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ABSTRACT 

 

 

BIASED PROPORTIONAL NAVIGATION GUIDANCE 

FOR IMPACT ANGLE CONTROL 

WITH EXTENSION TO THREE-DIMENSIONAL ENGAGEMENTS 

 

 

 

Koray Savaş Erer 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Kemal Özgören 

Co-Supervisor: Dr. Osman Merttopçuoğlu 

 

February 2015, 174 pages 

 

 

This work shows that the impact angle can be controlled by means of bias addition to 

pure proportional navigation guidance commands. After obtaining the closed-form 

solution of the nonlinear differential equations governing the engagement kinematics 

between a pursuer and a stationary target, it is shown that the proposed strategy 

corresponds to the optimal solution in the linear domain. Three alternative guidance 

laws that do not require the time to go are proposed. The first law constitutes a two-

phased approach, where the bias is removed after obtaining proper pursuit 

conditions. The second law, which makes use of the range-to-go information, and the 

third law, which leads to an exponentially decaying error profile, are single-phased 

approaches that do not suffer from the open-loop nature of the first one in its second 

phase. The framework of this study allows the treatment of both the look angle and 

the acceleration constraints in such a way that the impact angle capacity 

corresponding to any engagement geometry can be analyzed. In addition to a 

complete but impractical formulation, a feasible constrained guidance solution is 

presented. A single-gain range observer that addresses the observability issue in a 

convenient manner is formulated to supplement the trajectory shaping effort. The 
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case of moving targets is dealt with by means of constructing the collision triangle. 

Two different schemes are considered based on the rotations of the absolute and 

relative velocity vectors. The plane-pursuit midcourse guidance method proposed to 

confine a general engagement scenario to a single plane facilitates the extension to 

three-dimensional engagements. 

 

Keywords: Impact Angle, Proportional Navigation, Bias, Constrained Guidance, 

Three-Dimensional Engagement 
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ÖZ 

 

 

EK TERİMLİ ORANSAL SEYRÜSEFER GÜDÜM İLE 

ÇARPMA AÇISI KONTROLÜ 

VE ÜÇ BOYUTLU EŞLEŞMELERE UYARLANMASI 

 

 

 

Koray Savaş Erer 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal Özgören 

Ortak Tez Yöneticisi: Dr. Osman Merttopçuoğlu 

 

Şubat 2015, 174 sayfa 

 

 

Bu çalışma, çarpma açısının, saf oransal seyrüsefer güdüm komutlarına ek terim 

eklenmesiyle kontrol edilebileceğini göstermektedir. Takipçi ve sabit bir hedef 

arasındaki eşleşme kinematiğini yöneten doğrusal olmayan diferansiyel denklemlerin 

çözümünün elde edilmesinden sonra, önerilen yöntemin doğrusal ortamdaki en 

uygun çözüme karşılık geldiği gösterilmektedir. Kalan süreye ihtiyaç duymayan üç 

adet alternatif güdüm kanunu önerilmektedir. Birinci kanun, ek terimin uygun takip 

koşullarının elde edilmesiyle kaldırıldığı iki fazlı bir yaklaşımdır. Kalan mesafe 

bilgisini kullanan ikinci kanun ve hatanın üstel şekilde eritilmesini sağlayan üçüncü 

kanun, tek fazlı yaklaşımlardır ve birincinin ikinci fazdaki açık döngü doğasının 

benzerine maruz kalmazlar. Bu çalışmanın çatısı, bakış açısı ve ivme kısıtlarının 

değerlendirmeye alınmasına izin vermektedir; herhangi bir eşleşme geometrisine ait 

çarpma açısı kapasitesi analiz edilebilir. Eksiksiz fakat elverişsiz bir formülasyonun 

yanı sıra, uygulanabilirliği olan bir kısıt altında güdüm çözümü sunulmaktadır. 

Gözlemlenebilirlik sorununu uygun şekilde ele alan tek kazançlı bir menzil 

gözlemcisi, yörünge şekillendirmeyi desteklemek adına kurgulanmıştır. Hareketli 

hedeflere ilişkin durum, çarpışma üçgeninin kurulmasıyla çözülmektedir. Mutlak ve 



 

viii 

 

 

bağıl hız vektörlerinin dönüşlerine dayanan iki farklı yöntem değerlendirilmektedir. 

Genel bir eşleşme senaryosunu tek bir düzleme hapsederek üç boyuta uyarlamayı 

sağlaması için düzlem takip adı verilen bir arafaz güdüm yöntemi önerilmektedir. 

 

Anahtar Kelimeler: Çarpma Açısı, Oransal Seyrüsefer, Ek Terim, Kısıt Altında 

Güdüm, Üç Boyutlu Eşleşme 

 

 

  



 

ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to 

 

my father 

 

and to 

 

my dearest one 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

x 

 

 

ACKNOWLEDGEMENTS 

 

 

I would like to thank 

 

my supervisor Prof. Dr. M. Kemal Özgören firstly for providing a free thinking 

environment, then for his many useful suggestions and finally for bearing with 

my not-so-very-systematic way of studying; 

 

my co-supervisor Dr. Osman Merttopçuoğlu who took the trouble to answer my 

petty questions without letting go of his unique sense of humor; 

 

Raziye Tekin for her invaluable technical insight she generously shared with me 

and for her selfless support throughout the whole process; 

 

Paul Zarchan for the encouragement he provided; 

 

Prof. Dr. M. Kemal Özgören once more and Prof. Dr. Bülent E. Platin for 

teaching me “Advanced Dynamics” and “Dynamics of Nonlinear Systems”, the 

graduate courses on which the foundations of this dissertation rest; 

 

Roketsan for giving me the opportunity to combine my professional activities 

with my academic interests; 

 

my mother and brother for simply being there. 

 

 

  



 

xi 

 

 

TABLE OF CONTENTS 

 

 

ABSTRACT ................................................................................................................. v 

ÖZ .............................................................................................................................. vii 

ACKNOWLEDGEMENTS ......................................................................................... x 

TABLE OF CONTENTS ............................................................................................ xi 

LIST OF TABLES .................................................................................................... xiv 

LIST OF FIGURES ................................................................................................... xv 

LIST OF SYMBOLS ................................................................................................. xx 

LIST OF ABBREVIATIONS .................................................................................. xxii 

CHAPTERS ................................................................................................................. 1 

1. INTRODUCTION ................................................................................................... 1 

1.1. Definition of the Basic Problem ........................................................................ 3 

1.2. Literature Review .............................................................................................. 4 

1.3. Detailed Outline ................................................................................................ 7 

1.4. Contributions ................................................................................................... 10 

2. BIASED PURE PROPORTIONAL NAVIGATION FOR TRAJECTORY 

SHAPING .................................................................................................................. 11 

2.1. Analytical Background .................................................................................... 11 

2.1.1. State Plane Trajectories ............................................................................ 17 

2.1.2. Stability ..................................................................................................... 20 

2.2. Examples of Continuous Bias Application ..................................................... 22 

2.3. Linear Aspects ................................................................................................. 28 

2.3.1. Equilibrium Analysis ................................................................................ 29 

2.3.2. Optimality ................................................................................................. 31 

2.3.3.  Equivalency of Inputs .............................................................................. 38 



 

xii 

 

 

3. IMPACT ANGLE CONTROL WITH BIASED PURE PROPORTIONAL 

NAVIGATION ........................................................................................................... 39 

3.1. BPPN Impact Angle ........................................................................................ 39 

3.2. Bias Application Alternatives .......................................................................... 41 

3.2.1. Discontinuous Bias Application ............................................................... 42 

3.2.2. Range-Driven Bias Application ................................................................ 53 

3.2.3. Error-Based Bias Application ................................................................... 58 

3.3. Performance of Guidance Laws under Disturbance ........................................ 65 

3.3.1. Pursuer Dynamics and Gravity ................................................................. 66 

3.3.2. Temporarily Unavailable Seeker Data ...................................................... 69 

3.3.3. Target Movement ...................................................................................... 74 

4. CONSTRAINED GUIDANCE PROBLEM .......................................................... 77 

4.1. BPPN Impact Angle Capacity: Full Utilization of Available Resources ........ 78 

4.2. Formulation for Look Angle and Acceleration Constrained Impact Angle 

Control .................................................................................................................... 86 

4.3. Look Angle Constrained Impact Angle Control with Acceleration Check ..... 91 

5. RANGE OBSERVER ............................................................................................ 97 

5.1. Observer Structure ........................................................................................... 98 

5.2. Effects of Various Parameters on the Estimation Performance .................... 100 

6. THE CASE OF MOVING TARGETS ................................................................ 107 

6.1. Preliminaries .................................................................................................. 108 

6.2. PPN-Based Implementation .......................................................................... 111 

6.3. IPN-Based Implementation ........................................................................... 113 

6.4. Examples ....................................................................................................... 116 

7. PLANE PURSUIT FOR EXTENSION TO THREE DIMENSIONS ................. 123 

7.1. Midcourse Guidance Against a Stationary Target ......................................... 123 

7.1.1. Guidance Controller ................................................................................ 125 



 

xiii 

 

 

7.1.2. Design Example ...................................................................................... 128 

7.1.3. Control of Impact Direction .................................................................... 132 

7.2. Midcourse Guidance Against a Moving Target ............................................ 137 

7.2.1. Guidance Controller ................................................................................ 138 

7.2.2. Design Example ...................................................................................... 141 

8. CONCLUSIONS .................................................................................................. 147 

REFERENCES ......................................................................................................... 153 

APPENDICES ......................................................................................................... 159 

A. NONLINEAR OPTIMAL CONTROL SOLUTION .......................................... 159 

B. LINEAR OPTIMAL CONTROL SOLUTION ................................................... 163 

C. ANALYTICAL BEHAVIOR OF PURE PROPORTIONAL NAVIGATION .. 167 

D. ACTUAL FLIGHT PERFORMANCE OF THE RANGE OBSERVER ........... 169 

E. PLANAR NATURE OF PURE PROPORTIONAL NAVIGATION ................. 171 

CURRICULUM VITAE .......................................................................................... 173 

 

 

  



 

xiv 

 

 

LIST OF TABLES 

 

 

TABLES 

Table 3.1 Summary of the simulation results produced by the discontinuous bias 

application strategy .................................................................................................... 48 

Table 3.2 Summary of the simulation results with range-driven bias application ..... 55 

Table 3.3 Summary of the simulation results produced by the error-based bias 

application strategy .................................................................................................... 61 

Table 3.4 Summary of the simulation results produced by the three alternative bias 

application strategies under pursuer dynamics and gravity ....................................... 67 

Table 3.5 Summary of the simulation results produced by the three alternative bias 

application strategies under temporarily unavailable seeker data .............................. 70 

Table 4.1 Summary of the constrained guidance simulation results .......................... 95 

Table 6.1 Summary of the simulation results against a moving target .................... 117 

 

 

  



 

xv 

 

 

LIST OF FIGURES 

 

 

FIGURES 

Figure 1.1 Planar engagement between a stationary target and its pursuer ................. 3 

Figure 2.1 BPPN state plane trajectories for different parameters............................. 18 

Figure 2.2 BPPN state plane trajectories for N = 2 .................................................... 19 

Figure 2.3 BPPN state plane trajectories for N = 3 .................................................... 19 

Figure 2.4 BPPN state plane trajectories for N = 4 .................................................... 20 

Figure 2.5 Cost of vertical impact as a function of navigation gain with continuous 

bias application strategy ............................................................................................. 23 

Figure 2.6 Spatial trajectories produced by the continuous bias application strategy

 ................................................................................................................................... .24 

Figure 2.7 Acceleration histories produced by the continuous bias application 

strategy ....................................................................................................................... 25 

Figure 2.8 Look angle behaviors produced by the continuous bias application 

strategy ....................................................................................................................... 25 

Figure 2.9 Path angle variations produced by the continuous bias application strategy

 .................................................................................................................................... 26 

Figure 2.10 Comparison of spatial trajectories produced by the optimal and 

continuous bias application strategies ........................................................................ 27 

Figure 2.11 Comparison of acceleration histories produced by the optimal and 

continuous bias application strategies ........................................................................ 27 

Figure 2.12 Comparison of look and path angle variations produced by the optimal 

and continuous bias application strategies ................................................................. 28 

Figure 2.13 Neighborhood of the BPPN saddle point for N = 2 ................................ 30 

Figure 2.14 Neighborhood of the BPPN saddle point for N = 3 ................................ 31 

Figure 2.15 Neighborhood of the BPPN saddle point for N = 4 ................................ 31 

Figure 2.16 Linear engagement between a stationary target and its pursuer ............. 32 

Figure 3.1 Acceleration histories for various delay times produced by the 

discontinuous bias application strategy ...................................................................... 44 

Figure 3.2 Spatial trajectories produced by the discontinuous bias application 

strategy ....................................................................................................................... 49 



 

xvi 

 

 

Figure 3.3 Acceleration histories produced by the discontinuous bias application 

strategy ....................................................................................................................... 49 

Figure 3.4 Look angle variations produced by the discontinuous bias application 

strategy ....................................................................................................................... 50 

Figure 3.5 Path angle trends produced by the discontinuous bias application strategy

 .................................................................................................................................... 50 

Figure 3.6 Comparison of spatial trajectories produced by the optimal, continuous 

bias application and discontinuous bias application strategies .................................. 52 

Figure 3.7 Comparison of acceleration histories produced by the optimal, continuous 

bias application and discontinuous bias application strategies .................................. 53 

Figure 3.8 Spatial trajectories produced by the range-driven bias application strategy

 .................................................................................................................................... 56 

Figure 3.9 Acceleration histories produced by the  range-driven bias application 

strategy ....................................................................................................................... 56 

Figure 3.10 Look angle variations produced by the  range-driven bias application 

strategy ....................................................................................................................... 57 

Figure 3.11 Path angle trends produced by the  range-driven bias application strategy

 .................................................................................................................................... 57 

Figure 3.12 Bias profiles produced by the  range-driven bias application strategy ... 58 

Figure 3.13 Spatial trajectories produced by the error-based bias application strategy

 .................................................................................................................................... 62 

Figure 3.14 Acceleration histories produced by the error-based bias application 

strategy ....................................................................................................................... 63 

Figure 3.15 Look angle variations produced by the error-based bias application 

strategy ....................................................................................................................... 63 

Figure 3.16 Path angle trends produced by the error-based bias application strategy.

 .................................................................................................................................... 64 

Figure 3.17 Bias profiles produced by the error-based bias application strategy ...... 64 

Figure 3.18 Acceleration histories produced by the three alternative bias application 

strategies under pursuer dynamics and gravity .......................................................... 68 

Figure 3.19 Bias profiles produced by the three alternative bias application strategies 

under pursuer dynamics and gravity .......................................................................... 69 



 

xvii 

 

 

Figure 3.20 Spatial trajectories produced by the three alternative bias application 

strategies under temporarily unavailable seeker data ................................................. 71 

Figure 3.21 Acceleration histories produced by the three alternative bias application 

strategies under temporarily unavailable seeker data ................................................. 72 

Figure 3.22 Look angle variations produced by the three alternative bias application 

strategies under temporarily unavailable seeker data ................................................. 72 

Figure 3.23 Path angle trends produced by the three alternative bias application 

strategies under temporarily unavailable seeker data ................................................. 73 

Figure 3.24 Bias profiles produced by the three alternative  bias application strategies 

under temporarily unavailable seeker data ................................................................. 73 

Figure 3.25 Impact angle sensitivities of the discontinuous, range-driven and error-

based bias application strategies to target velocity .................................................... 75 

Figure 4.1 General picture of the BPPN state plane with the locus of maximum look 

angles superimposed .................................................................................................. 78 

Figure 4.2 Contours of achievable impact angle under physical limitations ............. 85 

Figure 4.3 Look angle variations during constrained guidance produced by the 

continuous and discontinuous bias application strategies .......................................... 96 

Figure 4.4 κ histories during constrained guidance produced by the continuous and 

discontinuous bias application strategies ................................................................... 96 

Figure 5.1 Range observer structure to estimate the range to a stationary target ...... 99 

Figure 5.2 Effect of the observer gain on the range estimation performance .......... 101 

Figure 5.3 Effect of the observer threshold on the range estimation performance .. 102 

Figure 5.4 Effect of the seeker tracking bandwidth on the range estimation 

performance.............................................................................................................. 102 

Figure 5.5 Effect of the sampling rate on the range estimation performance .......... 103 

Figure 5.6 Effect of the noise in LOS angle rate on the range estimation performance

 .................................................................................................................................. 104 

Figure 5.7 Range estimation error envelopes for a specific parameter set .............. 105 

Figure 6.1 Planar engagement between the pursuer and its moving target .............. 108 

Figure 6.2 Collision triangle depicting the steady state of the engagement............. 109 

Figure 6.3 Simplified collision triangle against a ground target .............................. 110 

Figure 6.4 Spatial trajectories against a moving target produced by the PPN- and 

IPN-based guidance schemes ................................................................................... 118 



 

xviii 

 

 

Figure 6.5 Acceleration histories against a moving target produced by the PPN- and 

IPN-based guidance schemes ................................................................................... 118 

Figure 6.6 Look angle variations against a moving target produced by the PPN- and 

IPN-based guidance schemes ................................................................................... 119 

Figure 6.7 Path angle trends against a moving target produced by the PPN- and IPN-

based guidance schemes ........................................................................................... 119 

Figure 6.8 Bias profiles against a moving target produced by the PPN- and IPN-

based guidance schemes ........................................................................................... 120 

Figure 6.9 Impact angle sensitivities of the PPN- and IPN-based guidance schemes to 

target speed variation ............................................................................................... 121 

Figure 7.1 A snapshot from the plane-pursuit phase against a stationary target ...... 124 

Figure 7.2 Block diagram of the velocity pursuit guidance loop ............................. 126 

Figure 7.3 Root locus of the transfer function corresponding to velocity pursuit with 

proportional controller .............................................................................................. 128 

Figure 7.4 Root locus of the velocity-pursuit system with lag controller ................ 129 

Figure 7.5 Bode diagrams of the closed-loop velocity-pursuit system .................... 130 

Figure 7.6 Coordinate variations produced by the plane-pursuit guidance against a 

stationary target ........................................................................................................ 131 

Figure 7.7 Acceleration histories produced by the plane-pursuit guidance against a 

stationary target ........................................................................................................ 131 

Figure 7.8 Rejection of the heading error as produced by the plane-pursuit guidance 

against a stationary target ......................................................................................... 132 

Figure 7.9 Side view of the 3-D trajectory produced by the plane-pursuit guidance 

followed by the discontinuous bias application strategy .......................................... 135 

Figure 7.10 Rear view of the 3-D trajectory produced by the plane-pursuit guidance 

followed by the discontinuous bias application strategy .......................................... 135 

Figure 7.11 Acceleration magnitude history produced by the plane-pursuit guidance 

followed by the discontinuous bias application strategy .......................................... 136 

Figure 7.12 Azimuth and elevation angle trends  produced by the plane-pursuit 

guidance followed by the discontinuous bias application strategy .......................... 136 

Figure 7.13 A snapshot from the plane-pursuit phase against a moving target ....... 137 

Figure 7.14 Block diagram of altitude-hold control loop......................................... 139 



 

xix 

 

 

Figure 7.15 Root locus of the transfer function corresponding to altitude hold with 

two different controllers ........................................................................................... 140 

Figure 7.16 Root locus of the altitude-hold system with the lead controller ........... 142 

Figure 7.17 Bode diagrams displaying the command-following characteristics of the 

closed-loop altitude-hold system ............................................................................. 143 

Figure 7.18 Bode diagrams displaying the disturbance-rejection characteristics of the 

closed-loop altitude-hold system ............................................................................. 143 

Figure 7.19 Coordinate variations produced by the plane-pursuit guidance against a 

moving target ........................................................................................................... 145 

Figure 7.20 Acceleration histories produced by the plane-pursuit guidance against a 

moving target ........................................................................................................... 145 

Figure 7.21 Angular error responses produced by the plane-pursuit guidance against 

a moving target ......................................................................................................... 146 

Figure 7.22 Translational error behaviors produced by the plane-pursuit guidance 

against a moving target ............................................................................................ 146 

 

 

  



 

xx 

 

 

LIST OF SYMBOLS 

 

 

P  : Pursuer 

T  : Target 

r  : Range 

v  : Speed 

  : Path angle 

  : Look angle 

  : LOS angle 

a  : Control acceleration 

f,d  : Desired impact angle 

N  : Navigation gain 

b  : Bias 

  : Nondimensional range 

  : Nondimensional time 

  : Bias-to-speed ratio 

  : Bias sign 

c  : Integration constant 

E  : Total control effort 
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CHAPTER 1 

CHAPTERS 

 

1. INTRODUCTION 

 

 

 

The primary requirement of the terminal guidance process is that it must lead the 

pursuer to the target. In addition to this, the application of interest might necessitate 

other objectives. For example, the secondary objective could be approaching the 

target from a specific direction. Depending on the application, being able to control 

the shape of the trajectory and consequently the impact geometry might mean one or 

a combination of the following: exploiting the weak points of the target, increasing 

the warhead effectiveness, avoiding directional defense mechanisms, adjusting the 

time of arrival, or reducing the collateral damage, etc. 

 

The rule of parallel navigation can be considered to deal with the primary 

requirement. This rule states that two objects will eventually meet if the line of sight 

(LOS) connecting them does not rotate with respect to an inertial frame of reference 

[1]. Hence, a pursuer that successfully implements this geometric rule must capture 

its target. 

 

Proportional navigation (PN) is a guidance law that implements the parallel 

navigation rule [1]. It has been the most frequently utilized guidance law in guided 

missiles owing to its simple nature, effectiveness and ease of implementation [2]. 

There are several kinds of PN classified according to the direction of the applied 

acceleration [3]. Two well-known forms are named as true PN (TPN) [4] and pure 

PN (PPN) [5]. In TPN, the acceleration vector is normal to the LOS. In PPN, it is 

normal to the velocity vector of the pursuer. This is a distinct advantage for 

endoatmospheric vehicles since no change of speed is required [6]. The PPN logic is 

simple: The inertial rotation rate of the pursuer velocity vector is required to be equal 

to the inertial rotation rate of the LOS multiplied by a navigation gain. It is known 

that PPN can capture a nonmaneuvering target for almost all initial conditions [5] 
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and the closed-form solution of such an engagement is in the form of a uniformly 

convergent infinite product [7]. Another form of PN is ideal PN (IPN) [8], where the 

acceleration vector is defined to be normal to the relative velocity vector. 

 

Under the action of PPN guidance, the impact angle, i.e. the final value of the path 

angle corresponding to the velocity vector of the pursuer, is determined by the initial 

conditions [5]. This implies that it is possible to obtain a desired impact angle by 

constructing the required initial geometry. However, being possible does not mean 

being feasible. In fact, there will be limited authority on initial conditions in a 

realistic situation, if any at all. A viable alternative to adjusting the initial conditions 

is what is called “trajectory shaping” [2]. This phrase refers to the control action 

performed by the pursuer in order to modify its otherwise direct course towards the 

target. 

 

This is where the subject of this dissertation becomes relevant. In this work, 

trajectory shaping is accomplished by means of bias addition to the PPN guidance 

law. The idea that the impact angle can be controlled via such a biased PPN (BPPN) 

approach originates from the observation that the existence of gravity, which is 

usually compensated by biasing the guidance command, has a dramatic effect on the 

shape of the trajectory. 

 

Before moving on, the reader should note that this is an application-oriented writing. 

The purpose is to provide practically implementable solutions to the problem of 

impact angle control. This statement should not be misinterpreted. For some systems, 

it might be the case that none of the methods presented here will be applicable at all. 

Nevertheless, judging from his personal experience, the author hopes that the 

practical contributions of this work will be more than insignificant to the guidance 

community. 
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1.1. Definition of the Basic Problem 

 

Figure 1.1 depicts the planar engagement between a stationary target T and its 

pursuer P, where r is the range. The speed of the pursuer is v,   being the path angle. 

The angle between the velocity vector and the LOS is the look angle   whereas   

denotes the LOS angle. The angles are positive in counter-clockwise direction. The 

inertial coordinates are represented by x and y. 

 

 





v
: inputa



r

P

T
x

y

 

 

Figure 1.1 Planar engagement between a stationary target and its pursuer 

 

 

The guidance objective is to finally capture the target; f 0r  , with a desired value of 

the path angle, i.e. with a desired impact angle; f f,d  . Subscript f and subscript d 

denote the final and desired values, respectively. The control action is enabled by a, 

which is the acceleration component of T operating in a direction perpendicular to 

the velocity vector. The speed is free to vary under the action of several factors such 

as gravity and drag, but not with the control input. 

 

At this point, one might be tempted to think that the guidance objectives stated above 

can be accomplished through trajectory planning since the target is stationary. There 

are, however, two potential problems with this point of view. Firstly, the position of 

the target may not be available. Secondly, the target might decide to move. The 

solution to these problems is to use a seeker head that, as an essential component of a 
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tactical missile, supplies information about the engagement geometry. For example, a 

gimballed imaging infrared seeker that provides the LOS angle and its rate would 

especially suit to the methods described in this writing. 

 

 

1.2. Literature Review 

 

A considerable number of works focusing on impact angle guidance found in the 

literature have their foundations within the framework of the optimal control theory. 

This group is typically characterized with a running cost involving the square of the 

control input that needs to be minimized. Usually, the resulting guidance laws are 

functions of the problematic variable termed time to go, which is in general not 

available. In an early example called “perfect rendezvous” [9], the aim was to 

intercept the target with no vertical velocity component, which may correspond to 

tail-chase or head-on type of engagements. In another early study [10], where it was 

demonstrated how the optimal control approach made it possible to compensate for 

pursuer dynamics in a systematic manner and the issue of control saturation was also 

investigated. The lift and drag characteristics were taken into account in deriving the 

κ-guidance law presented in [11], where the analytical forms of the time-varying 

guidance gains followed from the nature of the performance index penalizing low 

terminal velocities. In [12], where the final time was a part of the cost function, the 

nonlinear impact angle control problem was solved with the assumption of available 

target trajectory. The unknown parameters in the analytically derived guidance law 

were obtained from a numerical solution. A minimum-time control solution was 

presented in [13], where the optimal trajectory in the lag-free case turned out to be a 

straight line in between circular paths, which were traversed with maximum 

acceleration. The problem was formulated for a missile decelerating according to a 

specific equation in [14]. Optimal impact angle control laws were generalized for 

arbitrary system order and the problem of time-to-go estimation based on closed 

form trajectory solutions was addressed in [15]. The integrand of the cost function 

proposed in [16] was inversely proportional to some power of the time to go, which 

provided additional degree of freedom in trajectory shaping. The same performance 

index was considered in [17] to derive guidance laws to be used by lag-free and first-
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order systems, respectively, along with a time-to-go estimation method 

corresponding to the former law. The impact time and angle guidance law derived in 

[18] had the interesting property that jerk commands were issued instead of the usual 

acceleration commands. In [19], a different point of view was adopted in that the 

body angle of the missile instead of its path angle was used as the control variable by 

taking the angle-of-attack dynamics into account. The state-dependent Riccati-

equation-based control law given in [20] was obtained as a function of both the range 

to go and the time to go. In one of the few examples of directly considering the 

seeker field-of-view limit in the design of an impact angle control law [21], the 

solution dictated switching action so as to keep the look angle constant in between 

phases of unconstrained optimal guidance. The integrand of the running cost in [22] 

was formulated as the square of the ratio of the control input to the time-varying 

acceleration constraint, the expected profile of which was calculated using an 

iterative process. The boundary value problem with final time specified was 

numerically solved in [23]. The method proposed in [24] transformed a dynamic 

optimization problem to a static optimization problem, which was then solved in an 

iterative manner. References [9], [10], [13], [15–19], [21] and [22] used linear 

formulations for derivation. 

 

There are also other forms of impact angle guidance laws which do not claim 

optimality. Some of these might readily be identified as a variant of the PN guidance 

law. There are others which are, for example, based on the sliding-mode control 

methodology and yet others that make use of geometrical concepts. The first attempt 

in this direction seems to be the scheme proposed in [25], which attempted to 

enhance the PN law with the addition of a bias term as a function of the range to go, 

which is yet another problematic variable. In another noteworthy contribution [26], 

the pursuer, whose aerodynamic behavior was taken into account, was guided toward 

the stationary target by means of PN applied in two orthogonal planes with adaptive 

usage of the navigation gains. In [27], the guidance law sought convergence to a 

circular path by utilizing the PN law with a specific value of the navigation gain. 

Two-phased guidance schemes were proposed in [28] and [29], where the objective 

of the first phase was to provide proper initial angular conditions for the second 

phase governed by PN. The difference between these two studies is the way the first 
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phases were handled: The former employed PN whereas a polynomial trajectory was 

followed in the latter. In [30], the idea in [28] was extended to deal with target 

movement by considering the fact that the pursuer and target velocity components 

normal to the LOS must be equal at the final instant. Another two-phased structure 

was presented in [31] and [32], where the PN law was enhanced with bias addition 

during the first phase to be able to shape the trajectory. A sliding-mode separated 

guidance and control approach was formulated in [33], where the guidance command 

had two components respectively for reaching and remaining on the sliding surface. 

The study in [34] established a purely geometric guidance law for lateral impact 

without the need for the LOS rate, a usually indispensable signal in guidance design. 

The law proposed in [35] was structured as a polynomial function of the time to go, 

where it was advised that the guidance gains be selected based on the worst case 

scenario so that the acceleration and body referenced look angle limits were not 

violated. In [36], the idea in [31] and [32] was extended to moving targets with the 

help of the expected collision triangle concept. The formulation in [37] derived an 

optimal solution by setting out with a bias-enhanced PN command and arriving at a 

full biasing tactic with continuous feedback. A bias shaping method compatible with 

[31] and [32] was introduced in [38] to be able to cope with the look angle and 

acceleration limits. In [39], inspired by the form of the linear optimal control, a 

guidance law was heuristically developed and extended to three dimensions. The 

guidance law in [40] was realized with path angle commands instead of the 

conventional method of using acceleration commands. Accordingly, the LOS angle 

instead of its rate was utilized in the formulation; yet, the LOS rate may also be 

included to account for the autopilot lag. A range-dependent guidance law was 

proposed in [41], where a time-to-go estimation procedure was also proposed. In 

[42], a geometrical three-point guidance method was proposed, where the logic was 

based upon maintaining a specified value of the inscribed angle without the need for 

the LOS rate signal. The switched-gain PN scheme developed in [43] solved the 

problem under the look angle and acceleration constraints. A comparison of unbiased 

and biased formulations of PN was made in [44], where the look angle constraint was 

considered directly. Only references [35] and [37] used linear formulations for 

derivation. 
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The foundations of this work can be found in [29], where the concept of PPN impact 

angle was presented, and in [31], where it was shown that the impact angle could be 

controlled by biasing the PPN law. The studies in [32], [36] and [44] have been 

follow-ups to these initial efforts. 

 

 

1.3. Detailed Outline 

 

Chapter 2 is where the analytical background of the BPPN guidance law is explored. 

In the first section, the nonlinear differential equation set governing the engagement 

kinematics between a BPPN-guided pursuer and its stationary target is obtained, 

where the states happen to be the nondimensional range and the look angle. This set 

is firstly brought to a nondimensional form and then solved by sacrificing the time 

information. The analytical expressions for several important variables are derived. 

A stability criterion is developed based on the behavior of the state plane trajectories. 

In the next section, the reference ground-to-ground engagement geometry, which is 

to be used in most of the example scenarios, is defined. After defining the 

performance index referred to as the total control effort, the results of simulation runs 

demonstrating the main characteristics of the BPPN law are presented. Also, the 

optimal solution for the reference engagement geometry, which will serve as the 

benchmark scenario in the rest of the text, is compared with the lowest-cost BPPN 

solution. The last section departs from the nonlinear domain to provide some linear 

insight. As a first item, the picture of the state plane in the neighborhood of the 

equilibrium point of the nonlinear system is presented. Then, the interest is shifted to 

the ever-popular issue of optimality. Adopting the total control effort as the cost 

function, the open-loop control corresponding to the two-point boundary value 

problem is solved. It is then shown that the linearized form of BPPN is equivalent to 

the optimal control. The chapter is concluded by revealing that the bias is actually a 

form of disturbance acting on the PN guidance loop. 

 

Chapter 3 introduces the BPPN-based guidance laws for impact angle control. The 

formulations for the BPPN impact angle and the potential impact angle function are 

developed in the first section. The second section introduces three different impact 



 

8 

 

 

angle guidance laws based on BPPN. The first method involves switching from 

BPPN to PPN when proper angular conditions are obtained. This discontinuous 

structure renders the second phase open loop as far as the impact angle control 

process is concerned. In the second method, the amount of bias is determined 

according to the range to go, which may be supplied by a range estimator. In the 

third method, the bias is applied in such a way that PPN impact angle error 

diminishes as a first-order system. Engagement scenarios driven by these guidance 

laws are simulated here under ideal conditions. The third section, on the other hand, 

focuses on performance evaluation under several realistic forms of disturbance. 

 

Chapter 4 investigates the problem of constrained impact angle control. In this 

problem, the look angle and the acceleration limitations of the pursuer are directly 

taken into account. It is shown that in the case where the speed is not constant, the 

concept of constant maximum lift coefficient may be summoned to handle the 

acceleration constraint properly. The important outcome of the first section is an 

algebraic equation that relates the BPPN navigation gain to the physical limits. After 

numerically solving this equation, which is obtained using the available analytical 

basis, the guidance parameters that lead to the full utilization of the resources can be 

calculated. It is then possible to compute the impact angle this fully-utilized guidance 

process will lead to. As an example, the impact angle contours corresponding to the 

reference engagement geometry are presented. In the next section, the discontinuous 

BPPN structure is considered instead of the continuous one. The formulation for the 

physically constrained impact angle problem is derived but not solved due to its 

uncooperative nature. The absence of a proper solution is compensated in the last 

section. It is shown that the constrained guidance problem may be relaxed by not 

considering both constraints simultaneously. The proposed approach involves 

dealing firstly with the look angle constraint and then checking whether the 

acceleration constraint gets violated while trying to reach the desired impact angle. 

 

Chapter 5 discusses a single-gain range observer that is formulated to estimate the 

range to a stationary target based on seeker and angular inertial navigation system 

(INS) data. This tool finds its direct application in one of the guidance laws presented 
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in the Chapter 3. The structure of the range observer is presented in the first section 

and its performance is tested under various factors in the second section. 

 

Chapter 6 is an extension of the subject to briefly cover the moving targets. With the 

assumption of known target velocity vector, the collision triangle concept introduced 

in the first section proves useful in this case. Unlike the previously reported cases, 

the impact angle control loop may be regarded as open because the target 

information is not updated during the engagement. Two alternative implementations 

are presented in the second and third sections. The first one is adapted from the 

BPPN-based solution and hence, it does not comply with the analytical guidelines 

exploited hitherto since the target is not stationary anymore. The second one, on the 

other hand, is made to comply by adopting another methodology based on IPN. The 

biased IPN (BIPN) logic is implemented through a PPN-like guidance law. In the last 

section, ideal and disturbed scenarios are simulated to demonstrate the effectiveness 

of the proposed solutions. 

 

Chapter 7 is devoted to a midcourse guidance method called plane pursuit, which is 

useful in extending the proposed impact angle control scheme to three-dimensional 

(3-D) space. Since BPPN has planar implementation logic, the engagement must be 

made planar before attempting to control the impact angle. In the first section, the 

target is stationary and a guidance strategy based on the lag-compensation 

methodology is proposed. The results of nonlinear simulation runs governed by the 

linear controller are presented. Also, the details of how a desired 3-D impact 

direction can be achieved are presented. The exemplified impact angle guidance law 

is the discontinuous one; hence, the total number of phases amounts to three along 

with the plane-pursuit guidance. In the second section, the target is not stationary and 

a guidance strategy based on the lead-compensation methodology is proposed. 

Nonlinear simulation runs are performed with the linear controller. 
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1.4. Contributions 

 

The contributions of this thesis study may be summarized as follows: 

 The BPPN impact angle control methodology does not rely on the concept of 

linearization as many other studies do; it is a nonlinear guidance technique. 

 Unlike the widespread optimal guidance methods, the BPPN approach does 

not rely on the time-to-go information to control the impact angle; only the 

rate of the LOS angle is sufficient. 

 All of the three BPPN-based guidance schemes devised to control the impact 

angle against a stationary target can be implemented in a real system. 

 Both the look angle constraint and the acceleration constraint are treated 

properly. 

 The range observer formulated as a supplementary tool is a simple and 

efficient way to estimate the range to a stationary target. 

 The PPN-like guidance law that implements the IPN-based solution 

introduced to cover the moving targets is, to the author’s knowledge, a novel 

formulation. 

 The plane-pursuit approach developed to confine the 3-D engagement 

geometry to a plane in space may be used in conjunction with any other 2-D 

guidance law. 
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CHAPTER 2 

 

 

2. BIASED PURE PROPORTIONAL NAVIGATION FOR 

TRAJECTORY SHAPING 

 

 

 

This chapter aspires to familiarize the reader with the basics of the BPPN guidance 

law, which constitutes an efficient basis for impact angle control. 

 

 

2.1. Analytical Background 

 

Since there are two degrees of freedom associated with the movement of a point in 

the plane, two differential equations are required to initiate the mathematical 

manipulation. A visual inspection of Figure 1.1 suggests that a polar representation 

with r and   could be suitable. Accordingly, the first differential equation is directly 

written as 

 

 cosr v       (2.1) 

 

where the dot operator represents derivative with respect to time, i.e. d dt . This 

differential equation is self-explanatory. The second one, however, might not be so 

and it will thus be derived below. One can start with the LOS angle: 

 

1tan
y

x

r

r
   
  

 
  (2.2) 

 

where xr  and yr  are respectively the x and y components of vector r  that is directed 

from P to T. Noting that x xr v   and y yr v   due to the stationary target, where xv  



 

12 

 

 

and yv  are respectively the x and y components of v , the LOS angle rate can be 

obtained by differentiating Eq. (2.2) as 

 

2

x y y xr v r v

r



    (2.3) 

 

On the other hand, the look angle is 

 

      (2.4) 

 

Application of the sine function to both sides yields 

 

sin sin cos cos sin        (2.5) 

 

Referring to Figure 1.1, the equation above can be rewritten as 

 

2
sin

x y y xr v r v r

r v



   (2.6) 

 

A comparison with Eq. (2.3) will reveal the second differential equation. So, the 

nonlinear differential equation set governing the engagement geometry is written as 

 

cosr v     (2.7) 

sinr v     (2.8) 

 

where the first equation directly follows from the combination of Eq. (2.1) and Eq. 

(2.4). 

 

The PPN guidance law is expressed as [5] 
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N    (2.9) 

 

where N is referred to as the navigation gain. The BPPN guidance law, upon which 

this piece of writing is founded, can be obtained by adding a bias term: 

 

N b     (2.10) 

 

where b denotes the bias value. 

 

Before proceeding, the following should be noted: 

 

a v   (2.11) 

 

This basic relationship can be derived by considering the infinitesimal amount of 

rotation caused by an acceleration vector acting perpendicular to the velocity vector 

of a point for an infinitesimal amount of time. 

 

Moving on; the time derivative of Eq. (2.4) is 

 

      (2.12) 

 

The combination of this equation and Eq. (2.10) modifies Eq. (2.7) and Eq. (2.8) as 

 

cosr v     (2.13) 

 
sin

1N v b
r


       (2.14) 

 

It may be appreciated that a nondimensional differential equation set would facilitate 

a more general understanding of BPPN kinematics. Therefore, two new variables, the 

nondimensional range and time, are introduced as 
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r    (2.15) 

d db t    (2.16) 

 

Here, it is important to note that   is a positive quantity and that the following is so 

defined that it is constant: 

 

b

v
    (2.17) 

 

Now, after the change of variables defined in Eq. (2.15) and Eq. (2.16), Eq. (2.13) 

and Eq. (2.14) can be expressed as 

 

cos      (2.18) 

 
sin

1N


 


       (2.19) 

 

where the prime operator represents derivative with respect to the nondimensional 

time, i.e. d d .  denotes the sign of b and is therefore constant even though b may 

be varying. The equilibrium points of this system are readily seen to be 

 

e

1N





    (2.20) 

e

π

2
k    (2.21) 

 

where 1, 3, 5...k      

 

The differential equation set in Eq. (2.18) and Eq. (2.19) need to be integrated to 

obtain information on how the state variables   and   change as the engagement 

progresses. To circumvent the unfavorable integration process in the time domain, 

Eq. (2.19) is divided to Eq. (2.18) to yield 
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 
d sin

sin 1
d

N


 
 

    (2.22) 

 

The solution of this differential equation can be shown to assume the following form 

 

1sin
2

Nc
N


   


  (2.23) 

 

Here, c is an integration constant that defines the family of state plane trajectories. 

This solution is obviously invalid for 2N  , in which case it becomes 

 

 sin ln c        (2.24) 

 

Moreover, the transformation in Eq. (2.15) modifies Eq. (2.10) as 

 

N       (2.25) 

 

and Eq. (2.4) leads to 

 

        (2.26) 

 

The combination of Eq. (2.25) and Eq. (2.26) yields 

 

1

N

N

 


 
 


  (2.27) 

 

Combination of this equation with Eq. (2.19) gives 

 

sin
N


 


      (2.28) 
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For 2N  , substituting the sine term from Eq. (2.23) gives 

 

2 2

2

NcN
N


     


  (2.29) 

 

Here, the path angle rate is with respect to the nondimensional time; the dimensional 

form, which is the scaled form of the acceleration, can be obtained via Eq. (2.16). It 

is important to note that the equations indicate nonzero acceleration at the final 

instant if the bias is still present. The derivative of Eq. (2.29) with respect to the 

nondimensional range can be written as 

 

  3d
2

d

NcN N 


      (2.30) 

 

This last equation may be considered to be some form of jerk, i.e. the derivative of 

the acceleration, and its behavior towards the end of the engagement might have 

important implications. The limit of Eq. (2.30) as   goes to zero is 

 

0

d 0 if 3
lim

if 3d

N
N




 
 

  (2.31) 

 

As seen, the limit goes to infinity when the navigation gain is smaller than 3. This 

could constitute a potential problem for pursuers with slow command following 

dynamics: The miss distance will increase in response to increasing lag. The designer 

should be aware of this phenomenon. 

 

As a last item, the path angle at any nondimensional range may be obtained via the 

following integral obtained by combining Eq. (2.29) with Eq. (2.23) and Eq. (2.18): 
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i

2

i
2

1

2

2 d

1
2

N

N

cN
N

c
N








  


 






 

 
  

 

   (2.32) 

 

where subscript i denotes the initial value and   is a dummy variable. Unfortunately, 

it seems that no general analytical solution exists. One needs to resort to numerical 

means to obtain the solution. 

 

 

2.1.1. State Plane Trajectories 

 

The original motivation of this study is the need to increase the impact angle in 

ground-to-ground engagements. In such scenarios, the pursuer would benefit from 

increasing its altitude as much as possible, which can be done with positive biasing, 

i.e. 1  . 

 

Notice: From this point on, 1   will be utilized without notification. 

 

State plane trajectories for several navigation gain and integration constant values are 

plotted in Figure 2.1. The plot does not have the sense of time because it passes on 

the information obtained from Eq. (2.23) and Eq. (2.24). It is interesting to note that 

one can travel on a variety of open and closed curves, each having a period of 2π  

along the vertical axis, depending on the c value or, equivalently, on initial 

conditions. An important observation is the intersection of some of the trajectories at 

the origin: In the general case where both objects are moving, the final relative 

velocity vector must lie on the LOS for a successful capture. On the other hand in 

this specific case of stationary target, the relative velocity vector is the absolute 

velocity vector of the pursuer. This implies that when the pursuer reaches the target, 

if it does so at all, it must have its look angle zero. Although the origin is not an 

equilibrium point in the mathematical sense, trajectories eventually arriving at it may 

be classified as stable because they practically terminate with capture. 
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Figure 2.1 BPPN state plane trajectories for different parameters 

 

 

Realistic trajectories, where 0   and π π   , are plotted in Figure 2.2, Figure 

2.3 and Figure 2.4 respectively for 2N  , 3N   and 4N   utilizing the “pplane” 

software [45] based on Eq. (2.18) and Eq. (2.19). The arrows superimposed indicate 

the direction in which the pursuer travels with increasing time. The corresponding c 

values are indicated on some of the curves. It is seen that the same general principle 

applies to each figure: There is an equilibrium point somewhere on the upper half-

plane. The trajectories roughly above the imaginary line connecting the upper left 

corner and this equilibrium point are seen to diverge from the origin whereas those 

roughly below the same line converge to it. The locations of the singular points for 

different N values can be verified to be compatible with Eq. (2.20). 
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Figure 2.2 BPPN state plane trajectories for N = 2 

 

 

 

 

Figure 2.3 BPPN state plane trajectories for N = 3 
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Figure 2.4 BPPN state plane trajectories for N = 4 

 

 

2.1.2. Stability 

 

To determine if a particular engagement will lead to capture, a stability criterion for 

the BPPN guidance law can be developed by making use of the integration constant 

of the equilibrium point. For 2N  , Eq. (2.23) can be utilized to obtain 

 

e
e e1

e

1
sin

2N
c

N




 

 
  

 
  (2.33) 

 

With e π 2  , it follows that 

 

   
e 1

1

1 2
N

c
N N


 

 
  (2.34) 

 

As for 2N  , Eq. (2.24) can be used to get e 1c  . 
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Figure 2.2, Figure 2.3 and Figure 2.4 show that convergence does not depend solely 

on c since the same value may result in both divergent and convergent trajectories. 

By inspection, it can be concluded that the pursuer travels on a convergent trajectory 

if 

 

   e e e      π 2c c c c           (2.35) 

 

where   is the AND operator and   is the OR operator. The definition of   would 

be useful for physical interpretation of this criterion. For the same range, a small 

nondimensional range implies low bias (and/or high speed). The limiting case of low 

bias is having no bias at all. The guidance law in such a case becomes PPN, which 

always captures a stationary target unless π   . It is thus reasonable that BPPN 

approaches to instability as   increases. Also, the criterion tells that BPPN may fail 

for high look angle values. This result is compatible with Eq. (2.13), which yields 

positive range rate for π 2  . 

 

To determine whether a given bias value will lead to stability or instability, Eq. 

(2.15) and Eq. (2.34) can be used in Eq. (2.23) to yield 

 

     

1

lim i lim i
i 1

1
sin

21 2

N

N

b r b r

v N vN N






 
   

  
 (2.36) 

 

or in Eq. (2.24) to yield 

 

lim i
i

lim i

sin ln 1
b r v

v b r


 
  

 
  (2.37) 

 

Here, limb  is the limiting bias value above which the guidance loop goes unstable, 

which can be found by solving, possibly with numerical means, the preceding 

equations. 
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2.2. Examples of Continuous Bias Application 

 

The reference engagement geometry considered throughout this thesis is as follows: 

A pursuer with an initial speed of 250 m/s is launched from the ground to capture a 

stationary ground target 5 km away. The initial path angle is 15° and this is also the 

initial look angle since the initial LOS angle is zero. The desired impact angle is 

f,d 90   . The simulations are terminated when the range goes below 1 m. In the 

examples below, the speed of the pursuer, which follows the guidance commands 

without lag, is constant. Such a basic approach is adopted in this preliminary section 

because it will make the interpretation of the results more straightforward.  

 

There are two ways of finding the continuous bias corresponding to a specific value 

of the navigation gain that will lead to a desired impact condition. Unfortunately, 

both ways involve iteration, which is why the BPPN law as it is, i.e. the continuous 

bias application, is not promoted in this dissertation as a feasible guidance solution. 

The user may either repeatedly run simulations or solve Eq. (2.32) with different bias 

values until the desired impact angle is achieved. The number of simulations or 

solution attempts would depend on the how smart the iteration algorithm is. 

 

For any engagement geometry, there are infinitely many combinations of the 

navigation gain and the bias that will result in a desired impact angle. This is why an 

impartial metric would be extremely useful for comparison. The total control effort, 

which is the time integral of the acceleration squared, can be used for this purpose 

[9]. The mathematical representation of this cost function is 

 

f

2

0

1
d

2

t

E a t    (2.38) 

 

where ft  is the final time. 

 

Figure 2.5 displays the variation of control effort values as a function of the 

navigation gain for the reference engagement geometry. It happens that the lowest 
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cost can be obtained with a gain of about 3.8. This minimizing value would change 

for other engagement geometries. This result might seem to be in contradiction with 

what will be presented in Section 2.3.2.3 about the optimality with 3N   in the 

linear domain. The discrepancy is due to the fact that the environment is nonlinear. If 

the impact angle were to be gradually decreased so that the simulation environment 

approaches linearity, one would at a certain point start to see that the total control 

effort with 3N   cannot be outperformed. 

 

The bias values corresponding to the gain values of 2, 3, 3.8 and 4 turn out to be 3.37 

°/s, 6.94 °/s, 9.64 °/s and 10.30 °/s, respectively. It is logical to have the bias 

increasing with the navigation gain because more bias is needed to oppose the LOS 

angle rate multiplied with a higher gain. 

 

 

 

 

Figure 2.5 Cost of vertical impact as a function of navigation gain with continuous 

bias application strategy 
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Figure 2.6 shows the spatial trajectories created by these navigation gains. It is seen 

that there is a positive correlation between the gain value and the maximum altitude. 

The acceleration histories are presented in Figure 2.7. The minimum initial 

acceleration is created by 2N  ; however, the price paid for using such a low gain is 

seen to be the very high value at the end of the engagement. This result is compatible 

with Eq. (2.31). On the other hand, 4N   results in the highest initial and the lowest 

final acceleration values whereas 3N   manages an intermediate response. The total 

control effort values obtained with these acceleration trends are: 2 3

2 27128 m /sE  , 

2 3

3 20796 m /sE  , 2 3

3.8 20334 m /sE   and 2 3

4 20338 m /sE  . Due to its poor 

performance near the target as seen in Figure 2.7, the worst performance 

unsurprisingly belongs to 2N  . Being closer to the minimizing value, 4N   

performs slightly better than 3N  . Figure 2.8 presents the look angle behaviors to 

be compared with the state plane trajectories drawn in Figure 2.2, Figure 2.3 and 

Figure 2.4. Finally, the path angle variations are given in Figure 2.9. It is clearly seen 

that all four navigation gains are successful in leading the pursuer to the desired 

impact condition. 

 

 

 

 

Figure 2.6 Spatial trajectories produced by the continuous bias application strategy 
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Figure 2.7 Acceleration histories produced by the continuous bias application 

strategy 

 

 

 

 

Figure 2.8 Look angle behaviors produced by the continuous bias application 

strategy 
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Figure 2.9 Path angle variations produced by the continuous bias application strategy 

 

 

The benchmark scenario, which is to be used as a comparison criterion, is obtained 

by applying the optimal control procedure given in Appendix A to the reference 

engagement geometry. The following figures present the optimal results along with 

those produced by the cost-minimizing value of the BPPN gain. Figure 2.10 shows 

the spatial trajectories, which are not quite the same. In Figure 2.11, the acceleration 

histories are plotted. It is seen that the initial and final acceleration magnitudes 

produced by the continuous bias application scenario are both higher than those of 

the optimal control. In agreement with this, the total control effort values turn out to 

be 20167 m
2
/s

3
 and 20334 m

2
/s

3
 for the optimal and BPPN solutions, respectively. 

Lastly, Figure 2.12 shows the variations of the look and the path angles. 
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Figure 2.10 Comparison of spatial trajectories produced by the optimal and 

continuous bias application strategies 

 

 

 

 

Figure 2.11 Comparison of acceleration histories produced by the optimal and 

continuous bias application strategies 
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Figure 2.12 Comparison of look and path angle variations produced by the optimal 

and continuous bias application strategies 

 

 

2.3. Linear Aspects 

 

Mathematical tools to analyze linear systems are in general more direct than those 

that supply information about nonlinear counterparts. This section utilizes a linear 

point of view in order to provide more insight into the proposed guidance law. As the 

first item, the linear behavior of BPPN in the neighborhood of its equilibrium point 

will be analyzed. Then, the linear form of the biased PN (BPN) law will be obtained 

to compare it to the optimal control solution (the reader should note that in a linear 

world, the adjective pure accompanying PN is simply meaningless since there is only 

one direction the acceleration can be applied). Lastly, it will be shown that the bias 

term may be viewed as some kind of a disturbing factor in the PN guidance loop. 
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2.3.1. Equilibrium Analysis 

 

A study of the equilibrium conditions of the system would be convenient to gain 

insight into the physics of the problem. The required partial derivatives of Eq. (2.18) 

to form the Jacobian matrix are as follows: 

 

0



 


  (2.39) 

sin 



 


  (2.40) 

  2

sin
1N




 


  


  (2.41) 

 
cos

1N



 


   


  (2.42) 

 

Then the Jacobian matrix can be constructed as 

 

   

e

e e

2

e e

0 sin
ˆ sin cos

1 1J N N

 
     
 


 

 

  (2.43) 

 

Using Eq. (2.20) with positive range and bias, the final form of the matrix is 

 

0 1
ˆ 1

0
1

J

N

 
 
  

  (2.44) 

 

The eigenvalues can be shown to be 

 

1,2

1

1N
  


  (2.45) 
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whereas the eigenvectors are 

 

1,2

1
1

1N

 
  
 

 

  (2.46) 

 

Since the eigenvalues are equal in magnitude and of opposite sign, the singular point 

is a saddle point. The physical interpretation of such an equilibrium condition is that 

the target becomes the center of the pursuer’s circular motion, which implies that the 

effects of the LOS angle rate and the bias term cancel each other; so, the pursuer 

neither converges to the target nor does it diverge away from it. Linear behaviors in 

the neighborhood of the equilibrium point for 2N  , 3N   and 4N   are 

presented respectively in Figure 2.13, Figure 2.14 and Figure 2.15. It is observed that 

the eigenvectors become more horizontal as N increases as predicted by Eq. (2.46). 

 

 

 

 

Figure 2.13 Neighborhood of the BPPN saddle point for N = 2 
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Figure 2.14 Neighborhood of the BPPN saddle point for N = 3 

 

 

 

 

Figure 2.15 Neighborhood of the BPPN saddle point for N = 4 

 

 

2.3.2. Optimality 

 

The nonlinear engagement dynamics between a stationary target and its pursuer can 

be simplified by assuming that the horizontal velocity component V of the pursuer is 

constant. This is a commonly practiced simplification in guidance design [2] that 

enables the time to go ( go ft t t  ) to be written as the range to go divided by the 

closing speed so that the remaining amount of time until the pursuer reaches the 
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target becomes available at any instant during the engagement. The only degree of 

freedom is associated with the pursuer, which is allowed to perform corrective 

maneuvers only in the vertical direction. Based on the geometry shown in Figure 

2.16, the objective of this section is to solve the two-point linear optimal control 

problem and to compare the corresponding solution to the linear open-loop 

equivalent of the biased guidance law. 

 

 

y

P

T

V

 V t tf




y

 

 

Figure 2.16 Linear engagement between a stationary target and its pursuer 

 

 

2.3.2.1. Open Loop Optimal Control 

 

Selecting the states and the control as 

 

1x y   (2.47) 

2x y   (2.48) 

u y   (2.49) 

 

the problem is to minimize the cost 

 

f

2

0

1
d

2

t

E u t    (2.50) 
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which is in the same form as Eq. (2.38), while satisfying the boundary conditions 

 

  i0x x   (2.51) 

 f fx t x   (2.52) 

 

and the dynamic constraints 

 

1 2x x   (2.53) 

2x u   (2.54) 

 

The solution to this straightforward problem is (see Appendix B for the derivation) 

 

       1,i 1,f 2,i 2,f 1,i 1,f 2,i 2,f3 2 2

f f f f

12 6 6 2
2u x x x x t x x x x

t t t t

   
          
   

 (2.55) 

 

and since f 0y   is required in order to capture the target, the final result is 

 

   1,i 2,i 2,f 1,i 2,i 2,f3 2 2

f f f f

12 6 6 2
2u x x x t x x x

t t t t

   
        
   

 (2.56) 

 

 

2.3.2.2. Linearization of BPN 

 

Based on Figure 2.16, the path angle and its rate can be written as 

 

y

V
    (2.57) 

y

V
    (2.58) 
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The LOS angle and its rate are 

 

 f

y

V t t
  


  (2.59) 

   
2

f f

y y

V t t V t t
   

 
  (2.60) 

 

So, the guidance law in Eq. (2.10) may be expressed as 

 

   
2

f f

y y
y N Vb

t t t t

  
    

   

  (2.61) 

 

To find the equivalent of the bias term, the integrated form of Eq. (2.10) can be 

considered: 

 

 f i f i fN bt         (2.62) 

 

Noting that the final values of the path and LOS angles are required to be equal for 

successful capture, the following becomes valid: 

 

 i i f

f

1N N
b

t

     
   (2.63) 

 

With the help of Eq. (2.57) and Eq. (2.59), the final form of b is 

 

 i f i f f

2

f

1Ny t y N t y
b

Vt

  
    (2.64) 

 

Using this result in Eq. (2.61) gives 
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 

 i f i f f

2 2

f ff

1Ny t y N t yy y
y N

t t tt t

     
    

   

 (2.65) 

 

The second term above, which is a constant, might as well be constructed using 

instantaneous variables. Replacing in this term 
ft  with 

ft t  and the initial variables 

with instantaneous variables will do the trick. So Eq. (2.65) becomes 

 

 
  f

2

f ff

2 1
y yy y

y N N
t t t tt t

   
     

   

 (2.66) 

 

This same form was obtained in [16] using a different approach, where it was shown 

that Eq. (2.66) gave the optimal control corresponding to a cost function whose 

integrand was that of Eq. (2.38) divided by some power of the time to go. A special 

form of Eq. (2.66) with 3N  , f 0y   and f 0y   was reported in [9] as 

 

 
2

f f

4 6y y
y

t t t t
  

 
  (2.67) 

 

According to [2], this is “the guidance law that landed the Apollo spacecraft on the 

moon in 1969”. Using Eq. (2.57), Eq. (2.59) and Eq. (2.60), Eq. (2.66) can be 

manipulated into the following forms: 

 

  f,d

go

2 1N N
t


  

 
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which respectively appear in [39], [2] and [15] with 3N  . It is interesting to note 

that the coefficients of the LOS angle rate in the first two equations are different 

from each other and the LOS rate itself does not even exist in the last equation. The 

guidance designer should take into account the feedback availability of the signals in 

the actual system when selecting among these alternatives. 

 

 

2.3.2.3. Optimality of Biased Proportional Navigation 

 

The second-order differential equation presented in Eq. (2.65) can be rewritten as 

 

 
2

f f

y y
y N C

t t t t

  
    

   

  (2.71) 

 

where C is a constant. If the transformation 

 

ft t     (2.72) 

 

is applied, Eq. (2.71) can be written as 

 

     2 2y N y Ny C           (2.73) 

 

which is a nonhomogeneous Euler-Cauchy type differential equation. Its general 

solution can be shown to be 

 

  2

1 2
2

N C
y d d

N
     


  (2.74) 

 

where 1d  and 2d  are the integration constants. The corresponding first and second 

derivatives are 
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  1

1 2

2

2

N C
y Nd d
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     


  (2.75) 

    2

1

2
1

2

N C
y N N d

N
     


  (2.76) 

 

At 
ft  , i.e. 0t  , the conditions  f iy t y  and  f iy t y    are applicable. This, 

using Eq. (2.74) and Eq. (2.75), leads to the following set of equations 
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  (2.77) 

 

The first integration constant can then be solved as 
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Hence the second derivative in Eq. (2.75) can be written in open form as 

 

   
 

 i f i f f2i f i f f

2

f f

12 2
1

22

N

N

Ny t y N t yy t y t y
y N N

NN t t


       

       
    

  (2.79) 

 

Transforming back to the original variable yields 
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(2.80) 

 

If 3N  , it can be shown after some straightforward arrangement that Eq. (2.80) is 

in fact equivalent to Eq. (2.56). This proves that the BPN scheme with 3N   is 

optimal with respect to Eq. (2.50) in a linear setting. 
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2.3.3.  Equivalency of Inputs 

 

The implementation of the PN guidance requires the LOS angle rate. When the LOS 

angle rate is measured by an onboard sensor such as a gyro, it is likely that one of the 

dominant error types will be the bias error. Appointing 
sb  to denote the seeker bias 

error, the realized path angle rate using the intended law of Eq. (2.10) happens to be 

 

 sN b b      (2.81) 

 

If the target acts evasively in the vertical direction, r Ty y y   will be valid, where 

ry  is the relative vertical displacement. Thus, making use of Eq. (2.58) and Eq. 

(2.60) where y is replaced with 
ry , Eq. (2.81) may be written as 

 

 
r r

r s2

f f

T

y y
y N N Vb NVb y

t t t t
    

 
  (2.82) 

 

The seemingly simple equation above has the following important implications: 

 The intentional bias, the unintentional bias error and the target acceleration 

are equivalent in effect to the PN guidance loop. 

 The bias error due to the seeker is N times as effective as the trajectory-

shaping bias value. 

 Unlike the bias errors, the target maneuver in one direction disturbs the loop 

in the opposite direction. 

 

This short section tries to underline the significance of having high quality LOS 

angle rate estimates available so that the pursuer may shape its trajectory properly. 

To give an exaggerated example; an anti-tank missile that obtains low quality outputs 

from its seeker might judge that its target is maneuvering in the same way the target 

of an air defense missile maneuvers. 
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CHAPTER 3 

 

 

3. IMPACT ANGLE CONTROL WITH BIASED PURE 

PROPORTIONAL NAVIGATION 

 

 

 

The examples presented in Section 2.2 show that a desired impact angle can be 

achieved by the continuous application of a predetermined amount of bias. Since the 

bias value needs to be found by iterative means, such an approach is not feasible. 

Several alternative and feasible solutions to this problem are presented in this 

chapter, which is the one where the outcomes of the previous chapter will be put to 

practical use. 

 

 

3.1. BPPN Impact Angle 

 

The integrated form of Eq. (2.10) is 

 

 
f

i

f i f i  d

t

t

N b t          (3.1) 

 

Making use of (2.4), this can be written as 

 

 
f

i

f i f f i  d

t

t

N b t            (3.2) 

 

As per Eq. (2.23), the look angle is zero when the range is zero. This means that the 

final value of the look angle must be zero if the target is to be captured. This is also 
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intuitively obvious: The final velocity vector must be on the LOS to capture a 

stationary target. Therefore, Eq. (3.2) can be written as 

 

i i
f

1

N B

N

 


 



  (3.3) 

 

where the impact angle is seen to be a function of the following: the navigation gain, 

the initial angular conditions and the total value of the bias integral denoted by B. 

This seemingly simple equation, which is the backbone of the impact angle control 

logic developed in this study, has a very important implication: The impact angle can 

be controlled by adjusting the bias integral. 

 

If there was no bias, the impact angle would be the result of the undisturbed flow of 

the PPN guidance law instead of the BPPN law. Erasing the bias integral and 

replacing the initial variables with instantaneous ones, Eq. (3.3) can be transformed 

into  

 

1

N

N

 
 


  (3.4) 

 

or via Eq. (2.4) into 

 

1

N

N
   


  (3.5) 

 

This equation gives the potential impact angle function, which is defined as the 

impact angle that will be obtained if the pursuer maintains a PPN course from the 

moment the function value is calculated until the very end, independent of the 

guidance law it has been performing. This suggests that the potential impact angle 

function remains constant during the PPN process. 
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3.2. Bias Application Alternatives 

 

According to Eq. (3.3), the bias integral must have a specific value at the end of the 

engagement so that a desired impact angle can be obtained, i.e. f f,d  . This desired 

value happens to be 

 

 d i i f,d1B N N        (3.6) 

 

This equation represents the single condition to reach a desired impact angle via 

BPPN. It imposes a constraint on B; however, it does not tell anything about b. So, 

the designer seems to be free to shape the bias profile. The shaping would probably 

be based on some design requirement; yet at the same time, the designer should be 

aware of the stability considerations explained in Section 2.1.2 especially if the bias 

is still to be present when the pursuer is in the vicinity of the target. 

 

The fundamental issue that needs attention is the fact that the pursuer does not know 

in advance how much time there is to reach the target. If the total engagement time L 

was known, the most direct choice would be to invoke the constant bias concept and 

to write Eq. (3.6) as 

 

 i i f,d1N N
b

L

  


  
  (3.7) 

 

which, as shown in Section 2.3.2.3, is the optimal strategy in a linear setting and 

would be expected to work also well in a nonlinear environment. However, the time 

to go is almost never available in practice. Even if the target position was known 

precisely and the assumption of constant pursuer speed was valid, the highly curved 

shape of the trajectory to be produced by BPPN would not allow an efficient 

calculation. Hence, Eq. (3.7) has little use in its current form. 

 

In what follows, alternative strategies for impact angle control will be explored in the 

framework of the BPPN guidance law. The first two strategies are the discontinuous 
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and range-driven bias application tactics based on Eq. (3.7). The distinct advantage 

of the former approach, which involves at least one switching between the BPPN and 

PPN (the reader is advised to refer to Appendix C for analytical solutions) guidance 

laws, is the fact that it does not require the time-to-go information. The latter 

approach, on the other hand, makes use of the time-to-go estimation supplied via the 

range observer to be introduced in Chapter 5 and provides an acceleration command 

profile with no phase switching. As far as the impact angle control logics are 

concerned, the superiority of the second strategy is its closed loop nature as opposed 

to the open loop nature of the first strategy during the terminal PPN phase. The third 

and the last strategy is based on the concept of error dynamics inspired by Eq. (3.4). 

Like the first strategy, it does not require the time to go; and, like the second strategy, 

it regulates the impact angle error in a closed loop manner. The control action is 

achieved by means of a single constant gain, which needs to be sufficiently high so 

that the error can safely diminish before the engagement ends. 

 

 

3.2.1. Discontinuous Bias Application 

 

As stated above, the only critical parameter is the final value of the bias integral as 

presented in Eq. (3.6). It then seems reasonable to increase the bias value given in 

Eq. (3.7) by using a shorter interval t  than the total engagement time L. This t  

value is in practice far easier to obtain than the L value because it is not unique; any 

value can be utilized provided that it is guaranteed to be lower than L. This reasoning 

enables Eq. (3.7) to be written as 

 

 i i f,d1N N
b

t

    



  (3.8) 

 

The equation above implies that the constant bias can be applied on any interval 

during the engagement. In fact, the total biasing effort may even be divided into 

several intervals. Multiple intervals, however, would complicate the guidance logic 

and there must definitely be some solid reasoning for resorting to such a practice. To 
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keep things simple, the current focus is maintained on using a single interval of 

biasing as exemplified in [2]. 

 

Now, based on the guidance laws in Eq. (2.9) and Eq. (2.10), the discontinuous 

guidance strategy to control the impact angle can be proposed as 

 

b bif  

      otherwise            

N b t t t t

N






    
 


  (3.9) 

 

where b is defined in Eq. (3.8). As seen, the logic dictates switching between 

guidance laws when the appropriate time comes. This is clearly a two phased 

structure; the BPPN phase may be regarded as the midcourse phase and the PPN 

phase may be regarded as the terminal phase. It can be said that the bias application 

logic is open loop; that is, it purely depends on time, bt  indicating the beginning time 

of the bias interval. By resorting to such a guidance structure, the designer expects 

that Eq. (3.4) will yield f,d   after the duration of bt t  has elapsed and that at 

the end of the unbiased terminal phase, the desired impact angle will be obtained. 

 

Besides the guidance objective f,d , there are two user-specified parameters in Eq. 

(3.9) that are N and bt . The effect of the navigation gain will be investigated shortly. 

As for the bias start time, the following reasoning is considered: One may appreciate 

the fact that there are two opposing forces at work when using the BPPN guidance 

law. The LOS angle rate drives the velocity vector toward the LOS while the bias 

tries to do just the opposite. Hence, the shaping of the trajectory by means of bias 

addition would be easier when the target is still far away owing to the low levels of 

the LOS angle rate. This implies that the bias application interval should start as 

early as possible if the pursuer wants to avoid high control effort. To briefly 

demonstrate this situation, the case with 3N   is simulated for b 0,  1,  2 st  . For the 

reference engagement geometry introduced in Section 2.2, 20 st  , for instance, is 

guaranteed to be shorter than the total time. For 3N  , Eq. (3.14) yields 

8.25 /s.b    
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Figure 3.1 Acceleration histories for various delay times produced by the 

discontinuous bias application strategy 

 

 

Figure 3.1 presents the acceleration trends. It is observed that the levels are almost 

the same at the beginnings of the biased intervals. When the bias is removed, 

however, the responses happen to be quite different. It can be concluded that the 

more the application of the bias is delayed the higher the acceleration magnitude will 

be at the switching instant. In accordance with this fact, the control effort values 

from Eq. (2.38) are 23127 m
2
/s

3
, 23693 m

2
/s

3
 and 24242 m

2
/s

3
. Another important 

point that needs attention is associated with the end game duration. As seen in the 

figure, the pursuer is expected to accommodate a discrete jump in the acceleration 

command when it nears the target. If the time constant of the pursuer is not 

sufficiently lower than the amount of time left after the switching, certain problems 

in its acceleration response are very likely to arise. Because the pursuer considered 

here is ideal with no time lag, there seem to be no problems at all in Figure 3.1. 

However, for the case where the biasing starts at 2 st  , the time allocated for the 

end game is about 1.8 s, which might be quite short to experience a discrete jump 

followed by a ramp-like trend that leads to zero acceleration. As opposed to this, the 
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pursuer has almost 6 s to complete its terminal maneuver when the bias starts at the 

very beginning. 

 

Having settled the issue of bias start time, it is now time to revisit the guidance logic 

given in Eq. (3.9). With 
b 0t  , the following form appears: 

 

if   

      otherwise

N b t t

N






   
 


  (3.10) 

 

During a typical ground-to-ground scenario governed by Eq. (3.10), the potential 

impact angle is expected to become more negative with increasing time until f,d   

holds at t t  . This is the instant when BPPN leaves the stage to PPN. This 

reasoning makes it possible to write the following: 

 

f,dif  
1

      otherwise           

N
N b

N
N

 
 





  

  


  (3.11) 

 

It should here be noted that unlike Eq. (3.10), the equality is embedded in the second 

condition because PPN maintains f,d  . Also, It is seen that instead of the time 

dependent switching condition in Eq. (3.10), Eq. (3.11) includes another one based 

on the potential impact angle function defined in Eq. (3.4) with   replaced with f,d . 

This alternative form of decision making brings about an important improvement for 

the midcourse phase: If, for some reason, the pursuer cannot realize f,d   at 

,t t   the desired impact angle should not be obtained if the switching condition 

was as seen in Eq. (3.10). The upgraded condition in Eq. (3.11) ensures that the 

pursuer will not remove the bias until the potential function value is as desired. Also, 

it needs to be stated that the switching from midcourse to terminal should be one 

way. In other words, no return to the biased guidance phase should be allowed in 

practice even if   does not remain constant due to some disturbance the pursuer is 

likely to struggle with. This is because of the limited time allocated to terminal 

maneuvers; it would just not be wise to risk a switching back to BPPN when the 
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pursuer has already commenced PPN. So, the impact angle control structure in Eq. 

(3.11) may be thought to be closed loop during the midcourse guidance and open 

loop during the terminal guidance in terms of impact angle control. 

 

At this point, the following question might arise: Does the operator have to use the 

same navigation gains for both phases? The answer is simply no. In fact, the 

flexibility can be increased by increasing the number of user specified parameters by 

one. In short, by introducing the midcourse gain 
MN  and the terminal gain 

TN , Eq. 

(3.11) can be converted into 

 

T
M f,d

T

T

if  
1

       otherwise            

N
N b

N

N

 
 






 

 


  (3.12) 

 

where the bias term satisfies Eq. (3.8).  

 

It is now time to deal with the ambiguity inherent in the t  term in Eq. (3.8). It is 

simply suggested here that division of the initial range to the initial speed would 

provide a conservative value for the duration of bias application: 

 

i

i

r
t

v
    (3.13) 

 

Prior to a real engagement, it is often possible to get a rough estimate of the range to 

go using unsophisticated techniques such as triangulation or constructing similar 

triangles based on the target’s apparent and expected sizes. It might be even possible 

to start the biased guidance after estimating the range with an estimator such as the 

one to be presented in Chapter 5.  
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It should be noted that the approach in Eq. (3.13) might fail if the pursuer accelerates 

after the engagement starts. Assuming that it will not fail, Eq. (3.8) can be written as 

 

 M i i M f,d

i i

1N N
b

r v

    
   (3.14) 

 

So, Eq. (3.12) can be written as 

 

 M i i M f,d T
M f,d

i i T

T

1
if  

1

                                            otherwise            

N N N
N

r v N

N

    
 





   
  

  



 (3.15) 

 

Next, simulations governed by the guidance law in Eq. (3.15) with different 

navigation gains are performed to compare them against each other and against the 

benchmark scenario presented in Section 2.2. For the reference engagement 

geometry with i i
20 st r v   , Eq. (3.14) yields 3.75, 8.25, 12.75 /sb    for 

M 2,  3, 4N  , respectively. Before showing the corresponding figures, the summary 

of the simulation results is presented in Table 3.1 for quick referencing. The first 

column of the table indicates the scenarios: O stands for the benchmark optimal 

control and D stands for the discontinuous bias application. The next two columns 

respectively include the midcourse and terminal navigation gain values, if applicable. 

The fourth column presents the bias value, again if applicable. The fifth column 

shows the extreme acceleration values. The negative values suggest that the extreme 

values occur near the end of the engagement. On the other hand, a positive sign 

would mean that the extreme acceleration occurs near the beginning. Maximum look 

angle values are given in the next column. The seventh column is for the total control 

effort values calculated from Eq. (2.38) and the last column presents the impact 

angles achieved. 
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Table 3.1 Summary of the simulation results produced by the discontinuous bias 

application strategy 

 

Scn. M
N  

T
N  b [deg/s] ext

a  [m/s
2
] 

max
 [deg] E [m

2/
s

3
] f

  [deg] 

O N/A N/A N/A  −43.4 49.5 20167  −90.0 

D1 2 2 3.75  −71.5 35.9 23323  −90.0 

D2 3 3 8.25  −80.4 52.3 23127  −90.0 

D3 4 4 12.75  −92.1 65.7 28237  −90.0 

D4 3 2 8.25  −39.4 52.3 20453  −90.0 
 

 

 

The detailed simulation results are presented in the upcoming figures. The important 

points will be highlighted firstly without paying attention to D4. This is because D4, 

which is the only scenario with different midcourse and terminal navigation gains, 

can only be appreciated with clues to be gathered from the other scenarios. The first 

figure is Figure 3.2 presenting the spatial trajectories. D1 results in the lowest 

maximum altitude whereas D3 has the most elevated trajectory. D2 with its 

intermediate navigation gain performs in between. In Figure 3.3, the initial and final 

acceleration magnitudes are seen to be positively correlated with the navigation gain 

values. Until the switching, D2 performs similarly to O but like D1 and D3, it causes a 

severe peak right after the switching. The worst performance belongs to D3 with its 

highest navigation gain as also evidenced by the control effort values in Table 3.1. It 

is interesting to observe D1 maintains fairly low levels until the switching instant; 

yet, it pays the price of its poor trajectory shaping during the midcourse phase by 

having to pull a high acceleration magnitude constantly over the entire terminal 

phase. Next, the look angle variations are shown in Figure 3.4. It is seen that D1 has 

the lowest maximum value, which is an advantage in practice where the look angle 

will certainly be limited. Again, D2 is similar to O during the midcourse guidance 

and D3 performs the worst. Lastly, Figure 3.5 shows that the desired vertical impact 

is achieved in all scenarios. 
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Figure 3.2 Spatial trajectories produced by the discontinuous bias application 

strategy (see Table 3.1 for details) 

 

 

 

 

Figure 3.3 Acceleration histories produced by the discontinuous bias application 

strategy (see Table 3.1 for details) 
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Figure 3.4 Look angle variations produced by the discontinuous bias application 

strategy (see Table 3.1 for details) 

 

 

 

 

Figure 3.5 Path angle trends produced by the discontinuous bias application strategy 

(see Table 3.1 for details) 



 

51 

 

 

The trends in all these figures hint that D2 approaches to the optimal performance 

during the midcourse guidance phase, which is not surprising as shown in Section 

2.3.2.3 for the linear case. As for the terminal phase, Figure 3.3 shows that D1 uses 

the least control effort. Also, it is true that if the switching happened earlier than it 

does, the terminal acceleration level would even be less. In other words, the total 

control effort of D1 would turn out to be considerably less if its trajectory was more 

properly shaped during the midcourse phase. Based on this discussion, it could be 

wise to choose 
M 3N   and 

T 2N  . So finally, D4 is the scenario undergone with 

these specific gain values. The figures and the seventh column of Table 3.1 confirm 

that its performance approaches that of O. It is also very important to note that the 

maximum absolute acceleration of D4 is even less than that of O. The switching 

occurs after 13.7 seconds has elapsed, which leaves much more time for the terminal 

phase. For the realistic case, where the pursuer will have a response lag, this 

additional time interval will help reduce the miss distance. 

 

The hypothesis that a configuration with 
M 3N   and T 2N   performs similarly to 

the optimal solution requires further evidence. For this purpose, two additional 

engagement geometries are simulated for a desired impact angle of 60°. In the first 

case, the starting point of the pursuer is elevated to an altitude of 500 m and it is 

given an initial path angle of −10°. In the second case, the target is brought 2 km 

nearer to the pursuer, which is launched with an initial path angle of 10°. In each 

case, the proposed guidance configuration is compared with the numerical optimal 

solution and the continuously biased PPN solution based on trial and error. The bias 

values used by the proposed and continuous guidance methods are respectively 5.615 

°/s and 5.306 °/s in the first case and 9.167 °/s and 8.480 °/s in the second case. 

Figure 3.6 presents the spatial trajectories. It is encouraging to observe that the 

spatial trajectories created by the configuration under test are closer to the optimal 

ones than those produced by continuous biasing. In Figure 3.7, the corresponding 

acceleration histories are given. It is seen that the proposed configuration requires the 

least amount of acceleration capacity when the pursuer approaches the target, which 

would be quite an advantage for a realistic pursuer. As for the total control effort 

values, they happen to be 11142 m
2
/s

3
 and 17501 m

2
/s

3
 for the optimal solutions, 

11167 m
2
/s

3
 and 17560 m

2
/s

3
 for the continuously biased solutions, and 11194 m

2
/s

3
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and 17609 m
2
/s

3
 for the proposed solution; the lower values naturally belonging to 

the first engagement case. As seen, the control efforts are very close to each other. 

The number of examples can be increased with no difference in the general picture. 

So, this concludes that the proposed configuration would indeed be useful as a 

practical guidance law. 

 

 

 

 

Figure 3.6 Comparison of spatial trajectories produced by the optimal, continuous 

bias application and discontinuous bias application strategies 

 

 

As a final note, it should be realized that if the pursuer speed is not constant,   must 

still be kept constant according to Eq. (2.17). This can simply be achieved by 

applying the following speed weighting: 

 

i

i

v
b b

v
   (3.16) 

An example of what would happen without the weighting can be found in [32]. 
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Figure 3.7 Comparison of acceleration histories produced by the optimal, continuous 

bias application and discontinuous bias application strategies 

 

 

3.2.2. Range-Driven Bias Application 

 

Replacing the initial conditions with instantaneous variables and converting the total 

time to the time to go, Eq. (3.7) may be written as 

 

  f,d

go

1N N
b n

t

    
   (3.17) 

 

where n is a parameter that determines the shape of the bias profile. In the linear 

domain, where the time to go is assumed to be available, the bias would stay constant 

when 1n   and the profile would be a straight line starting from a value two times 

the constant bias and ending at zero when 2n  . This is because of the fact that the 

same amount of the bias integral is needed to reach the same impact angle. Other 

values may be employed as well; but, the current scope is limited with these values 

as they have direct linear interpretations. 
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The guidance strategy can be obtained by using (4.17) in Eq. (2.10) as 

 

  f,d

go

1N N
N n

t

  
 

  
    (3.18) 

 

It is seen that when 1n   this guidance law becomes the same as Eq. (2.69), which is 

a commonly appearing form in the literature as expressed in Section 2.3.2.2. To 

avoid the problematic time-to-go term, Eq. (5.2), which is to be derived later, may be 

utilized to transform Eq. (3.18) into the following form: 

 

  f,d

cos
1

v
N n N N

r
    


       (3.19) 

 

where a range estimator such as the one to be introduced in Chapter 5 may be 

employed to obtain an estimate of the range value. Coincidentally, this guidance law 

happens to be the same as what appeared in a recent paper [41], where the 

simulations were performed only with a fixed set of guidance gains; more time was 

spent dealing with the time-to-go estimation than studying the guidance law. 

 

Now, simulations governed by the guidance law in Eq. (3.19) with different guidance 

gains are performed to compare them against each other and against the benchmark 

scenario. The summary of the simulation results is presented in Table 3.2, where the 

first column indicates the scenarios: O stands for the benchmark optimal control and 

R stands for the range-driven bias application. The second and third columns of the 

table are respectively reserved for N and n values. The remaining columns are the 

same of those in Table 3.1. As seen, 1n   with 2N   is not utilized since the bias 

should not be present at the end when 3N   as indicated in Eq. (2.31). 2n   with 

4N   is not utilized as well because the results obtained via such a configuration do 

not agree well with the others. 
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Table 3.2 Summary of the simulation results with range-driven bias application 

 

Scn. N  n  ext
a  [m/s

2
] 

max
 [deg] E [m

2
/s

3
] f

  [deg] 

O N/A N/A  −43.4 49.5 20167  −90.0 

R1 2 2  −61.9 42.5 20833  −90.0 

R2 3 1  −71.9 41.0 21305  −90.0 

R3 3 2 +59.8 55.8 22551  −90.0 

R4 4 1  −55.6 45.3 21075  −90.0 
 

 

 

Figure 3.8 presents the spatial trajectories. It is clearly seen that the trajectory 

becomes more lofted as N or n is increased. As opposed to the trends in Figure 3.3, 

Figure 3.9 reveals the smooth acceleration curves obtained. It is observed that 

increased gain values result in increased initial accelerations. The extreme values 

occur either at the beginning or at the end of the engagement depending on the gain 

configuration. R3 achieves zero acceleration at the final instant. R1 and R2 agree quite 

well with each other and reasonably well with O up until the pursuer gets close to the 

target. The look angle variations are displayed in Figure 3.10, where it is seen that 

higher gains give rise to higher maximum look angle values in harmony with what is 

presented in Figure 3.8. Next, Figure 3.11 shows that the intended vertical impact is 

achieved in all cases. It is interesting to note that R1 and R2 are almost 

indistinguishable. Judging by these figures and the control effort values in Table 3.2, 

the behaviors are in harmony with O except for, perhaps, R3. As opposed to lower 

values, 4N   shapes the trajectory more when the target is far and less when it is 

near. This could be an advantage in terms of the required acceleration capacity, but 

also could be a disadvantage in terms of the required look angle capacity as can be 

seen in the fourth and fifth columns of Table 3.2. Finally, the bias profiles are 

presented in Figure 3.12. The figure confirms that the selected n values work as 

intended: The bias aspires to stay constant with 1n   and decreases monotonically to 

zero with 2n  . 
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Figure 3.8 Spatial trajectories produced by the range-driven bias application strategy 

(see Table 3.2 for details) 

 

 

 

 

Figure 3.9 Acceleration histories produced by the  range-driven bias application 

strategy (see Table 3.2 for details) 
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Figure 3.10 Look angle variations produced by the  range-driven bias application 

strategy (see Table 3.2 for details) 

 

 

 

 

Figure 3.11 Path angle trends produced by the  range-driven bias application strategy 

(see Table 3.2 for details) 
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Figure 3.12 Bias profiles produced by the  range-driven bias application strategy (see 

Table 3.2 for details) 

 

 

3.2.3. Error-Based Bias Application 

 

The driving factor for the guidance laws represented by Eq. (3.15) and Eq. (3.19) is 

the bias integral defined in Eq. (3.6), which needs to be filled up to the required value 

before the engagement comes to an end. An alternative formulation may be obtained 

by considering the PPN potential impact angle function given in Eq.(3.4). Collecting 

everything on one side of the equal sign and replacing   with f,d , the equation can 

be written as 

 

  f,d1 0N N        (3.20) 

 

This implies that if the PPN guidance process goes as intended, the desired impact 

angle will eventually be obtained. However, if this is not the case; that is, if the 
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pursuer has somehow deviated from the preferred PPN trajectory, the equation will 

not anymore be equal to zero. Accordingly, an error term may be defined as 

 

  f,d1N N         (3.21) 

 

With the objective of driving this error to zero, the following BPPN-type guidance 

law is now proposed: 

 

N m      (3.22) 

 

where m is the error gain. Replacing   from Eq. (3.21), the open form of the law is 

 

  f,d1N m N N           (3.23) 

 

From Eq. (3.21), the derivative of the error is 

 

N      (3.24) 

 

Combining this with Eq. (3.22) yields the error dynamics: 

 

0m     (3.25) 

 

As seen, this is a first-order linear system which is stable when 0m  . There is yet 

another constraint on the interval of values that m, whose reciprocal acts as the time 

constant of the error dynamics, may assume: At the very end,   must be sufficiently 

small so that the desired impact angle can be said to be reached. It is well known that 

the impulse response magnitude of a first-order system diminishes approximately to 

5 % of its initial value after a time interval of 3 times of its time constant has elapsed 

[46]. This value drops to 1.8 % and to 0.7 % for durations of respectively 4 times and 

5 times of the time constant. So, it is obvious that the impact angle performance with 
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Eq. (3.23) will be satisfactory as long as the reciprocal of m is much smaller than the 

total engagement time. Equivalently, the condition 

 

1m L   (3.26) 

 

should be satisfied. This implies that the operator needs to have a rough idea about 

the total time before the engagement starts as practiced in Section 3.2.1. Here, it 

should be noted that there is positive correlation between N and L: In the context of 

BPPN, a higher N produces a more curved trajectory and a consequently higher L. 

Therefore, the choice of m is not independent of N. 

 

If the designer does not want a sluggish first-order error response, the order can be 

doubled with the following strategy: 

 

1 2N m m          (3.27) 

 

The error dynamics then happens to be 

 

 2 11 0m m        (3.28) 

 

A comparison of Eq. (3.22) and Eq. (3.28) shows that the price paid for doubling the 

order is twofold: The first and second error derivatives are both required. Leaving the 

more reasonable first derivative aside, the second derivative involves the derivatives 

of the LOS angle rate and the path angle rate, which are very unlikely to be available 

in practice. This is the reason why this case of increased order will not be pursued 

further in this text. 

 

In what follows, simulations governed by the guidance law in Eq. (3.23) with various 

guidance gain values are performed to compare them against each other and against 

the benchmark scenario. The summary of the simulation results is presented in Table 

3.3, where the first column indicates the scenarios: O stands for the benchmark 
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optimal control and E stands for the error-based bias application. The second and 

third columns of the table are respectively reserved for N and m values. The 

remaining columns are the same of those in Table 3.2. The table is dominated by 

2N   because higher integer values do not result in convenient solutions as will be 

demonstrated by the last example scenario. Since in the final moments, the bias is 

expected to be sufficiently small according to Eq. (3.25), the pursuer with this 

specific gain value should not experience any trouble associated with the rate of its 

acceleration as predicted by Eq. (2.31). 

 

 

Table 3.3 Summary of the simulation results produced by the error-based bias 

application strategy 

 

Scn. N m [s
 −1

] ext
a  [m/s

2
] 

max
 [deg] E [m

2
/s

3
] f

  [deg] 

O N/A N/A  −43.4 49.5 20167  −90.0 

E1 2 0.150  −56.9 49.9 20267  −88.2 

E2 2 0.200 +59.0 55.7 22041  −89.6 

E3 2 0.250 +75.3 60.0 24011  −89.9 

E4 3 0.125 +80.3 76.3 27782  −88.3 
 

 

 

As seen in Figure 3.13, higher guidance gains produce higher trajectories. It is 

important to note that E4 has the highest maximum altitude among all the example 

scenarios presented in this text. The acceleration histories displayed in Figure 3.14 

reveal that all of the initial values are higher than that of O; however, the final trends 

behave more reasonably. When 2N  , the final accelerations are close to the 

optimal value whereas E4 converges towards zero, which might be an advantage in 

terms of control action. The sixth column of Table 3.3 indicates that the total control 

effort gets higher as the guidance gains are increased. The look angle variations are 

shown in Figure 3.15, where E1 and E4 are seen to require the lowest (almost as low 

as O) and highest capacities, respectively. Figure 3.16 presents the path angle trends, 

where it might not be possible to discern that almost all of the impact angle values 
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fall short of the guidance objective. The final path angle values are included in the 

last column of Table 3.3 and the performance should not be evaluated independent of 

the previous column. It is true that the cost function value of E1 is almost as low as 

that of O; yet like E4, it cannot fully achieve the desired impact angle. On the other 

hand, E2 and E3 produce higher costs that enable them to perform better in achieving 

the vertical impact condition. Here, the designer has to reach a compromise between 

the impact angle performance and the control expenditure. In fact, the impact angle 

error of E1 is only 2 %, which is likely to be negligible in a real situation. It is also 

important to note that the total control effort of this scenario is the nearest to the 

optimal one among others including discontinuous and range-driven bias application 

scenarios. Lastly, Figure 3.17 shows the diminishing bias profiles. Unlike those with 

2n   in Figure 3.12, the bias curves do not reach to zero as expected. The lower the 

bias value becomes the better the impact angle objective will be met. 

 

 

 

 

Figure 3.13 Spatial trajectories produced by the error-based bias application strategy 

(see Table 3.3 for details) 
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Figure 3.14 Acceleration histories produced by the error-based bias application 

strategy (see Table 3.3 for details) 

 

 

 

 

Figure 3.15 Look angle variations produced by the error-based bias application 

strategy (see Table 3.3 for details) 
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Figure 3.16 Path angle trends produced by the error-based bias application strategy 

(see Table 3.3 for details) 

 

 

 

 

Figure 3.17 Bias profiles produced by the error-based bias application strategy (see 

Table 3.3 for details) 
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3.3. Performance of Guidance Laws under Disturbance 

 

Having witnessed above the idealistic performance of the proposed guidance 

methods, it is now time to present how they perform under several types of 

disturbance. One of the unavoidable types of disturbance is the noise in the measured 

LOS angle rate. This is kind of disturbance is not considered in this text because it is 

known that the noise effect on the BPPN loop is not severe [32]. The first type of 

disturbance investigated here is the pursuer dynamics accompanied by the existence 

of gravity, to which all real pursuers are subject to in varying degrees determined by 

their airframe and/or autopilot characteristics. In the second disturbance case 

examined, the pursuer experiences a time interval where no measurements are 

available from the seeker. Such situations might occur in practice if the target has the 

ability to take countermeasures that might disable the target tracking for a while. The 

last disturbance is the case of a slowly moving target. Although an extension to cover 

the moving targets will be made in Chapter 6, it is still necessary to see how much 

the performance deteriorates because the information required to handle a moving 

target may not be available to the pursuer. 

 

The reference engagement geometry is again considered. Based on the examples 

presented in Section 3.2 with the same geometry, the following guidance gain 

configurations are subjectively selected by considering the need for both impact 

angle accuracy and low control effort: M 3N   and T 2N   to be used in Eq. (3.15), 

2N   and 2n   to be used in Eq. (3.19) and, 2N   and 0.15m   to be used in Eq. 

(3.23). So firstly, the discontinuous guidance law becomes 

 

i i f,d

f,d
D i

3 2
3 if  2

2                              otherwise        

v
r

  
   





 
  

 



 (3.29) 

 

where it should be realized that Eq. (3.16) is used in Eq. (3.15) because the speed 

will not be constant anymore due to gravity. Secondly, the range-driven guidance 

law becomes 
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 R f,d

cos
2 2 2

v

r
   


       (3.30) 

 

Lastly, the error-based guidance law becomes 

 

 E f,d2 0.15 2          (3.31) 

 

It should be noted that E, unlike D and R, does not yield a negligible impact angle 

error when there is no disturbance. However, an experienced designer can surmise 

that the lagged response of the pursuer, albeit it acts as a disturbing factor, could 

compensate for this error by forcing the trajectory to bend more at the final moments. 

 

 

3.3.1. Pursuer Dynamics and Gravity 

 

The response of the pursuer to the guidance command is modeled as a first-order lag 

represented by the transfer function a1/ ( 1)s   so that the following can be written: 

 

a IMU IMU IMU
com

       (3.32) 

 

where a  is the autopilot time constant. IMU  is the path angle rate due to those 

acceleration components measurable by an onboard inertial measurement unit 

(IMU); i.e. the acceleration of the pursuer excluding the gravitational acceleration, 

which cannot be measured by accelerometers [47]. It should be remembered that the 

acceleration and the path angle rate are related through Eq. (2.11). The command to 

be sent to the autopilot is 

 

IMU com
com

cos
g

v
      (3.33) 

 

which, after being realized via Eq. (3.32), leads to the true path angle rate as follows: 
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IMU cos
g

v
      (3.34) 

 

In addition, the effect of gravity on the speed is modeled as 

 

sinv g     (3.35) 

 

To provide a more realistic simulation environment, the seeker is assumed to be 

unable to function properly when the range is below 30 m [25]. The last guidance 

command is held when this happens. 

 

The summary of the simulations are presented in Table 3.4. The first column 

indicates the guidance law utilized: D refers to the discontinuous structure in Eq. 

(3.29), R is the continuous one in Eq. (3.30) and E stands for the error-based method 

in Eq. (3.31). The second column shows the autopilot lag values. The values in the 

third and fifth columns are based on the IMU accelerations. This is why the total 

control effort values are seen to be considerably lower than their counterparts in 

Table 3.1, Table 3.2 and Table 3.3; since the pursuer attacks a ground target, gravity 

assists the guidance process. The other columns are the same as those in the previous 

tables. 

 

 

Table 3.4 Summary of the simulation results produced by the three alternative bias 

application strategies under pursuer dynamics and gravity 

 

Law a
  [s] IMU

ext

a  [m/s
2
] 

max
  [deg] 

IMU
E  [m

2
/s

3
] 

f
  [deg] 

D 0.2  −49.6 52.6 9774  −91.8 

R 0.2  −55.4 42.9 11504  −89.9 

E 0.2  −48.6 52.6 10441  −90.2 

D 0.5  −82.6 53.0 11134  −95.3 

R 0.5  −53.1 43.5 11295  −89.5 

E 0.5  −61.5 53.5 10980  −91.8 
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The acceleration histories are presented in Figure 3.18. The plots of the spatial 

trajectories, the look angles and the path angles are not given because they are 

virtually the same as those presented earlier in Section 3.2. The trends in Figure 3.18 

show that the slow autopilot gets into trouble during the final instants. This is 

especially apparent when D is used as the guidance law. With the slow autopilot, the 

response goes rapidly towards more negative values just before the pursuer captures 

the target. This unfavorable behavior manifests itself in the form of high total control 

effort and high impact angle error, which is seen to be more than 5° in Table 3.4. The 

table indicates that this is the only problematic case; other error values stay within 

reasonable limits. While this is so, it is seen that neither D with the fast autopilot and 

E with the slow one performs very well. The fact that D is not able to yield a 

negligible error value even with the fast autopilot is attributable its open loop nature 

during the terminal phase. Overall, R seems to exhibit the best performance at the 

expense of slightly increased total control effort. 

 

 

 

 

Figure 3.18 Acceleration histories produced by the three alternative bias application 

strategies under pursuer dynamics and gravity (see Table 3.4 for details) 
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In Figure 3.19, the bias profiles can be seen. Unlike those in Figure 3.12 and Figure 

3.17, R and E are seen to produce negative values due to the lagged autopilot 

response. As for D, its profiles do not stay constant but change according to Eq. 

(3.16) as the speed changes. 

 

 

 

 

Figure 3.19 Bias profiles produced by the three alternative bias application strategies 

under pursuer dynamics and gravity (see Table 3.4 for details) 

 

 

3.3.2. Temporarily Unavailable Seeker Data 

 

In this case, the seeker data is made unavailable to the pursuer for a certain period of 

time while the engagement is in progress with the aim of testing whether or not it can 

recover and capture the target with a vertical velocity vector. The first period is 

denoted by letter A and covers 5 s 10 st  . The second period is denoted by letter 

B and covers 15 s 20 st  . The former period constitutes an early disturbance 

whereas the latter one constitutes a late disturbance; hence, their effects are expected 

to be different. The pursuer tries to achieve zero accelerometer reading when the 
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seeker data becomes lost. The autopilot time constant is 0.2 s and gravity exists. 

Again, the last guidance command is held when the range is below 30 m. 

 

The summary of the simulations performed can be found in Table 3.5. The first 

column indicates the guidance law employed, D or R or E, along with the 

disturbance interval, A or B. The rest of the columns are the same as those in Table 

3.4. 

 

 

Table 3.5 Summary of the simulation results produced by the three alternative bias 

application strategies under temporarily unavailable seeker data 

 

Sc. IMU
ext

a  [m/s
2
] 

max
  [deg] 

IMU
E  [m

2
/s

3
] 

f
  [deg] 

DA  −57.8 44.5 11495  −91.7 

RA  −62.1 38.6 12898  −89.9 

EA  −53.7 48.5 10921  −90.0 

DB  −64.4 54.2 14376  −109.2 

RB  −36.3 42.9 11003  −90.0 

EB +46.3 52.6 10254  −91.6 
 

 

 

Figure 3.20 presents the spatial trajectories, where it is seen that higher trajectories 

are produced if the unavailability of the data occurs late. The acceleration histories 

are shown in Figure 3.21. Intervals of zero acceleration are clearly observed. For 

guidance laws R and E, interval B results in more relaxed response levels as the 

target gets closer. This is only to be expected since the trajectory happens to be 

already shaped when the target tracking fails. However, D behaves differently. 

Referring to Figure 3.18, interval B can be seen to be positioned after the switching 

instant of D, which is known to be open loop in terms of impact angle control during 

the terminal phase. This is why D with interval B tends to pull more terminal 

acceleration than necessary. Moreover, the total control efforts in Table 3.5 are seen 

to be more than those in the first three rows of Table 3.4, which is the natural result 
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of a severely disturbed guidance loop. The next figure, Figure 3.22, presents the look 

angle variations, where in harmony with the spatial trajectories, lower maximum 

values are observed with interval A. As also shown in Table 3.5, DB is seen in Figure 

3.22 to fail to reach the desired impact angle in contrast to DA, which exhibits a fine 

performance. This failure, which is due to the open loop terminal nature of D, is not 

unexpected as explained above. R and E perform well, especially when the 

disturbance happens early; this gives more time to the guidance law to recover. 

Finally, bias profiles are displayed in Figure 3.24. 

 

 

 

 

Figure 3.20 Spatial trajectories produced by the three alternative bias application 

strategies under temporarily unavailable seeker data (see Table 3.5 for details) 
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Figure 3.21 Acceleration histories produced by the three alternative bias application 

strategies under temporarily unavailable seeker data (see Table 3.5 for details) 

 

 

 

 

Figure 3.22 Look angle variations produced by the three alternative bias application 

strategies under temporarily unavailable seeker data (see Table 3.5 for details) 
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Figure 3.23 Path angle trends produced by the three alternative bias application 

strategies under temporarily unavailable seeker data (see Table 3.5 for details) 

 

 

 

 

Figure 3.24 Bias profiles produced by the three alternative  bias application strategies 

under temporarily unavailable seeker data (see Table 3.5 for details) 
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3.3.3. Target Movement 

 

Although the guidance laws developed in this chapter are meant for stationary 

targets, it would be wise to see how they perform against moving ground targets 

because one may not be able to guarantee that the target will not start moving at 

some point during the engagement. For this purpose, a series of simulations with no 

disturbance are performed for each law to find out how the impact angle is 

distributed as a function of the target velocity. Figure 3.25 shows the results, where 

the letters D, R and E respectively correspond to Eq. (3.29), Eq. (3.30) and Eq. (3.31) 

as before. A negative target velocity means an approaching target whereas a positive 

velocity indicates that the target moves away from the pursuer. It is seen that R, 

which is fed the true range in this case, produces an error line that passes through the 

origin with a slope of approximately 45°. The origin repeats the information 

previously given in Table 3.2; there is no error if the target is stationary. The value of 

the slope, on the other hand, states that the guidance law results in almost the same 

amount of error for the same target speed independent of its direction. As for E, it is 

seen to produce another line that approaches line R as the target velocity becomes 

more positive. Table 3.3 implies that line E could almost be made to pass through the 

origin if m was larger than 0.25 s
 −1

 so that R and E would lead to the same result. 

The remaining guidance law D behaves differently. After following a peculiar trend 

for an interval of negative velocity values, it creates a line that is almost the same as 

line R. This behavior can be demystified by considering the bias profile. From Figure 

3.3, it is known that D applies the bias no longer than 14 s; so, the irregular portion 

of the curve simply corresponds to the scenarios where the target is captured with the 

bias still on. In short, it is not surprising to witness that these three different guidance 

laws lead to the almost same result against moving targets since they all rely on the 

bias integral given in Eq. (3.6); one should note that the term f,d2     is common 

to Eq. (3.29), Eq. (3.30) and Eq. (3.31). To conclude with numerical figures; if the 

absolute impact angle error is not to exceed 10°, the target speedy needs to remain 

below 20 m/s, which is 12.5 % of the pursuer speed. 
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Figure 3.25 Impact angle sensitivities of the discontinuous, range-driven and error-

based bias application strategies to target velocity 
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CHAPTER 4 

 

 

4. CONSTRAINED GUIDANCE PROBLEM 

 

 

 

Two of the most important constraints that a guidance law must not violate are the 

seeker angle and the acceleration limits; and, the risk of these constraints getting 

violated increases when a trajectory shaping guidance law is utilized. If the angle of 

attack is sufficiently small, the seeker angle may be approximated by the look angle 

so that the first constraint may be thought of as the look angle constraint. Since it 

would not be an understatement to say that the analytical treatment of the BPPN 

guidance law as adopted in this study is structured upon the concept of look angle, 

the constraint associated with this variable can be dealt with in a more 

straightforward manner. Another contributing factor is the fact that the look angle 

constraint is unchanging. The acceleration constraint, on the other hand, is a more 

challenging opponent because the acceleration capacity of a realistic pursuer is a 

function of its speed, which, in turn, is a function of the trajectory to be travelled on 

under the action of the guidance law. 

 

It would here be convenient to state that, at the time of writing, the author was aware 

of only one published work on the subject of impact angle control that provided a 

proper treatment of the aforementioned physical limitations. The switched-gain PPN 

scheme proposed in [43] led to a numerically cooperative set of algebraic equations, 

using which the navigation gains were calculated. This was mostly owing to the fact 

that the look angle and the acceleration constraints happened to be satisfied 

simultaneously. Unfortunately, as will be shown below, the BPPN-based equations 

do not turn out to be as cooperative. Nonetheless, the BPPN approach might still be 

preferable owing to the fact that it approaches to the optimal solution as 

demonstrated at the end of Section 3.2.1. Indeed, it was shown in [44] that for the 

same impact angle and under the same look angle constraint, this tactic produced a 

lower maximum acceleration magnitude than the switched-gain approach did. 
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4.1. BPPN Impact Angle Capacity: Full Utilization of Available 

Resources 

 

As demonstrated in Chapter 3, shaping the trajectory is an expensive task as far as 

the required resources are considered. Independent of the guidance law utilized, the 

pursuer must have sufficient look angle and acceleration capacities so as to achieve a 

desired impact angle. The objective of this section is to reveal the relationship 

between the physical limits and the impact angle capacity of the BPPN guidance law 

stated as 

 

N v      (4.1) 

 

This is the same law in Eq. (2.10) expressed in a slightly different from via Eq. 

(2.17). 

 

 

 

 

Figure 4.1 General picture of the BPPN state plane with the locus of maximum look 

angles superimposed 
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Since the look angle is the sole variable on which the analytical foundations in 

Section 2.1 settle, the treatment of the constraint associated with it turns out to be 

relatively easy. Retaining the general picture of the state plane trajectories presented 

in Section 2.1.1, Figure 4.1 shows the behavior of the look angle with respect to the 

nondimensional range for a general navigation gain value. It is seen that each of the 

convergent trajectories in the lower part of the figure has a maximum located to the 

left of the equilibrium point. The main idea in dealing with the look angle constraint 

is to make the pursuer travel on a trajectory whose maximum look angle is not higher 

than the constraint value. The dashed curve superimposed on the trajectories belongs 

to the locus of maximum look angle values. To determine the locus, the slope 

information is required. It follows from Eq. (2.23) that 

 

  2d 1
sin 1

d 2

Nc N
N

 


  


  (4.2) 

 

Setting the slope to zero, the integration constant can be found as 

 

   
2

1

1 2
N

c
N N 




 
 

  (4.3) 

 

where    is the range at which the maximum look angle    occurs. Using Eq. (4.3) 

back in Eq. (2.23) produces the equation of the locus as 

 

 1 sinN      (4.4) 

 

so that Eq. (4.3) can be written as 

 

    
21

1

1 2 sin
NN

c
N N 

 
 

 
  (4.5) 
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This equation establishes the relationship of the integration constant with the look 

angle constraint. Now, Eq. (2.23) evaluated at the initial instant turns out 

 

1 i
i isin 0

2

Nc
N


    


   (4.6) 

 

which, with the help of Eq. (2.15), can further be manipulated into 

 

1 1 i
i isin 0

2

N N r
cr

N
      


  (4.7) 

 

As for the acceleration limit; Eq. (2.29) indicates that the BPPN law produces a 

monotonously decreasing nondimensional path angle rate trend. This implies that the 

extreme value of the acceleration has to be encountered either at the beginning or at 

the end of the engagement. The results of Section 2.2 suggest that the trajectory gets 

bent more efficiently when more control effort is applied later during the 

engagement. This is why the designer would want to assign the extreme acceleration 

to the final instant. The expressions for the initial and final values of the 

nondimensional path angle rate may be examined in the light of this. The initial value 

can be written from Eq. (2.28) as 

 

i
i

i

sin
1N





      (4.8) 

 

The final value, on the other hand, can be found from Eq. (2.29) knowing that the 

target will be captured at the end: 

 

f

2

2N
   


  (4.9) 

 

For reasonable (it was demonstrated in Section 2.2 that the use of a high navigation 

gain requires a high look angle limit and leads to a high initial acceleration value) 
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values of the navigation gain, it can be inferred that the magnitude of the final value 

will most probably be higher than the magnitude of the initial value. For example; if 

i 0  , it follows that 
i 1    and it is possible to have i f    only if 4N  . 

Furthermore, a nonzero initial look angle will push this limiting value of the 

navigation gain to even higher values. Nevertheless, the designer should check the 

accelerations after the guidance parameters have been calculated as a precaution 

against the unwanted case of having the initial value higher than the final one. So, 

focusing on the final acceleration, Eq. (4.9) can be transformed into 

 

2

f f

2

2
a v

N
 


  (4.10) 

 

using Eq. (2.11), Eq. (2.16) and Eq. (2.17). If this final value is to be equal to the 

acceleration constraint a
, which is by definition a positive quantity, the following 

would be true:  

 

2

f

2

2
a v

N
 


  (4.11) 

 

As seen, the acceleration depends on the final value of the speed, which is not known 

beforehand. The first solution to this problem that comes to mind would probably be 

assuming a constant speed. However, this trivial solution is far from being realistic. 

In reality, the speed of the pursuer will change under the action of actors such as 

thrust, drag and gravity. To establish the foundation of a realistic solution, the 

acceleration of a vehicle moving through the air may be considered. Typically, the 

aerodynamic lift force on such a vehicle can be represented as follows: 

 

2

L a r L

1

2
F d v S C   (4.12) 

 

where ad  is the air density, rS  is the reference area and LC  is the lift coefficient. 

Then, the acceleration of the vehicle can be written as 
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2a v   (4.13) 

 

In this definition,   acts as a proportionality agent between the acceleration and the 

speed squared. m being the mass,   assumes the form below: 

 

a r L

2

d S C

m
    (4.14) 

 

Returning to the problem associated with Eq. (4.11); the concept of constant 

maximum lift coefficient [43] would be useful as an alternative to the trivial solution. 

It is the case with the aerodynamically controlled vehicles that they can sustain a 

maximum level of lift force which determines their acceleration capability. This 

maximum value typically occurs at a certain maximum angle of attack, beyond 

which the vehicle stalls due to the dramatically dropping lift capacity. The maximum 

sustainable lift force is characterized by the peak value of the lift coefficient LC . In 

certain applications, the maximum lift coefficient may be considered sufficiently 

constant over the operational speed interval. Examples to such behavior over the 

subsonic region can be observed in [48] (see for example Figs. 4 and 58). If, in 

addition to assuming the lift coefficient constant, the air density and the mass are 

considered unchanging, the following can be written due to Eq. (4.13): 

 

2a v    (4.15) 

 

where    is the proportionality constant associated with the acceleration constraint. 

It is true that the reference area in Eq. (4.14) is constant; however, the assumptions of 

constant air density and constant mass made to obtain Eq. (4.15) need to be justified. 

The first assumption is likely to hold for a ground launched pursuer attacking a 

ground target because it is unlikely to experience high altitude differences during the 

engagement. As for the second assumption, the mass is naturally constant when there 

is no exhaust; so, if the guidance process starts after the burnout, the assumption will 

hold. 
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So, with the help of the maximum constant lift coefficient concept, Eq. (4.11) can be 

converted into 

 

2

2N
  


  (4.16) 

 

If this expression is used in Eq. (4.7), the following is obtained:  

 

 
1

i i
i i2 sin 0

2 2
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 
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  (4.17) 

 

which, replacing the integration constant from Eq. (4.5), can at last be manipulated 

into 
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1 2
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sin 0

2 1 sin 2

N N
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    
 (4.18) 

 

The nonlinear equation above is not difficult to solve for N using a simple iteration 

routine. For example, starting from an initial guess, the navigation gain value can be 

updated according to 

 

new old N NN N k e    (4.19) 

 

where Nk  is a gain that drives the numerical process and Ne  is the left hand side of 

Eq. (4.18) evaluated with oldN . It is advisable to set the initial guess to some value 

close to 2, which is the lowest possible value as mentioned in Section 2.1. This way, 

the navigation gain is forced to be higher with each iteration until the error becomes 

negligibly small. After the iteration has converged, the   value may be obtained 

through Eq. (4.16). 
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Having so decided the guidance parameters N and   that fully utilize the available 

resources, the designer would want to calculate the impact angle that is to be 

obtained. Setting the upper integral limit to zero in Eq. (2.32), the impact angle 

happens to be 
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   (4.20) 

 

where the integration constant follows from Eq. (2.23) along with Eq. (2.15) as 
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  (4.21) 

 

The procedure explained above is applied to the reference engagement geometry 

described in Section 2.2. The selected range of    values is between 20° and 60°. 

Assuming a constant speed and thereby eliminating the need for   , the selected 

range of a
 values is 20 m/s

2
 and 60 m/s

2
. The achievable impact angle contours are 

presented in Figure 4.2. The contourless region belongs to those cases in which, with 

the corresponding look angle constraint, the initial acceleration value exceeds the 

corresponding acceleration constraint. For example with 50     and 
230 m/sa  , 

it turns out that 7.78N  , which, as mentioned above, may be considered to be too 

high for practical purposes. Although in this case, the final acceleration is the 

intended value of 30 m/s
2
, the initial acceleration turns out to be much higher. The 

main idea of the plot is this: A pursuer with its look angle and acceleration limits 

belonging to a contour cannot reach the impact angles corresponding to the contours 

situated above that contour. Likewise, a pursuer with the said limits belonging to a 

contour can reach all the impact angles corresponding to the contours situated below 

that contour. The coordinates of the lowermost point of the vertical impact contour 

are approximately 51° and 41 m/s
2
, which are very close to the extreme values 

produced by the optimal scenario as shown in Table 3.1. This resemblance is not 
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surprising at all since BPPN itself has been proved on various occasions in this 

dissertation, such as in Section 2.3.2.3, to be an efficient guidance law. 

 

 

 

 

Figure 4.2 Contours of achievable impact angle under physical limitations 

 

 

If the point representing the physical limits of the system happens to be located 

below a desired impact angle contour, this means that the resources are insufficient to 

reach that impact angle. This statement should not be misinterpreted. If there is an 

insufficiency indicated by the current analysis, it belongs to the BPPN law; that is, it 

is most likely not a global one. There might be other guidance laws to satisfy the 

desired impact angle under the same look angle and acceleration constraints. 

However, it is very important to perceive that the impact angle achievable by BPPN 

should not be very far from the impact angle achievable by the most efficient 

guidance law, whatever that guidance law is. This is because, as mentioned above, 

the BPPN guidance law is an efficient method for trajectory shaping. 
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One last remark needs to be made now: Although it is true that the procedure 

outlined in this section yields as by-products the navigation gain and bias values 

required to achieve a specific impact angle value, it should not be utilized for this 

purpose in order to guide the pursuer. This is because such a practice of beforehand 

calculation of the parameters would result in an open loop type of guidance, which 

might lead to the violation of constraints. A closed loop implementation involving 

the online application of the described numerical routine would not be very 

convenient either, especially when there is a better alternative as will be introduced 

in Section 4.3. 

 

 

4.2. Formulation for Look Angle and Acceleration Constrained 

Impact Angle Control 

 

The switching condition seen in Eq. (3.10) is time-dependent. Replacing that 

condition with an equivalent one which involves the nondimensional range and 

making use of Eq. (2.17), the following guidance law can be written: 

 

sif  

        otherwise

N v

N

   




  
 


  (4.22) 

 

where subscript s denotes the switching instant, which is so defined that it belongs to 

the midcourse phase. When Eq. (4.22) is examined, it can be seen that there are three 

parameters to be specified by the user: N,   and s . The user cannot assign these 

parameters freely; there is at least the objective of capturing the target with a desired 

impact angle f,d . For realistic pursuers, this user-specified constraint is likely to be 

accompanied by two additional constraints as mentioned in the previous section:   , 

the look angle constraint and a
, the acceleration constraint. In short; this 

constrained guidance problem involves three given parameters, which are f,d ,  
 

and a
, to solve for three unknown parameters that are N,   and s . 
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The equation associated with the look angle constraints is the one derived in Section 

4.1. For convenience, Eq. (4.7) is repeated below: 

 

1 1 i
i isin 0

2

N N r
cr

N
      


  (4.7) 

 

Next, if the final path angle constraint, i.e. the desired impact angle, is to be obtained, 

Eq. (3.5) evaluated at the switching instant must be written as 

 

f,d s s
1

N

N
   


  (4.23) 

 

where the switching value of the look angle from Eq. (2.23) is 

 

1 1 s
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 
  (4.24) 

 

and the switching value of the path angle from Eq. (2.32) is 
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   (4.25) 

 

So, Eq. (4.23) can be combined with Eq. (4.24) and Eq. (4.25) to obtain 
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Lastly, the acceleration constraint needs to be attended. From Eq. (2.28), the initial 

and switching values of the nondimensional path angle rate are 

 

i
i

i

sin
1N





      (4.27) 

s
s

s

sin
1N





      (4.28) 

 

It is true that the inequality 
i s   holds and as demonstrated in Figure 3.4, the 

inequality 
i ssin sin   is very likely to hold for a ground-to-ground scenario. Then, 

it can be said that the absolute value of the switching rate will probably be higher 

than that of the initial rate. As the adverb “probably” implies, the opposite might also 

be true under certain circumstances. However, this is of little importance since the 

focus is not on the switching instant itself but the one immediately after it. At this 

instant, the bias ceases to exist; so, the acceleration jumps to a certain negative value 

that is expected to have the maximum magnitude encountered within the entire 

duration of the engagement. Such jumps can be witnessed in Figure 3.3. The author 

thinks that a realistic scenario in which the maximum acceleration magnitude does 

not belong to this instant would be an extreme rarity. Hence, continuing with Eq. 

(2.29) evaluated at the switching instant rather than the initial instant, the following 

may be obtained: 

 

2

s s

2

2

NcN
N

     


  (4.29) 

 

Then, Eq. (2.25) yields 

 

s
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which is converted to its dimensional form with the help of Eq. (2.16) and Eq. (2.17) 

as 

 

s
s s

1
v

N


 

 
   (4.31) 

 

From Eq. (4.22), the path angle rate just after the switching instant is 

 

 
s

s s1
t t

v  
    (4.32) 

 

and Eq. (2.11) finally dictates that 

 

 
s

2

s s1
t t

a v 
    (4.33) 

 

or 

 

  2

s s1a v       (4.34) 

 

The minus sign is due to the fact that 0a   and 1  . As seen in Eq. (4.34), the 

acceleration depends on the switching value of the speed, which is not known 

beforehand. The solution is again to resort to the concept of constant maximum lift 

coefficient as represented by Eq. (4.15). As a result, Eq. (4.34) can be written as 

 

 s 1        (4.35) 

 

This equation can be combined with Eq. (2.29) to have 
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Now the general picture of the constrained guidance problem is this: 

 

Given: f,d, ,   
 

 

Find: 
s, ,N    

 

The relationships to be used in the solution are 
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where 

 

    
21

1

1 2 sin
NN

c
N N 

 
 

 
  (4.5) 

 

As seen, there are three equations that can be used to solve for the three guidance 

parameters. It is obvious that this highly nonlinear equation set could be solved with 

some numerical method, possibly with brute force. However, the aim here is to 

devise a sufficiently simple solution so that it could pass for practical a guidance 

method implementable in a guidance computer. Unlike in [43], the author fails to 

come up with a smart numerical algorithm. This is why an alternative solution based 

on almost the same structure will be proposed in the next section. 
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4.3. Look Angle Constrained Impact Angle Control with 

Acceleration Check 

 

Since the equation set obtained at the end of the previous section is not easily 

solvable, an alternative approach with predetermined navigation gains will be 

presented here. The guidance law of choice is the discontinuous structure given in 

Eq. (3.12). Utilizing Eq. (2.17) and taking the switching condition from Eq. (3.5) 

rather than from Eq. (3.4), the guidance law is: 
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  (4.37) 

 

Then, Eq. (4.5) and Eq. (4.6) are combined using MN  instead of N to yield 
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When the midcourse navigation gain is an integer, this happens to be a polynomial in 

i . In the case of multiple positive roots, the solution sought is most likely to be the 

greatest one since smaller ones might place the pursuer to the left side of the extreme 

point of the trajectory such that  
 may never be reached. The simplest case happens 

with M 3N  , which has been shown to constitute a favorable midcourse guidance 

solution in Section 3.2.1. In this case, the initial nondimensional range can be 

obtained as 

 

i
i

sin
2sin 1 1

sin


 







 
    

 
  (4.39) 

 

After solving for the nondimensional range, the   value to keep the pursuer on the 

preferred trajectory can be obtained by utilizing Eq. (2.15) as 
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i

ir


    (4.40) 

 

As seen, the initial range to the target is required in addition to the initial speed (the 

procedure described in Section 4.1 also requires the initial range, which is a fact not 

highlighted there so as not to add another complicating factor to the already 

complicated situation). The pursuer might under- or overshoot the intended 

maximum look angle depending on the accuracy of the range information. If the 

designer thinks that the initial range value supplied to the pursuer is not reliable, a 

range observer may be employed before initializing the midcourse guidance. 

 

Before proceeding further, the reader should notice that what follows is not a direct 

part of the proposed guidance methodology but merely a way of verifying, before the 

engagement starts, that the selected bias value will create such a proper trajectory 

that the pursuer will not have to exert too much effort after the switching instant, 

which happens to be the critical point of the discontinuous bias application approach. 

 

The rate of the LOS angle at the switching instant is needed to obtain the initial value 

of the terminal acceleration. To this end, the switching value of the path angle can be 

calculated numerically from Eq. (2.32). What complicates the procedure is that the 

switching range is not known in advance; the switching is executed when the 

guidance algorithm decides that the bias integral has reached the desired level. As 

might be predicted, the solution to this seeming paradox is an iterative routine. 

Starting from an initial guess for s , Eq. (4.24) and Eq. (4.25) are used to write the 

following: 
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Now, invoking the potential impact angle function from Eq. (4.23), the following is 

written: 

 

T s
f,d s
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N
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If the relationship above is satisfied within a certain error tolerance; that is, the 

potential value calculated using the iterated switching values of the flight path and 

look angles becomes nearly the same as the desired impact angle, the iteration stops. 

If not, the routine goes back to Eq. (4.41) with an updated nondimensional range 

value. The update logic may be based on the fact that the impact angle will be more 

and more negative as the switching instant is delayed such as 

 

s,new s,old k e     

 

where k  is a gain that drives the numerical process and e  is the left hand side of 

Eq. (4.43) evaluated with s,old  and s,old . After the iteration has converged, Eq. 

(4.31) can be used to write 
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It should be noted that   is the one that has been obtained above in Eq. (4.40). So, 

Eq. (4.33) may be modified into the following form: 
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after which Eq. (4.13) can be used to arrive finally at 
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If the    value seen in Eq. (4.15), which represents the aerodynamic capacity of the 

pursuer, turns out to be at least equal to the value obtained above, i.e. if 
s   , this 

means that the pursuer will be able to sustain the acceleration commanded by the 

guidance law. However, if the designer finds out that the capacity will be insufficient 

to carry out the mission objectives, some form of compromise should be reached 

such as changing the navigation gains, lowering the impact angle expectancy or 

changing the initial conditions etc. 

 

It is now time to present some examples of the constrained guidance process. The 

reference engagement geometry introduced in Section 2.2 is considered once more. 

One of the points in the vicinity of the vertical impact contour in Figure 4.2 is the 

one with a look angle limit of 49° and an acceleration limit of 44 m/s
2
, which 

corresponds to a   limit of 0.000704 m
 −1

 as per Eq. (4.15). These values are 

selected as the constraint values. Along with the practical method based on Eq. 

(4.37) to be used as outlined in this section, the solution based on Eq. (4.1) is also 

utilized to demonstrate the continuous bias application approach even it is deemed 

impractical. The former method is represented by letter D and the latter one is 

represented by letter C. With the constraint values above, the navigation gain value 

to be used in C happens to be 4.126 whereas the corresponding   value is 0.000748 

m
 −1

. For D, the midcourse and terminal navigation gain values are selected as 3 and 

2, respectively. The   value is calculated from Eq. (4.40) as 0.000547 m
 −1

. The 

pursuer starts with a speed of 250 m/s and decelerates according to 
20.00007v v  . 

There is no gravity. If there was, it would assist the pursuer during the descent and 

the situation would accordingly be less challenging for the guidance algorithm. 

Besides the simulations with no command following dynamics, additional 

simulations are performed with a 0.4 s   as in Eq. (3.32) as a disturbing factor. As 

practiced in the previous chapter, the last guidance command is held when the range 

is less than 30 m. The simulation results are summarized in Table 3.1. The columns 

are self-explanatory owing to the tables presented previously throughout Chapter 3. 
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Table 4.1 Summary of the constrained guidance simulation results 

 

Scn. Dyn. N    [m
 −1

] ext
  [m

 −1
] 

max
  [deg] E [m

2
/s

3
] f

  [deg] 

C1 Off 4.126 0.000748 −0.000705 49 8651  −90.0 

C2 On 4.126 0.000748 −0.000701 50.2 8778  −91.5 

D1 Off 3  2 0.000547 −0.000668 49 8228  −90.0 

D2 On 3  2 0.000547 −0.000673 50.2 8631  −90.5 
 

 

 

In Figure 4.3, the look angle variations are displayed. It is seen that the limit is 

slightly violated when the pursuer dynamics is on. The simple remedy would be to 

assume a slightly lower value than the actual limit. Here, the spatial trajectory and 

the path angle plots are not included because quite a number of similar plots have 

already been presented. It can be expressed that the impact angle values exhibited in 

Table 4.1 confirm that in each case, the guidance objective is met with sufficient 

accuracy. Figure 4.4 shows the κ histories. It is observed that the overall behavior is 

not affected much by the lagged response. Table 4.1 indicates that the κ limit is only 

violated by C1. This negligible amount of violation results from not updating the 

command at the last moments. The most important implication of this figure is the 

fact that D, unlike C, does not utilize the full control effort when closing in on the 

target. The reflection of this advantage is also clear in the cost function values in the 

table. Finally, the author should remind the reader that it is D which is acknowledged 

as the truly feasible guidance law. 
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Figure 4.3 Look angle variations during constrained guidance produced by the 

continuous and discontinuous bias application strategies (see Table 4.1 for details) 

 

 

 

 

Figure 4.4 κ histories during constrained guidance produced by the continuous and 

discontinuous bias application strategies (see Table 4.1 for details) 



 

97 

 

 

CHAPTER 5 

 

 

5. RANGE OBSERVER 

 

 

 

As is the case with optimal control solutions, the time-to-go information would be 

valuable to any trajectory-shaping guidance law. The general problem with this 

variable is that it is almost never available directly since the shape of the trajectory is 

not available beforehand. Hence, it has to be estimated. One convenient way to 

estimate the time to go is to use the following approximation [2]: 

 

go go

r
t t

r
     (5.1) 

 

Against a stationary target, the term in the denominator may promptly be replaced 

from Eq. (2.7) so that the approximation appears as 

 

go
cos

r
t

v



  (5.2) 

 

It should be noted that the term in the nominator is not available. One can argue that 

Eq. (2.7) can be integrated to obtain the range; however, this would imply the 

availability of the initial range value, which is unlikely to be known in practice. One 

might still attempt to obtain the range through Eq. (2.8); yet, this, too, would most 

likely be unfruitful as the LOS angle rate, which is typically to be provided by an 

onboard seeker, is never noise-free. The look angle, on the other hand, is more likely 

to be reliable because it may be obtained as a combination of the Euler angle of the 

missile body and the angular deviation of the seeker axis with respect to the body. 

The former of these variables is typically supplied by the INS whereas the latter is 
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expected to be measured by a reliable displacement sensor such as an encoder. As a 

result, the range needs to be estimated via some proper means. 

 

In the literature, the so-called “passive ranging” problem is typically solved for 

moving targets through the use of Kalman filters as in [49] and [50], where pursuer 

trajectory is often modified to enhance observability. The same approach would 

naturally be applicable for stationary targets as well; however, the direction followed 

in this paper deviates from that classical path for the sake of simplicity. The proposed 

single- and constant-gain range observer, which is based on the state observer 

methodology [46], is structured on the nonlinear kinematics and addresses the 

observability issue through a simple switching action that stops the pseudo range 

measurement from being fed back to the system when required. It should be kept in 

mind that this method is only meant for stationary targets. 

 

 

5.1. Observer Structure 

 

To build the observer, a system model and a measurement model are required. These 

can simply be obtained by rewriting Eq. (2.7) and Eq. (2.8) as [43] 

 

cosr v      (5.3) 

sinv
r   





  (5.4) 

 

where   is the input and   is the measurement. In fact, naming   as the pseudo 

measurement would be more appropriate because the range is not measured directly; 

an approximation is obtained by combining the outputs from the INS and the seeker. 

The block diagram of the proposed range observer is presented in Figure 5.1, where 

r  is the range estimate and K is the observer gain. 
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 r



 

 

Figure 5.1 Range observer structure to estimate the range to a stationary target 

 

 

It is well known that the range becomes unobservable on the collision course as 

mentioned in [49] and [50]. In this proposed structure, the unobservability manifests 

itself in the pseudo-measurement equation when the LOS angle rate is zero. The 

observability switch in the figure aims to address this potential problem. In reality, 

due to the noisy signal provided by the seeker, this phenomenon would show itself 

not when the LOS angle rate becomes identically zero but when its absolute value 

drops below a certain threshold, which depends on the system being studied. So; if 

this happens, one may simply switch off the error feedback, making the system flow 

through the open-loop route. If the observability switch goes off after the range 

estimation has converged, even the system model by itself without the erroneous 

measurement might still yield acceptable estimates. 

 

The transfer function relating the output to the inputs can be written as 

 

     
1 K

R s s s
s K s K

   
 

  (5.5) 

 

which indicates that the observer essentially acts as a low-pass filter for both the 

input and the measurement, which is helpful to suppress the noise content in the 

seeker and the INS outputs. 
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The proposed range estimator is conveniently straightforward to implement with 

only two user defined parameters: The gain to adjust the bandwidth and the threshold 

to prevent the estimation process from collapsing. Since it operates independent of 

the guidance law, it may be used in conjunction with any law that would benefit from 

range information. 

 

Even though the derivation above gives the impression that it is applicable only in 

the plane, the proposed range estimation method is a 3-D algorithm by nature. This 

should become apparent once the following is written 

 

 v rr v u u    (5.6) 

v r

v
r u u


    (5.7) 

 

where 
vu  and 

ru  are the unit vectors parallel to the velocity vector and the LOS, 

respectively.   denotes the magnitude of the angular velocity vector associated with 

the LOS. As seen, employing the definitions of dot and cross product operations 

renders such a smooth transition from the plane to the 3-D space possible. The range 

is a positive quantity; so, all the terms on the right hand side of the second equation 

may safely be kept positive. 

 

The next subsection aims to present various aspects of the range observer in relation 

with filter parameters and practical implementation considerations. The performance 

of the observer in real flight tests is included in Appendix D. 

 

 

5.2. Effects of Various Parameters on the Estimation Performance 

 

Applied to the benchmark scenario presented in Section 2.2, the performance of the 

proposed range observer under the action of various actors is illustrated here. The 

initial guess is zero. Firstly, Figure 5.2 shows the performance as a function of the 

observer gain. As expected, the performance improves with increasing gain. In 
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practice, the selection of the gain value should be based upon a compromise between 

the desired transient performance and the noise content of the measurements. 

-11 sK  , which provides an intermediate performance, will be used in the remaining 

part of this subsection. 

 

 

 

 

Figure 5.2 Effect of the observer gain on the range estimation performance 

 

 

Figure 5.3 presents the results of simulation runs where the observability threshold 

value is varied in an exaggerated manner. As seen, the estimates remain somewhat 

parallel to the true range during the unobservable intervals. Then, the observers 

successfully recover once the LOS angle rate magnitude exceeds the threshold. In 

practice, this value should be adjusted by considering how much the trajectory 

followed is observable in conjunction with the quality level of the signals supplied by 

the sensors. In this specific example, the trajectory is highly observable as can be 

judged by the look angle variation seen in Figure 2.12. 
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Figure 5.3 Effect of the observer threshold on the range estimation performance 

 

 

 

 

Figure 5.4 Effect of the seeker tracking bandwidth on the range estimation 

performance 
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In an idealized setting, the tracking loop of a gimballed seeker may be thought of as a 

first-order filter operating on the LOS angle rate. Figure 5.4 shows the effect of the 

tracking bandwidth on the estimation performance. It is observed that low bandwidth 

shows itself as lagged response, especially during the initial part of the trajectory 

where the LOS angle rate is relatively low. 

 

The range observer is formulated in the continuous time domain; however, it has to 

be implemented in the discrete time domain for practical reasons such as the 

sampling time associated with the seeker. Figure 5.5 can be consulted for a brief 

assessment of the impact of such a factor. The sampling rates indicated on the figure 

indicate the frequencies at which the integrator seen in Figure 5.1 operates. Judging 

by the trends, it may be concluded that the range estimates would be acceptable as 

long as the sampling rate is not too low. It is seen that a sampling rate of 5 Hz 

produces a realistically smooth result. Modern seekers are likely to operate even at 

higher rates. 

 

 

 

 

Figure 5.5 Effect of the sampling rate on the range estimation performance 
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Another important actor is the noise embedded in the LOS angle rate outputs 

provided by the seeker. Since the measurment noise is a discrete phenomenon, the 

observer is operated at 5 Hz to produce the results in Figure 5.6. The same noise set 

acts with three different standard derivations indicated on the figure. Considering the 

fact that the true LOS angle rate magnitude remains relatively low during the first 

few seconds, a severly contaminated LOS angle rate input would almost always 

result in huge estimation errors. Two of the curves shown in the figure exemplify 

such cases whereas the one contaminated the least is able to perform fairly well. 

 

 

 

 

Figure 5.6 Effect of the noise in LOS angle rate on the range estimation performance 

 

 

Lastly, the results of a hundred-run Monte Carlo analysis is presented in Figure 5.7. 

The only random variable is the LOS angle rate noise with a fixed standard 

deviation. The parameters are selected based on the observations from Figure 5.2 – 

Figure 5.6. The standard deviation of the noise is 0.3 °/s. The gain of the observer is 

1 s
 −1

 as before and its threshold is not activated. The tracking bandwidth is 1 Hz and 

the update frequency is 10 Hz. The curves seen in the figure represent upper and 
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lower estimation envelopes obtained by picking the extreme values of all the 

observer outputs at each time step. The envelopes are seen to narrow down to more 

or less reasonable levels in about three seconds. Also, it is observed that for higher 

range values, the lower estimation envelope is closer to the true range than the upper 

one. This is brought about by the seeker tracking delay. 

 

 

 

 

Figure 5.7 Range estimation error envelopes for a specific parameter set 

 

 

  



 

106 

 

 

  



 

107 

 

 

CHAPTER 6 

 

 

6. THE CASE OF MOVING TARGETS 

 

 

 

So far, the target to be captured with a desired impact angle has been stationary. This 

chapter extends the focus to include moving targets. This is made possible by the use 

of the collision triangle concept, which is employed commonly in the literature as in 

[30] and [33]. To be able to construct the collision triangle, one needs to have prior 

knowledge of the final values of the pursuer and target velocities. The final values 

are, of course, not available until the last moment because in a real engagement, the 

speed of the pursuer will probably be varying under the action of external actors and 

the target might any time decide to change its speed and/or direction. The obvious 

solution is to assume that the velocities will not change after the triangle has been 

constructed. Such an assumption is unlikely to hold unless the time between the 

calculation and the impact is very short. The remedy could be doing the calculation 

repeatedly; yet, this implies a persistent flow of information about the target states to 

the guidance algorithm. In addition to external sources that would supply the 

required information, this difficulty could be overcome with an estimator such as the 

range observer presented earlier. This time, however, the estimator structure would 

presumably be more complex and the derivation and/or utilization of such an 

instrument is beyond the scope of this text. On the other hand, it might be argued that 

feeding the target information to the pursuer once before it takes off could be more 

feasible under certain practical circumstances. The uncertainty in this piece of 

information would then show itself in the final results. Therefore, the path to be 

followed in this chapter is to solve the problem for the case of specified speeds and 

then to evaluate the performance under disturbing factors. 
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6.1. Preliminaries 

 

The general engagement geometry between a pursuer and a moving target is 

presented in Figure 6.1. 

 

 

P

T
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
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
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T TV u
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Figure 6.1 Planar engagement between the pursuer and its moving target 

 

 

In addition to the previously defined quantities; 
TV  is the constant pursuer speed with 

its direction Tu  and its path angle T , and rv  is the relative velocity vector with its 

path angle r  and its look angle r . 

 

Based on Figure 6.1, the differential equations governing the engagement can be 

written as 

 

   cos cosT Tr v V          (6.1) 

   sin sinT Tr v V           (6.2) 

 

These can be compared with Eq. (2.7) and Eq. (2.8) to see the influence of having a 

moving target. 
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The collision triangle is presented in Figure 6.2. Because the triangle corresponds to 

the steady-state part of the engagement, this picture might either belong to the final 

instant or some duration before it; hence l, a dummy scaling parameter with units of 

time. u is the velocity direction of the pursuer. It should be noted that the relative 

velocity vector must lie on the LOS for a successful capture as seen here. 
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Figure 6.2 Collision triangle depicting the steady state of the engagement 

 

 

Noting that the angles are negative in the clockwise direction, the sine theorem can 

be utilized to obtain the following: 

 

     f f f f

f r,f

sin sin sinT T

Tv V v

       
   (6.3) 

 

The collision triangle may be simplified by rotating it through an angle of T  such 

that the entire geometry is referenced with respect to a rotated frame of axes. 

Whereas this necessitates some modifications in the guidance code for a general 

engagement geometry, it is directly applicable when the target is constrained to move 

on the ground, which is the case being studied in this dissertation. The simplified 

version of the triangle is shown in Figure 6.3. 
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Figure 6.3 Simplified collision triangle against a ground target 

 

 

With 0T  , Eq. (6.3) can be used to obtain 

 

1

f f f

r,f

sin sinTV

v
  

 
    

 

  (6.4) 

 

which, due to the cosine theorem, may be written as 

 

1 f
f f

2

f f f

sin
sin

2 cos 1


 

  


 
  
   

  (6.5) 

 

where 

 

1
T

v

V
     (6.6) 

 

In what follows, it is assumed that the information regarding the target velocity 

vector is available to the pursuer only before the launch. Therefore, the impact angle 

control tactic has to be open loop. 
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6.2. PPN-Based Implementation 

 

As the first alternative to deal with moving targets, the guidance law to be applied is 

Eq. (3.10). Different navigation gains could have been assigned to the midcourse and 

terminal phases as in Eq. (3.12); yet, such an additional complexity is avoided here 

for the sake of simplicity. Before moving on, it must be underlined that there is no 

guarantee that the midcourse guidance phase will be stable with BPPN against a 

moving target. Fortunately, BPPN will eventually leave the stage to PPN, for which a 

sufficient condition to have a decreasing LOS angle rate magnitude is given as [5] 

 

1
2N





   (6.7) 

 

It would be wise to obey this inequality in order not to face harsh acceleration 

demands near the target. 

  

As described in Section 3.2.1, the bias interval in Eq. (3.10) needs to be sufficiently 

less than the total engagement time. Assuming a nonincreasing pursuer speed and a 

receding target, a safe value would be 

 

i

i T

r
t

v V
 


  (6.8) 

 

which is similar to (3.13). 

 

The desired value of the bias integral can be written from Eq. (3.1) as 

 

 d f,d i f iB N         (6.9) 

 

This time, however, the final LOS angle is not equal to the final look angle due to the 

target movement. Instead, Eq. (6.5) can be used in Eq. (6.9) to obtain 
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  f,d1

d f,d i i
2

f f f,d

sin
1 sin

2 cos 1
B N N


  

  



  
        

     

 (6.10) 

 

As seen, the right hand side of the equation is entirely composed of known 

parameters. The combination of Eq. (6.10) with Eq. (6.8) gives the bias as 

 

 

 

f,d1

f,d i i 2

f f f,d

i i

sin
1 sin

2 cos 1

T

N N

b
r v V


  

  



  
       

     


 (6.11) 

 

This form should be compared with Eq. (3.14) to appreciate the influence of the 

target movement. 

 

It should be noted that the final speed of the pursuer, in addition to the known target 

speed, must be available to calculate the bias value. The trivial solution is to assume 

a constant speed. This, in general, cannot be assumed but the situation is far from 

hopeless. It would be fair to surmise that the guidance designer will always be 

capable of designating the speed interval to which the to-be-realized final speed will 

belong. The nontrivial solution is to use a value from this interval to construct the 

collision triangle. 

 

Furthermore, it would be wise to update the bias value according to Eq. (3.16) if the 

pursuer speed is not constant. However, there is a slight problem here. For example 

in a scenario where the speed continuously decreases, the integral will not have 

reached the desired value yet if the bias is removed as soon as t becomes higher than 

t . This issue can be handled by modifying the switching condition to include the 

bias integral. This modified form of Eq. (3.10) can be written as follows: 

 

dif   

      otherwise

N b B B

N






  
 


  (6.12) 
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6.3. IPN-Based Implementation 

 

As the second alternative to deal with moving targets, the following development is 

considered: 

 

The relative velocity vector is 

 

r TTv v V u    (6.13) 

 

Referring to Figure 6.1, the scalar form of this equation can be written as 

 

r r T Tcos cos cosv v V      (6.14) 

r r T Tsin sin sinv v V      (6.15) 

 

With the help of the complementary relationship 

 

r r      (6.16) 

 

and by utilizing Eq. (6.14) and Eq. (6.15), it can be shown that it is possible to 

convert Eq. (6.1) and Eq. (6.2) into 

 

r rcosr v     (6.17) 

r rsinr v     (6.18) 

 

As seen, these equations are essentially the same as Eq. (2.7) and Eq. (2.8). Now, the 

following question arises: If the impact angle against a stationary can be controlled 

via the BPPN law as expressed in Eq. (2.10), can a similar control law be contrived 

to control the impact angle against a moving target? The answer is simply yes. 

 



 

114 

 

 

The formulation to make the moving target seem stationary to the guidance loop can 

be written as 

 

r N b     (6.19) 

 

This is the BIPN guidance rule [36]. If this rule can somehow be implemented, the 

resulting characteristics will be the same as those derived in Chapter 2. 

 

The reason for terming this equation a rule rather than a law is because its 

implementation is unclear. In order for a relation to be considered a guidance law, it 

should issue commands that are meaningful to an autopilot. As might be appreciated 

by the reader, the rate of the relative path angle is not meaningful in that respect. To 

have a proper solution Eq. (6.14) and Eq. (6.15) can be exploited. Knowing that the 

velocity vector of the target is constant, differentiation and subsequent trigonometric 

manipulation yield the following: 

 

   r r r rcos sinv v v           (6.20) 

 

Making use of Eq. (6.19), this produces 

 

   

 
r r

r

sin

cos

N b v v

v

  


 

  



  (6.21) 

 

This is the PPN-like guidance law that implements the BIPN guidance rule without 

requiring speed change. No singularity will occur here since the angle r   remains 

acute because 1  . The rate of change of speed, which is required for 

implementation, may be supplied by the INS in practice. 

 

So, the impact angle control law, which is similar to Eq. (6.12) in logic, can now be 

written as 
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   

 
 

 

r r

d

r

r r

r

sin
if   

cos

sin
      otherwise

cos

N b v v
B B

v

Nv v

v

  

 
  

 

   
 
 

 
 

 

  (6.22) 

 

The desired value of the bias integral can be obtained by integrating Eq. (6.19): 

 

 d r,f r,i f iB N         (6.23) 

 

Noting from Figure 6.2 that r,f f   and utilizing Eq. (6.5), Eq. (6.23) can be written 

as 

 

  f,d1

d i r,i f,d
2

f f f,d

sin
1 sin

2 cos 1
B N N


  

  



  
       

     

 (6.24) 

 

As expected, this equation is not the same as Eq. (6.10). Again, the right hand side of 

the equation is entirely composed of known parameters. As in Eq. (6.8), a safe value 

for the bias duration would be 

 

i

r,i

r
t

v
    (6.25) 

 

which may be used in Eq. (6.24) to obtain the following expression for the bias term: 

 

  f,d1

i r,i f,d 2

f f f,d

i

i r,i

sin
1 sin

2 cos 1
N N

b
r v


  

  



  
      

       (6.26) 

 

Here, it is important to indicate that this equation gives the initial bias. Unlike the 

PPN-based implementation presented in the previous section, the relative speed is 
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bound to change under the action of Eq. (6.21) even if the pursuer speed remains 

unchanging. As a result, the speed weighting in Eq. (3.16) needs to be performed as 

 

r
i

r,i

v
b b

v
   (6.27) 

 

 

6.4. Examples 

 

The reference engagement geometry is modified such that the target, which is 

initially 3 km away from the origin, moves away with a constant speed of 50 m/s. 

Four scenarios with different configurations are considered. The first and third 

scenarios use the guidance law in Eq. (6.12) whereas the second and fourth scenarios 

are undergone with the one in Eq. (6.22). Unlike the first two scenarios that run in 

ideal conditions, the last two scenarios are disturbed by pursuer dynamics, gravity, 

and drag. The first item is modeled as in Eq. (3.32) with a 0.35 s  . The modeling 

of the second item is as shown in Eq. (3.35). The last item is modeled via 

20.00007v v   as done in Section 4.3. As before, the guidance command is not 

updated during the last 30 m when there is disturbance. The last detail is about the 

construction of the approximate collision triangles: For the last two scenarios, the 

final speed would be equal to the initial speed as required by the conservation of 

energy if there was no drag as is the case with the first two scenarios. To account for 

the effect of drag, the triangles are formed with a final pursuer speed of 200 m/s 

whereas the actual values happen to be about 190 m/s. This speed difference is 

another disturbing element for the already disturbed scenarios. 

 

The summary of the results is in Table 6.1. The first column indicates the scenario 

number whereas the second one indicates the implementation each scenario is based 

on. The third column shows whether there is disturbance or not. The total 

engagement durations are shown in the fourth column. The durations are given here 

because the time axes of the upcoming plots are normalized for the sake of a compact 

presentation. The remaining columns are the same as those in the previous tables 
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such as Table 3.3. It is to be noted that the E values of the last two scenarios are 

strikingly lower than those of the first to scenarios since they receive assistance from 

gravity and, more importantly, since their average speeds are lower due to gravity 

and drag. 

 

 

Table 6.1 Summary of the simulation results against a moving target 

 

Scn. Imp. Dist. f
t  [s] 

ext
a  [m/s

2
] 

max
  [deg] E [m

2
/s

3
] f

  [deg] 

1 BPPN Off 21.5  −95.3 64.5 29934  −90.0 

2 BIPN Off 20.5  −82.7 60.5 28916  −90.0 

3 BPPN On 43.9 +31.3 80.6 4901  −89.4 

4 BIPN On 34.2  −28.9 64.7 6826  −88.9 
 

 

 

Figure 6.4 presents the spatial trajectories. The trajectory belonging to the target is 

also shown. As also seen in the fourth column of Table 6.1, it takes longer due to 

speed loss to reach the target when there is disturbance. It is observed that BPPN 

trajectories are higher than BIPN trajectories. The accelerations are plotted in Figure 

6.5. When the speed is constant, it is seen that BPPN and BIPN perform comparably. 

The acceleration requirement of the former turns out to be a bit higher. However, the 

things change when the speed is not constant anymore. BIPN performs noticeably 

worse as also evidenced by the cost function values in the seventh column of Table 

6.1. This is due to the form of the guidance law expressed in Eq. (6.22), where both 

velocities are varying. In Figure 6.6, the third scenario is seen to have a rather high 

look angle requirement. This may be attributed to the fact that unlike the BIPN-based 

implementation, the PPN-based implementation does not have a solution based on 

the look angle when the target is not stationary. As compared to the first scenario, a 

worse result is obtained with a varying pursuer speed. Next, Figure 6.7 shows that 

the desired impact angle can be said to be obtained successfully in each case. This is 

verified by the numerical figures in Table 6.1. As expected, the performances of the 

disturbed scenarios are not perfect. Lastly, the bias profiles that enable the vertical 

impact condition can be seen in Figure 6.8. 
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Figure 6.4 Spatial trajectories against a moving target produced by the PPN- and 

IPN-based guidance schemes (see Table 6.1 for details) 

 

 

 

 

Figure 6.5 Acceleration histories against a moving target produced by the PPN- and 

IPN-based guidance schemes (see Table 6.1 for details) 
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Figure 6.6 Look angle variations against a moving target produced by the PPN- and 

IPN-based guidance schemes (see Table 6.1 for details) 

 

 

 

 

Figure 6.7 Path angle trends against a moving target produced by the PPN- and IPN-

based guidance schemes (see Table 6.1 for details) 
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Figure 6.8 Bias profiles against a moving target produced by the PPN- and IPN-

based guidance schemes (see Table 6.1 for details) 

 

 

Figure 6.9 presents the sensitivity of the impact angle to the variation in target speed 

when there is no other disturbance. It is observed that the two different 

implementations behave very similarly. There is no error when the speed is 50 m/s, 

which is the value used by the guidance algorithms. The approximate slope of the 

lines is 20°, which is less than half of the value in Figure 3.25. This means that the 

guidance loop becomes less sensitive to the speed variation when the formulation 

takes the target movement into account. 
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Figure 6.9 Impact angle sensitivities of the PPN- and IPN-based guidance schemes to 

target speed variation 
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CHAPTER 7 

 

 

7. PLANE PURSUIT FOR EXTENSION TO THREE 

DIMENSIONS 

 

 

 

The BPPN guidance law as investigated in this study has planar implementation 

logic. It is therefore required to bring the pursuer’s velocity vector from an arbitrary 

initial orientation onto a preferred maneuver plane when the engagement is 3-D. This 

plane, on which the pursuer is to perform its BPPN action, should be so selected that 

it involves the final velocity direction from which the designer desires the target to 

be approached. With such a segmented structure, the philosophy of the suggested 

method becomes similar to the sliding mode control approach: There is an initial 

reaching phase named plane pursuit, in which the pursuer tries to catch the maneuver 

plane. Then, it slides on this plane, or surface, to eventually capture the target. Once 

converged, the pursuer will never leave the surface because the PPN guidance law 

will result in a planar engagement in the 3-D space if the target is stationary or if, 

initially, the velocity vector of the target is contained in the plane formed by the LOS 

and the velocity vector of the pursuer (see Appendix E for proofs). 

 

 

7.1. Midcourse Guidance Against a Stationary Target 

 

Figure 7.1 shows a snapshot during a general 3-D engagement against a stationary 

target. The unit vector f,du  ending at the target denotes the desired impact vector. 

There are an infinite number of planes involving this vector and the final maneuver 

plane must be one of these for the guidance objectives to be met. 
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Figure 7.1 A snapshot from the plane-pursuit phase against a stationary target 

 

 

It is proposed in this study that the plane to be pursued be constructed using the 

instantaneous LOS and the desired final direction. This greatly simplifies the plane-

pursuit phase because if any other plane was selected, there would be a translational 

error as well in addition to the angular error 
ae  shown in the figure. On top of that, 

the knowledge of the target position would also be required. The aim during the 

plane-pursuit phase is to nullify ae , which is defined as the smallest angle between 

the velocity vector and the pursued plane. It needs to be noted that the pursued plane 

continuously rotates about f,du  while the reaching is in progress. The plane ceases 

rotation and becomes the fixed maneuver plane once ae  is sufficiently small. One 

might argue that a disadvantage of the proposed method is that it does not provide 

the most convenient initial angular conditions for the BPPN phase since they happen 

to be set indirectly the moment the pursued plane is reached. Whereas it is true that 

more favorable initial conditions could be imposed by devising alternative strategies, 

such a potentially tedious path is not taken here as the proposed method is able to 

provide a satisfactory solution to the problem. 
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Now, making use of the reference frame attached to the pursued plane with 
xu  

pointing along the LOS; yu , which is normal to the plane, can be obtained by the 

operation 

 

f,dy xu u u    (7.1) 

 

Then, the third unit vector 
zu  happens to lie on the plane. The fact that the error has 

positive correlation with the dot product of two vectors can be represented as 

 

a v ye u u   (7.2) 

 

which means that the error increases as the unit vectors approach to each other and 

vice versa. Hence, the error may be driven to zero by using such an acceleration 

policy as follows: 

 

  v y

v y v

v y

u u
a f u u u

u u

 
  
 
 

  (7.3) 

 

The acceleration vector operates in a direction perpendicular to the velocity vector to 

reduce the error so that the speed is kept constant. It is seen that the magnitude is a 

function of the previously mentioned dot product. To see what kind of a function this 

could be, some help from the linear domain might be useful. 

 

 

7.1.1. Guidance Controller 

 

It may be appreciated that the velocity pursuit guidance [1] is similar to the plane 

pursuit methodology proposed against a stationary target. The difference between 

these two is that the plane-pursuit guidance aims to drive the angular error to zero so 

that the velocity vector lies on the pursued plane instead of driving the look angle  , 

which is defined in Figure 1.1, to zero so that the velocity vector lies on the LOS. In 
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this respect, the angles 
ae  and   become counterparts and it may therefore be 

expected that a controller able to nullify   in a linear environment could also nullify 

ae  in a nonlinear environment. 

 

Figure 7.2 shows the block diagram of the velocity pursuit guidance loop. The aim of 

the controller is to regulate   to zero by rejecting the disturbance created by the 

initial velocity 
iy  acting as a step input. The initial displacement is zero since the 

LOS is always attached to the pursuer. 

 

 

 

 

Figure 7.2 Block diagram of the velocity pursuit guidance loop 

 

 

The linear system shown above is time-variant. It can be converted into a time-

invariant form by assuming that go fT t t   is constant. The closed-loop transfer 

function, where the controller is represented by  C s , then happens to be 

 

 

     

2

go

2

go goi

T s ss

vT s T C s s C sY s




 
  (7.4) 

 

which is 
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 

 

 
 

 
 

 i 1

s

s Y s

s C sY s

Y s s









  (7.5) 

 

where 

 

 

 
go

go

1T ss

Y s vT s


   (7.6) 

 

So, the characteristic equation of (7.5) becomes 

 

 go

2

go

1
1

T s
C s

vT s


     (7.7) 

 

With proportional control, i.e.  C s k  , a generic root locus plot corresponding to 

Eq. (7.7) is shown in Figure 7.3. It can be shown for low gain values that the locus is 

circular with a radius of go1/T . This means that if an underdamped response is 

desired for large values of the time to go, the designer is stuck with a low-bandwidth 

system. The system can be sped up with high gain; however, the response would be a 

somewhat sluggish one due to its first-order nature. The remedy might be to use a 

controller with the following structure: 

 

 
s a

C s k
s b


 


  (7.8) 

 

If the condition a b , i.e. lag compensation, is met, the pole of the controller could 

be used to suppress the dynamics of the open-loop zero and its zero would be useful 

in enhancing the dynamic capacity of the guidance loop. In fact, Figure 7.3 will still 

be applicable with Eq. (7.8) if the controller pole is utilized to cancel out the open-

loop zero, yielding a circle with a radius of a. 
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Figure 7.3 Root locus of the transfer function corresponding to velocity pursuit with 

proportional controller 

 

 

7.1.2. Design Example 

 

A pursuer with 250 m/sv   is considered. The range interval of interest is between 

5000 m and 3000 m. Lower range values are not considered since the plane-pursuit 

guidance is a midcourse method; it should have already ended when the pursuer gets 

nearer to the target so that enough time would be left for terminal maneuvers. The 

root locus of the system corresponding to a range of 4000 m with the additions of a 

controller pole to −0.1 and a controller zero to −0.5 is presented in Figure 7.4. As 

seen, the open-loop zero is nicely suppressed by the closed-loop pole and the 

complex conjugate poles can be selected to have a satisfactory transient performance. 

 

The dominant closed-loop poles can be made to have a damping ratio of, for 

example, 0.707 with the following controller: 

 

 
0.5

229
0.1

s
C s

s


 


  (7.9) 
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Figure 7.4 Root locus of the velocity-pursuit system with lag controller 

 

 

With this selection, the closed-loop systems from Eq. (7.4) become 

 

 

 

  

  2
i 5000 m

0.05 0.1

250 0.0503 0.9657 0.4552
r

s s s s

Y s s s s


  


  
 (7.10) 

 

 

  

  2
i 4000 m

0.0625 0.1

250 0.0629 0.9531 0.4553
r

s s s s

Y s s s s


  


  
 (7.11) 

 

 

  

  2
i 3000 m

0.0833 0.1

250 0.0836 0.9324 0.4564
r

s s s s

Y s s s s


  


  
 (7.12) 

 

So, it can be concluded that the same controller can be employed to obtain nearly the 

same response over a wide range interval. It is interesting here to note that the 

transient response will be under the influence of the controller pole acting as a 

closed-loop zero located at −0.1. The Bode diagrams of Eq. (7.11) are shown in 

Figure 7.5. The magnitude plot demonstrates that the closed-loop system behaves 
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well as a disturbance rejecter in the entire frequency domain, including the zero 

frequency at which the initial heading error operates. 

 

 

 

 

Figure 7.5 Bode diagrams of the closed-loop velocity-pursuit system 

 

 

The following initial conditions are used for the example nonlinear engagement 

scenario: The constant-speed pursuer starts from the origin with an azimuth angle of 

60° and an elevation angle of 25°. The target is located 5 km away along the x-axis. 

The azimuth and elevation vectors of the terminal velocity vector are respectively 

desired to be 45° and −60°. The midcourse phase of the engagement is simulated for 

a time interval of 12 s. The coordinate variations for unsaturated and saturated (with 

a maximum lateral acceleration of 100 m/s
2
) pursuits are plotted in Figure 7.6 

whereas the acceleration histories can be found in Figure 7.7. Figure 7.8 

demonstrates how the error is nullified. The harmony between the linear system of 

Eq. (7.11) and the nonlinear one is encouraging. It is also seen that the price paid due 

to the saturated acceleration is merely a slower response, which can quite easily be 

tolerated since the target is still far away. 



 

131 

 

 

 

 

Figure 7.6 Coordinate variations produced by the plane-pursuit guidance against a 

stationary target 

 

 

 

Figure 7.7 Acceleration histories produced by the plane-pursuit guidance against a 

stationary target 

 



 

132 

 

 

 

 

Figure 7.8 Rejection of the heading error as produced by the plane-pursuit guidance 

against a stationary target 

 

 

7.1.3. Control of Impact Direction 

 

Referring to Figure 7.1; if the velocity vector lies on the pursued plane, i.e. a 0e  , 

the path angle on this plane can be calculated as 

 

 2

cossin

atan ,x v y x vu u u u u




 
  
 
 

  (7.13) 

 

Similarly, the desired impact angle is 

 

 
f,df,d

f,d 2 f,d f,d

cossin

atan ,x y xu u u u u





 
  
 
  

  (7.14) 
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and the LOS angle is 

 

 2

cossin

atan ,x r y x ru u u u u




 
  
 
 

  (7.15) 

 

where 
ru  is the unit vector that inherits the duty of staying parallel to the LOS from 

xu , which remains constant during the second phase along with yu  and 
zu . 

 

The BPPN guidance law to be used for the demonstration purpose is the one 

presented in Eq. (3.15). Noting that the LOS angle at the beginning of the biased 

guidance phase is always zero, the bias term given in Eq. (3.14) may be modified as 

 

 i M f,d

i i

1N
b

r v

  
    (7.16) 

 

The initial range value may be obtained by running the range observer introduced in 

Chapter 5 throughout the plane-pursuit phase in its 3-D mode by using Eq. (5.6) and 

Eq. (5.7) as the system and measurement models, respectively. 

 

In 2-D domain, the BPPN guidance law in Eq. (2.10) may be claimed to be 

meaningful in such a way that it manages to convey the necessary sense of direction 

associated with the acceleration; the acceleration vector will point up if the path 

angle rate is positive and down if it is negative. In the 3-D domain, however, the need 

for a more direct manner of specifying the acceleration vector may be appreciated. 

Therefore, based on the vector form of PPN [1], Eq. (2.10) can be expressed as 

 

 y va N v bv u u      (7.17) 

 

where   is the angular velocity vector of the LOS. The cross product determines the 

bias direction. In what follows, Eq. (3.15) will be implemented this way. 
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Now, 3-D impact angle control will be demonstrated with an example. The pursuer 

starts from the origin with a constant speed of 250 m/s to capture the stationary target 

located 5 km away along the x-axis. The initial azimuth and elevation angles of the 

pursuer are 40° and 25°, respectively whereas the desired azimuth and elevation 

angles at the instant of impact are 50° and −60°, respectively. The plane-pursuit 

phase controller is the one given in Eq. (7.9), but with its gain divided by five. The 

need for such a modification may be understood if the transient response in Figure 

7.8 is examined. As seen there, the error is fully rejected around 10 st  ; yet, its 

value becomes momentarily zero around 2 st  . There is no reason for the pursuer 

to wait for the steady state to switch to BPPN; it can do so as soon as the angular 

error becomes zero. However, it would be overkill in terms of acceleration effort to 

switch too early. Accordingly, the plane-pursuit performance is intentionally 

hindered by lowering the controller gain. As for the guidance gains to be used in Eq. 

(3.15), they are selected as M 3N   and T 2N  . 

 

Figure 7.9 and Figure 7.10 show the spatial trajectories of the pursuer, where the end 

of the plane-pursuit phase is indicated. The history of the acceleration magnitude is 

presented in Figure 7.11. The three different phases of the engagement are clearly 

seen. It can be shown that the most expensive phase according to Eq. (2.38) is the 

PPN phase whereas the least expensive on is the BPPN phase. Lastly, Figure 7.12 

verify that the desired impact angles are obtained as intended. 
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Figure 7.9 Side view of the 3-D trajectory produced by the plane-pursuit guidance 

followed by the discontinuous bias application strategy 

 

 

 

 

Figure 7.10 Rear view of the 3-D trajectory produced by the plane-pursuit guidance 

followed by the discontinuous bias application strategy 
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Figure 7.11 Acceleration magnitude history produced by the plane-pursuit guidance 

followed by the discontinuous bias application strategy 

 

 

 

Figure 7.12 Azimuth and elevation angle trends  produced by the plane-pursuit 

guidance followed by the discontinuous bias application strategy 
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7.2. Midcourse Guidance Against a Moving Target 

 

Figure 7.13 shows a snapshot during a general 3-D engagement against a moving 

target. The unit vector 
fu  ending at the target denotes the desired final velocity 

direction and 
Tv  is the velocity vector of the target. The maneuver plane must simply 

be the one defined by these vectors; there is no other choice since 
f,du , 

Tv  and v  

must be coplanar for the BPPN guidance as presented in this dissertation can work. 

The aim during the plane-pursuit phase is to nullify the translational error 
te  shown 

in the figure, which is defined as the smallest distance between the pursuer position 

and the pursued plane. There is no need to concentrate on the angular error 
ae  since 

it will automatically be nullified once the plane is reached. This has to be so because 

of the physics of the problem. It should be noted that the pursued plane remains 

inertially fixed unless the target maneuvers. 

 

 

 

 

Figure 7.13 A snapshot from the plane-pursuit phase against a moving target 

 

 

Making use of the reference frame attached to the pursued plane with xu  parallel to 

Tv ; yu , which is normal to the plane, can be obtained by the operation 

 

f,dy xu u u    (7.18) 
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There is a right triangle in Figure 7.13 formed by points P, T and the point on the 

pursued plane that is the closest to point P. This information can be used to calculate 

the translational error as 

 

 t T ye p p u    (7.19) 

 

where p  and 
Tp  are the position vectors of the pursuer and the target, respectively. 

To be able to calculate this error, at least one point on the target trajectory such as the 

initial target position needs to be available to the pursuer. Intuitively, the 

translational error may be driven to zero by using the following acceleration policy: 

 

 t ya f e u    (7.20) 

 

However, such a policy requires change in the magnitude of the velocity vector. 

Therefore, Eq. (7.20) is slightly changed into  

 

 
 

 
t

y y v v

y y v v

u u u u
a f e

u u u u


 


  (7.21) 

 

so that the acceleration vector remains perpendicular to the velocity vector. As 

practiced in the previous subsection, some help from the linear domain might be 

useful to see what kind of function could be used to produce the acceleration 

magnitude. 

 

 

7.2.1. Guidance Controller 

 

It may be appreciated that the plane-pursuit methodology proposed against a moving 

target is similar to the altitude-hold control loop [51]. The difference lies in the fact 

that the plane-pursuit guidance aims to drive the translational error to zero so that the 

velocity vector lies on the pursued plane instead of maintaining the path angle zero at 
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the desired altitude. In this respect, it may therefore be expected that a controller able 

to hold the altitude in a linear environment could also nullify et in a nonlinear 

environment. 

 

Figure 7.14 shows the block diagram of the altitude-hold control loop. The aim of the 

controller is to drive the error to zero under the action of initial velocity as a 

disturbance. The initial displacement may or may not be zero; the control loop is not 

affected by this quantity in terms of disturbance rejection. 

 

 

 

 

Figure 7.14 Block diagram of altitude-hold control loop 

 

 

The transfer function of the open-loop system, which is independent of the time to 

go, can readily be written as 

 

 

 

 
2

y

Y s C s

E s s
   (7.22) 

 

whereas the closed-loop command-following system is 

 

 

 

 

 2

c

Y s C s

Y s s C s



  (7.23) 

 

and the closed-loop disturbance-rejection system is 
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Figure 7.15 Root locus of the transfer function corresponding to altitude hold with 

two different controllers 

 

 

 

   2

i

Y s s

Y s s C s



  (7.24) 

 

The root locus of Eq. (7.22) with proportional control, i.e.  C s k , is shown in 

Figure 7.15 in dashed lines. It is obvious that the closed-loop system is on the verge 

of instability; therefore, another control strategy must be devised. It is easy to see 

that the system may be forced to yield a proper response with the addition of a 

controller zero, corresponding to proportional-derivative type of control. The root 

locus with  C s s a   is also presented in the same figure, the radius of the circle 

being equal to a. Since a proportional-derivative controller is not physically 

realizable, it can be implemented as follows: 

 

 
s a

C s k
s b





  (7.25) 
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which is in the same form as Eq. (7.8) except that b a , implying lead 

compensation. With such a controller, the command-following transfer function from 

Eq. (7.23) becomes 

 

 

  3 2

c

Y s ks ka

Y s s bs ks ka




  
  (7.26) 

 

which can follow step- and ramp-type inputs with no steady-state error. It might be 

tempting to have 0a   so that the displacement commands are tracked as if the 

system was a second-order filter. However with Eq. (7.25) as the controller, Eq. 

(7.24) becomes 

 

 

 

 
3 2

i

Y s s b s

Y s s bs ks ka




  
  (7.27) 

 

It is seen that the s term in the nominator is allowed to stay as long as 0a  . If 

0,a   the disturbance created by the initial velocity cannot be completely rejected in 

the steady state. So, a should be kept nonzero. 

 

 

7.2.2. Design Example 

 

Unlike the previous case of velocity pursuit, the altitude-hold control system does not 

vary with time. As a result, a controller to yield the desired response characteristics 

may be designed without knowing the engagement details. Placing the controller 

zero to −0.5 as in Eq. (7.9), a reasonable midcourse guidance response may be 

achieved. Selecting the location of the controller pole ten times as far as the zero 

location, the root locus plot seen in Figure 7.16 is obtained. A dominant couple of 

complex conjugate poles with a damping ratio of, for example, 0.707 can be obtained 

using the following controller: 
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Figure 7.16 Root locus of the altitude-hold system with the lead controller 

 

 

 
0.5

5.1
5

s
C s

s





  (7.28) 

 

The command-following system from Eq. (7.26) then happens to be 

 

 

 

 

  2
c

5.1 0.5

0.384 1.154 0.6629

Y s s

Y s s s s




  
  (7.29) 

 

The Bode diagrams of the system above are presented in Figure 7.17. The closed-

loop bandwidth is 1.73 rad/s. 

 

On the other hand, the disturbance-rejection system from Eq. (7.27) appears as 

 

 

 

 

  2
i

5

0.384 1.154 0.6629

Y s s s

Y s s s s




  
  (7.30) 
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Figure 7.17 Bode diagrams displaying the command-following characteristics of the 

closed-loop altitude-hold system 

 

 

 

 

Figure 7.18 Bode diagrams displaying the disturbance-rejection characteristics of the 

closed-loop altitude-hold system 



 

144 

 

 

The Bode diagrams of Eq. (7.30) are shown in Figure 7.18. The magnitude plot 

reveals that the rejection fails in the neighborhood of 1 rad/s. Nonetheless, as the 

frequency approaches to zero, which is the value at which the initial heading error 

operates, the system exhibits the desired attenuation characteristic. 

 

As for the nonlinear engagement example, the conditions are almost the same as 

before: The pursuer starting from the origin with a constant speed of 250 m/s tries to 

reach a planar engagement condition against a nonaccelerating target moving along 

the x-axis with a speed of 50 m/s. The initial azimuth and elevation angles of the 

pursuer are 60° and 25°, respectively. The initial range is 5 km. The terminal velocity 

vector of the pursuer is desired to have an azimuth angle of 45° and an elevation 

angle of −60°. The midcourse phase of the engagement is simulated for a time 

interval of 12 s. For unsaturated and saturated (with a saturation level of 100 m/s
2
) 

cases, the coordinate variations are plotted in Figure 7.19. It is seen that both 

pursuers eventually converge to the same plane, as expected. The corresponding 

acceleration histories are presented in Figure 7.20. Figure 7.21 demonstrates how the 

angular errors are nullified. Lastly, Figure 7.22 presents how the translational errors 

are regulated. Besides the unsaturated and saturated responses, there is a third curve 

presented for comparison purposes. It is not unexpected to see that Eq. (7.20) 

performs better than Eq. (7.21). The interesting detail here is the fact that the 

nonlinear response produced by Eq. (7.20) and the linear response from Eq. (7.30) 

are virtually indistinguishable. This phenomenon can be appreciated by realizing that 

the translational error dynamics within the nonlinear simulation environment is not 

nonlinear provided that the applied acceleration is maintained parallel to the normal 

vector of the pursued plane, which is fixed in inertial coordinates. Finally, a 

comparison of Figure 7.6 – Figure 7.8 and Figure 7.19 – Figure 7.21 reveals that the 

controllers represented by Eq. (7.9) and Eq. (7.28) perform in harmony. 

 

The chapter is concluded at this point. Unlike the practice in the previous section, a 

complete example of impact direction control is not presented for moving targets 

since doing so would be little more than a rehash of what has been presented for 

stationary targets. 
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Figure 7.19 Coordinate variations produced by the plane-pursuit guidance against a 

moving target 

 

 

 

 

Figure 7.20 Acceleration histories produced by the plane-pursuit guidance against a 

moving target 
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Figure 7.21 Angular error responses produced by the plane-pursuit guidance against 

a moving target 

 

 

 

 

Figure 7.22 Translational error behaviors produced by the plane-pursuit guidance 

against a moving target 
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CHAPTER 8 

 

 

8. CONCLUSIONS 

 

 

 

Independent of the subject, it can usually be argued that there are more ways than 

one to accomplish an objective. In an area relevant to the discipline of engineering, 

one of the basic duties of the engineer is to evaluate the relative costs of the 

alternative solutions before deciding which path to follow. This practice is necessary 

so that the available resources are not wasted. 

 

The study of impact angle guidance is a good example in that respect. In the 

literature, there are many different methods with the same ultimate objective: 

capturing the target with a desired impact angle. Given infinite resources, it would be 

reasonable to expect that all these methods will be able to fulfill this objective. In 

practice, however, there are almost always a number of details that must be 

considered first. The availability of the information required by a guidance law is one 

concern. For example, the range- and time-to-go signals, which frequently appear in 

impact angle control routines, generally require some sort of estimation. Since even 

the simplest estimation process will introduce additional complications, a guidance 

law that does not require such inputs to do the same job would be advantageous. 

Another concern is associated with the control effort. For example in exoatmospheric 

applications, the control authority is sustained with thrust obtained by expending 

fuel, which can only be stored in limited quantities. In endoatmospheric applications, 

on the other hand, the control authority is realized by creating angle of attack, which 

when high, induces severe drag leading to speed loss. As a result, a guidance law that 

does the same job with less total control effort would be a natural choice. Yet another 

concern is the physical constraints. One constraint common to all vehicles is the 

acceleration limit whereas the look angle limit is applicable to pursuers with target 

seekers. If a control scheme threatens to violate these constraints, it might lose its 

status as a guidance law candidate. The author hopes that all of these concerns have 
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been addressed in this dissertation in a way that is justified within the field of 

guidance engineering. 

 

The primary outcomes of the study are the three BPPN guidance laws based on the 

discontinuous, range-driven and error-based bias application tactics. With these 

nonlinear formulations, it is possible to capture a stationary target with a desired 

impact angle without using the time-to-go information. Firstly, the discontinuous 

method involves applying the bias, which is constant when the speed is constant, to 

shape the trajectory until the potential impact angle value equals the desired one. 

After the bias is removed, the pursuer finds the target using the classical PPN 

guidance law, which implies that this phase is open loop in terms of impact angle 

control. Secondly, the range-driven method is inspired by the unfeasible approach of 

continuous bias application. The implementation is realized by approximating the 

unavailable time-to-go term in the BPPN impact angle expression by an expression 

involving the range to go, where the range signal may be provided by the single-gain 

observer that is presented as a supplementary tool. This range observer can easily be 

constructed if the vehicle is readily equipped with a passive seeker able to measure 

the rate of the LOS angle. Lastly, the error-driven method is formulated by rewriting 

the potential impact angle function as an error term. Since the resulting dynamics is 

first order, the corresponding guidance gain needs to be sufficiently high in order for 

the impact angle error to be negligible. Through a number of simulation runs, some 

of which are ideal and the rest of which are disturbed by various realistic factors, 

these BPPN guidance laws are verified to perform as intended. It turns out that 

results closest to the optimal solution, which minimizes the total control effort, can 

be obtained by resorting to the discontinuous bias application with specific values of 

the navigation gains. The appropriate gain values happen to be 3 and 2 for the 

midcourse and terminal phases, respectively. The former value is not unexpected 

because, as shown, it is the optimal value in a linear two-point boundary value 

problem. As for the latter value, which is the lowest possible gain for the PPN loop, 

it generates a uniform control effort not unlike the optimal solution tends to do 

towards the end of the engagement. 
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Another topic that is investigated is the problem of constrained impact angle control. 

Because the range-driven and error-based formulations do not comply with the 

analytical solutions, the investigation is based on the continuous and discontinuous 

biasing schemes. The outcomes are threefold: First, it is possible by simple 

numerical means to calculate the impact angle capacity as a function of the look 

angle and acceleration limits under the action of continuous bias. This information is 

valuable to the designer in that impact angle requests beyond the reach of the pursuer 

can be avoided. Also, it should be noted that since the BPPN guidance law is an 

efficient method for trajectory shaping, it is reasonable to expect that the calculated 

capacity would not be very different from those achievable by other efficient 

methods. Second, it is shown that the problem of constrained impact angle control 

using discontinuous biasing is theoretically solvable; however, a straightforward 

numerical solution does not seem to exist. This is why an alternative solution is 

proposed as the third item, where the look angle constrained guidance problem is 

solved utilizing the available analytical foundation without paying attention to the 

acceleration limit. Then, whether or not the acceleration limit will be violated can be 

tested numerically. It so happens that the aforementioned combination of 3 and 2 as 

the navigation gains provides a physically meaningful solution to the constrained 

guidance problem. Therefore, it can be suggested that a realistic pursuer guided by 

BPPN with these specific gain values is more likely than not to achieve its objectives 

under physical constraints provided that the constraints are not too restrictive to 

allow the attainment of the desired impact angle. 

 

The proposed impact angle guidance approach is not restricted to stationary targets. 

An extension can be made to cover moving targets by means of the expected 

collision triangle, which is constructed by assuming that the target will not accelerate 

after the engagement commences. Two methods are formulated to implement the 

discontinuous biasing approach. These are the PPN-based and IPN-based 

implementations, where the guidance action is based on the rotation of the pursuer 

velocity vector and of the relative velocity vector, respectively. Because the target is 

not stationary, the first implementation does not conform to the BPPN analytical 

solutions derived for stationary targets and consequently, the biased phase is not 

guaranteed to be stable. This, fortunately, is not a significant shortcoming owing to 
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the fact that the bias will eventually be removed. The second implementation, on the 

other hand, does not suffer this at all since IPN makes the target seem stationary to 

the guidance loop to begin with. This implementation is realized through a PPN-like 

control action so that no change in pursuer speed is required. As stated above, the 

assumption of the unchanging collision triangle is vulnerable to changes in the target 

speed. Changes in the pursuer speed are also harmful; yet in this case, the designer is 

not as helpless because the terminal speed of the pursuer may probably be predicted 

with some accuracy. The results of simulations involving gravity and drag show that 

slight variations of the expected speed do not impede the impact angle performance. 

 

The BPPN methods described in this text are planar. However, the midcourse 

guidance technique named plane pursuit, which aims to bring the pursuer velocity 

vector to a plane containing the desired impact direction, can be employed to 

facilitate the 3-D extension. It turns out that the midcourse phase is analogous to the 

velocity pursuit guidance when the target is stationary. Against a moving target, on 

the other hand, it is analogous to the altitude-hold control loop. The simulation 

results show that the classical controllers that are designed based on these analogies 

perform as planned. 

 

This study tries to address various aspects of the impact angle guidance problem by 

adopting a practical point of view. It would not be an overstatement to say that every 

single method described here should be feasible under realistic circumstances. In this 

respect, the author feels that this thesis will be a fine addition to the literature. While 

this is so, it is also true that this work is far from being a complete treatment of the 

subject. For example, it might have been more convenient to define the impact angle 

with respect to the body of the pursuer instead of its velocity vector. Admitting this 

does not degrade the current approach; the body vector will lead the velocity vector 

by the angle of attack, which implies that the designer has an indirect authority on 

the final value of the body angle by being able to control the impact angle. 

Nonetheless, a body-referenced formulation could be considered as future work. 

Another subject for future research would be a range observer that does not require 

the target to be stationary. The knowledge that a ground target is constrained to move 

on the ground might somehow be incorporated into the formulation. Furthermore, the 
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case of moving targets is addressed only briefly in this text. This is an important and 

challenging topic that deserves overall attention. Therefore, this is another subject for 

future work, where the constrained guidance problem should also be studied. 
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APPENDIX A 

APPENDICES 

 

A.NONLINEAR OPTIMAL CONTROL SOLUTION 

 

 

 

Starting from a set of initial conditions, the optimal control enabling the achievement 

of a set of specified final conditions in some planar engagement geometry can be 

obtained by following the guidelines outlined in [52]. The states of the optimal 

control problem are selected as 

 

1x r   (A.1) 

2x    (A.2) 

3x    (A.3) 

 

Referring to Eq. (2.7) and Eq. (2.8), the state equations below can be written for 

constant speed with the help of Eq. (2.4): 

 

1 2cosx V x    (A.4) 

2
2

1

sin x
x V u

x
    (A.5) 

3x u   (A.6) 

 

where u is the control. The cost function of the boundary value problem is defined as 

 

f

2

0

1
d

2

t

E u t    (A.7) 
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which is the same as Eq. (2.38). With   denoting the costate, the Hamiltonian can 

be constructed as 

 

  22
1 2 2 2 3

1

sin 1
cos

2

x
H V x V u u

x
          (A.8) 

 

Exploiting the facts that d dx t H     and d dt H x     and using Eq. (A.4) 

– Eq. (A.6), the differential equation set corresponding to the optimal control 

problem can be derived as 

 

2

2
2 3

1
1

2
2 3

3
2

21 2

1
2

2
3

1 2 2

1

cos
sin

sin

cos
sin

0

V x
x

Vx x
x
x x

V
x

x
V x V

x

 

 



  

 
 

   
      

   
  
  

    
 
 

  (A.9) 

 

It should be noted that the third equation complies with the requirement that

0H u   . 

 

The boundary conditions are 

 

     
T T

f i i i f0 0 0x x t r       (A.10) 

 

The fourth and fifth conditions are seen to be zero, which follows from the fact that 

the final values of the range and the look angle must be zero in order to capture a 

stationary target. For a given initial condition set, the last boundary condition, which 

is the user-specified impact angle, is in fact the sole control parameter that 

determines the shape of the trajectory. The boundary conditions given in Eq. (A.10) 

are not sufficient to initiate the solution process because the final time is unknown; 
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an additional condition is required. Since the final time is free and the Hamiltonian 

does not explicitly depend on time, the Hamiltonian must identically be zero at all 

times. Therefore, the missing boundary condition can be obtained as 

 

     
 

 
    

22

1 2 2 2 3

1

sin 0 1
0 cos 0 0 0 0 0

0 2

x
V x V

x
         (A.11) 

 

where it should be noted that the Hamiltonian is evaluated at the start of the 

engagement rather than at the end of it so that the preferred numerical routine is able 

solve the problem. 

 

As implied above, the analytical capabilities end here; the solution of Eq. (A.9) with 

Eq. (A.10) and Eq. (A.11) necessitates numerical techniques. One relatively easy 

way to overcome this problem is to utilize the MATLAB command “bvp4c” [53]. 

The following is the MATLAB code used to solve the problem: 

 
function sol=boundary_value_problem 

 
solinit=bvpinit(linspace(0,1),[1000;0;0;0;0;0],10); 
sol=bvp4c(@odefun,@bcfun,solinit); 

 
function dydx=odefun(x,y,tf) 

 
V=250; % pursuer speed 

 
% differential equations 
dydx=tf*[-V*cos(y(2)) 
          V*sin(y(2))/y(1)-y(5)-y(6) 
         -y(5)-y(6) 
          V*y(5)*sin(y(2))/y(1).^2 
         -V*y(4)*sin(y(2))-V*y(5)*cos(y(2))/y(1) 
          0]; 

 
function res=bcfun(ya,yb,tf) 
V=250; % pursuer speed 

 
% boundary conditions 
res=[ya(1)-5000 % initial range 
     ya(2)-15*pi/180 % initial look angle 
     ya(3)-15*pi/180 % initial path angle 
     yb(1) % final range 
     yb(2) % final look angle 
     yb(3)+pi/2 % final path angle 
    -V*ya(4)*cos(ya(2))+V*ya(5)*sin(ya(2))/ya(1)- 

     0.5*(ya(5)+ya(6))^2]; 
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The states and their derivatives can be extracted from the solution as follows: 

 
tf=sol.parameters; % final time 

h=0.001; % time step 

% states and their derivatives 
[sxint,spxint]=deval(sol,(0:h:tf)/tf); 

spxint= spxint/tf; 
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APPENDIX B 

 

 

B.LINEAR OPTIMAL CONTROL SOLUTION 

 

 

 

Following the guidelines outlined in [52], the Hamiltonian that follows from Eq. 

(2.50), Eq. (2.53) and Eq. (2.54) is 

 

2

1 2 2

1

2
H x u u      (B.1) 

 

where   denotes the costates. The necessary condition for optimal control 

associated with the costates dictates: d dt H x    . Then, the corresponding 

differential equations are 

 

1

1

0
H

x



  


  (B.2) 

2 1

2

H

x
 


   


  (B.3) 

 

whose solutions yield 

 

1 1c    (B.4) 

2 1 2c t c      (B.5) 

 

where c  denote the constants of integration. Next, using the necessary condition for 

optimal control associated with the control, i.e. 0H u   , the following can be 

written: 
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2 0
H

u
u




  


  (B.6) 

 

as a result of which the optimal control turns out to be  

 

2u     (B.7) 

 

Using the dynamic constraints of Eq. (2.53), the differential equations associated 

with the second state can now be written as 

 

2 2x     (B.8) 

 

Utilizing Eq. (B.5), this turns into 

 

2 1 2x c t c    (B.9) 

 

which is also the optimal control as per Eq. (B.7): 

 

1 2u c t c    (B.10) 

 

The integrated form of Eq. (B.9) is 

 

2

2 1 2 3

1

2
x c t c t c     (B.11) 

 

Based on Eq. (2.53), the differential equation associated with the first state is 

 

2

1 1 2 3

1

2
x c t c t c     (B.12) 
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so that 

 

3 2

1 1 2 3 4

1 1

6 2
x c t c t c t c      (B.13) 

 

Having obtained the representations of the states as functions of time, the boundary 

conditions stated in Eq. (2.51) and Eq. (2.52) can now be applied: 

 

 1 1,i 40x x c    (B.14) 

 2 2,i 30x x c    (B.15) 

  3 2

1 f 1,f 1 f 2 f 3 f 4

1 1

6 2
x t x c t c t c t c       (B.16) 

  2

2 f 2,f 1 f 2 f 3

1

2
x t x c t c t c      (B.17) 

 

Accordingly, the first two integration constants can be shown to assume the 

following forms: 

 

   1 1,i 1,f 2,i 2,f3 2

f f

12 6
c x x x x

t t
      (B.18) 

   2 1,i 1,f 2,i 2,f2

f f

6 2
2c x x x x

t t
      (B.19) 

 

Finally, following from Eq. (B.10), the solution for the open-loop optimal control 

can be obtained as in Eq. (2.55). 
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APPENDIX C 

 

 

C.ANALYTICAL BEHAVIOR OF PURE PROPORTIONAL 

NAVIGATION 

 

 

 

It is known that the PPN guidance law in Eq. (2.9) leads to the following analytical 

solutions [43]: 

 

1

1

i

i

sin sin

N

r

r
 




   

   
   

  (C.1) 

2

i

i i

sin
N

Nv r

r r






 
   

 
  (C.2) 

 

These functions are plotted in Figure C.1 and Figure C.2, where the curves start from 

their respective gain values. These figures are as they appear in [43]. 
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Figure C.1 Normalized look angle as a function of nondimesional range 

 

 

 

 

Figure C.2 Normalized acceleration as a function of nondimesional range 
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APPENDIX D 

 

 

D.ACTUAL FLIGHT PERFORMANCE OF THE RANGE 

OBSERVER 

 

 

 

Figure D.1 and Figure D.2, which appear here by courtesy of Roketsan, display two 

instances of the actual flight performance of the range observer detailed in Chapter 5. 

The smooth lines are those obtained by offline manipulation of the INS data and the 

others are the online products of the range observer. In each of the flights, the 

configuration of the vehicle is the same. The only difference that matters is the 

trajectories followed. The range histories in Figure D.1 belong to the trajectory that 

has low observability. As seen, the estimation performance is not satisfactory. On the 

other hand, the range histories of the trajectory with high observability are presented 

in Figure D.2, where the estimation is seen to be successful. 

 

 



 

170 

 

 

 

 

Figure D.1 Range estimation with low observability 

 

 

 

 

Figure D.2 Range estimation with high observability 
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APPENDIX E 

 

 

E.PLANAR NATURE OF PURE PROPORTIONAL 

NAVIGATION 

 

 

Claim: PPN will result in a planar engagement if, initially, the velocity vector of the 

target is contained in the plane formed by the LOS and the velocity vector of the 

pursuer. When the target is stationary, the engagement geometry is always planar. 

 

Proof I: A 2-D PPN engagement is confined in, say, xy plane. If the viewing 

reference frame is changed to another one in the general 3-D space, the pursuer will 

still move in the same plane, except that the plane is not called xy plane anymore. 

 

Proof II: PPN guidance law in vector form is expressed as [1] 

 

a N v    (E.1) 

 

The angular velocity vector can be written as [1] 

 

2

r r

r



   (E.2) 

 

Noting that Tr p p  , the preceding equation becomes 

 

 
2

Tr v v

r

 
   (E.3) 

 

So, the PPN law becomes 
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  2 T

N
a r v v v

r
      (E.4) 

 

If r , v   and 
Tv  are contained in the same plane, the cross product  Tr v v   will 

result in a vector that is perpendicular to this plane. Application of the second cross 

product   Tr v v v    will bring the acceleration vector back to this plane. This 

result also covers the case with 0Tv  . 
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