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ABSTRACT

EFFICIENT NUMERICAL ANALYSIS AND DESIGN OF REFLECTARRAY
ANTENNAS

Erl- i Erdi n-

PHD., Department of Electrical and Electronics Engineering
Supervisor: Ayrdoéfn ¢Drv.i ¥zI| em
Co-Supervisor: Assoc. Prof. Lale Alatan

January2015, 136 pages

The accurate numerical analysisedéctricallylarge reflectarray antennas has been a
challengingtask since their advent because it becomes impractical to employ the
generalizechumerical electromagnetic tools for thaumericalanalysis Therefore

the classical approach is to resort to approximate methods. Hoveg@peoximate
methods trade off accuracy against memory and speethis thesis studyan
approximate analysiedniqueis established such thatig more accurate than the
presentapproximateanalysis techniques and more efficient than the full wave
analysis schemes in terms of memory requiremenspadd The technique relies on
using characteristic modes as mmadrasis functions and reusing the dominant
characteristic mode of the resonant element for all elements in the reflectarray. This
utilization leads to obtaining a reduced matrix system where the number of
unknowns is drastically decreased. As far as thmefiédd is concerned, accurate
results even with a single characteristic mode are achieved. The accuracy is attained
owing to preservation of mutual coupling information via the original MoM
impedance matrix. The solution is further accelerated by tabgldie entries of the
reduced matrix as a function of interacting patch sizes and their relative
displacements. It is observed that for sufficiently separated patches, the reduced

matrix entry is almost a separable function of the two dimensional disptatem

\Y



between patches and patch sizes associated with the matrix entry. Tabulation is
efficiently performed by exploiting this fact. Achieved acceleration is sufficient to
use this analysis method in the design of reflectarrays. For a 1000 element array, the
tabulation process takes 28 min on a platform with 3.3 GHz CPU clock speed. With
the lookup table at hand, the solution time, which is important for the design
iterations, is 0.38 seconds. The speeavidedby the method makes it possible to
employ gradent based optimization algorithms such as Steepest Descent or
Conjugate Gradient Method, both of which are successfully appliédaaesign
problems in the scope of the study.

Keywords: Reflectarragntenna, efficient numerical solutiocharacteristic rmdes,
method ofmoments, optimization.
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¥Z

YANSI TMALI DKZK ANTENNERERKKERKMLKZ VE
TASARIMI

Er-i Erdi n-

Doktor a, El ektrik ve El ektroni k Mgl
Tez Y°%°neticisAyd@nwif . Dr. ¥zl em
Ortak Tez Y°nmeAlaans i : Do - . Dr .

Ocak2015, 136 sayfa

El ektri ksel amls@&rnanal & ¢ ydy kk sye&n t deajl reu i ink i

edi |l mel er i bu tip antenlerin ortaya -ékn
el ektri ksel ol ar ak b¢yé¢ki nyagpesmie Imalhée s ap |
el ektromanyeti k tekniklerinin kul |l anémeé

yakl akém, yakl akék y°ntemlere bakvur makt

dojruluktan ©°d¢n vermek suretiylea hez v

sajl amaktadeéer . Bu tez -al ékmasénda, var
dojruluk sunan ancak -°9z¢m hézé ve hafeéez
-ok dahalaar ibmlri yakl akék analiz tekniiji

kar akteristik modl ar én makro taban fonk:
el emanén baskeén karakteristik modunun (
kull anélabilirligine dayanmaktadeéer. Bu vy
azalteldéekébkg-pmpht gl mg denkl emine ul akmay
alane dikkate aleéendéjénda, sadece tek b
sonu-I|lar verdifji gor ¢l megktgor . Bu dojrulu
el emanl ar araseée ket lwinlmeticm éanb isk¢griessiin; g h m¢ K
matrisin terimlerini, etkileken el emanl a
bajl é& bir fonksiyon olarak tabl ol aktérar
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el eman i -1in idingell @ mamaltarriésn tbeoryiumil ar énén ve
hemen hemen ayreéelabilir bir fonksiyonu ol d
durum sayesinde verimli Ebde &e&ikl ¢wlehgapahmb
anal i znittaeskeanrigmda kul | anyndaekd iir-.i n3.\8e tGHzl is adaétz €
-al ékan bir bl0@0 seyemanlz&rbndedi zi I -1 n ta
s¢r mekfteklial.ar mevcut i ken, tasarem d°ng¢l er
S¢resi 0.38 saniye ol mabnhHadEée. DYRpgpkemien Keajl
Gradyen gi bi opti mi zlasmayha rdelkgbeérmektedia | ar é né u
vebusayeddle r i ki opt i miezza skyaopasyagn@éhnadeasnb i | mi Kkt i r .

Anahtar kelimelerYans ét mal € verdnli nic mamn% k& igkarakterisik

modlar, momentler metodwptimizasyon
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CHAPTER 1

INTRODUCTION

Reflectarray antennas are structures similar to reflectors with regard to their radiation
mechanism. They are composed of a feed antenna and a planar printed circuit board
with discrete antenna elements etchedkigure 1-1). The feed antenna illuminates

the antenna elements and the antenna elements are usually atcangiect the
incident fieldsuch thathe aperture plane is aequiphasesurfece Reflectarrays are
preferred in many applications where lightweight is required and the disadvantages
associated with conventional reflector antennas need toavmded. These
disadvantages amainly cost,requirement of surface smoothness in manufaau
process and the volume occupiedOn the other hand,hé reflectarray is
manufactured by one or more dielectric substrafiédsand is usually ofplanar
geometry.Similar to reflector antennas, the reflectarrays are illuminated by a small
feed antenna. The desired far field pattern is realized by adjubgnaperture field
distribution via configuring the reflection coefficient of the antealsmentsAs an
advantage over the reflector antennearmshapingvith a reflectarraycan be done
using relatively simple and well defined alyaantenna techniques while for
conventional reflectoantennast requires shaping of the surface, which is net a
easyin terms of design and manufacturikgirthermore, some reflectarrays have the
capability of reconfigurability, which enables steering orshaping the beam
electronically.Owing to the infrastructure for reconfigurabilithe manufacturing
tolerances are also relaxed. Yet, tedlectarrays are not advantageous for all aspects.
For instance,aflectarraygpresentimited bandwidth for two main reasons: Taeay
elemens areusually narrowband and thganar structure of the reflectarray prevents
having frequency independent collimation of the rays emanating from thi2leed
opposed tahe case witha parabolic reflectorUsually, the element geometries or
terminationsare optimized to yield a desired aperture phase distribution at a specific
frequency. Ashie frequency is variedhe field distribution over the array aperture

1



diverges from the desired aperture field distribution because of the change in
reflection coefficient of the elements and the electrical distance between the feed
antenna and element®n the other hand, techniques exist to enhance the bandwidth
of reflectarray antennas. Using thick dielectrics or stacking up two or more layers of
dielectric and metallizatiorare proven to be useful for enhancementof the
bandwidth of the elemen8]. A straightforwardsolution to he electrical distance
problemis to load the elements with true time delay stubs, but these stubs are often
required to povide many multiples of wavelength delay and therefore become very
long. Another possible solution is tampromise on théully planar geometry and
mimic the shape of a parabolic reflector with a number of flat pgdgls order to
reduce thdrequency sensitivityf the total electrical distance traversed by the rays

from the feed to the reflectarray aperture plane.

—
(=%
L=1
=
L
n

Figurel-1 A generic reflectarray.

Reflectarrays could be categorized into two as reconfigurable anceoonfigurable
ones. Reconfigurable reflectarrays have a means of electronically controlled phase
shifting mechanisnat each elem@t to achieve the phase requirements of different

beams thamight be demanded from the antenna. Varactor diodes are employed as

2



reactive elements if5]. Another technique to achieve reconfigurability is to use
MEMS phase shifter§g], [7]. In reconfigurable reflectarrays, element geometry is
fixed throughout the array and this uniformity is in favor of assuming periodic
boundary conditions for element analysi3n the other &nd, ron-reconfigurable
reflectarraysare more affordable because they do not bear any electronic control
However their downside issening with a fixed radiation patternThe patternis
realizedby arrangingthereflectionresponse of the elements witarious techniques.
Most commontechniques areterminating the elements wittifferent length stubs

[8], using different size elemeni8], androtatingthe elemenf10]. Stub loading has

the disadvantage of increased crpefarization level due to orienting the stub
orthogonal to the current direction over the patch because of layout concerns.
Reflectarrag realized by element rotation are limited to circular polarized radiation
[1Q].

This dissertation mainly focuses othe accurate and efficient ansiy of
reflectarrays with variable element sizes. This reflectarray typpregerredin
practice due to ease in manufacturing and low cross polarization leden
compared to the stub loaded reflectarrg8]s The work on this type of reflectarrays
in the literaturas basically focused on their analysis and desfgiturate analysis of
reflectarrays can be obtained through the use of numesdahiques like Method of
Moments (MoM), Finite Element Method (FEM) and Finite Difference Time
Domain Method (FDTD). Even large reflectarrays can be analyzed both accurately
and efficiently by combining MoM with fast algorithms such as Mieftel Fast
Multipole Algorithm (MLFMA) [12], Adaptive Integral Method (AIM]12], Matrix
Decomposition Algorithm (MDA)[13] or Adaptive Cross Approximation (ACA)
[14]. Specifically, in[15], full wave solution of large reflectarrays is considered by
utilizing Synthetic Functions Expansion (SFX)6] and Sparse Matrix Adaptive
Integral Methods (SMAIM) [17]. SM-AIM method is reported to use 290 Mbgte
RAM and 4 minutes oCPU time for the solution of a 20x20 reflectarray antenna
while SFX requires 300 Mbyseaand 29 minutedn [18], fast analysis of reflectarrays

is acomplished via combining MLFMA and CBFM reflectarray with dimensions

of 16_ by 16_ is reported to be analyzed in approximately 20 minutes by asing



i7 quadcoreprocessor and 6 Gbg®AM. However, due to large number of design
parameters and the electrical size of the reflectarray problem, none of the above
listed analysis techniquesan practically lead the designer to a successful design
when no a priori knowledgen element parameteisavailable. When the design of
reflectarrays is considered, a link between the size (or the orientation) of the
elements and the phase of the associated reflection coefficient is required to be able
to choose the appropriate elemgebmetrythat will geneate the desired far field
pattern.This link can be approximately provided by the infinite array appré8ich

(also referred as local periodicity appch) or alternativelythe isolated element
approach22]. In infinite array approach, each element in the array is assumed to be
within an infinite aray of its duplicateg(Figure 1-2). This assumption allows
establishing the relation between the size of the element and the phase of the
reflection coefficient by analyzing unit cells with various element sikbs. sizeof

each element is chosé&om a phase design curM@n example ofwhichis given in
Figurel-3) such that each element reflects the incident figtd the phase mandated

by the array pattern synthesis procedsirgce this method assumes local periodicity,

it bears approximate information regarding the actual mutual coupling among the
elements. The method is approximate in two aspects. First, thergkemear the
edges and cornetswhose neighbors amgther missingor very fewon oneor more

sides, are also assumed to be within a periodic environment. Second, the geometry
variation is not always smooth due to aperture phase requirements of thel desire
antenna pattern. 19, it is stated that the accuracy of the local periodicity approach
relies on smooth variation of the size of the aebyments. Howevethe realization

of reflectarrays with arbitrarily shaped beams or reflectarrays that serve -as sub
reflectors of multiple reflector systemi20], [21] might necessitate rapid change of
phase and therefore element dimensions over the array aperture. Even for
reflectarraysthat radia¢ a pencil beamdue to limited phase span provided by the
variations in element geometry, there exist sudden transitions from a small element
to a large element corresponding to periods of 360 degrees as $égureil-4 and
Figurel-5. Furthermore, many practical reflectarrays are not large énouignore

the effect of edge elements. Thus, in many occasions it becomes necessary to fine

tune the geometry of elements through iterative use of an accurate numerical analysis



method, which is a computationally expensive task. Actually, this may not be

practical for large reflectarrays with the existing computational technology.

The isolated element approach, as opposed to the infinite array approach, neglects
the mutual coupling and considers each element in the array as an isniated
(Figure 1-6). This approach is divided into two st#pproaches. In the first one, the
phase of the reflected field is usgt®] and it is assumed that its amplitude does not
depend on the element geometry. In the second ondependence of the amplitude

of the reflected field on the element geometry is also taken into ad@8infThese
approachks are successful when the coupling between elemeénisctually small
enough to be neglectetllevertheless,his condition is not general and therefore
these approacheseno better than the infinite array approach in terms of far field

accuracy.

In summary, none of the above three approaches can truly model the mutual coupling
in the actual array. These appobes of course do not claim to perfectly predict the
eventual pattern, but it is clear that the element dimensions must be tweaked and full
wave simulation at each tweaking step is necessary. Changing the size of a single
element influences current digtation not only on the element under concern, but on
many surrounding elements as well. Therefore there is not a simple way of choosing

the best increment (or decrement) in element size whenumeg the reflectarray.

To overcome the shortcomings o€tlocalperiodicity approach and to make a more
accurate analysighe surrounded element approach is propose{l4i. In this
approach, a virtual suérray is formed by considering an element and a few of its