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ABSTRACT

THE USE OF MULTIMETRIC FRAMEWORK IN CALIBRATING
THE HBV MODEL

Siirer, Serdar
PhD, Geodetic and Geographic Information Technologies Department
Supervisor : Prof. Dr. Zuhal Akyiirek
Co-supervisor: Assist. Prof. Dr. Koray K. Yilmaz

February 2015, 113 pages

In this study, the HBV model is applied on the upper Euphrates basin in Turkey.
Individual sensitivity of the parameters is analyzed by calibrating the model using
the Multi-Objective Shuffled Complex Evolution (MOSCEM) algorithm. The
calibration is performed against snow cover area (SCA) in addition to runoff data for
the water years 2009, 2010, 2011 and 2012. Detailed validation studies are also
performed for the snow products namely snow recognition (H10) and snow water
equivalent (H13) over Turkey and Austria. In this study signature metrics, which are
based on the flow duration curve (FDC) are used to see the performance of the
model for low flows. The sensitivity analysis of the parameters around the calibrated
optimum points showed that parameters of the soil moisture and evapotranspiration
have a strong effect in the total volume error of the model. The parameters from the
response and transformation routines have a significant influence on the peak flows.
It is observed that the parameters of snow routine have strong effect in high flows
and total volume. Besides the Shuffled Complex Evaluation Method in the
calibration of the model, multi-metric evaluation framework, which represent the

different phases of the hydrograph precisely, is used. A stepwise evaluation is done



with commonly used statistical performance metrics (Nash-Sutcliffe, Percent Bias)
and signature metrics, which are based on the flow duration curve. Validation of the
model is performed for the water year 2013.

Keywords: Hydrological modeling, snow, calibration, HBV, EUMETSAT-HSAF
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COKLUMETRIK CERCEVE iLE HBV MODELININ KALIBRASYONU

Stirer, Serdar
Doktora, Jeodezi ve Cografi Bilgi Teknolojileri
Tez Yoneticisi: Prof. Dr. Zuhal Akyiirek
Ortak Tez Yoneticisi: Y. Dog. Dr. Koray K. Yilmaz
Subat 2015, 113 sayfa

Bu calismada HBV modeli yukar1 Firat Havzasinda uygulanmistir. MOSCEM
(Multi-Objective Shuffled Complex Evolution) algoritmasi kullanilarak model
parametrelerinin her birinin hassasiyet analizi yapilmistir. Model kalibrasyon kar
kapli alan bilgisi ve yiizey akisina gore 2009, 2010, 2011 ve 2012 yillart igin
yapilmistir. Kar kapli alan (H10) ve kar su esdegeri (H13) {irlinleri icin Tirkiye ve
Avusturya lizerinde detayli yersel dogrulama yapilmistir. Diisiik akimlarin tahmini
icin model performansini tespit etmek amaciyla debi siireklilik egrilerinden elde
edilen temel metrikler go6zlenmistir. Toprak nemi ve buharlagsma-terleme
degiskenlerinin toplam su hacmine iliskin hataya hassas olduklar1 kalibre edilmis
optimum degerler yakininda yapilan hassasiyet analizlerinde tespit edilmistir. Tepki
ve doniisiim rutinlerine iliskin parametrelerin pik akimlara 6nemli dlglide etki ettigi
gozlenmistir. Model kalibrasyonunda Shuffled Complex metoduna ek olarak
hidografin degisik fazlarim1 hassas sekilde temsil edebilen ¢oklumetrik
degerlendirme cercevesi de kullanilmistir. Debi siireklilik egrileriyle ilintili olan bazi
genel istatistiksel performans degerlendirme sabitleri (Nash-Sutcliffe, Percent Bias)

kademeli olarak kullanilmistir. Model dogrulamasi 2013 su y1ili igin yapilmigtir.

Keywords: Hidrolojik modelleme, kar, kalibrasyon, HBV, EUMETSAT-HSAF
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CHAPTER 1

INTRODUCTION

1.1 General

Snow has a significant importance in water cycle as being a vital and crucial
component of it. Substantial amount of effort is required in order to accurately
monitor and report the amount and coverage of the snow by relevant scientists and
experts. Since snow has high reflectivity, it also plays an important role for energy
budget of the Earth by the effect of large areas that are mostly or completely covered

by snow.

Precise monitoring of the snow for acquiring more accurate information about its
coverage has to be handled delicately. This monitoring should aim to find out both
the temporal and spatial distribution of the snow covered area to be available for use
in hydrological sciences. Since the snow will turn into water when it gets melted, it
means a potential reservoir to be monitored and calculated carefully. The melting of
the snow may cause flooding events, or can be used as a source to electricity
production in hydro power plants. Thus, in order to better predict discharges in melt

seasons the monitoring of the snow parameters is important.

The observed snow height values are available on vast areas but these measurements
are very dependent on the local weather and topograhpical conditions. Especially for
mountainous areas the scarcity of the field observations and the representativeness of
the stations for the areal extent due to the complexity of the terrain make the use of
ground observations in snow monitoring and simulation difficult and insufficient.

For mountainous regions, satellite imagery is the most convenient way for keeping



track of snow cover extent considering the inaccessibility due to the difficulties of
rough terrain and high elevations.

Remote sensing data have been used for better comprehension of information on
snow cover extent (Painter et al. 2003, Cline et al. 1998). Several satellite sensors
have been used for snow cover mapping such as: AVHRR, MODIS, and MERIS
(Harrison & Lucas 1989, Hall et al. 2002, Tampellini et al. 2003). MODIS has a
good temporal and spatial resolutions for snow cover monitoring, therefore it has
been utilized in numerous studies (Parajka and Bloschl, 2012). There are several
studies discussing the accuracy and providing information about MODIS show cover
products. Most of these studies depicts that under clear sky conditions, there is an
accuracy of around 94% according to the measurements made on the ground stations
(Hall and Riggs, 2007; Parajka and Bléschl, 2006; Parajka and Bloschl, 2012).

Satellite driven snow cover information gains more importance by the developments
in space sciences due to getting easier to use for many scientific studies including
hydrological sciences (Andreadis and Lettenmaier, 2006; Rodell and Houser, 2004;
Zaitchik et al., 2008; Bavera and De Michele, 2009).

Snow satellite observations can be found in two forms: Snow Water Equivalent
(SWE) or Snow Cover Area (SCA). However the quality of SWE data are often not
good enough to be used in hydrological studies. Still the studies indicate large errors
in microwave estimates compared with ground measurements (Pullianinen and
Hallikainen, 2001). It is not possible to make accurate SWE determinations with
current satellite measurement technologies especially over mountainous terrain due
to highly changing topography unless the snow depth is between 20cm-80cm values.
A high underestimation of SWE value determination is observed for the snow depths
higher than 150cm. There is also a significant overestimation for shallow snow
depths of lower than 15 cm (Beser, 2011). On the contraray, the data on SCA gets
more available for large regions with higher temporal resolutions (Parajka and
Bloschl, 2006). The detection of cloud covered areas is the most important and most
challenging step to be taken into account during snow covered area detection by
using satellite images that are measuring in the optical span of the spectrum. Parajka

and Bloschl (2008) presented an evaluation of simple mapping methods in order to



reduce the amount of cloud obscured parts using spatial and temporal filtering.
Tekeli and Tekeli (2011) performed a similar approach for improving MODIS
standard snow cover products for snow cover monitoring over Eastern part of
Turkey. A study by Ault et al. (2006) presented results from a validation of MODIS
snow product and cloud mask in the Lower Great Lake region. They have also
observed that any existence of cloud coverage may cause misinterpretation of snow

covered area with cloud coverage.

Within the framework of Satellite Application Facility on Support to Operational
Hydrology and Water Management (HSAF) Project, several snow products have
been developed in support of European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT). Turkey has a role in the development of
two of the snow products which are namely snow cover recognition (H10), and snow
water equivalent (H13). All the snow products will be operational in the next phase
of the project (2012-2017). Meteosat Second Generation satellite Spinning Enhanced
Visible and Infrared Imager (MSG-SEVIRI) data are used in snow recognition,
METOP-AVHRR data are used for fractional snow cover and AMSR-E, SSMI/S
data are used for snow water equivalent product generation. The validation studies
for three products have been performed since 2008. Average values of 80% of
probability of detection for snow recognition product, 60% of overall accuracy for
the fractional snow cover product and 45 mm RMSE for the snow water equivalent
product have been obtained from the validation studies and all scores fulfill the

product requirements.

SEVIRI instrument provides imagery with 3-km resolution at nadir observing with
12 spectral channels from visible to infrared regions of the electromagnetic
spectrum, and covers the whole hemisphere. Most importantly, SEVIRI has a very
high temporal resolution of 15 minutes, and this makes the H10 product highly
compatible on cloud reduction ability. A comparison on cloud percentages and
ground validation of H10 product with MODIS snow cover product (MOD10A1) for
mountainous parts of Eastern Turkey was presented by Surer and Akyurek (2012),
where they have obtained 37% more cloud reduction by H10 (uses 32 consecutive
images per day) than MODIS snow cover product (a single image per day). The high
cloud reduction possibility with H10 product makes it appealing for end-users like

3



hydrological modelers. High temporal resolution (15 min) and wide aerial coverage
of SEVIRI imagery make it a good choice to use it for observing rapidly changing
phenomena like fog monitoring, tracking cloud movements or snow cover mapping
(Bertrand et al., 2008; Cermak and Bendix, 2008).

Several studies have presented the potential of using satellite data for calibration and
the validation of hydrological models (Rodell and Houser, 2004; Tekeli et al., 2005;
Andreadis and Lettenmaier, 2006). The outcomes of these studies mostly reflects
that to integrate MODIS snow cover data into hydrological models did not
significantly improved the performance of the model regarding with the capability to
predict runoff values. In a study of Udnaes et al. (2007), they have calibrated the
HBV model by using SCA information and runoff values together in order to
observe an improvement at the prediction of potential flood event. They have
observed that this integration only improved the SCA simulations of the HBV
model, but not the prediction of runoff values. Andreadis and Lettenmaier (2006)
made an assimilation of the MODIS snow cover information into a hydrologic model
and observed the efficiency of the assimilation compared with the ground
observations on snow. They presented that the snow coverage simulations of the

model have been improved when compared with using ground snow measurements.

Remotely sensed snow cover information can be either used as direct input into a
hydrological model such as Snowmelt Runoff Model (SRM) which is a lumped
temperature-index model (Martinec, 1975; Georgievsky, 2009; Tekeli et al., 2005).
Another method can be the comparison of the simulated snow water equivalent

values by modeling with the snow data indirectly (Parajka and Blésch, 2008).

Hydrological complexity is reflected in different phases within the discharge time
series. The challenging part in hydrological modelling is to represent all phases with
the same model parameters. In order to reproduce the hydrological processes,
hydrological models have to be calibrated to the conditions of the study catchments.
Generally hydrological models are calibrated to the measured discharge time series.
The most suitable parameters are selected with a sensitivity analysis. During the
calibration processes well know statistical measures namely Root Mean Square Error
(RMSE), Nash-Sutcliffe Efficiency (NSE), percent bias are used to present the



volume error, timing error and the error in simulating the high flows. It is known that
NSE is sensitive to differences in the observed and simulated means and variances;
hence it is more sensitive to extreme values. The RMSE overemphasizes flood peaks
and leads to a bad calibration of low flow periods. It is stated that one single
performance measure is insufficient to take into account the representation of all
relevant processes (Gupta et al., 1998; Wagener and Gupta, 2005; Gupta et al.,
2008). Using the statistical and hydrological metrics into the calibration process can

lead to make better representing the complex hydrological processes.

1.2  Objectives

The purpose of this work is to present the usefulness of satellite snow cover
information namely MSG-SEVIRI in hydrological modelling. Among the several

objectives, the most important motivations of this study are listed below:

e To assess the performance of using HSAF snow products on simulations of a
hydrologic model on a catchment in Turkey.

e To apply multi-objective calibration with snow information and runoff
information.

e To illustrate the incorporation of H10 into a conceptual hydrological model
with assimilation at calibration stage.

e Including the hydrological measures into the calibration of HBV model and
making comparison of the multimetric calibration with the calibration by an
optimization method using statistical measures only.

e To perform snow water equivalent simulations comparison with values from
hydrologic model, and H10 product.

e To evaluate the performance of H10 snow cover and H13 products by using

the in-situ observations.

1.3 Thesis Outline

The subjects described in the following chapters are given below:



In Chapter 2, the related literature survey about the use of remote sensing in snow
cover mapping, snowmelt runoff modeling, and model calibration is presented. The

methodology and the data used in the study are discussed.

In Chapter 3, the description of snow cover products depicted from satellite imagery
are given. The two different types of satellite snow products, which are from optical
and microwave bands of the spectrum, are presented. The capability of these

products to be used in hydrological modeling is discussed.

In Chapter 4, the sensitivity of HBV model parameters are given. The sensitivity of

thresholds in the models is also presented.

Chapter 5 presents the calibration of the model using statistical and hydrological
measures and verification of the model. It includes the main results of the study and
discusses the use of snow cover maps in hydrological modelling in multi objective

calibration and the equifinality concept.

Finally, Chapter 6 presents the conclusions of the study and gives some related

recommendations.



CHAPTER 2

METHODOLOGY AND DATA

2.1 Literature Review

Snow is an important component of the water cycle and of the climate evolution. It is
vital to accurately monitor the amount and coverage of the snow for many purposes
such as: flood forecasting, energy production forecast and planning, better allocation
of water from melting of the snow. Thus, in order to better predict discharges in melt

seasons the monitoring of the snow parameters is important.

Even though it is possible to derive snow depth measurements over large areas from
ground stations, these data very much depend on the local conditions. Especially for
mountainous areas the scarcity of the field observations and the representativeness of
the stations for the areal extent due to the complexity of the terrain make the use of
ground observations in snow monitoring difficult and insufficient. For mountainous
regions, satellite imagery is the most convenient way for keeping track of snow
cover extent considering the inaccessibility due to the difficulties of rough terrain

and high elevations.

Remote sensing data have been used for better comprehension of information on
snow cover extent (Painter et al., 2003, Cline et al., 1998). Several satellite sensors
have been used for snow cover mapping such as: AVHRR, MODIS, and MERIS
(Harrison and Lucas 1989, Hall et al., 2002, Tampellini et al., 2003). AVHRR sensor
that got operational in 1979 from aboard a polar orbiting satellite has been providing
images until then. AVHRR has a high spatial resolution of 1 km, and a temporal
makes it appealing to use for operation snow cover estimation (Carroll et al., 2001)
On the other hand this 1 km resolution can be rather low for making snow mapping
in small size watersheds (Schmugge et al., 2002). MODIS has good temporal and
7



spatial resolutions for snow cover monitoring, therefore it has been utilized in

numerous studies (Parajka and Bloschl, 2012).

Snow products that have varying spatial and temporal resolutions are available from
operational satellites on near-real time. The spatial resolution of such products
differs from 500 m to 5 km. Under low cloud appearance days, these operational
snow products derived from satellite measurements can provide from 70% to 95%
accurate snow cover information controlled with ground measurements in winter
season. The cloud coverage causes the main problem in using these satellite driven
snow cover products. Different approaches have been utilized for reducing cloud
contamination including a space time filtering method (Parajka and Bloschl, 2008;
Gafurov and Bardossy, 2009). Lopez-Burgos et al. (2013) applied a regression
method which is locally weighted and uses relationships between the spatial and
topographic attributes of pixels surrounding a cloudy pixel to estimate the
“probability of snow occurrence”. They also applied Terra/Aqua combination, time
interpolation and nearest neighbor spatial interpolation methods in order to compare
the performance of these methods to reduce the cloud obscuration of MODIS snow
cover area products. They concluded that sequential combination of these algorithms
provides synergistic effect. They also recommended eliminating the spatial
interpolation methods from the sequence, since the spatial interpolation method has
very little overall impact on the results.

Merging satellite images can be counted as an alternative to space time filtering
method. Images obtained every 15 minutes by the SEVIRI sensor of MSG satellite
can provide information on snow cover by measuring in very high temporal
resolution on the whole hemisphere. The first assessments have shown that the
merging of 32 satellite images in a day significantly improves cloud reduction by
even 37% when it is compared to MODIS snow cover product (Surer and Akyurek,
2012).

Surer et al. (2014) evaluated the mapping accuracy of the H10 product over Austria.
Their results show that the high temporal resolution of SEVIRI sensor helps to make
a significant level of cloud reduction by making measurements every 15 minutes.

During cloud clear days, the accuracy of H10 is around 89%, while it was 94% for



MODIS snow cover product. Frequent cloud coverage is another problem in snow

mapping through remote sensing.

The satellite snow observations are being used in the field of hydrology (Andreadis
and Lettenmaier, 2006; Rodell and Houser, 2004; Su et al, 2008; Zaitchik et al.,
2008; Bavera and De Michele, 2009; Tekeli et al., 2005). Remotely sensed snow
covered area information has been used successfully in snowmelt and runoff models
(e.g. Yang et al., 2003, Clark et al., 2006, Dressler et al., 2006, Kolberg and
Gottschalk, 2006, Kolberg et al., 2006, Andreadis and Lettenmaier, 2006, Parajka
and Bloschl, 2008). Remotely sensed snow water equivalent has also been used in
some studies (e.g. Derksen et al. 2003, Andreadis and Lettenmaier 2006, Pulliainen,
2006). Remotely sensed snow cover information can be either used as direct input
into a hydrological model (Tekeli et al., 2005) or the simulated snow water
equivalent values can be compared with the snow cover data indirectly (Parajka and
Bloschl, 2008).

Using reliable observed data is also important for performing real-time flood
forecasts. Thirel et al. (2012) made an assessment of a real-time snow cover area
daily product at 250 m-resolution (the EURAC MODIS SCA product, which is
based on the MODIS sensor) by comparing it directly or indirectly to the classical
NASA MODIS SCA daily product and to the simulated snow cover area of the
distributed hydrological model, LISFLOOD. The Shuffled Complex Evolution,
University of Arizona (SCE-UA) algorithm was used for carrying out the calibration
of the model. In their work both satellite products overestimated the SCA, during the
whole year for the EURAC SCA, and at the beginning of the winter for the NASA
SCA, compared to hydrological model simulations. The reason of the overestimation

is stated as the misclassification of cloud pixels as snow.

Franz and Karsten (2013) used MODIS SCA observations in calibrating the
SNOWZ17 model in North Fork Basin, USA. They used single objective function by
only utilizing MODIS SCA information within a multi-step approach.

There are different assimilation methods that have been applied to land surface
models in order to update the snow information. Recently, some of those methods
have been utilized in hydrological modelling studies as well. Among these methods,
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variants of Kalman Filter technique are the most preferred ones. It is the method of
adjusting uncertain variables and parameters in order to obtain the best fit to the
values from observations (Houser et al., 1998). Direct insertion method is another
option to update and assimilate snow information in hydrological models as Liston et
al. (1999) has successfully applied in a regional climate model for snow association
and Rodell et al. (2004) used this method to assimilate MODIS data into a global
land surface model. Statistical interpolation technique is sort of an improvement for
direct insertion which is applied by Brasnett (1999) to assimilate snow depth
observations from synoptic stations. Thirel et al. (2011) compared Ensemble Kalman
filter and particle filter assimilation techniques to improve the runoff simulation with
a spatially distributed hydrological model. Their results and discussion to that paper
indicate that there is still more research needed for better understanding on how to

robustly assimilate satellite snow cover data into hydrologic models.

Another important application is the simulation mode where the snow cover data are
used in the calibration of hydrological models together with other data sources.
Parajka et al. (2006) assimilated the scatterometer data into the hydrological model
during the calibration phase. They stated that the rationale of combining two sources
of information on soil moisture, hydrological models and satellite data, is that even
though both sources have clear limitations and are associated with significant
uncertainty it is their combination that should help reduce the uncertainty of the
integrated estimates. Knowing that the estimates come from completely different
instruments, ground based instruments and spaceborne sensors, the expected errors
of these sources are completely different. Their results indicate that assimilating the
scatterometer data into the hydrologic model during the calibration phase improves
the relationship between the two soil moisture estimates without any significant
decrease in runoff model efficiency. Several studies that have presented satellite-
based snow cover information utilization for calibrating parameters of a snow model
(Udnaes et al., 2007; Parajka and Bloschl, 2008; Sorman et al., 2009; Konz et al.,
2010).

Beven and Freer (2001), reports that the optimization problem is mostly ill-posed in
hydrological modeling if it is purely based on the comparison of simulated and

observed discharge. It is because the data on discharge may have lack of information
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which is required to identify all of the parameters of the model properly. This finding
is also valid for snow models, since these models are mostly calibrated by using the

observed discharge values.

The use of satellite based snow cover information can reduce the need of relying on
a single variable at the basin outlet, during calibration stage of hydrological
modeling. Model states can be updated using either snow water equivalent or SCA
data from MODIS as presented in several studies (Rodell and Houser, 2004,
Andreadis and Leettenmair, 2006; Nagler et al., 2008; Tang and Lettenmaier, 2010).
The information of SCA maps produced from MODIS maps can be used as model

inputs for hydrological models simulating snow melt (Tekeli et al., 2005).

HBYV (Bergstrom, 1976) is a semi distributed conceptual hydrological model which
Is used extensively in operational inflow forecasting and water balance studies.
There are several studies using HBV concept in the literature Skaugen and Onof
(2014) developed a new model where the HBV soil moisture concept was modified
by a new soil moisture routine, which estimates saturated and unsaturated volumes
of subsurface water and with only one parameter to calibrate is included in the new
model. The number of parameters to be calibrated in the module concerning soil
moisture and runoff dynamics is reduced from seven in the HBV model to one in the
new model. Rientjes et al. (2013) used streamflow (Qs) and satellite-based actual
evapotranspiration (ETa) in a multi-variable calibration framework to reproduce the
catchment water balance. The application is for the HBV rainfall-runoff model at
daily time-step for the Karkheh River Basin (51,000km?) in Iran. Tian et al. (2013)
used HBV model besides GR4J and Xinanjiang models to study the extreme high
flows in Jinhua River basin under the impact of climate change for the near future
2011-2040. Mayr et al. (2013) modified HBV-ETH model to develop a partially
distributed hydrological model that was able to simulate runoff in a highly
glacierised basin. Driessen et al. (2010) used the HBV model (version HBV Light
2.0) to find the effect of the projected changes in precipitation characteristics due to
climate change on the hydrological regime of the river Meuse. The hydrological
model is forced with three high-resolution (0.088°) regional climate scenarios, each

based on one of the three different IPCC CO2 emission scenarios for the period of
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2002-2040 and 2062-2100. Their results indicate a decrease in summer discharge,
because of the decrease in snow pack, and an increased discharge in winter.

2.2 Methodology

A semi-distributed and conceptual rainfall runoff model is used following the
structure of HBV (Bergstrom, 1976). Lindstrom (1997) improved the HBV model
performance by improving its potential for making use of spatially distributed data
and they made it more physically sound. The model uses elevation zones and runs on
daily bases. It has several routines for snow, soil moisture, and flow routing (Figure
2.1). As most of the conceptual models, this one is also a degree-day method
working model which accumulates and melts the snow accordingly with temperature
values based on certain threshold values. Related with the mean daily air
temperature, model splits the precipitation into two forms as rain (Pr) and snow (Ps).
Tr and Ts are the lower and upper threshold temperatures, respectively. A snow
correction factor (CSF) corrects the precipitation during snowfall. Below a
temperature called melting air temperature (Tm), the falling snow starts to
accumulate. SWE is defined as the water stored in a pack of snow. Depending on the
semi-distributed structure of HBV model, individual SWE simulations are produced
for each elevation zone. The melting of the snow is proportional to a degree day
factor (DDF), and the difference of air temperature (Ta) from Tm. The soil moisture
routine of the model is consists of runoff generation and soil moisture state change of
the catchment. There parameters of the model define soil moisture related processes:
maximum soil moisture storage as FC, soil moisture state above which evaporation
is at its potential rate (LP), and the other parameter that relates runoff generation to
state of soil moisture (B). The routing of the runoff on the hillslopes is incorporated
by a lower and upper soil reservoir. The upper zone collects the rainfall that is
excess, and this accumulated rain leaves this upper zone reservoir in three different
ways. The fast storage from the reservoir is shown with Ki, percolation with a
constant percolation rate (Cp) to the lower zone, and in case a threshold of short state

(Lsuz) gets exceeded, it leaves through an additional outlet based on a very fast
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storage coefficient (Ko). Water is flown from lower zone reservoir with a slow

storage coefficient (KZ).

SF=
RF =
IN=
EA=
El=
SM=
FC=
LP=

R=
CFLUX =
UzZ=
LZ=
PERC=
K,K4=
ALFA =
Q0,QlI =

Snow

Rain

Infiltration

Actual evapotranspiration
Evaporation from interception
Soil moisture storage
Maximum soil moisture storage

Limit for potential evapotranspiration

Recharge

Capilary transport

Storage in upper response box
Storage in lower response box
Percolation

Recession parameters
Recession parameter

Runoff components

Figure 2-1 The model structure

The flowchart of the model is presented in Figure 2.2. There are 15 parameters in the
model and through the analysis of sensitivity of the model parameters that is
described in Chapter 4, among these 15 parameters, 4 parameters were fixed
(Tr=2°C, Ts=-2°C, Bmax=10, CrouTe=26.5) considering the possible values of these
parameters are available in the literature. 11 parameters were estimated by automatic
model calibration using the discharge and snow cover area information and

calibration by using low flow signature metrics.
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Figure 2-2 The flowchart of the HBV model

Using the SCE-UA method, the individual sensitivity of the model parameters is
analyzed, and further Monte-Carlo based identifiability analysis was performed.
Besides four objective function measures (PBIAS, RMSE, NSE, and correlation
coefficient), RMSE of the flow duration curves are used to analyze the performance
of the model parameters controlling volume errors from runoff and high flow and

low-flow series.
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The model calibration is performed in two different ways. In the first approach it is
performed by using the SCE-UA method (Duan et al., 1992, Duan et al., 1994). This
method is based on a synthesis of the best features from several existing methods,
including genetic algorithm, and introduces the concept of complex shuffling. In the
second approach the calibration is performed by a multi-metric evaluation
framework to identify calibration runs, which represent the different phases of the

hydrograph precisely.

Several efficiency measures and error measures are used in evaluating the model
during calibration and validation periods. For runoff, the NSE has been used in two

variants, Me and Mg'9, for high and low flows, respectively:

2
YieQ,, . ;—Qsim )
My, = 1 — Zi21@apgm0tm ) 2.1)
E Zi=1(Qobsi_Qobs)
n _ . 2
Méog —1_ Yi=1(log(Qobs )—log(Qsim ) (2.2)

T, (0g(Q, ) )—10gQ,, N)°

where Qsim,i represents runoff simulation on the day “i”. Qobs,i is the observed runoff,
Qobs IS the average of the observed runoff over the calibration (or verification) period

of n days. Also a relative volume error (VE) of runoff has been used:

VE = Z?=1 Qsi;n,i_ Z?:l Qobs,i (23)
Zi=1 Qobs,i

Root Mean Square Error, percent bias (PBIAS) and correlation coefficient are the

other statistical measures used in the analyses:

n 0 . )2
RMSE = \/21=1(Q‘7b5;; QSlm'l) (2.4)
i Y12 1(Qobs,i=Qgip, )100
B —— L SUmL 2
p tas Z?:l(Qobs,i) ( 5)
R n Y11 (Qobs,i) (Qsim,i)— Xie1(Qobs,i) X re1(Qsim,i) (2.6)

J(n Z?=1(Qobs,i)2 - Z?=1(Qobs,i)2)'\/(n Z?=1(Qsim,i)2 - Z?=1(Qsim,i)2)
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H10 product is compared indirectly with the model simulated SWE values. While
the model simulated SWE represents melted snow, H10 product can only provide the
information about the pixel if it is snow covered, or not. To compare model
simulated SWE and H10 products, two error metrics are used. The overestimation
error that is depicted in Eq. 2.7 gives the count of the days, mo, in case SWE from
model simulation is higher than a threshold value but H10 product finds no snow.
SWE is the simulated value in a specific zone and SCA is the H10 SCA within this
zone, m is the number of days where H10 images are available (with cloud cover less
than a threshold Cc), | is the number of zones in the basin and Cswe is a threshold that
determines when a zone can be essentially considered snow free in terms of

simulations.
1
SE = — % 1me N (SWE > Lg,.) N (SCA = 0) (2.7)

The underestimation error (SeY) presented in Eq. 2.8, gives the count of the days, mu,
while the hydrologic model finds no snow simulated in the represented zone but H10
shows that there is snow cover over a certain threshold value. Csca is the limit value
which decides if a zone should be accepted as snow free in terms of the H10 data.
1

sy = ngﬂmu N (SWE =0)n (SCA>(.,) (2.8)

The accuracy of satellite driven SCA mostly depends on the existence and spatial
extent of clouds. In order for having more accurate information, the days when cloud
coverage is less than a threshold value {c were utilized. The threshold values Cswe,

Csca and Cc are decided after detailed sensitivity analysis.

2.3  Study area and Data used

Karasu Basin which is the most upstream of Euphrates River is used in most of the
analysis made in Turkey (Figure 2.3). The basin has an area of approximately 10,250
km? with an altitude range of 1125 m to 3500 m. The change of elevation along the

basin is shown in Figure 2.4. Land cover is mostly pasture, cultivated, and bare land.
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According to long term measurements and modeling studies, around 65% of the total
amount of annual water is sourced from melting of snow (Tekeli, 2005).

3I9"W'0°E 40°00E 40°300"E 417007 41°300°E
A A A A A

40°30°0°N

40°0°0"N

39°30°0"N

)"J(l)‘O'E 40'0"01 40‘35‘01 41'0"01 41'15‘01
Figure 2-3 DEM of Karasu Basin with discharge measurement stations in the basin,
meteorological stations in and around the basin.

The study basin was divided into five elevation zones. The hydrometeorological
data used in this study includes daily precipitation and temperature at 21 stations,
and runoff data observed at the outlet of the basin. The precipitation and the
temperature data were spatially interpolated by geographically weighted regression
method. Elevation was taken as an auxiliary data in the interpolation. The elevation
zones and the meteorological stations, from which precipitation and temperature

were obtained, are depicted in Figure 2.4,
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Figure 2-4 Elevation zones and meteorological stations used in the study.

The area of the elevation zones are also presented in Table 2.1 below.

Table 2-1 The area of the elevation zones

Zone  Elevation (m) Area(km2) Area (%)

A 1100-1500 1158 11.43
B 1500-1900 3467 34.23
C 1900-2300 3427 33.83
D 2300-2900 2012 19.86
E 2900-3400 65 0.64

Spatially distributed temperature and precipitation values for each zone on a monthly
basis is given in Figure 2.5 and Figure 2.6, respectively. The evapotranspiration
values were calculated from daily temperature values by using Blaney Criddle
method (Blaney and Criddle, 1962). Blaney Criddle method is selected because of
being relatively simplistic method for calculating evapotranspiration and it only

needs air temperature data.
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Figure 2-5 Monthly temperature distribution for each zone

19



Zone A Precipitation (mm)

L ET0T'TO
| ET°LOTO
| ET'P0'TO
L ET'TOTO
L (T'OT'TO
. CI'LOTO
L CI'P0'T0
L CI'T0'T0
. TT'0T'T0
L IT°L0°TO

L IT'P0'TO

s TT'TO'TO

L 0T'0T'TO
L 0T'Z0'TO
L 0T'¥0'TO
L 0T'TO0'TO
. 60°0T'TO
| 60°L0°'TO
. 60'¥0'TO
L 60'TO'TO

80°0T'TO

EE

WUUUU
0o N
-

120

(wwy) uoneydnaid

Zone B Precipitation (mm)

1
1

40
120
100

80

60

40

20

0

{ww) uonendalg

ET0T'TO

ETLOTO

ET'P0'TO

ETTOTO

roT'To

aUL0TO

arvoTo

UToTo

TT'oT'T0

rL0T0

TT'v0TO

IT'10T0

or'oT'TO

orL0To

oT'v0'TO

Oor'10TO

60°0T'TO

60°L0°TO

60°¥0°TO

60°'T0TO

80°0T'TO

=

—

I\

—

—

—

h

-

—

=

-

—

ms

—

- ——

—

m -

g L
c

o L

...u —

© ——

= u—

Q —
v,

[ L

jut -

o -

(@) L
[
c

o L

N o

Il

—

=

II\

=

——

m Q m QQQQQ

~ 0w s N
— =

{wuwi) uoneydideig

€T0T'10
€1'£L0'T0
ET'r0'10
eT'T0'T0
'oT'To
'L0T10
{avoto
<1070
TT'0T'TO
TrL0T0
U010
TT'T0TO0
0r'oT'TO0
0T'£0'T0
or'voTo
0r'10TO
60'0T'T0
60'L0TO
60'70°TO0
60'T0'T0

80°0T'TO

Zone D Precipitation (mm)

_ ET0T'T0
_ ET'20'T0
- ET'P0'10
- €1'T0'T0
_ C10T'10
 (T'L0'T0
 (I'v0'T0
_ (I'T0'T0
_TT'0T'T0
112010
- 1T'¥0'T0
- 111010
_0T'0T'10
- 0T'£0'T0
- 0T'¥0'10
_0T'T0'T0
600710
602010
- 60'70'10
_60'T0'T0
80°0T'T0

88R8&8ESFR°
Ll ]

(ww) uonendpaig

Zone E Precipitation (mm)

180
160
140
120
100
80
60
40
20

(wuw) uoneydinaig

o

EL0T'T0
€T L0TO
e 010
ETTOTO
rorto
[AAY
arvoto
(A
10110
1T£L0TO0
TT¥0TO
TT'10TO
0T'0T°TO
0T'£0°TO
0T'0°TO
0T'T0TO
60'0T°TO
60'£0TO
60'70°TO
60'T0°TO
80°0T°TO

Figure 2-6 Monthly precipitation distribution for each zone
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CHAPTER 3

HSAF SNOW PRODUCTS AND THEIR VALIDATIONS

The accurate monitoring and modelling of the amount and extent of snow cover is
vital for hydrological executions such as forecasting of snowmelt and assessment of
water resources by different approaches (Bloschl and Kirnbauer, 1991; Bloschl et al.,
1991; Nester et al., 2012). It is difficult to monitor snow covering vast spatial areas
with parsley distributed ground observation stations. The high elevation difference
makes it even harder to access reliable information for mountain environments.
Thus, use of satellite driven imagery is an potential alternative since its availability
and resolution does not depend on the characteristics of the terrain and basin
(Parajka and Bloschl, 2008).

Nowadays, the snow cover information with different spatial and temporal
resolutions is available from operational satellite products (Table 3.1). This table
depicts that the operational snow cover information from satellites vary in spatial

resolution from 500 m to 5 km.

The following parts of the thesis in this chapter will provide information about the
two snow products which are snow cover area maps as H10, and snow water
equivalent maps as H13. After the elaboration of the full production cycles of these
products, the validation studies over Turkey and Austria will be provided in the

proceeding parts.

21



Table 3-1 Snow products from some of the snow products (Surer et al. 2014).

Snow cover Sensor Available Spatial Temporal Mapping
product since resolution | resolution accuracy
NOAA/
NOHRSC AVHRR 1986 Daily 1km 76%
+GOES
NOAA/NESDI | GOES+S Daily/wee
S (IMS) SM/] 1998 Kly 4km 85%
MOD10AL, 94% (Hall
MYD10A1, . and Riggs,
MODI0AZ, 'I'\'/tla?rglfq 2000/2002 53'3 >00m, 2007;
MYD10AZ2, ua monthl1y 0.05° Parajka, and
MOD10C1, Bloschl,
MYD10C1 2012)
80% (Siljamo
& Hyvirinen,
2011)
HSAF MSG- .
(EUMETSAT) | SEVIRI 2008 Daily 5 km 69-81%
(Surer, and
Akyurek,
2012)

3.1. Snow Cover Area H10

SEVIRI instrument is an optical sensor which scans the Earth on board the MSG
satellite that is operated by EUMETSAT. The SEVIRI sensor scans Earth every 15
minutes in 12 spectral channels. It has approximately 3 km resolution over sub-
satellite point, and becomes around 5 km over Europe latitudes (Aminou, 2002). The
algorithm of H10 to define snow covered area is mainly based on use of different
spectral information from multiple channel measurements. It is basically the
exploitation of the high reflectivity of snow in the visible part of the spectrum, and
low reflectivity at shorter wavelengths. The algorithm of H10 is different over flat
and mountainous areas of working domain. The algorithm for flat areas uses
radiance of top of atmosphere in 6 SEVIRI channels, and brightness temperature
values from three different channels as the details can be found in Siljamo and
Hyvirinen (2011). The cloud recognition of flat regions algorithm depends on cloud
discrimination products generated in NWCSAF Project (NWCSAF, 2007).
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The algorithm designated to detect snow cover over mountainous regions utilizes
snow index (SI) that relates two different channels of SEVIRI instrument. The cloud
detection part of mountainous regions also depends on cloud products of NWCSAF
Project (Surer, 2008). In order to discard low illuminated areas from imagery a sun
zenith angle barrier is used by both of the algorithms. Also another filter for covering
pixels that are below freezing point is used (Romanov et al., 2003).

To define the mountain regions and separate the working area into two parts as flat,
and mountain, another algorithm mainly depending on the elevation values is used. It
is based on the mean elevation and standard deviation of slope values for each of the
5 km x 5 km (Lahtinen et al., 2009). The defined mountain mask is shown in Figure
3.1

15°0'0"W 0°0'0" 15°0'0"E 30°0'0"E 45°0'0"E
h f L

75°0‘0"N§_

60°0'0" N

45°0'0""N+ I:anumuin
GTOPO DEM
Meters
o
- 250
B 251 - 500
I 501 - 1.000
[ 1.001 - 1.500
3000'0"N- | [ 1.501 - 2.500
[ J2501-5500 |

15°0'0"W 0°0'0" 15°0'0"E 30°0'0"E 45°0'0"E

Figure 3-1 HSAF domain and mountain mask boundaries.

The H10 snow cover maps are produced by using 32 images from 08:00-16:00. To
mark a pixel as snow, at least 4 hits is expected to be counted within the 32 images.
The merged product from flat and mountain regions are produced on near real-time

at Finnish Meteorological Institute. A sample merged product is shown in Figure 3.2.
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Figure 3-2 Example of a MSG-SEVIRI snow cover map for February, 21st, 2012.

3.2. Snow Water Equivalent H13

The daily snow water equivalent (SWE) maps named as H13 are produced by an
assimilation technique utilizing modified Helsinki University of Technology (HUT)
snow emission model. The data from AMSR-E ease gridded descending brightness
temperature are downloaded from National Snow and Ice Data Centre (NSIDC) ftp
site. The gridded brightness temperature values are produced by NSIDC and
available in EASE-Grid projections at 25 km spatial resolution. The spatial coverage
of these products is global that covers nearly the entire Earth sphere and the temporal
resolution is daily. AMSR-E on NASA's EOS Aqua spacecraft stopped rotating on
Oct 4, 2011. Therefore the H13 snow product was started to be produced using
SSMI/S data on real time on April 10, 2012 and the archived data was produced
from April 1, 2009 till April 10, 2012. The related wavebands which are used in the
snow product (H13) development and available in both sensors are given in Table
3.2.
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Table 3-2 The frequencies of the bands for AMSR-E and SSMI/S sensors

AMSR-E sensor

SSMI/S sensor

Channel number  Frequency (GHz)

18.7H
18.7V
23.8V
36.5H
36.5V

Channel number Frequency

12 19.35H
13 19.35VvV
14 22.235V
15 37.0H
16 37.0V

Developed SWE retrieval methodology is shown with Figure 3.3.

AMSR-E Ease Gridded
Brightness Temperature Data of
10.7, 18.7 & 36.5 GHz Vertical
and Horizontal Channels

A 4

Projecting Ty(Brightness Temperatures) of 10.7,
18.7 & 36.5 Vertical and Horizontal Channels to
0.25 Degree Spatial Resolution Geographic Grid.

A 4

estimating daily snow
SD = ae—hn/‘. ) grain size (do)
AT background field

A 4

b
3 Estimation of daily snow
p = Xd' + y density(p) background
4 field

/ SD estimation for pixel in (
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\ 4

Assimilation for the pixel under
investigation

A

A 4
Snow Water
Equivalent SWE of
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Figure 3-3 Process flow chart of developed methodology (Beser, 2011)
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The HUT model is executed for every pixel falling inside the HSAF domain by
dividing the snow depth from 0.05 m to 1.00 m into 20 equal intervals of 5cm in
order to minimize sum of measured and modelled brightness temperature differences
at 18.7 GHz, and 36.5 GHz vertical channels. The snow grain size is calculated
dynamically in order to derive a dynamic density for each interval. Following these
calculations, a SWE value is assigned for each pixel. An example SWE map for
March 7, 2013 is depicted below in Figure 3.4. The full details of the algorithm is
presented in a study by Beser (2011).

300+

23l

200

F1a0

Snow water equivalent {mm)

Figure 3-4 A sample of H13 SWE product for March 7, 2013

3.3. Validation of Snow Products

The accuracy of the two different snow products is evaluated differently depending
on the properties and differences of these snow products; H10 and H13. The main
source of truth for validation is derived from ground station measurements for both
of the products. The exceedance limit of snow depth is chosen as 1 cm for accepting
the area as snow covered.

Different approaches are used for the validation processes over Turkey and Austria
depending on the availability and the density of the ground observations.
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3.3.1. Validation of H10

In order to test the performance and accuracy of the H10 product, it is compared with
ground measurements from Turkey and Austria. Due to the fact that the two data sets
from these countries are different the validation method is also slightly differs by the
utilized metrics. The daily ground measurements (snow or no snow) were compared
to the collocated pixel information in the snow cover map by making contingency
tables (snow, no snow) as in Table 3.3. For the validation, the most common
forecasting metrics, such as probability of detection (POD), hit rate (HR), omission
error (snow missing rate, SMR) and commission error (false alarm rate, FAR) were
used. These were calculated using the metric values described in Table 3.4.

Table 3-3 Description of contingency matrix

Ground Measurements
Snow None
Existence
Snow Cover | Snow Existence a b
Product None C d

Table 3-4 Validation metrics calculation

POD FAR HR SMR
a b (a+d) c
(a+c) (a+Db) (a+b+c+d) (a+b+c+d)

3.3.1.1 Validation over Turkey

Snow depth measurements from synoptic weather observation stations and climatic
stations were used for the validation of the H10 product. The data from those
meteorological observation stations are mainly composed of periodically-measured
snow depth information reported on a daily basis. The validation analyses using the
ground observations were performed for different snow seasons. The elevation of the
stations ranges between 808 m and 2500 m. The ground observations were obtained
from TSMS synoptic observation stations and the distribution of the observations is

given in Figure 3.5.
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Figure 3-5 Distribution of ground observations used in the validation studies.

The validation studies have been continuously done since 2008 and the overall

scores are given in Table 3.5. The results are presented with the requirements and the

final accuracy values. A detailed validation study of H10 product over mountainous

areas of Turkey is published by Surer and Akyurek (2012) and presented in

Appendix A.

Table 3-5 Overall accuracy results of H10 for flat and mountain areas in Turkey

Threshold Target Optimal Acc.  Acc.

Flat Mount. Flat Mount. Flat Mount. Flat Mount.
POD 0.80 0.60 0.85 0.70 0.99 0.99 092 0.67
FAR 0.20 0.30 0.15 0.20 0.05 0.05 033 013

3.3.1.2 Validation of H10 over Austria

This section of the thesis investigates the validity of H10 product over Austria from

2008 to 2012 by making comparison of ground measurements of snow. Austria is an

ideal region to test the accuracy of the H10 product since it gives chance to observe
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the behaviour of H10 in different elevation zones, and also different land uses. Being
close to some parts of the Alp Mountains, significant amount of precipitation in the
form of snow is seen throughout the year. In addition to the ground measurement, a
comparison of the product over Austria with combined MODIS snow products is
also presented. The details of the validation procedure is provided in a paper
published by Surer et al. (2014), and given in Appendix B.

3.3.2. Validation of H13

The validation of SWE (H13) product against ground snow depth measurements has
two parts. The first part shows the ability of H13 to indicate if the region (pixel) is
covered by snow. In the second part, the H13 estimates of SWE are compared with
SWE derived from snow depth observations at meteorological stations.

3.3.2.1. Validation of H13 over Turkey

The validation of the H13 product is being carried out using Synoptic station
observations and values measured during individual snow courses. In-situ
measurements are compared individually with the corresponding 25 x 25 km? H13

snow product grid.

It should be kept in mind that SWE product is developed for dry snow conditions.
Therefore for any pixel, if snow status has been detected as wet, no SWE calculation
was done and SWE value was set as 0.0 mm. Hall et al. (2002) describe a simple

algorithm to detect snow status. First snow depth (SD) is determined by:

SD = 15.9 (Th18.7H — Th36.5H) (3.1)

where Th is brightness temperature and subindices denote the channels. If the

conditions in equation (3.2) are met the data is classified as dry snow.

SD > 80 and Tb36.5V < 250K and Th36.5H < 240K (3.2)
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Snow status can also be checked for the snow state of pixel in which validation
measurement exists. If the snow state of station is stated as wet then that station is
excluded from validation studies. RMSE is used as the statistical metric to present
the accuracy. Developed algorithm for SWE is valid for snow depths in between 20
cm and 100 cm. Snow depths out of this range cannot be modelled because of
capabilities of the sensor. Thus, during validation studies measured snow depths out

of this range are neglected.

If there exists only snow depth measurements, these values are multiplied with
average snow densities that range in between 0.25 g/cm? to 0.30 g/cm?® in order to
obtain SWE values. The validation results obtained since 2010 are given in Table
3.7. The calculated mean snow water equivalent values obtained from H13
corresponding to measured snow water equivalent values for the period January,
March for the years 2010, 2011, 2012 and 2013 are given in Figure 3.7.

Table 3-6 Validation results of H13 product over Turkey
Year 2010 2011 2012 2013
RMSE (mm) 46.14 4524 4554 39.62

3.3.2.2. Validation of H13 over Austria

The assessment of the overall snow cover accuracy (ka) of H13 is presented in
Figure 3.8. The ka varies between 24.4% at the Sonnblick (3109 m) in the Eastern
Alps (Carinthia) and 99.6% in Seibersdorf (185 m) near Vienna. Similarly as for
H10, the H13 the accuracy in the flatland is higher than mountain regions such that
the median of ka is 88.8% for flatland, and 80.3% for mountain regions. The results
indicate that in the Alps, the snow cover accuracy of H13 tends to be lower than H10
while in the flatland region (with shorter snow cover occurrence) is the H13
accuracy similar to H10.
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Figure 3-6 The calculated mean SWE values obtained from H13 corresponding to
measured SWE values for the period January, March for the years 2010, 2011, 2012
and 2013 (HSAF-PUM, 2013).
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Figure 3-7 Overall accuracy (ka, %) of H13 product at 178 meteorological stations
in the period April 2008-June 2012.

The seasonal frequency of H13 snow cover mapping errors is presented in Figure
3.9. The left and right panels show the frequency of H13 over (ko) and under (ku)

estimation errors, respectively. From this assessment, it is clear that the microwave
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H13 product significantly underestimate the snow cover at meteorological stations,
particularly at locations, which are situated above the H13 pixel mean. The mapping
errors are obviously the largest in winter and exceed 50% even for stations, which
are located below the mean pixel elevation. The largest ku errors exceed 80% at
stations situated more than 500m above mean pixel elevation in April and December.
The snow cover over-estimation errors are very small, the largest ko errors exceed
20% only at locations significantly (more than 500m) below the mean pixel elevation

in February and March.
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Figure 3-8 Seasonal frequency of H13 snow overestimation (ko, left side) and
underestimation (ku, right side) errors that are summarized for stations at different

elevations, and matching H13 pixel mean.

A clear underestimation of snow is documented also in Figures 3.10 and 3.11, which
compares H13 microwave estimates of SWE with SWE derived from daily snow
depth observations at two meteorological stations in the mountains (Figure 3.10) and
flatland (Figure 3.11) regions. The station SWE is plotted as a range of SWE values
by using two different snow densities (0.150 and 0.300kg/m3) in the derivation of

SWE from the snow depth values. Even if the snow density is not measured on daily
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time scale, the range of values used in the assessment shows a probable variability
during the snow seasons. The results indicate that the maximum SWE values from
the H13 product are around 100mm, which is significantly lower than derived from
the observed snow depth measurements. The snow depth measurements at Brand
station (Figure 3.10) exceed in some days 5m, which is clearly not captured by the
H13 product. Also the snow depth observations at the beginning of winter seasons
are not estimated from the microwave observations. Similar underestimation of SWE
is observed in the flatland region (Figure 3.11), where there is no snow estimated for
shorter snow events in the 2010 and 2011 winter seasons and only a small

overestimation of SWE observed for 3 days in February 2010.
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Figure 3-9 Comparison of pixel SWE estimate from H13 satellite product, and SWE
estimated from snow depth observations at Brand station (Vorarlberg region).

Station is located approximately at the mean pixel elevation of H13 product (1014

m).
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Figure 3-10 Comparison of pixel SWE estimate from H13 satellite product, and
SWE estimated from snow depth observations at Eisenstadt station (Burgenland
region). Station is located approximately at the mean pixel elevation of H13 product
(184 m).
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CHAPTER 4

HYDROLOGICAL MODELING AND SENSITIVITY ANALYSIS

41 General

Model parameters should be accepted as important part of the structure of the model
which can be used in order to fine tune the model output. These parameters can be
estimated by use of different approaches such as using an initial estimate considering
the catchment physical characteristics, and look-up tables, manually and/or
automatic calibration using optimization algorithms, and using transfer functions in
between similar basins (Abebe et al., 2010, Yilmaz et al., 2010). In modelling, the
main idea is to estimate the model parameters through calibration of the model by
matching simulated outputs with the observed ones. Various reasons may result in
uncertainties in modeling effort which in turn can adversely affect model predictions.
In order to reduce the level of uncertainty, the detailed analysis of behaviors and
sensitivities of parameters should be performed. Therefore sensitivity analysis is an
important research topic in hydrological modelling. The common approach is to
assume constant model parameters in certain time, while the characteristics of the
test basin remain constant. In model calibration the optimum values of the
parameters describing the model structure is aimed to be identified. Indentifiability is
described as the level of how well a parameter is defined in model structure. The
length and content level of the data used for calibration may affect the optimum
values of a parameter (Wriedt and Rode, 2006). There is an increasing number of
studies in hydrological literature statin that rather than optimality, “equifinality”
must be sought in the parameter estimation. Equifinality indicates the ability of
systems to reach the same state from different starting conditions (Bertalanffy,
1950). This concept has also been applied by Beven and Freer (2001) in hydrology,

they grouped the parameter sets as behavioral and non-behavioral. They stated that
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behavioral parameter sets allow models to simulate the observed variables to a
higher degree, as measured by objective functions and they found no unique solution
to the calibration of hydrological models. This approach of creating a set of variables
for observing their behaviors in a margin of specified thresholds has been proposed
by Hornberger and Spear (1981) in their well-known Generalized Sensitivity

Analysis framework.

4.2  Sensitivity Analysis of the model parameters

Sensitivity analysis of the model parameters is considered in order to depict the most
sensitive parameters. The HBV model is firstly calibrated via SCE-UA method
(Duan et al., 1992, Duan et al., 1994) with the data from October 1, 2008 through
September 30, 2013. The ranges of the model parameters used in the automatic
calibration are given in Table 4.1; these values were determined by using the initial
levels applied by Parajka & Bldschl (2008).

i- Calibration with runoff only

The calibration of model was performed by using a single objective function where
the model parameters were obtained using measured runoff only. The runoff

objective function is defined as;
where the weight wo is set to 0.5 and both the high (Mg) and low flows (Mg'®?) are
combined in the optimization.

ii- Calibration to both runoff and H10 snow product

The calibration of the model is performed by using a single-objective function where
both runoff and H10 snow cover data were combined through a weighting scheme.
The compound objective function Zm, which involves two parts Zq and Zs that are
related to the runoff and the snow cover respectively, is minimized to obtain the

model parameters.
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The coefficients are obtained through a sensitivity analysis. The snow part of the
objective function represents the sum of the over and underestimation snow errors:
ZS == WlSEO+ WZSEU (43)

where w1 and w2 equal to 1, and the over and underestimation errors are set equally

weighted.
Table 4-1 Model parameters
Model parameter Model Lower  Upper
component

Snow correction factor(-) CSF Snow 0 1.5
Degree Day factor(mm/°Cday) DDF Snow 0 5.0
Rain air temp. Thresold (°C) Train Snow 2 2
Snow air temperature Tsnow Snow -2 -2
threshold (°C)
Melting air temperature Tmelt Snhow -2.0 2.0
threshold (°C)
Soil moisture state/maximum LP/FC Soil 0 1.0
soil moisture storage (-)
Maximum soil moisture FC Soil 0 600
storage (mm)
Runoff generation to the soil BETA Soil 0 20
moisture state (-)
Very Fast storage coefficient Ko Runoff 0 2.0
(days)
Fast storage coefficient (days) Ki Runoff 2.0 30
Low storage coefficient (days) K2 Runoff 30 250
Threshold of storage state Lsuz Runoff 1.0 100
exceedence (mm)
Percolation rate (mm/day) Crerc Runoff 0 1.0

Bmax Runoff 10 10
Routing parameter Croute Runoff 26.5 26.5
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During the sensitivity analysis calibration is performed by using a single objective
function, where the model parameters are obtained using measured runoff only.
During calibration NSE measure is used. PBIAS, RMSE and correlation coefficient

are the other statistical measures used in the sensitivity analysis.

A parameter set that is accepted as most representative is obtained by calibrating the
model. Following the calibration, feasible range of each parameter is divided into 20
equal increments and their behavior is observed while the other remaining
parameters are fixed during new runs. Figure 4.1 shows that the response parameters
Lsuz, Crerc, Ko, K1, and Kz are insensitive to the PBIAS. Lsuz and K1 appear to be
sensitive to RMSE and correlation coefficient indicating that they have an effect on
high flow series and timing of the discharge. Crerc is sensitive to RMSE and
correlation coefficient. None of the response parameters has an optimum value in the
statistical measures as the parameter varies. It has been observed that parameters
Lsuz, Crerc, Ko, and Kz play roles in the response and transformation routines. They
influence the high flow series more than the volume balance. Lsuz, Ko, and K1 are
parameters that control the overland runoff and the quick interflow. Their influence
on the catchment response is through changing the shape of the outflow hydrograph
at the outlet of the catchment and hence they have negligible effect when it comes to
the overall volume. On the other hand, Kz is the parameter controlling the baseflow
from deep groundwater and is expected to have an effect on total volume, for this
basin it is found insensitive within the given range. Crerc and K2 work together. A
higher value of Cperc allows high flow of water from the upper to the lower
reservoir and indicates more storage in the lower zone. K2 determines the baseflow.
It is the main parameter that controls the low flow series. Cperc controls the volume

of flow in the first tank.

Figure 4.2 shows the soil parameters (Lrrat, FC, BETA) and routing parameters
(Bmax and Croute) sensitivity with reference to PBIAS, RMSE, NSE, and
Correlation Coefficient. Lrrat and BETA show sensitivity to PBIAS, RMSE, and
correlation coefficient indicating their effect on total volume, high flow series and
timing of the flows. FC is sensitive to RMSE and correlation coefficient and also
shows sensitivity to PBIAS. FC is the parameter that divides the precipitation into
soil moisture and surface runoff. If the FC is lower, then it means also the water
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holding capacity of the soil is very low. It also indicates the amount of surface
runoff. Lerat iS the ratio between the soil moisture state and the maximum soil
moisture storage. It calculates the actual evapotranspiration in relation with the
currently available soil moisture. In this semi-arid catchment BETA was found as the
most dominant parameter of the model controlling the volume error. Bmax and

Croute are insensitive to all the statistical measures used.

Figure 4.3 shows the sensitivity of snow parameters (CSF, DDF, Train, Ts and Tmeit)
with reference to PBIAS, RMSE, NSE and Correlation Coefficient. Train and Ts are
found insensitive to all the statistical measures. Tmeit appears to be sensitive to
correlation coefficient, indicating that it controls the high flow series. Degree Day
Factor (DDF) is sensitive to PBIAS, RMSE and correlation coefficient. Within 10%
change in the range of DDF, the volume balance changes. DDF affects the amount of
water due to melting of snow. It also controls the high flow series and timing of the
flows. Snow Correction Factor (CSF) also controls the volume error, high flow

series and timing of the flows.

None of the used statistical measures indicate the sensitivity of parameters to low
flow series. Therefore in addition to the performed sensitivity analysis signature
measure is used to find out the parameter sensitivity to low flow series. Signature
measures are defined as hydrologic response characteristics that provide insights into
the hydrologic functioning of the catchments (Sawicz et al., 2011). Flow duration
curves can be used to diagnose model performance for different characteristics of the
catchment. Dividing the flow duration curve into segments leads to a process-based
calibration for the dominant processes within the catchment, which are reflected by
the different parts of the hydrograph. It is well-known that FDC does not include
information on accurate flow timing. Yilmaz et al. (2008) used FDC to derive the
signature measures to quantify the performance of a distributed hydrological model.
They used four divisions in FDC and investigated the applicability of the FDC
segments, especially for high flow events with a range of flow exceedance
probability between 0- 0.02%.
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The low flows are considered within the range of flow exceedance probability
between 70% and 100% with logarithmic discharge volumes without further
subdivision. Pfannerstill et al. 2014, designed additional segmentation of the FDC.
They used 5 segments in the FDC and with this segmentation very low and very high
flows are segmented in the flow duration curve in equal ranges. The very high flow
range was defined below Q5, high flow range was defined between Q5 and Q20,
middle flow range was defined between Q20 and Q70, low flow range was defined
between Q70 and Q95 and very low flow range was defined between Q95 and Q100.
In this study 5 segments were used and the parameter sensitivities were analyzed for
different parts of the FDC. Figure 4.4 presents the FDC of the simulations where one
parameter changes and the rest 14 were kept at their optimum value. RMSE was
used as the statistical measure to make the comparison of different parts of the FDC
and the results are presented in Figure 4.5. It is observed that BETA, Bmax, Croute,
Tsnow do not show any sensitivity to the flow partitions in FDC. Cperc, Lprat and
Tmelt are the parameters found as insensitive to very low flows. Lsuz, Ko, K1, K2, and
FC are found as sensitive to very low flows. It is expected for the snow parameters
CSF and DDF control the volume error, it is observed that CSF, DDF and Train
show sensitivity to very low flows too. This can be due to the existence of parameter

interaction.

In general Lerat, FC and BETA as soil parameters and DDF and CSF as snow
parameter control the volume error, Lsuz, Ko, K1 directly and Ceerc and Kz indirectly
control the high flow series and timing of the flow, Tmeit controls the maximum flow
series. Lsuz, Ko, K1, K2 and FC control very low flows. Bmax, Croute, Train, Tsnow
are found as insensitive for this catchment. The sensitivity analysis has shown that
model calibration should be made multi-objective in order to better reflect catchment
responses on different modes, since NSE and RMSE mostly emphasizes only the
high flow series (Gupta et al., 2008).
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4.3  Sensitivity analysis of the model thresholds

The cloud coverage is an important factor in snow mapping. The reliability of the
snow cover data depends on the cloud coverage. Number of days available for
calculating SCA from H10 for different cloud thresholds Cc ranging from 0.10 to
0.80 were obtained (Figure 4.6). Days are expressed as the frequency relative to the
total number of days in the period 2011-2012. The magnitude of the threshold {c
affects the number of days for which H10 images are available. A threshold of {c <
20% , SCA images are available on at least 42% of the days in the catchment. The
good temporal resolution of H10 snow product provides more images having less
cloud coverage. The SCA was estimated for different H10 snow products, only using
images with less than 10%, 20% and 60% cloud cover (Figure 4.7). During most of
the season, they are very similar. The exception is SCA gets scattered for the days Cc
< 60%. The larger scatter may be related to the more frequent snow melt and rain-
on-snow events. In previous hydrological modeling satellite images having cloud
cover <25% were used (Tekeli et al., 2005). The model is run using different cloud
thresholds (Table 4.2). According to the results cloud coverage threshold Cc < 60%

gives the lowest volume error and maximum NSE results.

100 T========--meemeemeememmemeem—--——--

Relative frequency (%)

Cloud (%)

Figure 4-6 Available number of dates used related with cloud cover percentage
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Figure 4-7 Change of SCA from H10 product for different cloud thresholds

Table 4-2 Model performance for different cloud thresholds.

Cloud Cloud Cloud Cloud Cloud

<10%  <20% < 40% <60% < 80%

Volume 0.0149 -0.0335 -0.0028 -0.0049 0.0022
error

Mg 0.7941 0.7914 0.7704 0.86 0.8021

logMe 0.7204  0.7002 0.7236 0.83 0.7909

In the comparison of the model simulations and the H10 snow cover observations,
thresholds Csca and Cswe are used to define over and underestimation errors. It is

obtained that snow overestimation error is sensitive to threshold Cswe. As Cswe
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increases from 0 to 10mm the snow overestimation error is decreasing from 11 days
to 4 days (Figure 4.8). The underestimation errors are largest for {sca=0 and as SCA
value increases, the underestimation days are decreased and get the value of O (Table
4.3). During the sensitivity analysis of thresholds Csca and Cswe single-objective
calibration to only observed runoff has been used. Csca = 25% and Cswe = 0 were

selected for the rest of the study.

12
10

)

Snow Overestimation

o N S o)) 00
I

0 2 4 6 8 10 12
SWEthreshold

Figure 4-8 Snow overestimation error to different thresholds {swe

Table 4-3 Underestimation error with respect to different threshold Csca

Csca 0 1 5 10 15 25 30
SeY 620 0 0 0 0 0 0
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CHAPTER 5

MODEL CALIBRATION AND DISCUSSION OF THE RESULTS

51 Model Calibration

Hydrological models have to be calibrated accurately to provide reasonable model
results. Generally model parameters representing specific catchment characteristics
are calibrated to the measured discharge time series. The most suitable parameters
are selected with a sensitivity analysis (van Griensven et al., 2006). A challenge of
hydrological models is to adequately represent all phases with the same model
parameter set (Madsen et al., 2000). Generally, model simulations are evaluated by
performance metrics, which can be divided into statistical metrics and signature
metrics. In this study HBV modelling concept is modified by considering a multi-
metric framework evaluation in model parameter calibration in addition to classical

calibration approach by using observed discharge series.

i- Calibration by using statistical metrics:

Two different model calibrations were performed by using SCE-UA. NSE, and VE
are used as performance metrics to quantify the accuracy of high flow events and
their timing. To emphasize the low flow periods, logarithmic transformation of
discharge are used with NSE. The model was calibrated to runoff only and then it
was calibrated to both runoff and H10 snow cover. Table 5.1 presents the statistical
evaluation of the runoff model efficiencies (Mg, Me'®?), runoff volume error and the
snow model errors (SeV and Se°) obtained by single-objective calibration to
measured runoff only. The simulated runoff and the observed runoff with the
precipitation distribution are depicted in Figure 5.1.
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In the second calibration, the model was calibrated to both runoff and the H10 snow
cover data. In the calibration a runoff component and a snow component that are
weighted by ws are used. When only snow component is used in the objective
function, ws gets the limiting factor which is 1, and when ws = 0 it indicates the
calibration is performed to runoff only. A sensitivity analysis was performed to
understand the effect of ws (Figure 5.4). It is observed that Me does not change
significantly for the whole interval of ws variation. When ws exceeds 0.90, Me starts
dropping so small for the calibration using runoff only. Similarly snow model error
(the sum of over and under estimation error) does not show big changes for ws
between 0.9 and 1.0. When ws drops below 0.9, Se begins to increase since not much

information on the H10 is used in the calibration.

Table 5-1 Statistical measures obtained from model run by two different calibrations
and the calibrated model parameters.

CALIBRATION (2009-2012)

Statistical Measures Runoff Runoff+H10  H10 only
onl

Volume Error 0.0())/12 0.0094 -0.1688

Snow overestimation 18 0 0

Snow Underestimation 0 0 0

Me 0.8421 0.7611 -0.7098

logMEe 0.7621 0,6994 -0.1356

Model Parameters

CSF 1.4864 1.4119 0.7001

DDF 1.0986 3.6389 4.7343

Tr 2 2 2

Ts -2 -2 -2

Tmelt -1.9296 -1.9942 0.0101

LP/FC 0.0179 0.0196 0.5996

FC 230.7042 225.0944 223.1497

BETA 0.3009 0.2861 11.8676

Ko 0.8114 1.7933 1.3591

K1 29.4026 28.6689 12.9841

K2 109.6936 54.4516 168.8469

Lsuz 97.841 38.1338 73.7456

Crerc 0.9826 7.8167 4,947

Bmax 10 10 10

CrouTe 26.5 26.5 26.5
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The model was calibrated by using H10 snow cover data only. The model parameters
are presented in Table 5.1 and the simulated runoff hydrograph is given in Figure
5.1, 5.2, and 5.3. In calibrating the model to H10 snow cover data, parameters were
obtained different from the ones obtained by using runoff only and runoff and H10
together. The most different parameters are DDF, and Tm, which are part of snow
routine of HBV model. The results of calibration by using only runoff values, and
integrating H10 were completely different. This makes it possible to refer that these
data are independent but can be used in a complementary way. The ws parameter,
which is a representative trade-off between the runoff and snow objectives, was
selected as 0.9.
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ii- Calibration with low flow signature metrics

In order to present the model performance for different flow periods, flow duration
curve (FDC) is used as a signature metric. In several studies FDC was segmented
into different parts as fast flow, which is controlled by large precipitation events and
a mild flow segment, which is controlled by moderate size precipitation events and
slow flow segment which considers retention due to catchment storages segment and
it is controlled by catchment parameters (Yilmaz., 2008; Pfannerstill et al., 2014). 5
segments were used in this study. To account for the very high flow range, FDC was
defined for the flow exceedance probability of 5% (Q5), for high flows between Q5
and Q20, for mid. flows between Q20 and Q70, for low flows between Q70 and Q95
and for very low flows the flow exceedance probability of 95% (Q95) were used.
This segmentation was used by Pfannerstill et al., (2014). Figure 5.5 presents the

flow segments on a FDC.

In performing the calibration runs Monte Carlo simulation was implemented. Among
15 parameters, 4 parameters set as constant values as they were found insensitive in
the sensitivity analysis as described in Section 4.2. The other 11 parameters were
changed randomly. 25 000 runs were performed and in the first step, a ranking from
best performance metric to worst performance metric value was calculated for the
NSE, RMSE_Q5, RMSE_Q20, RMSE_mid, RMSE_Q70, and RMSE_Q95. The
best performance for the NSE is 1 and for all RMSE the best performance is 0. In the
second step, a value above the threshold defined by the %20 of the best model runs
was applied to select the best simulation runs for each performance metric
independently. These selections were plotted with the NSE against PBIAS for every
performance metric. Afterwards, these selections were intersected with each other to
identify the simulation runs with the best combination, where all performance
metrics have a value above the threshold as determined by the 20% of best
simulation runs. All calibration runs with NSE lower than 0 were excluded from the

data set.
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Figure 5-4 Sensitivity of the runoff model efficiency (normalized ME, red dashed

line) and snow cover error (normalized SE, blue line) to the weight ws.
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Figure 5-5 Flow segments on FDC

In the third step, different ranking values of the performance metrics for each
calibration were summed up to obtain a joined ranking. The optimum values for all
performance metrics were obtained by intersecting the final ranking with the one
having NSE greater than 0.6 (Figure 5.6).

The stepwise intersection of the best selection runs resulted in a small group of best
calibration runs (Table 5.2). The NSE, PBIAS and RMSE for all the flow parts are
depicted. The NSE values are very similar and the PBIAS are between 0.741% and
2.143%. Among the flow parts in the FDC, the highest RMSE values were obtained
for the very low flow parts. The minimum RMSE were obtained for the mid-flow
part of the FDC. The very high flow simulations are also comparatively good. These
results are matching up with the findings of Pfannerstill et al. (2014). The model
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parameters obtained for these best runs are given in Table 5.3. The calibrated model
parameters with the SCE-UA algorithm are also given in this table. CSF, Lprar,
BETA, Ko, K1, Lsuz, and Cperc do not show too much variation among these best
run values, but DDF, Tmer, FC, K2 show variation. When the best run values are
compared with the ones obtained by SCE-UA, the values are close to the values
obtained by SCE-UA, only DDF, Tmet and K2z values show some variation. The
precision of the parameters obtained by SCE-UA is higher than the precision of the

parameters obtained through joint ranking method.

Table 5-2 Final selection of best calibration runs

Calibration NSE | PBIAS RM_SE
run Q95 Q70 Mid Q20 Q5
538 0.887 | 2.143 0.739 | 0.217 0.083 0.122 | 0.145
1524 0.874 | 1.547 0.756 | 0.230 0.102 0.131 | 0.174
1686 0.875| 1.818 0.786 | 0.228 0.084 | 0.116 | 0.144
1860 0.893 0.741 0.744 | 0.172 0.103 0.120 | 0.141

2346 0.875| 1.802 0.773 | 0.221 0.097 0.128 | 0.160

2706 0.890 | 0.965 0.802 | 0.168 0.084 | 0.094 | 0.111

2824 0.899  1.315 0.643 | 0.199 0.114 | 0.131 | 0.162

3183 0.890 [ 2.013 0.681 | 0.208 | 0.104 | 0.148 | 0.195

For visualizing the general performance of the best calibration runs, the simulated
discharges were compared with the observed discharges (Figure 5.7). The overlay of
the selected calibration runs resulted in small discharge band, because all the
simulated discharges are similar. All simulation runs tend to over predict high peak
events of the hydrograph which occurs due to rainfall only. The low flow and
recession events are predicted satisfactorily for recession in 2011 and 2012. The
hydrograph simulation using SCE-UA overlays with the best run hydrograph
simulation result as well. The early peaks due to snow melting of the hydrograph are
simulated better for the best run simulations for the years 2010, 2011 and 2012.

The FDCs for the best runs are presented in Figure 5.8. The very low flow discharge
shows an underestimation, the very high flow and high flow discharge show slight
underestimation, the mid flow segment of the flow duration curve shows an

overestimation in the part of lower than 50% exceedance probability.
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3

Figure 5-6 Stepwise evaluation of discharge calibration results.
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Figure 5-8 FDC of observed discharge (black), and the selected best calibration runs

(gray)

5.2 Model Verification

The model parameters obtained from the calibration were used in the model
verification. The validation was performed for the water year 2013. The results are
presented in Table 5.4. The simulated runoff for the verification period is given in
Figure 5.9. The best eight runs are shown in Figure 5.10. The simulated SWE values
obtained from the model were compared with the snow cover area derived from H10
snow cover data in Figure 5.11, and Figure 5.12. The more scattering in SCA is seen
for zone A. This zone has the lowest elevation and smallest area compared to the
zones B, C and D. Due to the coarse spatial resolution of H10 snow product, SCA
percentages show variations much in this zone. The melting time coincides with
model simulated SWE and H10 SCA observations. In zone A melting starts at the
end of January whereas usually it starts in February, in zone B the first melting
occurs at the end of January due to the temperature rise above 0 °C on 27" January
2013, and then second melting starts at the end of February, in zone C and D at the
end of March, in zone E at the end of April. Temperatures were increased quickly
after 29" March 2013 in zone D, and the melting occurs very fast. In all the basins
melting occurs in 7 or 10 days due to temperature increases where the change of

temperature for verification period is given in Figure 5.13.
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Table 5-4 Statistical measures for the validation period

Runoff only Runoff+H10

Volume error 0.144 0.187
ME 0.665 0.652
logME 0.615 0.40
Snow over estimation 1 0
Snow under estimation 0 0

Contributing the snow cover in calibration does not provide too much improvement
in runoff simulations. The most noticeable differences between the multiple-
objective and single-objective snow model performance are the decrease in the snow

overestimation errors.

H13 SWE data were also used to make a comparison between the model simulated
SWE and SWE retrieved from satellite data. The comparisons indicate that H13
product overestimate the SWE compared to model simulated SWE values. This

results supports the findings in the literature (Pulliainen and Hallikainen., 2001).

The quality of SWE data is often not good enough for use in hydrology, large errors
are found in microwave estimates compared with measurements. In zone A
maximum SWE obtained from H13 is 159 mm and it is occurred on March 6, 2013
whereas model gives maximum SWE as 58 mm on January 15, 2013. In zone B
maximum SWE obtained from H13 is 183 mm and it is occurred on March 8, 2013
whereas model gives maximum SWE as 56 mm on January 22, 2013. In zone C
maximum SWE obtained from H13 is 183 mm and it is occurred on March 8, 2013
whereas model gives maximum SWE as 87 mm on March 8, 2013. In zone D
maximum SWE obtained from H13 is 176 mm and it is occurred on March 8, 2013
whereas model gives maximum SWE as 165 mm on March 26, 2013. In zone E
maximum SWE obtained from H13 is 151 mm and it is occurred on March 10, 2013

whereas model gives max SWE as 253 mm on March 30, 2013.
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year 2013 (red lines indicate the border where the temperatures are lower than 0 °C.
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5.3 Discussion of the Results

The accuracy of H10 product is evaluated in Chapter 3. This product is created by
using 32 consecutive images per day from SEVIRI sensor of MSG satellite. The use
of multiple images per day in optical spectrum enhances the chance of reducing
quick moving phenomena such as cloud contamination before stepping towards
snow mapping. This type of merging satellite imagery provided to make significant
cloud reduction over Austria, and Turkey. Mean annual ratio of cloud coverage is
around 30% for H10 product, which is more than 20% lower than snow products that
are generated using MODIS data. A disadvantage of H10 product can be its rather
low spatial resolution as 5 km over European domain. Despite the coarser spatial
resolution of H10, the overall mapping accuracy is moderately higher. The average
accuracy for cloud-free days is 89 %, which is 5% lower than obtained by the
MODIS-combined product, but similar to that obtained by land-surface (JULES)
model simulations driven by a regional climate model HadRM3-P (Parajka et al.,
2010). The overall accuracy also relates well with the hit rate measure of Surer and
Akyurek (2012), which is in between 68 and 81% in winter. The accuracy with
respect to all weather conditions (in all weather conditions assessments the pixels
with clouds are considered as mapping errors) is, however, about 3—-4% better than
the one which is obtained by MODIS product. The higher frequency of information
about SCA, even for lower spatial resolution, indicates the potential of H10 for using

in operational assimilation into hydrologic models.

The mapping error analysis shows that H10 has a tendency to underestimate SCA,
especially in flat regions. High mapping errors are observed over Alpine territory
due to high elevation variation and quick changes in SCA. The highest errors are
observed to be resulted from the stations that are located at an elevation which has
high altitude difference between the mean elevations of the H10 pixel. This type of
mapping errors also indicates the need to find a better way of validating such satellite
products having lower spatial resolution, instead of using ground measurements

having low representativeness of the matching pixel.

In order to tackle with this kind of scaling problems between pixel size of the

satellite product and ground measurement, different threshold values to accept
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ground as snow covered has been utilized (Bloschl et al., 1991; Bloschl, 1999;
Skeien et al., 2006). Simic et al. (2004) studied the sensitivity of the mapping
accuracy to the reference threshold of 1 cm, and 3 cm. They found that the difference
is small, ranging approximately between —2 and 4 %. In this study, a 1 cm threshold
Is used in order to be consistent and comparable with other studies performed in
Austria.

The snow detection algorithms for H10 and MODIS snow products show
resemblance in many ways. The metrics used as NDSI, and SI shows a close
relationship (Surer and Akyurek, 2012). The selected Sl threshold value of 0.6 for
the snow-cover area retrieval corresponds to 0.2 for the NDSI value. For the MODIS
products the NDSI value for 50% snow-covered areas is taken as 0.4 (Dozier, 1989;
Hall et al., 2002). The aim of selecting Sl as 0.6 is to include the partial snow-
covered areas in the retrieval of H10 product. This small difference is resulting from
lower spatial resolution of H10.

The outcomes of this work presents the importance of using satellite imagery driven
snow information in hydrological and climatological studies by relating spatial and
temporal resolution criteria. The H10 and MODIS products generally show a good
agreement on overall comparison. H10 product has higher under and overestimation
errors when compared to MODIS product. Especially, over mountainous regions
these errors increase mainly due to high elevation variation and hardness to reflect
the changes in rather coarse spatial resolution. Spring and summer periods are the

ones that higher errors are observed for both of the products.

Besides the spatial resolution affecting the snow mapping accuracy, the difference in
the viewing geometries of two sensors may have an effect on the snow mapping. The
influence of the changing MODIS view zenith angles on snow mapping algorithm
must be investigated in detail, since this factor can be one of the sources of error in
snow mapping. As view zenith angle increases, it is known that NDSI decreases
(Xin et al., 2012). Since MODIS observes the surfaces at a much smaller view zenith
angle (VZA) than the H10, it may detect more snow cover area. That may be another
reason to observe large underestimation errors for H10 compared to MODIS in
winter months. The narrow band width in the Green and Middle Infrared portion of

the electromagnetic spectrum of MODIS may create a possibility to detect more
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SCA compared to H10. The overestimation for spring months is due to the high
percentage of fractional snow cover due to melting in these months. The algorithm of
H10 tends to find more snow over fractional SCAs. Neither the effect of complex
topography, nor the shadows were held in the H10 snow mapping algorithm.
Therefore the H10 generation algorithm can be modified with the use of a proper
Digital Elevation Model (DEM) in order to correct the topography effect. Better
snow cover information can be retrieved by using H10, and MODIS snow products
together. The cloud-contaminated MODIS snow pixels can be reclassified according

to the values observed from the H10 product.

The validation of microwave H13 products at the selected climate stations indicates
noticeable underestimation of H13 in comparison to observed snow cover and snow
depth observations. Underestimation is more significant in the mountains than in the
flatland regions, so more effort is needed to capture representative snow water
equivalent at the regional scale. In the future, it is important to account for the sub-
grid variability of snow characteristics and to improve the SWE estimation of larger
snow packs. Besides the importance of spatial resolution of snow products, a better
temporal resolution helps to increase the cloud/snow discrimination, which is very

important for the use of satellite snow products in further analysis.

The sensitivity analysis of HBV model parameters were analyzed in Chapter 4.
HBV model was calibrated to runoff alone and after finding the optimized values of
15 parameters, 14 were kept at their optimum values and the remaining one was
changed within the limits available in the literature. Within the domain of the
parameter the model performance was tested by using statistical measures indicating
the sensitivity of the parameters to volume error, timing of the discharge series and
simulation of peak discharges; percent bias, RMSE, NSE, and correlation coefficient.
FDCs segmented into different flow parts were also used to find out the sensitivity of
the parameters to hydrological measures. In general Lerat, FC and BETA as soil
parameters and DDF and CSF as snow parameter control the volume error, Lsuz, Ko,
Kudirectly and Crerc and Kz indirectly control the high flow series and timing of the
flow, Tmeit controls the maximum flow series. Lsuz, Ko, K1, K2, and FC control the
very low flows. Bmax, Croute, Train, Tsnow are found as insensitive for this

catchment.
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Two approaches were used in the calibration stage. In the first one an optimization
method namely SCE-UA algorithm was used for the calibration of 11 parameters to
runoff only and to runoff and H10 snow product. The calibrated parameters do not
show too much difference between the ones calibrated to runoff only and the ones
calibrated to runoff and H10, except DDF, Ko, K2, Lsuz and Crerc. It indicates that
including snow product affects the structure of snow routine, very fast storage and
slow storage of the model. Though a slight decrease in the statistical measures
testing the performance of the model calibration was observed, the most noticeable
differences between the calibration to runoff and H10 and calibration to runoff only
are the decrease in the snow overestimation. This indicates that constraining the
model parameter estimation to runoff and H10 snow cover provides in general more
robust parameter sets than parameter optimization based on the runoff data only.
During the sensitivity analysis of thresholds Csca and Cswe snow simulations are
obtained by single-objective calibration to the measured runoff only. {sca=25% and
Cswe=0 were selected for the study. Sensitivity of the runoff model efficiency and
snow cover error to the weight ws indicates 0.9 for ws as the trade-off between the

runoff and snow objectives.

In the second approach the calibration of the model was performed by using
hydrological measures. In order to assess different phases of the hydrograph, FDCs
were used. They were segmented into five different parts indicating very high, high,
middle, low and very low flows. The segmented FDC were used as the hydrological
metric to define the performance of the model for low flows, midrange flows and
long term water balance. The NSE, PBIAS, and RMSE of the different parts of the
flow on FDC were used in the evaluation of the calibration process. Using multiple
performance metrics in discharge calibration is a key to accounting for different
discharge events. Independent ranking of several performance metrics, followed by a
threshold selection, showed characteristic distribution patterns by combining the
NSE and PBIAS. NSE and PBIAS metrics indicate the error in high flow
simulations and volume error. 20% of the best runs giving high NSE and PBIAS
were intersected with the runs give low RMSE for different parts of the FDC.
Among the flow parts in the FDC, the highest RMSE values were obtained for the
very low flow parts. This is due to the structure of the baseflow part of HBV model.

71



The conceptual model of low storages in the model and the parameters used to model
the low storage are not sufficient to model the real process. The minimum RMSE
were obtained for the mid. flow part of the FDC. The very high flow simulations are
also comparatively good. These results are matching up with the findings of
Pfannerstill et al. (2014). Lerat, BETA, Ko, K1, Lsuz and Cperc do not show too
much variation among these best run values, but DDF, Tmei, FC, K2 show variation.
The very low flow discharge shows an underestimation, the very high flow and high
flow discharge show slight underestimation, the mid flow segment of the flow
duration curve shows an overestimation in the part of lower than 50% exceedance
probability. When the best run values are compared with the ones obtained by SCE-
UA, LrraT and Ki values are close to the values obtained by SCE-UA, and the other
parameter values show some variation. The precision of the parameters obtained by
Shuffle Complex method is higher than the precision of the parameters obtained
through joint ranking method. Different parameter sets may result in similar
prediction which is known as the phenomenon of equifinality (Beven and
Binley,1992). The so-called equifinality showed there is no unique parameter
estimation. This may be due to the fact that parameters obtained from calibration
were affected by several factors such as correlations amongst parameters, sensitivity
or insensitivity in parameters, spatial and temporal scales and statistical features of
model residuals (Wagener et al., 2003; Wagener and Kollat, 2007).

The overlay of the selected calibration runs resulted in small discharge band, because
all the simulated discharges are similar. All simulation runs tend to over predict high
peak events of the hydrograph occurs due to rainfall only. The low flow and
recession events are predicted satisfactorily for recession in 2011 and 2012. The
hydrograph simulations using SCE-UA also overlay with the best run hydrograph
simulations. The early peaks due to snow melting of the hydrograph are simulated
better for the best run simulations for the years 2010, 2011 and 2012. During the
verification, the model performance is lower than the model performance in the
calibration period. The statistical measures for the verification to runoff only and the
verification to runoff and H10 are obtained as 0.665 for runoff only and 0.652 for
runoff and H10.
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During calibration period none of the hydrographs simulated the observed
hydrograph well during 19.April.2010 and 17.May.2010. In that period the
temperatures were higher than 0 °C at all the elevation zones and the precipitation
occurred during this time is in form of rainfall. Therefore rain on snow problem
happened during that time period which leaded to melting of the snow due to rainfall
event and the hydrological models still have problems in modelling the rain on snow

problem properly.

For 2013, SWE values obtained from the model simulations show early melting and
then another snow accumulation in zones B and C. This indicates temperatures are
getting higher during winter months and even the elevations 2000 m are affected
from the changes in temperature. This finding is very important for water resources
management issues. From the ground observations snow on the ground was observed
between 10.12.2008 and 29.03.2009 for water year 2009 and average snow depth
was observed as 9.11 cm, for water year 2010 it was observed between 01.11.2009
and 31.03.2009 where the average snow depth was observed as 8.07 cm. For water
year 2011, the snow season was between 13.12.2010 and 16.04.2011 where the
average snow depth was observed as 5.90 cm. For water year 2012 the snow season
was observed between 11.11.2011 and 25.03.2012 and the measured average sow
depth was 16.50 cm. For water year 2013 the snow season was observed between
05.12.2012 and 22.03.2013 and the average snow depth was measured as 23.38 cm.
The observations from ground stations also show that for water year 2013 there was

an early melting occurrence in the basin.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Satellite snow products are valuable data sources for hydrological studies. The
spatial resolution and sub-grid topographical variability for the use of satellite snow
cover images in hydrological applications or climatological studies affect the results.
Better temporal resolution of satellite data namely MSG-SEVIRI provides an
improvement in classification accuracy of the snow products. It can be considered as
an alternative for cloud clearance studies. It can be investigated to merge two
different satellite imagery source; one having better spatial resolution (MODIS), and

the other one having higher temporal resolution (SEVIRI), as a future work.

Including the H10 snow cover data in calibration does not improve the runoff
simulations a lot, but improve the snow cover area estimation. The volume error is
obtained as 0.84 for the calibration that only use runoff , and 0.76 for calibration that
utilized runoff and H10 snow product at the same time. The indirect comparison of
model state variable (snow water equivalent) with the snow cover area percentages
show that model simulations of SWE coincides well with the snow cover area

obtained from H10 snow product.

The simulated hydrographs obtained by using the parameter sets calibrated through
joint ranking and SCE-UA methods do not show too much difference. The snow
over estimation values obtained from joint ranking method is lower than the one
obtained from SCE-UA calibration method.

Only using H10 snow cover data do not give good simulation results and the
parameters obtained from this calibration are completely different than the
parameters obtained from the calibration to runoff and H10 snow product. The larger

frequency of snow cover information, even for coarse resolution, indicates the
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potential of H10 for operational assimilation into hydrologic models. The accuracy
of the H13 snow product is not sufficient yet to be included in the hydrological

models.

Multi-metric evaluation in the calibration stage do not improve the results too much
for this basin but it helped to analyze the parameter set giving similar discharge
simulations. In addition, it also improved snow cover representation in the model by
increasing consistency of snow presence detection. The analysis highlights the
concept of equifinality and the need of studies on parameter uncertainty of HBV
model in this basin. It could be inferred that the identifiability of an optimal
parameter obtained from calibration should also be evaluated. For an already gauged
catchment, a virtual study can provide a point of reference for the minimum
uncertainty associated with a model application. Monitoring task for several
important physical parameters to determine more credible results for watershed

management is crucial.

More detailed measurement data and more precipitation stations should be
established in the future for hydrological modeling in Karasu Basin. In addition,
further studies should be continued in the field of model structure and input to

quantify hydrological model uncertainty.
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Abstract Monitoring snow parameters (e.g. snow-cover area, snow water equivalent) is challenging work. Because
of its natural physical properties, snow strongly affects the evolution of weather on a daily basis and climate on
a longer time scale. In this paper, the snow recognition product generated from the MSG-SEVIRI images within
the framework of the Hydrological Satellite Facility (HSAF) Project of EUMETSAT is presented. Validation of
the snow recognition product H10 was done for the snow season (from | January to 31 March) of the water year
2009. The MODI0AT and MODI0C2 snow products were also used in the validation studies. Ground truth of
the products was obtained by using 1890 snow depth observations from 20 meteorological stations, which are
mainly located in mountainous areas and are distributed across the eastern part of Turkey. The possibility of 37%
cloud cover reduction was obtained by merging 15-min observations from MSG-SEVIRI as opposed to using only
one daily observation from MODIS. The coarse spatial resolution of the HI0 product gave higher commission
errors compared to the MODI0AT product. Snow depletion curves obtained from the HSAF snow recognition
product were compared with those derived from the MODIS 8-day snow cover product. The preliminary results
show that the HSAF snow recognition product, taking advantage of using high temporal frequency measurement
with spectral information required for snow mapping, significantly improves the mapping of regional snow-cover
extent over mountainous areas.

Key words MSG-SEVIRI; mountains; HSAF: snow cover

Evaluation de I’utilité du produit EUMETSAT HSAF de reconnaissance de la neige sur les régions
montagneuses de Turquie orientale

Résumé Le suivi des variables nivales (par exemple la superficie de la couverture nivale ou I’équivalent en eau
de la neige) est un travail difficile. En raison de ses propriétés physiques naturelles, la neige affecte fortement
I’évolution quotidienne des conditions météorologiques, et celle du climat sur une échelle de temps plus longue.
Dans cet article, on présente le produit de reconnaissance de la neige généré a partir des images MSG-SEVIRI dans
le cadre du projet Dispositif satellitaire hydrologique (Hydrological Satellite Facility HSAF) d"EUMETSAT. La
validation du produit de reconnaissance de la neige a été réalisée pour la saison neigeuse de I'année hydrologique
2009, qui couvre la période allant du ler janvier au 31 mars 2009, Les produits d’enneigement MODI0AT et
MOD10C2 ont également ¢té utilisés dans les études de validation. La vérité terrain pour ces produits a été obtenue
en utilisant 1890 observations de hauteur de neige de 20 stations météorologiques, principalement situées dans
les zones montagneuses et réparties dans la partie orientale de la Turquie. L’éventualité d’une réduction de 37%
de la couverture nuageuse a été envisagée en fusionnant les observations issues de MSG-SEVIRI au pas de temps
de 15 minutes, par rapport a I'utilisation d’une seule observation quotidienne issue de MODIS. La résolution
spatiale grossiére du produit H10 a donné davantage de faux positifs que le produit MODI0AL. Les courbes de
tarissement nival obtenues a partir du produit HSAF de reconnaissance de la neige ont été comparées avec celles
déduites du produit de couverture nivale MODIS sur huit jours. Les résultats préliminaires montrent que le produit
HSAF de reconnaissance de la neige, en bénéficiant de I'utilisation de mesures de haute fréquence temporelle
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avec I"information spectrale requise pour la cartographie de la neige, améliore significativement la cartographie
de I’étendue régionale de la couverture nivale des zones montagneuses.

Mots clefs MSG-SEVIRI; montagnes; HSAF; couverture nivale

1 INTRODUCTION

Snow is one of the major water resources in many
regions of the world; therefore monitoring and esti-
mating the snow parameters play an important role in
predicting discharges during melting seasons. Snow-
covered area information is one of the inputs for
distributed snow models. For mountainous regions,
satellite imagery is the most convenient way for
keeping track of snow-cover extent considering the
inaccessibility due to the difficulties of rough terrain
and high elevations.

Remote sensing data have been used for better
comprehension of information on snow-cover extent
(Cline et al. 1998, Painter et al. 2003). Several satel-
lite sensors have been used for snow-cover mapping,
such as: AVHRR, MODIS and MERIS (Harrison and
Lucas 1989, Hall ef al. 2002, Tampellini et al. 2004).
MODIS has good temporal and spatial resolutions
for snow-cover monitoring; therefore, it has been
utilized in numerous studies (Parajka and Bloschl
2012). Various studies have been done on the vali-
dation of MODIS snow-cover products under a vari-
ety of snow- and land-cover conditions. Most stud-
ies show an overall “clear sky” accuracy of 94%
compared with ground measurements (Parajka and
Bloschl 2006, 2012, Hall and Riggs 2007). Lower
accuracies are typically obtained in the autumn and
spring, under thin-snow conditions and in densely-
forested areas. Also, a significant source of error
in the MODIS snow products is due to the cloud-
masking algorithm, which is embedded in the snow
algorithm. In Tekeli er al. (2005), comparison of
MODIS snow maps with in situ measurements over
the snow season showed good agreement, with overall
accuracies ranging between 62 and 82% considering
the shift in the days of comparison. In that study,
the main reasons for disagreement between MODIS
and in situ data are given as the high cloud cover
frequency in the area and the current version of
the MODIS cloud mask that appears to frequently
map edges of snow-covered areas and land surfaces
(Tekeli et al. 2005). Parajka and Bloschl (2008)
presented an evaluation of simple mapping meth-
ods that reduce cloud coverage by using information
from neighbouring non-cloud-covered pixels in time
and space, and by combining MODIS data from

the Terra and Aqua satellites. Tekeli and Tekeli
(2011) performed a similar approach for improving
MODIS standard snow-cover products for snow-cover
monitoring over eastern Turkey. Ault er al. (2006)
performed a validation of the MODIS snow prod-
uct (MODI10_L2) and cloud mask (MOD?35) in the
Lower Great Lake region, USA. They found that
when cloud cover does not obscure the ground, the
MOD10_L2 snow product provides an accurate and
reliable record of snow and ice extent. However,
when cloud cover is prevalent in an image, the
MODI10_L2 snow product can sometimes misinter-
pret the cloud cover as either ice or snow (Ault ef al.
2006). Cloud cover discrimination is the most chal-
lenging problem in retrieving snow-cover information
from the satellite images acquired in the optical por-
tion of the spectrum. The Spinning Enhanced Visible
and Infrared Imager (SEVIRI) instrument on board
the MSG (METEOSAT Second Generation) satellite,
a geostationary satellite scanning the whole hemi-
sphere, requires the inclusion of visible, near-infrared
and thermal parts of the spectrum, at the same time as
the essential spectral content for adequate snow-cover
extent monitoring. The high temporal resolution (15-
min) and wide aerial coverage of SEVIRI imagery
make it a good choice for observing rapidly chang-
ing phenomena, such as for fog monitoring, tracking
cloud movements or snow-cover mapping (Bertrand
et al. 2008, Cermak and Bendix 2008).

The use of snow products retrieved from satellite
images in hydrological applications and observation
of the impact of such products in hydrological models
are key issues in the Hydrological Satellite Facility
(HSAF) Project, which is financially supported by
the European Organization for the Exploitation
of Meteorological Satellites (EUMETSAT). Turkey
takes part in the HSAF Project in the development
of satellite-derived snow products (snow recogni-
tion, effective snow cover and snow water equiva-
lent) for mountainous areas, calibration/validation of
satellite-derived snow products and impact studies
with hydrological modelling in the 21 selected test
basins of Europe.

In this study, the daily snow recognition product
(referred to as H10 herein) generated from MSG-
SEVIRI data is described, and the validation analysis
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performed with observations from ground mea-
surements at synoptic weather observation stations
and with another satellite-derived snow product,
MODI10C2, for the melting period (1 January to
31 March) of water year 2009, is presented and the
results are discussed.

2 DATA
2.1 Satellite data

2.1.1 MSG-SEVIRI Data Meteosat-9, also
named Meteosat Second Generation, or MSG-2,
was launched in December 2005 with significantly
improved services and products of Meteosat satellites.
The MSG-2 provides imagery with 15-min temporal
resolution and 3-km spatial resolution (at nadir)
through 12 spectral channels for the whole hemi-
sphere of the Earth. Further information about the
instrument can be found at: http://www.eumetsat.int/
Home/Main/Satellites/MeteosatSecondGeneration/
Instruments/index.htm.

The Turkish State Meteorological Service
(TSMS) has been receiving MSG-2 data of the
SEVIRI sensor for more than three years in level
1.5 high rate image transmission (HRIT) data format.
The HRIT data are converted to hierarchical data

150°0" W 00°0"
L L

Table 1 SEVIRI channels used in the snow recognition
algorithm.

Channel Central Description

no. wavelength (jum)

1 0.635 Visible (VIS0.6)

3 1.64 Near infrared (NIR1.6)

4 3.90 Shortwave infrared (IR3.9)
9 10.80 Infrared (IR10.8)

format (HDF) and used in the product generation
chain at the TSMS. Of the 12 spectral channels,
four have been used mainly in the snow recognition
algorithm development. The central wavelengths and
channel numbers of these bands are given in Table 1.

The H10 product is produced covering the pre-
defined spatial domain that is the area between lon-
gitude 25°W-45°E and latitude 25°-75°N, as shown
in Fig. 1. The mountain mask applied in the product
generation algorithm is also depicted in Fig. 1. Snow
cover over mountainous areas and over flat/forest
areas shows completely different physical properties;
thus, the use of two separate algorithms makes it pos-
sible to get better results compared to using a generic
algorithm (Dorothy Hall, personal communication).
A mountain mask is required for development of the
algorithm that is only applicable or suitable on moun-
tainous (rough) terrains; by using a mountain mask,
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Fig. 1 HSAF domain shown with mountain mask.
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the areas that might be classified as flat land are dis-
carded. In order to generate this mountain mask, a
1-km spatial resolution GTOPO digital elevation map
(DEM) was used. After building a 0.05° x 0.05°
interval mesh, an algorithm for binary mountain mask
creation was run inside each individual mesh inter-
val, in which mainly the elevation and the slope
of the terrain are considered. All the statistics are
searched in the given mesh interval and the points
satisfying the given rules are selected as mountain
pixels. The algorithm for mountain mask generation
is as follows:

(= 1000m)OR (00 = 2% AND o = 700 m)

OR (7 = 800mAND i« > 500m)

where p is mean elevation, o is standard devia-
tion and 7 is range, which is the difference between
maximum and minimum elevation in the mesh.

2.1.2 Terra-MODIS snow products MODIS
data have been used since early 2000 to produce
daily, global snow maps in an automated environment.
These maps have been validated, are available at a
variety of spatial resolutions (500 m, 0.05° and 0.25°),
and provide snow extent and fractional snow cover
(FSC), as well as snow albedo (Klein and Stroeve
2002, Hall and Riggs 2007). Inputs to the products
include the MODIS cloud mask (Ackerman et al.
1998, Platnick er al. 2003), the land/water mask,
the geolocation product, radiance products, and the
surface-reflectance product (for snow albedo), and
land cover. In this study, the MODIOA1 product
is used in the comparison with ground data. The
MODI10A1 MODIS/Terra daily snow cover Level 3,
500-m resolution product is in the sinusoidal map

projection (Hall er al. 2000). In developing the
MODI10C1 product, the snow-cover extent is mapped
by processing the MOD10A1 (500-m) product for a
day in the climate modelling grid (CMG) projection
used in the MODI0CI. In order to derive the snow
depletion curves, the MOD10C2 product is used. The
MODI10C?2 is the 8-day CMG snow cover data prod-
uct, and the snow-cover extent is expressed as an areal
percentage of coverage of the input data at 500-m
resolution in a 5-km cell of the CMG. Details of the
product can be found in the study by Riggs et al.
(2006).

2.2 Ground data

Snow depth measurements from synoptic weather
observation stations and climatic stations were used
for the validation of the H10 product generated
from MSG-SEVIRI. The data from those meteo-
rological observation stations are mainly composed
of periodically-measured snow depth information
reported on a daily basis. The validation analy-
ses using the ground observations were performed
for the snow season of water year 2009 (January—
March 2009). A total of 1890 observations from
20 stations operated by TSMS were used. The eleva-
tion of the stations ranges between 808 and 2500 m
a.s.l. The land-cover information was obtained from
the COoRdinate INformation on the Environment
(CORINE) land database, a pan-European land-
cover/land-use map for non-commercial use provided
by the European Environmental Agency (EEA). The
land cover in the study area is not complex and is
composed of bare ground, pasture and cultivated land.
The distribution of stations over Turkey is shown
in Fig. 2. For comparisons of cloud coverage and
regional snow depletion curves, a test basin, the

Fig. 2 Distribution of the stations used in the validation analysis.
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Fig. 3 The five elevation zones of Upper Euphrates basin.

Upper Euphrates basin, located in the eastern part of
Turkey, was used (Fig. 3).

3 METHODOLOGY
3.1 Algorithm for the generation of H10 product

The derivation of snow products over mountainous
regions is considered very challenging. This can
be done by periodic and precise mapping of the
snow cover. However, inaccessibility and the scarcity
of ground observations limit snow-cover mapping
in mountainous areas. Nowadays, it is carried out
operationally by means of optical satellite imagery.
Retrieving the snow-cover area from satellite images
faces the problem of topographical variations within
the footprint of satellite sensors, and the spatial and
temporal variation of snow characteristics in moun-
tainous areas. Most global and regional operational
snow products use generic algorithms for both flat
and mountainous areas. However, the non-uniformity
of the snow characteristics needs to be modelled
with different algorithms for mountains and flat areas.
In this study, the algorithm developed for mountain-
ous areas is presented; the algorithm used for flat
areas is given in Siljamo er al. (2008). The final
snow recognition product is obtained after merging
the products developed for flat areas and mountainous
areas, which was done at the Finnish Meteorological
Institute (FMI)—detailed information on the algo-
rithms can be found in Siljamo et al. (2008) and Surer
(2008).

For the snow recognition algorithm for moun-
tainous areas, spectral thresholding methods were
applied on sub-pixel-scale MSG-SEVIRI images.
The different spectral characteristics of cloud, snow
and land determined the structure of the algorithm,

Elevation zones (m)

B 1) 1.100-1.500
Il B) 1.500-1.900
B (©) 1.900-2.300
[ @) 2:300-2.900

and these characteristics were obtained from subjec-
tive classification of known snow-cover features in
the MSG/SEVIRI images. Discrimination between
snow and cloud is the most challenging part of
the snow recognition algorithm development. Before
carrying out further investigation of snow pixels,
discrimination of cloud was done; thereafter, only
cloud-free pixels were considered for snow and land
discrimination. In order to get rid of cloud-covered
pixels, Cloud Mask (CMa) and Cloud Type (CT)
products of the Nowcasting Satellite Application
Facility (NWCSAF 2007) were used. After detailed
analysis of the CMa and CT products, they were com-
bined, in order to integrate them into the proposed
snow recognition algorithm, as the cloud recognition
part has been generated.

Snow cover maps using MSG-SEVIRI data were
produced for each 15-min cycle between 08:00 and
15:45 GMT, making 32 individual images per day. All
individual 15-min images acquired during a day were
subjected to a series of thresholding tests. A threshold
for the sun zenith angle is also considered to elim-
inate the dark pixels due to the location of the sun.
First, the high visible reflectance of snow was consid-
ered and pixels having reflectance values higher than
0.35 were collected. Then, a spectral indexing method
similar to Dozier’s method was used: Dozier (1989)
used snow index (SI) by dividing the bands NIR1.6 to
VIS0.6. The pixels having NIR1.6/VIS0.6 values
lower than a fixed threshold value of 0.6 were col-
lected. Normalized difference snow index (NDSI) is
another well-known snow index used in snow prod-
uct generation from MODIS data. The NDSI takes
advantage of the fact that snow reflectance is high
in the visible (0.5-0.7 wm) wavelengths and low
in the shortwave infrared (1.0-4.0 jum) wavelengths
(Hall et al. 2001, 2002). The NDSI and SI values
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Fig. 4 Relationship of NDSI vs SI derived from MSG-SEVIRI data.

were compared for several clear-sky MSG-SEVIRI
images for the study area (Fig. 4), and those for
the snow-cover areas show a good relationship. The
selected threshold value of 0.6 for the snow-cover area
retrieval corresponds to the NDSI value of 0.2. The
NDSI value for 50% snow-covered areas is taken as
0.4 (Dozier 1989, Hall et al. 2002). By selecting SI
= 0.6 as the threshold for full snow coverage, it is
aimed to include the partial snow-covered areas in the
retrieval of the H10 product.

Next, pixels having low sun zenith angle (sza)
were discarded by a filter accepting pixels only higher
than 5°. A final test for covering all cold pixels below
freezing point was applied and pixels with temper-
ature lower than 288K on channel-9 (IR10.8) were
accepted, given that the temperature of snow can-
not exceed the freezing point (Romanov ez al. 2003).
After obtaining snow-cover maps for each individual
15-min image, a daily snow-cover map was generated
by accepting pixels having at least three snow hits
among the 32 daily images. Finally, a daily thematic
map of 5-km spatial resolution was produced that

Fig. 5 Sample snow recognition product for 9 February 2011.

consists of four different classes: snow, cloud, bare
ground and water, a sample of which is given in Fig. 5.
Due to the coarse spatial resolution of MSG-SEVIRI
data, the retrieval of fractional snow-cover area from
MSG-SEVIRI data was not considered; therefore, the
proposed thresholds are used to retrieve the full snow
cover in mountainous areas.

3.2.1 Validation with ground data Inorderto
test the performance and accuracy of the H10 prod-
uct, a set of comparison tests were applied with
the ground observations of snow depths for east-
ern Turkey, which is mostly mountainous. The daily
ground measurements (SNOw Or no snow) were com-
pared to the colocated pixel information in the snow-
cover map by making contingency tables (snow,
no snow) on a monthly basis (Table 2). For the
validation, the most common forecasting metrics,
such as probability of detection (POD), hit rate
(HR), omission error (snow missing rate, SMR)
and commission error (false alarm rate, FAR) were

No data
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Table 2 Metric values.

Ground observation

Snow presence  No snow
Snow cover Snow presence  a b
product No snow ¢ d
Table 3 Calculation of metrics.
POD FAR HR SMR
a b (a+d) c
(a+c) (a+b) (a+b+c+d (@a+b+c+d

Note: POD: probability of detection; FAR: false alarm rate;
HR: hit rate; SMR: snow missing rate.

used. These were calculated using the metric values
described in Table 3. Similar validation analysis was
performed for the MODI10A1 snow product. In order
to give similar spatial resolution, the MODI0AT snow
product was resampled to 5-km resolution with the
nearest-neighbourhood resampling method. The same
metric values were also computed for the resampled
MODI10A1 product. The frequency of cloud pixels
for the months January—March 2009 in the Upper
Euphrates basin was also evaluated for the H10 and
resampled MOD10A1 snow products. The percentage
of cloud coverage was calculated by dividing the total
basin area by the cloud-covered area on a daily basis.

3.2.2 Validation with  MODI10C2 The
H10 product is developed for hydrological impact
studies within the HSAF Project. Snow-depletion
curves are among the inputs to hydrological models
in which snow melting is modelled. Therefore, in
addition to validation with ground measurements,
a comparison of the snow-depletion curves derived
from the HIO product and the 8-day snow-cover
product of the Terra-MODIS (MODI10C2) product
was performed. The latter was selected, as it has the
same spatial resolution as the HSAF snow product.
As stated by Zhou ef al. (2005), the MODIS 8-day

product has a better correlation with streamflow and
a lower percentage of spurious snowmelt events in
winter than the MODIS daily product. The relation-
ship between the SCA derived from MOD10C2 snow
products and the runoff during the spring was
analysed for the period 2004-2009 in the Upper
Euphrates basin (Akyurek et al. 2011).

The basin is divided into five elevation zones in
order to observe the behaviour of snow melting at
different elevations, as shown in Fig. 3. The areal cov-
erage distribution of the zones for the full basin is:
Zone A: 11%, Zone B: 34%, Zone C: 34%, Zone
D: 20% and Zone E: 1%. Because Zone E is much
smaller than the other zones, and only three pixels of
the H10 product fall into this area, it was not taken
into account for the analyses.

Cloud coverage percentages were also obtained
for the basin. The snow-cover percentage was
obtained by considering the ratio of snow classi-
fied pixels in a given elevation zone to the total
area of the zone. Days when the cloud coverage was
over 25% were discarded from the depletion curve
derivation. In the previous hydrological studies in the
basin, snow products having cloud coverage lower
than 20-30% were found suitable for deriving snow
depletion curves for modelling the snowmelt runoff
(Marim 2008).

4 RESULTS AND DISCUSSION
4.1 Results from validation with ground data

The validation of H10 and MOD10A1 snow prod-
ucts for January, February and March 2009 was
performed. Since the H10 product is intended to
map the snow extent for mountainous areas, the
ground observations located in the mountainous areas
were used. Early results show good general agree-
ment between H10 product and in situ data, as was
observed in a previous study (Surer et al. 2009) with a
rather smaller data set. The metrics obtained from the
analysis are depicted in Table 4. The highest overall

Table 4 Results obtained from validation analysis for the snow season in 2009.

January February March

H10 MODI0A1 HI10 MODI0AI H10 MODI0AI
HR (%) 81.32 89.74 68.63 85.92 78.45 96.59
POD (%)  95.56 92.45 82.72 76.47 8533 79.31
SMR (%) 3.08 5.13 5.49 5.63 316 341
FAR (%)  15.60 1.55 25.88 31.58 18.39 0.00
Cloud (%) 30.11 79.33 56.63 89.09 46.54 77.89
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accuracy was obtained for January for H10 and March
for MODI10A1. The probability of detection values
obtained for H10 was larger than that obtained for
MODI10A1. However, the overall accuracies obtained
for H10 are lower than those obtained for MOD10A1.
This is because of the large commission errors of the
H10 product. The commission error, indicating snow
on the ground where no snow occurred on the ground,
is low in January, but comparatively high in February
and March. It is very well known that, as melt-
ing starts, the evaluation of satellite mapping accu-
racy is difficult when snow cover becomes patchy.
However, the omission error is low for the whole win-
ter period. This error indicates that the algorithm does
not find snow where snow occurs on the ground. Since
the algorithm uses visible channels in discriminating
snow, the strength of visible channels in identifying
fresh snow on the ground can be seen in the com-
puted metrics. The coarse spatial resolution of the
MSG-SEVIRI data leads to high commission errors
for the H10 product. The effect of spatial resolution
can be seen in Fig. 6, in which the MOD10A1 snow
product, the resampled MOD10A1 product (5-km res-
olution with nearest-neighbourhood method), and the
H10 snow product are presented.

The other reason for the lower overall accu-
racy for February is the high cloud coverage that
occurred in this month. The limitation of optical
bands on cloudy days is very well known. Using

(a) (b)

a geostationary satellite for mapping snow extent
improved the results due to the higher temporal res-
olution (15-min), but the course spatial resolution
brings a disadvantage to mapping shallow snow and
fractional snow in the melting season.

The cloud coverage percentage values for
January—March 2009 are presented in Fig. 7.
The mean cloud coverage for the three months
was 82.10% and 44.42% for the resampled
MODI0AT and H10 snow products, respectively.
This indicates a possibility of 37.68% cloud cover
reduction by merging 15-min observations from
MSG-SEVIRI, compared to using only one daily
observation from MODIS.

4.2 Results from validation with MOD10C2

The depletion curves derived from HI10 and
MODI10C2 snow products are presented in Fig. 8(a)
and (b), together with the cloud percentages. A good
agreement is seen between the two curves. The main
disagreement is observed where there is high cloud
coverage on 25 January 2009. The MOD10C2 prod-
uct, having a low confidence index, indicates high
cloud coverage for 8 days. From the ground observa-
tions, it was observed that snow was recorded on this
date at the ground stations within the basin. Due to the
high cloud coverage, it may not be possible to identify
the snow-covered area from the MOD10C2 products.

R

Fig. 6 For 22 January 2009: (a) MODI10A1 product, (b) MOD10A1 product resampled to 5 km, and (c) H10 product.

008

100
©

msen

L. A L

Fig. 7 Cloud coverage (%) obtained from H10 (SEVIRI) and resampled MOD10A1 (MODIS) for January, February and

March 2009.
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Fig. 8(a) Snow depletion curves for zones A and B of the Upper Euphrates basin with H10 and MOD10C2 products.

During the melting stage of the snow cover, after
17 May 2009, snow depletion curves derived from the
H10 product show abrupt changes. During this period,
the snow recognition algorithm misclassifies the ice
crystals in the high opaque clouds as snow. In opti-
cal remote sensing, some types of ice clouds can be
erroneously identified as snow, because they show
similar reflectance and temperature values. Parajka
and Bloschl (2006) stated that, during the assessment
of MODIS snow product over Austria for the period
2000-2005, almost all MODIS overestimation errors
in the summer months were caused by the misclassi-
fication of cirrus clouds as snow. The abrupt changes
in the SCA depletion curves, which are not recom-
mended in the SRM manual (Rango and Martinec
1979), may lead to overestimation in runoff predic-
tions. This indicates the need for post-processing
analysis for the end of the depletion curves by using
the surface temperature values in the basin.

The consistency of the snow products can be
seen for zones B and C. For zone D there is an
over-estimation in the snow depletion curve obtained
from MOD10C2 compared to that obtained from the
HI10 product. Both snow products have 5-km spa-
tial resolution and this coarse resolution leads to a
mixed-pixel problem, which may be more important

for regional studies than for global hydrological
studies.

5 CONCLUSIONS

The most important contribution to the success of the
snow recognition algorithm is to have observations
from geostationary satellite imagery SEVIRI, which
provides a high temporal frequency measurement
with spectral information required for snow mapping.
This high temporal frequency helps to improve the
snow mapping despite the cloud coverage problem
during the day if the clouds are moving. The pos-
sibility of 37% cloud cover reduction by merging
15-min observations from MSG-SEVIRI compared
to using only one daily observation from MODIS
was obtained. The high percentage of cloud coverage
removal ability makes this snow product suitable for
hydrological applications.

Early results show good general agreement
between the HI10 product and in situ data. They
also indicate the suitability of the H10 product for
use in hydrological studies. This work will be con-
tinued with more validation studies: the algorithm
will be tuned to improve the snow extent map-
ping on the forest-covered areas. Variable thresholds
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Fig. 8(b) Snow depletion curves for zones C and D of the Upper Euphrates basin with H10 and MOD10C2 products.

depending on season can also be included in the
algorithm.
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Abstract. The objective of this study is to evaluate the
mapping accuracy of the MSG-SEVIRI operational snow
cover product over Austria. The SEVIRI instrument is aboard
the geostationary Meteosat Second Generation (MSG) satel-
lite. The snow cover product provides 32 images per day,
with a relatively low spatial resolution of Skm over Aus-
tria. The mapping accuracy is examined at 178 stations with
daily snow depth observations and compared with the daily
MODIS-combined (Terra+ Aqua) snow cover product for
the period April 2008-June 2012.

The results show that the 15 min temporal sampling allows
a significant reduction of clouds in the snow cover product.
The mean annual cloud coverage is less than 30 % in Aus-
tria, as compared to 52 % for the combined MODIS product.
The mapping accuracy for cloud-free days is 89 % as com-
pared to 94 % for MODIS. The largest mapping errors are
found in regions with large topographical variability. The er-
rors are noticeably larger at stations with elevations that dif-
fer greatly from those of the mean MSG-SEVIRI pixel ele-
vations. The median of mapping accuracy for stations with
absolute elevation difference less than 50 m and more than
500m is 98.9 and 78.2 %, respectively. A comparison be-
tween the MSG-SEVIRI and MODIS products indicates an
83 % overall agreement. The largest disagreements are found
in Alpine valleys and flatland areas in the spring and winter
months, respectively.

1 Introduction

Monitoring and modeling of snow characteristics is impor-
tant for many hydrological applications, including snowmelt
runoff forecasting and water resources assessment using
a range of techniques (e.g., Bloschl and Kirnbauer, 1991;
Bloschl et al., 1991; Nester et al., 2012). The large spatial
variability of snow cover, particularly in mountains, limits
the use of ground-based snow observations. Satellite imagery
is thus an attractive alternative, as the resolution and avail-
ability does not depend much on the terrain characteristics
(Parajka and Bloschl, 2008).

Recently, operational satellite products have become avail-
able that provide snow cover information at different spa-
tial and temporal resolutions (Table 1). Table 1 indicates that
most of the current products provide daily snow cover in-
formation at spatial resolutions ranging from 500 m to 5 km.
The numerous validation studies indicate that the satellite
products have large snow mapping accuracy with respect to
ground snow observations for cloud-free conditions, which
varies between 69 and 94 % in the winter seasons. The main
limitation of existing optical platforms operating at a daily
timescale is cloud coverage, which significantly reduces the
availability of snow cover information. There are different
approaches for cloud reduction, including space—time filter-
ing (e.g., Parajka and Bloschl, 2008; Gafurov and Bardossy,
2009; Hall et al., 2010, among others), but clouds are real
and the accuracy of such approaches decreases with their ef-
ficiency to reduce clouds.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Table 1. Summary of some existing operational satellite snow cover products.

Snow cover product Sensor Available Spatial Temporal Mapping accuracy
since resolution  resolution
NOHRSC/ NOAA/AVHRR 1986 1 km Daily 76 % (Klein and
+GOES Barnett, 2003)
NOAA/NESDIS (IMS) GOES+SSM/1 1998 4km Daily, 85 % (Romanov et al.,
weekly 2000);
< 20 % (October),
~ 60 % (November),
~95 % (December),
~ 70 % (March)
(Brubaker et al., 2005)
MODI0AL, MYDI0AI, MODIS- 2000/2002  500m Daily, ~94 % summary in Parajka
MODI0A2, MYDI10A2, Terra/Aqua —0.05° 8-day, and Riggs, 2007 or
MODI0CI, MYDIOCI, monthly (see e.g., Hall
MODI10CM, MYD10CM and Bloschl, 2012)
HSAF (EUMETSAT) MSG-SEVIRI 2008 S5km Daily 80 % compared to IMS
(Siljamo and

Hyvirinen, 2011);
69-81 % in winter
months (Surer and

Akyurek, 2012)

An alternative to the space-time filtering of daily prod-
ucts is to merge satellite images obtained at higher tempo-
ral resolution. The new generation of MSG-SEVIRI prod-
uct provides snow cover information at 15 min temporal res-
olution for the whole Northern Hemisphere. The prelimi-
nary assessment of data from one snow season over eastern
Turkey (Surer and Akyurek, 2012) indicates that the merging
of 32 consecutive images per day enables a 37 % reduction
of clouds in comparison to the MODIS daily product, and
improves the mapping of regional snow-cover extent over
mountainous areas.

The main objective of this study is to assess the accuracy
of the new MSG-SEVIRI snow cover product over Austria
for the period 2008-2012. The spatial and temporal variabil-
ity in mapping accuracy is examined for a large number of
meteorological stations observing snow depth and is evalu-
ated against combined MODIS snow cover product. Austria
is an ideal test bed for such an assessment, as it allows eval-
vating the mapping accuracy in different altitudinal zones
ranging from the lowlands to the high Alpine environment.
The MSG SEVIRI snow product has been produced oper-
ationally within the HSAF project funded by EUMETSAT.
The validation studies composed of ground observation com-
parisons with satellite snow product have been performed
on mountainous areas of Europe (HSAF, 2011). The idea in
this study is to extend the test sites in order to evaluate the
MSG SEVIRI snow product and perform detailed validation
studies.
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2  MSG-SEVIRI snow cover product

The Spinning Enhanced Visible and Infrared Imager (SE-
VIRI) is an optical imaging radiometer mounted aboard the
geostationary Meteosat Second Generation (MSG) satellite
operated by EUMETSAT. MSG-SEVIRI provides continu-
ous imaging of the earth in 12 spectral channels with a re-
peat cycle of 15 min. The imaging spatial resolution is 3 km
at sub-satellite point (Aminou, 2002) and degrades to 5km
over Europe.

The snow cover mapping is based on a multi-channel re-
trieval algorithm. It exploits the high reflectivity of snow in
the visible spectrum and the low reflectivity at shorter wave-
lengths. The snow cover retrieval algorithm differs for flat
and mountainous regions. Considering the different charac-
teristics of snow for mountainous and flat areas, two different
algorithms are used in producing the snow products for flat
and mountainous areas, and then the products are merged to
have a single snow product. In flat regions, the algorithm uti-
lizes the top-of-atmosphere radiance of six SEVIRI channels
(0.6, 0.8, 1.6, 3.9, 10.8 and 12.0 um) and brightness temper-
atures of three channels (3.9, 10.8, and 12.0 um). The snow
recognition is based on the snow cover classification (Sil-
jamo and Hyvarinen, 2011). The cloud—snow discrimination
for flatlands relies on the cloud mask (CMa) provided by
the Nowcasting and Very Short Range Forecasting Project
(NWCSAF, 2007). In this product clouds are classified only
into two classes (cloud contaminated and cloud filled).

In the mountains, the snow recognition algorithm uses the
snow index (SI). which relates 0.6 um (0.56-0.71 um) and
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Table 2. Number of meteorological stations in different elevation zones.

Elevation 0-500 500-1000 1000-1500 1500-2000 2000-2500 2500-3109
zone (ma.s.l.)
Number of stations 59 78 6 4 2

1.6 pm (1.5-1.78 um) SEVIRI channels. The used snow in-
dex is obtained by dividing the bands NIR1.6 to VIS0.6.
The pixels having NIR1.6/VIS0.6 values lower than a fixed
threshold value of 0.6 were collected. The cloud-snow dis-
crimination is based on the CMa and cloud type (CT) prod-
uct of the NWCSAF. The CT product has 15 different cloud
types, which allow more robust cloud recognition (Surer,
2008). Both algorithms use sun zenith angle for discard-
ing the low-illuminated areas, and land surface tempera-
ture values for covering all cold pixels below freezing point
(Romanov et al., 2003). The main difference in the algo-
rithms is the location of the samples collected for develop-
ing the thresholding method, and the cloud-snow discrimi-
nation applied in the retrieval. A detailed description of the
MSG-SEVIRI snow algorithm is presented in the Algorithm
Theoretical Basis Document (HSAF, 2010).

The definition of the mountainous areas is based on the
mean altitude and standard deviation of the slope within 5 km
% 5 km pixels (Lahtinen et al., 2009). The area is defined to
be mountainous if the mean altitude in the particular mesh
exceeds 1000m or the mean altitude in the mesh exceeds
700 m, and the standard deviation of the slope is greater than
2° or the mean altitude variation (the difference between the
maximum and minimum altitude in the particular mesh) ex-
ceeds 800 m and the mean altitude exceeds 500 m.

Daily snow cover maps are derived from 32 images per
day, blending data from 08:00-15:45UTC + 2. Snow cover
is mapped when there are at least 4 hits of snow recognition
in a day. The final snow cover product, which is merged at
Finnish Meteorological Institute, has snow, land, cloud, wa-
ter and unclassified classes. An example map for Europe is
presented in Fig. 1.

3 Study area and snow cover data

This paper evaluates the accuracy of snow cover images over
Austria. Austria is located in the temperate climate zone,
where the Alps act as a dominant barrier between conti-
nental climate in the north and the meridional circulation
from the Adriatic Sea in the south. Elevations range from
115 m in the flatlands to more than 3700 m in the mountains
(Fig. 2). Mean annual precipitation varies between 400 mm
in the eastern flatlands and almost 3000 mm in the western
part of the Alps. The mountainous parts of Austria are cov-
ered by snow for several months a year (Parajka and Bléschl,
2006), while the flatlands are characterized by warm and dry
summers and cold winters without significant snowfall. Land
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Fig. 1. Example of a MSG-SEVIRI snow cover map for
21 February 2012.

use is mainly agricultural in the lowlands and forest in the
medium elevation ranges. Alpine vegetation and rocks pre-
vail in the highest catchments.

Snow cover data used for MSG-SEVIRI evaluation in-
clude ground snow depth measurements at 178 meteorolog-
ical stations (Fig. 2) and daily MODIS satellite snow cover
images from April 2008 to June 2012. The snow depth read-
ings are taken from permanent staff gauges and represent
point measurements performed daily at 07:00 UTC + 1 with
1 cm reading precision (Parajka and Bloschl, 2006). Table 2
summarizes the number of stations in different elevation
zones and indicates that most of the stations are located in
elevation zones between 500 and 1000 m. In the mountains,
the stations tend to be located at lower elevations, typically
in the valleys, which suggest a slight bias of the validation
statistics towards lower elevations.

The satellite snow cover images have been acquired by
the MODIS instrument mounted on Terra and Aqua satel-
lites of the NASA Earth Observation System. The daily
Terra (MODI10AL, V005) and Aqua (MYDIOAL, V005)
snow products are available through the Distributed Active
Archive Center located at the National Snow and Ice Data
Center (NSIDC, http://www.nsidc.org). The spatial resolu-
tion of the products is 500 m. Normalized difference snow
index (NDSI) is a well-known snow index used in snow prod-
uct generation from MODIS data. The NDSI takes advan-
tage of the fact that snow reflectance is high in the visible
(0.545-0.565 pm) wavelengths and low in the shortwave in-
frared (1.628—-1.652 pm) wavelengths (Hall et al., 2006; Hall
and Riggs, 2007). For the validation, the snow cover prod-
uct obtained from the Terra satellite and a combined prod-
uct of the Terra and Aqua satellites are used. The two prod-
ucts are combined to reduce cloud coverage in the mountains
(Parajka and Bloschl, 2008). In the combined product, the
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Elevation (m as.1)

Fig. 2. Topography of Austria and location of 178 stations with daily snow depth measurements for the period April 2008-June 2012. Red and
blue colors respectively represent meteorological stations located in the flatland (81 stations) and mountain (97 stations) regions according

to the MSG-SEVIRI mountain mask.

pixels classified as clouds in the Terra images are updated by
the Aqua pixel value of the same location if the Aqua pixel is
snow or land. This approach combines satellite observations
on the same day, shifted by several hours.

4 Methodology of MSG-SEVIRI evaluation over
Austria

Evaluation of the MSG-SEVIRI snow cover accuracy is per-
formed in two steps. In the first step, the accuracy of MSG-
SEVIRI is evaluated at meteorological stations by using daily
snow depth observations. Snow depth observations at the sta-
tions are considered as ground truth for each MSG-SEVIRI
pixel that is closest to each station. The ground is consid-
ered as snow covered if the snow depth measurement exceeds
1 cm. In the second step, MSG-SEVIRI images are compared
with daily MODIS snow cover maps. In this case, the fre-
quency of MODIS snow, no snow and cloud classes is esti-
mated and compared within each MSG-SEVIRI pixel.

The snow cover mapping accuracy with respect to snow
depth observations is quantified by three variants of the ac-
curacy index: ka, kv and kc. The overall accuracy index ka
is estimated at each meteorological station and it is used to
compare the sum of all correctly classified days where snow
and no snow have been observed to the number of all cloud-
free days at each meteorological station (station days) in the
selected period. The seasonal accuracy index ky is defined
in a similar way, but relates the sum of all correctly classi-
fied station days (snow-snow, no snow-no snow) at differ-
ent meteorological stations to the number of all cloud-free
station days at those stations in a particular month. The km
index is estimated separately for all stations located in the
mountain and flatland areas as defined by the MSG-SEVIRI
mountain mask (Fig. 2), respectively. The all-days accuracy
index k¢ relates the correctly classified station days to the
total number of station days in the selected period, including
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days with cloud cover. It is also estimated for each month and
two groups of stations (mountain and flatland).

Additional to the three accuracy indices, two types of map-
ping errors are quantified with respect to the ground snow
depth observations: the MSG-SEVIRI misclassification of
land as snow (termed here the MSG-SEVIRI overestimation
error (kg)) and the misclassification of snow as land (termed
the MSG-SEVIRI underestimation error (kyy)). Both types of
errors relate the sum of misclassified station days to the total
number of station days in each particular month and mask
region.

The agreement between MSG-SEVIRI and MODIS snow
cover products is quantified by the index of overall m and
seasonal agreement myy. These indices are defined in a sim-
ilar way as the ks and ky, but instead of using snow depth
observations at meteorological stations, the aggregated fre-
quencies of MODIS snow, land and cloud classes within each
MSG-SEVIRI pixel are used. The comparison is performed
at the coarser spatial resolution of the MSG-SEVIRI and for
those MSG-SEVIRI pixel-days where the fraction of MODIS
pixels classified as clouds is less than 60 %. Our test simula-
tions (not shown here) indicate that the results are insensi-
tive to the selection of this threshold between 40 and 70 %.
In the ma and my evaluation, the ground is considered as
snow covered if the fraction of MODIS snow pixels within
the MSG-SEVIRI pixel is at least 50 % of the sum of MODIS
pixels classified as snow and land. The presence of no snow
(land class) is considered in the same way; that is, the frac-
tion of MODIS pixels classified as land is larger than the sum
of snow and land pixels. The presence of no snow (land class)
is considered in the same way, i.e., the frequency of MODIS
pixels classified as land is larger than the sum of snow and
land pixels.
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Fig. 4. Relationship between MSG-SEVIRI snow mapping accuracy (k 4) and elevation of the meteorological stations. Color of the triangles
in the left panel indicates the difference between elevation of the meteorological stations and mean elevation of the respective MSG-SEVIRI
pixels (as derived from a 25 m digital elevation model). Color of the symbols in the right panel shows relative snow cover duration observed

at the meteorological stations for the period April 2008-June 2012.

5 Results

5.1 Validation of MSG-SEVIRI against ground snow
depth measurements

The snow cover accuracy (k) of MSG-SEVIRI estimated for
cloud-free days at the meteorological stations is presented
in Fig. 3 and summarized in Table 3. The ka varies be-
tween 51.3 % at the Villacher Alpe (2140 m a.s.l.) in the East-
ern Alps (Carinthia) and almost 100 % in Gross-Enzersdorf
(154 ma.s.l.) near Vienna. Table 3 indicates that the MSG-
SEVIRI accuracy is larger in the flatland than in the moun-
tain regions, i.e., the median of k4 is 98.8 and 84.3 % in the
flatland and mountain regions, respectively. Figure 4 shows
a clear decrease of snow mapping accuracy with increasing
elevation of the meteorological stations. The results indicate
that this tendency is caused mainly by increasing sub-grid
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Table 3. Overall accuracy kp (%) of the MSG-SEVIRI snow cover
product for cloud-free days at the meteorological stations. Stations
in flatland and mountains are stratified according to the mountain
mask used for the MSG-SEVIRI product (Fig. 2).

105

Statistics All Stations in  Stations in
stations  mountains flatland

Count 178 97 81
Minimum ka 51.3 51.3 78.9
25 % percentile ka 82.6 78.2 93.9
50 % percentile k 89.3 843 98.8
75 % percentile ka 98.7 88.4 99.4
Maximum k5 999 944 99.9
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Fig. 5. Scasonal frequency of snow mapping accuracy ky for the
MSG-SEVIRI, MODIS-Terra and MODIS-combined products es-
timated for cloud-free days for the period April 2008-June 2012.
Left and right panels show the results for meteorological stations
in the mountain (97 stations) and flatland (81 stations) regions,
respectively.

topographical variability in the mountains. Meteorological
stations are often situated at different elevations than the
mean elevation of MSG-SEVIRI pixels, which causes biases
between station and satellite snow cover observations. As is
indicated in the left panel of Fig. 4, the mapping accuracy is
larger for stations with smaller elevation difference. For ex-
ample, the median of k4 for stations with absolute elevation
difference less than 50m and more than 500 m is 98.9 and
78.2 %, respectively. For the station with the largest mapping
errors (Villacher Alpe), the elevation difference is larger than
960 m. The stations located significantly below or above the
pixel mean may have noticeably different snow cover ob-
servations (right panel of Fig. 4). The snow cover observa-
tions at meteorological stations in Austria show a clear linear
relationship (R2=88 %) between snow cover duration and
the altitude, indicating an increase of snow cover duration
by 2.8 %/100 m (not shown here). An elevation difference of
500 m can therefore be easily transferred in about 14 % dif-
ference in snow cover duration and thus different snow cover
mapping accuracy. Interestingly, the MSG-SEVIRI mapping
accuracy is larger than 90 % for two stations situated above
2000 ma.s.l. (Ischgl-Idalpe and Pitztaler Gletscher), but lo-
cated approximately at the mean elevation of the MSG-
SEVIRI pixel. This finding indicates the importance of the
spatial resolution and sub-grid topographical variability for
the assimilation of satellite snow cover images in operational
hydrological applications.

The seasonal frequencies of MSG-SEVIRI snow mapping
accuracy (kn) are presented in Fig. 5. The results show that,
in the mountains, the ky accuracy varies between 70 and
77 % in the winter and between 92 and 97 % in the summer
months. The flatland region typically has much shorter snow
coverage, which most likely results in larger ky accuracy be-
tween April and October, but larger mapping errors (ky be-
tween 79 and 83 %) in the winter months. As compared to km
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Fig. 6. Seasonal frequency of the clouds (top panels) and snow
mapping accuracy k¢ for the MSG-SEVIRI, MODIS-Terra and
MODIS-combined products estimated for all days for the period
April 2008-June 2012. Left and right panels show the results for
meteorological stations in the mountain (97 stations) and flatland
(81 stations) regions, respectively.

obtained for the MODIS/Terra and MODIS/combined snow
cover products, the MSG-SEVIRI mapping accuracy is 10—
13 % lower in the mountains and 3-11% lower in the flat-
land area in the winter months, However, the MSG-SEVIRI
product contains significantly less pixels classified as clouds
than MODIS, particularly in the mountains (Fig. 6, top pan-
els). Here, the merging of 32 MSG-SEVIRI images per day
reduces cloud coverage between 15 and 29 % for the pe-
riod November—June as compared to the MODIS-combined
product. The cloud reduction is even about 7 % larger when
compared to the MODIS-Terra product. For the period July—
October, the cloud coverage of MSG-SEVIRI is similar to
that of MODIS in the mountains. Interestingly, in the flat-
land areas a decrease in cloud coverage is observed only for
the period April and September. In the winter months, MSG-
SEVIRI indicates cloud coverage larger than 75 %, which
is similar to or even slightly larger than indicated by the
MODIS products. This is probably caused by the use of dif-
ferent cloud masking algorithms.

The reduction in clouds, particularly in the mountains,
then translates into an improvement of all-days mapping ac-
curacy k¢ (Fig. 6, bottom panels). The k¢ accuracy assumes
clouds as a mapping error, and it varies for MSG-SEVIRI
between 26 and 31 % (mountains) and between 9 and 25 %
(flatland areas) in the winter and spring periods. In the moun-
tains, this is about 3—14 % larger than the k¢ obtained for the
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Table 4. Seasonal frequency of overestimation (ko) and underestimation (ky ) mapping errors (%) estimated for the MSG-SEVIRI, MODIS-
Terra and MODIS-combined snow cover products for the period April 2008-June 2012, The mapping errors are estimated at 97 and 81 me-
teorological stations in the mountain (Mnt) and flatland (Flat) areas, respectively.

Season MSG- MSG- MODIS- MODIS- MODIS- MODIS-
SEVIRI SEVIRI Terra Terra comb. comb.
overest. ko underst. ky  overest. kg underest. ky  overest. ko underest. ky
(Mnt/Flat)  (Mnt/Flat)  (Mnt/Flat) (Mnt/Flat) (Mnt/Flat) (Mnt/Flat)
January 4.6/0.4 6.3/2.4 1.0/1.0 1.8/0.8 1.4/1.6 2.2/1.2
February 4.3/0.4 6.8/2.6 0.7/0.7 1.5/0.6 1L.1/1.2 1.8/0.8
March 6.1/0.3 5.71.1 1.1/0.3 1.3/0.4 1.5/0.7 1.7/0.6
April 8.8/0.1 2.5/0.2 0.8/0.1 0.7/0.2 1.4/0.5 1.0/0.2
May 5.5/0.2 1.1/0.0 0.3/0.1 0.3/0.0 0.7/0.2 0.3/0.0
June 2.2/0.1 0.4/0.0 0.1/0.0 0.1/0.0 0.3/0.2 0.1/0.0
July 1.3/0.2 0.2/0.0 0.1/0.0 0.1/0.0 0.3/0.2 0.1/0.0
August 0.9/0.2 0.4/0.0 0.1/0.0 0.1/0.0 0.3/0.1 0.2/0.0
September 1.0/0.1 0.3/0.0 0.3/0.0 0.1/0.0 1.0/0.3 0.1/0.0
October 4.0/0.2 1.1/0.0 1.2/0.2 0.3/0.0 2.4/1.2 0.4/0.0
November 6.1/0.2 7.9/0.4 1.1/0.4 0.5/0.2 2.4/2.0 0.7/0.3
December 5.1/0.5 4.6/1.5 0.9/0.7 1.6/0.5 1.4/1.6 2.0/0.6

The largest mapping error for each product and mask area is marked by bold print.

MODIS data set. In the flatland areas, the large cloud cov-
erage in winter does not enable an increase in k¢ as com-
pared to MODIS products. The evaluation of k¢ clearly in-
dicates the tradeoff between increased cloud reduction due
to higher temporal sampling (32 images per day) and higher
mapping error due to coarser spatial resolution (particularly
in the mountains) of the MSG-SEVIRI snow product.

The seasonal frequency of MSG-SEVIRI mapping errors
is summarized in Table 4. Table 4 compares the overestima-
tion (ko) and underestimation (ki) errors of MSG-SEVIRI,
MODIS-Terra and MODIS-combined data sets as observed
at meteorological stations. The general distribution of MSG-
SEVIRI errors shows a typical seasonal pattern of larger er-
rors in winter and spring and smaller errors in summer. In
comparison to MODIS products, the MSG-SEVIRI mapping
errors are significantly larger during the snowmelt season in
the mountains (4-9 %) and somewhat larger during the win-
ter months in the flatlands (1-3 %). A detailed analysis of
ko and ky errors (Fig. 7) indicates that the MSG-SEVIRI
mapping errors are much larger at stations that are located
at different elevations than the mean elevation of the closest
MSG-SEVIRI pixel. The largest kg, i.e., more than 25 % in
April or 15 % in November, is estimated at stations that are
located more than 500 m lower than the pixel mean. Simi-
larly, the largest ky errors are found at stations located more
than 500 m above the pixel mean. The evaluation of MSG-
SEVIRI mapping errors at stations that are located at ap-
proximately the same elevation (yellow triangles in Fig. 7)
indicates that the MSG-SEVIRI tends to more frequently un-
derestimate snow cover in winter than overestimating it. The
largest ko errors are less than 0.5 %, but ky errors exceed 3 %
in the winter months.
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Table 5. Overall agreement mp (%) between MSG-SEVIRI and
MODIS-combined snow cover products for MSG-SEVIRI pixels
with less than 60 % MODIS cloud coverage. The agreement m 5 ac-
curacy is evaluated for all MSG-SEVIRI pixels, flatland and moun-
tain mask areas in Austria.

Statistics All Pixelsin  Pixels in
pixels mountains  flatland
Count 2635 1403 1232
Minimum m 5 57.3 57.3 64.4
25 % percentile my, ~ 78.4 774 81.1
50 % percentile mp ~ 82.5 81.6 82.9
75 % percentile my ~ 84.3 85.2 84.1
Maximum m 5 92,7 92,7 86.0

5.2 Comparison between MSG-SEVIRI and MODIS

snow cover data

The overall agreement between the MSG-SEVIRI and
MODIS-combined maps (m4) is summarized in Table 5. The
ma vary between 57.3 and 92.7 %, with a median of 82.5 %.
The difference in medians between the flatland (82.9 %) and
mountain (81.6 %) regions is not large. The spatial patterns
indicate (Fig. 8) that m 4 is between 80 and 90 % in the flat-
land, with an exception in the hilly region at the border be-
tween Upper and Lower Austria (Waldviertel), where m 4 is
less than 75 %. In the mountains, the m a variability tends to
be larger. The m a agreement is over 90 % in the high moun-
tain locations, but smaller than 65 % in the Alpine valleys in
western Austria. It is also less than 70 % in the southeastern
part of the mountain mask region (Styria) (Lahtinen et al.,
2009). The relationship between m and altitude is plotted
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Fig. 8. Overall accuracy k5 of MSG-SEVIRI with respect to the MODIS-combined product for the period April 2008-June 2012. kp is
estimated for the MSG-SEVIRI pixels where MODIS cloud coverage is less than 60 %. Pixels with black outline indicate the MSG-SEVIRI

mountain mask.

in Fig. 9. While in the flatlands m o tends to decrease with
elevation; in the mountains there is a tendency of increas-
ing ma with altitude. The results show that the largest ma
variability in Austria is in the regions with altitudes between
700 and 1500 m.

The seasonal variability (my) in the agreement between
MSG-SEVIRI and MODIS is presented in Fig. 10. In the
flatland areas (red line), my is the largest in April and July
and less than 70 % in the winter months. The my; amplitude
is smaller in the mountains (blue line), ranging from more
than 85 % in May, June and August to 70 % in September.

Hydrol. Earth Syst. Sci., 18, 763-774, 2014

A more detailed evaluation of the spatio-temporal patterns
of the agreement between MSG-SEVIRI and MODIS is pre-
sented in Figs. 11 and 12. Figure 11 compares the spatial pat-
terns of the frequencies of three MSG-SEVIRI and MODIS
mapping classes — clouds, snow, and no snow. It is clear that
the agreement between the snow cover products is the largest
for mapping the clouds, for mapping the land in the flat-
land and snow in the high alpine areas. These cases occur in
more than 25 % of days in the selected period, in most of the
MSG-SEVIRI pixels. The MSG-SEVIRI maps snow, while
the MODIS-combined product indicates clouds in 10-15 %
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Fig. 9. Relationship between mean MSG-SEVIRI pixel eleva-
tion and the overall agreement (mp) between the MSG-SEVIRI
and MODIS-combined products. Red and blue points represent
MSG-SEVIRI pixels in the flatland and mountain mask areas,
respectively.

of days in the Alps. Interestingly, in the flatland, there are
only a few days when both MSG-SEVIRI and MODIS indi-
cate snow. The spatial patterns of the disagreement between
the products (i.e., MSG-SEVIRI maps no presence of snow
(land), but MODIS indicates snow) show that most of the
cases are in Upper Austria, Styria and the mountain valleys.
An opposite case occurs quite frequently in the mountain val-
leys of western Austria, where MSG-SEVIRI and MODIS
map snow and land in 10-15 % of days, respectively. Fig-
ure 12 shows that MSG-SEVIRI overestimates snow in com-
parison to MODIS (middle panels) mainly in the summer for
both mountain and flatland areas. The bottom panel (Fig. 12)
indicates that the opposite case (i.e., MSG-SEVIRI under-
estimates snow in the winter) is less frequent (up to 10 %).
There is quite a large frequency of days where MSG-SEVIRI
maps land and MODIS indicates clouds. These cases occur
in more than 20 % of the days of each month in the flatland
area. In the mountains, the reduction of clouds is noticeable
in the winter months, where MODIS indicates clouds, but
MSG-SEVIRI maps snow in more than 15 % of the days.

6 Discussion and conclusions

This study evaluates the snow cover mapping accuracy of the
MSG-SEVIRI operational product. This product is based on
blending 32 consecutive images per day, which is foreseen as
an alternative to different filtering methods used for cloud re-
duction in optical remote sensing products. The limitation of
the product is a coarser spatial resolution of about 5km. Our
results indicate that the blending of multiple observations
during the day allows a significant cloud reduction in Aus-
tria. The mean annual cloud coverage of the MSG-SEVIRI

www.hydrol-earth-syst-sci.net/18/763/2014/
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Fig. 10. Seasonal agreement my; between the MSG-SEVIRI and
MODIS-combined products for MODIS cloud-free pixels for the
period April 2008-June 2012. Red and blue lines represent moun-
tain and flatland areas, respectively.

product is less than 30 %, which is 23 and 30 % lower than
obtained by the MODIS-combined and MODIS-Terra snow
cover products, respectively. Such cloud reduction is similar
to that obtained by 1-day temporal filter performed on the
MODIS-combined product (Parajka and Bloschl, 2008). The
results are consistent with the preliminary MSG-SEVIRI as-
sessment study (Surer and Akyurek, 2012), which indicates
a 31-49 % cloud reduction in mountainous parts of Turkey
in the winter season. Despite the coarser spatial resolution
of MSG-SEVIRI, the overall mapping accuracy is large.
The average accuracy for cloud-free days is 89 %, which is
5 % lower than obtained by the MODIS-combined product,
but similar to that obtained by land-surface (JULES) model
simulations driven by a regional climate model HadRM3-P
(Parajka et al., 2010). The overall accuracy also relates well
with the hit rate measure of Surer and Akyurek (2012), which
is in between 68 and 81 % in winter. The accuracy with re-
spect to all weather conditions (in all weather conditions as-
sessments the pixels with clouds are considered as mapping
errors) is, however, about 3—4 % larger than obtained by the
MODIS product. The larger frequency of snow cover infor-
mation, even for coarse resolution, indicates the potential of
MSG-SEVIRI for operational assimilation into hydrologic
models.

The analysis of mapping errors indicates that MSG-
SEVIRI tends to underestimate snow cover, particularly in
flatland areas. Large errors are also found in the Alpine re-
gion characterized by large topographical and snow cover
variability. The errors are noticeably larger at stations that
are located at different elevations than the mean of the MSG-
SEVIRI pixels. The differences in mapping accuracy clearly
indicate the limits of using meteorological stations for vali-
dating coarse satellite products. In order to account for scal-
ing relationships between point measurement and pixel size
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Fig. 11. Relative frequency of days with agreement and disagreement between the MSG-SEVIRI and MODIS-combined snow cover products

for the period April 2008-June 2012.

(Bloschl and Kirnbauer, 1992; Bloschl, 1999; Skgien et al.,
2003) some studies used different thresholds for considering
ground as snow covered. For example, Simic et al. (2004)
examined the sensitivity of the mapping accuracy to the ref-
erence threshold of 1 and 3 cm and found that the difference
is small, ranging approximately between —2 and 4 %. In this
study, a 1 cm threshold is used in order to be consistent and
comparable with other studies performed in Austria. In the
future, the sensitivity of results to this reference threshold
should be investigated in more detail.

The comparison between MSG-SEVIRI and MODIS snow
cover products shows a good overall agreement. The use of
the MSG-SEVIRI snow product in hydrological modeling
is under study, but calibration of a conceptual hydrological
model by using MSG-SEVIRI snow cover product has been
performed. It is observed that the multi-objective calibration,
in which MSG-SEVIRI snow cover data is used beside the
runoff data, improved the snow cover estimation of the hy-
drological model (Akyurek et al., 2013).

The snow retrieval algorithms for MSG-SEVIRI and
MODIS snow products are more or less the same. The
comparison between the normalized difference snow index
(NDSI), used as the retrieval algorithm for MODIS prod-
uct, and SI, used as the retrieval algorithm for MSG-SEVIRI
product, shows a good relationship for several clear-sky
MSG-SEVIRI images (Surer and Akyurek, 2012). The se-
lected SI threshold value of 0.6 for the snow-cover area
retrieval corresponds to 0.2 for the NDSI value. For the
MODIS products the NDSI value for 50 % snow-covered ar-
eas is taken as 0.4 (Dozier, 1989; Hall et al., 2002). The aim

Hydrol. Earth Syst. Sci., 18, 763-774, 2014

of selecting SI as 0.6 is to include the partial snow-covered
areas in the retrieval of MSG-SEVIRI snow product. The dif-
ferences are because of coarse spatial resolution of MSG-
SEVIRI. The finding in this study indicates the importance
of spatial resolution and sub-grid topographical variability
for the use of satellite snow cover images in operational hy-
drological applications or climatological studies.

The comparison between MSG-SEVIRI and MODIS snow
cover products shows a good overall agreement. The overes-
timation and underestimation errors of MSG-SEVIRI snow
product is larger compared to the MODIS-Terra snow prod-
uct. In both of the products underestimation error is observed
in the winter months and overestimation error is observed in
the spring and summer months. The overestimation and un-
derestimation are more pronounced for mountainous areas
compared to flat lands for MSG-SEVIRI snow product. Be-
sides the spatial resolution affecting the snow mapping accu-
racy, the difference in the viewing geometries of two sensors
may have an effect on the snow mapping. The view geome-
try may be one of the major error sources in snow mapping
algorithms. The influence of the varying MODIS view zenith
angles on snow mapping algorithm must be investigated in
detail. As view zenith angle increases, it is known that NDSI
decreases (Xin et al., 2012). Since MODIS observes the sur-
faces at a much smaller view zenith angle (VZA) than the
SEVIRI, it detects more snow cover area. That may be the
reason to observe large underestimation errors for SEVIRI
compared to MODIS in winter months. The narrow band
width in the Green and Mid. Infrared portion of the spec-
trum for MODIS creates the possibility to map more snow
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Fig. 12. Mean seasonal frequency of days with agreement and disagreement between the MSG-SEVIRI and MODIS-combined snow cover

products in each month for the period April 2008-June 2012.

compared to SEVIRI. The overestimation for spring months
is due to the high percentage of fractional snow cover due to
melting in these months. The MSG-SEVIRI algorithm tends
to map more snow for fractional snow-covered areas. Neither
the effect of complex topography, nor the shadows were held
in the MSG-SEVIRI snow mapping algorithm. Therefore the
MSG-SEVIRI algorithm can be modified with the use of a
proper DEM in order to correct the topography effect.

Better snow cover information can be retrieved by us-
ing MSG-SEVIRI and MODIS snow products together. The
cloud-contaminated MODIS snow pixels can be reclassified
according to the values observed from the MSG-SEVIRI
snow product. The merging of snow products having com-
paratively better spatial resolution (MODIS) and temporal
resolution (MSG-SEVIRI) can be studied as a future work.

Besides the importance of spatial resolution of snow
products, a better temporal resolution helps to increase the

www.hydrol-earth-syst-sci.net/18/763/2014/

cloud/snow discrimination, which is very important for the
use of satellite snow products in further analysis. The new
sensors and satellite missions to be used for hydrological and
climatological studies can be designed according to an opti-
mum spatial and temporal resolution.
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