the input vectors
∼

Xj and
∼

Ei,
respectively. When considering that we haved (= n + m)-dimensional input data,
each input vector∼xk = (

∼
xk,1,

∼
xk,2, . . . ,

∼
xk,n)

T for target and each input vector∼
ek =

(
∼
ek,1,

∼
ek,2, . . . ,

∼
ek,m)

T for environment are represented as
∼
⌣
xk = (

∼
⌣
xk,1,

∼
⌣
xk,2, . . . ,

∼
⌣
xk,n)

T

and
∼
⌣
ek = (

∼
⌣
ek,1,

∼
⌣
ek,2, . . . ,

∼
⌣
ek,m)

T including the perturbations∆T
k = (∆T

k,1, . . . ,∆
T
k,n)

T

and∆E
k = (∆E

k,1, . . . ,∆
E
k,m)

T , respectively(k = 0, 1, . . . , N). Here,∆T
k and∆E

k are
generic elements ofUT

1 andUE
1 , which are the polyhedral uncertainty sets that will

later on be described for our input data (cf. Eqn. (5.17)). So, for TE networks, the new
values of piecewise linear BFs are represented as follows:

∼
xk,j →

∼
⌣
xk,j;

∼
⌣
xk,j =

∼

x̄j +∆T
k,j, |∆T

k,j| ≤ ρT
k,j (j = 1, 2, . . . , n; k = 0, 1, . . . , N),

ek,i →
∼
⌣
ek,i;

∼
⌣
ek,i =

∼

ēi +∆E
k,i, |∆E

k,i| ≤ ρE
k,i (i = 1, 2, . . . ,m; k = 0, 1, . . . , N),

Similarly, after we incorporate a perturbation into outputvariables, the output vectors
x̂ = (x̂1, x̂2, . . . , x̂n)

T for target and̂e = (ê1, ê2, . . . , êm)
T for environment are repre-

sented aŝ⌣x = (ˆ
⌣
x1, ˆ

⌣
x2, . . . , ˆ

⌣
xn)

T andˆ⌣e = (ˆ
⌣
ek, ˆ

⌣
ek, . . . , ˆ

⌣
ek)

T including the perturbations
τ T = (τT

1 , τ
T
2 , . . . , τ

T
n )

T andτ E = (τE
1 , τ

E
2 , . . . , τ

E
m)

T , respectively. Here, we restrict the
vectorsτ T andτ E to be elements ofUT

1 andUE
1 , which are the polyhedral uncertainty

sets that will later on be defined for our output data (cf. Eqn.(5.18)). So, our new
output values can be expressed as follows:

x̂j → ˆ⌣xj; ˆ⌣xj = ˆ̄xj + τT
j , |τT

j | ≤ νT
j (j = 1, 2, . . . , n; k = 0, 1, . . . , N),

êi → ˆ⌣ei; ˆ⌣ei = ˆ̄ei + τE
i , |τE

i | ≤ νE
i (i = 1, 2, . . . ,m; k = 0, 1, . . . , N),

where ˆ̄xj and ˆ̄ei express the sample mean (average) of the output vectorsX̂ andÊ,
respectively. When we estimate the BFs in Eqn. (3.13) with uncertainty for TE, we
can evaluate them through the subsequent estimations:
[

∼
⌣
xk,v(j,n) − τT

v(j,n)

]

±
≤
[
∼
xk,v(j,n) − τT

v(j,n)

]

±
+
[
∆T
k,v(j,n) + (±AT

k,v(j,n))
]

±
,

[
∼
⌣
ek,v(i,m) − τE

v(i,m)

]

±
≤
[
∼
ek,v(i,m) − τE

v(i,m)

]

±
+
[
∆E
k,v(i,m) + (±AE

k,v(i,m))
]

±
;

(5.2)

here, AT
k,v(j,n) and AE

k,v(i,m) are interpreted and employed ascontrol variables. 1 Since
the values of these control variable directly influence the size of our uncertainty setU1,
and our uncertainty sets are unknown but bounded, AT

k,v(j,n) and AE
k,v(i,m) are restricted

by valuesγT
k,v(j,n) andγE

k,v(i,m), respectively. If we encounter the very conservative

(risk-averse) position, the so-calledworst casefor the values of ATk,v(j,n) and AE
k,v(i,m),

1 There should be no confusion by double use of the lettersn andm for both number of variables and dimension
of subvectors in R(C)MARS model.
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they will be equal toγT
k,v(j,n) andγE

k,v(i,m), respectively. But if the absolute value of our
uncertainty is very high, we might not find any meaningful solution for our problems.
For this reason, we may allow for a more risk-friendly case byselecting the values of
AT
k,v(j,n) and AE

k,v(i,m) between 0 and the absolute value of AT
k,v(j,n) and AE

k,v(i,m). This

means:
⌣

A
T

k,v(j,n) ∈ [0,
∣
∣
∣AT

k,v(j,n)

∣
∣
∣] and

⌣

A
E

k,v(i,m) ∈ [0,
∣
∣
∣AE

k,v(i,m)

∣
∣
∣], respectively. To make

our notation a bit easier, we still keep the names AT
k,v(j,n) and AE

k,v(i,m) for
⌣

A
T

k,v(j,n) and
⌣

A
E

k,v(i,m). Now, to evaluate the values and differences ofϑn(
∼
xnk) andϑn(

∼
⌣
xnk) for the

targets,ϑm(
∼
emk ) andϑm(

∼
⌣
emk ) for the environmental items in Eqn. (3.5), we can apply

Eqn. (5.2) in the following way, where all the “+” and “-” signs correspond to each
other, respectively: the values of these control variable directly influence the size of
our uncertainty setUT

1 andUE
1 , AT

k,v(j,n) and AE
k,v(i,m) are restricted by valuesγT

k,v(j,n)

andγE
k,v(i,m), respectively:

Kn∏

j=1

[
∼
⌣
xk,v(j,n) − ϕv(j,n)]±

︸ ︷︷ ︸

=:ϑn(
∼
⌣
xn
k
)

≤
Kn∏

j=1

[
∼
xk,v(j,n) − ϕv(j,n)]±

︸ ︷︷ ︸

=:ϑn(
∼
xn
k
)

+

∑

A⊆
6=
{1,...,Kn}

∏

a∈A

[
∼
⌣
xk,a − ϕT

a]±
∏

b∈{1,...,Kn}/A

[(±AT
k,b) + ∆T

k,b]±,

(5.3)

Km∏

i=1

[
∼
⌣
ek,v(i,m) − ϕv(i,m)]±

︸ ︷︷ ︸

=:ϑm(
∼
⌣
em
k
)

≤
Km∏

i=1

[
∼
ek,v(i,m) − ϕv(i,m)]±

︸ ︷︷ ︸

=:ϑm(
∼
em
k
)

+

∑

A⊆
6=
{1,...,Km}

∏

a∈A

[
∼
⌣
ek,a − ϕE

a]±
∏

b∈{1,...,Km}/A

[(±AE
k,b) + ∆E

k,b]±.

(5.4)

Here, we may achieve a bounding given below via symmetry, namely:

ϑn(
∼
⌣
xnk)− ϑn(

∼
xnk) ≤ ûT

k,n,

ϑn(
∼
xnk)− ϑn(

∼
⌣
xnk) ≤ ˆ̂uT

k,n

}

⇒
∣
∣
∣ϑn(

∼
⌣
xnk)− ϑn(

∼
xnk)
∣
∣
∣ ≤ max

{

ûT
k,n,

ˆ̂uT
k,n

}

, (5.5)

ϑm(
∼
⌣
emk )− ϑm(

∼
emk ) ≤ ûE

k,m

ϑm(
∼
emk )− ϑm(

∼
⌣
emk ) ≤ ˆ̂uE

k,m

}

⇒
∣
∣
∣ϑm(

∼
⌣
emk )− ϑm(

∼
emk )

∣
∣
∣ ≤ max

{

ûE
k,m,

ˆ̂uE
k,m

}

.

(5.6)
Therefore, our uncertainty values

∣
∣uT
kn

∣
∣ for target and

∣
∣uE
km

∣
∣ for environment can be

estimated in the subsequent manner for every BF:
∣
∣uT
k,n

∣
∣ ≤

∑

A⊆
6=
{1,...,Kn}

B|A|−1

kT

∏

a∈A

ρT
k,a ·

∏

b∈{1,...,Kn}/A

(γT
k,b + ρT

k,b),

∣
∣uE
k,m

∣
∣ ≤

∑

A⊆
6=
{1,...,Km}

B|A|−1

kE

∏

a∈A

ρE
k,a ·

∏

b∈{1,...,Km}/A

(γE
k,b + ρE

k,b).
(5.7)
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Here, by|A| we imply the cardinality (size) of the setA. The values of BkT and BkE

are regarded and applied again ascontrol variables. The values of BkT and BkE are
equal to 2 in cases without outliers, while, given outliers,they will be greater than 2.
In those situations, we shall choose different values for BkT and BkE. If we allow for a
very conservative case, we do not wish to exclude any outliers. However, the values of
BkT and BkE could be rather large for some variables in the input data, and the absolute
values of our uncertainty sets might be quite high because ofthe values of these control
variables. If the absolute value of any uncertainty set is very high, it can take too much
time to catch a solution or we could not find a meaningful solution for our problem at
all. For those reasons, rather than choosing a very conservative position, we may take
into account a more risk-friendly position by choosing the values of BkT and BkE with
a possible exclusion of the outliers. In our novel study, we would like to visualize the
concept of robustification for the targets and environmental items by Figures 5.1-5.2,
respectively.

Figure 5.1: The CIs for BF and perturbational term for target variables.

Figure 5.2: The CIs for BF and perturbational term for environmental variables.
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After implying uncertainty into Eqn. (4.1) of Section 4.4, we may state the following
prediction equations:

ˆ⌣
X

(k+1)
j = αT

j0 + ϑajTT(
∼
⌣

X(k)) + ϑajET(
∼
⌣

E(k)),

ˆ⌣
E

(k+1)
i = αE

i0 + ϑaiTE(
∼
⌣

X(k)) + ϑajEE(
∼
⌣

E(k)).
(5.8)

Hence, we can compare data and model predictions under uncertainty and obtain the
following regression problem:

minimize
N∑

k=0

(∥
∥
∥
∥

ˆ⌣
X(k) −

∼
⌣

X(k)

∥
∥
∥
∥

2

2

+

∥
∥
∥
∥

ˆ⌣
E(k) −

∼
⌣

E(k)

∥
∥
∥
∥

2

2

)

. (5.9)

Inserting splines and, then, including uncertainty expressed bypolyhedral uncertainty
sets and constructing the PRSS form of TE networks, the discretized form of PRSS of
Eqn. (3.17) attains the following expression:

PRSS ≈
N∑

k=0

( n∑

j=1

(
∼
⌣

X
(k)
j −

∼
⌣

X
(k)
j )2 +

m∑

i=1

(
ˆ⌣
E

(k)
i − ˆ⌣

E
(k)
i )2

)

+

MT
max∑

n=1

φn

(N+1)K
T
n

∑

j=1

L2
j,nα

2
n +

ME
max∑

m=1

φm

(N+1)K
E
m

∑

i=1

L2
i,mα

2
m,

(5.10)

where

Lkn :=

[( 2∑

|θ|=1
θ=(θ1,θ2)

T

∑

r<s
r,s∈V (n)

[Dθ
r,sϑn(x̂

n
k)]

2

)

∆x̂nk

]1/2

and

Lkm :=

[( 2∑

|θ|=1
θ=(θ1,θ2)

T

∑

r<s
r,s∈V (m)

[Dθ
r,sϑm(ê

m
k )]

2

)

∆êmk

]1/2

.

Here, we haveαT := (αT
0 , . . . , α

T
MT

max
)T related with the ”point” (consisting of vectors

of different dimensions)
∼
⌣
xT
k := (

∼
⌣
x1
k, . . . ,

∼
⌣
x
MT

max
k )T , andαE := (αE

0 , α
E
1 , . . . , α

E
ME

max
)T

related with the “point”
∼
⌣
eT
k := (

∼
⌣
e1
k, . . . ,

∼
⌣
e
ME

max
k )T. Then, our approximation of PRSS

may be written as:

PRSS ≈
∥
∥
∥
∥

ˆ⌣
X −

∼
⌣

X

∥
∥
∥
∥

2

2

+

∥
∥
∥
∥

ˆ⌣
E −

∼
⌣

E

∥
∥
∥
∥

2

2

+ φT ‖LTαT‖22 + φE ‖LEαE‖22 , (5.11)

whereLT andLE are diagonal(MT
max+1)× (MT

max+1)- and(ME
max+1)× (ME

max+1)-
matrices, andαT andαE are ((MT

max + 1) × 1)- and ((ME
max + 1) × 1)-vectors of

parameters, respectively. However, to simply our model in Eqn. (5.11), PRSS can be
approximated subsequently by using a single multiplier of penalization:

PRSS ≈
∥
∥
∥
∥

ˆ⌣
X −

∼
⌣

X

∥
∥
∥
∥

2

2

+ φ ‖Lα‖22 , (5.12)
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where
∼
⌣

X = (
∼
⌣

XT ,
∼
⌣

ET )T , ˆ⌣
X = (

ˆ⌣
XT ,

ˆ⌣
ET )T andL = (LT,LE). Here,Mmax =

MT
max + ME

max, andα = (αT
T,α

T
E)
T is an ((Mmax + 1) × 1)-vector of parameters to

be estimated with the help of the data points. Consequently, for target-environment
networks, we may represent our optimization problem in the following form (with
reference to Eqn. (5.8)):

minimize
w,α

w,

subject to

∥
∥
∥
∥

ˆ⌣
X −

∼
⌣

X

∥
∥
∥
∥
2

≤ w,

‖Lα‖2 ≤
√
K,

(5.13)

with some chosen parameterK ≥ 0.

5.1.1 Polyhedral Uncertainty and Robust Counterpart for Regulatory Networks

To evaluate and solve the robustness problem, for target-environment networks, we

suppose that the model uncertainty is represented by a family of matrices
∼
⌣

X =
∼

X +

UT,
∼
⌣

E =
∼

E +UE and vectorsˆ
⌣

X = X̂ + vT, ˆ
⌣

E = Ê + vE, whereU = (UT,UE) ∈
U1 := (UT

1 × UE
1 ) andv = (vT,vE) ∈ U2 := (UT

2 × UE
2 ) are unknown matrices and

vectors but they are situated in bounded sets, respectively. These uncertainty matrices
U ∈ U1 and uncertainty vectorsv ∈ U2 are by

U =







uT
0,1 uT

0,2 . . . uT
0,Mmax

uE
0,1 uE

0,2 . . . uE
0,Mmax

uT
1,1 uT

1,2 . . . uT
1,Mmax

uE
1,1 uE

1,2 . . . uE
1,Mmax

...
...

.. .
...

...
...

. ..
...

uT
N,1 uT

N,2 . . . uT
N,Mmax

uE
N,1 uE

N,2 . . . uE
N,Mmax






, (5.14)

v =

(

(vT
0 v

T
1 . . . vT

N)
T , (vE

0 v
E
1 . . . vE

N)
T

)

. (5.15)

Based on those underlying setsU1 andU2, the robust counterpart is determined as
follows:

minimize
αT,αE

max
(
∼
W T,

∼
W E)∈U1,

(ẑT,ẑE)∈U2

∥
∥
∥ẑT −

∼

W TαT

∥
∥
∥

2

2
+
∥
∥
∥ẑE −

∼

W EαE

∥
∥
∥

2

2
+φT ‖LTαT‖22+φE ‖LEαE‖22 .

(5.16)
Namely,U1 is a polytope with2(N+1)Mmax vertices

∼

W 1,
∼

W 2, . . . ,
∼

W 2(N+1)Mmax
and rep-

resented as

U1 =







2(N+1)Mmax
∑

κ=1

δκ
∼

W κ | δκ ≥ 0 (κ ∈
{
1, 2, . . . , 2(N+1)Mmax

}
),

2(N+1)Mmax
∑

κ=1

δκ = 1






,

(5.17)
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whereU1 = conv
{

∼

W ,
∼

W 2, . . . ,
∼

W 2(N+1)Mmax
}

. Furthermore,U2 is a polytope with

2N+1 verticesẑ1, ẑ2, . . . , ẑ2(N+1)
and it can be expressed as

U2 =







2(N+1)
∑

µ=1

ϕµẑ
µ |ϕµ ≥ 0 (µ ∈

{
1, 2, . . . , 2(N+1)

}
),

2(N+1)
∑

µ=1

ϕµ = 1






, (5.18)

i.e.,U2 = conv
{

ẑ1, ẑ2, . . . , ẑ2(N+1)
}

. The uncertainty setsU1 andU2 have the form

of polytopes and they can be presented as a convex combination of vertices
∼

W κ (κ =
1, 2, . . . , 2(N+1)Mmax) and ∼

zµ (µ = 1, 2, . . . , 2(N+1)), respectively. Now, the entries of
∼

W andẑ may be thought to have become intervals, in fact, our CIs. Then, the matrix
∼

W and vector̂z with uncertainty are lying in the Cartesian products of intervals; those
are parallelpipes (for visualization, cf. Subsection 3.1.3 ).

5.1.2 Robust Conic Quadratic Programming with Polyhedral Uncertainty

Whenpolyhedraluncertainty is employed by uncertainty setsU1 andU2, for our RC-
MARS model on target-environment networks, the robust CQP program is represented
in the following manner:

minimize
wT,wE,αT,αE

wT + wE,

subject to
∥
∥
∥ẑT −

∼

W TαT

∥
∥
∥
2
≤ wT,

∥
∥
∥ẑE −

∼

W EαE

∥
∥
∥
2
≤ wE, ∀ (

∼

W T,
∼

W E)
︸ ︷︷ ︸

=
∑2(N+1)Mmax

κ=1 δκ
∼
W κ

∈ U1, (ẑT, ẑE)
︸ ︷︷ ︸

=
∑2N+1

µ=1 ϕµẑµ

∈ U2,

‖LαT‖2 ≤
√

KT,

‖LαE‖2 ≤
√

KE.
(5.19)

SinceU1 andU2 are polytopes, described by their vertices as

U1 = conv
{

∼

W 1,
∼

W 2, . . . ,
∼

W 2(N+1)Mmax
}

, U2 = conv
{

ẑ1, ẑ2, . . . , ẑ2N+1
}

,

then our robust CQP can be equivalently expressed as astandardCQP [37] with the
subsequent form:

minimize
wT,wE,αT,αE

wT + wE

subject to
∥
∥
∥ẑ

µ
T −

∼

W κ1
T αT

∥
∥
∥
2
≤ wT (µ = 1, 2, . . . , 2N+1;κ1 = 1, 2, . . . , 2(N+1)MT

max),
∥
∥
∥ẑ

µ
E −

∼

W κ2
E αE

∥
∥
∥
2
≤ wE (µ = 1, 2, . . . , 2N+1;κ2 = 1, 2, . . . , 2(N+1)ME

max),

‖LαT‖2 ≤
√

KT,

‖LαE‖2 ≤
√

KE.
(5.20)
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Then, to facilitate our representation in Eqn. (5.20), thisproblem can be rewritten as

minimize
w,α

w,

subject to
∥
∥
∥ẑµ −

∼

W κα
∥
∥
∥
2
≤ w,

‖Lα‖2 ≤
√
K,

(5.21)

whereµ = 1, . . . , 2N+1;κ = (κ1, κ2) ∈ ∏E
c=T

{
1, . . . , 2(N+1)Mc

max
}

. Hence,
∼

W κ =
(

∼

W κ1
T 0

0
∼

W κ2
E

)

, ẑµ = (ẑµT
T , ẑµE

T )T , α = (αT
T ,α

T
E)

T andL = (LT,LE). Here,0,

which can have different formats, is used a dummy variable of0- matrices to simplify
notation.

5.2 Numerical Experience

5.2.1 Developing RCMARS models for Regulatory Networks

For an implementation example of the RCMARS algorithm within our dynamical
model application, we refer to an artificial dataset that has2 targets and 2 environmen-
tal variables. So, we have 4 predictor variables(

∼
x1,

∼
x2,

∼
e1,

∼
e2) with 25 measurement

values for each of them. Based on that, the maximum number of BFs, Mmax, and the
highest degree of interaction are determined for each targets and environmental items,
and the largest models are constructed in the forward MARS algorithm by its soft-
ware,Salford MARS[85] (cf. Subsection 2.3.3). To prevent from nondifferentiability
in our optimization program, we choose the knot values different from the data points,
but these values to be very much nearby to the corresponding input data. Hence, for
both targets and environmental factors, the numbersMT of BFs are 11, 10, 8, and 11,
respectively, and the largest models of RCMARS become

x̂1 = α0 + α1 max{0, ∼
e2 + 2.113}+ α2 max{0, ∼

e1 + 2.106}+ α3 max{0, ∼
x1 − 2.337}

+ α4 max{0, ∼
x2 − 0.058}+ α5 max{0, 0.058− ∼

x2}+ α6 max{0, ∼
x1 + 0.295}

+ α7 max{0,−0.295− ∼
x1}+ α8max{0, ∼

e2 + 0.079}+ α9max{0,−0.079− ∼
e1}

+ α10 max{0, ∼
e1 + 0.195}+ α11 max{0,−0.195− ∼

e1},

x̂2 = α0 − α1 max{0, ∼
e1 + 2.106}+ α2 max{0, ∼

e2 − 0.392}+ α3 max{0, 0.392− ∼
e2}

+ α4 max{0, ∼
x2 + 1.838}+ α5 max{0, ∼

x1 + 0.295}+ α6 max{0,−0.295− ∼
x1}

+ α7 max{0, ∼
x2 − 0.058}+ α8 max{0, 0.058− ∼

x2}+ α9 max{0, ∼
x2 + 0.347}

+ α10 max{0,−0.347− ∼
x2},

ê1 = α0 + α1 max{0, ∼
x1 + 2.337}+ α2 max{0, ∼

e1 + 2.195}+ α3 max{0,−0.195− ∼
e1}

+ α4 max{0, ∼
x2 + 1.838}+ α5 max{0, ∼

e2 + 0.010} ·max{0, ∼
x1 + 2.337}

+ α6 max{0,−0.010− ∼
e2} ·max{0, ∼

x1 + 2.337}
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+ α7 max{0, ∼
x1 + 0.295} ·max{0, ∼

x2 + 1.838}
+ α8 max{0,−0.295− ∼

x1} ·max{0, ∼
x2 + 1.838},

ê2 = α0 + α1 max{0, ∼
e2 + 2.113}+ α2 max{0, ∼

e1 − 0.450}+ α3 max{0, 0.450− ∼
e1}

+ α4 max{0, ∼
x1 + 0.295}+ α5 max{0,−0.295− ∼

x1}+ α6 max{0, ∼
x2 − 0.058}

+ α7 max{0, 0.058− ∼
x2}+ α8 max{0, ∼

e1 + 0.195}+ α9 max{0,−0.195− ∼
e1}

+ α10 max{0, ∼
x2 + 0.347}+ α11 max{0,−0.347− ∼

x2}.

As our next step, for the second part of our optimization model in Eqn. (5.12) the ma-
tricesL are obtained, related to all targets and environmental factors, respectively. To
introduce the robust optimization approach into the RCMARS model, by applying Eqn.
(5.7), uncertainties are calculated for all input and output values which are represented
by CIs, and these uncertainty values evaluated are inserted into the real input data∼xk
and ∼

ek in each dimension, and into the output datax̂k and êk (k = 0, 1, . . . , 24).
Therefore, for both targets and environmental items, the uncertainty matrices and vec-
tors based on polyhedral uncertainty sets are constructed by using Eqns. (5.17)-(5.18).
Indeed, we have a tradeoff here between tractability and robustification, because , the
uncertainty matrices of the input data have huge dimensions, and we do not possess
enough computer capacity to solve our problem with respect to these uncertainty matri-
ces. To cope with this difficulty, for all targets and environmental items, we formulate
the minimization of PRSS as a CQP problem in Eqn. (5.21) for all data values by
following acombinatorial approachthat we callweak robustification(cf. Remark 2).

As a result, we obtain 25 differentweak RCMARS (WRCMARS)models for both targets
and environmental items. These 100(= 25 · 4) sub-models are solved independently
by running the program code of RCMARS algorithm written in MATLAB and using
MOSEK software [89] for CQP problem, and we receive thew value for each of our
auxiliary problems. Eventually, as an expression of ourworst-case approach, we chose
the solution that has themaximumw value, in terms of all targets and environmental
factors. For our RCMARS involvement, Table 5.1 displays the optimal parameters of
targets and environmental factors found.

Table 5.1: For targets and environmental factors, predicted parameter values by RC-
MARS algorithm.

α0 α1 α2 α3 α4 α5
∼

x1 -0.247 0.111 -0.326 0.269 0.191 -0.050
∼

x2 0.711 -0.448 -0.924 0.366 0.130 -0.097
∼

e1 -2.258 0.782 0.549 -0.392 0.147 0.000
∼

e2 -1.708 0.616 -0.077 0.434 0.522 -0.230

α6 α7 α8 α9 α10 α11
∼

x1 0.382 -0.314 0.201 -0.217 -0.444 0.215
∼

x2 0.000 0.104 0.030 0.033 -0.112
∼

e1 -0.056 0.000 0.066
∼

e2 -0.080 -0.085 -0.292 0.384 0.013 -0.015
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5.2.2 Results

The prediction results for targets and environmental factors can be seen in Figures
5.3-5.6; here, the “red line” presents exact values, and the“blue line” indicates the
predicted values by RCMARS model.
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Figure 5.3: True and predicted expression values of the firsttarget.
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Figure 5.4: True and predicted expression values of the second target.
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Figure 5.5: True and predicted expression values of the firstenvironmental item.
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Figure 5.6: True and predicted expression values of the second environmental item.

From Figures 5.3-5.6, with the exact expression data of targets and environmental fac-
tors, we may deduce that the predicted values of RCMARS model match very well.
This implies that with RCMARS ournew robust regression model for regulatory sys-
tems can predict the trend of the target-environment interaction very successfully.
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5.2.3 Simulation Study and Comparison

In previous subsections, we presented and scientifically analyzed R(C)MARS and two-
model regulatory systems under polyhedral uncertainty. What is more, using an artifi-
cial data set, we introduced RCMARS models for 2 targets and 2 environmental factors
as a numerical experience and represented the results obtaining figures for each target
and each environmental items. In this subsection, to demonstrate the performance
of RCMARS for a regulatory system based on replicated datasets and compare this
method with other related methods. We construct different LR, MARS and RCMARS
models through 5 different simulated datasets for each target and each environmental
item as we defined in Section 5.2. In the study [108], our basicperformance measure
to calculate the precision of the models isestimation variance (EV). According to our
main aim, we evaluate EVs for LR, MARS and RCMARS models. Also, to compare
the results concerning the accuracy of LR, MARS, and RCMARS, thesemodels are
evaluated based on some accuracy measures such asR2

adj, AAE, RMSE, andr. The ex-
planations, interpretations and formulas of these measures are presented in Table D.1.
When developing RCMARS models, a sensitivity study is conductedto determine the
most appropriate confidence limits on both the input and output data. For this aim,
different uncertainty matrices,U , for the input data and different uncertainty vectors,
v, for the output data in Eqns. (5.14)-(5.15) are obtained by using different intervals
and R(C)MARS results are represented based onfour different uncertainty scenarios.

Table 5.2: Performance measures of LR, MARS, RMARS and RCMARS modelsfor
the first target variable.

x1

LR MARS RMARS RCMARS
EV 0.736 0.938 0.635 0.789 0.816 0.887 0.562 0.666 0.817 0.852
R2
adj 0.684 0.925 0.740 0.820 0.875 0.920 0.761 0.840 0.926 0.940

AAE 0.333 0.175 0.281 0.275 0.231 0.187 0.317 0.257 0.169 0.151
RMSE 0.503 0.244 0.456 0.380 0.317 0.254 0.379 0.310 0.211 0.190

r 0.858 0.968 0.890 0.922 0.947 0.966 0.942 0.959 0.979 0.983

Table 5.3: Performance measures of LR, MARS, RMARS and RCMARS modelsfor
the second target variable.

x2

LR MARS RMARS RCMARS
EV 0.871 0.917 0.813 0.835 0.844 0.878 0.697 0.748 0.819 0.866
R2
adj 0.859 0.901 0.824 0.865 0.880 0.896 0.824 0.860 0.902 0.925

AAE 0.231 0.189 0.288 0.226 0.212 0.195 0.220 0.195 0.173 0.161
RMSE 0.336 0.282 0.376 0.328 0.310 0.288 0.335 0.299 0.251 0.219

r 0.939 0.958 0.924 0.943 0.949 0.856 0.946 0.957 0.969 0.976
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Table 5.4: Performance measures of LR, MARS, RMARS and RCMARS modelsfor
the first environmental variable.

e1

LR MARS RMARS RCMARS
EV 0.839 0.912 0.665 0.682 0.775 0.888 0.590 0.664 0.888 0.907
R2
adj 0.809 0.894 0.810 0.842 0.877 0.893 0.780 0.810 0.895 0.901

AAE 0.268 0.243 0.328 0.308 0.265 0.247 0.268 0.241 0.201 0.196
RMSE 0.391 0.291 0.390 0.356 0.314 0.292 0.375 0.349 0.260 0.252

r 0.917 0.955 0.925 0.940 0.951 0.955 0.939 0.943 0.965 0.966

Table 5.5: Performance measures of LR, MARS, RMARS and RCMARS modelsfor
the second environmental variable.

e2

LR MARS RMARS RCMARS
EV 0.848 0.860 0.665 0.727 0.748 0.814 0.620 0.667 0.704 0.834
R2
adj 0.818 0.840 0.784 0.818 0.825 0.838 0.785 0.819 0.842 0.910

AAE 0.275 0.285 0.339 0.310 0.302 0.287 0.241 0.221 0.211 0.166
RMSE 0.382 0.367 0.426 0.391 0.383 0.369 0.382 0.351 0.328 0.248

r 0.921 0.927 0.905 0.919 0.922 0.927 0.932 0.942 0.949 0.969

According to all the aforementioned computations and comparisons, our R(C)MARS
method proves to be very competitive with the other methods.We are able to achieve a
variance reduction which is very important in practice, andan additional advantage,
especially, when comparing with our predecessor method of MARS. On the other
hand, as it is deduced in Tables 5.2-5.5 and those performance criteria, in general,
RCMARS produced more accurate models with smaller variances than LR and MARS
and RMARS with respect to precision and accuracy. Consequently, R(C)MARS can
provide us very good predictions for the dynamics of the target-environment interac-
tion based on the expression values of both all targets and all environmental factors.
Therefore, we indicate that RCMARS can perform better than LR, MARS for all tar-
get and environmental items with respect to any of our measures, as validated through
simulated datasets.

Here, the performance of RMARS and RCMARS are compared by using only one sim-
ulated dataset and the results of RMARS and RCMARS models with LR and MARS
are demonstrated in Tables 5.2-5.5 based onfour different uncertainty scenarios. In-
deed, these results and the results which we demonstrated inour previous chapter
deduce that CMARS performs better than MARS, and thus RCMARS performs better
than RMARS for all target and environmental items with respectto all measures vali-
dated through simulated datasets. Therefore, we continue comparing the performance
of RCMARS with LR and MARS through the remaining 4 different simulated datasets
and represent the results of LR, MARS and RCMARS models in Tables B.1and B.2.
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CHAPTER 6

REAL-WORLD APPLICATION WITH OUR ROBUST TOOLS

6.1 A Real-World Application of RCMARS in the Financial Sector

6.1.1 Introduction

One of the fundamental concepts in finance theory is optimization, and the financial
decision making for a rational agent is essentially a question of achieving an optimal
trade-off between risk and return. In this way, robustification is starting to draw more
attention in finance; in particular, some studies report promising results using robust
statistical techniques in financial markets. In the study [103], we used data from Is-
tanbul Stock Exchange like ISE 100 index, ISE transaction number and so on, from
Turkish economy like TUFE and TEFE indexes, and also data of the Fed Funds Interest
Rate and VIX Index which have been obtained from the US market,because of their
strong effect on the economy of Turkey. ISE 100 index has beentaken as the depen-
dent variable, and others as the independent variables. We put a correlation threshold
in order to limit the unnecessary and meaningless calculations and eliminated several
variables which do not satisfy this requirement. Afterwards, we applied RCMARS to
the remaining independent variables.

6.1.2 Data Description

We selected our time-series data for the empirical part fromthe website of Central
Bank of the Republic of Turkey [27]. The data contain the economic indicators which
are the most commonly used ones for the interpretation of an economic situation.
Monthly data have been preferred in order to have more definite and stationary results,
relative to daily or weekly data. If we could not find the monthly data, we used daily
data and converted them to monthly data by taking averages, or for some of them the
last data of the month were taken as the data of the month, likeNet Foreign Exchange
Reserves and International Gold Reserves.ISE 100 stock indexis the dependent vari-
able in our dataset. We used thisindex, because it is a statistical measure of change
in an economy or a securities market. For financial markets, an index is an imaginary
portfolio of securities representing a particular market or a portion of it. It has its own
calculation methodology and is usually expressed in terms of a change from a base
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value. Thus, the percentage change is more important than the actual numerical value.

The independent variables areISE Transaction Number(the number of transaction
during a defined time period, in our case during the month),ISE Trading Volume(the
number of shares or contracts of a security traded during a defined time period, again
for a month),Capacity Usage Ratio(the ratio of the production capacity of the econ-
omy to the maximum capacity of economy),Euro and Dollar Exchange Rate, Net For-
eign Exchange Reserves and International Gold Reserves, Gold Price, Credit Volume,
Price Indexeslike Wholesale Price Index(WPI) andConsumer Price Index(CPI) (in
Turkey: TEFE and TUFE, respectively). WPI is the price of a representative basket of
wholesale goods, while a CPI measures changes in the price level of consumer goods
and services purchased by households. Two indicators from the USA are taken to our
analysis:Fed Funds Interest RateandVIX Index(a measure of the market’s expecta-
tion of stock market volatility over the next 30 day period),because of the strong effect
of the USA on the economy of Turkey and the world. We use ISE 100Stock Market
index as a dependent variable. This is the successor of theComposite Index, which
was introduced in 1986 including the stocks of 40 companies and was in time limited
to the stocks of 100 companies. It consists of 100 stocks, which have been selected
among the stocks of companies listed on the National Market,and the stocks of real
estate investment trusts and venture capital investment trusts, listed on the Corporate
Products Market, and it covers ISE 30 and ISE 50 stocks.

The data cover the time horizon between January 1999 and December 2009. Some
of the series do not contain the data of December 2009; therefore, the absent values
are calculated in Excel using interpolation. We also checked the correlation among
these series, in order to prevent from unnecessary and meaningless calculations. We
assumed a correlation threshold of 0.90 to decide about the strength of correlation.
The most correlated factors are ISE Trading Volume, International Gold Reserves, Net
Foreign Exchange Reserves and WPI (TEFE). For example, there is a correlation of
0.94 between ISE Transaction Number and ISE Trading Volume.So, ISE Transaction
Number is taken out from the list. Eventually, our dataset consists of ISE Trading
Volume, Capacity Usage Ratio, Euro and Dollar Exchange Rates, Credit Volume, Gold
Price, WPI (TEFE), Fed Funds Interest Rate and VIX Index.

6.1.3 Obtaining Large Model from MARS Program

For the implementation of our RCMARS algorithm developed, we used a dataset from
the financial market and, eliminating some of the predictor variables which have the
correlation. At the end we have 8 predictor input variables:

X1 : ISE Trading Volume, X2 : Capacity Usage Ratio,
X3 : Euro Exchange Rate, X4 : Credit Volume,
X5 : Dollar Exchange Rate, X6 : Price Index (TEFE),
X7 : Federal Funds Interest Rate, X8 : VIX Index,

with 76 observations. However, we do not have enough computer capacity to solve
our problem in Eqn. (3.19) that is given as atradeoff between tractability and ro-
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bustification. Therefore we divide our dataset into two subsets, each of which has 38
observations. Firstly, we validate our assumption that theinput variables and the out-
put variable are distributed normally, usingbootstrapping method[36] from statistics.
In order to implement RCMARS algorithm, first, the MARS models areconstructed
for each subset by using the Salford MARS version 3 [85] and, then, the maximum
number of BFs (Mmax) and the highest degree of interactions are determined by trial
and error. In first part of our dataset,Mmax is assigned to be 12, and the highest de-
gree of interaction is assigned to be 3. Then, the largest models for the first part and
the second part of the dataset are constructed in the forwardMARS algorithm by its
software.

To prevent from nondifferentiability in our optimization problem, we choose the knot
values different from data points. However, these values are very much nearby to
the corresponding input data. Then, the BFs for the first part of the dataset can be
introduced into the largest model subsequent way1:

ŷ = α0 +
M∑

m=1

αmϑm(x)

= α0 + α1ϑ1(x) + α2ϑ2(x) + α3ϑ3(x) + α4ϑ4(x) + α5ϑ5(x) + α6ϑ6(x)

+ α7ϑ7(x) + α8ϑ8(x) + α9ϑ9(x) + α10ϑ10(x) + α11ϑ11(x) + α12ϑ12(x)

= α0 + α1max{0, x8 − 0.365}+ α2 max{0, 0.365− x8}
+ α3 max{0, x1 + 0.567}+ α4 max{0,−0.567− x1}
+ α5 max{0, x2 + 0.542}+ α6 max{0,−0.542− x2}
+ α7 max{0, x4 + 2.187} ·max{0,−0.542− x2}
+ α8 max{0, x4 + 0.098} ·max{0, 0.365− x8}
+ α9 max{0,−0.098− x4} ·max{0, 0.365− x8}
+ α10 max{0, x7 + 2.216} ·max{0, x1 + 0.567}
+ α11 max{0, x6 − 0.542} ·max{0, x7 + 2.216} ·max{0, x1 + 0.567}
+ α12 max{0, 0.542− x8} ·max{0, x7 + 2.216} ·max{0, x1 + 0.567}.

Likewise, the BFs for the second part of the dataset become inserted in the largest
model in the following manner:

ŷ = α0 +
M∑

m=1

αmϑm(x)

= α0 + α1ϑ1(x) + α2ϑ2(x) + α3ϑ3(x) + α4ϑ4(x) + α5ϑ5(x) + α6ϑ6(x)

+ α7ϑ7(x) + α8ϑ8(x) + α9ϑ9(x) + α10ϑ10(x) + α11ϑ11(x) + α12ϑ12(x)

= α0 + α1max{0, x4 − 0.575}+ α2 max{0, 0.575− x3}
+ α5 max{0, x1 − 0.019} ·max{0, 0.275− x3}
+ α6 max{0, 0.019− x1} ·max{0, 0.275− x3}

1 For the ease of representation, here and subsequently, we suppressthe indexm of the subvectorsxm and just
writex.
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+ α7max{0, x1 + 2.172} ·max{0, x4 − 0.575}
+ α8max{0, x7 + 0.583} ·max{0, 0.575− x4}
+ α9max{0, x5 + 0.309} ·max{0, x7 + 2.583} ·max{0, 0.575− x4}
+ α10 max{0,−0.309− x5} ·max{0, x7 + 2.583} ·max{0, 0.575− x4}
+ α11 max{0, x2 + 0.499} ·max{0, 0.575− x4}
+ α12 max{0,−0.499− x2} ·max{0, 0.575− x4}.

6.1.4 Bootstraping

In general, bootstrapping is used for statistical inference on the basic idea of building a
sampling distribution for a statistic by resampling from the data at hand. It is also used
to anticipate important characteristics of the population. Frequently mentioned com-
ment about bootstrap is the following: “The population is to the sample as the sample
is to the bootstrap samples”. The bootstrap provides correct statistical inference and
is useful in driving accurate standard errors, confidence intervals and hypothesis tests
for most statistics. It has also applicability in stratification, clustering by resampling
from the sample data in the same wise as the original sample isselected from the
population [36, 46].

6.1.5 Evaluating Accuracy and Complexity of PRSS Form

For this numeric example, we approximate the PRSS formula as follows:

PRSS ≈

=Accuracy
︷ ︸︸ ︷
∥
∥y − ϑ(b)α

∥
∥
2

2
+

=Complexity
︷ ︸︸ ︷

φ
∥
∥Lα

∥
∥
2

2
. (6.1)

Herein, the first part of the TR term, which is the right-hand side, and that of the PRSS
function, are equal to each other, whereas, their second parts are equal approximately.
Subsequently, all those parts are stated:

Accuracy:

∥
∥y − ϑ(b)α

∥
∥
2

2
= (y−αTϑ(b))T (y−αTϑ(b)) =

N∑

k=1

(yk−αTϑ(bk))
2 =: (∗), (6.2)

Complexity:

φ
∥
∥Lα

∥
∥
2

2
≈

12∑

m=1

φm

2∑

|θ|=1
θT=(θ1,θ2)

∑

r<s
r,s∈V (m)

∫

Qm

α2
m[D

θ
rsϑm(t

m)]2dtm =: (∗∗), (6.3)

where, indeed,PRSS := (∗) + (∗∗) andφ = φm (m = 1, 2, . . . , 12). Having dis-
cretized all the multi-dimensional integrals in thecomplexitypart, they jointly turn
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into the form of Eqn. (3.17) and, finally, the discretized form is indicated byL. As a
result, the matrixL becomes a diagonal matrix and the first column elements ofL are
all zero. The diagonal elements of this matrix,Lm (m = 1, 2, . . . , 12), are given below
for the first part of our dataset:

L =







0 0 . . . 0
0 1.30 . . . 0
...

...
. . .

...
0 0 . . . 0.29






.

For the second part of our dataset, the diagonal elements ofL, Lm (m = 1, 2, . . . , 12)
are comprised as follows:

L =







0 0 . . . 0
0 1.18 . . . 0
...

...
. . .

...
0 0 . . . 2.34






.

6.1.6 Calculating Uncertainty Values for Input and Output Data under Polyhe-
dral Uncertainty

We incorporate a perturbation (uncertainty) into the real input data in each dimension
and into the output data, after we obtainaccuracyandcomplexityterms, to employ our
robust optimization technique on the CMARS model. For this purpose, the right-hand
side on an uncertainty bound from Eqn. (3.16) is evaluated for all input and output
values which are represented byCIs, and the uncertainty matrices and vectors based
onpolyhedral uncertaintysets are obtained by using Eqns. (3.20) and (3.21).

Furthermore, to perform the given calculations, we need normally distributed data and,
since in our dataset some variables are not normally distributed, we use the bootstrap-
ping method of statistics [36], which is the general approach to statistical inference
based on building a sampling distribution for a statistic byresampling from the data
at hand. With our worst case approach, for the each observation, we use the Eqn.
(3.16) to receive the uncertainty vectors with their entriesukm (k = 1, 2, . . . , 38;m =
1, 2, . . . , 12):

|uk,m| = |ϑm(⌣xk)−ϑm(⌣xk)| =
∑

A⊆
6=
{1,...,K}

B|A|−1
k

∏

a∈A

ρka ·
∏

b∈{1,...,K}/A

(γkb+ρkb). (6.4)

Now, we can write our uncertainty matrix for the input data asfollows:

U =







u1,1 u1,2 . . . u1,12
u2,1 u2,2 . . . u2,12

...
...

.. .
...

u38,1 u38,2 . . . u38,12






∈







[3.5,−3.5] 0 . . . 0
[3.8,−3.8] 0 . . . 0

...
...

. . .
...

0 [3.2,−3.2] . . . [46.4,−46.4]






.

79



After we have incorporated uncertainty for each input value, matrices of our BFs can
be expressed in the following forms, just by concentrating on the lower and upper
interval boundaries, respectively:

W up = ϑ(
⌣

b) +Uup =







1 3.82 . . . 0
1 3.82 . . . 0
...

...
. ..

...
1 0 . . . 47.36






,

W low = ϑ(
⌣

b) +U low =







1 −3.23 . . . 0
1 −3.79 . . . 0
...

...
.. .

...
1 0 . . . −45.47






.

The output data, the uncertainty vector and the vectors withuncertainty are represented
below, respectively:

v =







v1
v2
...
v38






∈







[3,−3]
[3,−3]

...
[3,−3]






, zup =

⌣
y+vup =







−4.49
−3.56

...
−1.87






, zlow =

⌣
y+vlow =







1.51
2.44

...
4.13






.

The calculation done above is applicable for both parts of our training dataset.

6.1.7 Receiving Weak RCMARS Models Using Combinatorial Approach

As we mentioned in the previous section, PRSS is approximatedby a TR problem, and
we can easily formulate it as a CQP problem. Moreover, we incorporate a perturbation
(uncertainty) into the real input data,xk (k = 1, 2, . . . , 38), in each dimension and into
the output data,y, by using our robust optimization approach for a robustification of
CMARS. For this aim, by applying Eqns. (3.13) and (3.17) we obtain the uncertainty
matrices and vectors based on polyhedral uncertainty. Then, using relation in Eqn.
(6.4) we evaluate uncertainty for all input and output values which are represented by
CIs.

For our example, the uncertainty matrix of input data presented as a vector has a huge
dimension (2456(=38·12)) with polyhedral uncertainty, and we do not have enough com-
puter capacity to solve our problem for this matrix. In fact,we have atradeoffbetween
tractability and robustification (cf. Subsection 3.1.3). To overcome that obstacle, in this
example, we robustify our CQP problem for each sample value (observation) using the
combinatorial approach, which we callweak robustification. That weak robustifica-
tion encounters a data-wise robustification that refers to all the other data according
to the interval midpoints (“ceteris paribus”), and it finally addresses the worst case
with respect to all the data-wise robustifications. Consequently, we obtain 38 differ-
entweak RCMARS(WRCMARS) models, for each part of our dataset, and solve them
with MOSEK [89]. Based on polyhedral uncertainty sets, to solve our problem, we
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use their vertices. In order to find them, we need especially to apply the Cartesian
product of all the intervals of input data in the observations. Hence, our WRCMARS
models have different structures depending on the number ofentries (BFs), which are
used to explain the observations. For instance, we can represent the last observation’s
WRCMARS model, which has 3 entries, in the following form:

minimize
w,α

w,

subject to 1.51069− α0 − 0.29234α1 − 0.35539α4 = β1,

2.43887− α0 − 0.01516α1 − 0.10152α3 = β2,

...
− 1.87353− α0 + 2.677α2 + 3.090α3 + 45.474α5 = β608,

(β2
1 + β2

2 + . . .+ β2
38)

1/2 ≤ w,

(β2
39 + β2

22 + . . .+ β2
76)

1/2 ≤ w,

...

(β2
571 + β2

572 + . . .+ β2
608)

1/2 ≤ w,

(β2
609 + β2

610 + · · ·+ β2
620)

1/2 ≤ K1/2,

refering the someK ≥ 0. In order to solve this problem, we transform it into the
MOSEK format above. For this transformation, we attribute new unknown variables
in the linear terms which are lying in these 17 cones. By this, in fact, we simplify the
notations in the cones and write them as equality and inequality constraints. Therefore,
for our last sample, our problem includes 620 linear constraints and 17 quadratic cones.

We write this formulation for each value of our sample (N = 38) and solve them
separately by using MOSEK program [89]. MOSEK apply an interior-point optimizer,
which is an implementation of a homogeneous and self-dual algorithm. We obtain
MOSEK results and find thew values for all auxiliary problems; then, using the worst-
case approach, we select the solution which has themaximum wvalue. Then, we
continue with our calculations using the parameter valuesαj (j = 1, 2, . . . , 12) that
we find from the auxiliary problem which has the highestw value.

6.1.8 Sensitivity to the Changes in the Confidence Interval Limits of RCMARS

In order to represent sensitivity to the changes in the CI limits of the input data and
output data and to find suitable interval limits for us, we obtain different uncertainty
matrices,U , for the input data and different uncertainty vectors,v, for the output data
as the form of Eqn. (3.18) by using 7 different intervals. These ones are given by
the pairs±3,±3/2,±3/4,±3/6,±3/8,±3/10 and, as a special case, the mid-point
value of our interval (i.e., zero lengths interval). In thelatter case, it reduces to the
CMARS model. This shows that CMARS is aspecial caseof RCMARS. Therefore,
we calculate our parameters with 7 different uncertainty scenarios using these values
under polyhedral uncertainty sets for our training data set.
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In Subsection 6.1.9, all of the parameter estimates as well as model accuracies for dif-
ferent uncertainty scenarios are shown. When we apply theK values in our RCMARS
code and solve it by MOSEK, we use thatK value which has the minimum value
of PRSS approximately in Eqn. (3.22). In order to compare the results concerning
accuracy for RCMARS and CMARS, we employAverage Absolute Error(AAE) and
Root Mean Squared Error(RMSE). Also, we represent variances (σ2) of CMARS and
RCMARS in Subsection 6.1.9.

6.1.9 Results and Discussion

In this study, we construct uncertainty matrices,U , for the input data and uncertainty
vectors,v, for the output data and, we recieve 7 different uncertaintyscenarios by
using the interval values,±3,±3/2,±3/4,±3/6,±3/8,±3/10 and zero.

From Tables 6.1 and 6.2 it seems that the solutions obtained are sensitive to the limits
of CIs. When the lengths of the CIs are narrow, we evaluate betterperformance results.
Moreover, as in our previous study [100], when we use themid-point(zero value) of
our interval values for both input and output data, which is the certain data case; we
receive the same parameter estimates as we obtained for CMARS.This is our particular
special case. When we assess theϑm(x) values in our RCMARS code and employ
MOSEK, RCMARS provides us several solutions, each of them basedon 12 BFs.

Table 6.1: Parameter estimates and the model performances for the training data.

U, v ±3 ±3/2 ±3/4 ±3/6 ±3/8 ±3/10 zero

RCMARS CMARS
α0 -0.053 0.013 0.135 0.139 0.151 0.139 0.110
α1 0.078 0.050 -0.040 -0.051 -0.065 -0.063 -0.061
α2 0.008 0.016 0.009 0.010 0.006 -0.006 -0.024
α3 -0.045 -0.059 -0.091 -0.103 -0.119 -0.138 -0.139
α4 -0,021 -0.101 -0.175 -0.166 -0.164 -0.163 -0.155
α5 0.000 -0.058 -0.113 -0.117 -0.122 -0.124 -0.118
α6 0.031 0.052 0.066 0.063 0.063 0.072 0.085
α7 0.054 0.016 -0.018 -0.011 -0.013 -0.007 0.008
α8 0.216 0.451 0.497 0.470 0.473 0.474 0.453
α9 -0.003 -0.008 -0.013 -0.007 -0.021 -0.001 0.082
α10 0.001 0.001 0.002 0.002 0.002 0.004 -0.024
α11 -0.002 -0.018 -0.031 -0.022 -0.013 -0.007 -0.066
α12 -0.005 -0.005 -0.004 -0.004 0.006 0.012 0.038
σ2

0.028 0.057 0.085 0.085 0.092 0.101 0.165

AAE 0.735 0.707 0.678 0.673 0.662 0.656 0.627
RMSE 1.175 1.121 1.078 1.070 1.052 1.037 0.999

For the training data, models for RCMARS have a smaller variance, but a lower ac-
curacy than CMARS, which is consistent with our expectation. However, we have
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unexpected results for the testing data.

Table 6.2: Parameter estimates and the model performances for the testing data.

U, v ±3 ±3/2 ±3/4 ±3/6 ±3/8 ±3/10 zero

RCMARS CMARS
σ2

0.005 0.006 0.005 0.005 0.005 0.006 0.012

AAE 0.830 0.831 0.818 0.818 0.812 0.814 0.825
RMSE 1.156 1.163 1.146 1.145 1.138 1.145 0.168

For the test data and for some suitable uncertainty values, RCMARS produced more
accurate model with a smaller variance than CMARS, which can beseen in Table 6.2.
This is mainly due to the randomness involved in the input-output variables. According
to the above results, we can say that RCMARS can be a moreaccurate modelwith a
smaller variancethan CMARS.

6.2 A Real-World Application of RCMARS in the Energy Sector

Electricity price forecasting models have recently been constructed in Turkey since the
electricity market evolved into a competitive form. New market structure is based on a
day-ahead price forecasting. Electricity price modeling enables decision makers to see
projections for the future. Since the fluctuations in electricity demand affect electricity
prices, the prices can change in short-term periods even in aday. Fluctuations in
the electricity consumption show that there arethree periods; day, peak, andnight,
according to the demand. Therefore, the aim of the study [149] is to make short-term
projections for competitive Turkish electricity market where only day-ahead prices are
forecasted, and to propose a customized approach for electricity price modeling of
Turkey.

Several models are studied in the literature for competitive electricity markets. The
categorization of models is based on three main approaches:game theory models,
time series models, and production cost models [52]. Commonly, next-day’s electric-
ity prices are predicted by using time series models, specifically dynamic regression
model [96]. The approach proposed here is based on robust andcontinuous optimiza-
tion techniques via our new robust tool, RCMARS. One traditional and one new ap-
proaches are proposed and then analyzed considering three different types of period in
a day. The results show that with small variance RCMARS performsbetter than the dy-
namic regression (DR). Although dynamic regression is not appropriate for small-sized
data sets, it is used in order to compare the traditional approach and the customized ap-
proaches.
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6.2.1 Dynamic Regression Approach

One of the effective methods for price modeling is using a dynamic procedure, since
the behavior of the variables over time changes the structure of the price models. The
model in Eqn. (6.5) is a dynamic regression model that consists of electricity price
pt+1 at timet+ 1 explained by past prices at timest, t− 1, . . . , t− k and the values of
demand at the timet, t− 1, . . . , t− k:

Pt+1 = β0dt + β1dt−1 + . . .+ βndt−k + δ0pt + δ1pt−1 + . . .+ δkpt−k + εt, (6.5)

whereβi, δi represent the coefficients andεt stands for the noise terms. This method
is used in order to overcome the serial correlation in error [53, 96]. Here, the DR ap-
proach is used for the prediction of electricity price in Turkey as a traditional approach.
Since the efficiency of the method depends on the selection ofexplanatory variables,
the appropriate model for Turkish electricity market is defined by using the real data
set of March 2011. The resulting model is

Pt+1 = β0dt + β1dt−7 + δ0pt + εt. (6.6)

Here, the model relates next day’s price to current day’s demand and price as well as
the demand of the same day of the previous week.

6.2.2 CMARS

In order to implement the second step of the algorithm, the MARS models are obtained
for each subset by using the Salford MARS System, then the maximum number of
BFsMmax and the highest degree of interactions are determined. The largest model
for the first period, i.e., day, is found to be In order to implement the second step of
the algorithm, the MARS models are obtained for each subset byusing the Salford
MARS System, then the maximum number of BFsMmax and the highest degree of
interactions are determined. The largest model for the firstperiod, i.e. a day, is found
to be

ŷd =α0 + α1 max{0, x3 − 0.63}+ α2 max{0, 0.63− x3}+
α3 max{0, x2 + 2.04}max{0, 0.63− x3}+
α4 max{0, x1 + 2.7}max{0, x3 − 0.63}+ α5 max{0, x1 + 2.7}+
α6 max{0, x1 − 0.51}+ α7 max{0, 0.51− x1}+ α8 max{0, x1 + 0.28}+
α9 max{0,−0.28− x1}.

CMARS algorithm is performed for various values of the boundK to find the mini-
mum PRSS in Eqn. (3.6). The model is solved in MATLAB environment for three
explanatory variables and the results are given in the Subsection 6.2.4, below.

6.2.3 RCMARS

Electricity price models include uncertain parameters. For instance, small perturba-
tions in electricity price and demand may cause different day-ahead electricity price

84



models. In order to avoid unstable solutions,all input and output variables are as-
sumed as random variables, opposite to DR and CMARS, where onlythe output vari-
able (dependent variable) is regarded as random through noise; now, our RO approach
is applied to refering to BFs obtained from MARS. By using Eqn. (3.18), uncertainty
matrices and vectors for the input and output parameters areconstructed based on
polyhedral uncertainty sets that are represented by standard confidence intervals. RC-
MARS model takes its general form with the vector of explanatory variables under
uncertainty [13, 98]. To solve the problem, PRSS in Eqn. (3.17) is reformulated as a
RCQP in Eqn. (3.23).

6.2.4 Results and Comparison

Proposed models, CMARS-RCMARS, and the traditional model, DR, areapplied to
predict day-ahead electricity prices of Turkey. One month is chosen and daily periodic
data are used to forecast the electricity prices. Numericalresults are represented in
Table 6.3 for one period. Here, we consider to present results for only one period (e.g.,
peak) since the models give similar results for the other twoperiods (e.g., day and
night).

Five different performance measures, namely,EV which is our main performance
measure,MAE, RMSE, R2

adj andr, are used to assess the prediction performance
of the methods. These measures, their abbreviations, explanations, interpretations and
formulas are represented in Table D.1. Moreover, in RCMARS, parameters are evalu-
ated for four uncertainty scenarios using the values under polyhedral uncertainty sets.
The results are represented in the Table 6.3 with RCMARS1 (CMARS),RCMARS2,
RCMARS3 and RCMARS4.

Table 6.3: Comparison of electricity price models based onAAE, RMSE,R2
adj, EV and

r.

DR RCMARS1 RCMARS2 RCMARS3 RCMARS4
EV 0.33 0.34 0.007 0.25 0.32

AAE 0.75 0.53 0.82 0.57 0.54
RMSE 0.99 0.86 1.19 0.88 0.86
R2
adj 0.13 0.26 0.42 0.23 0.26

r 0.33 0.73 0.35 0.74 0.73

According the results, when RCMARS is applied in Turkish electricity market, bet-
ter predictions can be received with smaller variance. Also, it can be deduced that
RCMARS performs better when the length of confidence intervals is reduced for our
performance measures, except EV; it is better when the length of confidence intervals
is increased.
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6.3 A Real-World Application of RCMARS in the Environmental Sector

6.3.1 Introduction

Climate change has been happening for decades, but it has onlyrecently begun to spark
more serious concern due to the severity of the disasters to which it has been attributed.
Climate change causes a change in the mean (i.e., the center oflocation) as well as an
increase in the variability (i.e., the spread) of meteorological variables. These changes
to the climate might result in, for example, extreme amountsof precipitation occur,
which may lead to floods and droughts, which in turn, affect the environment, agri-
culture and the economy. Thus, the ability to forecast waterlevels and manage water
resources has also gained in significance [106].

Precipitationis a very complicated physical process in nature, which makes it difficult
to forecast. Nevertheless, recent positive developments in predictive data mining tech-
niques, which are used in early warning systems [7], are improving the accuracy of pre-
cipitation forecasts. This assists in the decision to implement action plans in advance
of any predicted potential disaster. The methods used for constructing precipitation
models include statistical models, like LR models, splines, time-series models (e.g.,
ARIMA), computational models, such as Artificial Neural Networks (ANNs) [79],
MARS [31], wavelet-ANNs and soft computing models, like neuro-fuzzy and wavelet-
neuro-fuzzy models.

Comparison studies reveal that statistical models are not assuccessful as computational
models [76, 79, 97, 109, 136]. The neuro-fuzzy approach performs well, but only when
combined with wavelet transforms. Similarly, even though ANNs are used extensively
in predicting precipitation, they do not perform well unless they are used in conjunc-
tion with another method such as wavelet transformation. MARS considered to be
the best performing method compared to the other methods mentioned above [1, 2, 6].
Because of successful track record of the MARS method in precipitation modeling, in
the study [106], we attempted our technique based on RCMARS, both in theory and
application to be used for the aforementioned purpose. For this goal, a dataset consist-
ing of seven meteorological variables recorded at 43 stations in the continentalCentral
Anatolia (CCA) region of Turkey over the period 1976-2010 was selected. Details of
the dataset studied are presented in the following Subsection 6.3.2.

6.3.2 Dataset and Its Preprocessing

The dataset studied involves seven meteorological variables, namely, the monthly pre-
cipitation total (in millimeters), monthly mean temperature, monthly relative humidity
(in percent), cloudiness, vapor pressure, surface air temperature, mean pressure and
mixing ratio. Here, the mixing ratio is a derived variable obtained as the ratio of (0.622
vapor pressure)/(pressure-vapor pressure) [132]. In addition, time is also considered as
anotherindependent variable in the model development due to time involvement in the
data. The data consists of the values of the above named variables recorded at the 43
stations of the CCA region of the Turkish State MeteorologicalService (TSMS) over
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the period 1976–2010. Note here that the stations taken intoaccount in the study were
determined as a result of another study [62, 150].

In RCMARS methodology, since there is a tradeoff between tractability and robustifi-
cation, we had difficulties regarding computer capacity to solve the optimization prob-
lem using uncertainty matrices on a large amount of data, containing seven variables
with 420 rows (one for every month in 35 years), for each one ofthe 43 recording sta-
tions. To handle this problem, the size of data was reduced bytaking yearly averages
of each meteorological variable over all stations. Hence, the dataset was decreased
to a size that was more suited to the available computer capacity. Furthermore, the
variables were normalized to construct CIs in the interval [-3, 3].

In this application, to compare the performances of prediction models obtained, we
also employed thehold-out methodas the validation technique, where the dataset is
divided into two subsamples astraining and testsets. As the dataset incorporates a
time series of meteorological variables, it was not subdivided randomly. Instead of
this, the first 30 years (from 1976-2005) of each variable regarded were assigned to be
the training dataset whereas the last 5 years of the series were assigned to be the test
dataset.

6.3.3 Criteria and Measures Used in Performance Evaluations

Our basic performance measure to evaluate the precision of the models was thevari-
anceand, in this study, it was measured in particular by theestimation variance(EV).
Additionally, to compare the results concerning the accuracies of RCMARS, CMARS
and MARS methods, the models developed were further evaluated based on some ac-
curacy measures likeR2, AAE, RMSEand r. These measures, their abbreviations,
explanations, interpretations and formulas are presentedin Table D.1. Besides, the
models were evaluated with respect to the stabilities of allthe measures considered.
Here, the stability criterion of a measure compares the performance of a method on
both the training and test data. The stable methods are the ones that perform equally
well on both training and test datasets.

6.3.4 Developing Precipitation Models

First, using the training dataset described above, severalMARS models were devel-
oped using Salford System’s MARS software [85]. After picking the best one among
them, the CMARS model was constructed and robustified under polyhedral uncer-
tainty as described in Section 3.1. While developing RCMARS models, asensitivity
studywas conducted to define the most suitable confidence limits onboth the input
and output data,xk, yk(k = 1, 2, . . . , 30). For this aim, different uncertainty matrices,
U , for the input data,xk, and different uncertainty vectors,v, for the output data,yk,
were constructed by using four different intervals. These are represented by the pairs
±3/5,±3/10,±3/20 and 0 (i.e., zero-length interval). Here, the zero-length interval
refers to a special case where the RCMARS model reduces to the CMARSmodel. We
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estimated our parameters with four different uncertainty scenarios using PRSS values
of the Eqn. (3.19) under polyhedral uncertainty sets for ourtraining data set (see Table
C.1). Here, the values of boundK were determined by a model-free method, and the
one having the minimum value of approximate PRSS given in Eqn.(3.17) was used.

Owing to the tradeoff between tractability and robustification in RCMARS method-
ology, difficulties arise that stem from having insufficientcomputer capacity to solve
the RCMARS model using uncertainty matrices and a huge amount ofinput data (cf.
Subsection 3.1.3). To overcome this problem, our combinatorial approach, calledweak
robustificationwas employed on each sample value (observation) to convert the RC-
MARS into a CQP problem under polyhedral uncertainty . In the study [106], for
each observation, we include perturbation (uncertainty) into the input data,xk, for
each dimension, and also in the output data,yk (k = 1, 2, . . . , 30), with the help of
uncertainty the matrices and vectors constructed according to Eqn. (3.18). Thus, 30
different submodels, orweakRCMARS (WRCMARS) models, were built as a result.
In the WRCMARS algorithm, the MARS models were obtained by using Salford Sys-
tem’s MARS software, and then, the maximum number of BFs (Mmax) and the highest
degree of interactions were defined. For this data set,Mmax, and the highest degree
of interaction are assigned to be 12 and 1, respectively. We note thata main effect
modelis developed as a result. Thus, the largest model obtained bythe forward MARS
algorithm involves the following BF2

ϑ1(x) = max{0, x2 + 2.0927}, ϑ2(x) = max{0, x3 + 1.4227},
ϑ3(x) = max{0, x7 + 0.6001}, ϑ4(x) = max{0,−0.6001− x7},
ϑ5(x) = max{0, x6 − 0.2563}, ϑ6(x) = max{0, 0.2563− x6},
ϑ7(x) = max{0, x5 + 0.0875}, ϑ8(x) = max{0,−0.0875− x5},
ϑ9(x) = max{0, x4 + 2.3288}, ϑ10(x) = max{0, x1 + 2.4477},
ϑ11(x) = max{0, X4 + 0.1409}, ϑ12(x) = max{0,−0.1409− x4}.

Here,x1, x2 andx3 are the normalized mean temperature, cloudiness, and vaporpres-
sure;x4 andx5 are the first-order lagged cloudiness and mean pressure;x6 andx7
are the fifth-order lagged cloudiness and vapor pressure, respectively. Hence, the RC-
MARS model obtained is a “distributed lag” model due to the fact that it includes
lagged independent variables. To prevent nondifferentiability in the optimization prob-
lem, the knot values selected are different from but very much close to the correspond-
ing input data. As a result, the largest model can be described as follows:

ŷ = α0 +
M∑

m=1

αmϑm(x) = α0 + α1ϑ1(x) + α2ϑ2(x)+

α3ϑ3(x) + α4ϑ4(x) + α5ϑ5(x) + α6ϑ6(x) + α7ϑ7(x)+

α8ϑ8(x) + α9ϑ9(x) + α10ϑ10(x) + α11ϑ11(x) + α12ϑ12(x)

= α0 + α1 max{0, x2 + 2.09278}+
α2 max{0, x3 + 1.4228}+ α3 max{0, x7 + 0.6002}+
α4 max{0,−0.6002− x7}+ α5 max{0, x6 − 0.2564}+

2 For the ease of representation, here and subsequently, we suppressthe indexm of the subvectorsxm and just
writex.
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α6 max{0, 0.2564− x6}+ α7 max{0, x5 + 0.0876}+
α8 max{0,−0.0876− x5}+ α9 max{0, x4 + 2.3289}+
α10 max{0, x1 + 2.4478}+ α11 max{0, x4 + 2.76403}+
α11 max{0,−0.1410− x4}.

Thirty different submodels were solved individually by using the MOSEK program
and, thus, thew values were determined for all auxiliary problems. Then, using the
worst-case approach, the solution chosen was the one with maximumw value, and the
parametersαj (j = 1, 2, . . . , 12) were estimated (see Table C.1).

6.3.5 Results and Discussion

The models developed as defined in the previous section, wereevaluated with respect
to the criteria by using the formulas represented in Table D.1. The results are given in
Table C.2. According to them, the following findings can be indicated.

• ForU = ±3/5, the best measure values for training data were constructedfor
v = ±3/20 other than PV measure; it was best forv = ±0.

• ForU = ±3/10 and±3/20, the same best values for training data were obtained
for v = ±3/20.

• ForU = ±3/5, ±3/10 and±3/20, the best values for test data were obtained
for v = ±0.

• For U = ±3/5, the best values for the stabilities of measures were evaluated
for v = ±3/20, whereas forU = ±3/10 and±3/20, the best values for the
stabilities of measures were calculated forv = ±0.

• ForU = ±0, all measures were the same for the training, test and stabilities.

• The best values for the training data were received forU = ±3/10 or ±3/20
andv = ±3/20.

• The best values for test data were constructed forU = ±3/5 andv = ±0, while
the best stabilities of measures were obtained forU = ±3/10 or ±3/20 with
v = ±0.

Based on the above findings, the best RCMARS solution was determined forU =
±3/5, ±3/10 or±3/20 andv = ±0. For the goal of comparison, we tookU = ±3/10
or±3/20 andv = ±0. The performance measures of MARS, CMARS and RCMARS
are given in Table 6.4. Note:∗ indicates the best performance for train, test and stability
(st), with respect to the corresponding performance measure.
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Table 6.4: Performance measures of the precipitation models.

MARS CMARS RCMARS .
train test st train test st train test st

R2 0.957 0.139 0.145 0.971* 0.225 0.231 0.876 0.789* 0.901*
AAE 0.165 0.701 0.235 0.131* 0.6463 0.203 0.273 0.311* 0.877*

RMSE 0.204 0.830 0.246 0.166* 0.788 0.211 0.346 0.411* 0.842*
r 0.978 0.652 0.666 0.986* 0.672 0.680 0.950 0.900* 0.947*

EV 0.957 1.324 0.723 0.953 1.241 0.768 0.628* 0.687* 0.914*

The results implied the following conclusion:

• For the training data, CMARS performed better than the other two methods with
regard to all measures except EV; it was the best for RCMARS.

• For the test data and stabilities, RCMARS considerably outperformed the other
two methods with respect to all measures.

6.4 A Real-World Application with RCGPLM in the Financial Sector

6.4.1 Introduction

In recent years, sovereign debt-servicing difficulties andoutright defaults have been
observed more frequently than before even though the macroeconomic misalignments
causing debt crises are still not well understood. In order to forecast several kinds of
crises, the literature has focused on especially “twin” currency and banking crises, but,
not on the prediction of sovereign debt crises. Sovereign debt crises usually occur as
the result of outright default on domestic and external debtto rollover/liquidity crises,
when investors of a country, which is solvent, but illiquid and also on the verge of
default on its debt, are unwilling to roll over short-term debts coming to maturity.
Since several countries have large debt burdens and can be subject to debt-servicing
problems in the foreseeable future, assessing and forecasting debt sustainability has
great empirical and policy importance [35, 84]. In additionto these, internationalism
and integration of economies are also essential factors of country risk.

Especially, decision makers and investors should expect the coming risks in the in-
ternational area to make decisions, take measures and make profitable investments in
the right places all over the world. Through the world, emerging markets draw at-
tention due to their high growth potential and high profit expectancies. On the other
hand, they are relatively higher risky markets because of volatility of economic poli-
cies, weak banking sector, high dependence on external capital flows and uncertain
growth prospects. Therefore, they are more prone to the crises [78]. As a classification
tool, Logistic Regression models and algorithms are often applied to predict defaults /
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nondefaults or success / unsuccess, developed by using maximum likelihood method.
Although they do not have assumptions like normality and linearity, they have some
deficiencies, especially, in correlated variables and incomplete datasets [35, 78].

In the previous study [139], unlike Logistic Regression, thedatasets which include both
linear and nonlinear variables, are tried to be explained efficiently using a semipara-
metric model:CGPLM (cf. Subsection 3.2.2). Here, it is constructed as a combination
of a discrete model of Logistic Regression and a continuous model of CMARS. Com-
paring CMARS and CGPLM, it is clearly seen that CGPLM has an advantage in terms
of reducing the complexity and increasing the rate of accuracy in the results.

In the work [104], we represent a newly developed RCGPLM with a real-world ap-
plication in finance to predict the default probabilities in45 emerging markets. In
RCGPLM, the linear part consists of a discrete regression model Logistic Regression
and the nonlinear part consists of a continuous regression model, RCMARS. The aim
of RCGPLM is to decrease the complexity of RCMARS, reducing the number of vari-
ables by transferring the linear ones to Logistic Regression. This section employs
RCGPLM with a variety of macroeconomic factors to assess affection on the risk of
sovereign default and on a debt crisis, for a large sample of countries.

6.4.2 Data

In the application part of the model, we used the same data setas in our previous
study [32, 139], where we employed Conic Generalized PartialLinear Model, to have
a chance to compare the results of the two models. The data setused in this study is
quoted, originally, from Fioramanti’s paper [45], and it iscomprised of some impor-
tant macroeconomic determiners of debt crises in 45 emerging markets between the
years 1980 and 2005. The time-series data contain 1019 observations with a depen-
dent variable that shows whether the country is in a debt crisis taking the value “0”
(non-default) or the value “1” (default) values, and with 13independent variables:

X1 : Bank liquid reserves to bank assets ratio,

X2 : Changes in net reserves / GDP (Gross Domestic Product),

X3 : Current account balance (% of GDP),

X4 : Exports of goods and services (% of GDP),

X5 : External debt total / Total Reserves,
X6 : Long-term debt / GDP,
X7 : GDP growth (annual %),
X8 : Liquid liabilities as % of GDP,
X9 : Total debt servic (% of exports of goods services and income),

X10 : Short-term debt (% of exports of goods services and income),

X11 : Trade (% of GDP),
X12 : Use of IMF credit / GDP,
X13 : Inflation consumer prices (annual %).
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In Figures 6.1-6.5, we can see the character of some of our variables belonging to
a selected country among 45 countries, for a visualization of the dataset described
above.

Figure 6.1: True and predicted expression values of the firsttarget.

Figure 6.2: True and predicted expression values of the second target.

Figure 6.3: True and predicted expression values of the firstenvironmental factor.
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Figure 6.4: True and predicted expression values of the second environmental factor.

Figure 6.5: True and predicted expression values of the second environmental factor.

Our training sampleis beneficial to construct the model based on 757 observations
which belong to the years 1980-1999, while atesting(validation) sampleis used to
test the model including 262 observations which belong to the years 2000-2005. Here,
to overcome the capacity problem in MATLAB, we need again bootstrapping to re-
duce the number of observations to an applicable number and to conserve all specific
properties of the data.

6.4.3 Application

Derivation of the model from thetraining sample:

To predict the default probabilities of emerging markets, we use a large sized real-
world financial data as an application of RCGPLM. In our methodology, we use a
tradeoff between tractability and robustification leading us to a difficulty about com-
puter capacity to solve the problem equipped with uncertainty matrices and a huge size
input data. Therefore, on each sample value (observation) in the linear and nonlinear
parts, our combinatorial approach,weak robustificationis applied to convert the RCG-
PLM into a CQP problem. In addition to that, to overcome this problem, we divide the
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training data set into 2 subsets which have 378 and 379 observations. After applying
bootstrapping, we obtain 2 normally distributed samples and reduce the size of each
subset to 60 observations.

On each of these subsets, we insert perturbation (uncertainty) in the input dataxk for
each dimension, and also in the output datayk (k = 1, 2, . . . , 60) with the help of
the uncertainty matrices and vectors which are based onpolyhedral uncertainty sets
constructed in Eqns. (3.20) and (3.21). In that way, the variables are converted into
standard normal distribution to obtain CIs in the interval [-3, 3]. Then, different so-
calledWRCGPLMs[103] appear for both the linear and nonlinear parts.

After that, we can continue on the linear part of RCGPLM, which is defined in Subsec-
tion 3.2.4. The linear variables are determined as:X8 (liquid liabilities as % of GDP),
X9 (total debt service: % of exports of goods services and income),X12 (use of IMF
credit / GDP) andX13 (inflation consumer prices) which have a linear relationship with
the dependent variable “Y ”. Then 757 different models are constructed to constitute
our WRCGPLM. After the solution of these models in MOSEK and finding thew1

values for all auxiliary problems, we obtain the solutions which have themaximum
w1 value with respect to the Eqn. (3.45), herewith applying theworst-caseapproach.
The linear least-squares systemXβpreproc, whereβpreproc is the optimal vector of the
regression andX is the design matrix, is subtracted from the responsey to derive the
vectorγ of the nonlinear model (for closer details see the procedurein Subsections
3.2.2, 3.2.5 and Subsubsection 3.2.6.2). As a result, the final regression model can be
expressed as in Eqn. (3.30).

To prevent from any damage to the binary structure of the dependent variablesγ in
Eqn. (3.31), which employs a subtraction of the results fromthe originaly values, we
separate the data set into Group I and Group II. Group I consists of the observations
giving a result of “0” after the linear regression, while Group II comprised of the
observations giving a linear regression result of “1”. Fromnow on, the nonlinear
process will be separately applied on these 2 groups of each bootstrapped subsets with
the binary residual vectorγ. Then, we construct the largest model for Group I and
Group II by using the Salford MARS. For example, the largest model includes the
following BFs for Group I3:

ϑ1(t) = max{0, t2 + 1.597}, ϑ2(t) = max{0, t7 + 1.798},
ϑ3(t) = max{0, t3 + 1.395}, ϑ4(t) = max{0, t6 + 1.529},
ϑ5(t) = max{0, t1 + 2.764}.

Thus, the large model is represented as follows:

ŷ = α0 +
5∑

m=1

αmϑm(t) + ǫ = α0 + α1ϑ1(t) + α2ϑ2(t) + α3ϑ3(t) + α4ϑ4(t) + α5ϑ5(t)

= α0 + α1 max{0, t2 + 1.597}+ α2 max{0, t7 + 1.7978}+ α3 max{0, t3 + 1.395}+
α4 max{0, t6 + 1.529}+ α5 max{0, t1 + 2.764}.

3 For the ease of representation, here and subsequently, we suppressthe indexm of the subvectorstm and just
write t.

94



On the nonlinear part of the model, our RO technique is employed inserting perturba-
tion (uncertainty) in the real input datatk, in each dimension, and into the output data
γk (k = 1, 2, . . . , 60). To reach this goal, similarly to the linear part, CIs are defined
for all input and output values by the help of the uncertaintymatrices and vectors,
which are based onpolyhedral uncertainty sets, obtained by Eqns. (3.20) and (3.21).

Subsequently, as we did in the linear part, we derive 60 different WRCGPLMs for the
nonlinear part. Among the solutions, which are thew2 values for all auxiliary problems
in Eqn. (3.48), found in MOSEK program, we decide the optimumsolution which has
themaximumw2 value in the Eqn. 3.48 with theworst-caseapproach (see Subsection
3.2.5 for more details). From now on, the calculations will be completed with the
parameter vectorα which is obtained from the auxiliary problem with the highest w2

value.

6.4.4 Application of the Model on the Testing Sample

In this part, the methodology how to measure the effectiveness of the RCGPLM model
on the validation sample is discussed. From the training sample, 4 models have been
derived by 4 sets which are constructed according to the linear regression results of
2 bootstrapped samples. Firstly, the testing sample is separated into 2 groups each of
which exists of 131 observations. Then, to provide the integrity of application with the
training sample, bootstrapping method is employed to reduce the number of observa-
tions to 60.

For the linear part, on each of these 60-membered subsets, the linear regression pa-
rameters are employed on the linear variablesTk (k = 1, 2, . . . , 4) to determine “0”
and “1” results and to separate any subset into Group I and Group II. For each coun-
terpart of the training subsets, previously obtained RCMARS models and parameters
are implemented on the nonlinear variablesXj (j = 1, 2, . . . , 9). The final output
of the model is achieved by summing up the results of our linear and nonlinear parts.
However, RCMARS results are standardized to be able to provide the correspondence
with the linear regression results which are situated around “0”. For further details, we
refer to [104, 139]. The results of this application can be seen from Tables 6.5 and 6.6.
Note: CRR indicates Correct classification rate.

6.4.5 Results and Comparison

Table 6.5: Results of RCGPLM.

Training sample Validation sample.
D ND D ND

Default 87.80% 3.80% 96.88% 10.29%
Non-Default 12.20% 96.20% 3.13% 89.71%

CCR 93.33% 92.00%
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Table 6.6: Comparison of results of CGPLM and RCGPLM.

Training sample Validation sample
D-D ND-ND CCR D-D ND-ND CCR

LR 69.97% 87.20% 79.39% 82.35% 89.10% 87.79%
CMARS 81.89% 92.58% 87.64% 86.27% 87.10% 86.94%
CGPLM 90.09% 93.24% 91.81% 86.27% 90.05% 89.31%

RCGPLM 87.80% 96.20% 93.33% 96.88% 89.71% 92.00%

In Table 6.5, we present the obtained numerical results of RCGPLM for training and
validation sample. Table 6.6 explains the comparison of theresults of Logit Regres-
sion, CMARS, CGPLM and RCGPLM. Here, D-D and ND-ND show the crisis and
non-crisis situations, which our model predicts truly, respectively. As it can be seen
in Table 6.6, RCGPLM provides a 93.33% accuracy rate, while Logit Regression,
CMARS and CGPLM give 79.39%, 87.64%,91.81%, respectively, forour training
data set. Similarly, for the validation data set, we have 92%accuracy rate for RCG-
PLM, whereas Logit Regression, CMARS and CGPLM result with 87.79%, 86.941%,
89.31% accuracy, respectively.

In fact, RCGPLM provides better results for both training and validation samples in
terms of accuracy rates. In the training sample, RCGPLM expects 87.80% of crises and
96.20% of non-crisis situations in emerging markets, giving a total 93.33% accuracy
rate. For our validation sample, the model forecasts 96.88%of debt crises and 89.71%
of non-crisis situations emerging markets, giving a total 92% accuracy rate. Here,
our variance valuesare 0.0513 for training data and 0.0935 for testing data. With a
smaller variance, models for RCGPLM have a higher accuracy than models of Logit
Regression and CMARS, and it is considerable higher than modelsfor CGPLM over
both the training and validation data. Similarly, regarding the validation sample, the
accuracy rate increases. This means that RCGPLM is a functional methodology in
datasets of noisy variables with a possibly higher accuracyrate and, in particular, a
smaller variance.
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CHAPTER 7

CONCLUSION AND OUTLOOK

The great national and international crisis which resultedafter the earthquake and
tsunami in Japan in 2011 disclosed again the high interdependence of environmental,
technological and economical states, and it underlined thenecessity for an essential
restructuring of the approach to risk and regulation in these areas to cope with uncer-
tain data. Consequently, core elements of a new global regulatory framework have to
be established in order to make these systems more robust andsuitable for serving the
requirements of the real life. Thus, robust optimization has a great importance as a
modeling framework for immunizing against parametric uncertainties, and the integra-
tion of uncertain data is of considerable importance for thereliability of any model of
a highly interconnected system.

In this thesis, R(C)MARS is worked on in theory and application by important Ro-
bust Optimization, and a time-dependent counterparts of R(C)MARS has been further
extended and proved to be a general framework of multi-modalregulatory systems un-
der polyhedral uncertainty in this respect. Because of the computational effort which
R(C)MARS easily needs, we also describe our new concept of a weakrobustification
that is called as WR(C)MARS. We study on R(C)MARS in terms of polyhedral uncer-
tainty. This brings us back to CQP naturally. Through R(C)MARS weare also permit-
ted to involve uncertainty in the input variables to regression and classification within
modeling; that uncertainty is typical for real-world challenges, too. By conducting
a robustification in (C)MARS, we aim to reduce the estimation variance. In RMARS
and RCMARS, however, we have an extra problem to solve (by Software MARS, etc.),
namely the knot selection (which is not needed for the linearpart). Therefore, we an-
alyze GPLMs, and introduce a newly developed CGPLM and R(C)GPLM, involving
the contribution of (C)MARS and R(C)MARS. As semiparametric models, CGPLM
and RCGPLM lead to reduce the complexity of (C)MARS and (R)CMARS, that is
given by the number of variables used in (C)MARS and R(C)MARS algorithm. In
RCMARS, we imply the integral terms as a “complexity”, too.

We analyze the regression models of regulatory systems whenthe entries of the regula-
tory network are splines as an advanced case, using (C)MARS on parameter estimation
for TE networks. We also apply our methods of R(C)MARS in the caseof the existence
of noise in the expression data which translates into the model, and thus employing ro-
bust optimization. In fact, here, the states of target and environmental items depend
on uncertain states of target and environmental factors. The prediction of the TE reg-
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ulatory networks and the following comparison with the underlying data leads to an
analysis of regression and classification models for parameter estimation. As an ad-
vanced approach to obtain a more flexible model, we consider regression problems for
TE regulatory systems when the entries of the regulatory network are splines, and we
derive a corresponding robust counterpart program under polyhedral uncertainty. We
have introduced a new implementation area of R(C)MARS by a dynamical modeling of
regulatory networks, which also include eco-finance networks and gene-environment
networks. R(C)MARS method is able to deal with uncertainty in data and, thus, it is a
more realistic alternative to modeling of real-life data.

In the thesis, we briefly review on theory and methods of R(C)MARSand R(C)GPLM.
We also conduct applications on data in further areas such asthe sectors of energy,
finance, biotechnology and ecology. We run the corresponding code for different kinds
of data that include uncertainties and, then, evaluate the results with respect to accuracy
and stability. Next, the results of the accuracy and sensitivity analysis on the parameter
estimates and, thus, the model performances are presented.We solve our optimal
problem of R(C)MARS and R(C)GPLM by using the continuous RO approach and
a combinatorial variety of them, the weakly robust case, to handle uncertainties that
may exist in data and to make our rich approach meaningful andsustainable. In this
way, we aim to decrease the estimation variance. Results indicate that for the training
data, R(C)MARS models have smaller variances but slightly lower accuracies than
(C)MARS models; here, this finding is consistent with our expectation. However, for
the testing data and for some suitable uncertainty values, R(C)MARS produced more
accurate models with smaller variances than (C)MARS. In the particular application of
precipitation forecasting, the RCMARS model developed is twice as much accurate as
MARS and CMARS models with respect to MAE and RMSE measures, and itis twice
as precise as MARS and CMARS models with respect to prediction variance measure.
Furthermore, it has a considerably high stability when compared to those of other two
models. To conclude, it can be said that both R(C)MARS produce the best model for
the data studied when compared to the MARS and CMARS with respectto precision
and stability.

According to all the aforementioned computations and comparisons, our R(C)MARS
methods prove to be very competitive with the other methods.We are able to achieve
a variance reduction, which is very important in practice and an additional advantage,
especially, when comparing with our predecessor method of MARS. Given the exis-
tence of uncertainty and noise in real-world data, R(C)MARS andR(C)GPLM model
approaches gain importance to reduce complexity and variance of estimation. In fu-
ture studies, we will investigate on real-world applications of these approaches in some
areas, such as regulatory network systems, like gene-environment and eco-finance net-
works, quality management, biotechnology and financial forecasting, to validate and
to investigate the performance of our R(C)MARS and R(C)GPLM.

In all these studies, although we have small datasets for ourapplications, the uncer-
tainty matrices for the input data have huge dimensions, andwe have not had enough
computer capacity to solve our problems for those uncertainty matrices. Indeed, we
have a tradeoff between tractability and robustification. To overcome this difficulty,
we obtain different WR(C)MARS models for all sample values (observations) apply-
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ing a combinatorial approach, and solve them by running our code and using MOSEK
program. In our future studies, we will discuss about how we can obtain a more ro-
bust model using different methods and about what further research will consist of in
this respect. We plan to also apply parallel computing to solve our problem with the
computer capacity.

In our investigated version of R(C)MARS, for convenience, the polyhedral type of
uncertainty and normally distributed data are assumed. Obviously, these assumptions
lead to some weaknesses on R(C)MARS modeling. In our future studies, ellipsoidal
uncertainty will be considered since it uses a more realistic assumption, which leads
to a more robust approximation, although it may cause an increased model complex-
ity. Distributional assumptions other than normal or robust estimators may also be
considered in the construction of confidence intervals.

In Chapter 2, some background information about multi-modelregulatory networks,
optimization and regression is given. Theory and approaches of R(C)MARS and
R(C)GPLM method under polyhedral uncertainty are presented in Chapter 3. Then,
in Chapter 4, spline regression models for complex multi-model regulatory networks
are introduced in theory and methods. (C)MARS results based ondifferent datasets
for the simulation are also demonstrated in this chapter. InChapter 5, RO for spline
regression models of multi-model regulatory networks are introduced in theory and
methodology. R(C)MARS results with different uncertainty scenarios for our numer-
ical example are also studied here. Real-world applicationsfrom different sectors are
represented in Chapter 6. Finally, the conclusion and outlook to further studies are
stated in Chapter 7.
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[98] A. Özmen, Robust Conic Quadratic Programming Applied to Quality
Improvement- A Robustification of CMARS, Ms. Thesis, METU, Ankara,
Turkey, 2010.
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APPENDIX A

Coefficients and Performance of
MARS-CMARS Models for TE Networks

Table A.1: For targets and environmental factors: parameter values of MARS algo-
rithm through 5 different simulated datasets.

α0 α1 α2 α3 α4 α5 α6 α7 α8 α9

x̃1 -0.982 2.458 1.193 -1.593 1.191
x̃2 0.396 1.071 1.269 1.516
ẽ1 -1.244 0.661 0.425 0.471
ẽ2 1.763 -1.553 -0.729
x̃1 -1.020 0.992 0.484 1.687
x̃2 0.370 -0.910 1.193 -0.747 1.962
ẽ1 -2.094 0.608 1.074 0.591 -0.880
ẽ2 -0.454 1.190 -0.527 -0.688
x̃1 -1.915 0.588 0.512
x̃2 0.340 -2.115 2.409 -0.126 -0.838
ẽ1 1.377 -2.596 -0.815 -0.753 1.094 1.077
ẽ2 -0.085 -0.844 1.409 -0.460 -1.485 1.029
x̃1 -0.217 0.604 -1.022 0.600
x̃2 -0.355 -0.740 0.450 -0.281
ẽ1 2.916 -1.433 -1.198 -0.802 -0.864 1.415
ẽ2 -1.744 0.802 0.312 0.460
x̃1 1.087 -0.648 -1.010 0.886
x̃2 -0.337 -0.545 0.833
ẽ1 -0.768 0.843 -0.481 -0.433
ẽ2 -0.661 2.019 -0.592 0.680
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Table A.2: For targets and environmental factors: parameter values of CMARS algo-
rithm through 5 different simulated datasets.

α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11

x̃1 -1.690 0.301 -0.238 1.362 1.280 1.011 0.266 -0.342 -2.311 0.622 0.296
x̃2 -0.854 -0.075 -0.174 1.076 -0.254 0.438 0.737 0.397 1.408 -0.610 -0.243 -0.122
ẽ1 -3.525 0.200 0.986 -0.557 0.416 0.605 2.114 0.463 -0.259 -2.284 0.499 -0.226
ẽ2 1.618 3.071 -1.217 -1.216 -1.236 0.191 -1.093 0.140
x̃1 -3.545 1.489 0.938 0.486 0.733 -0.494 -0.090 2.006 -0.046 1.767 -0.519 -0.835
x̃2 -1.789 0.037 0.012 1.150 -0.542 -0.946 0.295 0.310 0.885 1.049 0.703
ẽ1 -1.931 0.385 1.169 -0.027 0.502 -0.578 -1.133 0.343 0.248
ẽ2 -0.839 1.216 -0.282 -0.658 0.680 -0.224 -0.186 -0.398
x̃1 -2.253 0.249 1.096 0.307 -0.332 0.074 0.522 -2.253
x̃2 0.418 -2.430 2.113 0.082 -0.272 0.130 -0.701 0.478 0.133 0.418
ẽ1 1.323 0.451 -2.712 -0.843 -1.019 0.512 1.216 0.985 1.323
ẽ2 -0.069 -0.578 -1.188 1.462 -0.412 -2.311 0.231 1.615 -0.069
x̃1 0.238 -0.067 -0.609 -0.553 0.559 -1.222 0.438 0.484 0.324 1.209 -0.123 -0.426
x̃2 -0.083 -0.618 -0.748 0.192 0.557 -0.361 -0.353 -0.267 -0.083
ẽ1 1.460 -0.197 -0.891 -0.496 -0.455 -0.806 -0.700 0.377 0.796-0.289 -0.006
ẽ2 -1.721 -0.101 0.786 0.781 0.150 0.423 0.246 0.196
x̃1 0.644 -0.464 0.262 -0.881 0.807 -0.045 0.388 0.008
x̃2 -0.881 -0.106 -0.174 -0.095 0.216 0.311 -0.060 0.501
ẽ1 0.037 -0.330 -0.093 -0.101 0.645 -0.345 -0.278 -0.170 -0.400
ẽ2 0.543 0.343 -0.961 -0.327 1.287 0.043 -0.255 0.629 -1.426 0.522 0.664 1.186
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Table A.3: Performance measures of MARS and CMARS models based on 5 different
simulated datasets.

MARS CMARS
x̃1 x̃2 ẽ1 ẽ2 x̃1 x̃2 ẽ1 ẽ2

1 R2
adj 0.8639 0.9004 0.8639 0.8167 0.8835 0.9005 0.9064 0.8897

AAE 0.2474 0.2398 0.2178 0.3437 0.1911 0.1870 0.1750 0.2573
RMSE 0.3124 0.2976 0.3159 0.4383 0.2419 0.2340 0.2061 0.2989

r 0.9416 0.9554 0.9386 0.9121 0.9654 0.9727 0.9743 0.9601
2 R2

adj 0.9017 0.9481 0.9415 0.8946 0.9057 0.9607 0.9652 0.9523

AAE 0.2059 0.1773 0.1859 0.2366 0.1330 0.1203 0.1276 0.1587
RMSE 0.2662 0.2134 0.2140 0.3261 0.2052 0.1553 0.1476 0.1974

r 0.9560 0.9781 0.9753 0.9528 0.9741 0.9885 0.9883 0.9830
3 R2

adj 0.8601 0.9422 0.8532 0.9574 0.9018 0.9426 0.9289 0.9654

AAE 0.1609 0.0911 0.1460 0.0924 0.1141 0.0803 0.0850 0.0883
RMSE 0.2147 0.1267 0.1921 0.1369 0.1627 0.1129 0.1265 0.1167

r 0.9337 0.9756 0.9401 0.9830 0.9625 0.9807 0.9745 0.9877
4 R2

adj 0.8905 0.9559 0.8110 0.9345 0.9315 0.9837 0.8141 0.9525

AAE 0.1694 0.1413 0.1940 0.1687 0.1095 0.0891 0.1664 0.1273
RMSE 0.2088 0.2027 0.2328 0.2100 0.1299 0.1075 0.1982 0.1608

r 0.9509 0.9805 0.9222 0.9709 0.9813 0.9945 0.9442 0.9830
5 R2

adj 0.9084 0.9162 0.9025 0.9125 0.935 0.9512 0.95 0.9605

AAE 0.1658 0.1700 0.1554 0.2007 0.1227 0.1133 0.095 0.0935
RMSE 0.2043 0.2314 0.1958 0.2508 0.1547 0.155 0.122 0.1274

r 0.9591 0.9608 0.9564 0.9609 0.9768 0.9825 0.983 0.9901
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APPENDIX B

Performance of R(C)MARS models for TE Networks

Table B.1: Performance measures of LR, MARS and RCMARS models basedon dif-
ferent simulated data for each target.

x1 x2

LR MARS RCMARS LR MARS RCMARS
EV 0.736 0.938 0.562 0.666 0.817 0.852 0.871 0.917 0.697 0.748 0.819 0.866
R2

adj 0.684 0.925 0.761 0.840 0.926 0.940 0.859 0.901 0.824 0.860 0.902 0.925
AAE 0.333 0.175 0.317 0.257 0.169 0.151 0.231 0.189 0.220 0.195 0.173 0.161
RMSE 0.503 0.244 0.379 0.31 0.211 0.190 0.336 0.282 0.335 0.299 0.251 0.219
r 0.858 0.968 0.942 0.959 0.979 0.983 0.939 0.958 0.946 0.957 0.969 0.976

LR MARS RCMARS LR MARS RCMARS
EV 0.666 0.869 0.431 0.563 0.748 0.864 0.794 0.930 0.584 0.721 0.911 0.926
R2

adj 0.598 0.843 0.65 0.75 0.845 0.896 0.753 0.916 0.754 0.831 0.917 0.920
AAE 0.376 0.268 0.375 0.305 0.244 0.181 0.314 0.187 0.255 0.212 0.166 0.163
RMSE 0.567 0.354 0.488 0.412 0.325 0.266 0.444 0.259 0.371 0.308 0.216 0.212
r 0.816 0.932 0.901 0.924 0.947 0.963 0.891 0.965 0.942 0.955 0.976 0.976

LR MARS RCMARS LR MARS RCMARS
EV 0.776 0.939 0.519 0.726 0.906 0.92 0.797 0.904 0.582 0.717 0.842 0.856
R2

adj 0.733 0.926 0.734 0.822 0.927 0.938 0.757 0.891 0.758 0.818 0.892 0.902
AAE 0.303 0.193 0.341 0.259 0.153 0.143 0.305 0.211 0.270 0.223 0.181 0.179
RMSE 0.462 0.243 0.413 0.338 0.217 0.200 0.441 0.303 0.406 0.352 0.272 0.259
r 0.882 0.969 0.931 0.943 0.975 0.979 0.893 0.951 0.924 0.938 0.962 0.965

LR MARS RCMARS LR MARS RCMARS
EV 0.860 0.870 0.598 0.748 0.779 0.850 0.862 0.927 0.599 0.740 0.885 0.905
R2

adj 0.831 0.852 0.756 0.832 0.853 0.914 0.835 0.913 0.746 0.836 0.914 0.92
AAE 0.255 0.251 0.277 0.208 0.194 0.156 0.193 0.204 0.169 0.137 0.129 0.128
RMSE 0.367 0.353 0.396 0.328 0.307 0.235 0.363 0.264 0.363 0.292 0.212 0.205
r 0.927 0.933 0.928 0.946 0.952 0.972 0.929 0.963 0.944 0.960 0.977 0.978

LR MARS RCMARS LR MARS RCMARS
EV 0.935 0.965 0.587 0.719 0.835 0.953 0.847 0.938 0.490 0.569 0.841 0.882
R2

adj 0.922 0.960 0.875 0.923 0.945 0.960 0.816 0.926 0.772 0.817 0.927 0.960
AAE 0.204 0.153 0.253 0.195 0.168 0.149 0.263 0.182 0.264 0.217 0.104 0.086
RMSE 0.250 0.182 0.30 0.236 0.200 0.171 0.383 0.244 0.394 0.353 0.224 0.166
r 0.967 0.983 0.974 0.979 0.981 0.985 0.920 0.969 0.949 0.954 0.976 0.987
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Table B.2: Performance measures of LR, MARS and RCMARS models basedon dif-
ferent simulated data for each environmental item.

e1 e2
LR MARS RCMARS LR MARS RCMARS

EV 0.839 0.912 0.590 0.664 0.888 0.907 0.848 0.860 0.620 0.667 0.704 0.834
R2

adj 0.809 0.894 0.780 0.810 0.895 0.901 0.818 0.840 0.785 0.819 0.842 0.910
AAE 0.268 0.243 0.268 0.241 0.201 0.196 0.275 0.285 0.241 0.221 0.211 0.166
RMSE 0.391 0.291 0.375 0.349 0.260 0.252 0.382 0.367 0.382 0.351 0.328 0.248
r 0.917 0.955 0.939 0.943 0.965 0.966 0.921 0.927 0.932 0.942 0.949 0.969

LR MARS RCMARS LR MARS RCMARS
EV 0.805 0.853 0.551 0.634 0.694 0.835 0.564 0.863 0.380 0.558 0.749 0.825
R2

adj 0.765 0.832 0.704 0.781 0.834 0.920 0.478 0.835 0.661 0.779 0.829 0.835
AAE 0.274 0.251 0.335 0.273 0.233 0.173 0.407 0.273 0.404 0.334 0.289 0.277
RMSE 0.434 0.376 0.449 0.386 0.336 0.234 0.646 0.363 0.521 0.421 0.370 0.364
r 0.897 0.924 0.903 0.929 0.946 0.973 0.751 0.929 0.890 0.919 0.928 0.929

LR MARS RCMARS LR MARS RCMARS
EV 0.691 0.917 0.483 0.662 0.883 0.897 0.846 0.839 0.585 0.755 0.790 0.817
R2

adj 0.629 0.895 0.630 0.800 0.896 0.900 0.815 0.816 0.752 0.818 0.832 0.840
AAE 0.295 0.207 0.277 0.200 0.174 0.171 0.185 0.221 0.250 0.198 0.184 0.179
RMSE 0.545 0.282 0.487 0.358 0.259 0.254 0.385 0.393 0.423 0.362 0.348 0.340
r 0.831 0.958 0.889 0.939 0.965 0.966 0.920 0.916 0.914 0.931 0.936 0.939

LR MARS RCMARS LR MARS RCMARS
EV 0.702 0.908 0.431 0.586 0.790 0.884 0.874 0.860 0.640 0.772 0.781 0.856
R2

adj 0.640 0.889 0.641 0.777 0.890 0.921 0.850 0.847 0.752 0.848 0.851 0.900
AAE 0.398 0.244 0.361 0.285 0.196 0.159 0.185 0.223 0.233 0.189 0.181 0.162
RMSE 0.536 0.297 0.480 0.378 0.266 0.226 0.347 0.367 0.359 0.282 0.279 0.229
r 0.837 0.953 0.907 0.939 0.966 0.974 0.935 0.927 0.941 0.961 0.962 0.974

LR MARS RCMARS LR MARS RCMARS
EV 0.561 0.711 0.411 0.639 0.696 0.754 0.872 0.910 0.656 0.826 0.871 0.908
R2

adj 0.474 0.685 0.530 0.686 0.709 0.720 0.846 0.892 0.750 0.847 0.893 0.910
AAE 0.520 0.446 0.476 0.370 0.354 0.345 0.284 0.241 0.305 0.229 0.189 0.176
RMSE 0.649 0.527 0.565 0.462 0.445 0.437 0.351 0.294 0.361 0.282 0.236 0.217
r 0.749 0.843 0.841 0.886 0.893 0.896 0.934 0.954 0.939 0.959 0.971 0.975
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APPENDIX C

Sensitivity and Performance of RCMARS
for Forecasting of Precipitation

Note: ∗indicates the best performance ofU for train data, test data and stability (st)
with respect to the related performance measure.

Table C.1: For sensitivity analysis: parameter values of RCMARSmodel based on
different uncertainty scenarios.

U ±3/5 ±3/10

v ±3/5 ±3/10 ±3/20 ±0 ±3/5 ±3/10 ±3/20 ±0

α0 -0.707 -0.729 -0.735 -0.788 -0.339 -0.329 -0.353 -0.590
α1 0.410 0.411 0.408 0.366 0.412 0.403 0.395 0.379
α2 0.371 0.440 0.480 0.422 0.546 0.581 0.613 0.516
α3 -0.334 -0.376 -0.391 -0.322 -0.276 -0.271 -0.271 -0.298
α4 0.390 0.551 0.651 0.571 1.274 1.425 1.545 1.030
α5 0.132 0.105 0.086 0.086 0.030 0.007 -0.014 0.052
α6 -0.289 -0.355 -0.386 -0.241 -0.540 -0.555 -0.564 -0.374
α7 -0.291 -0.322 -0.335 -0.297 -0.350 -0.358 -0.365 -0.329
α8 -0.163 -0.243 -0.286 -0.200 -0.393 -0.434 -0.471 -0.332
α9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001
α10 0.000 0.000 -0.004 0.000 -0.187 -0.203 -0.211 -0.102
α11 -0.240 -0.212 -0.192 -0.128 -0.396 -0.371 -0.336 -0.252
α12 -0.124 -0.112 -0.096 -0.065 -0.100 -0.070 -0.039 -0.066

U ±3/20 ±0

v ±3/5 ±3/10 ±3/20 ±0 ±3/5 ±3/10 ±3/20 ±0

α0 -0.255 -0.256 -0.367 -0.367 -0.187 -0.187 -0.187 0.065
α1 0.402 0.390 0.386 0.386 0.398 0.398 0.398 0.390
α2 0.551 0.603 0.558 0.559 0.550 0.550 0.550 0.675
α3 -0.245 -0.251 -0.268 -0.268 -0.233 -0.233 -0.233 -0.181
α4 1.363 1.528 1.288 1.288 1.384 1.384 1.385 2.065
α5 0.034 0.005 0.034 0.034 0.036 0.036 0.036 -0.062
α6 -0.512 -0.531 -0.453 -0.453 -0.500 -0.500 -0.500 -0.665
α7 -0.345 -0.360 -0.343 -0.343 -0.342 -0.342 -0.342 -0.377
α8 -0.402 -0.454 -0.395 -0.395 -0.406 -0.406 -0.406 -0.562
α9 -0.020 -0.027 -0.029 -0.029 -0.051 -0.051 -0.051 -0.080
α10 -0.219 -0.233 -0.178 -0.178 -0.230 -0.230 -0.230 -0.351
α11 -0.407 -0.359 -0.315 -0.315 -0.390 -0.390 -0.390 -0.386
α12 -0.110 -0.086 0.094 -0.094 -0.134 -0.134 -0.134 -0.104
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Table C.2: Performance measures of RCMARS for different uncertainty scenarios.

U ±3/5
v ±3/5 ±3/10 ±3/20 ±0

train test st train test st train test st train test st
R2 0.782 0.833 0.939 0.813 0.849 0.958 0.823* 0.846 0.972* 0.767 0.850* 0.902
AAE 0.360 0.256 0.710* 0.327 0.206 0.631 0.312* 0.200* 0.641 0.374 0.256 0.683
RMSE 0.459 0.366 0.796 0.426 0.348 0.818 0.414* 0.351 0.848* 0.475 0.347* 0.730
r 0.907 0.942 0.962 0.914 0.935 0.977 0.916* 0.931 0.984* 0.898 0.944* 0.952
EV 0.504 0.523 0.963 0.602 0.669 0.899 0.649 0.741 0.876 0.495 0.585 0.846
U ±3/10
v ±3/5 ±3/10 ±3/20 ±0

train test st train test st train test st train test st
R2 0.934 0.649 0.695 0.941 0.609 0.647 0.943* 0.588 0.623 0.8760.789* 0.901*
AAE 0.198 0.410 0.482 0.181 0.441 0.410 0.172* 0.462 0.372 0.2730.311* 0.877*
RMSE 0.253 0.530 0.477 0.238 0.559 0.426 0.234* 0.574 0.408 0.3460.411* 0.842*
r 0.973 0.823 0.846 0.975 0.811 0.831 0.975* 0.808 0.828 0.9500.900* 0.947*
EV 0.752 0.800 0.940* 0.788 0.880 0.894 0.820 0.954 0.859 0.628* 0.687* 0.914
U ±3/20
v ±3/5 ±3/10 ±3/20 ±0

train test st train test st train test st train test st
R2 0.934 0.649 0.695 0.941 0.609 0.647 0.943* 0.588 0.623 0.8760.789* 0.901*
AAE 0.198 0.410 0.482 0.181 0.441 0.410 0.172* 0.462 0.372 0.2730.311* 0.877*
RMSE 0.253 0.530 0.477 0.238 0.559 0.426 0.234* 0.574 0.408 0.3460.411* 0.842*
r 0.973 0.823 0.846 0.975* 0.811 0.831 0.975 0.808 0.828 0.9500.900* 0.947*
EV 0.752 0.800 0.940* 0.788 0.880 0.894 0.820 0.954 0.859 0.628* 0.687* 0.914
U ±0

v ±3/5 ±3/10 ±3/20 ±0

train test st train test st train test st train test st
R2 0.941 0.563 0.598 0.941 0.563* 0.598 0.941 0.563 0.598* 0.971* 0.225 0.231
AAE 0.186 0.468 0.398 0.186 0.468 0.398 0.186 0.468* 0.398* 0.131* 0.646 0.203
RMSE 0.239 0.591 0.404 0.239 0.591 0.404 0.239 0.591* 0.404* 0.166* 0.788 0.211
r 0.977 0.769 0.787* 0.977 0.769 0.787* 0.977 0.769* 0.787* 0.986* 0.672 0.682
EV 0.735* 0.788* 0.932* 0.735* 0.788 0.932* 0.735* 0.789 0.9310.953 1.241 0.768
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APPENDIX D

Prediction Performance Criteria and Related Measures

Notes:
N : number of observations;
p: number of terms in the model;
yk: kth observed response value;
ŷk: kth estimated (fitted) response value;
ȳ: mean of the observed values;
ŷ: estimated response variable;
¯̂y: mean of the estimated response variable;
s(y)2: standard deviation of the observed response variable;
s(ŷ)2: standard deviation of the estimated response variable;
MTR andMTE: the measure values for training and test data, respectively.

121



Table D.1: Prediction performance criteria and related measures.

Criterion Abbreviation Measure (M) Explanation Interpretation Formula

Accuracy R2
Multiple Co-
efficient of
Determination

Percentage of variation
in response explained
by the model

Values closer to
one are better R2 := 1−

(∑
N

k=1
(yk−ŷk)

2

∑
n

k=1
(yk−ȳk)2

)

.

R2
adj

Adjusted
Multiple Co-
efficient of
Determination

Percentage of variation
in response explained
by the model

Values closer to
one are better R2

adj := 1−
(

∑
N

k=1
(yk−ŷk)

2

∑
n

k=1
(yk−ȳk)2

)

·
(

N−1
N−p−1

)

.

AAE
Average
Absolute
Error

Average magnitude of
errors

Smaller values
are better AAE := 1

N

∑N
k=1 |yk − ŷk|.

RMSE
Root Mean
Square Error

Average magnitude of
errors

Smaller values
are better RMSE :=

√
1
N

∑N
k=1(yk − ŷk)2.

r
Correlation
coefficient

Linear relation between
observed and predicted
response

Values closer to
one are better r :=

∑
N

k=1
(y−ȳ)(ŷ−¯̂y)/(N−1)√

s(y)2s(ȳ)2
.

Precision EV
Estimation
Variance

Variance of the esti-
mated response values

Smaller values
are better EV :=

∑
N

k=1
(ŷk−

¯̂y)2

N−1 .

Stability − Stability of a
measure

Compares the perfor-
mance of a method on
both training and test
data

Values closer to
one indicate more
stable models

Min{MTR

MTE
, MTE

MTR
}.
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A. Özmen and G.-W. Weber, RMARS: Robustification of Multivariate Adaptive Re-
gression Spline under Polyhedral Uncertainty, Journal of Computational and Applied
Mathematics (CAM) 259, pp. 914–924, 2014.
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A. Özmen, Z. Çavuşŏglu and G.-W. Weber, Predicting default probabilities in emerg-
ing markets by new robust conic GPLMs and their optimization, Extended Abstract,
in: NEDETAS 2011 - New Developments in Theory and Applications of Statistics: An
International Conference Dedicated to the Memory of Moti LalTiku, Abstract Book,
pp. 61-64, 2011.
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G.-W. Weber, A.Özmen, Z. Çavuşŏglu andÖ. Defterli, The New Robust Conic GPLM
Method with an Application to Finance and Regulatory Systems: Prediction of Credit
Default and a Process Version, 9th EUROPT Workshop on Advances in Continuous
Optimization, Ballarat, Australia, July 8-9, 2011.
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