
MODELING VARIABILITY IN COMPONENT ORIENTED SOFTWARE
ENGINEERING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUHAMMED ÇAĞRI KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2015

Approval of the thesis:

MODELING VARIABILITY IN COMPONENT ORIENTED SOFTWARE
ENGINEERING

submitted by MUHAMMED ÇAĞRI KAYA in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Ali H. Doğru
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Prof. Dr. Ali H. Doğru
Computer Engineering Department, METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering Department, METU

Dr. Selma Süloğlu
Sosoft Information Technologies

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MUHAMMED ÇAĞRI KAYA

Signature :

iv

ABSTRACT

MODELING VARIABILITY IN COMPONENT ORIENTED SOFTWARE
ENGINEERING

Kaya, Muhammed Çağrı

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Ali H. Doğru

February 2015, 98 pages

A key factor for achieving flexible component oriented applications is to make the
components possbile to change and adapt instead of creating and using them from
scratch. In order to fulfil various needs in time with little effort, a new metamodel is
proposed that establishes a variability specification and system configuration environ-
ment for Component Oriented Software Engineering Modeling Language (COSEML).
Variability is integrated to COSEML that can be viewed as an Architectural Descrip-
tion Language emphasizing the decomposition view. We refer to this extended version
of COSEML as XCOSEML. The textual version of this domain specific language
is presented and demonstrated with examples. Moreover, an approach to formally
verify component compositions incorporating variability is proposed which eases
variability-intensive component oriented system development by reducing complex-
ity of verification. A step by step model transformation approach from XCOSEML
to Featured Transition System (FTS) is used which helps generation of FTS mod-
els, namely required feature model of the variable component composition and its
fPromela specification.

Keywords: Component Oriented Software Engineering, Domain Specific Language,
Metamodel, Model Checking, Variability Modeling, Verification

v

ÖZ

BİLEŞEN YÖNELİMLİ YAZILIM MÜHENDİSLİĞİNDE DEĞİŞKENLİK
YÖNETİMİ

Kaya, Muhammed Çağrı

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ali H. Doğru

Şubat 2015 , 98 sayfa

Bileşen yönelimli uygulamalarda esneklik, bileşenleri değişikliklere olanak verir şe-
kilde tasarlayarak ve sistemler için yeni bileşenler geliştirme yerine var olanları sis-
teme adapte ederek sağlanabilir. Çeşitli ihtiyaçları zamanında ve az çabayla karşıla-
yabilmek için Bileşen Yönelimli Yazılım Mühendisliği Modelleme Dili (COSEML)
için değişkenlik tanımlaması ve sistem konfigürasyon ortamı sunan bir metamodel
tasarlanmıştır. Değişkenlik, ayrışma yaklaşımını vurgulayan Mimari Betimleme Dili
(ADL) olarak görülebilecek COSEML’ye entegre edilmiştir. COSEML’nin bu geniş-
letilmiş versiyonu XCOSEML olarak adlandırılmıştır. Bu yeni alana özgü dilin metin
tabanlı versiyonu örneklerle birlikte anlatılmıştır. Ayrıca, bileşen birleşimlerini değiş-
kenliği de dahil ederek biçimsel olarak inceleyen bir yaklaşım önerilmiştir. Bu yak-
laşım doğrulama karmaşıklığını azaltarak değişken yoğunluklu bileşen yönelimli sis-
tem geliştirmeyi kolaylaştırmaktadır. XCOSMEL’den Özellikli Geçiş Sistemleri’ne
(FTS) model dönüşümleri adım adım anlatılmıştır. Böylece FTS ile doğrulama yap-
mak için gerekli değişken bileşen birleşiminin özellik modeline ve davranış dili fPro-
mela’ya dönüşümler gerçekleştirilmiştir.

Anahtar Kelimeler: Alana Özgü Dil, Bileşen Yönelimli Yazılım Mühendisliği, Değiş-
kenlik Modelleme, Doğrulama, Metamodel, Model Kontrolü

vi

To my precious daughter Dîdâr Duru.

vii

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor Prof. Ali H. Doğru for his constant support,
friendship, and guidance. He is a real gentleman and beyond being my advisor, he is
a role model both for my academic and family life.

I would like to thank Prof. Ahmet Coşar and Prof. Göktürk Üçoluk who were always
interested in my progress. I thank Assoc. Prof. Halit Oğuztüzün and Assoc. Prof.
Ertan Onur for their helpful and inspiring comments on my work. I am thankful to
Asst. Prof. Onur Pekcan for his encouragement and attention since my education has
started at METU.

I thank my dear friend Alperen Eroğlu for all of his technical and moral support
during this work. I would like to thank my friend Mahdi Saeedi Nikoo who is one
of the kindest and most talented people I have ever met. I also thank my colleagues
Mehmet Akif Akkuş, Özcan Dülger, Hüsnü Yıldız, Serdar Çiftçi, Hilal Kılıç, Murat
Gençtav, Mine Yoldaş, Gökhan Özsarı, and Alperen Dalkıran. Furthermore, I am
thankful to our departmental staff Zafer Şanal, Mehmet Demirdöğen, Sultan Arslan,
and Muteber Gökırmak for their friendship and help.

My special thanks go to Dr. Selma Süloğlu who supported me a lot in all phases of
my work. When I needed help, she was always there. Sometimes, she postponed her
own business to help me. Thank you Selma.

I am grateful to my dear family members; my mother Müzeyyen Kaya, my father
Mustafa Kaya, and my sisters Pınar Büyük and Nilüfer Çiçek. Thank you for taking
care of me for years and your constant moral support.

Lastly, I would like to thank my dear wife Esra Kaya for her patience during the long
working period and her endless support. Thanks Esra.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Approach . 2

1.4 Contribution . 3

1.5 Outline of Thesis . 3

2 BACKGROUND . 5

2.1 Component Oriented Software Engineering and COSEML . . 5

ix

2.1.1 A brief history for component technology 5

2.1.2 What is a component? 6

2.1.3 Component Based Software Engineering 7

2.1.4 Component Oriented Software Engineering 8

2.1.5 COSEML . 9

2.2 Variability in Software Systems 10

2.2.1 Why variability is important for software systems . 10

2.2.2 Variability Modeling 11

2.3 Variability Management in Component Based Software En-
gineering . 13

2.3.1 The Need for Variability with Components 13

2.3.2 A Review of Existing Approaches 14

2.3.3 Comparison of Existing Approaches and Models . 16

2.4 Verification of Software Systems 16

2.4.1 Verification of Component Based Systems 19

2.5 Discussion . 20

3 VARIABILITY IN COSE: XCOSEML 21

3.1 Case Study: Smart Home 21

3.2 Metamodel of XCOSEML 23

3.3 XCOSEML Language . 24

3.3.1 Variation Specification Constructs 26

x

3.3.2 Static View: Package, Component, Interface Con-
structs . 32

3.3.3 Dynamic View: Composition Specification Con-
structs . 35

3.3.3.1 Message Related Constructs 38

3.3.3.2 Interaction Related Constructs 39

3.3.4 Variability to COSEML Mapping Constructs . . . 41

3.4 Tool Support . 43

4 VERIFICATION OF XCOSEML MODELS 51

4.1 Why we choose FTS approach for model checking? 51

4.2 Transformation of Configuration Interfaces in XCOSEML to
TVL Models . 52

4.3 Transformation of Composition Specifications of XCOSEML
to fPromela . 53

4.4 Verification of Smart Home Case Study 57

5 CONCLUSION AND FUTURE WORK 67

5.1 Conclusion . 67

5.2 Future Work . 67

REFERENCES . 69

APPENDICES

A XCOSEML GRAMMAR IN XTEXT 75

B TRANSFORMATION FROM CONFIGURATION INTERFACE TO
TVL . 85

xi

B.1 Configuration Interface File: smarthome_conf 85

B.2 TVL equivalent of smarthome_conf 86

C TRANSFORMATION FROM COMPOSITION SPECIFICATION TO
FPROMELA . 89

C.1 Composition Specification File: smarthome_comp 89

C.2 fPromela equivalent of smarthome_comp 92

D CONFIGURED COMPOSITION SPECIFICATION 97

xii

LIST OF TABLES

TABLES

Table 2.1 Comparison of existing approaches. 17

Table 3.1 Examples for Internal and External Variation Points 29

Table 3.2 A Configuration Variation Point from Smart Home Case Study . . . 31

Table 3.3 An excerpt from safety_conf. 46

Table 3.4 An excerpt from configured smarthome_comp. 48

Table 3.5 An excerpt from safety_int. 49

Table 4.1 An excerpt from smarthome_conf configuration interface. 59

Table 4.2 An excerpt from TVL equivalent of smarthome_conf. 61

Table 4.3 An excerpt from smarthome_comp compostion specification. 63

Table 4.4 An excerpt from TVL equivalent of smarthome_comp. 64

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 A general process model for component based software synthesis . 9

Figure 2.2 Graphical symbols in COSEML 10

Figure 2.3 Variability change with delayed and early variability 11

Figure 3.1 Smart Home system in COSEML 22

Figure 3.2 Overview of the metamodel . 23

Figure 3.3 XCOSEML metamodel . 25

Figure 3.4 Variation Point Specification Constructs of XCOSEML metamodel 26

Figure 3.5 XCOSEML VarPoint Representation in Xtext 26

Figure 3.6 XCOSEML InternalVarPoint Representation in Xtext 27

Figure 3.7 XCOSEML ExternalVarPoint Representation in Xtext 27

Figure 3.8 XCOSEML VariantSet Representation in Xtext 27

Figure 3.9 XCOSEML Variant Representation in Xtext 28

Figure 3.10 XCOSEML Tag Representation in Xtext 28

Figure 3.11 XCOSEML Binding Representation in Xtext 28

Figure 3.12 XCOSEML ConfigurationVarPoint Representation in Xtext 29

Figure 3.13 XCOSEML ConfVarWithChoices Representation in Xtext 30

Figure 3.14 XCOSEML Choice Representation in Xtext 30

Figure 3.15 Constraint Specification Constructs of XCOSEML Metamodel . . . 31

Figure 3.16 XCOSEML Constraint Representation in Xtext 31

Figure 3.17 XCOSEML LogicalConstraint Representation in Xtext 32

xiv

Figure 3.18 XCOSEML NumericalConstraint Representation in Xtext 32

Figure 3.19 Metamodel of XCOSEML Static Constructs 33

Figure 3.20 XCOSEML Package Representation in Xtext 33

Figure 3.21 XCOSEML QualifiedName and Construct Representations in Xtext 34

Figure 3.22 XCOSEML Component Representation in Xtext 34

Figure 3.23 XCOSEML Interface Representation in Xtext 34

Figure 3.24 XCOSEML Method Representation in Xtext 35

Figure 3.25 XCOSEML ContextParameter Representation in Xtext 35

Figure 3.26 Composition Specification Constructs of XCOSEML Metamodel . 36

Figure 3.27 XCOSEML CompositionSpecification Representation in Xtext . . 36

Figure 3.28 XCOSEML VConfModelImport Representation in Xtext 37

Figure 3.29 XCOSEML ComponentImport Representation in Xtext 37

Figure 3.30 XCOSEML ValueReturned Representation in Xtext 37

Figure 3.31 XCOSEML Composition Representation in Xtext 37

Figure 3.32 XCOSEML Message Representation in Xtext 38

Figure 3.33 XCOSEML IntCondition Representation in Xtext 38

Figure 3.34 XCOSEML Source Representation in Xtext 39

Figure 3.35 XCOSEML Destination Representation in Xtext 39

Figure 3.36 XCOSEML MethodIn and MethodOut Representations in Xtext . . 39

Figure 3.37 XCOSEML Interaction Representation in Xtext 40

Figure 3.38 XCOSEML RepeatInt Representation in Xtext 40

Figure 3.39 XCOSEML ParalelInt Representation in Xtext 40

Figure 3.40 This is a Figure . 41

Figure 3.41 Variability to XCOSEML Mapping Constructs Metamodel 41

Figure 3.42 XCOSEML VarConfigurationModel Representation in Xtext 42

Figure 3.43 XCOSEML ParameterSetting Representation in Xtext 42

xv

Figure 3.44 XCOSEML VMMapping Representation in Xtext 43

Figure 3.45 XCOSEML VariabilityAttachment Representation in Xtext 43

Figure 3.46 Visual Description of XCOSEML Tool 44

Figure 3.47 Configured Smart Home Model 50

xvi

LIST OF ABBREVIATIONS

ADL Architectural Description Language

CBD Component Based Development

CBSE Component Based Software Engineering

CDL Component Description Language

CORBA Common Object Request Broker Architecture

COSE Component Oriented Software Engineering

COSEML Component Based Software Engineering Modeling Language

CRG Component Relational Graph

DSL Domain Specific Language

EJB Enterprise Java Beans

FTS Featured Transition System

SaaS Software as a Service

SPL Software Product Line

SPLE Software Product Line Engineering

SQA Software Quality Assurance

VP Variation Point

VPM Variation Point Model

xvii

xviii

CHAPTER 1

INTRODUCTION

1.1 Background

Reuse is gaining more importance in software engineering as a development paradigm.

Component technology offers reuse rather than building the system from scratch.

Components can be independently deployable. Furthermore, they can be integrated

with other components to yield a larger system.

Component Based Development (CBD) or Component Based Software Engineering

(CBSE) is an approach that suggests reuse of pre-built components in software devel-

opment. Therefore, software systems can be built faster and the complexity and costs

will be reduced. Component Oriented Software Engineering (COSE) approach aims

to increase reuse and reduce complexity by applying component-related techniques

from a more abstract point of view.

To increase reuse, common and variable parts of a software system should be des-

ignated correctly. Variability is the change in software systems or software assets to

adapt a different context. Variation Points (VPs) are where the change occurs. There

is a set of Variants for each VP. A new system is configured by binding variation

points with specific variants.

Software Quality Assurance (SQA) is another important concept for software sys-

tems. It is a general concept based on ensuring the quality of software in all devel-

opment phases. Verification is a sub-concept of quality assurance. We verify systems

in order to check for their correct implementations of the user expectations that were

1

initially defined.

1.2 Problem Statement

The main motivation is to respond to user demands fast and easily in component

oriented systems by increasing software reuse and check the final product whether it

is consistent and satisfies the user expectations. In component based systems some

approaches propose some techniques to solve this issue, however they do not offer

sufficient reuse. COSE suggests a purely component oriented approach instead of

CBSE. In CBSE generally other techniques of software development (e.g. object-

oriented techniques) is used by considering components as development assets. By

doing so, a developer cannot use all benefits of component technologies [22]. Instead,

all stages of development should be component-aware.

Variability is defined at different levels of development and provides diversity of prod-

ucts by binding different variants to variation points. The more number of available

variants increases, the more systems can be built. However, all of these systems are

not valid or serve the purpose of user. Therefore, a verification approach should be

defined in order to make sure that the system is consistent or provides initial require-

ments of the user.

1.3 Approach

To fill the gap in using advantages of component systems, we need a variability-

centered approach with an explicit representation of variability in COSE. This can be

done by specifying variability as a separate model which is then mapped to compo-

nents, their properties and relations. Our approach enables variability specification in

component, composition and interface views. Connector variability is left as a future

work. Our hierarchical approach in variability binding is suitable for COSE’s top

down approach. Moreover, for verification purposes, a model checking technique is

applied to variable models in order to check the consistency of models.

2

1.4 Contribution

The contribution of this thesis is twofold: Firstly, a metamodel for variable compo-

nent compositions and its realization XCOSEML are introduced. Secondly, a tool

is introduced to parse XCOSEML files and aid configuration of XCOSEML models.

Also the tool helps the developer to provide a test environment for model checking

purposes. Language transformations for model checking are done by the tool.

1.5 Outline of Thesis

Chapter 2 introduces some background information about component technologies,

CBSE, COSE and COSE Modeling Language (COSEML). Then, some general infor-

mation about variability in software systems and variability modeling is given. After

stating the importance of variability in component systems, variability in CBSE is

given with a review of existing approaches. A comparison of reviewed approaches

is also given. Then some background information about verification of software sys-

tems is explained based on Featured Transition System (FTS). Finally, the motivation

of this thesis is discussed based on the inferences from the literature review.

In Chapter 3 XCOSEML is explained in detail. Smart Home case study is given at

the beginning of the chapter. Metamodel and the grammar constructs of the language

are given. Then, the tool for XCOSEML is introduced.

Chapter 4 contains the information for verification of XCOSEML models. The rea-

son for choosing FTS for model checking purposes is explained. Then the rules for

language transformation are given both for TVL and for fPromela files of the FTS

approach. Finally, the verification approach for transformed models is explained.

3

4

CHAPTER 2

BACKGROUND

In this chapter some background information is given for component based and ori-

ented techniques. Also, the importance of variability for software systems is dis-

cussed and variability in component based systems is explained. At the end of the

chapter, the need for variable component oriented systems is stated.

2.1 Component Oriented Software Engineering and COSEML

2.1.1 A brief history for component technology

Component technology is in general, an enabling technology for reuse which is a very

important concept in software development. Historically, subroutines were specific

parts of the programs whose task was determined in the system requirements. Then,

programmers began to reuse these subroutines in implementation of other projects in

order to decrease the programming effort [20]. Therefore, the usage of subroutines

can be considered as one of the first instances of software reuse concept. Soon after

the beginning of wide programming effort, function libraries were introduced as an

effective way of reuse.

The following methodology in the history of component technology was structure-

oriented development. An application system was divided into modules considering

the user expectations. These modules were developed separately, and then they were

assembled to yield the application system. When this was accepted, many function

libraries were developed as reusable software packages. These packages can be called

5

as the first generation of software components. However, because of the lack of a

methodology, cost-effective software could not been produced [30].

In the 1980s, object oriented technology emerged and reuse became a wider concept.

The reuse technology evolved into object oriented class libraries. In 1989, Common

Object Request Broker Architecture (CORBA) was introduced as a common reusable

middleware [59]. The aim was to develop a middleware for communication of dis-

tributed objects of application software without considering location, programming

language, operating system, communication protocols and hardware platforms.

The next stage of component technology’s history was reusable application frame-

work and platforms. Enterprise Java Beans (EJB) was introduced in 1999 [11]. The

motivation behind this technology was to provide application developers with a robust

and distributed environment. Meanwhile, COM+ [27] was introduced by Microsoft

to support the development of large-scale distributed applications on the windows

platform.

Several new methods on component based development have been published [14,

24, 35]. Their aim is to provide engineers with well-defined processes, analysis and

specification models, and engineering guidelines.

2.1.2 What is a component?

A component is an implemented software building block that can be composed with

other components to yield a software system. Components conform to a standard

component model. They can be independently deployed and composed based on a

composition standard.

Components are usually pre-written. A component should be independently deploy-

able. In other words, we should be able to compose and deploy a component without

having to use other specific components. Each component should have an interface

that shows provided services by the component and required services that the com-

ponent needs to operate correctly. This does not lead to a paradox with the indepen-

dency rule, because the requires interface does not define how the needed services

are provided. Also, components should be well-documented. With the help of this

6

documentation, potential users can decide whether the component is convenient for

their needs [52].

2.1.3 Component Based Software Engineering

The emergence of Component Based Software Engineering (CBSE) has taken place

in the late 1990s. The main idea is reusing the software components. CBSE sug-

gests development of software systems from pre-built components rather than build-

ing from scratch. Object-oriented development did not lead to extensive reuse, be-

cause single object classes were too specific and detailed. Those who wanted to use

these classes had to have detailed knowledge about them, even some knowledge about

the source code. It was understood that selling or distributing objects as individual

reusable components was practically impossible [52].

Components can be classified as in a higher-level abstraction with respect to objects.

They have interfaces that describe behavior. Generally, they are larger than objects,

but their implementation details are hidden. CBSE is developing software systems

by defining, implementing and integrating loosely coupled and independent compo-

nents. Software systems become larger and complex and the importance of CBSE

increases accordingly. To develop dependable software systems fast and deal with

the complexity, developers should attach importance to reuse.

CBSE has some fundamental characteristics. For example, components are specified

by their interfaces. The interfaces must be clearly separate from the implementation.

In this way, implementation of one component can be changed without concerning

other parts of the system. Then, components have standards to ease their integration.

A component model encompasses these standards. Basically, they define the spec-

ifications of component interfaces and how components communicate. With these

standards, the operation of components become independent of their programming

languages and components written in different languages can be integrated into the

same system. As another characteristic, a component based system should have a

middleware which provides software support for the integration of components. This

middleware copes with low-level issues and lets designers to focus on application-

related problems. Also, should have a development process that allows requirements

7

to evolve, depending on the functionality of available components.

2.1.4 Component Oriented Software Engineering

Component Oriented Software Engineering (COSE) was proposed in [22]. This ap-

proach suggests a purely component oriented software development instead of com-

ponent based approaches. Generally, CBSE approaches are based on object-oriented

development but they can also represent components. By using only object-oriented

approaches, developers cannot take advantage of all opportunities that component

technology offers. All stages of the development are required to be component-aware.

The primary concern of the developer should be the composition of the components

instead of representation or construction of a component. In component oriented sys-

tem construction, components are considered as building blocks. Component based

approaches are designed to develop systems through programming language state-

ments. The main difference between the two approaches is as follows: component

based approaches focus on development, whereas, the focus of component oriented

approaches is integration [22].

Modeling activity in COSE starts with a structural decomposition to arrive at existing

components. The representation of the system is both in logical and physical lev-

els hierarchically. Figure 2.1 shows a general process model for COSE. The system

specification is formed through decomposition and definition of the introduced mod-

ules. This results in a connected set of abstract components. Then, components that

satisfy the system specifications are located or developed. Finally, these components

are integrated and desired software system is composed.

8

Figure 2.1: A general process model for component based software synthesis [22].

2.1.5 COSEML

Component Oriented Software Engineering Modeling Language (COSEML) [23] is

presented to be used within COSE as a graphical modeling language. A modeling

language must let the designer to visualize a well suited and graphical decomposition

of the system. COSEML has the graphical tools to represent a system as components

and their connections. This approach conforms to the idea of developing software

by integration rather than code writing. The language provides designers with prim-

itives to represent logical entities and implementation units. Usually, a development

process begins with the abstract definitions of system parts. In abstraction level, sub-

systems are defined first. Then, lower-level components are specified in physical level

as the next step. These components implement the responsibilities encapsulated in the

previously defined abstract modules. A "represents" link connects an abstract mod-

ule to its physical implementation. A "connector" symbolizes the connections both

among the abstract entities and among the physical entities. Abstract entities of the

COSEML are package, data, function, control and connector. The main unit of the

physical level is component. Components that only have one interface can also be

represented with their interfaces by a special symbol. Moreover, if there are more

than one interface that a component provides, then interfaces can be represented in

the physical level with their own symbols. Figure 2.2 shows the graphical symbols

in COSEML. Therefore, it can be inferred that, a COSEML model can represent a

complete model by reconciling both logical and physical components and structural

9

and operational connections.

Figure 2.2: Graphical symbols in COSEML [22].

2.2 Variability in Software Systems

2.2.1 Why variability is important for software systems

The notion of variability is gaining a remarkable importance in today’s software engi-

neering. In the early days of software technology, development of a system was begun

from scratch and systems were relatively static. Any change in a system required edit-

ing the source code. Currently, this approach is no longer acceptable. Instead, newer

approaches use common parts as much as possible. Design decisions to customize

the system are delayed to later stages [58].

Software Product Lines (SPLs), for instance, are based on delayed design decision

principle. At the beginning, the final product is not determined. Instead, software ar-

chitecture is defined and software assets are implemented to match the requirements

of a software product family. Run-time adaptive systems are also utilizing the de-

10

layed design decision concept. They either select the new behavior from embedded

alternatives or accept new modules while system is running [44].

Figure 2.3: Variability change with delayed and early variability (adapted from [58]).

Figure 2.3 describes the constraint of the variability during the development. Initially,

system has no constraints, so infinitely many systems can be built. While developers

proceed, the number of possible systems is reduced and finally, there is only one sys-

tem at run-time. At each step, developers make some design decisions and each de-

cision decreases the number of potential systems. In SPLs, delayed design decisions

would be beneficial and number of products that uses the same product line assets can

be increased. These delayed design decisions can be considered as variability points.

2.2.2 Variability Modeling

In software engineering, variability modeling is used to depict variants of a software

system in an efficient and formal way. Generally, variability modeling has a close

11

relationship with SPLs. SPLs manage variability in a systematic way. Self-adaptive

systems, open platforms, component-based systems and Software as a Service (SaaS)

applications are also designed taking variability into account [51]. When systems

consider variability as a principle, reusability of software artifacts and productivity

will increase. Although variability brings some advantages, it increases complexity

of the system that must be handled with systematic approaches [8, 13, 55]. For all

levels of the development, from user expectations to source code, several variabil-

ity modeling approaches are introduced. Although aims of these approaches are the

same, they differ in modeling characteristics, e.g. model choices, abstractions, mod-

eling of quality models, tooling, guidance, and focusing on development activities. In

[48], a classification for variability modeling techniques is provided.

Variability is shown in all steps of product family development. Therefore, variabil-

ity modeling techniques differ in representing the variability in distinct phases. For

example, when focusing on the requirement variability, feature models can be used to

define commonality and variability in product lines.

In SPL development, variability points are introduced in different levels of abstraction

in order to model variability. These levels are architecture description, design docu-

mentation, source code, compiled code, linked code and running code. A variability

point can be in one of these three states: implicit, designed and bound [58]. When a

variability point is shown at a particular abstraction level, this point is also presented

at higher levels of abstraction. This is implicit variability. When the design of a vari-

ability point is decided in the architectural design phase, it becomes designed. When

a variability point binds to a particular variant, it becomes bound. Binding can occur

at product architecture, derivation time, compilation time, linking time, start-up time

and runtime. Moreover, if new variants can be added to a variability point, it is called

open. If new variants cannot be added to a variability point, it is called closed.

12

2.3 Variability Management in Component Based Software Engineering

2.3.1 The Need for Variability with Components

Variability in component systems differs from other concepts of variability in differ-

ent levels. In [40], authors compare component based variability with conventional

variability. Although it is not explicitly defined in conventional software develop-

ment, variability mechanisms are used in terms of variables, parameters, bindings,

polymorphism, and configuration. For example, in conventional variability, a vari-

able or function parameter can hold any value of the specified data type. In the case

of methods, subclasses can override the method of the superclass. Base method can

be substituted with the other version in the subclass, so variability can be defined for

methods. For objects the case is similar to the methods. An object can be substituted

with an instance of its subclass, so objects have variability.

Variability in component based systems is different from conventional variability.

Component based development has a wider range of reusability. In conventional

programming, classes and libraries are reused mostly in an application. However,

components are developed for inter-organizational reuse. Reuse units of conventional

variability are small-grained; however, components are larger reuse units. In conven-

tional variability, variants are assigned at runtime. Nevertheless, in component based

development, variants can be set at deployment time that is called "customization".

In conventional variability variants can be assigned to a predefined data type (or a

compatible data type), so the range of the value of a variant is limited. However, in

component based development, completely new and unknown variants can be added,

so range of a variant is not limited. Finally, different actors can set the variants in

conventional variability. However, in component based development, a developer or

a consumer who wants to customize the product sets the variants.

Some approaches use component based techniques integrated to SPLs. In a recent

approach Guendouz et al. mention some benefits of component based specification

of SPLs [32]. Because both approaches encourage reuse, using them together would

be beneficial while developing software. Using component based techniques that pro-

vide efficient technologies of development, developers can handle the lack of maturity

13

in SPL engineering. Moreover, in [57], van der Storm claims that to get benefit from

product line approach in terms of reuse, variability must be defined in a component-

level concept.

2.3.2 A Review of Existing Approaches

In [43], a new component based variability modeling approach, namely Component

Relational Graph (CRG), is proposed. Although the main idea is to manage vari-

ability in component models, the configuration logic is not defined explicitly and the

approach addresses only component variability.

In [47], authors define a multi-view variability model for business components. To

represent variability in functional, static and dynamic view, UML models are ex-

tended with stereotypes. Nevertheless, the approach has no mechanism to represent

complex nature of variability in composition.

Component Description Language (CDL) is introduced by van der Storm, T. [57]

as a new domain specific language for component-level variability. Variability in

component and composition is addressed and modeled with CDL.

A hierarchical variability modeling approach is introduced in [33]. They extend Mon-

tiArc Architectural Description Language (ADL) with variability related statements.

Variability of components are specified locally. Moreover, constraints and variant se-

lections can only be applied on the same or adjacent hierarchical levels. The hierarchi-

cal structure of the approach corresponds to component oriented systems. Nonethe-

less, it has no mechanism to manage variability in composition.

In another approach, Webber et al. introduces a variation point model (VPM) [60].

The approach considers only variability for component specification.

In [10], the proposed approach deals with runtime variability issues dynamically

adapting to the changing runtime context. OVM is used as the variability model.

Ravazian et al. [46] also use OVM. This approach specifies component, interface,

and connector variability using UML. Nonetheless, it doesn’t address composition

variability.

14

Kim et al. [40] proposes a variability model in detail which covers five different

variability types; variability in attribute, logic, workflow, persistency and interface.

Furthermore, three kinds of variability scope are mentioned, namely binary, selection

and open scope. Although the approach gives details about workflow variability, the

way how to model complex variability relations is not mentioned.

A component-based product line for workflow management systems is introduced in

[21]. They use Catalysis method with UML stereotype variability extensions. How-

ever, composition variability cannot be modeled with this approach.

Koalish proposes models and configures components and interfaces with explicit vari-

ability constructs in [5]. It resolves variability in compile time. However, the ap-

proach does not handle composition variability explicitly. Combining Koalish with

concepts from feature modeling, Kumbang [4] is introduced as a domain ontology

which is developed as a profile extending the UML metamodel.

Luca Gherardi, in his Ph.D. thesis [31], investigates new approaches for development

of component based robotic systems. The main concern is to develop reusable and

flexible software for robotics. To achive this goal, a software development process is

introduced that explicitly takes into account the variability.

Alhalabi et al. [2] propose a UML based approach that lets the system developers

to design large-scale systems easily from a high level of abstraction. The integration

of components are checked by constraints to ensure consistency of the system. The

approach provides a mechanism that is only for component variability.

In [1] authors investigate variability modeling in the video game domain. Their aim is

to construct a component based SPL architecture for multiplatform video games using

UML to represent product lines. As a drawback, there is no variability mechanism

proposed for interface, composition or connector views.

In a recent approach [32], authors combine component based techniques with product

line approaches. Their aim is to increase the level of reuse in software development.

They define variability for components and connectors.

15

2.3.3 Comparison of Existing Approaches and Models

Integration of large scale component oriented systems requires more complex han-

dling mechanisms which enable to specify, track, and bind variability and configure

the system as expected. Various systems have been introduced in order to address

variability management in component oriented systems. Table 2.1 contains a list of

existing approaches. Our criteria for the comparison of the approaches is as follows:

• Variability Modeling: Defines the model that the approach employs to model

variability.

• Variation Point and Variants (VP&V): This criterion defines whether the ap-

proach has support for variation point and variant specification explicitly. "Yes"

indicates that there is an explicit specification; otherwise "No" is stated. If the

approach can show variation points as external or internal, then "Ext-Int" is

added.

• Constraints: If the approach enables to define constraints, then this criterion will

be "Yes". Otherwise, "No" will appear in the corresponding cell.

• Variability In: Defines where the approach has support variability: Connector

(Conn), Component (Cmp), Interface (Int), and Composition (Comp).

• Tool Support: Indicates whether there are available tools for the approach.

2.4 Verification of Software Systems

Reliability is critical for software systems, especially for embedded software. Quality

assurance activity is very important when developing such systems. Quality assur-

ance comprises two aspects: validation and verification. The aim of validation is to

ensure that the developer is building (or built) the system depending on the initial

requirements. In other words, validation is to check that if the right system is built.

Verification is to make assumptions about the environment and to test whether the

system shows certain properties with these assumptions. In other words, to check

whether the system is built right [12].

16

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
of

ex
is

tin
g

ap
pr

oa
ch

es
.

A
pp

ro
ac

h
Va

ri
ab

ili
ty

M
od

el
in

g
V

P
&

V
C

on
st

ra
in

ts
Va

ri
ab

ili
ty

In
To

ol
Su

pp
or

t
de

So
uz

a
G

im
en

es
et

al
.[

21
]

U
M

L
ex

te
ns

io
n

Y
es

N
o

C
m

p
N

o
W

eb
be

r
et

al
.[

60
]

U
M

L
ex

te
ns

io
n

Y
es

Y
es

C
m

p,
C

om
p,

In
t

N
o

K
um

ba
ng

[4
]

Fe
at

ur
e

M
od

el
N

o
Y

es
C

m
p,

In
t

Y
es

K
im

et
al

.[
40

]
ne

w
V

M
Y

es
N

o
C

m
p,

C
om

p,
In

t
N

o
Sa

id
ie

ta
l.

[4
7]

U
M

L
ex

te
ns

io
n

Y
es

Y
es

C
m

p
N

o
R

az
av

ia
n

et
al

.[
46

]
O

V
M

Y
es

,E
xt

/I
nt

Y
es

C
m

p,
C

on
n,

In
t

N
o

B
en

co
m

o
et

al
.[

10
]

O
V

M
Y

es
,E

xt
/I

nt
Y

es
C

m
p,

In
t

N
o

Va
n

de
r

St
or

m
[5

7]
C

D
L

N
o

Y
es

C
om

p
Y

es
H

ab
er

et
al

.[
33

]
ne

w
V

M
Y

es
Y

es
C

m
p

N
o

İl
er

ie
ta

l.
[4

3]
ne

w
V

M
Y

es
Y

es
C

m
p

N
o

K
oa

lis
h

[5
]

ne
w

V
M

N
o

Y
es

C
m

p,
In

t
Y

es
L

uc
a

G
he

ra
rd

i[
31

]
Fe

at
ur

e
M

od
el

N
o

Y
es

C
m

p,
C

om
p

Y
es

A
lh

al
ab

ie
ta

l.
[2

]
U

M
L

ex
te

ns
io

n
N

o
Y

es
C

m
p

N
o

A
lb

as
sa

m
et

al
.[

1]
U

M
L

ex
te

ns
io

n
Y

es
Y

es
C

m
p

N
o

G
ue

nd
ou

z
et

al
.[

32
]

ne
w

V
M

Y
es

N
o

C
m

p,
C

on
n

N
o

17

We used model checking, that is one of the verification techniques, to test our models.

Model checking is mainly concerned with models and properties. Models describe

the behavior of a system. Properties are the system specifications that are checked

if the system satisfies them or not. The task of model checker is, when it is given a

model and a property, to determine whether or not the model satisfies the property.

The behavior of a system must be described for model checking. In the basic form,

a system’s behavior can be described with states. A state, for a system that contains

a single program, can be exemplified as a snapshot of the memory block allocated

to the program. All states of the system compose the state space. Model checking

algorithms make searches in a system’s state space. Therefore, the model checking

problem can be described as a decision problem that consists of determining whether

a transition system satisfies a property [15].

Variability lets the developers to customize their product and offer it to a wider mar-

ket. In the case of Software Product Line Engineering (SPLE), many software sys-

tems or products are produced to benefit from common parts of these systems as

much as possible. The differences among the products are called the variability. This

kind of systems in which variability has a great importance is variability-intensive

systems. Building variability-intensive systems has many advantages, such as pro-

ductivity gains, shorter times to market and wider market coverage [19, 45].

In SPLE differences among products are expressed in terms of features. Model check-

ing of SPLs gets harder when the number features increases. Featured Transition

Systems (FTSs) are extensions of transition systems. They are used as a formalism to

describe the behavior of all the products of an SPL. In FTSs, transitions are labeled

with features.

In [15], the algorithms for FTS model checking are introduced, such as semi-symbolic

fLTL model checking algorithms and fully symbolic fixed-point based algorithms for

fCTL model checking. SNIP is introduced by Classen et al. as a tool for model

checking for SPLs [17]. Classical tools are only capable of checking properties for

each product one by one. However, SNIP can check all products of the SPL in a

single step with its specifically designed algorithm. An SPL is specified on SNIP with

the combination of two specification languages; TVL and fPromela. TVL is used to

18

describe the variability in the SPL and fPromela is used to describe the behavior of

individual products. The authors claim that SNIP is one of the first tools equipped

with specification languages to formally express the variability and the behaviors of

the product of SPL together.

2.4.1 Verification of Component Based Systems

Reuse of components in software systems is increasing. However, it is possible

to confront some side-effects because of unique characteristics of the components.

Quality assurance and testing is crucial for this cases. In [30], authors investigate po-

tential strengths and weaknesses in component based methodologies and they focus

on testing for quality assurance purposes.

In a software system, components work in a black box nature and component users

cannot reach the source code. This causes some problem when testing the whole

system. Component developers test the components themselves, independent of the

application of the user. So, testing the component alone is not a solution to this

problem. In [34, 50, 61], authors refer to this problem and propose some techniques

as solutions.

In [62], a hybrid verification approach is proposed for verification of component based

systems that covers both model checking and traditional software testing. In another

approach [38], a tool supported technique is used for verification of component based

systems by model checking.

Above-mentioned approaches for verification or testing component systems do not

work on variability-intensive models. In [37], an approach is proposed for product

line model checking to support maintenance after the evolution of a product line. In

[56], the mCRL2 language is used for behavioural variability analysis of component

based product lines.

19

2.5 Discussion

In section 2.1.4 we explain the differences between COSE and CBSE and we claim

that we need COSE techniques to efficiently use all benefits of component technolo-

gies. To this end, we develop a component oriented variability-intensive architectural

language. Although there are a number of researches about component based tech-

nology, there is a significant leap in component oriented techniques.

Our modeling approach is different from many researches in the literature in terms

of a separate variability model. We then map the variability with the components

and other related assets. Moreover, our systematic approach defines the variability

for package, component, composition, and interface. Again, many approaches lack

an explicit variability definition for all these assets. However, in our approach, the

connector variability is missing. Even though our current metamodel provides an

infrastructure to support this kind of variability, no mechanism is provided for now.

We review some testing and verification approaches in section 2.4.1. However many

of these approaches do not take variability into account. Moreover, many compo-

nent based variability modeling approaches do not have verification tests. In a recent

systematic literature survey [29], existing research on variability in software systems

including component based systems is analyzed. In the assessment part of the work,

one of the results of the study indicates that existing approaches lack validation mech-

anisms. Therefore, verification of variable component systems are important.

20

CHAPTER 3

VARIABILITY IN COSE: XCOSEML

XCOSEML is an extension of Component Oriented Software Engineering Modeling

Language (COSEML). XCOSEML aims to incorporate variability with component

oriented development in a hierarchical way [39, 54].

In this chapter, a case study is introduced in XCOSEML. Then, a metamodel for

XCOSEML is introduced and XCOSEML language constructs are specified in detail.

Finally, tool support for XCOSEML is explained.

3.1 Case Study: Smart Home

Smart home system is used as a case study to illustrate the application of our verifica-

tion approach. Smart home system is a set of utilities provided to home residents for

their time, energy, and money savings and comfort that can be controlled remotely by

a smart phone or a program. These utilities communicate with the automated home

devices and sensors such as for lighting, heating, air conditioning, audio and video

consoles, cameras, and wearables. The system incorporates diverse home devices,

enables cross communication and provides a monitoring and management environ-

ment. For instance, the system can automatically steep coffee, prepare favorite play

lists, generate energy status report, check and report access history during the day and

unlock the doors when the home resident is close enough to the entrance.

With a variety of features, smart home system can include a set of sub-domains

each of which covers domain related functionalities, namely security, safety, telecare,

21

entertainment, energy management and hobby garden. Security deals with camera

surveillance, locking and unlocking doors and garage (if exists), notification mecha-

nism in case of emergency and authentication and authorization related functionali-

ties. Safety enables a management structure where home devices and lightning can be

turned on and off, devices are monitored, anomaly is detected, control and early noti-

fication of hazards are achievable. Telecare covers monitoring and alerting facilities

of home resident’s health status by an array of wearables (e.g. smart watches, wrist

bands, and smart clothes), fall detection, medicine reminding and preparation of ex-

ercise program with regard to her/his health status. Entertainment controls audio and

media devices, tracks home residents’ favorite play lists, establishes tele-conference

sessions with medical team (e.g. doctor, physician) for consultation or control pur-

poses. All facilities related with controlling, monitoring and reporting energy re-

sources (e.g. water, wind panels, electricity) are in the scope of energy management.

Hobby garden includes monitoring of needs and changes in soil and plants with re-

spect to temperature and humidity. These sub-domains and their functionalities vary

according to home resident’s needs and the size of the home (small, big and large).

For instance hobby garden related features can only exist if the home has a garden

itself. What’s more it is not a must that the smart home system includes all aforemen-

tioned subdomains in one place. Smart home system covering a part of functionalities

with a set of variability is represented in XCOSEML. Figure 3.1 shows the decompo-

sition of the Smart Home system in COSEML.

Figure 3.1: Smart Home system in COSEML.

22

3.2 Metamodel of XCOSEML

The metamodel is introduced to help modeling and integration of variability-intensive

component oriented systems. Our metamodel integrates COSEML and variability

specifications. Fundamentally, the metamodel enables to define system decompo-

sition in a top down manner along with package and component variability. An

overview of the metamodel is presented in Figure 3.2. It basically shows package

and component main blocks.

Figure 3.2: Overview of the metamodel.

In our hierarchical variability approach, the configuration rules of below levels can

be determined and managed only by preceding upper levels. A package deals with

variability of its member packages or components. At the same time, variability of

a package or component is managed by its upper level. Reducing complexity by

describing variability in a decentralized way is the main benefit of this approach.

Variability in a package involves and binds the variability of its member packages

and components. Moreover, a package’s variability can manage the configuration of

its member component interface by activating or deactivating of methods and setting

or unsetting of parameters. Thus, different packages can have different component

interfaces of the same component. This provides reusability for components and

interfaces. Moreover, components can change their interfaces based on their own

variability bindings.

23

In composition of a package, the way of how sub-packages or member components

interact with each other is introduced. Inline references of its variability are included

in order to determine the changeable parts of the composition. These references pro-

vide a way to model a set of possible required behavior to satisfy different composi-

tion needs.

The metamodel is described in Figure 3.3 which contains three main parts. The left-

most part depicts both dynamic and static views of COSEML. In static view, building

blocks of component oriented systems, i.e. packages (for logical level) and com-

ponents and their interfaces (for physical level), are shown. Dynamic view covers

composition of packages and components that contains a set of messages and in-

teractions. Variability specifications and their mappings to COSEML (the mid and

right-most parts) are adapted from [54]. Packages and components can define their

variation points both in external and internal views. Also, numerical or logical con-

straints can be defined for these variation points. Configuration variation points are

abstractions for internal and external variation points. They hide the details of low

level variability bindings.

Our metamodel provides variability for packages, components, interfaces and com-

positions. Connector is modeled as a set of messages that defines a connection among

methods in COSEML specification. Variability of connectors corresponds to message

variability in our model. Although, our metamodel lets the definition of message vari-

ability, no mechanism is provided for now and it is postponed as future work.

3.3 XCOSEML Language

XCOSEML is a new domain specific language that is an extension of COSEML. It

has been developed based on the metamodel given in Figure 3.3. The language is

developed using Xtext [9, 25, 28]. Xtext is integrated to Eclipse IDE and provides

a development environment for domain specific languages. There are five different

XCOSEML models: package, component, component interface, configuration inter-

face, and composition specification. The full content of XCOSEML grammar can be

found in Appendix A.

24

V
ar

ia
ti

o
n

 P
oi

nt
V

ar
ia

n
t

Se
t

C
on

fi
gu

ra
ti

o
n

V
ar

ia
ti

o
n

 P
oi

nt

Ex
te

rn
al

V

ar
ia

ti
o

n
 P

oi
nt

In
te

rn
a

l
V

ar
ia

ti
o

n
 P

oi
nt

C
ho

ic
es

re
fe

rs
 t

o

V
ar

ia
n

t

C
on

st
ra

in
t

N
um

er
ic

al
Lo

gi
ca

l

co
n

st
ra

in
s

V
ar

ia
bi

lit
y

Sp
ec

if
ic

at
io

n

V
ar

ia
b

ili
ty

C

on
fi

gu
ra

ti
o

n
M

o
de

l

V
ar

ia
b

ili
ty

M

ap
pi

ng

V
ar

ia
b

ili
ty

A

tt
ac

h
m

en
t

re
fe

rs
 t

o

re
fe

rs
 t

o

M
em

b
er

C

om
po

n
en

t

M
et

h
od

M
ap

p
in

g
be

tw
ee

n
 C

O
SE

M
L

an
d

V
ar

ia
bi

lit
y

Sp
ec

if
ic

at
io

n
s

C
on

fi
gu

ra
ti

o
n

V
ar

ia
n

ts
 w

it
h

C
ho

ic
es

co
n

st
ra

in
s

C
om

po
n

en
t

s
O

w
n

M
et

ho
d

Ta
g

P
ar

am
et

er

Se
tt

in
g

B
IN

D
IN

G

CO
SE

M
L

Sp
ec

if
ic

at
io

nP
ac

ka
ge

C
on

n
ec

to
r

C
om

p
o

ne
nt

R
ep

re
se

n
te

d
by

In
te

rf
ac

e

 In
te

ra
ct

io
n

M
es

sa
ge

P
ar

al
el

In
te

ra
ct

io
n

Se
q

ue
nc

e
In

te
ra

ct
io

n

R
ep

ea
t

In
te

ra
ct

io
n

M
et

h
od

M

es
sa

ge

M
et

h
od

M
et

h
od

 in

M
et

h
od

 o
ut

to

fr
o

m

P
ar

am
et

er

P
ro

pe
rt

y

Dynamic ViewStatic View

re
fe

rs
 t

o

C
on

te
xt

P

ar
am

et
er

V
al

ue
Re

tu
rn

ed

re
fe

rs
 t

o

se
t

va
lu

e

R
ef

e
rs

 t
o

in
lin

e

in
lin

e

re
fe

rs
 t

o
re

fe
rs

 t
o

Fi
gu

re
3.

3:
X

C
O

SE
M

L
m

et
am

od
el

.

25

3.3.1 Variation Specification Constructs

Variation specification constructs are elaborated with Xtext specification. XCOSEML

metamodel of variation point specification constructs are given in Figure 3.4.

Figure 3.4: Variation Point Specification Constructs of XCOSEML metamodel.

VarPoint: VarPoint refers to variation point that can be described as where differ-

ences among products occur. VarPoint is a high level abstraction of internal, external,

and configuration variation points. Xtext specification of VarPoint is given in Figure

3.5.

Figure 3.5: XCOSEML VarPoint Representation in Xtext.

26

InternalVarPoint: This type of variation points is invisible to outer context. It de-

scribes a variability with a set of variants (VariantSet) and specified binding time

(BINDING). They can be configured in configuration interfaces of packages or com-

ponents. Figure 3.6 shows InternalVarPoint in Xtext.

Figure 3.6: XCOSEML InternalVarPoint Representation in Xtext.

ExternalVarPoint: These variation points are visible to outer context. They can be

configured by other packages or components. They specify their variability with a

set of variants (VariantSet) and specified binding time (BINDING). Figure 3.7 shows

ExternalVarPoint in Xtext.

Figure 3.7: XCOSEML ExternalVarPoint Representation in Xtext.

VariantSet: Three group of variants can be defined that are mandatory, optional, and

alternative. For alternative variants, we can specify the number of variant selections

by defining minimum and maximum limits. Xtext grammar description of VariantSet

is in Figure 3.8.

Figure 3.8: XCOSEML VariantSet Representation in Xtext.

27

Variant: A variant is a determined instance of a variable property. Variants can

activate methods of functions and set parameters that are specified in component in-

terfaces. Figure 3.9 refers to the grammar description of Variant.

Figure 3.9: XCOSEML Variant Representation in Xtext.

Tag: A tag indicates where a variation point resides. It can reside in a composition,

a configuration interface, or a configuration variation point realization. Figure 3.10

shows the Xtext grammar of Tag.

Figure 3.10: XCOSEML Tag Representation in Xtext.

Binding: Binding indicates when a variation point binds to a variant. Figure 3.11

shows the options in Xtext environment.

Figure 3.11: XCOSEML Binding Representation in Xtext.

In table 3.1 examples of internal and external variation points are given. Examples

28

Table 3.1: Examples for Internal and External Variation Points.

1 internalVP bedroom: externalVP functionalities:
2 optional mandatory
3 variant onebedroom variant security
4 variant twobedroom variant safety
5 variant threebedroom optional
6 variant morethanthree variant telecare
7 bindingTime devtime variant hobbygarden
8 variant entertainment
9 variant energymanagement

10 bindingTime devtime

are taken from security_conf configuration interface of Smart Home case study.

ConfigurationVarPoint: An abstract high level variation point definition that maps

its variants to a set of internal variation points with their variant selections, specifying

each realization. It can be either internal or external which is specified by "varType"

keyword. It defines a set of variants (VariantSet) and their realization (ConfVari-

antWithChoices), default variant (Variant) selection and binding time (BINDING). A

ConfigurationVarPoint structure in XCOSEML grammar is shown in Figure 3.12.

Figure 3.12: XCOSEML ConfigurationVarPoint Representation in Xtext.

ConfVarWithChoices: A variant definition of a configuration variation point includ-

ing a set of choices. The grammar definition is given in Figure 3.13.

29

Figure 3.13: XCOSEML ConfVarWithChoices Representation in Xtext.

Choice: Choice, whose definition is given in Figure 3.14, is the selection definition

of a variation point with its selected variants. Optionally, minimum and/or maximum

number of variants can be defined.

Figure 3.14: XCOSEML Choice Representation in Xtext.

Table 3.2 shows a configuration variation point taken from smarthome_conf con-

figuration interface of Smart Home case study. homesize variation point presents a

high level configuration structure. It has two alternative variants; small and mid-

dlerange.small variant is realized by variants onebedroom or twobedroom of bedroom

variation point (line 10). Only one parameter can be selected because of the given

constraint (min:1,max:1). The default variant of this configuration variation point is

small (line 12) and it binds to a variant at development time (line 14).

Constraint: With the grammar definition in Figure 3.16, Constraint is an abstrac-

tion of logical (LogicalConstraint) and numerical (NumericalConstraint) constraints.

Figure 3.15 shows the constraint specification constructs of XCOSEML metamodel.

30

Table 3.2: A Configuration Variation Point from Smart Home Case Study.

1 configuration homesize:
2 varType externalVP
3 alternative
4 variant small
5 variant middlerange
6 variant big
7 (min:1,max:2)
8 realization "determined by bedroom size"
9 confvariant small mapping

10 VPname bedroom selectedVariants(onebedroom
twobedroom; min:1,max:1)

11 ...
12 defaultvariant small
13 ...
14 bindingTime devtime

Figure 3.15: Constraint Specification Constructs of XCOSEML Metamodel.

Figure 3.16: XCOSEML Constraint Representation in Xtext.

31

LogicalConstraint: LogicalConstraint is a definition depicting a constraining re-

lationship in which a variation point and/or related variants decide another variation

points and/or its selected variants status either excluded, implied, required or negated.

XCOSEML representation of LogicalConstraint is given in Figure 3.17.

Figure 3.17: XCOSEML LogicalConstraint Representation in Xtext.

NumericalConstraint: NumericalConstraint is a definition depicting a constraining

relationship in which a variation point and related variant result in an assignment of a

value to another variation point and related variant or to a property with expressions

greater than (>), less than (<), greater than or equal (>=), less than or equal (<=),

equal (==), not equal (!=). The grammar definition is shown in Figure 3.18.

Figure 3.18: XCOSEML NumericalConstraint Representation in Xtext.

3.3.2 Static View: Package, Component, Interface Constructs

This part contains definitions of static constructs and some related constructs of XCOSEML

language. Figure 3.19 contains corresponding metamodel.

32

Figure 3.19: Metamodel of XCOSEML Static Constructs.

Package: A Package includes its member Constructs (one and more) and contains

its own Interface. A Construct refers to either a Package or a Component. Moreover,

a package can have configuration interface (VarConfigurationModel) and compositon

specification (CompositionSpecification). Figure 3.20 shows the XCOSEML repre-

sentation of package in Xtext environment.

Figure 3.20: XCOSEML Package Representation in Xtext.

QualifiedName and Construct: QualifiedName specifies that how names of ele-

ments should be defined. A Construct refers to either a Component or a Package.

Grammer definitions are given in Figure 3.21.

33

Figure 3.21: XCOSEML QualifiedName and Construct Representations in Xtext.

Component: Definition of a Component contains the name of the component, com-

ponent’s interface and configuration interface of the component if there exists. Figure

3.22 shows the grammar definition.

Figure 3.22: XCOSEML Component Representation in Xtext.

Interface: Interface is an abstraction of a "component interface" or a "package in-

terface". The grammar definition given in Figure 3.23 indicates that the name of

the interface must be defined. Designer can define any number of property for an

interface (CompProperty). CompProperty is a variable definition that belongs to a

component. It is composed of simply a name (ID). An interface must provide at least

one method (MethodIn). Also, an interface may require some methods (MethodOut).

Figure 3.23: XCOSEML Interface Representation in Xtext.

Method: A method is an abstraction for MethodIn or MethodOut. The grammar

definition is in Figure 3.24.

34

Figure 3.24: XCOSEML Method Representation in Xtext.

ContextParameter: A ContextParameter refers to a shared element used in compo-

nent composition. The related grammar definition is in Figure 3.25.

Figure 3.25: XCOSEML ContextParameter Representation in Xtext.

3.3.3 Dynamic View: Composition Specification Constructs

CompositionSpecification: CompositionSpecification includes its configuration in-

terface (VConfModelImport) if it exists. Then, imports its components (Compo-

nentImport) and defines shared variables (ContextParameter). It maps component

variability onto related variation points and variants (VMMapping). Also, it defines

the compositon for each method. Composition specification part of the metamodel is

depicted in Figure 3.26. Figure 3.27 shows the grammar definiton for a composition

specification.

35

Figure 3.26: Composition Specification Constructs of XCOSEML Metamodel.

Figure 3.27: XCOSEML CompositionSpecification Representation in Xtext.

VConfModelImport: VConfModelImport is the import mechanism to include con-

figuration interface of the composition. Related grammar part is shown in Figure

3.28.

36

Figure 3.28: XCOSEML VConfModelImport Representation in Xtext.

ComponentImport: ComponentImport is the import mechanism to include sub com-

ponents in component composition. Configuration interfaces of components can also

be added with the VarConfigurationModel phrase. Grammar definition of Compo-

nentImport is given in Figure 3.29.

Figure 3.29: XCOSEML ComponentImport Representation in Xtext.

ValueReturned: This is an assignment of the return value of a method of an interface

to a ContextParameter that is a global variable of composition. Related grammar

definition can be seen in Figure 3.30.

Figure 3.30: XCOSEML ValueReturned Representation in Xtext.

Composition: Composition is a set of interactions in order to realize a common goal

by using one or more atomic (Message) or composite interactions (Interaction). Fig-

ure 3.31 shows the grammar definition.

Figure 3.31: XCOSEML Composition Representation in Xtext.

37

3.3.3.1 Message Related Constructs

Message: Message is a basic interaction between two components with/without vari-

ability attachment (VariabilityAttachment). Also, a guard statement can be added to

the message (IntConditionSet). For "send" and "receive" actions, "source" and "desti-

nation" interfaces are depicted. If the Message causes one or more changes in values

of ContextParameters, then a set of ChorComputation is defined. Grammar definition

is seen in Figure 3.32.

Figure 3.32: XCOSEML Message Representation in Xtext.

IntCondition: In Figure 3.33, IntConditionSet indicates a set of interaction condi-

tions (IntCondition). A specification of a condition used to guard a part of an in-

teraction. IntCondition can be either a definition of a condition with expression and

numerical/non-numerical values or a specification of number.

Figure 3.33: XCOSEML IntCondition Representation in Xtext.

Source: It consists the message’s source interface and the method. Related compo-

nent can be added to the beginning of the statement as depicted in Figure 3.34.

38

Figure 3.34: XCOSEML Source Representation in Xtext.

Destination: It consists of the message’s destination interface and the method. Re-

lated component can be added to the beginning of the statement as depicted in Figure

3.35.

Figure 3.35: XCOSEML Destination Representation in Xtext.

MethodIn and MethodOut: As shown in Figure 3.36, both forms of a method con-

tain their names, their input parameters (Params, if there exist), and their output pa-

rameter (Param, if there exist).

Figure 3.36: XCOSEML MethodIn and MethodOut Representations in Xtext.

3.3.3.2 Interaction Related Constructs

Interaction: A definition of an interaction between components with/without a guard

(IntCondition) includes; a set of repeating interactions (RepeatInt), a set of parallel

39

interactions (ParalelInt)and a set of sequential instructions (SequenceInt). Grammar

definition of Interaction is in Figure 3.37.

Figure 3.37: XCOSEML Interaction Representation in Xtext.

RepeatInt: In Figure 3.38, RepeatInt defines a repetition of a set of interactions

between components. These interactions can be atomic (Message) or composite (In-

teraction). There is an exit condition after the "repeat" keyword. A variability attach-

ment can be added at the beginning. The interactions that will be repeated are placed

between parentheses.

Figure 3.38: XCOSEML RepeatInt Representation in Xtext.

ParallelInt: A set of parallel interactions between components can be defined as in

Figure 3.39. Interactions can be atomic (Message) or composite (Interaction). Vari-

ability attachment can be added before the "parallel" keyword. Interactions in the

ParallelInt are surrounded with parentheses.

Figure 3.39: XCOSEML ParalelInt Representation in Xtext.

SequenceInt: A definition of a sequence of a set of interactions between components

40

which can be atomic (Message) or composite (Interaction) with/without variability

attachment. SequenceInt is written in such a way that the block is started with "se-

quence", interactions are surrounded with parantheses. Detailed grammar definition

is given in Figure 3.40.

Figure 3.40: I don’t know how to reference to a figure.

3.3.4 Variability to COSEML Mapping Constructs

XCOSEML mapping constructs are shown in Figure 3.41.

Figure 3.41: Variability to XCOSEML Mapping Constructs Metamodel.

VarConfigurationModel: VarConfigurationModel is a definition of a configuration

interface whose grammar definition is given in Figure 3.42. Configuration interface

41

can belong to a component or a package. It contains; (i) a set of internal, external

and configuration variation points (VarPoint) with a tag (Tag) defining the role of it

if required, (ii) constraints (Constraint) among variation points and (iii) parameter

settings (ParameterSetting) which includes a set of defined parameters used in com-

ponent composition.

Figure 3.42: XCOSEML VarConfigurationModel Representation in Xtext.

ParameterSetting: ParameterSetting is an assignment of a value to "ContextEle-

ments" resided in composition specification. Figure 3.43 depicts the grammar defini-

tion.

Figure 3.43: XCOSEML ParameterSetting Representation in Xtext.

VMMapping: VMMapping is a structural mapping from configuration variation to

component variation. First variation points are mapped and then each variant of re-

lated configuration variation point is mapped to that of component variation point.

The grammar definition is in Figure 3.44

42

Figure 3.44: XCOSEML VMMapping Representation in Xtext.

VariabilityAttachment: VariabilityAttachment is a definition of an attachment to

composition specification in order to define the conditions of variation point and vari-

ant selections. Relationships between variation point and variants used are: "ifOneS-

elected" if one of the variants in a variant set is selected, "ifAllSelected" if all of the

variants in a variant set is selected, "ifSelected" if some of the variants in a variant set

is selected. Figure 3.45 shows the grammar definition for the variability attachment.

Figure 3.45: XCOSEML VariabilityAttachment Representation in Xtext.

3.4 Tool Support

XCOSEML files are of type package, component, interface, configuration interface

and composition specification. We develop a tool in Java 1.8.0 to parse and configure

the XCOSEML files. After parsing, the tool can configure the files based on the vari-

ant selections and produce related files as output. The XCOSEML parser reads these

five types of files, categorizes the content of files, and saves them using purposively

defined Java classes and provided data structures by Java. Another capability of the

tool is to transform related XCOSEML files into their TVL and fPromela equivalent

for model checking purposes. A visual description of the tool is given in Figure 3.46.

43

Figure 3.46: Visual Description of XCOSEML Tool.

Configuration of the system yields a customized model. For configuration, the tool is

given a set of variants. Based on this set, the tool binds the variation points (VPs) in

configuration interfaces. Then, if there exists, parameter settings are done depending

on these bindings of VPs. Next, interfaces and composition specifications are tailored.

In interfaces, functions and related parameters are selected or removed with respect

to the chosen variants. In composition specifications, the parts which are guarded by

VPs are added if the variants are selected. Then, parts that are related to variability

are removed from composition.

In the case study given in section 3.1, configuration starts with the smarthome_conf

configuration interface that belongs to the uppermost package smarthome_pkg. The

full content of smarthome_conf can be found in Appendix B.1. There are two ex-

ternal VPs: functionalities at line 2 and configuration VP homesize at line 24. For

functionalities VP, variants security and safety are mandatory. That means, they must

be included for every product. Then we choose telecare from the optional variants of

VP. Then, only one configuration variant, ’small’ is chosen based on the rule (min:1,

max:1) at line 30 for the configuration VP ’homesize’. With respect to the chosen

configuration variant, one of the given variants of the VP ’bedroom’ is chosen (line

32). We select the variant ’onebedroom’ for this example. At the end of the variant

selections, constraints are checked if some variants include or exclude some others.

44

We don’t have any constraints in the smarthome_conf. Therefore, we have finished

the configuration of smarthome_conf. In the following steps, configuration interfaces

for member packages or components are configured. We have configuration inter-

faces for components safety_cmp and security_cmp; namely safety_conf and secu-

rity_conf, respectively. External VPs are configured for these configuration interfaces

while taking constraints into consideration. An excerpt from safety_conf configura-

tion interface is given in Table 3.3.

45

Table 3.3: An excerpt from safety_conf.

1 C o n f i g u r a t i o n i n t e r f a c e s a f e t y _ c o n f o f component s a f e t y
2 i n t e r n a l V P deviceManagement :
3 o p t i o n a l
4 v a r i a n t w a s h i n g M a c h i n e C o n t r o l l e r : a c t i v a t e M e t h o d s (

t u r n O f f D e v i c e s)
5 v a r i a n t h e a t i n g C o o l i n g C o n t r o l l e r : a c t i v a t e M e t h o d s (

t u r n O f f H e a t i n g)
6 . . .
7 v a r i a n t o v e n C o n t r o l l e r : a c t i v a t e M e t h o d s (

s t eepCof feeAndTea)
8 . . .
9 v a r i a n t l i g h t i n g C o n t r o l l e r : a c t i v a t e M e t h o d s (

t u r n O f f L i g h t s , t u r n O f f D e v i c e s)
10 b ind ingTime dev t ime
11

12 c o n f i g u r a t i o n home_type :
13 varType e x t e r n a l V P
14 a l t e r n a t i v e
15 v a r i a n t a p a r t m e n t
16 . . .
17 c o n f v a r i a n t a p a r t m e n t mapping
18 VPName deviceManagement s e l e c t e d V a r i a n t s (

w a s h i n g M a c h i n e C o n t r o l l e r h e a t i n g C o o l i n g C o n t r o l l e r
g e n e r a l E l e c t r i c i t y C o n t r o l l e r

w i n d o w C u r t a i n C o n t r o l l e r o v e n C o n t r o l l e r
c a m e r a S y s t e m C o n t r o l l e r ; min : 1 , max : 6)

19 VPName s e n s o r s s e l e c t e d V a r i a n t s (v o i c e S e n s o r g a s S e n s o r
h u m i d i t y S e n s o r m o t i o n S e n s o r t e m p r a t u r e S e n s o r

v i b r a t i o n S e n s o r w a t e r l e a k s S e n s o r ; min : 0 , max : 7)
20 . . .
21 C o n s t r a i n t s
22 . . .
23 d i s a s t e r D e t e c t i o n g a s E m i s s i o n D e t e c t i o n r e q u i r e s

s e n s o r s s e l e c t e d V a r i a n t s (g a s S e n s o r)
24 deviceManagement r e q u i r e s s e n s o r s s e l e c t e d V a r i a n t s (

m o t i o n S e n s o r v o i c e S e n s o r)

After variant choice in configuration interfaces is finalized, related selections are done

for composition specifications and interfaces based on the selected variant set. As a

continuation of the example above, we configure smarthome_comp composition spec-

46

ification whose full content is given in Appendix C.1. For methods, variability attach-

ments are checked; if corresponding variants are in the set of selected variants, then

the interaction or message is a part of the composition. Otherwise, the interaction

is removed. Also, all variability attachments are removed from the chosen interac-

tions. After configuration of methods, imported components and context parameters

are checked. If they are not used in the remaining interactions, they also removed. An

excerpt from a configuration of smarthome_comp is given in Table 3.4. Full content

of this configuration is given in Appendix D.

47

Table 3.4: An excerpt from configured smarthome_comp.

1 Compos i t ion smarthome_comp
2 has s e c u r i t y
3 has e n t e r t a i n m e n t
4 . . .
5

6 C o n t e x t P a r a m e t e r s
7 r e s i d e n t d i s t a n c e 0
8 s t a t u s " noproblem "
9

10 Method onthewayhome :
11 p a r a l l e l (
12 s a f e t y . s t eepCof feeAndTea r e c e i v e from { h o m e r e s i d e n t .

cominghome }
13 h o m e r e s i d e n t . g e t E x e r c i s e P r o g r a m send { e h e a l t h .

p r e p a r e E x e r c i s e P r o g r a m }
14 h o m e r e s i d e n t . g e t A c c e s s H i s t o r y send { s e c u r i t y .

r e p o r t A c c e s s H i s t o r y }
15 . . .
16)
17 Method g o i n g O u t s i d e :
18 p a r a l l e l (
19 s e c u r i t y . l o c k r e c e i v e from { h o m e r e s i d e n t . g o i n g o u t }
20 s a f e t y . t u r n O f f D e v i c e s r e c e i v e from { h o m e r e s i d e n t .

g o i n g o u t }
21)
22 Method f a l l i n g D e t e c t i o n :
23 s e q u e n c e (
24 r e p e a t s t a t u s != " f a l l " (
25 e h e a l t h . d e t e c t F a l l i n g r e c e i v e from { h o m e r e s i d e n t .

f e l l }
26)
27 p a r a l l e l (
28 gua rd (s t a t u s == s p r i n g) e h e a l t h .

g e t S u r v e l l i a n c e P i c t u r e s send { s e c u r i t y .
c a p t u r e S u r v e l l i a n c e P i c t u r e s }

29 e h e a l t h . ge tAnomaly In fo send { s a f e t y . de t ec tAnomaly }
30 . . .
31)

In configuration interfaces, a variant of a VP can indicate which methods are included

48

from the interface if that variant is chosen. After the name of the variant, a method

name or a set of methods can be given with the keyword activateMethods. Therefore;

if that variant is selected, then indicated method or methods must be included in the

configured interface. An excerpt from safety_conf configuration interface is given

in Table 3.3. Here activated methods are given with the variants. If variants wash-

ingMachineController, heatingCoolingController, ovenController, and lightingCon-

troller are selected from deviceManagement VP, the safety_int interface is configured

as in the Table 3.5.

Table 3.5: An excerpt from safety_int.

1 I n t e r f a c e s a f e t y
2 P r o v i d e d Methods
3 i n t u r n O f f L i g h t s
4 i n p u t (d a t e t i m e)
5

6 i n t u r n O f f H e a t i n g
7 i n p u t (d a t e t i m e)
8

9 i n s t eepCof feeAndTea
10

11 i n t u r n O f f D e v i c e s
12 i n p u t (roomNumber)
13 . . .

An interface belongs to a package or a component. Variability in components are

defined in their interfaces. In other words, "variability in a component" is to select

the needed methods from its interface. However, we are also handling component

level variability. That is to choose some components in a system configuration and

eliminate others. We are done with this configuration in composition configuration

indirectly. We do not directly choose the desired components, though we eliminate

the components (or the interfaces of those components) that are not to take place in

the configured methods. Therefore, there is no separate configured file for component

variability. The selected components are a part of the configured system.

The static view constructs of the configured system, namely packages, components

49

and interfaces, can be shown in a graphical representation to validate that it corre-

sponds to a tree structure. Because our models are text-based, we should use a tool

that transforms text-based input into a graphical representation. Structural decompo-

sition of our case study is shown in Figure 3.1 by using the graphical COSEML tool.

However, the current COSEML version does not take its input in a textual form. It is

also not possible to resolve its saved .cml file since it is saved as Java stream. There-

fore, temporarily we use Graphviz [26] for this purpose. Graphviz is open source

and is used for graph visualization. It takes description of the graph in a simple text

language. We adapt the textual version of static view constructs from the configured

composition specification given in Appendix D. Then we transform these constructs

into the language of Graphviz. The resulting tree structure is given in Figure 3.47

Figure 3.47: Configured Smart Home Model.

50

CHAPTER 4

VERIFICATION OF XCOSEML MODELS

In this chapter, our reason for using FTS’s SNIP as a model checker is explained.

XCOSEML to TVL and fPromela transformations are introduced. Partial automation

of this transformation and constraints for fully transformation are discussed.

4.1 Why we choose FTS approach for model checking?

In [18], authors compare the FTS approach with the existing approaches in the liter-

ature, available as of the date of August, 2013. For instance, in [6] and [7], authors

present an algorithm for model checking. This algorithm cannot be used to find the

product that violates the system. In another research [42], there is a very similar

modeling language with FTS’ modeling language. However, their algorithm is much

less efficient. SPLVerifier is a model checker described in [3]. The drawback of this

model checker is it stops when it determines the first violation and it does not check

the whole system.

In [53], authors verify their variable service orchestrations by using FTS approach.

They have both variability model and behavior model, that is very similar to our

approach. Their variability modeling technique is based on COVAMOF [49] and

behavior model is BPEL [41]. Along with the ease of transformation of the models

to be checked with the FTS’s tools, they choose FTS because other approaches do

not enable relating behaviours to products. However, FTS allows determining which

products have violated the system.

51

Other reasons why we choose FTS are as follows:

• In the FTS approach, variability of system is represented with feature models and

features are related with SPL behavior.

• The SNIP tool shows the violated products of the SPL together with its feature

selections. This helps developers to find possible logical errors.

• Configuration interfaces of XCOSEML can be converted to feature models with

little effort.

• Composition specifications of XCOSEML can be mapped to the behavior model

of FTS’ fPromela, even if one-to-one mapping cannot be achieved.

4.2 Transformation of Configuration Interfaces in XCOSEML to TVL Models

It is very common to represent variability in SPLs with feature models. In order to

make models concise and brief, feature attributes should be used. However, intelli-

gibility of semantics of feature models are decreased when using feature attributes.

Most of the existing approaches do not support attributes. Also, graphical notation

for feature model syntax seems as a drawback for industrial usage. TVL is a text-

based feature modeling language designed to overcome the mentioned shortcomings.

TVL provides a human-readable language with a rich syntax and formal semantics

for designers. This makes modeling easy and models look natural [16].

TVL models in FTS include features, their attributes, and constraints in a hierarchical

structure. In XCOSEML Configuration Interfaces there are variation points (internal,

external and configuration), variants, constraints, and variation point associations.

Because these two models are not semantically the same, we need a mapping between

them.

In variability models for XCOSEML, all specified variation points are added to the

root as mandatory. These variation points cannot be converted to features in TVL.

Because the semantics between a set of variation points is hidden in choices of con-

figuration, variation points that appear in configuration variation points must not be

52

added to the root directly in a feature model. Remaining variation points can be added

to the root of the feature model directly.

The transformation steps from XCOSEML configuration variation point to TVL can

be described as follows:

• Configuration interfaces that have composition specification are transformed to

TVL.

• A root name is determined (usually the name of the configuration interface).

• The variation points of the configuration interface are checked: if they are not

used in a configuration variation point, then they are added to the root directly.

Otherwise, the variation point is not added because it will appear in the variants

of the configuration variation point.

• Variation points are represented as the children of the root. Variants of the variation

point are put in a block that is determined by curly braces ({}). The name of this

block is the name of variation point. Variants are put in an inner block whose

name indicates the type of them (e.g. mandatory, alternative or optional).

• Then, configuration variation points are added to the model. A main block is at-

tached to the root with the name of the configuration variation point. Then

configuration variants are put as inner blocks.

• Lastly, the constraints are converted to the TVL, if it is semantically possible.

4.3 Transformation of Composition Specifications of XCOSEML to fPromela

SNIP model checker employs fPromela as a procedural modeling language. fPromela

is an extension of the language Promela that is the famous language of the SPIN

model checker [36]. fPromela has the same syntax with Promela. Many constructs of

these languages are similar to C. This makes it easy to get familiar with them. The key

elements of the languages are processes that are specified with the proctype keyword.

If a process is declared active, it is active in the initial state of the system. Otherwise,

it has to be started by another process. If several processes are active at the same

53

time, they are processed alternately. The only way for processes to communicate is

channels. Channels are defined globally. Local variables can be declared in processes.

A process’ behavior is defined in a procedural style. Loops are declared with do

statements. Loop bodies, i.e. options, are introduced each with a double colon (::).

The first statement after the do keyword is the condition that the loop body is exe-

cuted with respect to. We can also declare if statements in Promela and fPromela.

These statements work similarly with do statements. They can have more than one

option to execute. In this case, the language chooses which option to execute non-

deterministically.

When processes communicate through channels, they write and read messages to the

channel. The character "!" is used to write to a channel and "?" is used to read from a

channel. Channel writes are done only if the channel is not full.

fPromela extends Promela with feature variables. Feature variables are declared as

bool in a special structure namely features. This structure serves as an interface in

which features are identified. Also, this structure ensures compatibility with Promela,

as another benefit. Before referencing the features, a variable with this structure must

be defined.

The variability in fPromela is expressed by guarding statements. These blocks are

represented with the gd keyword. Guard statements has expressions similar to condi-

tions of if statements. Features are used in these statements. The options of the guard

statement are only part of the product if the featured expression in the guard holds.

We should transform XCOSEML composition specifications into fPromela equiva-

lent. Therefore, we declare following transformation rules:

send: A send message in XCOSEML is defined as:

sourceInt.sourceMeth send{destinationInt.destinationMeth}

Firstly, a channel is created with the name of source and destination interfaces. Num-

ber of parameters of the methods is obtained. Then, based on number of parameters,

this many byte keywords are added at the end of the channel definition. byte is a data

type in TVL that holds one byte of information. For example if there are 2 param-

54

eters, the below channel will be defined. If the channel was created before, it is not

created again.

chan chan_sourceInt.destinationInt=[1] of type {byte,byte}

The send message is transformed to fPromela as follows:

chan_sourceInt.destinationInt!parameter1,parameter2;

Here, parameter1 and parameter2 are put to the following channel:

chan_sourceInt.destinationInt

fPromela does not let the sending of a message without a parameter. If there is no

defined parameter for methods in XCOSEML, then we pretend there is one parameter

and put only one byte to the channel definition. Also, a fake variable is defined (e.g.

temp) and put after the "!" as the input parameter:

chan chan_sourceInt.destinationInt=[1] of type {byte}

...

sourceInt.destinationInt!temp;

receive: A receive message in XCOSEML is defined as follows:

destinationInt.destinationMeth receive from{sourceInt.sourceMeth}

from{...} part is optional in XCOSEML. If this part is not used, it means that we

don’t care who the sender is.

For receive messages, a channel is created with the name of source and destination

interfaces, as in send messages. Number of parameters is counted in order to add

those many "byte"s at the end of the channel definition. If the channel was created

before, it is not created again.

The receive message is transformed to fPromela as follows:

chan_sourceInt.destinationInt?parameter1,parameter2;

Here fPromela checks the channel for a message and puts this message to the given

parameters.

55

In XCOSEML, we model the "receive a message" behaviour, hence we are not inter-

ested in the sender. Because we are defining an abstract definition for the message,

there is no physical message. However, in fPromela, there should always be a mes-

sage in the corresponding channel to avoid a deadlock. Therefore, if there is nothing

in the channel, we should manually put something into the channel with a send mes-

sage before the receive message appears. Again, if there is no specified parameters, a

"temp" variable is placed after the "?".

parallel: This structure is shown in XCOSEML as:

parallel(exp1 exp2)

This structure can be transformed to fPromela as stated below:

fPromela-equivalent-of-exp1;fPromela-equivalent-of-exp2;

In fPromela, a parallel structure is employed by putting semicolon among expres-

sions.

sequence: Sequence structure lets the expressions to be executed in order, from start

to end. This expression appears in XCOSEML as given below:

sequence(exp1 exp2)

Transformation of the above expression into fPromela is as follows:

{fPromela-equivalent-of-exp1};

{fPromela-equivalent-of-exp2};

By putting expressions into curly braces and semicolons between them, we guarantee

that the expressions are executed one after another.

repeat: In XCOSEML, repeat structure is used as follows:

repeat cond (exp1 exp2)

In this construct, exp1 and exp2 are executed until the cond condition does not hold.

Corresponding fPromela structure is given below:

do

56

:: fPromela-equivalent-of-cond ->

fPromela-equivalent-of-exp1;

fPromela-equivalent-of-exp2;

:: else -> break;

od;

guard: A guard construct is shown in XCOSEML as follows:

guard(cond) exp1

fPromela structure of the given expression is as follows:

if

:: fPromela-equivalent-of-cond ->

fPromela-equivalent-of-exp1;

:: else -> break;

fi;

Variability Attachment: Variability attachments of XCOSEML are transformed to

fPromela using gd statements.

In XCOSEML variability attachment is seen as:

#varAttachment# exp1

The fPromela transformation of the variability attachment is given below:

gd

:: fPromela-equivalent-of-varAttachment ->

fPromela-equivalent-of-exp1;

:: else -> break;

dg;

4.4 Verification of Smart Home Case Study

In this section we will explain how to verify our models of the case study introduced

in section 3.1 after transformations. The SNIP tool can check the model against

57

deadlocks and assertions. A deadlock occurs, for example; when a send message tries

to write to a channel while the channel is full, or a receive message tries to read an

empty channel. The tool detects this problem by determining where its process gets

stuck. It repeats itself waiting for a result; finally it produces an error indicating where

the deadlock occurs. Assertions are not added to models at the transformation phase.

Developers put assertions manually where they want to check. Then the models are

checked against these properties. If there is a problem, the tool indicates that the

assertion is violated. If there are no deadlocks and assertion violations, the process

ends normally that means the model does not contain any problem.

The SNIP model checker uses TVL and fPromela files as explained before. It can be

started using the following command line:

./snip -check -fm path/example.tvl path/example.pml

After the SNIP tool runs, it produces an output that shows results of the test. In the

case of a deadlock or assertion violation, SNIP indicates where the problem occurs

with line numbers and with an expression with features. For example, the model

may work incorrectly in absence or presence of a future or some features. The tester

can correct fPromela and TVL files directly. The correction can also be done in

XCOSEML models that require a new transformation afterwards.

Variable package composition specifications are transformed by the tool. In other

words, the composition specification which includes variability is transformed with

its configuration interface. This condition is only assured by package configuration

interfaces. Components cannot include subcomponents in our model, hence they do

not need composition specification. In our case study smarthome_conf configuration

interface is transformed to a TVL model based on the rules described in section 4.2.

58

Table 4.1: An excerpt from smarthome_conf configuration interface.

1 C o n f i g u r a t i o n i n t e r f a c e smar thome_conf o f package smarthome
2 e x t e r n a l V P f u n c t i o n a l i t i e s :
3 . . .
4 o p t i o n a l
5 v a r i a n t t e l e c a r e
6 v a r i a n t hobbygarden
7 . . .
8 b ind ingTime dev t ime
9 i n t e r n a l V P bedroom :

10 o p t i o n a l
11 v a r i a n t onebedroom
12 v a r i a n t twobedroom
13 . . .
14 b ind ingTime dev t ime
15 . . .
16 c o n f i g u r a t i o n homes ize :
17 varType e x t e r n a l V P
18 a l t e r n a t i v e
19 v a r i a n t s m a l l
20 v a r i a n t m i d d l e r a n g e
21 v a r i a n t b i g
22 (min : 1 , max : 1)
23 c o n f v a r i a n t s m a l l mapping
24 VPName bedroom s e l e c t e d V a r i a n t s (onebedroom twobedroom

; min : 1 , max : 1)
25 . . .
26 c o n f v a r i a n t b i g mapping
27 VPName bedroom s e l e c t e d V a r i a n t s (t h r e e b e d r o o m

m o r e t h a n t h r e e ; min : 1 , max : 1)
28 . . .
29 d e f a u l t V a r i a n t s m a l l
30 b ind ingTime dev t ime

Table 4.1 shows an excerpt from smarthome_conf configuration interface. There are

three variation points (VPs): functionalities (line 2), bedroom (line 9), and homesize

(line 16). While transforming models to TVL, functionalities VP is directly added

to the root of the feature model. However, bedroom is not transformed directly since

its configuration is done by the configuration VP homesize. The corresponding part

of the transformed TVL file is given in Table 4.2. Variants of the functionalities VP

59

are grouped in blocks. For example, optional variants of the VP is grouped under

the name Fopt (line 5). This name is generated by our tool by using the first letter

of the VP (F) and the abbreviation of the variant type (opt). group and someOf are

keywords of TVL. someOf indicates that the features in that block are "optional".

Variants of the configuration variation points are given as blocks that contain their VP

and variant mappings. For example, when small variant of the homesize configuration

VP is selected, one of the variants of bedroom VP must be selected. This mapping

can be seen at line 13. Here, the name of the block is the name of VP (bedroom). The

numerical constraint is shown with the expression ([1..1]). The first integer indicates

the minimum number of variants that can be selected, and the second one indicates

the maximum number of variants.

Configuration variation points can configure a variation points in several ways. This

requires repeating the name of the same variation point or variants more than once in

the mappings of configuration VP variants. However, this is not a valid description

in TVL syntax. Therefore, the transformation tool detects the repeated names and

extends them with an underscore and an integer (e.g. _0) in order to get a different

version. To indicate that they are names of the same entity, they are associated by

using (<->) operator at the end of the TVL document. In our case, the name Bed-

room is repeated two times. First occurrence is at line 13 and the second at line 19.

The association is given at line 31. Full contents of smarthome_conf and its TVL

transformation can be found in Appendix B.

60

Table 4.2: An excerpt from TVL equivalent of smarthome_conf.

1 r o o t Smarthome_conf {
2 group someOf{
3 F u n c t i o n a l i t i e s group a l l O f {
4 . . .
5 Fopt group someOf{
6 T e l e c a r e ,
7 Hobbygarden ,
8 . . .
9 }

10 } ,
11 Homesize group oneOf {
12 Smal l group a l l O f {
13 Bedroom group [1 . . 1] {
14 Onebedroom ,
15 Twobedroom
16 }
17 } ,
18 Big group a l l O f {
19 Bedroom_0 group [1 . . 1] {
20 Threebedroom ,
21 M o r e t h a n t h r e e
22 } ,
23 O u t s i d e group a l l O f {
24 Garden ,
25 Garage
26 }
27 } ,
28 . . .
29 }
30 }
31 Bedroom <−> Bedroom_0 ;
32 . . .
33 }

Table 4.3 shows an excerpt from smarthome_comp composition specification and cor-

responding fPromela file part is given in Table 4.4. Here, the behaviours of three

methods from the smarthome package are defined. In Table 4.3 at line 4, steepCoffee-

AndTea method of safety interface receives a message from the cominghome method

of the homeresident interface. The fPromela transformation of this part is at lines 3

61

and 4 in Table 4.4. Here the temp parameter is used in messages, because parameters

are not defined in XCOSEML side, this is invalid for fPromela. We referred in Sec-

tion 4.3 that messaging is done through channels in fPromela. The receive message is

the first message of the method (XCOSEML), so it is the first message for proctype

(fPromela). It means that corresponding channel is empty. Trying to read an empty

channel results in a deadlock situation. To avoid that, the user must add a fake send

message which writes something to the channel before the receive message reads it.

Line 3 is added for this purpose. Similarly, transformation of a repeat interaction can

cause a deadlock. In Table 4.3 in lines 7-9, a message is sent consistently while the

value of residentdistance is smaller than or equal to 5. This means sending several

messages to a channel in fPromela. That process ends up with a deadlock when the

channel is full. Therefore, the user should add a fake receive message to avoid dead-

lock. The receive message at line 12 in Table 4.4 is included for this purpose. The

full contents of the composition and fPromela files are in Appendix C.

62

Table 4.3: An excerpt from smarthome_comp compostion specification.

1 . . .
2 Method onthewayhome :
3 p a r a l l e l (
4 s a f e t y . s t eepCof feeAndTea r e c e i v e from { h o m e r e s i d e n t .

cominghome }
5 . . .
6 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (t e l e c a r e) # s e q u e n c e (
7 r e p e a t r e s i d e n t d i s t a n c e <= 5 (
8 h o m e r e s i d e n t . s e n d D i s t a n c e send { e h e a l t h .

getDis tanceFromHome }
9)

10 . . .
11)
12)
13

14 Method g o i n g O u t s i d e :
15 p a r a l l e l (
16 . . .
17 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (e n t e r t a i n m e n t) #

s e q u e n c e (
18 . . .
19 e n t e r t a i n m e n t . s e n d O u t s i d e I n f o send { e h e a l t h .

r ecommendOut f i t }
20)
21 . . .
22

23)
24

25 Method f a l l i n g D e t e c t i o n :
26 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (t e l e c a r e) # s e q u e n c e (
27 r e p e a t s t a t u s != " f a l l " (
28 e h e a l t h . d e t e c t F a l l i n g r e c e i v e from { h o m e r e s i d e n t .

f e l l }
29)
30 . . .
31 e h e a l t h . s e t E m e r g e n t S t a t u s send { s e c u r i t y .

n o t i f y E m e r g e n c y }
32)

63

Table 4.4: An excerpt from TVL equivalent of smarthome_comp.

1 . . .
2 p r o c t y p e onthewayhome () {
3 c h a n _ s a f e t y _ h o m e r e s i d e n t ! temp ;
4 c h a n _ s a f e t y _ h o m e r e s i d e n t ? temp ;
5 . . .
6 gd
7 : : f . T e l e c a r e −> temp = temp + 1 ;
8 {
9 do

10 : : c p _ r e s i d e n t d i s t a n c e <= 5 −>
11 c h a n _ h o m e r e s i d e n t _ e h e a l t h ! pe r sonID ;
12 c h a n _ h o m e r e s i d e n t _ e h e a l t h ? c p _ r e s i d e n t d i s t a n c e ;
13 : : e l s e −> break ;
14 od ;
15 } ;
16 . . .
17 : : e l s e −> s k i p ;
18 dg ;
19 }
20 p r o c t y p e g o i n g O u t s i d e () {
21 . . .
22 gd
23 : : f . E n t e r t a i n m e n t −> temp = temp + 1 ;
24 . . .
25 {
26 c h a n _ e n t e r t a i n m e n t _ e h e a l t h ! o u t s i d e T e m p e r a t u r e ;
27 } ;
28 : : e l s e −> s k i p ;
29 dg ;
30 . . .
31 }
32 p r o c t y p e f a l l i n g D e t e c t i o n () {
33 gd
34 : : f . T e l e c a r e −> temp = temp + 1 ;
35 . . .
36 {
37 c h a n _ e h e a l t h _ s e c u r i t y ! p o s s i b l e r e a s o n s ;
38 } ;
39 : : e l s e −> s k i p ;
40 dg ;
41 }

64

In Appendix B.2 and C.2, the tested TVL (smarthome.tvl) and fPromela (smarthome.pml)

files are given, respectively. To run SNIP with these files, the following command is

used:

./snip -check -fm smarthome.tvl smarthome.pml

After checking the models, SNIP ends up with the following output:

No never claim, checking only asserts and deadlocks..

Explored 701104, re-explored 347472, backtracked 1795184,

depth 35, buckets 701053, mean bucket size 1.00

Explored 1395940, re-explored 701212, backtracked 3595892,

depth 21, buckets 1395721, mean bucket size 1.00

No assertion violations or deadlocks found

explored 1743701 states, re-explored 888813.

This result shows that the tested smarthome models have no deadlocks or assertion

violations. In order to experience a deadlock, the send message at line 72 in Appendix

C.2 is removed. After running SNIP, the tool outputs the following messages:

No never claim, checking only asserts and deadlocks..

Found deadlock explored 123321 states, re-explored 62089.

-Products by which it is violated(as feature expression):

(Entertainment&Energymanagement&Hobbygarden&!Telecare)

This output indicates the deadlock and gives a feature expression that explains in

which condition the deadlock occurs. SNIP can also trace the values of variables and

shows them as output. This option can be disabled and only the products which cause

the problem can be shown similar to the output above.

65

66

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis we describe a metamodel that includes hierarchical variability for Com-

ponent Oriented Software Engineering (COSE) environment. We extend the COSE

Modeling Language (COSEML) and call the new language as XCOSEML. We elab-

orate the language constructs and give a case study that is designed in XCOSEML.

A tool is implemented in Java 1.8.0 to parse XCOSEML models and configure them

for customization. The customized models are mapped to COSEML in order to make

sure that they are valid. Model checking is done by using FTS methods. To check

models in FTS’s tool SNIP, model transformations are needed. These transforma-

tions are substantially done by the XCOSEML tool. However, there is still a need for

tester’s intervention of generated test codes to check the models properly.

When compared to the existing Component Based approaches that use variability, we

have additionally covered different levels of a hierarchy, allowing binding of vari-

ability in a top-down approach. We also introduce an environment for verification of

models with model checking which is the missing part for many approaches in the

literature.

5.2 Future Work

Our experimentation with example models demonstrated the usability of our mod-

eling approach. Yet industrial scale case studies are missing. Although there is an

67

underlying structure for variability of connectors, we haven’t specified this yet. This

will be done in the future.

We have a textual version of XCOSEML and a tool to parse and configure models.

Although there is a graphical tool for COSEML, the ancestor of XCOSEML, we

haven’t extended this graphical tool with variability specifications.

For verification transformations, the tool is capable to transform models in some de-

gree. As we discussed in the previous chapter a fully transformation is not possible

because of semantic differences. However, some corrections and additions may be

done in the automated model transformation tool as a future work.

68

REFERENCES

[1] Emad Albassam and Hassan Gomaa. Applying software product lines to mul-
tiplatform video games. In Proceedings of the 3rd International Workshop on
Games and Software Engineering: Engineering Computer Games to Enable
Positive, Progressive Change, pages 1–7. IEEE Press, 2013.

[2] Firas Alhalabi, Mathieu Maranzana, and J-L Sourrouille. A UML based
methodology to ease the modeling of a set of related systems. In Software En-
gineering Advances, 2008. ICSEA’08. The Third International Conference on,
pages 51–57. IEEE, 2008.

[3] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection of
feature interactions using feature-aware verification. In Automated Software
Engineering (ASE), 2011 26th IEEE/ACM International Conference on, pages
372–375, Nov 2011.

[4] Timo Asikainen, Tomi Männistö, and Timo Soininen. Kumbang: A domain
ontology for modelling variability in software product families. Advanced En-
gineering Informatics, 21(1):23 – 40, 2007.

[5] Timo Asikainen, Timo Soininen, and Tomi Männistö. A koala-based approach
for modelling and deploying configurable software product families. In FrankJ.
van der Linden, editor, Software Product-Family Engineering, volume 3014 of
Lecture Notes in Computer Science, pages 225–249. Springer Berlin Heidelberg,
2004.

[6] Patrizia Asirelli, Maurice H. Ter Beek, Alessandro Fantechi, and Stefania Gnesi.
A logical framework to deal with variability. In Proceedings of the 8th Interna-
tional Conference on Integrated Formal Methods, IFM’10, pages 43–58, Berlin,
Heidelberg, 2010. Springer-Verlag.

[7] Patrizia Asirelli, Maurice H. ter Beek, Stefania Gnesi, and Alessandro Fantechi.
A deontic logical framework for modelling product families. In David Bena-
vides, Don S. Batory, and Paul Grünbacher, editors, VaMoS, volume 37 of ICB-
Research Report, pages 37–44. Universität Duisburg-Essen, 2010.

[8] Felix Bachman and Paul C. Clements. Variability in software product lines.
Technical Report CMU/SEI-2005-TR-012 ESC-TR-2005-012, Software Engi-
neering Institute, Carnegie Mellon, September 2005.

69

[9] Heiko Behrens, Michael Clay, Sven Efftinge, Moritz Eysholdt, Peter Friese, Jan
Köhnlein, Knut Wannheden, and Sebastian Zarnekow. Xtext user guide. Dos-
tupné z WWW: http://www. eclipse. org/Xtext/documentation/1_0_1/xtext. html,
2008.

[10] Nelly Bencomo, Gordon S Blair, Carlos A Flores-Cortés, and Peter Sawyer.
Reflective component-based technologies to support dynamic variability. In Va-
MoS, pages 141–150. Citeseer, 2008.

[11] David Blevins. Component-based software engineering. In George T. Heine-
man and William T. Councill, editors, Component-based Software Engineering,
chapter Overview of the Enterprise Javabeans Component Model, pages 589–
606. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[12] Barry W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 1981.

[13] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J.Henk Obbink, and
Klaus Pohl. Variability issues in software product lines. In Frank van der
Linden, editor, Software Product-Family Engineering, volume 2290 of Lecture
Notes in Computer Science, pages 13–21. Springer Berlin Heidelberg, 2002.

[14] John Cheesman and John Daniels. UML Components: A Simple Process for
Specifying Component-based Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2000.

[15] Andreas Classen. Modelling and Model Checking Variability-Intensive Systems.
PhD thesis, PReCISE Research Centre, Faculty of Computer Science, Univer-
sity of Namur (FUNDP), 5000 Namur, Belgium, October 2011.

[16] Andreas Classen, Quentin Boucher, and Patrick Heymans. A text-based ap-
proach to feature modelling: Syntax and semantics of tvl. Sci. Comput. Pro-
gram., 76(12):1130–1143, December 2011.

[17] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-
Yves Schobbens. Model checking software product lines with SNIP. Inter-
national Journal on Software Tools for Technology Transfer (STTT), Springer-
Verlag, 14(5):589–612, 2012. DOI 10.1007/s10009-012-0234-1.

[18] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans,
Axel Legay, and Jean-François Raskin. Featured transition systems: Founda-
tions for verifying variability-intensive systems and their application to LTL
model checking. IEEE Trans Software Eng (TSE), 39(8):1069–1089, 2013.

[19] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
The SEI series in software engineering. Addison-Wesley, 2002.

70

[20] Paul C. Clements. From subroutines to subsystems: Component-based software
development, 1995.

[21] Itana Maria de Souza Gimenes, Fabrício Ricardo Lazilha, Edson Alves
de Oliveira Junior, and Leonor Barroca. A component-based product line for
workflow management systems. CLEI electronic journal, 7(2), 2004.

[22] A.H. Dogru and M.M. Tanik. A process model for component-oriented software
engineering. IEEE Software, 20(2):34–41, Mar 2003.

[23] Ali H. Dogru. Component oriented software engineering modeling language:
COSEML. Technical Report TR-99-3, Computer Engineering Department,
Middle East Technical University, December 1999.

[24] Desmond F. D’Souza and Alan Cameron Wills. Objects, Components, and
Frameworks with UML: The Catalysis Approach. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[25] Eclipse. Xtext 2.7.0 available at. https://eclipse.org/Xtext/. Ac-
cessed: 2015-02-03.

[26] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. Graphviz—open source graph drawing tools. In Graph Drawing,
pages 483–484. Springer, 2002.

[27] Tim Ewald. Component-based software engineering. In George T. Heine-
man and William T. Councill, editors, Component-based Software Engineering,
chapter Overview of COM+, pages 573–588. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

[28] Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster
than the quick and dirty way. In Proceedings of the ACM international confer-
ence companion on Object oriented programming systems languages and appli-
cations companion, pages 307–309. ACM, 2010.

[29] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou. Variability in
software systems x2014;a systematic literature review. Software Engineering,
IEEE Transactions on, 40(3):282–306, March 2014.

[30] Jerry Zayu Gao, Jacob Tsao, Ye Wu, and Taso H.-S. Jacob. Testing and Quality
Assurance for Component-Based Software. Artech House, Inc., Norwood, MA,
USA, 2003.

[31] Luca Gherardi. Variability Modeling and Resolution in Component-based
Robotics Systems. PhD thesis, University of Bergamo, 2013.

[32] Amina Guendouz and Djamal Bennouar. Component-based specification of
software product line architecture. In International Conference on Advanced
Aspects of Software Engineering, ICAASE, pages 100–107, November 2014.

71

https://eclipse.org/Xtext/

[33] A. Haber, H. Rendel, B. Rumpe, I. Schaefer, and F. van der Linden. Hierar-
chical variability modeling for software architectures. In Software Product Line
Conference (SPLC), 2011 15th International, pages 150–159, Aug 2011.

[34] Mary Jean Harrold, Donglin Liang, and Saurabh Sinha. An approach to ana-
lyzing and testing component-based systems. In First International ICSE Work-
shop on Testing Distributed Component-Based Systems, Los Angeles, CA, pages
333–347. Citeseer, 1999.

[35] Peter Herzum and Oliver Sims. Business Components Factory: A Compre-
hensive Overview of Component-Based Development for the Enterprise. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition, 2000.

[36] G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2004.

[37] M. Jahn, R. Rabiser, P. Grunbacher, M. Loberbauer, R. Wolfinger, and
H. Mossenbock. Supporting model maintenance in component-based product
lines. In Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on, pages 21–
30, Aug 2012.

[38] Kenneth Johnson, Radu Calinescu, and Shinji Kikuchi. An incremental veri-
fication framework for component-based software systems. In Proceedings of
the 16th International ACM Sigsoft symposium on Component-based software
engineering, pages 33–42. ACM, 2013.

[39] Muhammed Cagri Kaya, Selma Suloglu, and Ali H. Dogru. Variability mod-
eling in component oriented software engineering. In Proceedings of the 2014
Society for Design and Process Science, 2014.

[40] Soo Dong Kim, Jin Sun Her, and Soo Ho Chang. A theoretical foundation of
variability in component-based development. Information and Software Tech-
nology, 47(10):663 – 673, 2005.

[41] Michiel Koning, Chang-ai Sun, Marco Sinnema, and Paris Avgeriou. Vxbpel:
Supporting variability for web services in bpel. Inf. Softw. Technol., 51(2):258–
269, February 2009.

[42] K. Lauenroth, K. Pohl, and S. Toehning. Model checking of domain artifacts in
product line engineering. In Automated Software Engineering, 2009. ASE ’09.
24th IEEE/ACM International Conference on, pages 269–280, Nov 2009.

[43] İbrahim İleri, Alperen Eroğlu, and Ali H. Dogru. Component-based variability
modeling. In Proceedings of the 2013 Society for Design and Process Science,
2013.

72

[44] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimhigner, G. Johnson, N. Med-
vidovic, A. Quilici, D.S. Rosenblum, and A.L. Wolf. An architecture-based
approach to self-adaptive software. Intelligent Systems and their Applications,
IEEE, 14(3):54–62, May 1999.

[45] K. Pohl, G. Böckle, and F.J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer, 2005.

[46] Maryam Razavian and Ramtin Khosravi. Modeling variability in the compo-
nent and connector view of architecture using uml. In Proceedings of the 2008
IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA ’08, pages 801–809, Washington, DC, USA, 2008. IEEE Computer
Society.

[47] R. Saidi, Nicolas Arnaud, D. Rieu, and M. Fredj. Multi-view variability mod-
elling for business component reuse. In Digital Information Management, 2007.
ICDIM ’07. 2nd International Conference on, volume 2, pages 603–608, Oct
2007.

[48] Marco Sinnema and Sybren Deelstra. Classifying variability modeling tech-
niques. Inf. Softw. Technol., 49(7):717–739, July 2007.

[49] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan Bosch. Covamof: A
framework for modeling variability in software product families. In RobertL.
Nord, editor, Software Product Lines, volume 3154 of Lecture Notes in Com-
puter Science, pages 197–213. Springer Berlin Heidelberg, 2004.

[50] Neelam Sirohi and Anshu Parashar. Component based system and testing tech-
niques. International Journal of Advanced Research in Computer and Commu-
nication Engineering, 2(6):2378–2383, June 2013.

[51] Selma Süloğlu. Model-Driven Variability Management in Choreography Spec-
ification. PhD thesis, Middle East Technical University, 2013.

[52] I. Sommerville. Software Engineering. International Computer Science Series.
Pearson, 2011.

[53] Selma Suloglu, Riza Aktunc, and Mustafa Yucefaydalı. Verification of vari-
able service orchestrations using model checking. In Proceedings of the 2013
International Workshop on Quality Assurance for Service-based Applications,
QASBA 2013, pages 5–8, New York, NY, USA, 2013. ACM.

[54] Selma Suloglu, Bedir Tekinerdogan, and Ali H. Dogru. Choreography language
for integration of variable orchestration specifications. In Proceedings of Third
International Symposium on Business Modeling and Software Design, pages
121–130, 2013.

73

[55] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of variability
realization techniques: Research articles. Softw. Pract. Exper., 35(8):705–754,
July 2005.

[56] Maurice H. ter Beek and Erik P. de Vink. Software product line analysis with
mcrl2. In Proceedings of the 18th International Software Product Line Confer-
ence: Companion Volume for Workshops, Demonstrations and Tools - Volume
2, SPLC ’14, pages 78–85, New York, NY, USA, 2014. ACM.

[57] Tijs van der Storm. Variability and component composition. In Jan Bosch
and Charles Krueger, editors, Software Reuse: Methods, Techniques, and Tools,
volume 3107 of Lecture Notes in Computer Science, pages 157–166. Springer
Berlin Heidelberg, 2004.

[58] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in
software product lines. In Software Architecture, 2001. Proceedings. Working
IEEE/IFIP Conference on, pages 45–54, 2001.

[59] N. Wang, D.C. Schmidt, and C. O’Ryan. Overview of the CORBA component
model. In George T. Heineman and William T. Councill, editors, Overview of
the CORBA Component Model, pages 557–572. Addison-Wesley, 2001.

[60] Diana L. Webber and Hassan Gomaa. Modeling variability in software prod-
uct lines with the variation point model. Science of Computer Programming,
53(3):305 – 331, 2004. Software Variability Management.

[61] Ye Wu, Dai Pan, and Mei-Hwa Chen. Techniques for testing component-based
software. In Engineering of Complex Computer Systems, 2001. Proceedings.
Seventh IEEE International Conference on, pages 222–232. IEEE, 2001.

[62] Gaoyan Xie. Decompositional verification of component-based systems-a hy-
brid approach. In Automated Software Engineering, 2004. Proceedings. 19th
International Conference on, pages 414–417. IEEE, 2004.

74

APPENDIX A

XCOSEML GRAMMAR IN XTEXT

1 grammar org . x t e x t . xcoseml . XCoseml wi th org . e c l i p s e . x t e x t .

common . T e r m i n a l s

2

3 g e n e r a t e xCoseml " h t t p : / / www. x t e x t . o rg / xcoseml / XCoseml "

4

5 VarCompModel :

6 (e l e m e n t s += A b s t r a c t E l e m e n t) ∗

7 ;

8

9 A b s t r a c t E l e m e n t :

10 C o m p o s i t i o n S p e c i f i c a t i o n | I n t e r f a c e |

V a r C o n f i g u r a t i o n M o d e l | Package | Component

11 ;

12

13 Component :

14 " Component " name = Qual i f i edName

15 (" I n t e r f a c e " (i n t = [I n t e r f a c e]))

16 (" C o n f i g u r a t i o n I n t e r f a c e " (c o n f i n t = [

V a r C o n f i g u r a t i o n M o d e l])) ?

17 ;

18

19 Package :

20 " Package " name = Qual i f i edName

21 (" i n c l u d e s " (e l e m e n t += [C o n s t r u c t]) +)

22 (" I n t e r f a c e " (i n t = [I n t e r f a c e]))

23 (" C o n f i g u r a t i o n I n t e r f a c e " (c o n f i n t = [

V a r C o n f i g u r a t i o n M o d e l])) ?

75

24 (" Compos i t ion " compname = [C o m p o s i t i o n S p e c i f i c a t i o n]) ?

25 ;

26

27

28 C o n s t r u c t :

29 Component | Package

30 ;

31

32 Tag :

33 "@" (name = " c o m p o s i t i o n " | name =" v c o n f i g u r a t i o n " | name

= " v c o n f r e a l i z a t i o n ")

34 ;

35

36 V a r C o n f i g u r a t i o n M o d e l :

37 " C o n f i g u r a t i o n i n t e r f a c e " name = ID (" o f component "

compname = [Component] | " o f package " packagename = [

Package])

38

39 ((t a g += Tag) ? v a r s += V a r P o i n t) ∗

40

41 (" C o n s t r a i n t s " (c o n s t r a i n t s += C o n s t r a i n t) ∗) ?

42

43 (" P a r a m e t e r S e t t i n g s " (p a r a m e t e r s e t t i n g +=

P a r a m e t e r S e t t i n g) ∗) ?

44 ;

45

46 V a r P o i n t :

47 C o n f i g u r a t i o n V a r P o i n t | I n t e r n a l V a r P o i n t |

E x t e r n a l V a r P o i n t

48 ;

49

50 I n t e r n a l V a r P o i n t :

51 v t = " i n t e r n a l V P " name=ID ’ : ’ v a r i a n t s = V a r i a n t S e t "

b ind ingTime " b t ime =BINDING

52 ;

53

54 E x t e r n a l V a r P o i n t :

76

55 (v t = " e x t e r n a l V P " | v t 2 = " vp ") name=ID ’ : ’ v a r i a n t s =

V a r i a n t S e t " b ind ingTime " b t ime =BINDING

56 ;

57

58 C o n f i g u r a t i o n V a r P o i n t r e t u r n s C o n f i g u r a t i o n V a r P o i n t :

59 " c o n f i g u r a t i o n " ({ I n t e r n a l V a r P o i n t } name= Qual i f i edName ’ :

’ " varType " v t = " i n t e r n a l V P " | { E x t e r n a l V a r P o i n t }

name= Qual i f i edName ’ : ’ " varType " v t = " e x t e r n a l V P ")

60 (v a r i a n t s = V a r i a n t S e t)

61 (" r e a l i z a t i o n " r e a = STRING) ((c o n f v a r i a n t s +=

C o n f V a r i a n t W i t h C h o i c e s) +)

62 (" d e f a u l t V a r i a n t " d e f a u l t V a r i a n t = [V a r i a n t]) (" t y p e "

t y p e = CONFTYPE " b ind ingTime " b t ime = BINDING)

63 ;

64

65 C o n f V a r i a n t W i t h C h o i c e s :

66 " c o n f v a r i a n t " name = ID " mapping "

67 (c h o i c e s += Choice) +

68 ;

69

70 Choice :

71 "VPName" vp = [V a r P o i n t] " s e l e c t e d V a r i a n t s (" (v a r s += [

V a r i a n t]) + (" ; min : " INT) ? (" , max : " INT) ? ") "

72 ;

73

74 V a r i a n t S e t :

75 { V a r i a n t S e t } (" mandatory " (v a r i a n t s += V a r i a n t) ∗) ?

76 (" o p t i o n a l " (v a r i a n t s += V a r i a n t) ∗) ?

77 (" a l t e r n a t i v e " (v a r i a n t s += V a r i a n t) ∗ " (min : " INT " , max :

" INT ") ") ?

78 ;

79

80 V a r i a n t r e t u r n s V a r i a n t :

81 " v a r i a n t " name = ID ((" : a c t i v a t e M e t h o d s (" f u n c t = [

MethodIn] (" , " f u n c t s += [MethodIn]) ∗ ") ") ?

82 (" : s e t P a r a m e t e r (t o F u n c t : " f = [MethodIn] " , p a r a m e t e r : "

p a r s = Param (" ; t o F u n c t : " func += [MethodIn] " ,

77

p a r a m e t e r : " f p a r s += Param) ∗ ") ") ?

83)

84 ;

85

86 C o n s t r a i n t :

87 L o g i c a l C o n s t r a i n t | N u m e r i c a l C o n s t r a i n t

88 ;

89

90 L o g i c a l C o n s t r a i n t :

91 (p1 = [V a r P o i n t] (p2 = [V a r i a n t]) ?) c =CONST p3 = [

V a r P o i n t] (" s e l e c t e d V a r i a n t s (" (v a r s += [V a r i a n t]) + ("

, min : " INT) ? (" , max : " INT) ? ") ") ?

92 ;

93

94 N u m e r i c a l C o n s t r a i n t :

95 l h s =RHS " c o n s t " r h s = RHS exp = EXPR

96 (STRING | " va lueOf { " (v a r s += [V a r i a n t]) ∗ " } ")

97 ;

98

99 RHS:

100 (vp2 = [V a r P o i n t] v2 = [V a r i a n t])

101 ;

102

103 P a r a m e t e r S e t t i n g :

104 " p a r a m e t e r " name = [C o n t e x t P a r a m e t e r] ("= #

o f V a r i a n t s S e l e c t e d { " (v a r s += [V a r i a n t]) + " } Of " vp

= [V a r P o i n t] |

105 "= v a l u e (" v a r += [V a r i a n t] (" , " v a r s += [V a r i a n t]) ∗ ") "

| " e x i s t s w h e n s e l e c t e d { " vp =[V a r P o i n t] " . " v =[V a r i a n t]

106 (" , " vp2 +=[V a r P o i n t] " . " v2 +=[V a r i a n t]) ∗ " } ")

107 ;

108

109 I n t e r f a c e :

110 " I n t e r f a c e " name = ID

111 / / ((f u n c t i o n s += F u n c t i o n) +)

112 (" P r o p e r t i e s " (c o m p p r o p e r t i e s += CompProperty) ∗) ?

113 (" P r o v i d e d Methods " (me thods in += MethodIn) +)

78

114 (" R e q u i r e d Methods " (me thodsou t += MethodOut) ∗) ?

115 ;

116

117 F u n c t i o n :

118 " f u n c t i o n " name = ID

119 (" p r e c o n d i t i o n " p recond += ID) ?

120 (" p o s t c o n d i t i o n " p o s t c o n d += ID) ?

121 (" i n p u t " i p a r s = Params) ?

122 (" o u t p u t " opa r = Param) ?

123 ;

124

125 Method :

126 MethodIn | MethodOut

127 ;

128

129 MethodIn :

130 " i n " name = ID

131 (" i n p u t " i p a r s = Params) ?

132 (" o u t p u t " opa r = Param) ?

133 ;

134

135 MethodOut :

136 " o u t " name = ID

137 (" i n p u t " i p a r s = Params) ?

138 (" o u t p u t " opa r = Param) ?

139 ;

140

141 CompProperty :

142 name = ID

143 ;

144

145 C o m p o s i t i o n S p e c i f i c a t i o n :

146 " Compos i t ion " name=ID

147 (v c o n f m o d e l i m p o r t = VConfModelImport) ?

148 (c i m p o r t s += ComponentImport) +

149 (" C o n t e x t P a r a m e t e r s " (c o n t e x t s += C o n t e x t P a r a m e t e r) ∗) ?

150 (" V a r i a b i l i t y Mapping " (mappings += VMMapping) ∗) ?

79

151 (" Method " func += [MethodIn] " : " comp += Compos i t ion) +

152 ;

153

154 V a r i a b i l i t y A t t a c h m e n t :

155 " #vp " vp += [V a r P o i n t] (" i f O n e S e l e c t e d (" | " i f A l l S e l e c t e d

(" | " i f S e l e c t e d (") (vs += [V a r i a n t]) + (" ; e x c l : " (

vsexc += [V a r i a n t]) +) ? ") "

156 ((" and " | " o r ") vp2 += [V a r P o i n t] (" i f O n e S e l e c t e d ("

| " i f A l l S e l e c t e d (" | " i f S e l e c t e d (") (vs2 += [

V a r i a n t]) + (" ; e x c l : " (vsexc2 += [V a r i a n t]) +) ? ")

") ∗ " # "

157 ;

158

159 Compos i t ion :

160 (i n t e r a c t i o n s += (Message | I n t e r a c t i o n) (WS i n t e r a c t i o n s

+= (Message | I n t e r a c t i o n)) ∗) +

161 ;

162

163 I n t e r a c t i o n :

164 (" gua rd (" gua rd = I n t C o n d i t i o n S e t ") ") ? (i n t e r a c t i o n =

R e p e a t I n t | i n t e r a c t i o n = P a r a l e l I n t | i n t e r a c t i o n =

S e q u e n c e I n t)

165 ;

166

167 R e p e a t I n t :

168 (va = V a r i a b i l i t y A t t a c h m e n t) ? " r e p e a t " cond =

I n t C o n d i t i o n S e t " (" (i n t e r a c t i o n s += (Message |

I n t e r a c t i o n)) + ") "

169 ;

170

171 P a r a l e l I n t :

172 (va = V a r i a b i l i t y A t t a c h m e n t) ? " p a r a l l e l (" (i n t e r a c t i o n s

+= (Message | I n t e r a c t i o n)) + ") "

173 ;

174

175 S e q u e n c e I n t :

176 (va = V a r i a b i l i t y A t t a c h m e n t) ? " s e q u e n c e (" (i n t e r a c t i o n s

80

+= (Message | I n t e r a c t i o n)) + ") "

177 ;

178

179 Message :

180 (va = V a r i a b i l i t y A t t a c h m e n t) ?

181 (" gua rd (" gua rd = I n t C o n d i t i o n S e t ") ") ?

182 (s o u r c e = Source t y p e = " send " " { " (d e s t i n a t i o n +=

D e s t i n a t i o n) + " } " |

183 d e s t i n a t i o n = D e s t i n a t i o n t y p e = " r e c e i v e " (" from { " (

s o u r c e s += Source) + " } ") ?)

184 (comp += Va lueRe tu rned) ∗

185 ;

186

187 Source :

188 (scompname = [Component] " . ") ? s o u r c e = [I n t e r f a c e] " . "

mout =[MethodOut]

189 ;

190

191 D e s t i n a t i o n :

192 (dcompname = [Component] " . ") ? s o u r c e = [I n t e r f a c e] " . "

min =[MethodIn]

193 ;

194

195 I n t C o n d i t i o n S e t :

196 i c o n d += I n t C o n d i t i o n ((" o r " | " and ") i c o n d +=

I n t C o n d i t i o n) ∗

197 ;

198

199 I n t C o n d i t i o n :

200 p1 = GUARDTEXT ((exp = EXPR (STRING | INT | ID | BOOLEAN)

) | " t i m e s ") ?

201 ;

202

203 VMMapping :

204 "VP" vp = [V a r P o i n t] (" maps component " | " maps package ")

e l e m e n t = [I n t e r f a c e] "VP" svp = [V a r P o i n t]

205 (" V a r i a n t " v a r s += [V a r i a n t] " maps V a r i a n t " (mvars += [

81

V a r i a n t]) +)+

206 ;

207

208 VConfModelImport :

209 " i m p o r t c o n f i g u r a t i o n " impor tedNamespace = ID

210 /∗ [V a r C o n f i g u r a t i o n M o d e l] ∗ /

211 ;

212

213 ComponentImport :

214 " has " s = [I n t e r f a c e] (" wi th c o n f i g u r a t i o n "

impor tedNamespace = [V a r C o n f i g u r a t i o n M o d e l]) ?

215 ;

216

217 ValueRe tu rned :

218 "%comp " name = [C o n t e x t P a r a m e t e r] "=" s = [I n t e r f a c e] " . "

m = [MethodIn] "%"

219 ;

220

221 C o n t e x t P a r a m e t e r :

222 name = Qual i f i edName (d e f a u l t v a l u e = INT | STRING | ID |

BOOLEAN)

223 ;

224

225 Params :

226 p a r s = " (" p1 = Param (" , " p2 += Param) ∗ ") "

227 ;

228

229 Param :

230 name = ID

231 ;

232

233 Qual i f i edName :

234 ID (’ _ ’ ID) ∗ ;

235

236 GUARDTEXT:

237 ID | INT

238 ;

82

239

240 TEXT :

241 (ID | INT | " : " | " / ") +

242 ;

243

244 CONST:

245 r e q u i r e s = ’ r e q u i r e s ’ | e x c l u d e s = ’ e x c l u d e s ’ | i m p l i e s = ’

i m p l i e s ’ | n e g a t e s = ’ n e g a t e s ’

246 ;

247

248 enum NUMCONST:

249 c o n s t = " c o n s t "

250 ;

251 BOOLEAN:

252 " t r u e " | " f a l s e "

253 ;

254

255 enum EXPR :

256 g t = ">" | g t e = " >=" | l t = "<" | l t e = " <=" | equ = "==" |

neq = " != " | eq = "="

257 ;

258

259 enum CONFTYPE:

260 subs = " s u b s t i t u t i o n " | p a r a =" p a r a m e t e r i z a t i o n " | add ="

a d d i t i o n "

261 ;

262

263 BINDING :

264 d e v t = " dev t ime " | de rv = " d e r i v a t i o n " | comp = "

c o m p i l a t i o n " | l i n k = " l i n k i n g " | s t r t = " s t a r t −up " |

r u n t =" r u n t i m e "

265 ;

83

84

APPENDIX B

TRANSFORMATION FROM CONFIGURATION INTERFACE

TO TVL

B.1 Configuration Interface File: smarthome_conf

1 C o n f i g u r a t i o n i n t e r f a c e smar thome_conf o f package smarthome

2 e x t e r n a l V P f u n c t i o n a l i t i e s :

3 mandatory

4 v a r i a n t s e c u r i t y

5 v a r i a n t s a f e t y

6 o p t i o n a l

7 v a r i a n t t e l e c a r e

8 v a r i a n t hobbygarden

9 v a r i a n t e n t e r t a i n m e n t

10 v a r i a n t energymanagement

11 b ind ingTime dev t ime

12 i n t e r n a l V P bedroom :

13 o p t i o n a l

14 v a r i a n t onebedroom

15 v a r i a n t twobedroom

16 v a r i a n t t h r e e b e d r o o m

17 v a r i a n t m o r e t h a n t h r e e

18 b ind ingTime dev t ime

19 i n t e r n a l V P o u t s i d e :

20 o p t i o n a l

21 v a r i a n t ga r de n

22 v a r i a n t g a r a g e

23 b ind ingTime dev t ime

85

24 c o n f i g u r a t i o n homes ize :

25 varType e x t e r n a l V P

26 a l t e r n a t i v e

27 v a r i a n t s m a l l

28 v a r i a n t m i d d l e r a n g e

29 v a r i a n t b i g

30 (min : 1 , max : 1)

31 c o n f v a r i a n t s m a l l mapping

32 VPName bedroom s e l e c t e d V a r i a n t s (onebedroom twobedroom

; min : 1 , max : 1)

33 c o n f v a r i a n t m i d d l e r a n g e mapping

34 VPName bedroom s e l e c t e d V a r i a n t s (t h r e e b e d r o o m)

35 VPName o u t s i d e s e l e c t e d V a r i a n t s (g a r d en g a r a g e ; min : 1 ,

max : 2)

36 c o n f v a r i a n t b i g mapping

37 VPName bedroom s e l e c t e d V a r i a n t s (t h r e e b e d r o o m

m o r e t h a n t h r e e ; min : 1 , max : 1)

38 VPName o u t s i d e s e l e c t e d V a r i a n t s (g a r d en g a r a g e)

39 d e f a u l t V a r i a n t s m a l l

40 t y p e s u b s t i t u t i o n

41 b ind ingTime dev t ime

B.2 TVL equivalent of smarthome_conf

1 r o o t Smarthome_conf {

2 group someOf{

3 F u n c t i o n a l i t i e s group a l l O f {

4 Fman group a l l O f {

5 S e c u r i t y ,

6 S a f e t y

7 } ,

8 Fopt group someOf{

9 T e l e c a r e ,

10 Hobbygarden ,

11 E n t e r t a i n m e n t ,

12 Energymanagement

13 }

86

14 } ,

15 Homesize group oneOf {

16 Smal l group a l l O f {

17 Bedroom group [1 . . 1] {

18 Onebedroom ,

19 Twobedroom

20 }

21 } ,

22 Big group a l l O f {

23 Bedroom_0 group [1 . . 1] {

24 Threebedroom ,

25 M o r e t h a n t h r e e

26 } ,

27 O u t s i d e group a l l O f {

28 Garden ,

29 Garage

30 }

31 } ,

32 Midd le r ange group a l l O f {

33 Bedroom_1 group a l l O f {

34 Threebedroom_2

35 } ,

36 O u t s i d e _ 3 group [1 . . 2] {

37 Garden_4 ,

38 Garage_5

39 }

40 }

41 }

42 }

43 Bedroom <−> Bedroom_0 ;

44 Bedroom <−> Bedroom_1 ;

45 Threebedroom <−> Threebedroom_2 ;

46 O u t s i d e <−> O u t s i d e _ 3 ;

47 Garden <−> Garden_4 ;

48 Garage <−> Garage_5 ;

49 }

87

88

APPENDIX C

TRANSFORMATION FROM COMPOSITION

SPECIFICATION TO FPROMELA

C.1 Composition Specification File: smarthome_comp

1 Compos i t ion smarthome_comp

2

3 import c o n f i g u r a t i o n smar thome_conf

4

5 has s e c u r i t y

6 has e n t e r t a i n m e n t

7 has s a f e t y

8 has ga r de n

9 has energymng

10 has e h e a l t h

11 has h o m e r e s i d e n t

12

13 C o n t e x t P a r a m e t e r s

14 r e s i d e n t d i s t a n c e 0

15 w e a t h e r I n f o " a "

16 t o d o l i s t " a "

17 s t a t u s " noproblem "

18 anomaly " a "

19 images " a "

20 p o s s i b l e r e a s o n s " a "

21

22 V a r i a b i l i t y Mapping

23 VP homes ize maps component s e c u r i t y VP s e c u r i t y P a c k a g e

89

24 V a r i a n t s m a l l maps V a r i a n t b a s i c

25 V a r i a n t m i d d l e r a n g e maps V a r i a n t advanced

26 V a r i a n t b i g maps V a r i a n t e x t e n d e d

27 VP homes ize maps component s a f e t y VP home_type

28 V a r i a n t s m a l l maps V a r i a n t a p a r t m e n t

29 V a r i a n t m i d d l e r a n g e maps V a r i a n t a p a r t m e n t

30 V a r i a n t b i g maps V a r i a n t house

31

32 Method onthewayhome :

33 p a r a l l e l (

34 s a f e t y . s t eepCof feeAndTea r e c e i v e from { h o m e r e s i d e n t .

cominghome }

35 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (t e l e c a r e) #

h o m e r e s i d e n t . g e t E x e r c i s e P r o g r a m send { e h e a l t h .

p r e p a r e E x e r c i s e P r o g r a m }

36 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (e n t e r t a i n m e n t) #

e n t e r t a i n m e n t . p r e p a r e F a v o r i t e W a t c h i n g L i s t r e c e i v e

from { h o m e r e s i d e n t . cominghome }

37 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (energymanagement) #

s e q u e n c e (

38 energymng . c h e c k E n e r g y S t a t u s r e c e i v e from {

h o m e r e s i d e n t . cominghome }

39 energymng . d e t e r m i n e E n e r g y S t a t u s send { h o m e r e s i d e n t .

g e t E n e r g y S t a t u s }

40)

41 h o m e r e s i d e n t . g e t A c c e s s H i s t o r y send { s e c u r i t y .

r e p o r t A c c e s s H i s t o r y }

42 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (hobbygarden) # g a r de n .

prepareHobbyGarden r e c e i v e from { h o m e r e s i d e n t .

cominghome }

43 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (t e l e c a r e) # s e q u e n c e (

44 r e p e a t r e s i d e n t d i s t a n c e <= 5 (

45 h o m e r e s i d e n t . s e n d D i s t a n c e send { e h e a l t h .

getDis tanceFromHome }

46)

47 p a r a l l e l (

48 s e c u r i t y . un lo ck r e c e i v e from { e h e a l t h .

90

s e t R e s i d e n t C l o s e n e s s }

49 #vp o u t s i d e i f S e l e c t e d (g a r a g e) # s e c u r i t y .

un lockGarage r e c e i v e from { e h e a l t h .

s e t R e s i d e n t C l o s e n e s s }

50 e n t e r t a i n m e n t . p l a y L i s t r e c e i v e from { e h e a l t h .

s e t R e s i d e n t C l o s e n e s s }

51)

52)

53)

54

55 Method g o i n g O u t s i d e :

56 p a r a l l e l (

57 s e c u r i t y . l o c k r e c e i v e from { h o m e r e s i d e n t . g o i n g o u t }

58 s a f e t y . t u r n O f f D e v i c e s r e c e i v e from { h o m e r e s i d e n t .

g o i n g o u t }

59 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (e n t e r t a i n m e n t) #

s e q u e n c e (

60 e n t e r t a i n m e n t . c h e c k w e a t h e r r e c e i v e from {

h o m e r e s i d e n t . g o i n g o u t }

61 e n t e r t a i n m e n t . s e n d O u t s i d e I n f o send { e h e a l t h .

r ecommendOut f i t }

62)

63 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (hobbygarden) # g a r de n .

s u g g e s t P l a n t r e c e i v e from { h o m e r e s i d e n t . g o i n g o u t }

64

65)

66

67 Method f a l l i n g D e t e c t i o n :

68 #vp f u n c t i o n a l i t i e s i f S e l e c t e d (t e l e c a r e) # s e q u e n c e (

69 r e p e a t s t a t u s != " f a l l " (

70 e h e a l t h . d e t e c t F a l l i n g r e c e i v e from { h o m e r e s i d e n t .

f e l l }

71)

72 p a r a l l e l (

73 gua rd (s t a t u s == s p r i n g) e h e a l t h .

g e t S u r v e l l i a n c e P i c t u r e s send { s e c u r i t y .

c a p t u r e S u r v e l l i a n c e P i c t u r e s }

91

74 e h e a l t h . ge tAnomaly In fo send { s a f e t y . de t ec tAnomaly }

75)

76 e h e a l t h . a n a l y z e S t a t u s r e c e i v e from { s a f e t y . se tAnomaly }

77 e h e a l t h . s e t E m e r g e n t S t a t u s send { s e c u r i t y .

n o t i f y E m e r g e n c y }

78)

C.2 fPromela equivalent of smarthome_comp

1 chan c h a n _ s a f e t y _ h o m e r e s i d e n t = [1] o f { byte } ;

2 chan c h a n _ h o m e r e s i d e n t _ e h e a l t h = [2] o f { byte } ;

3 chan chan_ene rgymng_homeres iden t = [1] o f { byte } ;

4 chan c h a n _ h o m e r e s i d e n t _ s e c u r i t y = [1] o f { byte } ;

5 chan c h a n _ g a r d e n _ h o m e r e s i d e n t = [1] o f { byte } ;

6 chan c h a n _ s e c u r i t y _ e h e a l t h = [1] o f { byte } ;

7 chan c h a n _ e n t e r t a i n m e n t _ e h e a l t h = [1] o f { byte } ;

8 chan c h a n _ s e c u r i t y _ h o m e r e s i d e n t = [1] o f { byte } ;

9 chan c h a n _ e n t e r t a i n m e n t _ h o m e r e s i d e n t = [1] o f { byte } ;

10 chan c h a n _ e h e a l t h _ h o m e r e s i d e n t = [1] o f { byte } ;

11 chan c h a n _ e h e a l t h _ s e c u r i t y = [1] o f { byte } ;

12 chan c h a n _ e h e a l t h _ s a f e t y = [1] o f { byte } ;

13

14 i n t a =0;

15 i n t c p _ p o s s i b l e r e a s o n s =0;

16 i n t cp_images =0;

17 i n t c p _ r e s i d e n t d i s t a n c e =0;

18 i n t cp_anomaly =0;

19 i n t c p _ w e a t h e r I n f o =0;

20 i n t c p _ t o d o l i s t =0 ;

21 i n t noproblem =1;

22 i n t c p _ s t a t u s =1;

23 byte temp ;

24 byte d a t e t i m e ;

25 byte cu r r en tmood ;

26 byte d a t e ;

27 byte per sonID ;

28 byte roomNumber ;

92

29 byte now ;

30 byte o u t s i d e T e m p e r a t u r e ;

31 byte o u t t i m e ;

32 i n t f a l l =2 ;

33 i n t s p r i n g =3;

34 byte p o s s i b l e r e a s o n s ;

35 byte images ;

36 byte anomaly ;

37

38 t y p e d e f f e a t u r e s {

39 boo l S e c u r i t y ;

40 boo l S a f e t y ;

41 boo l T e l e c a r e ;

42 boo l Hobbygarden ;

43 boo l E n t e r t a i n m e n t ;

44 boo l Energymanagement ;

45 boo l A1 ;

46 boo l A2 ;

47 boo l Onebedroom ;

48 boo l Twobedroom ;

49 boo l Threebedroom ;

50 boo l M o r e t h a n t h r e e ;

51 boo l Garden ;

52 boo l Garage

53 } ;

54 f e a t u r e s f ;

55

56 a c t i v e p r o c t y p e smarthome () {

57 { run onthewayhome () } ;

58 { run g o i n g O u t s i d e () } ;

59 { run f a l l i n g D e t e c t i o n () } ;

60 }

61

62 p r o c t y p e onthewayhome () {

63 c h a n _ s a f e t y _ h o m e r e s i d e n t ! temp ;

64 c h a n _ s a f e t y _ h o m e r e s i d e n t ? temp ;

65 gd

93

66 : : f . T e l e c a r e −>

67 c h a n _ h o m e r e s i d e n t _ e h e a l t h ! temp ;

68 : : e l s e −> s k i p ;

69 dg ;

70 gd

71 : : f . E n t e r t a i n m e n t −>

72 c h a n _ e n t e r t a i n m e n t _ h o m e r e s i d e n t ! temp ;

73 c h a n _ e n t e r t a i n m e n t _ h o m e r e s i d e n t ? d a t e t i m e ;

74 : : e l s e −> s k i p ;

75 dg ;

76 gd

77 : : f . Energymanagement −> temp = temp + 1 ;

78 {

79 chan_ene rgymng_homeres iden t ! temp ;

80 chan_ene rgymng_homeres iden t ? d a t e t i m e ;

81 } ;

82 { chan_ene rgymng_homeres iden t ! temp ; } ;

83 : : e l s e −> s k i p ;

84 dg ;

85 c h a n _ h o m e r e s i d e n t _ s e c u r i t y ! d a t e ;

86 gd

87 : : f . Hobbygarden −>

88 c h a n _ g a r d e n _ h o m e r e s i d e n t ! temp ;

89 c h a n _ g a r d e n _ h o m e r e s i d e n t ? temp ;

90 : : e l s e −> s k i p ;

91 dg ;

92 gd

93 : : f . T e l e c a r e −> temp = temp + 1 ;

94 {

95 do

96 : : c p _ r e s i d e n t d i s t a n c e <= 5 −>

97 c h a n _ h o m e r e s i d e n t _ e h e a l t h ! pe r sonID ;

98 c h a n _ h o m e r e s i d e n t _ e h e a l t h ? c p _ r e s i d e n t d i s t a n c e ;

99 : : e l s e −> break ;

100 od ;

101 } ;

102 {

94

103 c h a n _ s e c u r i t y _ e h e a l t h ! temp ;

104 c h a n _ s e c u r i t y _ e h e a l t h ? temp ;

105 gd

106 : : f . Garage −>

107 c h a n _ s e c u r i t y _ e h e a l t h ! temp ;

108 c h a n _ s e c u r i t y _ e h e a l t h ? temp ;

109 : : e l s e −> s k i p ;

110 dg ;

111 c h a n _ e n t e r t a i n m e n t _ e h e a l t h ! temp ;

112 c h a n _ e n t e r t a i n m e n t _ e h e a l t h ? temp ;

113 } ;

114 : : e l s e −> s k i p ;

115 dg ;

116 }

117 p r o c t y p e g o i n g O u t s i d e () {

118 c h a n _ s e c u r i t y _ h o m e r e s i d e n t ! temp ;

119 c h a n _ s e c u r i t y _ h o m e r e s i d e n t ? temp ;

120

121 c h a n _ s a f e t y _ h o m e r e s i d e n t ! temp ;

122 c h a n _ s a f e t y _ h o m e r e s i d e n t ? roomNumber ;

123 gd

124 : : f . E n t e r t a i n m e n t −> temp = temp + 1 ;

125 {

126 c h a n _ e n t e r t a i n m e n t _ h o m e r e s i d e n t ! temp ;

127 c h a n _ e n t e r t a i n m e n t _ h o m e r e s i d e n t ?now ;

128 } ;

129 {

130 c h a n _ e n t e r t a i n m e n t _ e h e a l t h ! o u t s i d e T e m p e r a t u r e ;

131 } ;

132 : : e l s e −> s k i p ;

133 dg ;

134 gd

135 : : f . Hobbygarden −>

136 c h a n _ g a r d e n _ h o m e r e s i d e n t ! temp ;

137 c h a n _ g a r d e n _ h o m e r e s i d e n t ? temp ;

138 : : e l s e −> s k i p ;

139 dg ;

95

140

141 }

142 p r o c t y p e f a l l i n g D e t e c t i o n () {

143 gd

144 : : f . T e l e c a r e −> temp = temp + 1 ;

145 {

146 do

147 : : c p _ s t a t u s != f a l l −>

148 c h a n _ e h e a l t h _ h o m e r e s i d e n t ! temp ;

149 c h a n _ e h e a l t h _ h o m e r e s i d e n t ? temp ;

150 c h a n _ e h e a l t h _ h o m e r e s i d e n t ! c p _ s t a t u s ;

151 c h a n _ e h e a l t h _ h o m e r e s i d e n t ? c p _ s t a t u s ;

152 : : e l s e −> break ;

153 od ;

154 } ;

155 {

156 i f

157 : : (c p _ s t a t u s == s p r i n g) −>

158 c h a n _ e h e a l t h _ s e c u r i t y ! d a t e ;

159 c h a n _ e h e a l t h _ s e c u r i t y ? d a t e ;

160 : : e l s e −> s k i p ;

161 f i ;

162 c h a n _ e h e a l t h _ s a f e t y ! d a t e t i m e ;

163 c h a n _ e h e a l t h _ s a f e t y ! cp_anomaly ;

164 } ;

165 {

166 c h a n _ e h e a l t h _ s a f e t y ? anomaly ;

167 c h a n _ e h e a l t h _ s a f e t y ! c p _ p o s s i b l e r e a s o n s ;

168 } ;

169 { c h a n _ e h e a l t h _ s e c u r i t y ! p o s s i b l e r e a s o n s ; } ;

170 : : e l s e −> s k i p ;

171 dg ;

172 }

96

APPENDIX D

CONFIGURED COMPOSITION SPECIFICATION

1 Compos i t ion smarthome_comp

2

3 has s e c u r i t y

4 has e n t e r t a i n m e n t

5 has s a f e t y

6 has e h e a l t h

7 has h o m e r e s i d e n t

8

9 C o n t e x t P a r a m e t e r s

10 r e s i d e n t d i s t a n c e 0

11 s t a t u s " noproblem "

12

13 Method onthewayhome :

14 p a r a l l e l (

15 s a f e t y . s t eepCof feeAndTea r e c e i v e from { h o m e r e s i d e n t .

cominghome }

16 h o m e r e s i d e n t . g e t E x e r c i s e P r o g r a m send { e h e a l t h .

p r e p a r e E x e r c i s e P r o g r a m }

17 h o m e r e s i d e n t . g e t A c c e s s H i s t o r y send { s e c u r i t y .

r e p o r t A c c e s s H i s t o r y }

18 s e q u e n c e (

19 r e p e a t r e s i d e n t d i s t a n c e <= 5 (

20 h o m e r e s i d e n t . s e n d D i s t a n c e send { e h e a l t h .

getDis tanceFromHome }

21

22)

23 p a r a l l e l (

97

24 s e c u r i t y . un lo ck r e c e i v e from { e h e a l t h .

s e t R e s i d e n t C l o s e n e s s }

25 e n t e r t a i n m e n t . p l a y L i s t r e c e i v e from { e h e a l t h .

s e t R e s i d e n t C l o s e n e s s }

26)

27)

28)

29

30 Method g o i n g O u t s i d e :

31 p a r a l l e l (

32 s e c u r i t y . l o c k r e c e i v e from { h o m e r e s i d e n t . g o i n g o u t }

33 s a f e t y . t u r n O f f D e v i c e s r e c e i v e from { h o m e r e s i d e n t .

g o i n g o u t }

34)

35

36 Method f a l l i n g D e t e c t i o n :

37 s e q u e n c e (

38 r e p e a t s t a t u s != " f a l l " (

39 e h e a l t h . d e t e c t F a l l i n g r e c e i v e from { h o m e r e s i d e n t .

f e l l }

40)

41 p a r a l l e l (

42 gua rd (s t a t u s == s p r i n g) e h e a l t h .

g e t S u r v e l l i a n c e P i c t u r e s send { s e c u r i t y .

c a p t u r e S u r v e l l i a n c e P i c t u r e s }

43 e h e a l t h . ge tAnomaly In fo send { s a f e t y . de t ec tAnomaly }

44)

45 e h e a l t h . a n a l y z e S t a t u s r e c e i v e from { s a f e t y . se tAnomaly }

46 e h e a l t h . s e t E m e r g e n t S t a t u s send { s e c u r i t y .

n o t i f y E m e r g e n c y }

47)

98

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Background
	Problem Statement
	Approach
	Contribution
	Outline of Thesis

	BACKGROUND
	Component Oriented Software Engineering and COSEML
	A brief history for component technology
	What is a component?
	Component Based Software Engineering
	Component Oriented Software Engineering
	COSEML

	Variability in Software Systems
	Why variability is important for software systems
	Variability Modeling

	Variability Management in Component Based Software Engineering
	The Need for Variability with Components
	A Review of Existing Approaches
	Comparison of Existing Approaches and Models

	Verification of Software Systems
	Verification of Component Based Systems

	Discussion

	VARIABILITY IN COSE: XCOSEML
	Case Study: Smart Home
	Metamodel of XCOSEML
	XCOSEML Language
	Variation Specification Constructs
	Static View: Package, Component, Interface Constructs
	Dynamic View: Composition Specification Constructs
	Message Related Constructs
	Interaction Related Constructs

	Variability to COSEML Mapping Constructs

	Tool Support

	VERIFICATION OF XCOSEML MODELS
	Why we choose FTS approach for model checking?
	Transformation of Configuration Interfaces in XCOSEML to TVL Models
	Transformation of Composition Specifications of XCOSEML to fPromela
	Verification of Smart Home Case Study

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES
	APPENDICES
	XCOSEML GRAMMAR IN XTEXT
	Transformation from Configuration Interface to TVL
	Configuration Interface File: smarthome_conf
	TVL equivalent of smarthome_conf

	Transformation from Composition Specification to fPromela
	Composition Specification File: smarthome_comp
	fPromela equivalent of smarthome_comp

	Configured Composition Specification

