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ABSTRACT 

 

 

 

EFFICIENT NUMERICAL ANALYSIS  AND DESIGN OF REFLECTARRAY 

ANTENNAS 

 

 

Er­il, Erdin­ 

 

PhD., Department of Electrical and Electronics Engineering 

            Supervisor: Prof. Dr. ¥zlem Aydēn ¢ivi 

        Co-Supervisor: Assoc. Prof. Lale Alatan 

 

January 2015, 136 pages 

 

 

 

The accurate numerical analysis of electrically large reflectarray antennas has been a 

challenging task since their advent because it becomes impractical to employ the 

generalized numerical electromagnetic tools for their numerical analysis.  Therefore 

the classical approach is to resort to approximate methods. However, approximate 

methods trade off accuracy against memory and speed. In this thesis study; an 

approximate analysis technique is established such that it is more accurate than the 

present approximate analysis techniques and more efficient than the full wave 

analysis schemes in terms of memory requirement and speed. The technique relies on 

using characteristic modes as macro basis functions and reusing the dominant 

characteristic mode of the resonant element for all elements in the reflectarray. This 

utilization leads to obtaining a reduced matrix system where the number of 

unknowns is drastically decreased. As far as the far field is concerned, accurate 

results even with a single characteristic mode are achieved. The accuracy is attained 

owing to preservation of mutual coupling information via the original MoM 

impedance matrix. The solution is further accelerated by tabulating the entries of the 

reduced matrix as a function of interacting patch sizes and their relative 

displacements. It is observed that for sufficiently separated patches, the reduced 

matrix entry is almost a separable function of the two dimensional displacement 
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between patches and patch sizes associated with the matrix entry. Tabulation is 

efficiently performed by exploiting this fact. Achieved acceleration is sufficient to 

use this analysis method in the design of reflectarrays. For a 1000 element array, the 

tabulation process takes 28 min on a platform with 3.3 GHz CPU clock speed. With 

the lookup table at hand, the solution time, which is important for the design 

iterations, is 0.38 seconds. The speed provided by the method makes it possible to 

employ gradient based optimization algorithms such as Steepest Descent or 

Conjugate Gradient Method, both of which are successfully applied to two design 

problems in the scope of the study. 

Keywords: Reflectarray antenna, efficient numerical solution, characteristic modes, 

method of moments, optimization. 
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¥Z 

 

 

 

YANSITMALI DĶZĶ ANTENLERĶN VERĶMLĶ N¦MERĶK ANALĶZ VE 

TASARIMI  

 

 

Er­il, Erdin­ 

 

Doktora, Elektrik ve Elektronik M¿hendisliĵi Bºl¿m¿ 

  Tez Yºneticisi: Prof. Dr. ¥zlem Aydēn ¢ivi 

  Ortak Tez Yºneticisi: Do­. Dr. Lale Alatan 

 

Ocak 2015, 136 sayfa 

 

 

 

Elektriksel olarak b¿y¿k yansētmalē dizi antenlerin y¿ksek doĵruluk ile analiz 

edilmeleri bu tip antenlerin ortaya ­ēkmasēndan itibaren zor bir iĸ olmuĸtur. ¢¿nk¿ 

elektriksel olarak b¿y¿k yansētmalē dizilerin analizi i­in genel hesaplamalē 

elektromanyetik tekniklerinin kullanēmē pratik olmamaktadēr. Bu nedenle klasik 

yaklaĸēm, yaklaĸēk yºntemlere baĸvurmaktēr.Ancak mevcut yaklaĸēk yºntemler ancak 

doĵruluktan ºd¿n vermek suretiyle hēz ve hafēza gereksinimi a­ēsēndan avantaj 

saĵlamaktadēr. Bu tez ­alēĸmasēnda, var olan yaklaĸēk yºntemlerden daha y¿ksek 

doĵruluk sunan ancak ­ºz¿m hēzē ve hafēza ihtiyacē a­ēsēndan tam dalga tekniklerden 

­ok daha verimli olan bir yaklaĸēk analiz tekniĵi geliĸtirilmiĸtir. Geliĸtirilen teknik, 

karakteristik modlarēn makro taban fonksiyonu olarak kullanēmēna ve resonant 

elemanēn baskēn karakteristik modunun dizideki tum elemanlar icin yeniden 

kullanēlabilirligine dayanmaktadēr. Bu yaklaĸēm, bilinmeyen sayēsēnēn ºnemli ºl­¿de 

azaltēldēĵē k¿­¿lt¿lm¿ĸ bir matris denklemine ulaĸmayē saĵlamakadēr. Dizinin uzak 

alanē dikkate alēndēĵēnda, sadece tek bir karakteristik modun bile olduk­a doĵru 

sonu­lar verdiĵi gºr¿lm¿ĸt¿r. Bu doĵruluĵun kaynaĵē, original MoM matrisindeki 

elemanlar arasē etkileĸim bilgisinin korunmasēdēr. ¢ºz¿m s¿resi; k¿­¿lt¿lm¿ĸ 

matrisin terimlerini, etkileĸen elemanlarēn boyutlarē ve iki boyutlu deplasmanlarēna 

baĵlē bir fonksiyon olarak tablolaĸtērarak daha da azaltēlmēĸtēr. Yeterince uzak iki 
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eleman i­in ilgili matris teriminin, elemanlarēn boyutlarēnēn ve deplasmanlarēnēn 

hemen hemen ayrēlabilir bir fonksiyonu olduĵu gºr¿lm¿ĸt¿r. Tablolaĸtērma, bu 

durum sayesinde verimli bir ĸekilde yapēlabilmektedir. Elde edilen hēzlanma, bu 

analiz tekniĵini tasarēmda kullanmak i­in yeterli d¿zeydedir. 3.3 GHz saat hēzē ile 

­alēĸan bir bilgisayar ¿zerinde, 1000 elemanlē bir dizi i­in tablolaĸtērma 28 dakika 

s¿rmektedir.  Tablolar mevcut iken, tasarēm dºng¿leri i­in esas ºnem taĸēyan ­ºz¿m 

s¿resi 0.38 saniye olmaktadēr. Yºntemin saĵladēĵē hēz, En Hēzlē D¿ĸ¿ĸ ve Konjuge 

Gradyen gibi optimizasyon algoritmalarēnē uygulamayē olanaklē hale getirmektedir 

ve bu sayede her iki optimizasyon yºntemi tez kapsamēnda uygulanabilmiĸtir.  

Anahtar kelimeler: Yansētmalē dizi anten, verimli n¿merik ­ºz¿m, karakteristik 

modlar, momentler metodu, optimizasyon. 
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CHAPTER 1 

 

1 INTRODUCTION  

 

 

 

Reflectarray antennas are structures similar to reflectors with regard to their radiation 

mechanism. They are composed of a feed antenna and a planar printed circuit board 

with discrete antenna elements etched on (Figure 1-1). The feed antenna illuminates 

the antenna elements and the antenna elements are usually arranged to reflect the 

incident field such that the aperture plane is an equi-phase surface. Reflectarrays are 

preferred in many applications where lightweight is required and the disadvantages 

associated with conventional reflector antennas need to be avoided. These 

disadvantages are mainly cost, requirement of surface smoothness in manufacturing 

process; and the volume occupied. On the other hand, the reflectarray is 

manufactured by one or more dielectric substrates [1] and is usually of planar 

geometry. Similar to reflector antennas, the reflectarrays are illuminated by a small 

feed antenna. The desired far field pattern is realized by adjusting the aperture field 

distribution via configuring the reflection coefficient of the antenna elements. As an 

advantage over the reflector antenna, beamshaping with a reflectarray can be done 

using relatively simple and well defined array antenna techniques while for 

conventional reflector antennas it requires shaping of the surface, which is not as 

easy in terms of design and manufacturing. Furthermore, some reflectarrays have the 

capability of reconfigurability, which enables steering or re-shaping the beam 

electronically. Owing to the infrastructure for reconfigurability, the manufacturing 

tolerances are also relaxed. Yet, the reflectarrays are not advantageous for all aspects. 

For instance, reflectarrays present limited bandwidth for two main reasons: The array 

elements are usually narrowband and the planar structure of the reflectarray prevents 

having frequency independent collimation of the rays emanating from the feed [2], as 

opposed to the case with a parabolic reflector. Usually, the element geometries or 

terminations are optimized to yield a desired aperture phase distribution at a specific 

frequency. As the frequency is varied, the field distribution over the array aperture 
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diverges from the desired aperture field distribution because of the change in 

reflection coefficient of the elements and the electrical distance between the feed 

antenna and elements. On the other hand, techniques exist to enhance the bandwidth 

of reflectarray antennas. Using thick dielectrics or stacking up two or more layers of 

dielectric and metallization are proven to be useful for enhancement of the 

bandwidth of the element [3]. A straightforward solution to the electrical distance 

problem is to load the elements with true time delay stubs, but these stubs are often 

required to provide many multiples of wavelength delay and therefore become very 

long. Another possible solution is to compromise on the fully planar geometry and 

mimic the shape of a parabolic reflector with a number of flat panels [4] in order to 

reduce the frequency sensitivity of the total electrical distance traversed by the rays 

from the feed to the reflectarray aperture plane. 

 

Figure 1-1 A generic reflectarray. 

Reflectarrays could be categorized into two as reconfigurable and non-reconfigurable 

ones. Reconfigurable reflectarrays have a means of electronically controlled phase 

shifting mechanism at each element to achieve the phase requirements of different 

beams that might be demanded from the antenna. Varactor diodes are employed as 
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reactive elements in [5]. Another technique to achieve reconfigurability is to use 

MEMS phase shifters [6], [7]. In reconfigurable reflectarrays, element geometry is 

fixed throughout the array and this uniformity is in favor of assuming periodic 

boundary conditions for element analysis. On the other hand, non-reconfigurable 

reflectarrays are more affordable because they do not bear any electronic control. 

However, their downside is serving with a fixed radiation pattern. The pattern is 

realized by arranging the reflection response of the elements with various techniques. 

Most common techniques are; terminating the elements with different length stubs 

[8], using different size elements [9], and rotating the element [10]. Stub loading has 

the disadvantage of increased cross-polarization level due to orienting the stub 

orthogonal to the current direction over the patch because of layout concerns. 

Reflectarrays realized by element rotation are limited to circular polarized radiation 

[10]. 

 

This dissertation mainly focuses on the accurate and efficient analysis of 

reflectarrays with variable element sizes. This reflectarray type is preferred in 

practice due to ease in manufacturing and low cross polarization level when 

compared to the stub loaded reflectarrays [9]. The work on this type of reflectarrays 

in the literature is basically focused on their analysis and design. Accurate analysis of 

reflectarrays can be obtained through the use of numerical techniques like Method of 

Moments (MoM), Finite Element Method (FEM) and Finite Difference Time 

Domain Method (FDTD). Even large reflectarrays can be analyzed both accurately 

and efficiently by combining MoM with fast algorithms such as Multi-level Fast 

Multipole Algorithm (MLFMA) [12], Adaptive Integral Method (AIM) [12], Matrix 

Decomposition Algorithm (MDA) [13] or Adaptive Cross Approximation (ACA) 

[14]. Specifically, in [15], full wave solution of large reflectarrays is considered by 

utilizing Synthetic Functions Expansion (SFX) [16] and Sparse Matrix Adaptive 

Integral Methods (SM-AIM)  [17]. SM-AIM method is reported to use 290 Mbytes 

RAM and 4 minutes of CPU time for the solution of a 20x20 reflectarray antenna 

while SFX requires 300 Mbytes and 29 minutes. In [18], fast analysis of reflectarrays 

is accomplished via combining MLFMA and CBFM. A reflectarray with dimensions 

of 16‗ by 16‗ is reported to be analyzed in approximately 20 minutes by using an 
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i7 quad core processor and 6 Gbytes RAM.  However, due to large number of design 

parameters and the electrical size of the reflectarray problem, none of the above 

listed analysis techniques can practically lead the designer to a successful design 

when no a priori knowledge on element parameters is available. When the design of 

reflectarrays is considered, a link between the size (or the orientation) of the 

elements and the phase of the associated reflection coefficient is required to be able 

to choose the appropriate element geometry that will generate the desired far field 

pattern. This link can be approximately provided by the infinite array approach [9] 

(also referred as local periodicity approach) or alternatively, the isolated element 

approach [22]. In infinite array approach, each element in the array is assumed to be 

within an infinite array of its duplicates (Figure 1-2). This assumption allows 

establishing the relation between the size of the element and the phase of the 

reflection coefficient by analyzing unit cells with various element sizes. The size of 

each element is chosen from a phase design curve, (an example of which is given in 

Figure 1-3) such that each element reflects the incident field with the phase mandated 

by the array pattern synthesis procedure Since this method assumes local periodicity, 

it bears approximate information regarding the actual mutual coupling among the 

elements. The method is approximate in two aspects. First, the elements near the 

edges and cornets, whose neighbors are either missing or very few on one or more 

sides, are also assumed to be within a periodic environment. Second, the geometry 

variation is not always smooth due to aperture phase requirements of the desired 

antenna pattern. In [19], it is stated that the accuracy of the local periodicity approach 

relies on smooth variation of the size of the array elements. However, the realization 

of reflectarrays with arbitrarily shaped beams or reflectarrays that serve as sub-

reflectors of multiple reflector systems [20], [21] might necessitate rapid change of 

phase and therefore element dimensions over the array aperture. Even for 

reflectarrays that radiate a pencil beam, due to limited phase span provided by the 

variations in element geometry, there exist sudden transitions from a small element 

to a large element corresponding to periods of 360 degrees as seen in Figure 1-4 and 

Figure 1-5.  Furthermore, many practical reflectarrays are not large enough to ignore 

the effect of edge elements. Thus, in many occasions it becomes necessary to fine-

tune the geometry of elements through iterative use of an accurate numerical analysis 



5 

 

method, which is a computationally expensive task. Actually, this may not be 

practical for large reflectarrays with the existing computational technology. 

 

The isolated element approach, as opposed to the infinite array approach, neglects 

the mutual coupling and considers each element in the array as an isolated one 

(Figure 1-6). This approach is divided into two sub-approaches. In the first one, the 

phase of the reflected field is used [22] and it is assumed that its amplitude does not 

depend on the element geometry. In the second one, the dependence of the amplitude 

of the reflected field on the element geometry is also taken into account [23]. These 

approaches are successful when the coupling between elements is actually small 

enough to be neglected. Nevertheless, this condition is not general and therefore 

these approaches are no better than the infinite array approach in terms of far field 

accuracy.  

 

In summary, none of the above three approaches can truly model the mutual coupling 

in the actual array. These approaches of course do not claim to perfectly predict the 

eventual pattern, but it is clear that the element dimensions must be tweaked and full 

wave simulation at each tweaking step is necessary. Changing the size of a single 

element influences current distribution not only on the element under concern, but on 

many surrounding elements as well. Therefore there is not a simple way of choosing 

the best increment (or decrement) in element size when fine-tuning the reflectarray. 

 

To overcome the shortcomings of the local periodicity approach and to make a more 

accurate analysis, the surrounded element approach is proposed in [24]. In this 

approach, a virtual sub-array is formed by considering an element and a few of its 

surrounding neighbor elements (Figure 1-7). This sub-array is analyzed through the 

use of full wave analysis methods and this procedure is repeated for all elements in 

the array. As a result, the solution of a large sized problem (full array) is decomposed 

into the repeated solution of smaller sized problems (sub-arrays). This approximate 

analysis approach cannot be utilized to guide the design of reflectarrays, since the 

characterization of an element requires the size information of the neighboring 

elements as well.  
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Figure 1-2 Infinite Array Approach. 

 

Figure 1-3 Typical phase design curve of the infinite array approach. 
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Figure 1-4 Mask pattern of reflectarray to be used as sub-reflector [20]. 

 

Figure 1-5 A photo of a reflectarray [21]. 
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Figure 1-6 Isolated Element Approach. 

 

Figure 1-7 Surrounded Element Approach. 

 

As a fast analysis technique, infinite array approach is again applicable. This 

technique involves tabulating the reflection phase as a function of incidence angle 

and element geometry (size or rotation etc.) for both parallel and perpendicular 

polarizations and computing the parallel and perpendicular components of the 

incident field on the reflectarray. As the effect of incidence angles is not usually 

taken into account in the design phase, a better accuracy as compared to design phase 

is obtained by this technique. However, the technique still depends on the local 

periodicity in terms of variation of the element geometry and incidence angle over 

the array. One principal motivation behind this approach is certainly the absence of a 

tool for analyzing practical reflectarrays populated with elements as many as 

thousands. Nevertheless, by observing the level of agreement between measurement 
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or full wave analysis results and approximate analysis results in many of the 

reflectarray design studies ([9], [22], [25], [26], [27] and [28]), it can be concluded 

that the accuracy of these approximate analysis  methods needs to be improved.   

 

1.1 Motivation  

 

The method of moments [29] is an accurate tool for analyzing reflectarrays. 

However, most practical reflectarrays are composed of hundreds and even thousands 

of elements, which brings in the well-known problems of MoM with increasing 

unknowns. Nonetheless, the infinite array or local periodicity approach offers a very 

smart and efficient technique for the analysis and design of variable geometry 

reflectarrays, but this approach may not provide reliable results because of the 

assumed approximations. On the other hand, it is well experienced by the 

computational electromagnetics researchers that better accuracy almost always 

comes with its cost. With this challenge at hand, the target of this thesis is to develop 

an efficient analysis technique which is relatively accurate and efficient compared to 

the existing methods in the literature. When this is achieved, it becomes practical to 

use the analysis tool to optimize and design a reflectarray. The technique should 

yield an acceptable accuracy for the array pattern and it needs to be very fast (on the 

order of a few seconds) so as to be used in optimization algorithms. The efficiency of 

a numerical technique can be improved by reducing the size of the problem. In 

surrounded element approach [24], this is achieved by neglecting the mutual 

coupling from the elements that are not within the close vicinity of the target 

element. However, the analysis results in this study show that depending on the size 

of the elements a farther element may exhibit a larger mutual coupling compared to a 

closer element. Therefore it is concluded that the mutual coupling from each element 

should be considered in order not to sacrifice accuracy. Consequently, the size of the 

problem needs to be reduced by decreasing the number of unknowns on each 

element. For this purpose, various types of macro basis function approaches like 

Characteristic Basis Function Method (CBFM) [30] and Synthetic Function 

Expansion (SFX) [16] are proposed in the literature. On the other hand, characteristic 

modes obtained from the eigensolution of the MoM matrix [31] and [32] are very 
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good candidates to be used as entire domain basis functions on each element since 

the actual current distribution on an antenna element is the superposition of its 

characteristic modes. Using characteristic modes as entire domain basis functions has 

already been proposed in [33] for the efficient analysis of large antenna arrays. In 

this approach, first an isolated array element is analyzed by using sub-domain basis 

functions and the characteristic modes of the element are found numerically. Then a 

number of characteristic modes are used on each element to solve for the current 

distribution on the entire array. Since the number of modes used for each element is 

much smaller than the number of sub-domain basis functions on each element, a 

significant amount of reduction in the size of the overall MoM matrix is achieved. In 

[33], the method is applied to the analysis of large arrays composed of identical 

elements. This study does not make any projection about the application of the 

method for arrays with dissimilar element dimensions. Furthermore, it is still 

required to compute the conventional MoM matrix, to obtain the reduced form.  

 

1.2 Original Contributions of the Study 

 

This study is originated from usage of characteristic modes as Macro Basis Functions 

(MBFs) and elaborated by the steps described below. As opposed to [33], when the 

analyses of reflectarrays with non-uniform element sizes are considered, it seems that 

the characteristic modes for elements with different sizes should be calculated. 

However, it is recognized that the characteristic modes calculated for one element 

can be used for other elements with different sizes as long as the shape of the 

element and the organization of RWG basis functions on each element remain same. 

This is shown by examining the error in the approximate current distribution for 

excitation scenarios where the incidence type and angle are varying. Consequently, 

the first contribution of this study is to demonstrate the reusability of the 

characteristic modes for a sufficiently wide range of element sizes and incidence 

angles in a reflectarray problem. Next, it is observed that the dominant characteristic 

mode alone is sufficient to predict the far field pattern of the reflectarray accurate 

enough for an approximate analysis approach. Utilization of this observation results 

in a reduced (but not sparse) MoM matrix equation where the number of unknowns 
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is equal to the number of elements. The solution of the reduced matrix system yields 

the complex coefficients for the dominant characteristic mode on each element. Thus 

an approximate current distribution that takes into account the mutual couplings 

between all elements can be found. The entries of the reduced MoM matrix represent 

the interaction between the dominant modes of two elements. This interaction is a 

function of the sizes of the elements and two dimensional displacements between the 

elements. During the analyses conducted, it is recognized that the dependence of the 

interaction on the element sizes and on the displacement are separable from each 

other such that the entries of the reduced matrix can be expressed as a product of two 

functions, one in terms of sizes, and the other in terms of displacement for the 

elements which are not very close to each other. In the light of this observation, the 

entries of the reduced MoM matrix are efficiently tabulated as functions of 

displacement between interacting elements and sizes of interacting elements. Since 

the reduced MoM matrix can be very quickly filled by table look-up, a drastic 

reduction in the solution time is accomplished which paves way to implementation of 

various optimization methods for the design problem. The improvement obtained in 

the MoM solution of the entire array for different combinations of element sizes is 

the second important contribution of this dissertation because this efficient, 

approximate but accurate analysis approach enables a better - design for reflectarrays 

with non-uniform element sizes. The method requires neither the computation nor 

the storage of the conventional MoM matrix, which results in a significant relaxation 

of the memory requirements.   

 

In the context of the dissertation, optimization algorithms that depend on directional 

search, such as The Method of Steepest Descent and the Non-linear Conjugate 

Gradient Method are implemented for the optimization of a 400 element reflectarray. 

Two different desired patterns are considered for optimization: First, a pattern that is 

separable in azimuth and elevation angles is synthesized where the cost function is 

defined as the sum of the pattern error, which is the difference between the desired 

and synthesized pattern in principal planes. Next, a non ï separable pattern is 

synthesized where the cost function is defined as the sum of the pattern error in the 

entire half sphere in front of the reflectarray. Both optimization problems resulted in 
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a satisfactory convergence to the desired pattern. Furthermore, the patterns observed 

in the optimization result are verified by the analysis of reflectarrays obtained by the 

optimization, using ANSYS HFSS [34]. 

 

Although originally proposed for reflectarrays comprised of variable-size square 

patches, the method is extended to reflectarrays of different element types. An 

element that involves two separate pieces of conductors and behaves quite different 

than a resonant patch, is considered. The method is adapted for this element type by 

considering the characteristic modes of the distinct parts. An entirely different 

reflectarray element whose phase control mechanism is the rotation of the element, 

the split ï ring resonator, is also investigated for application of the proposed method. 

The method is adapted for this element and shown to be feasible for it as well. 

 

1.3 Organization of the Thesis 

 

Chapter 2 of this thesis is dedicated to the development of the proposed fast analysis 

technique. The basic tools that are used throughout the thesis are described. In this 

chapter, reflectarrays of variable-size square patches are focused. The concepts of the 

usage of characteristic modes as macro basis functions and reusability of the 

characteristic modes for differently sized patches are also discussed. The work 

towards accelerating the construction of the reduced matrix is elaborated in this 

chapter and the proposed method is established. The accuracy of the proposed 

method is compared to that of the infinite array approach. Furthermore, the method is 

extended for using two characteristic modes.   

 

In Chapter 3, the versatility of the proposed fast analysis approach is demonstrated 

through two different types of reflectarray elements. The first one is a wideband 

patch that does not exhibit a resonance behavior and the second one is a split ring 

resonator that is often used for circularly polarized reflectarrays. The modifications 

that are necessary for adaptation of the method are discussed and applied in this 

chapter. 
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In Chapter 4, the fast analysis approach is used for the design with the aid of the 

optimization methods such as the Method of Steepest Descent and the Non-linear 

Conjugate Gradient Method. As an initial point for the optimization, either the design 

offered by the infinite array approach or a uniform array with resonant patches is 

assumed. Two different optimization problems are studied and both resulted in 

designs with far field patterns that have good agreement with the desired antenna 

patterns.  

 

Finally, Chapter 5 presents the conclusions of the thesis and possible extensions that 

could be researched. 

 

The fundamental electromagnetic simulation method in this thesis is method of 

moments [11] with layered media Greenôs function [36]. All substrates are assumed 

lossless and metals are assumed perfect electric conductors with zero thickness. The 

time convention throughout the thesis is Ὡ . Free space wavelength is symbolized 

as ‗. 
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CHAPTER 2 

 

2 DEVELOPMENT OF THE EFFICIENT COMPUTATION METHOD  

 

 

 

This chapter is dedicated to the development of the efficient numerical analysis 

method that builds the foundation of the dissertation. The method of moments is the 

most basic tool that is employed and in-house codes are developed in MATLAB to 

implement it. By applying the MoM for mixed potential form of the Electric Field 

Integral Equation (EFIE), reference solutions for considered reflectarrays are found. 

Having the MoM computation facility, not only it becomes possible to obtain the 

reference solution for current density of an arbitrary reflectarray, but characteristic 

modes of a given structure can be found as well. Then, usage of a truncated set of 

characteristic modes as macro basis functions for reflectarrays and evaluation of 

various concepts becomes possible by comparing with reference solutions. By 

analyzing the error in the far field pattern with respect to the number of characteristic 

modes used on each element, it is concluded that even by considering only the 

dominant mode, satisfactory accuracy can be achieved. Therefore, it is proposed to 

use a single characteristic mode vector as a macro basis function for all elements in 

the array. By the transformation obtained by this macro basis function approach, a 

drastic reduction of the impedance matrix size can be achieved. Reusing the same 

characteristic mode for all different sized elements is also investigated, and it is 

observed that this proves successful in terms of far field estimation. The success of 

this concept is due to preservation of coupling between elements via maintaining the 

information provided by the original impedance matrix of MoM. Although the 

matrix size is reduced significantly, the computation of the reduced matrix is still a 

burden, because it requires the computation of the original impedance matrix. To 

alleviate this burden, the feasibility of tabulating the reduced matrix terms, which 

depends on the block mutual impedance matrix of two elements, is examined. It is 

clear that there are too many cases that vary the mutual impedance matrix for a large 

array, considering the combinations of size and displacement possibilities. However, 
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it is observed that for sufficiently separated patches, the reduced matrix term is 

almost a separable function of the two dimensional displacement between patches 

and patch sizes associated with the matrix term. For close neighboring patches, on 

the other hand, the number of possible combinations is of manageable count. With 

the separability, it becomes sufficient to characterize the effect of displacement and 

the effect of the sizes of interacting two distant patches. The details of the above 

explained concepts are given in the forthcoming parts. 

 

2.1 MoM Analysis Approach for Reflectarrays 

 

The method of moments [29] with closed form stratified media Greenôs function [36] 

is an efficient method for the analysis of printed microstrip structures, because it only 

requires discretization of the metallization and modeling the problem as a surface 

integral equation. When finiteness of the ground plane is desired to be considered, 

volume integral equation formulation may be employed, but this approach requires 

introducing basis functions on the substrate and ground metallization as well as the 

signal metallization. The drawback in the former of these two approaches is taking 

the substrate and the ground plane erroneously as infinite. On the other hand, for 

large arrays, finiteness of the ground plane and substrate is usually not a big problem 

and often ignored for simplicity and efficiency. 

 

The method of moments depends on expressing an unknown quantity in terms of 

some basis functions either defined on the entire domain, or in sufficiently small 

regions of the domain. The basis function used in this study is Rao-Wilton-Glisson 

[37] basis function, which is of subdomain type. Electric Field Integral Equation is 

solved to find the current distribution on patches. The Greenôs functions for vector 

and scalar potentials are numerically computed by the three-level method described 

in [36]. This method expresses the Greenôs function as a sum of exponentials with 

complex exponents. Singularity of the Greenôs function is handled by classical 

singularity subtraction technique. All metals are assumed PEC and no loss is taken 

into account throughout the thesis. MATLAB is used as code development 

environment. 



17 

 

A reflectarray problem typically involves a feed antenna or a plane wave that is 

incident on the reflectarray (Figure 2-1-a). In either case, the incident field for the 

MoM analysis with layered media Greenôs function is the sum of the field incident 

from the source, Ὁ , (plane wave or feed antenna) in the absence of the dielectric 

coated ground plane and the field reflected from the dielectric coated ground plane, 

Ὁ  (Figure 2-1-b). When the patches exist over the substrate, due to Ὁ  and Ὁ , 

a current density is induced on the patches such that the tangential electric field 

vanishes over them (Figure 2-1-c). This current density generates Ὁ  at the right 

side of the reflectarray. Therefore, total electric field at the right hand side of the 

reflectarray is calculated as in (2-1): 

Ὁ Ὁ Ὁ Ὁ  (2-1) 

The incident field for MoM calculations is: 

Ὁ Ὁ Ὁ  (2-2) 

Ὁ  in (2-2) is to be used in the electric field integral equation that will be derived 

later. The patch current, ὐӶ, is the solution of the electric field integral equation. The 

radiation due to ὐӶ alone does not give the far field of the reflectarray. Another 

significant contribution to the far field is the scattering from the ground plane in the 

absence of the patches [38]. This can be appreciated instantly if a hypothetical 

problem where no metallization exists over the substrate is considered. In this 

problem, ὐӶ would be zero, but a finite radiation at the far zone would be observed. 

Therefore, the scattering from the ground plane should be taken into account for the 

overall far field of the reflectarray. This calculation can be approximately done by 

using physical optics considering the actual size of the reflectarray PCB, following 

the approach in [39]. On the other hand, when calculating Ὁ , substrate and the 

ground plane are considered as infinitely large. The primary incident field, Ὁ , is 

first decomposed into its parallel and perpendicular polarized components for each 

observation point on the substrate. Then, the parallel and perpendicular components 

of the reflected field are found by using the respective angle dependent reflection 

coefficient at each observation point. The reflection coefficients are found by using 
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the Fresnel reflection coefficients [40] and calculating the result of the power series 

due to infinite back and forth bouncing at the vacuum-substrate and ground plane- 

substrate interfaces. When ὐӶ is found by solving EFIE, its radiation is calculated by 

the method of stationary phase [41], as if the ground plane and substrate are infinite. 

Even though this overall approach brings in an approximated inclusion of radiation 

from the ground, comparisons with solutions of Finite Element Method solvers 

reveal that the approximation is accurate enough.  

 

Figure 2-1 Reflectarray problem: a) Problem definition, b) Fields in absence of 

patch, c) fields scattered by patch. 

 

2.1.1 The Mixed Potential Formulation 

 

It is well known that if Lorentz Gauge is assumed, electric field can be expressed as: 

Ὁ Ὦ‫ὃӶ •ɳ (2-3) 

With a given current distribution ὐӶ and charge distribution ή over a surface S, the 

vector and scalar potentials can be written down in terms of the sources and Greenôs 

functions as: 

ὃӶὶӶ ὐӶὶӶὋ֞ ὶӶȟὶӶὨίȟ •ὶӶ ή ὶӶὋ ὶӶȟὶӶὨί (2-4) 
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In (2-4), Ὃ֞ ὶӶȟὶӶ and Ὃ ὶӶȟὶӶ stand for the Greenôs functions for vector and scalar 

potentials. The charge density and current density are related by the continuity 

equation as: 

 ή
ϽɳὐӶ

Ὦ‫
 (2-5) 

Equation (2-5) can be inserted in (2-4) and therefore both vector and scalar potentials 

can be expressed in terms of current density. When Greenôs Functions for vector and 

scalar potentials and current density are known, (2-5), (2-4) and (2-3) can be used to 

obtain the electric field. Nevertheless, in scattering problems it is required to find out 

the current density when the incident field is known. For scattering problems, an 

incident electric field, Ὁ , exists and it induces currents that generate a scattered 

field, Ὁ . The total tangential electric field, which is the sum of  Ὁ  and Ὁ , 

vanishes on perfectly conducting surfaces: 

Ὁ ὶӶ Ὁ ὶӶ π 

ὲ Ὦ‫ ὐӶὶӶὋ֞ ὶӶȟὶӶὨί ᶯ
ᶯϽὐӶὶӶ

Ὦ‫
Ὃ ὶӶȟὶӶὨί

ὲ Ὁ ὶӶȟ ὶ Ὥί έὲ Ὓ 

(2-6) 

The right hand side of the equation is known, but the current density, ὐӶὶӶ is 

unknown. Method of moments is to be applied to solve for the current density. 

 

2.1.2 Application of Method of Moments 

 

Due to their superior properties in modeling an arbitrary current density, Rao ï 

Wilton ï Glisson type basis functions are used throughout the thesis. The RWG basis 

associated with the n
th
 edge and the triangle couple (Ὕ  

& Ὕ ) is defined as ([37]): 
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πȟ έὸὬὩὶύὭίὩ

 

”Ӷ ὶӶὶӶȟ       ”Ӷ ὶӶ ὶӶ 

(2-7) 

where, ὃ  and ὃ  represent the area of Ὕ  (the positive triangle) and Ὕ  (the 

negative triangle) respectively. Vector ”Ӷ extends from the free vertex, ὶӶ, of Ὕ  to 

any point, ὶӶ, in Ὕ ; whereas ”Ӷ extends from any point, ὶӶ, in Ὕ to the free 

vertex, ὶӶ, of Ὕ . The length of the common edge of Ὕ and Ὕ  is ὰ. Figure 2-2 

depicts a better visualization of these parameters.  

 

Figure 2-2 Explanation of parameters in (2-7). 

 

When RWG bases are used, the unknown current is expressed in terms of ὪӶs. The 

surface divergence of ὪӶ, which is proportional to the surface charge density via 

(2-5), is computed as in (2-8). 

ᶯϽὪӶὶӶ

ừ
Ử
Ừ

Ử
ứ
ὰ

ςὃ
ȟ ὶɴ Ὕ

ὰ

ςὃ
ȟ ὶɴ Ὕ 

πȟ έὸὬὩὶύὭίὩ

 (2-8) 
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Unknown current density, ὐӶ, and the associated charge density, ή,  can be expressed 

as a weighted sum of ὪӶs and ήs as in (2-9).  

ὐӶ ‌ὪӶȟ ή ‌ή ‌
ᶯϽὪӶὶӶ

Ὦ‫
 (2-9) 

Using (2-9) in expressing the scattered field, 

Ὁ ὶӶ Ὦ‫ Ὃ ὶӶȟὶӶ ‌ὪӶὶӶᴂὨί

ᶯ Ὃ ὶӶȟὶӶ ‌ή ὶӶᴂὨί 

(2-10) 

As the tangential electric field vanishes over PEC surfaces, when Galerkinôs testing 

scheme is applied, following relation is obtained. 

ộὉ ὶӶ ȟὪӶὶӶỚ ộ Ὁ ὶӶ ȟὪӶὶӶỚ (2-11) 

In the specific content of this work, Ὁ field can be directly used (without taking the 

tangential part),because the test function is tangential itself. Thus, (2-11) becomes, 

ộ Ὦ‫ Ὃ֞ ὶӶȟὶӶ ‌ὪӶὶӶᴂὨί

ᶯ Ὃ ὶӶȟὶӶ ‌ή ὶӶὨίȟὪӶὶӶỚ

ộ Ὁ ὶӶ ȟὪӶὶӶỚ 

(2-12) 

Due to the divergence conforming property of RWG basis functions, the gradient 

term can be transferred onto the testing function by using the following identity [37]: 

ộɳ•ȟὪӶỚ •ɳϽὪӶὨί •ɳ ϽὪӶὨί (2-13) 

As the integrals associated with the inner products are restricted to the domain of ὪӶ, 
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ộɳ Ὃ ὶӶȟὶӶ ‌ή ὶӶᴂὨίȟὪӶὶӶỚ 

Ὃ ὶӶȟὶӶ ‌ή ὶӶὨί​ϽὪӶὨί 

ὰ
ρ

ςὃ
Ὠί Ὃ ὶӶȟὶӶ ‌ή ὶӶὨίᴂ

ρ

ςὃ
Ὠί Ὃ ὶӶȟὶӶ ‌ή ὶӶὨίᴂ 

ḙ ὰ Ὃ ὶӶȟὶӶ ‌ή ὶӶὨίᴂ

Ὃ ὶӶȟὶӶ ‌ή ὶӶὨίᴂ 

(2-14) 

where ὶӶand ὶӶ represent the coordinates of the center of mass of the positive and 

negative parts of the m
th
 RWG basis, respectively. In (2-14), the integrals on the 

unprimed variable is approximated by the areas of the domains Ὕ  and Ὕ  times the 

value of the integrand at the centers of Ὕ  and Ὕ . 

 

Approximation in (2-14) can be made for the vector potential and the incident field 

as well: 

ộ Ὃ֞ ὶӶȟὶӶ ‌ὪӶὶӶᴂὨίȟὪӶὶӶỚ 

ὰ
ρ

ςὃ
Ὃ֞ ὶӶȟὶӶ ‌ὪὶӶὨίᴂϽ”ӶὨί

ρ

ςὃ
Ὃ֞ ὶӶȟὶӶ ‌ὪὶӶὨίᴂϽ”ӶὨί 

(2-15) 
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ḙ
ὰ

ς
Ὃ֞ ὶӶȟὶӶ ‌ὪὶӶὨίᴂϽ”Ӷ

Ὃ֞ ὶӶȟὶӶ ‌ὪὶӶὨίᴂϽ”Ӷ  

In (2-15), ”Ӷ is the vector from the corner of Ὕ  to the center of mass of Ὕ while 

”Ӷ is the vector from the center of mass of Ὕ  to the corner of Ὕ . 

ộὉ ὶӶȟὪӶὶӶỚ 

ὰ
ρ

ςὃ
Ὁ ὶӶϽ”ӶὨί

ρ

ςὃ
Ὁ ὶӶϽ”ӶὨί 

ḙ
ὰ

ς
Ὁ ὶӶ Ͻ”Ӷ Ὁ ὶӶ Ͻ”Ӷ  

(2-16) 

When equations (2-14), (2-15), and (2-16) are used in (2-12), and the procedure is 

repeated for all ὪӶs, (2-17) is obtained: 

ὤ֞‌ ὠ (2-17) 

In (2-17), ‌ is the vector of unknown RWG basis coefficients, ὠ is the voltage vector 

as shown in (2-18) and  ὤ֞ is the impedance matrix.  Entries of ὠ and ὤ֞ are explained 

in (2-19) and (2-20). 

‌ ‌ ‌ ȢȢ‌ , 

ὠ ὠ ὠ ȣὠ  
(2-18) 
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ὤ Ὦ‫ὰ Ὃ֞ ὶӶȟὶӶὪὶӶὨίϽ”Ӷ

Ὃ֞ ὶӶȟὶӶὪὶӶὨίᴂϽ”Ӷ

ὰ Ὃ ὶӶȟὶӶή ὶӶὨίᴂ

Ὃ ὶӶȟὶӶή ὶӶὨίᴂ 

(2-19) 

ὠ
ὰ

ς
Ὁ ὶӶ Ͻ”Ӷ Ὁ ὶӶ Ͻ”Ӷ  (2-20) 

 

2.1.2.1 Computation of Integrals 

 

2.1.2.1.1 Computation of Non-singular Integrals 

 

For nonsingular integrals and the nonsingular parts of singular integrals, the integrals 

are approximated by Gaussian quadrature. In the context of this study, 3 point 

quadrature yields sufficiently accurate results. To make triangular quadrature, first 

the quadrature points are evaluated with simplex transformation [42]. In simplex 

coordinates, the triangle over the integration is computed is an isosceles triangle with 

corners ([0 0], [1 0], [0 1]).  
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Figure 2-3 Basic triangle in simplex coordinates. 

 

There exists a one to one mapping between any point in the original triangle in x-y 

domain with a point in the basic triangle in simplex coordinates. A given point 

(‌ȟ‍) in simplex coordinates can be mapped to the x-y domain as: 

ὼ ρ ‌ ‍ὼ ‌ὼ ‍ὼ 

ώ ρ ‌ ‍ώ ‌ώ ‍ώ 
(2-21) 

where ὼ and ώ Ὥ ρȟςȟσ represent the coordinates of the vertices of the triangle in 

x-y domain. (ὼȟώ) is the point in x-y domain that corresponds to the point (‌ȟ‍) 

in the simplex coordinates. The integral in original domain Ὕ can be written in terms 

of the integral in simplex coordinates with the aid of the Jacobian matrix, ὐ‌ȟ‍, 

which is equal to twice the area, ὃ  of the original triangle. 

ὪὼȟώὨὼὨώ

Ὢ‌ȟ‍ȿὐ‌ȟ‍ȿὨ‌Ὠ‍

ςὃ Ὠ‌ Ὢ‌ȟ‍Ὠ‍ 

(2-22)  

The integral in simplex coordinates is approximated by the 3 point Gaussian 

quadrature as: 
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Ὠ‌ Ὢ‌ȟ‍Ὠ‍ḙ ύὪ‌ȟ‍  (2-23)  

where ύ, ‌, and ‍ are given as in Table 2-1. 

 

Table 2-1 Coordinates and weights of quadrature points in simplex coordinates. 

 ‌ ‍ ὡ 

Ὦ ρ 1/6 1/6 1/3 

Ὦ ς 2/3 1/6 1/3 

Ὦ σ 1/6 2/3 1/3 

 

The sampling positions of the function Ὢ in x-y coordinates can be found with the 

help of (2-21), by inserting ‌ and ‍ for all Ὦ. Thus: 

ὼ ώ

ὼ ώ

ὼ ώ ụ
Ụ
Ụ
ợ
ς
σ
ρ
φ
ρ
φ

ρ
φ
ς
σ
ρ
φ

ρ
φ
ρ
φ
ς
σỨ
ủ
ủ
Ủὼ ώ
ὼ ώ
ὼ ώ

 (2-24)  

where ὼ & ώ Ὥ ρȟςȟσ stand for the coordinates of quadrature (sampling) points 

of the triangle in the original domain and ὼ & ώ Ὥ ρȟςȟσ stand for the 

coordinates of the vertices of the triangle in original domain. 

 

2.1.2.1.2 Computation of Singular Integrals 

 

There are various methods in the literature for computation of the singular integrals 

with RWG basis, where the most preferred one is given in [43]. When the general 

method of [43] is applied to the problem under consideration, it turns into the 

geometry shown in Figure 2-4. 
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Figure 2-4 Geometry for computation of singular integrals. 

 

The variables in Figure 2-15 are explained in Table 2-2. 

 

Table 2-2 Explanations of variables for computation of singular integrals 

Ὑ , Ὑ  Distances between the observation point and the end points of Ὥ  edge.  

+/ï designation is w.r.t. right hand rule. 

ὒ, ὒ 

Distances between the projection of the observation point to the Ὥ  

edge and the end points of the Ὥ  edge. +/ï designation is w.r.t. right 

hand rule. 

Ὗ Unit normal vectors orthogonal to Ὥ  edge. 

ὖ Length of projection from the observation point to the Ὥ  edge. 

 

Two different types of singular integrals must be handled for this problem: 

Ὅ
Ὡ

Ὑ
Ὠίȟ    ὍӶ ”ᴆ

Ὡ

Ὑ
Ὠί  (2-25)  

Before directly trying to evaluate the integrals in (3-21), it is convenient to split the 

integrals into singular and nonsingular parts: 
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Ὅ
Ὡ

Ὑ
Ὠίḙ

ρ ὮὯὙ

Ὑ
Ὠί 

ρ

Ὑ
Ὠί

ὮὯὙ

Ὑ
Ὠί 

ὍӶ ”Ӷ
Ὡ

Ὑ
Ὠίḙ ”Ӷ

ρ ὮὯὙ

Ὑ
Ὠί ”Ӷ

ρ

Ὑ
Ὠί ὮὯ”ӶὨί 

(2-26)  

where 

Ὅ  
ρ

Ὑ
Ὠίȟ    ὍӶ ”Ӷ

ρ

Ὑ
Ὠί 

Ὅ  
ὮὯὙ

Ὑ
Ὠίȟ    ὍӶ ὮὯ”ӶὨί 

(2-27)  

The non-singular parts of Ὅ& ὍӶ can be evaluated with the rules explained in Section 

2.1.2.1.1.  According to [43], evaluation of the singular parts of Ὅ can be carried out 

as follows: 

Ὅ ὖὰὲ
ὒ Ὑ

ὒ Ὑ
  (2-28)  

For evaluation of Ὅ  some intermediate values must first be computed: 

ὍӶ
ρ

ς
Ὗ ὖὰὲ

ὒ Ὑ

ὒ Ὑ
ὒὙ ὒὙ   (2-29)  

Then, ὍӶ can be calculated as: 

ὍӶ ”Ӷ Ὅ ὍӶ (2-30)  

where ”Ӷ is value of ”Ӷ at the observation point. The observation point is chosen as 

the center of mass of the triangle.  
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2.1.2.2 Domain Discretization 

 

Discretization of the solution domain is actually a diverse topic, but it is considered 

up to specific properties and assumptions of this study. As the metallizations under 

concern are of planar geometry, two dimensional and co-planar RWG bases are 

sufficient. Furthermore, owing to regularity of the practical patch shapes, structured 

mesh is preferred over unstructured mesh because owing to invariances in geometry, 

number of impedance computations can be minimized.  An example of structured 

mesh is shown in Figure 2-5. For a rectangular domain, if the number of triangles is 

N along one dimension and M along the other, the total number of RWG bases is 

given by, 

Ὕέὸὥὰ ὲόάὦὩὶ έὪ ὙὡὋ ὦὥίὭί ὪὲὧȢί σὓὔ ὓ ὔ (2-31)  

 

Figure 2-5 An example of a structured mesh. 

 

On the other hand, unstructured mesh could be better in representing curved objects 

like a split ring. When those types of objects are analyzed, unstructured mesh is 

preferred. An example of an unstructured mesh is shown in Figure 2-6. 
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Figure 2-6 An example of an unstructured mesh. 

The RWG mesh in method of moments computations is a data structure with the 

properties listed in Table 2-3. The explanations can be better understood by 

inspecting Figure 2-2. 

 

Table 2-3 Properties of RWG data structure. 

Property name Explanation 

Corner1 coordinates of the free vertex of the positive triangle  

Corner2 coordinates of the free vertex of the negative triangle  

Common_edge_end1 coordinates of the 1
st
 point of the common edge 

Common_edge_end2 coordinates of the 2
nd

 point of the common edge 

Rho_plus ”Ӷ vector of the positive triangle 

Rho_minus ”Ӷ vector of the negative triangle 

R_plus coordinates of center of mass of the positive triangle 

R_minus coordinates of center of mass of the negative triangle 

L 
Length of the common edge of the positive and the 

negative triangles 
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2.1.3 Validation of MATLAB  Codes 

 

In order to make sure that MATLAB codes are correctly written, some sample 

designs are made and designed reflectarrays are solved with a MoM based 

commercial software Ansoft Designer. 

 

Following examples show the degree of similarity of the far fields of the reflectarrays 

found by MoM codes in this work and Ansoft Designer. The pattern in Figure 2-7 

belongs to a reflectarray of collinear 18 elements designed for a sectoral beam. 

Figure 2-8 depicts the results for another collinear 18 element array designed for a 

scanned beam (to -20 degrees from boresight). The patterns are due to patch currents 

only and normalized to their peak values. Figures show that Ansoft Designer and this 

work are in very well agreement.  

 

Figure 2-7 Comparison of patterns for the reflectarray designed for sectoral beam. 
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Figure 2-8 Comparison of patterns for the reflectarray designed for scanned beam. 

 

2.2 Characteristic Modes and Reusability of Characteristic Modes 

 

2.2.1 Characteristic Mode Concept 

 

The theory of characteristic modes was established by Harrington & Mautz in 1971 

[31]. Details of that study will be summarized here for the sake of completeness. 

 

In general, impedance matrix (ὤ֞) obtained by method of moments is symmetric. The 

real (Ὑ) and imaginary parts (ὢ) of the impedance matrix indicated in (2-32) are also 

symmetric.  

ὤ֞ Ὑ Ὦὢ

 

(2-32) 

Eigenvalue equation in (2-33) can be written: 

ὤ֞ὐӶ ὺὓὐӶ

 

(2-33) 

In (2-33), ὺ are the eigenvalues and ὐӶ are the eigenvectors.  ὓ will always 

diagonalize ὤ֞, provided that it is symmetric. However, only if it is chosen to be equal 

to Ὑ, orthogonality of the radiation patterns is achieved. With this specific case, 

(2-33) turns into: 
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Ὑ ὮὢὐӶ ὺὙὐӶ

 

(2-34) 

If ὺ is defined as: 

ὺ ρ Ὦ‗

 

(2-35) 

Generalized eigenvalue equation at (2-36) is obtained. 

ὢὐӶ ‗ὙὐӶ (2-36) 

ὐӶs that satisfy (2-36) are the characteristic modes and ‗ and ὐӶ are real. 

Characteristic modes are orthogonal in the following senses: 

ộὐӶȟὙὐӶỚ πȟ ộὐӶȟὢὐӶỚ πȟ ộὐӶȟὤ֞ὐӶỚ π (2-37) 

Since the characteristic modes form a complete set, the current on the conductor can 

be expressed in terms of the characteristic modes.  

ὐӶ
ὠὐ

ρ Ὦ‗
ȟ ὠ ὐӶϽὉὨί (2-38) 

ὓέὨὥὰ ὛὭὫὲὭὪὭὧὥὲὧὩ
ρ

ρ Ὦ‗
 (2-39) 

The term in (2-39) represents the modal significance as it scales the mode current.  A 

simple example is investigated to show the concept. A rectangular patch with 0.53ɚ0 

width and 0.36ɚ0 length is considered at 10 GHz. The patch is assumed to be etched 

over a substrate with relative permittivity 4.2 and height 1.59 mm. The patch is 

discretized using 268 RWG basis functions as shown in Figure 2-9.  
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Figure 2-9 Mesh used for the rectangular patch. 

 

The modes are calculated by solving (2-36) and they are sorted with respect to the 

modal significance defined in (2-39). Modal significance value is plotted 

logarithmically in Figure 2-10. Unfortunately modal significance does not alone tell 

how strongly a mode will be excited. Actual modal excitation coefficients can be 

found by solving (2-38), which tells that they are determined by correlation of the 

characteristic mode with the incident field as well. 
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Figure 2-10 Modal significance of characteristic modes. 

 

Figure 2-11 shows the first three most significant modes for the rectangular patch 

described above. Vectorial representations are superimposed upon color-weighted 

plots. The current for these modes are almost purely unidirectional. For the fourth 

mode (Figure 2-12) however, both x-directed and y-directed currents exist. 

 

Figure 2-11 First three characteristic modes for the rectangular patch. 
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Figure 2-12 Fourth most significant mode for the rectangular patch. 

 

Another example that is examined is a square patch, which is widely used in 

reflectarrays. Patch width and height is 0.23ɚ0, frequency and substrate parameters 

are the same as above. As both dimensions of the patch is same, the first two modes 

are degenerate, i.e. have the same eigenvalue. They are plotted in Figure 2-13.  

 

Figure 2-13 The first two significant modes for the square patch.  

 

When this patch is illuminated by a normally incident plane wave polarized along y 

direction, the first two modes are almost equally excited (due to quasi-symmetric 

structure of the impedance matrix). Other modes are hardly excited, i.e. less than 100 

dB below the first two modes. Despite these examples study the characteristic modes 

of a rectangular patch, characteristic modes can be calculated for arbitrary shapes.  In 

[32], characteristic modes for various planar geometries are calculated and they are 

repeated here in Figure 2-14. 



37 

 

 

Figure 2-14 Characteristic modes for circle, triangle, bow tie and star [32], horizontal 

modes left, vertical modes right. 

 

2.2.2 Characteristic Modes as Macro Basis Functions 

 

Characteristic modes obtained from the eigen-solution of the MoM matrix, are very 

good candidates to be used as entire domain basis functions on each element since 

the actual current distribution on an antenna element is the superposition of its 

characteristic modes. Using characteristic modes as entire domain basis functions has 

already been proposed in [33] for the efficient analysis of large microstrip antenna 

arrays. In [33], the bi-static radar cross section of an array of printed patches is 

computed by using a truncated set of characteristic modes and accurate results are 

obtained. A similar strategy is pursued and examined in this study. However, this 

study departs from [33] by some critical aspects: First, the arrays under consideration 

are comprised of elements with a variety of sizes. Second, the possibility of using a 

single mode on each element is taken into consideration and it is shown that this 

approach yields accurate results with regard to the error in the far field. Finally, using 

a global characteristic mode for all elements in the array is investigated. The results 

obtained by example problems with different patch shapes and substrate properties 

show that it is actually convenient to use a single global CM for all differently sized 

elements, as far as the far field is concerned. In the forthcoming subsections the 

effects of using a truncated set of CMs on the accuracy of the method are 

demonstrated through numerical examples. 
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2.2.2.1 Using A Truncated Set of CMs 

 

The formulation regarding the use of characteristic modes as macro basis functions is 

demonstrated through the MoM analysis of an isolated patch printed in a multi-layer 

medium. By applying Galerkinôs MoM procedure with N RWG basis functions, the 

following matrix equation can be obtained: 

ὤ֞‌ ὠ (2-40) 

where ὤ  represent the weighted electric field at the Ὥ  testing function due to the 

Ὦ  basis function and ὠ  is the weighted incident field at the location of Ὥ  testing 

function. Vector ‌ corresponds to the unknown coefficients of the RWG basis 

functions. After constructing the ὤ֞ matrix, (2-36) is considered to study the 

characteristic modes (CM) of the printed patch.  

 

The total number of modes is equal to ὔ. Each eigenvector ὐӶ consists of the 

coefficients of the RWG basis functions for the corresponding mode. Since every 

CM extends throughout the surface of the element, they can be regarded as entire 

domain basis functions. Hence the unknown current can be expanded in terms of 

CMs instead of RWG basis functions. When CMs are used as basis functions and 

Galerkinôs procedure is applied the following matrix equation is obtained: 

ὤ‍Ӷ ὠ (2-41) 

where ‍Ӷ is the unknown coefficient vector for characteristic modes. The relations 

between  ὤ֞ and ὤ, ὠ and  ὠ can be written by defining an eigencurrent matrix, Ὅ֞, 

such that each column of Ὅ֞ is the eigenvector ὐӶ. These relations are as follows: 

‌ Ὅ֞‍Ӷ , ὤ Ὅ֞ὤ֞Ὅ֞ , ὠ Ὅ֞ὠ (2-42) 

It is clear that the sizes of the matrix equations in (2-40) and (2-42) remain same if 

all the characteristic modes are considered. However, when ὓ ὓ ὔ  

characteristic modes are used as basis functions, then the size of matrix Ὅ֞ becomes 

ὔ ὓ and consequently the size of the matrix equation in (3) reduces to ὓ ὓȢ  

When this reduced order approximation is utilized for the analysis of an antenna 
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array with ὖ identical elements, first an isolated element is analyzed to construct the 

Ὅ֞ matrix, then (2-43) is solved to find the coefficients of the characteristic modes on 

each element (ὓ ὖ unknowns).  

ὤ‍Ӷ ὠ (2-43) 

where ὤ , ‍Ӷ and ὠ are defined as in (2-44): 

‌ Ὅ֞‍Ӷ, ὤ Ὅ֞ὤὍ֞ȟ  ὠ Ὅ֞ὠ (2-44) 

Although obvious, it is worth reminding that ‍֞ is the solution of the reduced matrix 

system and it designates the coefficients that weight the characteristic modes on each 

element. For the array case, Ὅ֞ is a block diagonal matrix as:  

Ὅ֞

ụ
Ụ
Ụ
Ụ
ợὍ֞     

π Ȣ π

Ȣ Ὅ֞
    
Ȣ Ȣ

Ȣ Ȣ Ȣ Ȣ
π Ȣ Ȣ Ὅ֞

    Ứ
ủ
ủ
ủ
Ủ

 (2-45) 

ὤ֞ should be organized so that each ὔ ὔ block is a submatrix containing the 

interaction terms of two different patches, ὤ  or a patch with itself: 

ὤ֞

ụ
Ụ
Ụ
Ụ
ợὤ֞     

ὤ֞ Ȣ ὤ֞

Ȣ ὤ֞
    
Ȣ Ȣ

Ȣ Ȣ Ȣ Ȣ
ὤ֞ Ȣ Ȣ ὤ֞

    Ứ
ủ
ủ
ủ
Ủ

 
(2-46) 

On the other hand, when an array with non-identical elements, like a reflectarray 

consisting of a fixed shaped patch of different sizes, is considered, the CM analysis 

of the isolated patch should be repeated for each different element. In that case, Ὅ֞ 

becomes a matrix as given in (2-47), where it is assumed that the current on each 

element is expanded with a different number of basis functions (ὔ ).   This would 

require carrying out the CM computation for all differently sized elements. 
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Ὅ֞

ụ
Ụ
Ụ
Ụ
ợὍ֞     

π Ȣ π

Ȣ     Ὅ֞
    
Ȣ Ȣ

Ȣ Ȣ Ȣ Ȣ
π Ȣ Ȣ     Ὅ֞

    Ứ
ủ
ủ
ủ
Ủ

В

 (2-47) 

 

2.2.2.2 Reusability of CMs 

 

In order to avoid the repetition of eigenmode analysis, the possibility of using the 

same set of CMs for all the elements is explored. In this study, it is observed that the 

current distribution of a specific characteristic mode remains almost same as the size 

of the element changes. The eigenvectors of the two different size patches turn out to 

be almost equal to each other within a scaling constant if same number of basis 

functions is used on each patch with the same mesh structure. Therefore, the RWG 

mesh of one of the patches is chosen to be the scaled replica of the mesh applied to 

the other patch, as shown in Figure 2-15. Consequently, the eigenvectors computed 

for one patch could be utilized for the other patches as well. This is demonstrated 

through a MoM analysis of an example reflectarray of varying sized patches in a 

layered medium.  

 

 

Figure 2-15 Mesh scaling 

When same number of basis functions is used on all patches, Ὅ֞ takes the form: 

Ὅ֞

ụ
Ụ
Ụ
Ụ
ợὍ֞     

π Ȣ π

Ȣ     Ὅ֞
    
Ȣ Ȣ

Ȣ Ȣ Ȣ Ȣ
π Ȣ Ȣ     Ὅ֞

    Ứ
ủ
ủ
ủ
Ủ

 (2-48) 

Furthermore, when the same set of CMs is used for all patches, Ὅ takes the form in: 
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Ὅ֞

ụ
Ụ
Ụ
Ụ
ợὍ֞     

π Ȣ π

Ȣ     Ὅ֞
    
Ȣ Ȣ

Ȣ Ȣ Ȣ Ȣ
π Ȣ Ȣ     Ὅ֞

    Ứ
ủ
ủ
ủ
Ủ

 (2-49) 

where Ὅ֞ represents the eigenmode matrix for a reference patch. 

 

The usage of characteristic modes as MBFs is demonstrated with the analysis of an 

example reflectarray of varying sized patches in a layered medium. The reflectarray 

is designed such that it radiates a cosecant squared shaped beam in H-plane and a 

pencil shaped beam in E-plane when illuminated by a horn antenna with aperture 

dimensions 1.3l0 Ĭ 0.58l0 at a distance  of 6.7l0. The reflectarray is 16 elements 

wide and 10 elements high. The geometry of the reflectarray antenna can be viewed 

in Figure 2-16. The element spacing is assumed to be 0.6l0 (18 mm) in both 

directions, frequency of operation is 10 GHz. The substrate has a relative permittivity 

of 4.2 and a thickness of 1.59 mm.  First of all, the desired pattern is synthesized by a 

phase only synthesis technique [44], regarding the amplitude distribution on the 

reflectarray, generated by the feed antenna (Figure 2-18).  Then the sizes of the 

patches are determined by the phase curve provided by the infinite array analysis. A 

representative layout of the array is depicted in Figure 2-17. The patch sizes vary 

between 2 mm to 12 mm. Each patch in the array is discretized into 176 RWG basis 

functions. Total number of unknowns for the conventional MoM approach is 

160  176 = 28160. Resorting to single precision, the amount of memory required to 

store the classical impedance matrix is 5.9 GBytes (Base 2 definition). 
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Figure 2-16 An illustration to define the reflectarray geometry. 

 

 

Figure 2-17 Layout of the reflectarray under concern. 0 5 10 15 20 25 30
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Figure 2-18 Desired and synthesized patterns. 

 

The idea of using characteristic modes as MBFs is tested by various plane wave 

incidence scenarios, in order not to be misled by particular cases. The array is 

illuminated by plane waves with two different types of incidence as shown in Figure 

2-19. The incidence planes are, • πЈ in the first incidence case and • ωπЈ in the 

second incidence case. The electric and magnetic field expressions are given in Table 

2-4 for clarity. In both incidence cases, the tangential component of the electric field 

is along y direction. 

  

 

Figure 2-19 Definition of the first and the second type incidences. 
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Table 2-4 Electric and magnetic field expressions for first and second type 

incidences. 

Incidence 

type 
Electric field Magnetic field 

1
st
 ώὉὩ  ÃÏÓ— ὼ ÓÉÎ — ᾀǶ

Ὁ

–
Ὡ  

2
nd

 ÃÏÓ— ώ ÓÉÎ — ᾀǶὉὩ  ὼ
Ὁ

–
Ὡ  

 

For both incidence types, the incidence angle, — , is swept between 0 to 35 degrees, 

an interval that can be assumed a fair spectrum of incidence angles for a practical 

reflectarray illuminated by a feed antenna. First, the effect of truncating the CM set, 

i.e., taking ὓ ὔ is examined by observing the error in the current defined as in 

(2-50). At this stage, each element has its own CMs, that is to say, (2-48) is valid. 

Ὁὶὶέὶ Ὥὲ ὅόὶὶὩὲὸ
В Ὅ Ὅ

В ȿὍ ȿ

 (2-50) 

The effect of number of modes on the error can be observed on Figure 2-20 and 

Figure 2-21 for first and second type incidences respectively. It should be noted that, 

as the patch is a square one, there exists two degenerate characteristic modes with the 

same modal significance as shown in Figure 2-13. Hence, an exception is applied for 

the case where M=1, when observing the error in the current. A dominant mode is 

postulated by combining these two degenerate modes according to the excitation 

weights determined by ὠ of (2-38) under the 0 degrees incidence conditions, for an 

isolated patch. Although amplitude of ὠ for these degenerate modes should be equal 

in theory, a small imbalance occurs in practice, due to numerical nature of the 

solution approach.  



45 

 

 

Figure 2-20 Error in current w.r.t. number of modes and incidence angle for 1
st
 type 

incidence. 

 

 

Figure 2-21 Error in current w.r.t. number of modes and incidence angle for 2
nd

 type 

incidence. 
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At first glance, Figure 2-20 and Figure 2-21 propose that the number of modes 

should be chosen at least as 2. The reason of improvement in error for M=2 is due to 

the fact that the excitation coefficients of these modes are allowed to be independent 

of each other for that case. This enables a better representation of the patch current 

density when the patch is in an asymmetrical environment in terms of neighboring 

patches or in terms of excitation. However, when the far field is under concern, the 

agreement of the approximate solution with the conventional MoM solution is 

satisfactory even with a single mode. This can be observed in Figure 2-22, Figure 

2-23, Figure 2-24, and Figure 2-25 where the far fields corresponding to the largest 

error (35 degrees incidence) is plotted. In all these figures, conventional MoM and 10 

CMs yield almost the same result such that they cannot be distinguished in the graph. 

The far fields are due to patch currents only, ground scattered field is not included. 

Therefore, the phase is also of substantial importance since the far field due to patch 

currents and the far field due to ground scattering are added to find the overall 

radiation pattern. 

 

 

Figure 2-22 Comparison of the amplitude of far fields at ű=0, computed by 1 and 10 

characteristic modes (35 degrees, 1
st
 type incidence, • polarization). 
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Figure 2-23 Comparison of the amplitude of far fields at ű=90, computed by 1 and 

10 characteristic modes (35 degrees, 2
nd

 type incidence, — polarization).  

 

 

Figure 2-24 Comparison of the phase of far fields at ű=0, computed by 1 and 10 

characteristic modes (35 degrees, 1
st
 type incidence, • polarization).  
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Figure 2-25 Comparison of the phase of far fields at ű=90, computed by 1 and 10 

characteristic modes (35 degrees, 2
nd

 type incidence, — polarization). 

 

Observing that a single mode is sufficient as far as the far field is concerned, 

investigations on applying (2-49) is conducted. The same reflectarray is analyzed for 

evaluating the usage of a global CM for all patches. For this purpose, the dominant 

characteristic mode of 61 different patches with sizes varying linearly between 4 mm 

and 10 mm is tried as a global CM. Thus Ὅ becomes as given in (2-51) and ὤ 

becomes a matrix of size 160  160. The memory required to store ὤ is 200 Kbytes.  

Ὅ֞

ụ
Ụ
Ụ
ợ
ὍӶ     π Ȣ π

Ȣ    ὍӶ    Ȣ Ȣ
Ȣ Ȣ Ȣ Ȣ
π Ȣ Ȣ   ὍӶ     Ứ

ủ
ủ
Ủ

 (2-51) 

 

where ὍӶ ὐӶ which represents the dominant mode of the reference patch. Each term 

of ὤ is expressed as in (2-52).  

ὤ ὐӶὤ֞ ὐӶ (2-52) 

The error in current obtained by using the dominant mode of each different size as a 

reference patch is calculated and presented in Figure 2-26 and Figure 2-27 for the 

first type and the second type incidences, respectively. It is worth mentioning that the 
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minimum error is observed for all examined incidence angles, when the reference 

patch size is 6.2 mm. On the other hand, Figure 2-28 is a plot of the variation of the 

real and imaginary parts of the input impedance of an isolated patch with respect to 

size. The plot, obtained from HFSS, shows that exact resonant patch length for this 

substrate properties (‐=4.2 and Ὤ=1.59 mm) and frequency (10 GHz) is computed to 

be 6.17 mm. Therefore, it is concluded that minimum error is attained when the 

resonant patch is chosen as the reference patch. Figure 2-29 displays the error in the 

current as a function of incidence angle for this choice. Even though the resonance is 

very sensitive to size as seen in Figure 2-28, the error in current is tolerant for 

miscalculation of the resonant size. Hence, the size of the reference patch need not be 

calculated precisely. 

 

 

Figure 2-26 Variation of error in current w.r.t. reference patch size and incidence 

angle (1
st
 type incidence). 
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Figure 2-27 Variation of error in current w.r.t. reference patch size and incidence 

angle (2
nd

 type incidence). 

 

 

Figure 2-28 Real and imaginary parts of the input impedance of isolated patch. 
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Figure 2-29 Variation of error in current w.r.t. incidence angle when the dominant 

mode of resonant patch is used as an MBF for all patches. 

 

When the far field is computed by using this approximate current, the results shown 

in Figure 2-30 and Figure 2-31 are obtained. 

 

 

Figure 2-30 Comparison of far fields obtained by conventional MoM and reduced 

matrix solution with same CM for all patches (1
st
 type incidence, • polarization). 
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Figure 2-31 Comparison of far fields obtained by conventional MoM and reduced 

matrix solution with same CM for all patches (2
nd

 type incidence, — polarization). 

 

Up to this point, it is demonstrated that using the dominant CM of the resonant patch 

as a MBF for all differently sized elements in a reflectarray, accurate results in terms 

of far field is obtained. In spite of large local discrepancies that possibly exist 

between the true current and the approximate current, far fields due to these currents 

are quite consistent, because of the stationary nature of the far field expressions. Due 

to brevity concerns, far field planes containing the specular angles are presented 

here, but other planes are also examined and the level of agreement is similar to that 

of the presented planes. 

 

Considering the incidence angles in a practical excitation scenario, i.e., illumination 

by a feed antenna, almost no or very few of the elements are excited with incidence 

angles larger than 35 degrees. Even with larger incidence angles, graceful 

degradation is observed in the agreement between exact and approximate far field 

responses. Therefore it can be inferred that this approach shall also be successful in a 

practical reflectarray problem. Thus, the reflectarray antenna defined above is 

analyzed by conventional MoM and the proposed reduced matrix approach.  It is 

assumed that the array and feed antenna are not interacting. The electric and 

magnetic fields at the aperture of the feed antenna are computed by HFSS and they 
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by adding the ground reflected field to the field radiated by the patch currents.  The 

far fields in principal planes are given in Figure 2-32 and Figure 2-33.  

 

Figure 2-32 Comparison of the far fields of the reflectarray antenna computed by 

conventional MoM and proposed method, • πЈ plane, • polarization. 

 

Figure 2-33 Comparison of the far fields of the reflectarray antenna computed by 

conventional MoM and proposed method, • ωπЈ plane, — polarization. 

 

With the proposed method, the number of unknowns is drastically decreased but, it is 

still required to have the conventional impedance matrix to compute the reduced 
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technique to construct the reduced matrix  ὤ without computing the ὤ֞ matrix is 

established. 

 

2.3 An Efficient Method to Construct the Reduced Matrix 

 

2.3.1 Investigations on Discarding Distant Interactions 

 

If above mentioned MoM based analysis method is used in the design of reflectarrays 

with varying element sizes, the reduced MoM matrix given in (2-43) needs to be 

constructed several times for various element size combinations. To reduce the 

computation time, a tempting idea might be assuming that the matrix entries that 

correspond to two patches separated by a couple of blocks distance are diminishing. 

This would simplify the process to a great extent, but the level of coupling for a 

general substrate and element size combination might not necessarily allow that. For 

instance, for the 16 Ĭ 10 reflectarray defined in Section 0, the amplitude of the 90
th
 

row of the reduced matrix, which corresponds to interactions of all patches with the 

patch positioned at the 9
th
 column, 10

th
 row of the array is depicted in Figure 2-34. 

For better visualization, terms are properly arranged according to geometric positions 

of corresponding patches. If interactions beyond some neighborhood are ignored, 

many significant terms will be overlooked and a significant error in modal 

coefficients may occur. Furthermore, the terms do not monotonically decrease with 

distance because of variation of patch sizes on the array. Therefore, it is required to 

take all terms into consideration for a general case.  
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Figure 2-34 Log magnitude of 90th row of reduced matrix, properly arranged 

according to geometric positions of corresponding patches. 

 

To observe the effect of discarding distant coupling on the current coefficients, two 

cases are analyzed:  

1) The reduced matrix entries corresponding to interactions other than 

interactions between 1
st
 neighbors (and self ï interactions) are set to zero. 

2) The reduced matrix entries corresponding to interactions other than 

interactions between 1
st
 and 2

nd
 neighbors (and self ï interactions) are set to 

zero. 

The definitions for 1
st
 and 2

nd
 neighborhoods are given in Figure 2-35. 
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Figure 2-35 Explanation of different neighborhood types. 

 

For these two cases, amplitude and phase of ‍Ӷ defined in (2-43) is plotted and 

compared with the case where none of the interaction terms are ignored, in Figure 

2-36 and Figure 2-37. The effect of ignoring distant terms on the far field pattern of 

the reflectarray is shown in Figure 2-38. 

 

 

Figure 2-36 Effect of ignoring distant interactions on amplitude of ‍.  
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Figure 2-37 Effect of ignoring distant interactions on phase of ‍.  

 

 

Figure 2-38 Effect of ignoring distant interactions on the far field of reflectarray, 

• πЈ plane. 
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2.3.2 Tabulation of Reduced Matrix Entries 

 

In the design of reflectarrays, it is usually required to make a full wave analysis 

several times, in order to make sure that the design is performing as required. 

Depending on the number of elements in the array, the full wave analysis may be 

repeated many times. Keeping this in mind, it would be nice to have the reduced 

matrix term given in (2-52) as a closed form function. Unfortunately, this is not 

possible. On the other hand, it is obvious that ὤ  depends only on ὤ֞  which is a 

function of: 

¶ Horizontal displacement between i
th
 and j

th
 patches 

¶ Vertical displacement between i
th
 and j

th
 patches 

¶ Size of i
th
 patch 

¶ Size of j
th
 patch. 

At this point, the feasibility of tabulating the ὤ  for all combinations of the 4 

variables defined above can be questioned. Nonetheless, this does not seem feasible 

for a large array. For instance, if there are 1000 patches in the array and 15 different 

values of patch sizes, the number of possible combinations is 100015  15=225000.  

 

In this study, it is observed that it is possible to circumvent this computational 

burden, because ὤ  for distant terms is almost separable into two functions, one in 

terms of two dimensional displacement between i
th
 and j

th 
patches, and the other in 

terms of sizes of i
th
 and j

th
 patches. That is to say, 

ὤ ὐӶὤ֞ ὐӶ Ὢίȟίȟάȟὲ ḙὫίȟί Ὤάȟὲ (2-53) 

where ίȟίȟάȟ and  ὲ are defined in Figure 2-39. This brings in an order reduction in 

the tabulation, because instead of making as many simulations as the product of 

number of possible size combinations and number of possible displacement 

combinations, simulations as many as the sum of these numbers shall be sufficient. 

The separability can be qualitatively observed from Figure 2-40 and Figure 2-42. In 

Figure 2-40, amplitude of function Ὢ at 4 different instances of ά and ὲ is plotted 

whereas in Figure 2-42, amplitude of function Ὢ at 4 different instances of ί and ί 



59 

 

is plotted. As the 4 subplots are almost identical in each of these figures, it can be 

concluded that amplitude of Ὢ is almost separable. The phase plot given in Figure 

2-41 reveals that when ά and ὲ  are varied but ί and ί are fixed, the phase of the 

function Ὢ has a similar behavior for different ά and ὲ  couples. Although all 

subplots do not look similar, the phase of the function Ὢ is almost constant for all 

source and observation patch sizes for a fixed displacement. Similarly, Figure 2-43 

shows that when ί and ί  are varied but ά and ὲ are fixed, the phase of the function 

Ὢ has a similar behavior for different ί and ί couples. Thus, having the phase of 

function Ὢ almost separable as well, the function Ὢ can be considered as separable for 

practical purposes. 

 

Figure 2-39 Definition of variables in (2-53). 
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Figure 2-40 Amplitude of function Ὢ at various instances of m and n (a): m=4,n=5, 

(b): m=2, n=9, (c): m=3, n=7, (d): m=5 n=2. 

 

Figure 2-41 Phase (degrees) of function Ὢ at various instances of m and n (a): 

m=4,n=5, (b): m=2, n=9, (c): m=3, n=7, (d): m=5 n=2. 
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Figure 2-42 Amplitude of function Ὢ at various instances of ί and ί (a): ί=9mm, 

ί=3mm, (b): ί=8mm, ί=12mm, (c): ί=6mm, ί=14mm, (d): ί=10mm ί=10mm. 
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Figure 2-43 Phase (degrees, unwrapped) of function Ὢ at various instances of ί and 

ί (a): ί=9mm, ί=3mm, (b): ί=8mm, ί=12mm, (c): ί=6mm, ί=14mm, (d): 

ί=10mm ί=10mm. 

 

Due to separability, it becomes sufficient to make only two tabulations for distant 

patches: One for the two dimensional relative displacement for an average sized 

source and observation patches, Ὤάȟὲ, one for the sizes of source and observation 

patches for a fixed displacement, Ὣίȟί . As exemplified in Figure 2-34 and Figure 

2-42, E ï plane and H ï plane coupling characteristics are quite different. Since the 

coupling in the E ï plane is stronger; the characterization of function Ὣ should be 

performed for two patches displaced along E-plane to obtain better accuracy. 

Although the behavior of function Ὢ is different for E ï plane and H ï plane, the 

terms in reduced matrix ὤ corresponding to H ï plane and near H ï plane coupling 

are small enough for the matrix solution to tolerate large errors.  
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It is observed that the separability observation fails for closely positioned patches. 

This problem is handled by fully tabulating the function f for the first and second 

neighborhoods (|m|, |n| | ¢ 2) for all combinations of si and sj. Note that it is sufficient 

to make this tabulation for 8 cases, due to symmetries. 

In summary, it is required to make the following tabulations to have an accurate 

estimation of the reduced matrix: 

1. Tabulation of function f at a sufficient number of discrete samples of si and sj 

for |m|, |n| ¢ 2. (Close neighbors)   

2. Tabulation of function g at an arbitrary displacement (along E plane) at a 

sufficient number of discrete samples of si and sj. 

3. Tabulation of function h for |m|, |n|  > 2 for two average size patches. 

2.3.3 Computational Load 

 

In this section, the computational complexity of total tabulation process will be 

discussed. Each phase of tabulation process is studied separately.  

i. Tabulation of f for |m|,|n| ¢ 2: 

a) Self terms: This term represents the interaction of the patch with itself. The 

variation of this term by patch size for the considered substrate and frequency is 

given in Figure 2-44. Due to the resonance phenomenon that can be inferred from 

Figure 2-44, this term should be characterized with fine steps of patch size, 

especially in the resonance region. The step size can be determined by the phase 

curve of local periodicity approach because the sensitivity of this self-term with 

respect to size has the same characteristic with the phase curve. The minimum and 

the maximum patch sizes are also chosen from the phased design curve. For the 

example considered in this study, patch sizes are varying between 0.2 cm to 1.4 cm, 

and 121 different patch sizes are used for the tabulation of self-terms. It should be 

noted that this tabulation is done only once and it is independent of the array size and 

geometry.   
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Figure 2-44 Phase and amplitude characteristic of ὐӶὤ֞ ὐӶ w.r.t. patch size. 

 

b) Close neighborhood: This function has a smoother characteristic than self-term. 

Therefore less number of sample points is sufficient for tabulation. The number of 

discrete samples for ί and ί can be chosen as low as 10-15 and intermediate values 

can be found by interpolation. If there are ὔ size samples, instead of ὔ  evaluations, 

ὔ ὔ ρȾς evaluations can be performed by utilizing reciprocity. Note that even 

though this characterization is required for all first and second neighborhoods, it is 

sufficient to make this tabulation for 8 cases, due to symmetries. This tabulation 

phase is independent of the size of the array. 

 

ii. Tabulation of function g: Tabulation of Ὣ with respect to ί and ί is same as the 

tabulation of Ὢ for close neighborhoods. The difference is that it is performed only 

once for two patches separated by a fixed distance. 

 

iii. Tabulation of function h: Function Ὤ is calculated for all horizontal and vertical 

displacement combinations with fixed source and observer patch sizes. Although it 

does not make a significant difference, the fixed patch size is chosen to be the 

average value of the patch sizes considered for tabulations. The number of 

simulations in this tabulation phase depends on the array size. If the number of 

elements in the reflectarray is ὖ, a total of ὖ-ω simulations are performed, if no curve 

fitting on the characteristic is attempted.  
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To give a solid idea of the durations spent in tabulation phases, a 1000 element array 

is assumed. The platform is a personal computer with 3.3 GHz clock speed and Intel 

i5 series processor. The computation tool is developed in MATLAB with single 

precision arithmetic. For the considered substrate, frequency and element spacing, 

the tabulation takes the times indicated in Table 2-5. The computation of self-terms 

takes most of the time. Note that the long computation time to make the tabulation 

for function h is due to the large number of elements. It is worthwhile to underline 

the importance of efficiency provided via separability property by comparing the 

computation time achieved with separability (0.5³(1000+66) = 533 sec) to the 

computation time that would be required if separability was not exploited 

(0.5³(1000³66) = 33000 sec). 

 

Table 2-5 Computation times of tabulations for 1000 element array. 

 Number of repetitions Time to compute
 

╩░▒ 

Total time 

Function f (self terms) 121 7.5 s. 908 s 

Function f (close 

neighborhoods) 

8Ĭ11Ĭ12/2 0.5 s. 265 s 

Function g 11Ĭ12/2=66 0.5 s 33 s 

Function h ~1000 0.5 s 500 s 

Total time 1706 s ~ 28 min  

 

All tabulation steps are prone to parallelization and therefore can be accelerated in 

proportion to the degree of parallelization. Furthermore, no concern for efficiency is 

carried in this study to speed up above tabulations. To observe the required 

computation times for increasing number of array elements, the tabulation for 

function Ὤ is extended for a maximum size of 75 by 75 elements and Table 2-6 is 

filled experimentally. While filling the table, a single characteristic mode is assumed 

on all elements and single precision arithmetic is applied. It is seen that, as the 

number of elements increase, the total analysis time is governed by the matrix 

inversion process. Yet for reflectarrays with less than 5000 elements, the overall 

analysis time is less than 13.1 seconds.  
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Table 2-6 Computation times spent for reflectarrays with different number of 

elements. 

Number of elements 

Matrix fill 

time (s) 

Matrix inversion 

time(s) 

Total 

time(s) 

500 0.05 0.08 0.13 

1000 0.16 0.22 0.38 

1500 0.31 0.6 0.91 

2000 0.5 1.25 1.75 

2500 0.8 2.1 2.9 

3000 1 3.15 4.15 

3500 1.45 4.5 5.95 

4000 1.86 6.15 8.01 

4500 2.28 8.08 10.36 

5000 2.83 10.25 13.08 

 

When tabulations are available, to analyze reflectarrays with arbitrary patch sizes, the 

only tasks to do are to construct the reduced matrix by table look up, to generate the 

right hand side vector ὠ Ὅ֞ὠ, and solve ὤ‍ ὠ to find ‍Ӷ. To reduce the 

calculation time of  ὠ, an approximation is used. This approximation relies on the 

fact that patch is always electrically small and centered on the same grid point 

regardless of its dimension. Therefore, the incident field value at that grid point can 

be assumed unchanged over the patch. Given the feed antenna, calculating the 

incident field values only at element centers in advance and taking it constant over 

the patch provides a good approximation of the actual incident field. Moreover, due 

to spatially scaled nature of the mesh, ὠ values for different patch sizes can be easily 

computed by scaling.  

 

The efficiency of the method is best appreciated when it is intended to analyze the 

effects of changes in the element sizes in the design of a reflectarray. Once the 

lookup tables are available, the computation time for the construction of the reduced 

matrix and excitation vector, and the solution of the resulting matrix equation is 

0.38 seconds for a 1000 element array. In the following part, it is shown that the 
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proposed method outperforms a classical method in terms of resource usage and 

solution time, even for a single analysis.  

2.3.4 A Large Reflectarray Problem Solved by Proposed Method 

 

In order to demonstrate the successful application of the method to the analysis of a 

large reflectarray, the 30 x 30 reflectarray shown in Figure 2-45 is analyzed. This 

reflectarray is designed such that it has a cosecant squared fan beam along elevation. 

Substrate properties, frequency and spacing are same as those given in Section 0. The 

array is illuminated by the same feed antenna, located at 12ɚ0 = 36 cm. away from 

the array. The reference solution is conducted on a super computer with 512 CPUs 

by using HFSS. To minimize the electrical size of the problem, feed antenna and the 

reflectarray structure are solved separately. The number of tetrahedral elements used 

by HFSS is  6.619.984 and the memory used is 179 GBytes. The solution time is 

around 9 hours. The same array is solved by the proposed method using the 

tabulations. The tabulation period is slightly lower than that given in Table 2-5, 

because of the smaller size of this array.  Then, it takes 0.33 seconds to obtain the 

current coefficients of the entire array. The far field patterns in principal planes can 

be viewed in Figure 2-46 and Figure 2-47. As seen, the two solutions are in good 

agreement with minor inconsistency in the azimuth sidelobes. The solution obtained 

by the proposed method would rather be compared by the conventional method of 

moments, but MATLAB was not available on the mentioned supercomputer at the 

time of writing.  
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Figure 2-45 30  30 reflectarray. 

 

Figure 2-46 Azimuth pattern (• πЈ) of the 30 x 30 reflectarray computed by HFSS 

and the proposed method. 
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Figure 2-47 Elevation pattern (• ωπЈ) of the 30 x 30 reflectarray computed by 

HFSS and the proposed method. 

 

In order to compare the accuracy of the method with the infinite array approach, the 

far fields expected by the infinite array approach is also calculated and compared to 

the HFSS result. For the infinite array approach, two different sub-approaches are 

investigated. In the first one, the variation of the reflection coefficient with incidence 

angle is discarded. In the second one, it is taken into account. The usual technique 

[35] for considering the incidence angle in literature can be summarized as follows: 

¶ Obtain the reflection coefficients separately for transverse electric (TE) and 

transverse magnetic (TM) incidence, for the set of candidate element sizes. 

¶ Decompose the incident electric field over the element centers into its TE and 

TM parts. 

¶ Find the reflected field by superposing the reflected TE and reflected TM 

fields on each element. 

¶ Compute the array factor using the complex reflected field data. 

¶ It is optional to multiply the array factor with a suitable element pattern. 

 

Figure 2-48 and Figure 2-49 are presented to compare the HFSS result with the far 

fields obtained by the above mentioned infinite array approaches. An element pattern 

proportional to the cosine of the angle from boresight is assumed and multiplied by 
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the array factors. The infinite array approach is actually quite successful when the 

incidence angle for each element is taken into consideration. However, it is observed 

that the proposed method is better in tracing the characteristics of the HFSS result, in 

spite of the dissimilar underlying numerical approaches. 

 

Figure 2-48 Azimuth pattern (• πЈ) of the 30 x 30 reflectarray computed by HFSS 

and the two infinite array approaches. 

 

Figure 2-49 Elevation pattern (• ωπЈ) of the 30 x 30 reflectarray computed by 

HFSS and the two infinite array approaches. 
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matrix solution, or to be able to maintain accuracy under an arbitrarily polarized 

excitation. In this particular case Ὅ֞ matrix becomes: 

Ὅ֞

ụ
Ụ
Ụ
Ụ
ợὐ
Ӷ
  ὐӶ  π Ȣ π

Ȣ ὐӶ  ὐӶ  Ȣ Ȣ
Ȣ Ȣ Ȣ Ȣ

π Ȣ Ȣ ὐӶ  ὐӶ  Ứ
ủ
ủ
ủ
Ủ

 (2-54) 

 

When Ὅ֞ is arranged as in (2-54), ὤ can again be visualized as composed of ὤ s but 

this time it is constituted by 4 numbers: 

ὤ
ὐӶὤ֞ ὐӶὐӶὤ֞ ὐӶ

ὐӶὤ֞ ὐӶὐӶὤ֞ ὐӶ
 (2-55) 

In (2-54) and (2-55), ὐӶ and ὐӶ stand for the considered two CMs. The cost of taking 

two CMs is enlargement of the matrix ὤ by a factor of 2 in both dimensions. As far 

as the tabulation is concerned, the function Ὣ must be computed in the original strong 

coupling regions for the newly introduced terms ὐӶὤ֞ ὐӶ,  ὐӶὤ֞ ὐӶ, and ὐӶὤ֞ ὐӶ. Other 

steps of the tabulation remain unchanged. 

 

The first two characteristic modes for the square patch are shown in Figure 2-13. 

Note once again that, previously the sum of these two modes was taken as the 

dominant mode, ὐӶȟ as it would be a convenient MBF for y polarized incidence. 

However, Figure 2-20 and Figure 2-21 propose that taking two modes is better in 

terms of error in current. In spite of the fact that the two modes in Figure 2-20 and 

Figure 2-21 are diagonally oriented as seen in Figure 2-13, this is equivalent to 

taking one of the modes as y directed and the other x directed, which is preferred for 

simplicity. The x directed mode is created by taking the difference of the original two 

most significant characteristic modes of the resonant patch. With this choice of ὐӶ 

and ὐӶ, variations of  ὐӶὤ֞ ὐӶ,  ὐӶὤ֞ ὐӶ,  ὐӶὤ֞ ὐӶ, and ὐӶὤ֞ ὐӶwith ά and ὲ for ί=1 

and ί=1 in Figure 2-50. The strong coupling regions for these terms can be inferred 

from this figure. It is also seen that  ὐӶὤ֞ ὐӶ and ὐӶὤ֞ ὐӶ have the same characteristic, 

which is already expected by: 
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ὐӶὤ֞ ὐӶ ὐӶὤ֞ ὐӶ ὐӶρὤ֞ ὐӶḙὐӶρὤ֞ ὐӶ (2-56) 

The reason for the approximate equivalence (rather than exact) stems from the 

approximation in computation of the integrals associated with Galerkinôs method, as 

reported in [37]. 

 

Figure 2-50 Amplitude of terms in ὤ  (a): ὐӶὤ֞ ὐӶ, (b): ὐӶὤ֞ ὐӶ, (c): ὐӶὤ֞ ὐӶ, (d): 

ὐӶὤ֞ ὐӶ. 

 

In addition to Figure 2-50, it is observed that the whole separability argument of the 

Section 2.3.2 applies for all 4 terms defined in (2-55). The 16 x 10 array is 

considered once more with two modes. This time the size of the matrix ὤ is 320 x 

320, where each odd column and row corresponds to the 1
st
 mode and each even 

column and row corresponds to the 2
nd

 mode. For instance, the 179
th
 and 180

th
 

columns contain all the terms associated with 90
th
 element as explained below: 
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¶ Every other row of 179
th
 column starting from 1

st
 row correspond to ὐӶὤ֞ ὐӶ 

¶ Every other row of 179
th
 column starting from 2

nd
 row correspond to ὐӶὤ֞ ὐӶ 

¶ Every other row of 180
th
 column starting from 1

st
 row correspond to ὐӶὤ֞ ὐӶ 

¶ Every other row of 180
th
 column starting from 2

nd
 row correspond to ὐӶὤ֞ ὐӶ 

 

The amplitudes of 179
th
 and 180

th
 columns are plotted in Figure 2-51 and Figure 

2-52 to demonstrate the performance of separability. The terms calculated by full 

MoM matix are almost indistinguishable from those calculated by separability. This 

agreement implies that when the reduced matrix is calculated by separability, the 

level of error will be lowered to the levels observed at M=2 in  Figure 2-20 and 

Figure 2-21 just like it would when the reduced matrix is calculated by using the full 

MoM matrix. 

 

Figure 2-51 Amplitude of the 179
th
 column of the 320x320 ὤ matrix. 
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Figure 2-52 Amplitude of the 180
th
 column of the 320x320 ὤ matrix. 
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CHAPTER 3 

 

3 APPLICATION OF THE FAST ANALYSIS  METHOD FOR VARIOUS 

ELEMENT TYPES  

 

 

 

In this chapter, proposed fast analysis method is extended for patch shapes other than 

square. As a case study, circular patch is examined and it is seen circular patch is as 

amenable as the square patch to the proposed technique. On the other hand most 

patch shapes introduce hardly any advantage over the square patch although they are 

aesthetically pleasing. Therefore, the results obtained with the circular patch are not 

presented, but patch shapes that introduce some kind of specific advantage are 

investigated. For instance, square patch with an outer ring as a wideband element and 

split ring resonator that is used to implement element rotation method are examined 

in Section 3.1 and Section 3.2, respectively. Throughout this chapter, the far field 

patterns are those due to the patch currents only. 

 

3.1 Square Patch with Outer Ring 

 

Most of the practical patch shapes are basically resonant structures and therefore has 

a very sharp phase variation with dimensions. This results in two complications: 

First, the reflectarray pattern becomes sensitive to manufacturing errors. Second, the 

reflection phase changes very rapidly with frequency and therefore the bandwidth of 

the reflectarray becomes quite narrow. To alleviate these problems, structures that 

exhibit a linear phase behavior with respect to dimensions are proposed. These types 

of elements actually decrease the sensitivity of the pattern to manufacturing errors 

but do not fully overcome the bandwidth problem, because the phase response of the 

element is not the only limiting factor for the bandwidth. Even with this type of 

elements, the variation of the electrical distance of each element on the reflectarray 

to the feed antenna with frequency remains as a problem. Still, elements that provide 

linear phase shift offer a better bandwidth performance than resonant type elements 
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especially when the reflectarray surface is modified to decrease the effect of phase 

variation with frequency. An example of this type of element is offered in [45]. The 

element consists of an ordinary square patch and a square outer ring. The dimensions 

of the element are shown in Figure 3-1. The patch and outer ring dimensions are not 

independent, i.e., ὒ πȢχυὒ and the thickness of the outer ring is 0.05ὒ. The 

substrate thickness is 3.175 mm and the relative permittivity is 2.33. The bandwidth 

of operation is between 11 and 13 GHz. When ὒ is swept between 4 and 8 mm, the 

reflection phase of this element (in infinite array environment) is observed as given 

in Figure 3-2. 

 

Figure 3-1 Square patch with outer ring [45]. 

 

Figure 3-2 The phase characteristic of the proposed element with respect to ὒ and 

frequency [45]. 
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The distinctive property of this element is that it is not a resonant one, despite it is 

composed of two resonant elements. Therefore the reusability concept of the 

previous chapter needs to be revised. The investigations on this element show that 

when the individual dominant characteristic modes of the two metallizations are 

considered for reuse, a good accuracy in the far field pattern is obtained. At 12 GHz, 

the resonance of the square patch occurs for L2=6.04 mm, whereas the resonance for 

the square ring occurs for L1=5 mm. The two most significant characteristic modes 

of the resonant square patch is similar to that given in Figure 2-13. Therefore the 

dominant mode is constructed as the sum of these two modes. The dominant 

characteristic mode of the resonant outer ring is given in Figure 3-3. 

 

Figure 3-3 Dominant characteristic mode of the square ring. 
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3-4. Each element is discretized by 287 RWG basis functions where 111 of these 

basis functions are defined on the square ring and the remaining 176 basis functions 

are defined on the square patch. This reflectarray is illuminated with plane waves of 

various angles with two different types of incidences defined in Section 2, and 

analyzed for each case with conventional MoM. Then an approximate solution is 

found by using (2-49). Two different macro basis functions ὐӶ and ὐӶ are defined, 

both of which extend all over the domain. The first basis function, ὐӶ, is defined to be 

equal to the dominant CM of the resonant square ring over the corresponding part of 

the domain and zero over the rest of the domain (patch). Similarly, the second basis 

function, ὐӶȟ is defined to be equal to the dominant CM of the square patch over the 

corresponding part of the domain and zero over the rest of the domain (ring). Thus, 

these two MBFs are in a form suitable for use in the formulation. The numbering of 

the original RWG basis functions start on the ring part and therefore ὐӶ and ὐӶ are 

arranged as in (3-1), where ὐӶ  and ὐӶ  stand for the dominant CMs of the 

resonant ring and resonant patch respectively. 
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Figure 3-4 Experimental reflectarray with varying sized wideband elements. 
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(3-1) 

ὐӶ and ὐӶ are used in (2-49) and error in current is computed by (2-50). The error in 

current is plotted as function of incidence angle for both incidence types. 
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Figure 3-5 Variation of error in current with incidence angle when CMs for the 

separate metallizations of the wideband patch. 

 

The far field is calculated with approximate current and compared to the far field 

computed by the conventional MoM current. The comparison of the two far fields for 

the incidence cases with largest current error can be seen in Figure 3-6 and Figure 

3-7. The normalization is done with respect to the maximum of the far field 

computed by the conventional MoM current. 

 

Figure 3-6 Comparison of the amplitude of the • polarized far fields at ű=0Á, 

computed by Conventional MoM and using fundamental characteristic modes of 

separate metallizations (40 degrees, 1
st
 type incidence). 
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Figure 3-7 Comparison of the amplitude of the — polarized far fields at ű=90Á, 

computed by Conventional MoM and using fundamental characteristic modes of 

separate metallizations (20 degrees, 2
nd

 type incidence). 

 

3.1.2 Separability 

 

The results in the previous section are valuable but not useful alone. In order to be 

able to omit the calculation of the conventional MoM impedance matrix, tabulation 

should be feasible and this requires the existence of separability. It is actually 

observed that separability is possible for this element and it is appreciated by 

comparing Figure 3-8 with Figure 3-9 and Figure 3-10 with Figure 3-11. When 

Figure 3-8 is compared with Figure 3-9, it is seen that the reduced matrix entries 

associated with self and cross products of ὐӶ and ὐӶ are very similar functions of 

source and observation element sizes for different displacement types. On the other 

hand, when Figure 3-10 and Figure 3-11 are compared, it is seen that the reduced 

matrix entries associated with self and cross products of ὐӶ and ὐӶ are very similar 

functions of horizontal and vertical displacement for different size combinations. The 

cases that violate separability are similar to that of the resonant square patch of the 

previous chapter and will not be elaborated here. 
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Figure 3-8 Amplitudes of reduced matrix entries for dx=40 mm, dy=100 mm, (a): 

ὐӶὤ֞ ὐӶ, (b): ὐӶὤ֞ ὐӶ, (c): ὐӶὤ֞ ὐӶ. 

 

 

Figure 3-9 Amplitudes of reduced matrix entries for dx=80 mm, dy=40 mm, (a): 

ὐӶὤ֞ ὐӶ, (b): ὐӶὤ֞ ὐӶ, (c): ὐӶὤ֞ ὐӶ. 

 

 

Figure 3-10 Amplitudes of reduced matrix entries for L1=8mm for source element 

and L1=8 mm for observation element, (a): ὐӶὤ֞ ὐӶ, (b): ὐӶὤ֞ ὐӶ, (c): ὐӶὤ֞ ὐӶ. 










































































































