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ABSTRACT

ELECTRICITY MARKET MODELING
USING STOCHASTIC AND ROBUST OPTIMIZATION

Yél der e m, Mi ray Haneém
Ph.D, Department oScientific Computing
Supervisor: Prof. Dr. Gerhard Wilhelm Weber
CoSupervisorAs si st . Prof. Dak. ¥zlem Tg¢rk

March 2015106 pages

Sustainable development relying on sustainable and renewable energy systems is
becoming one of the major policies of many countries. This forces the policy makers
to establish many reforms and revolutions, which evoleetetity markets into a

more competitive form. The competitive environment resultsunging electricity
demand and supply that brings in a critical challengeertainty. In this thesishe
uncertaintiesvith respect to prices and demandhe markeareexplored by using
stochastic portfolio optimization and robust optimization techniques.

A stochastic optimization moded developed to maximize the overall expected profit
in the electricity market by generating possible stochastic electricitylysapyl
demand curves. Stochastic electricity supply cunfgxicesaregenerated by using
OrnsteinUhlenbeck meamevating process and running Mor@arlo simulations.

In order to overcome the drawbacks of this model, a second nsadieveloped by
using robust optimization techniques. This model handles uncertainties both in
supplydemand balance of electricity and in renewable energy resotifeesipply-
demand balance of electricitiy explored byusing a novel hybrid approach:
WaveletMultivariate Adaptive Regession $lines (n short W~MARS). This
method forecasts deghead electricity prices by considering the challenges such as
high volatility, high frequency, nonstationarity andiltiple seasonality.Then, we

vii



refine W~MARS by a novel robust optization model called RobustW~MARS (in
short R~W~MARS) which ensures sustainability and renewability by projecting
ellipsoidal uncertainty. The models developed in the the®isested by using real
electricity market dataConcluding remarks on th@odels and an outlodio future
studies are presented at the end of the thesis.

Keywords:Electricity market; stochastic portfolio optimization; Ornsteinlenbeck
meanreverting process; electricity price modeling, wavelet transfddotivariate
Adaptve Regression [@ines, robust optimization, ellipsoidal uncertainty
W~MARS, R~W~MARS
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ELEKTRKK PKYASASI NIN RASTSAL VE G| RB)} Z
KULLANI LARAK MODELLENMESK
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Doktora Bilimsel Hesaplam® ° | ¢ my,
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CHAPTER 1

INTRODUCTION

1.1 Scope and Motivation

A typical energy systenis a complicated structure comprising of production of
electricity (i.e, conversion of energyesources to electricity), distribution of
electricity across a grid structure, transport esfergy resources, and all other
interactions with the external world, namely the policy makers, end users,
environment, and the energy sourdegurel.1 depicts these interactions.

Regarding an energy system, sustainability and renewability are the main sarcern
the policy makers in many countries. However, especially two factdependency

on fossil fuels (mainly oil) and contuittion to global warming through emission of
greenhouse gases (GHGHre restraining the countries to achieve a sustainable and
renewable energy systenThe ontemporary approach in reducing the dependency
on fossil fuels and emission of GHGs, thus adnig\a sustainable energy system, is
to utilize renewable electricity generation technologies.

To propose solutions for this major problem in energy systems, resegootieg
makers, and other partnemsainly focus onmanaging the energy resources under
certain constraints and assisting these efforts through improving energy policies and
strategies.

On the other hand, regardingttee complexity of the systemf(d-igure 1.1), it can

be deduced that a single global method to leatite entire system may be infeasible.
Accordingly, a reasonable approach is to develop solutions for the subsystems, which
may be integrated to give a comprehensive solution.

One of the major components of an energy system is the electricity market, wh
deals with the production and the pricing of electricltyerefore the main objective

is to optimize the electricity market to determine the production portfolio subject to
supply and demand constraints.

These constraints are often highly volatite electricity markets. In most of the
electricity markets, many reforms and revolutions have been established by policy
makers to solve thisusging in electricity demands and supply. As a consequence,
uncertainty appears as the main challenge in an eat@ttrmarket optimization
problem One of the main sources of this uncertainty in demand and supply is the



competitive market structure. Moreover, in practice, it is often difficult to handle
uncertainties without huge data sets, distributional assumptidesgthy
computational time, and excessive computational efforts.

Thus, advanced mathematical methods and computationally efficient approaches are
needed tdhandle these uncertaintidas the scope of this study, the uncertainties in

the electricity markt are explored and modeled by using stochastic and robust
optimization techniques. Ehstudy especially focuses on novabmputationally
efficient approaches.

Energy

SOUrces

Demand for

Unconverted energy
unconverted energy

Losses and
emissions

Policies

Environment

Policymakers

Demand for -
sk Converted energy
converted energy

Energy

end-uses

Figurel.l: Energy system and its interactiwith external world (sourc¢77]).

1.2 Objectives and Contributions of the Thesis

Traditionally, electricity markets are analyzed using optimization models and
forecasting models.However, the uncertaintiegspecially in supply and demand
makesit difficult not only to optimize the diversity of the energy resources and
power generation but also to determine electricity prices especially in thetesimort

In addition,probability models of uncertainty and computations of multidimensional
integrds related to expectations and probabilities are needed to be consi8eared.
chance constrained models are fwomvex and generally intractabléhe main
objective of the thesids defined as

1 Developing a dynamic and robust model for electricity markez under
uncertainties.

As the first step to achieve this objective, a stochastic medétveloped This
stochastic model assumes a distribution based on the scenarios generated for supply
and demand.On the other handye observed that the computatibe#fort is high
sincethe model requirethe generation ohvast number o§cenarios.



Robust optimizations proposed as an alternative to figure out this probNaiing
that robust optimizationshould involve an effectivemethod to forecast the
paranetersinvolved a hybrid methodnergingwavelet transform and multivariate
adaptive regression splined/¢tMARS") is devdoped, which does not require any
distribution assumptian On the other handhé uncertaintie$n a systemmay be
correlated or uncoelated; mondype or hybrid; single or multiple; interval,
polyhedra) or ellipsoidal, etc.In our robust optimization model we propose an
efficient method for modelingllipsoidal, single/multiple, correlatediicorrelated
types of uncertaintiesThis appoach is combined with W~MARS to giVeobust
W~MARS (R~W~MARS), which is capable of handlingtime-dependent
uncertainties

We foresee that the robust optimization model developed in this study has the
potential to be an integral part of a comprehensiveggngystem model. However,

this requires that the robust optimization model yiadstainable result§ o assess

the sustainability of the resultg, should be examined whether the model ensures
security ofenergydemand and supply. Testablish dackgound forthis analysis a

study on energy security indicatois conductedat European Commission Joint
Research Center Institute for Energy dmdnsport in the Netherlands.

1.3 Organization of the Thesis

The thesis is organized as follows:

1 Chapter 2 presenta review of existing approaches in electricity market
optimization.

1 Chapter3 presentshe models developed.t&hastic portfolio optimization
modeland robust optimization model, R~W~MARS, are explained

Stochastic optimizatiormodel requires generatio of possible electricity
supply curves and demand curvesStochastic eletricity supply curves
thereby are modeled by OrnsteirUhlenbeck meameverting process and
running Monte-Carlo simulations.

In R~W~MARS, a robust approach for handling the uncert&s is
considered. As a part of R~-W~MARS, W~MARS is used for estimating the
electricity prices.

1 In Chapterd, applications of the models described in ChaBtare presented.
Both models are demonstrated using a descriptive data set. Data and the
resultsare also presented in this chapter.

Y In order to distinguish the abbreviation style of our method from the given notations of W
RMARS, W RCMARS, etc., which stand for Weak RMARS, Weak RCMARS, respectively
[113], her e, we use a fn~o, w h i ¢ habbresiateatamW~MABRSN o f
R~W~MARS, etc,.in this thesis.



1 Chapter5 concludes the thesiby presenting a summary dhe overall
outputsand an outlook téutureresearch



CHAPTER 2

REVIEW OF ELECTRICITY MARKET OPTIMIZATION
METHODS

Electricity market optimization models maynlaim to optimize the electricity
generatiorportfolio, generally by maximizing the profit, while considering different
parameters such generator capacitiedemand, supply and price.

The parameters included in electricity market optimization problesntypically
interrelated Among these parameters, considering a spot market, electricity price is
extremely important since the balance between the price and demand should be set
on the day before. Therefore, forecastofghe nextday electricity pricas critical

for spot markets.

This chapter is mainly dedicateddwoeview of existing methods in electricity market
optimization and electricity price forecasting as a part of market optimization. On the
other hand, considering electricity market as goma@omponent of an energy
system, we also find it useful to provide a brief review of eneygyem modelin

this chapter.

The chapter is organized to present reviews of existing energy systefals
electricity market optimizationmodels and forecastng models for nextday
electricitymarketsrespectively in the following sections.

2.1 Energy System Models

Energy systems are tremendously large structures that include exploration and
mining of energy resources, conversion into useful forms, generatioamisaion

and distribution of electricity, production of heat, and conversion of resources into
useful energyTable2.1 shows types of energy modeisnsidering different aspects

The ability to manage and control energy systembich is very challenging
especially when the geographical area is large, has both economical and
environmental aspects. From oil crisis in 1970s to 2000s, many energy models were
constructed regarding these concepts. Among these, Brookhaven Energy System
Optimization Model (BESOM) is formulated as a linear programming model, whose
objective can be defined as the minimization of system costs, the minimization of
consumed resources or the minimization of emissidép Although the model can

be employed for regional systems, it is a static model, i.e., it comprises just one



period. Another model, which is Tinrstepped Energy System Optimization Model
(TESOM), is a multipetiod model and is based on BES(88]. However, TESOM

does not include mukiegional or interregional issues. Energy Technology
Assessment (ETA) is developed for the integration of energy and economic aspects.
ETA minimizes overall energy system coststhvimulti-period perspective, but
cannot be employed for multegional form. ETAMACRO is derived from ETA in

order to calculate energy consumption and investment. Market Allocation Model
(MARKAL) is another model that integrates energy and economy adevisloped

by International Energy Agency (IEA). MARKAL is a dynamic linear model that
minimizes overall system coq#,128] A variety of different versions of MARKAL,

such as stochastic, mutegion, emissions trading and macroeconomic version, are
developed. Stanford Research Institute (SRI) and Geredakiquilibrium Modeling
System (GEMS), which include an economic equilibrium between energy demand
and supply, are network and equilibrium models, respectively. Energy Flow
Optimization Model (EFOM) is the basic model that is developed in and for Europe
[42,67] EFOM, which minimizes system costs and energy balances, caribeduti

for calculating the investment for infrastructure. EFOM can cover single or multiple
regions and its time span can be modified as static or dynamic. However, there is no
integration between economical aspects and the energy system in EFOM. EFOM is
modified as EFOMENV to analyze environmental issues. However, this new
version does not consider economical aspgdts PRIMES is a modular model that

is developed for European Union (EU) countiié8]. This model can be used for
forecasting of one period, because it is a stattvork model. MESSAGE is a
different type of energy system model developed by International Institute of
Applied Systems Analysis (IIASAJ20]. MESSAGE involves sulmodules for
investment analysis and energy consumptions and minimizes the total energy related
costs for fifty years planning horizon. The main disadvantage of this model is that
submodules cannot work simultaneously.

Table2.1: Types of energy modej&1].
General Purposes of Energy Models Specific Purposes of Energy Models

To predict or forecast the future Enegy Demand Models
To explore the future (scenario analysis) Energy Supply Models
To look back from the future to the prese¢ Impact Models

(Aikzasti ngo) Appraisal Models

Analytical Approach Geographical Coverage  Sectoral Coverage
Top-Down Models Global Singlesectoral models
BottomUp Models Regional Multi-sectoral models

Several authar have evaluated main renewable energy technologies by taking
sustainability indicators into account. For instance, the pgf®rcompares wind
power, tydropower, photovoltaic and geothermal energy considering the price of



generated electricity, greenhouse gas emissions, availability of renewable energy
resources, efficiency of energy conversion, land requirements, water consumption,
and social impacts. he article [98] proposes strategies for a renewable and
sustainable energy system considering technological improvements:ork§L46]
suggests a new perspective for a renewable and sustainable energy system. The
authors conclude that wind and small hyeatricity power plantare the most
sustainable soursdor the electricity gneration.

Constructing renewable and sustainable energy systems requires high investment
costs. Therefore, a loAgrm planning of the investment strategies is very important.
The article[34] proposes a commugis c al e r enewabs$modetanad r gy
solves the mathematical model by using interval linear programming, chance
constrained programimg, and mixed integdinear programming (MIP). Thavork

[89] proposes a modified EFOM model to fiogptimal capacities of power plants

and volumes of emissions trading with minimum cost and maximum robustness. The
paper[125] utilizes MIP and three artificial intelligence techniques for network
planning under the carbon emission trading program. Wk [91] uses mult

criteria decision making for assessing sustainability of renewable energy scenarios.
The paper[105] proposes a muklbbjective optimization model to choose the most
costeffective mix of renewable system by maximizing the contribution to the peak
load and minimizing the combined intermittence. The art{d#] proposes a
modified BFOM model to analyze the policies for using renewable energy resources.

There are also studiesnsideringTurkish energy system. Starting of thefferts on
modeling Turkish energy systenate back tothree decadesga However the
models developed caondescrie Tur ki s h e nsecurignt straciue.tAs mod
consequence, energy policies and stratecpesot be developed based camodel.

The first energy model for Turkey, which was constructe&ayrakd lu et al.[85],

is an MIRbased model and handles the country as @glesibulk region. Modified
version of ETA was implemented for Turkey [dp]. ETA-MACRO model was later
implemented in Turkey as described in the pdp#}. In the second half of 1990s,
energyenvironment interactiof92], energyenvironmem-economy interactions are
modeled[16,92] In this progress, renewable and sustainabbrgy strategies and
policies are not imposed on models. The analyses are made for political and strategic
issues without taking mathematical planning and optimization into account. Most of
the studies made until now show that only strategic aspects kamwecbnsidered to
analyze the conversion of clean energy. For instance, the 48&jleoroposes the
renewable energy polies for Turkey and explains the role of political organizations
that shape these policies. There also exists review studies for Turkish energy sector
[112]. The article[83] proposes sustainable energy policies and utilization of the
renewable energy sources for Turkey. It is also known thptomng renewable
energy technologies not only solves several energy related environmental problems
but also helps sustaining the development. The optimization algorithms can be
preferred as suitable tools for approaching complex renewable energy sjyE¥¢ms
However Turkish energy planning system #ill lacking of an optimization
algorithm for sustainable and renewable structure.



2.2 Electricity Market Optimization Models

Many electricity markets have been evolving into spot markets only since the last
decade. Therefe, there is not many integral electricity market optimization model
considering all aspects of the market.

Electricity market optimization studies in the literature utilize diffelagpproaches.

In the paperd18,109] multi-stage stdeastic portfolio optimization models under
demand uncertainty are presented. However, in these works the authors did not cover
uncertainties in production costs and their effects to electricity pricesarTicée

[135] proposes a mixethteger stochastic programming approach for the selection of
power generation technology. However the method generates limited number of
scenarios, which in turn affects the final results. Wmark [52] combines the
management of electricity portfolios with financial risk factors. In another work,
expected profit is maximized under uncertainties in inflow of bgdwer plants and

price [68]. However, the work edtudes different types of generators. The model in
thearticle[129] involves a multistage stocdstic program, which considers different
types of generation costs, investments, and the effect of gas markgafdrEl62]
develops a twstage method, which optimizes both portfolio selection and
conditional value at risk. The reader may refefl@4,149]for extensive reviews on
stochastic programming of electricity and energy markets.

In addition to these studies, there exist approaches regarding electricity markets
based on game theory. These approaches aeeiakp used for wholesale markets
where the power generation companies directly sell electricity to customers. Here,
companies can join and stay in a market individually {oooperative) or
collaboratively (cooperative) in order to gain more prof82,103,172] These
approaches are also extended to dynamic games, stochastic games, games with
emission restrictions and cdmations of these. For instance, behaviors of the
collaborative market participant are analyzed for uncertain coalition valyssin
Moreover, a new dynamic game theory model is presentefPHy This study
considers emission restrictions with collaborative market participants. Therefore, one
model ha been developed and called as the Kyoto game. Games with Kyoto
restrictions are also discussed151]. The timediscrete dynamic structure of Kyoto
game and its theoretic background are highlightdd5d,156] The reader may refer

to [33,45]for an extensive survey on these gaimeory based approaches.

Traditional methods like multistage stochastic programming for electricity planning
models under dynamic and uncertain conditions result in computationally intractable
models.These methods can also yield infeasible solutions even if small perturbations
occur. Particularly this case can be observed in many energy planning models, since
the majority of the literature assumes certain parameters for these rfiogefGne

of the major concerns for electricity planning gastainability which is directly

related with scesrio analyses. Robust and stochastic optimization approaches
improve the capability of scenario analyses, because of the uncertainty sets defined
for the input parameters. For instance, when the gneese gases (GHG) emission

is desired to be projectetirough 40 yearsan uncertainty set can be defined for



corresponding input parameters. The most important advantage of using robust
optimization is to guarantee a feasible solution even when input parameters change
from scenario to scenario. There are tadi number of studies that use robust
optimization in this field [17,89] None of these studies involves multiple
uncertainties in their model.

2.3 ForecastingModels for Next-Day Electricity Market

In this section, existing technigs are reviewed based on the classification shown in
Figure2.1. Although these methods are commonly used for price forecasting, they
can also be utilized to forecast demande Thethods are classified mainly as time
series basd methods and game theory based methods. -3eémes based methods
are further classified based on the existence of explanatory variables in the model.

Comprehensive reviews on electricity price forecasting are available in the literature

[33i 35]. Among these, especially the papd3,34]focus on shofterm forecasting.

However, there is no substantiale vi ew wor k speciyc to next
forecasting.

Electricity

Price
Forecasting

[ —
] Simulation

and Game

Theory

Time-Series
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Frequency Time . Regression
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Figure2l: Categori zation of the methods us:¢
forecasting.

2.3.1 Time-Series Models

Time-series models are empally useful in handling common characteristics of next
daybés electricity price dat a, which are
rate of recurrence, and naonstant mean and varianf®/]. Among timeseries

based models, based on the existence of explanatory variablesl networks

(NN), support vector machines (SVM), data mining, generalized autoregressive



conditional heteroskedasticityGARCH), and dynamic regression (DR) are the
methods with explanatory variables. On the other hand, wavelet transforms (WT) in
frequency domain, autoregressive (AR) models, integrated (I) models, moving
average (MA) models and their combinations (ARIMA, ARMARMAX, etc.) in

time domain are the methods without explanatory variabMathematical
formulations of some of these models are givehahle Al for reference purposes.

2.3.1.1 Time-Series Models with Explanatory Variables

Time-saies models with explanatory variables consider the factors such as electricity
demand, fuel price, available generator capacities, temperature, and humidity, and
identify their effects orthe electricity prices. These methods are categorized as

artiycial i nt el | i-bgsechnocethod§. Al ) and regression

Al methods mimic human brain in order to train future prices by using electricity
price history and the factors affecting the pridagure2.2 schematically represents
this process.

!
Input layer Hidden layers Output layer

Figure2.2: Basic representation afNeuralNetwork

NN and its variations are the most commonly used methods amongeimee basd

methods with explanatory variables. NN is used inpiyeerg59,150]to forecasts

next lecrigith griceewith a focus on the weekends and public holidays in the

latter work. Artificial NN (ANN) is used in tharticles[30,102,121,123,141,144¢

forecasts electricity prices. An ANbBased approachinput-Output Hidden Markov

Model (IOHMM) i is used in the papg65]t o f orecast next dayods
CascadedNN, which involves a chain of NN engines, is proposed i). Fuzzy NN

used in thework [7] is another method derived from NNs. Ni¢lds snaller erros

compared to DR, ARIMA, and transfer functions
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It is known that if there are no spikes in the prices, ANN gives better results.
However, in case of spikes an enhanced probability neural network (EPNN) yields
accurate result$95]. EPNN adds a new layer, summation, and a new process,
orthogonal experimental design, to the networkorder to decrease the forecast
error.

There are hybrid approaches that use Al philosophy. Support vector machines
(SVM) and evolutionary algorithms ( EA)
electricity market. The articl¢56] uses a SVM algorithm with particle swarm
optimization (PSO) for several electricity markets. Other combinations are made by
[51] and [126]. In [126], the parameters of SVM are optimized by a genetic
algorithm and results are obtained with acceptable accuracy. On the othei5hand,

uses a selbrganized map network (SOM) to group the input data set as an
unsupervised |l earning mechanism and SVM
learning mechanism. Nl and evolutionary algorithms with an iterative parameter
search process are combined in artjt@. SVM, PSO and SOM are used together

to forecast electricity pricaa thearticle[107].

The forecasting methods based on regression model the relationship between
electicity prices and the factors that affect the prices. Thus, electricity price can be
estimated by using exogenous variables like demand. Dynamic regression and
generalized autoregressive conditionally heteroskedastic (GARCH) method are the
most common tectiques in this category. However, in most studies, dynamic
regression is used to compare the prediction performances. For instafid@g]in
dynamic regression and transfer function methods are applied. The relationship
between fundamental factors (such as demand, demand slope and curvature, demand
volatility, excess of generation capacity, scarcity, price volatility, etc.) thad

effects over time via several versions of regression are modelg]inin [60],
multivariate regression is used to analyze the effect of renewable enetgyttaity

prices. Forecasting is made by using GARCH metho{b). GARCH seasonal
dynamic factor analysis (GARC¥seaDFA)[58] i s a speciyc appro
structure of electricity price dat&he forecasting performance of GARCH models is
especially better when volatility is included. Because of this fa@,72] use
GARCH models for their analyses.

Generalized additive models (GAM) are used to maximize quality of prediction via
involving nonlinear effect§74,140] The paper[130] uses generalized additive

models via location, scale and shape estimatios @fe ci yc ti me i nst
estimated parameters are used as an input for dynamically changing prices. Another
approach is proposed [416] by using the logic given if63,64] In [116], GAM
generates an initial mo d e | of amobustt dayd
optimization technique.

2.3.1.2 Time-Series Models without Explanatory Variables

Electricity prices can be predicted by the models thahakinvolve explanatory
variables, A ¢l assi ycation of these models <can
domain or frequency domain is used. AR, ARIMA, and ARMA are the most
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frequently used timbéased models. On the other hand, wavelet transform (WT)
enlarges the time space to the tifrequerty space. For instancig] applies WT as
preprocessor in order to make this expansion and then to forecast prices with a better
performance via combination of NN and EA. One of the main advantages of WT is
that the method can decompose tisegies in time and frequency. By considering

this advantage[22] proposes a WT with multiesolution decomposition. The
method performs better than single resolution forms.

In liberal markets, electricity price data generally have a high frequency, non
constant meanra vaiance, and multiple seasonalitfhus, AR, ARIMA and
ARMA are very suitable methods for this kind of data. The ARIMA model proposed
by [39] gives reasonable prediction errors for. In some studies, models without
explanatory variables are cbmed with models with explanatory variables. For
instance [136] suggests a model by using ARMA extended by GARCH. Similarly,
[38] proposes a W-based model combined with ARIMA, afiti37] presents a W-T
based model combined with ARIMA and GARCH. ARIMA and its variations are
used in[32]. AR models with nonparametric extensions propos€gd58]. In [84],
regression and AR are equipped with tiwaeying parameter effects. AR and
regression models give better results when thelydetime-v ar yi ng coefyci ent s

2.3.2 Simulation and Game Theory

Gametheory and simulaticihased methods are generally devoted to improve

strategies for market participants. These methods are developed for predicting market
operatorsod buyi ng vea,rsithulasoa mbdelsity tobmitatesthe Mo r e o
real market and its conditions directly. For instanf®]] develops a market

simulator for the Spanish mieet. The algorithm includes the following steps: (i)

calculation of intersection of supply, demand and market clearing price for each hour

in a day, (i) assignment of selling bid, (iii) assignment of buying bid, (iv) acceptance

of the bids if the maximunvariation of the unit output between two consecutive

hours is between the required limigsy ) v er i yc at i-divisiblegfiantiyi ds f or n
rul e, (vi) veriycation o f mi ni msh revenue
guarantees a feasihlesult.

Game theory is generally used to determine bidding strategies. A generation of
compani esd bidding strategies un3djeA operatio
static game theory and a cesinimization unitcommitment algorithm are

developed for geneliay companies. Thus, the companies can analyze bidding

strategies in the market.

There are also combined versions of game theory and simulation in order to use the
advantages of both methods. For exampéf] proposes a mukagent based
simulation model for physical power exchange markets. Stochastic control theory is
used by[61], where a Cournot competition model is considered for bidding
strategies. In addition, simulations are made to seetkmng optimal strategies.
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2.3.3 Other Approaches

Forecasting next dayods price is a challe
by many factors. As a consequence, different approaches are developed to tackle
these issues and to suppress the disadvantages of classical methods. For instance, in
[175], the market price is investigated for New York Independent System Operator
dayahead market with different demand values. Satisfactory predictimmsbe

made for the Spanish electricity market by using weighted nearest nei¢@®jorA
forecasting system with muitiomponent which consists ofa fuzzy inference
system, an intelligent system, and lesgtiares estimation is developed [9d].
Designing the input vectors of electricity prices is an important issue that affects the
forecasting performance. A hybrid NN model is proposed[8]ywith a relief
algorithm. This algorithm is used to select the features of the input vector. In order to
handle daily seasonality147] uses a functional nonparametric model. Hehe,
electricity price is considered dise discretetime realization of a antinuoustime
stochastic process

Forecasting of spikes in the prices is another issue iradegd electricity markets.
In [13], a speciyc met holabilistbh AN and @ mylsrid seure o f
evolutionary system is developed. Another hybrid neawautionary system is
developed in[12] to improve forecastip accuracy. A hybrid nonlinear chaotic
dynamic and evolutionary stratepppsed approach is developedid3]. The article
[15] uses autoregressiraoving-average model with exogenous inputs (ARMAX),
where fuzzy logic is employed hybrid waveletARIMA and radial basis function
neural model is proposed [&31] to obtain an improved accuracy with less input
data. Stochastic programming is alappliedin price forecastingespecially for
bidding strategies. For instance, a quadratikedhinteger stochastic programming
model is proposed if¥0] for optimat4qbid strategies. Ifb3], a stochastic mixed
integer linear programming model is used for the bidding problem.

Among nextday electricity price forecasting methodéN-basedonesare the most
common.Errors ranges involvecdhithese NNoased methods anichditional methods
such as AR, ARIMA, GARCH, linear regression (LR), and multiple regression (MR)
arepresentedn Tables A.2 and A.8or reference purposes.

In some electricity marketshe explanatory variables (e.g., elacity demand, fuel

price, available generator capacities, temperature, humidity) are highly affective.
Especially in such systems, traditional
critical factors affecting these systems are price history and eigcttemand. Other
common factors include resource prices, generator capacities, climate effects, and
time slot.Factors affecting the prices are tabulated able A4. These factors vary

with respect to the markeof concern. Among the electricity markets, mainly
European markets especially, the Spanishare studiedwhich istriggered bythe

early revolution into a competitive market structgcé Table A5). For a déailed

review of the models presented here, the reader may rgfesap
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CHAPTER 3

MODELS DEVELOPED FOR ELECTRICITY MARKET
OPTIMIZATION

This chaptemainly describes two electricity market optimization models, stochastic
optimization model and robust optimization model, developed iritibss

The stochastic dpnization model is based dhe generation of supply and demand
scenarios for a given set of market data. In this model, OrAdtdeanbeck mean
reverting process and Mor@arlo simulations are used to model stochastic supply
curves.

As a part of robusoptimization model, we developed a hybrid model merging
wavelet transform and multivariate adaptive regression splines (W~MARS) to
forecast the parameters involved in the syst&ims model is combined with an
efficient method for modeling uncertainties the system to give the robust
counterparof W~MARS (calledR~W~MARS).

Stochastic optimization model and robust optimization model, including a detailed
explanation of W~MARS and R~W~MARSre presentedrespectively in the
following sections.

3.1 Stochastc Optimization Model

Countries aim to create economically efficient electricity portfolios considering two
basic energy security indicatoraffordability and availability while preventing any
energy shortage. However, due tmcertaintiesboth in suply and demand,
stochastioptimizationtechniques are often required in creating the portfolio.

Here a novel stochasticand simulation based method, which utilized Ornstein
Uhlenbeck meameverting process and Mor@arlo simulations, is describedlhe
methodology involves generation of stochastic supply cuimedifferentscenaris

by consideringhe powergeneration technique¥hese scenarios are incorporated in
astochastic mixednteger portfoliooptimization modeld maximize the profit antb
obtain the most economic diversity of energy resources.

Figure3.1 illustrates the approach usedtire stochastic optimization modehnputs

of the model include the supply curves, demand scenarios, and the power plant
capacites. Tls optimizationmodel maximizes the expected profit under specified
constraints to give optimal market prices and quantities.
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The main contribution of the method presented Ienme modelingof the electricity
supply curves and theintegration nto a stochastic mixeahteger optimization
model. The supply curves are constructed as piecewise linear functions and market
prices are determined lepnsideringelectricity production costs, electricity demand,
natural gas prices, exchange rasasd gererator typesModeling ofthe supply and

the demand curves and te®chastic portfolio optimization modate described in

the followingsulsections.

Inputs Model Outputs
Stochastic o
-
% | Maximization of
P o aQ D M
dutvic g - Exchange rates 2| Expected Profit ;
prices in USD = o *Optimal market
—~———— R — prices and quantities
Specitic production costs per power *Expected individual
plant type *Demand supply market players’
balance at each profit
- - step
Slopes of the supply curves 2| . . *Expected overall
= [ ~Capacity profit of the market
- i < | constraints of
Demand Scenarios g power plants
Q

*Non-negativity

Deterministic 1
conditions

Power Plant Capacity

Figure3.1: Approach in the stochastatectricity maket optimization model

3.1.1 Modeling the Supply and the Demand Girves
The supply andhedemand curves especially determine the optimal market outcome,
i.e., the price and quantity for a godc0,145]

A meritorder curveis usually employed to represent the total electrisitgply

when defining the markeSuch a curve presents thanginal costs and capacities of

all generators and ranges from the least expensive to the most expensiideinit.
generation technology and the fuel used are the main ctarstb® marginal costs

For instanceusually gas power plants have higher prdiguc costs compared to
hydropower and nuclear power plarfiggure 3.2 illustrates such a mesdrder curve,
where solar electricity generators haveetheast production cost and -bihsed
electricity generators have the highesiduction costin this figure, the intersection

of thesupply curvedefined by the merbrder curve and thdemand determines the
optimal market outcome. Energy companies, whose production costs are lower than
the market pie, produce as much as possibbnsidering their available capacities.
Since the production costs among the plants are different, any producer with the
lowest production cost earns relatively more than any other producer with relatively
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higher production cost. Accordingly, for thendand scenario ifigure3.2, producer

5 stands just at the breakeven point whereas produeegeterate profit. Therefore,
the remaining plants should not operate for the market to make a total profit. When
the demand becomesalppower plants with higher operating costs standstill, which
results in lower total production costs, hence, in a lower electricity phinethe
contrary, when there Bnincrease in demand, the power plants with higher costs are
needed to satisfy theethand; this results in a higher electricity price. However, the
electricity production and demand aa¢éso affected byuncertainties.Therefore
different stochastic scenarios for the supply and demand cargesodeledinstead

of a deterministic approadio generate different possible optil market outcomes
and profits

Production
cost

per MWh

Demand

- N | e = = = === ——

Total profit
Optimal | o da da  da

market price | Profit A Profit B Profit C Profit D

Total

T T T T 6 T T Y e
& O & & & SN & > production
 F & & v O © (MWh)

Figure3.2: Integrated electricity supply and dendan

3.1.1.1 Modeling the Supply Curve

Considering common resourckes electricity generatioficf. Figure3.2), natural gas

is especially importaniWorldwide, natural gas is traded in USD ahe prices are
generally set by thelenry Huh which is an important distribution hub on natural gas
pipeline in the USA. Howevenatural gas priceare highly volatilg66]. Therefore
since gadired power plants have high production coskte supply curve mudie
considered as a stochastic parametspecially for the markets, which are highly
dependent on gd#ed power plants

For a generic electricity markethe electcity consumption may béilled in a
currency different than USD. Therefortochastic foreign exchange ratestween
USD and the local currenayust also be consided when determining theupply
curve. In order to obtaiproduction cost and supply cunaeenarios for each
electricity producer, Moe-Carlo simulation techniques used to obtairconsistent
and unbiased estimatof80,111] Each scenariaos generated by considering the
effect of stochasticity in naturalag prices and exchge rates. For this purpose,
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well-known OrnsteifJhlenbeck meainevertingprocesss usedsince commodites
like oil and gas, and thexchange rates mostly exhibit mean rever$igt?]. This
implies that they tend toeturn to a longerm mean overtime. The Ornstein
Uhlenbeck meaineverting process is defined as

dS=a(L-S) d sdy (3.1

where( > 0 andU > 0. Here,(S),., is theprice process of asky assetnamey,
(W).., is a standard Brownian motion, adds a constant volatilityL is the long

term mean of the proce& to which it reverts over time, aldi meas ur es 0
s peedo-reeefsionmihaaxplicit solution of this proces§i2]

S=e"§ u(l <) &’ sadn (3.2)

Here & denotes the initial jge at timet =0. Through a regression analysis, the
parametet) can be estimateimilarly, if a mearreversion process is assumed, the
volatility & may be estimated from historical data. For a detailed analysis and
discussion abduparameter estimation of the Ornstélhlenbeck meaimeverting
process, readers may refe167,158]

Instead of constructing scenario trees for each parameter separatehg- a
dimensional scenario trae constructedcf. Figure 3.3) to have a computationally
efficient scenario generation proceduNatural gas prices and exchange rates
generated simultaneously for each time step. By running antdinimg scenarios for
the natural gas prices and exchange rdtésn =n scenariosare generated at each
time step. Herek is the number of gas price scenariwss the number of exchange
rate scenarios, and is the total number ofcenarios per time step. Kolmage-
Smirnov (uniform) distances used while generatingcenario$47,75,119]

For each simalted gas price and exchange scenario, discrete supply curves are
modeled as piecewise linear functions between each producer. The intersection of the
supply curves with the demand curves resulted in different optimum market
outcomes and profits. One illugtive piecewise linear power supply curve is shown

in Figure 3.4(a). For this particular case, the intersection of the mean demand
scenario anthesupplycurve resulted in a market prigelicated by the dash lines in
Figure 3.4, meaning that power producers4lcan provide all of their available
capacities and powg@roducer 5 only one part of his capacity. For g#usnario total

profit is found by calculating the area between the diashand the piecewise linear
supply curvesBYy using this approach, a total numberksf m supply scenarios are
generated for eactime period.Figure 3.4(b) presentdllustrative piecewise supply
curves br all scenarios
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Figure3.3: Two-dimensional scenario tree.
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Piecewise linear supply curves
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Figure3.4: lllustrative piecewise supply curvega) fora particularscenario,
(b) for all scenarios.
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3.1.1.2 Modeling theDemand Qurve

The electricity demand typically consists obaseload, a middle load anda peak

load. Thebaseload is defined as the permanently demanded power during 24 hours
and 365 days per year, whereas tiddleload is he power which is additionally
demanded to the base load during some hours per day. Finallpe#kdoad
represents the power which is demanded only in few hours and/or days per year.
Typically thepeak loads occur at 12 p.m. and 6 pdaily. In summay, there ishigh
variation in the electricity demand between peak times (day) anepbe#ik times
(night); and between the seasons (winter and summer). Daily variation is basically
caused by the decrease in the need for electricity consumption by most of th
companies and households. Hence, the electricity demand is the lowestnightid

On the other hand, seasonal variation is caused by the use of electric heaters or air
conditioners during very hot or very cold periods of the year. For most of the
consumers, he elasticity ofthe demand is very lowThis is because of the lack of
substitutes for energy arlde costumers overrating the product.

Overall electricity consumptiors modeled for eackime period To havethe mean
deterministic demantbrecast a growth factoris determined by usinthe geometric
mean formula and multiplying with the demand of thprevious periodTo include

the variability of this forecast, the approximate standard deviations from this mean
demand scenariarecalculatedand included. As a result, one deterministic demand,
onehigh-demand and ame lowdemand scenariare obtained Figure 3.5 presents an
illustrative example showing deterministic, loand highdemand scenarios.

=& Deterministic Demand =0-Low Demand =#-High Demand

Demand (MWh)

Time

Figure3.5: Deterministic, low, and highdemand scenarios

The inpus used in modeling the supply and demand scenarios ae hstow for
reference purposes:
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1 Periodic (e.g. monthly) energy consumptiondaa for modeling demand

scenarios

1 Production data ofexisting power plantsto determine yearly effective

production mean

1 Production costs of each power plg&r generation type to derive the supply

curves.

1 PeriodicHenry Hub natural gas spot pricessimulate production costs through
a stochastic price process.

1 Averages ofperiodic exchange rates teimulate production costs through a
stochastic price process.

Normally, snce the standard error is proportionallta/sample siz in Monte-Carlo

simulation [43], number of demand and supply scenarios should be kept high to
minimize the error. However, this considerably increases the computational time.
Here, reduced number of scenarios can be randmelected to decrease the
computational timeReferringto the Central Limit ieorem, the required number of
R . 2

scenarioscan be determined bwysing n:E}Z"FB g,
ge&x t
standard deviatiorg; representshe confidence level md Uis the percentage error
[63].

where S shows the sample

3.1.2 Optimization M odel

The electricity demand and supply, along with tfenerationcapacities serve as
limiting constraints for the expected profit maximization mof#9]. A mixed
integer stochastic modi given below in Buations(3.3)-(3.8) for any given supply
scenarick and any demand scenatio

maximize
z:t'la;1 Ea'( prob (,otik g,*)) X Illaf y (33)
subject to
§&=d (t =,..7T) (3.4)
axt ¢ (i 4..P) (35)
§M¢M, (3.6)
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éi ;¢ yM (i &,..P), (3.7)

20y {0} (t 4.Ti %.P (3.8)

Here t=1,...,T is the index for timeeriod T is the number of time periods (g.g.
T =12 if the period is monthly)j =1,...,P is the index forpower plants,P is the
number of power plantk is the index for scenariod,=1,2,2 is the index for
demand scenaridsleterministic, low, or high)pf is the market price of electricity
supplied, ¢ is the variable electricity production co&ijs the fixed operating and
maintenance costj; is the total electricity demand at tirhes is the total capacity

of planti, prob‘ is the probability for occurrence of each scen&i@ndM is a
sufficiently large positive numbeOccurrence of each scenar® assumed to be
uniformly distributed. The decision varialyg represents the amount of electricity
that can be supplied by planin periodt. The binary decision variablg shows
whether the fanti is dispatched or not.

The total capacity of the plantsay exceed the total load demand, and excess supply
cannot be stored’hus, Constraints 2.4) imply that all the demand can be supplied

by using equality consaints. On the other han@pnstrants @.5) implythat the total
amount of electricity cannot exceed the total capacity of plants. Constég)tarid

(2.7) guarantee that at moBtnumber ofplants can be dispatched aiidhey are
dispatched, then they should produce electricity. Camés @.8) show non
negativity conditions of decision variables. Specific technical parameters of the
plants (i.e., ramp up and ramp down rate, shut down und start up costs of the power
plants, etc.)are neglected due to the lack of data. Transmissiostscare also
excluded since the current conditions refer to an incomplete type 2Rt

The mixedinteger stochastic modéd solved for each of 3 demand scenarios land
number ofsupply scenarios. theach run, price and variable electricity cost, demand,
and supply valuearechanged according to the outputs of scenario trees.

3.2 Robust Optimization Model

Many constraintsnvolved in an electricity marketre often highly volatileA robust
optimization model is developed asfficient method for modeling ellipsoidal,
single/multiple, correlated/uncorrelated types of uncertainfigss model also
requires forecasting of the parameters, such as price. Considering high volatility of
the market, these paneters need to be forecasted precisely in short {Eneiobust
optimization model developed in this study, makes use lofbrid method merging
wavelet transform and multivariate adaptive regression splines (W~MA®S)
forecasting the parameters invalve his section explagWW~MARS and the robust
counterpartmode| of W~MARS, called as R~-W~MARS closer detall
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3.2.1 Waveleti Multivariate Adaptive Regression Splines (W~MARS)

The forecastingmethods reviewed irChapter 2have their own strengths and
weaknases. Therefore, researchers have developed hybrid methods to merge the
strength of different methods. The arti¢lie73] combines ARIMA with NN. The

article [9] combines WIEGARCH-chaotic least squares support vector machines
(LSSVM). The article[174] recommends W-RARIMA -LSSVM-practical swarm
optimization (PSO) combination. The arti¢lE37] combines WT with ARIMA and
GARCH.

MARS models[55] and their variationg113i115,139,152]are not used very
commonly in electricity price forecasting. As the first application, MARS rhixde
applied for Ont a[t7i]dm[k32], MARSdstonly used foryinitiplr i c e s
parameter selection and then seasonal autoregressive integrated moving average
(SARIMA) model, a SARIMA model with GARCHSARIMAT GARCH) and its
combination with regression model are presented. A nonlinear autoregressive model
with exogenous inputs (NARX) is compared with MARS and wavelet NNLBY/

Two variations of MARSphamelyConic MARS (CMARS) presented ii153] and

Rolust Conic MARS (RCMARS) developed Ipy14], are used irf116] to forecast

Turkish electricity prices.

W~MARS is a substantial alternative to classical tisegies methods, NN, MARS
model s and all these met hods o6 meatheseat i 0 n s
two methods for electricity price forecasting can be summarized as f¢86vis 8}

1 WT decomposes series from-liiehaved form to a more stable one. At the
same time, WT traces frequency and time dimension of the data
simultaneously. These properties directly serve dononstationary and
volatile stucture of electricity prices.

1 Processing and computation of WT is very fast even when level of series is
very high. For this purpose, pyramid and inverse pyramid algorithms are
used.

1 In WT, the level of constitutive series can be controlled accordinthe
forecasting performance.

1 MARS models complex nonlinear relationship between variables without
assumptions and can handle multiple inputs easily.

1 The elative importance of the dependent variables can be identified.

1 The model can be trained anchgptraining procedure is not required even for
the large data sets.

1 Outputs of MARS can easily be interpreted. Like WT, MARS is also
implemented very easily and gives resubry fast.

1 Both methods are assumption free.
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In summary, specifically WT captwanultiple seasonality, unusual behaviors and
volatility, whereas MARS eliminates the selection of explanatory variables problem,
thus a combined method can handle the challenges introduced by the electricity
market problem.

In order to coprehend W~MARS mthod in detajlmultivariate adaptive regression
splines and wavelet transform must be cover€de llowing subsections describe
the multivariate adaptive regression splines (MARS)theavavelet transform.

3.2.1.1 Multivariate Adaptive Regression Splines (MARS)

MARS was first introduced by Friedman in 19(b]. It is defined as an extension

of linear modeld¢o model the inteactions and nofinearities automatically. A two

stage (i.e., forward stage and backward stage) additive model is generated by the
model[55]. MARS determines basis functions (BFs) and adds thahetmodel to
construct a sufficiently large model, whialsually overfits the data set, in the
forward stage until maximummumber of basis functios is reached, which is
specified by the user. However, since the model is large and overfitting thetdata se
it is overcomplicated and possibly including many incorrect terms. The overfit
model is trimmed to reduce the complexity of the model while regarding the fit to the
data in the backward stage. BFs contributing less in the residual sum of squares
(RSS)are pruned at the backward stage. As a result, an optimally estimated model is
produced73].

The form of piecewise linear omtmensional BFs created by the data set are as
follows [73]:

tx, if x >
0, otherwis

ex-t, if x >t
[x-t], 3

. (3.9
iO, otherwise

x 1 F
|

Here, ¢ is a univariate knot obtained from the data set. Functions given in Equation
(3.15) are called truncated linear functions. Truncated linear functidthsa knot at
the valuer , both together are termed as a reflected pair. It is aimed to construct

reflected pairs for each inputX| (j =12,.. ,p) with p-dimensional knots
t, :( A ip)} (i =2, »N) at each observed ke x, of that inputi =
1, 2N. Asaresult, collection of BFs is obtained, which can be stated aSa set
S={{X A..[ ¢t X | t‘{l’)ﬁ, %, b F12,3,..., B (3.10)

Here,N and p denotes the number of obsereas and the dimension of the input
space respectively. If the input values are all distinct, then thereNgr&Rs. The
model in the forward stage is generated by using the BFs in ti&tlsetugh their
possible products. As a result, the generated maggllied at a candidate input
vectorx, is of the form

M
Y=a, 9 & ¥x)+ , (3.11)
m=1

24


http://en.wikipedia.org/wiki/Linear_model

where x=(x,%,....%, ) . Here, e~ N(O, §) is a random noise term, whids
supposed to have normé distribution with zero mean and finite varianeg, M is
the cardinality othe set of BFs in the current model, (x) are BFs, anck are the

unknown coefficients for the constant th € 0) or for themth BF. Given the
observatiorfx;, y;) (i= 1,2,...N |, the form of themth multivariate BF is as follows

[73]:

ym(X) = 6 [Skm'(x\( jim tjrr)]w (312)

where K, is the nunber of truncated linear functions multiplied in theh BF,
X,;m IS the input variable corresponding to ftie truncated linear function in the
mth BF, £ is the knot value corresponding to the variakle , ands, = 1.

' £ im
In forward stage, MARS starts with the constant funcligiix) =1 to estimate,,,
considering all functions in the sBtas candidate. Possible forms of the BEHx)

arel, x, [ - £il XX, [X% - £].% and[x - £1.[% -4 ..

Input variables cannot be the same for each BF. Theretoed3Fs use different
input variables,x andx, and their corresponding knots, and . At each stage,
with one of the reflected pair in the sgtall products of a functioy . (x) in the

model set are regarded as a rfanction pair and added to the model set. The term
producing the largest decrease in training error has the form:

Ay X)X, -k, Ha (B[ O - (313

Here, a,,,, and a,,,, are the coefficients and are estimated by least square, like all

otherM +1 coefficient appearing in the model. These products are stepwise added to
the model in forward stage. Therward stage stops when a useecified number

of terms is reached. Theattel generated at the end of the forward stage typically
overfits the data. Therefqra backward stage is run to prune the model.

The terms contributing less in the residual squared error are stepwise removed from
the model. The iterations continue urlié final models includes an optimal number

of effective termg55]. Therefore, an estimated best mod?“—;l of each number of
terms m is produced athte end of this process. Generalized creglation (GCV)
is used to find the optimal number of terms GCV also shows the lack of fit when
using the MARS model. The GCV is defined35]:

At (yv- Ex)

LOF(E) = Gev(m LM (AN

, (3.14)
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where M (m) is the effective number of parameters in the model Naiscthe number
of sample observationfg3].

3.2.1.2 Filter Theory and Wavelet Transform

Fourier analysis, which localizes just frequency domain, has a remarkable impact on
applied mathematics. As an improvement of Fourier analysis, wavelet method can
efficiently describe the functions both in frequerdymain and time domain. This
time-frequency localization is one of the most important advantages in comparison to
standard methods like kernel smoothers and orthogonal $&ti@f Besides, even

for a large data set and sharp spikes, wavelets provide a simple form with its fast
algorithms in order to find a statistically significant representa{ibb8]. Here, only
discrete wavelet transform (DWT) is considered, sifteelectricity prices are
observed at discrete time points=0,1...,N -1 Let X; represent the electricity

price at timet and X represents its correspondihgdimensional column vector. Let
D; represent the electricity demand at titngnd D represents its correspondihg

dimensional column vector. Here, the lengthXak restricted toN :=2’. To handle

this restriction in W~MARS method; a simple modification is made before the
transformation and i s expl glepresahttheth t he f ol |
DWT coefficient (n=0,1...,N -1), W be the corresponding column vector of length

N:=2’, andq be anN3 N realvalued matrix that ensure®/ WA . A wavelet

transform ofX is an orthonormal transform and can be writtenW\as WX, where

W R™N and Wi R". Here,q andW form time and scale coefficients, which
means a multiresolution analysisXin terms ofDWT coefficients. However, in the
transformation progress, boundary effects arise and cannot be elim[ha&id
Therefore, an efficient algorithm called pyramid algorithm of or@€iN) that is

faster than fast Fourier transform is used to calculate wavelet coeffigi€dis The
algorithm initially takes the original data s€tand forms lowpass and higipass

parts by using filtering operations. Hert#d R™" is obtained by convolutions of
the wavelet filter.

Let h (1=0,1,.. L -) be wavelet filter andg, (I=0,1...,L -3 be associated

scaling filter wth respect to somé& i 2N. In order to have an orthogonal wavelet
matrixq, h (1=0,1,.. L -3 must have the following properties:

gh =0, (3.15)
an=1 (3.16)
ghh+21 =0, foralln iZ\{0}, (3.17)

1=0
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whereh =0 for all 11 Z\[O,L -]. These properties respectively mean that the sum

of the wavelet filters is zero; the wavelet filter has unit energy and it is orthogonal to
even shifts. Especially, the last two properties show the orthonormality property of
wavelet filter. The scaling filter is the quadrature mirror filter of wavelet filter and

defined asg, =( 1) " h_,,, wherel =0,1... L -1 andg =0 for I Z\[O,L -1.

Let H(Q be the transfer function fon and H (® be the associated squared gain
L-1
function. These functions are given by(f)=& he'*" and, henceH * H ()",
1=0
Orthonormality of wavelet filters can also be defined in terms of squared gain
functions as

2, forall fi R. (3.18)

Similarly, if G( f) is the transfer function fog, and G:=G( f)° is the assoctad
squared gain function, then:

ar . o ‘
G(f)=Hg -f gforall fI R, 3.19
()=rgg -f 9 (319)
and
G(f)+Gaf % 82 forallf H (3.20)
C -
Hence,
H(f)+G(f) =, foralf R, (3.21)

which shows that if one of the filter is higlass, then the other is a lgass filter.
The reader may refer {@18] for details on filter theory.

In this study, whole Daubechies (D) filteamily is used in order to compare the
performance of the method according to the filter types. This family includes Haar
wavelet filter, Daubechies 4 (D4), D6, D8, D10, D12, D14, D16, D18, and4£20

As an example, Haar and D4 filters are giveTable3.1. Here, it should be noted

that wavelet filters are higpass filters and scaling filters are lpass filters. The

reader mawlso refer tq100]f or t he ot her filtersdé numer

Implementation of wavelet transform with Daubechies filter family was done by
Mal | at 6s pyramid and i towv elecampositipny and mi d
reconstruction, espectively[101]. The pyramid algorithm gives decomposed data
series inJ iterations. At the initial step, all input data, i.e., price and demand, are
separately decomposed irfti@h-pass (V1) and lowpass V1) parts by usingy and

0,, respectively. This also means th&f forms N/2 wavelet coefficients andf;
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forms N/2 scaling coefficients. Herd&/; is used as an input of nexeiation and a
second decomposition is made to calculie and V,. At each iteration, scaling
coefficients are subsampled and decomposed to form new wavelet and scaling
coefficients. Hence, at each step, rougher (i.e., for-pags) and smoother (i.earf
low-pass) frequencies are obtained. At the end of the algorithrpds® and high

pass parts are obtained where time information for both sides is still kept. In this
study, keeping both time and frequency information is one of most important reason
to use wavelet transform.

Table3.1: Numerical values of Haar and Daubechies 4 wavelet and
scaling filters[100].

Wavelet Filters Scaling Filters
1 1 1 1
H = = — = =
aar hy *\5 h, «E Y% \E hy «E
_1-43 hl=-3+\/§ g _1+4/3 g=3+J§
o4 42 42 ° a2 RENE

_3+43 _-1-3 _3-\38 _1-43
“un 0 " YTap T

In order to demonstrate pyramid algorithm mathematically, let us haveséries
X=(X:t=91...N 3 and X =V,. Thus, at the jth step,

V.., (t=0,1,...,N]. :I) and N;=N/2 for j=12..J. Let further

h (I =0,1,.. L :I) be wavelet filters. Then, théh wavelet and scaling coefficients
are defined by

L-1

W, =a hV.1, 41 -modl |, (3.22
1=0

and
Lt

Vie=a 9Viia 4 moc ., ? (3.23

1=0

respectively. The results for alare

N T
Wi (=(W,), ) B oW W W 8 (324
and
N T
Vi(=(vi.)): BhoM Y o Va1 B (329)



Finally, acombination of all steps of pyramid algorithm yields

N (D2
=

odd o
[ i el el el e el )
e
—
pe)
oF

N

el (3.26)

—.
I

dWRE R 1a ]

&v

[

or

j=d Wa“( W aww £, (3.27)

where tle vectorW is partitioned into suvectors and the matrig is formed by
convolution of filters and partitioned into safatrices. Henca) andq are given by

W, o ag

u e

M. g
W=¢€: wndq = :é (3.28)

u e

Moy e

&, ag

whereq; is a (N/2')3 N matrix,qyand; a r eN nalrices W, is a (N/2')31
column vector, an; is the last element V. Since the WT localizes both time and
frequency dimensions, wavelet and scale coefficients refer to these localizations on
time and scale dimensions, respectively.

Similarly, reconstructions of the series are implemented by uswverse pyramid
algorithm[118]. In this case, ugampling is applied by usirthe following formula
at eachj:

L-1

La
Vj-l,t =a QVJ} 41- moN +aﬁ'V}/f B mod |, (3.29
)

1=0

fort=0,1... N, -], where

0, t= 0,2,.N,, -
Vii -:‘1Ivj o t=13.N, -1 (3:30)
=3
and
0, t= 0,2,.N,, -
WiiSilw ,, t= 13N, - L. (3.31)
P

2
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The reader may refer {d18] for the pseudo code of pyramid and inverse pyramid
algorithms.

3.2.1.3 Implementation of W~MARS
W~MARS method, which idlustratedin Figure 3.6, is implemented in tiee main
steps.The nput data for W~MARS includhistorical time datd X, X, ;,..., X y 1)

in order to forecasiX,; .

I
- — MARS MARS 1
training > model |
data wavelet "
(training set) decompose ;
- MARS MARS
training > model I
I I
| I MARS |
] 1 testing
data wavelet | | wavelet predicted
(testing set) decompose 1 > reconstruct data
low-pass P> '\['\ARS |
. testing
I I
\ Y |\ Y | )
Step 1 Step 2 Step 3

Figure3.6: Schematic representation of W~MARS.

Step 1 This step constitutes the decompositiontibé d at a . By wusing
pyramid algorithm[101], time seriesX of length N=2’ are transformed intd/2
wavelet and scale coeffats, as illustrated iRigure3.7. Here, the length of series

must be the power of 2 so that the data can be decomposed into two Walaad,

Vj, at each iteration. Therefore, the initial data set is broken to have a segjtbf len
N=2", as denoted ifl18].

At the end of this step]-1 transformationswhosejth transformation results iwW;

andV;, are made in order to discretize the data into-pass and higipass parts.
Hence, spikes in the data are extracted from the series and their impact is processed
separately.

Discretization processes are mdesymmetric and asymmetric wavelet filters like
Daubechies (D4, D6, D8, D10, D12, D14, D16, D18, and D20) and Haar,
respectively. Since these filters are used for orthogonal transfogm thie wavelet
filter h has a realaluedsequence.

Unlike the articles[38] and [106], which employ only D4 and Haar filters,
respectively, here an appropriate filter that yields the best performance is selected by
the method automatically. Haar and nidiéferent Daubechies wavelet filteere
employedto transform the timeeries. In total, 10 different lowass and higipass
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parts are obtained for each input variable of this S#pTLAB 2012b is used for
implementation of this step.

N NI2 N/4 Ni2?
| i
" 1
W [
i’ |
1 - W
X=V, W, i
W, i
j=0 j=1 j=2 j=J

Figure3.7: Decomposition of electricity prices at the first step of W~MARS.

Step 2:After decomposinghe data into itdow-pass and higipass partsthe model

is built by MARS algorithm|In the first phase of MARS, basis functions are added
iteratively suchthat the largest reduction of training error is obtained. This phase of
MARS algorithm is called afrward selectionSince the constructed model is large
and it overfits the data, the second phase of the MARS, backward deletion, is
applied. Here, the I8&s functions are deleted according ¢generalized cross
validation(GCV). Both phases of MARS are applied for each-fmags and higipass

parts. The models with lowest GCVs are selected and the model is used for the
testing procedure of MARS model. Finallsignificant variables, their interactions
and degree of interactions aretekrminedand value at timet+1 is predicted This

step ismplementedusingARESLab[80].

Step 3:Since the predicted values 8tep 2are in the decomposed form, this step
compiises reconstruction aheseries Here,Step 1lis reversed usinthe same filters.
Figure 3.8 illustrates thisprocedure whereV;- andW;- indicatepredicted lowpass
and highpass partsandX" representshe predictedvalues This step ismplemented
by usingMATLAB R2012b.
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W, W, W,

Figure3.8: Reconstruction of predicted electricity prices.

3.22 Robust Wavelet i Multivariate Adaptive Regression Splines
(R~W~MARYS)

Data used in many energylapning models include random fluctuations. For
instance, the demand, supply, investment and emission parametenst known
properly Some of these parameteranbe estimatedhence they include estimation
errors. Demand and supply are generally fasted and they include forecasting
errors as well.On the other handsome of the parameters mapt be possible to
estimatg(e.g, emission quotas ifurkey). In this case, the parameters are subject to
subjective assessment nois#gsfining uncertaintyets of the parameters.

Here we developa tractable robustlectricity market optimization model The
uncerainties in the parameters, representedibgertainty regions, are modeled by
using W~MARS. The rtactability property of the robust model increasbe
complexity To reduce the complexity anmace timedependent uncertaintyan
efficient method utilizinga projection of uncertaintieis employed.

The poposed model, which handles uncertainties in the data and tracks their
dynamics also considersenewability and sustainability of the electricity market.
Renewable and sustainable electricity market model consists of two types of
uncertainties. One of these uncertainties is related to the electricity demand since the
demand has an adaptive structiaed changes according to dlégity price,
temperature, etcThe othettypeis related to emissions since the model aims to give
sustainable result3$he model is illustrated iRigure3.9.

To account for the uncertainties in tegstem, modeling uncertainties should be
comprehended clearly. The following section presents a background for modeling of
uncertainties.
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Figure3.9: Schematic representationrobustelectricitymarketoptimizationmodel.

3.2.2.1 Modeling Uncertainties

Modeling and optimization of reaborld problems generally involves uncertain
parameters because afarious changing situations. Leus define a general
optimization problem under uncertaintysatedoelow:

maximizec' x
subject to

~ ) (3.32
f(x,.5)20 ¢ ),
xI X,
where f(x,D) (il I) are given functions,x is a given set and, (il 1) are
vectors of random coefficients. This problem carrdfermulated by using vector

of expected valuesP?® and arandom parameter vectdd,. In order to handle th

feasibility problem, a chanesonstrainednodel is formulated as follows, referring to
a probality measure P over the event space:

maximizec' x
subject to
~ i (3.33
P(f,(x.5)2 0 21 ¢ { 1)
xI X.
However, chanceonstrained models are noonvex and generally intractal28].
They encounter nuerical difficulties especially during the solution progress.
Besides, they need probability models of uncertainty and computations of

multidimensional integrals related with expectations and probabilities. Thes,
following robust optimization problems proposed by24]:
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maximizec' x
subject to

min f, (x,D))2 0 ( II). (334

xI X,

whereU, (il 1) are uncertainty sets. The selection of the uncertainty is one of the

most critical issue in robust optimization probleniiree main concerns should be
considered in selecithe uncertainty regiorj6]:

1 The wncertainty region should be consistent with the uncertain parameter and
its data set.
1 The wncertainty region should be statistically meaningful.

1 The wncertainty region should providerac¢table robust counterpart problem.

In this study, the most important decision criterion is the computational tractability.
If the original form of the model can be solved in polynomial time, then the robust
problem should also be solved in polynomialdirfhe other criterion is to guarantee
the feasibility of the model withithe limits of uncertainties. The decision criterion
for feasibility depends on the problem type ahd uncertainty type used for the
problem. The most commoproblem and uncertantypesare given inTable 3.2

with their robust counterparf28].

Table3.2: The most common problem and uncertainty types.

Model/Problem Uncertainty c , Robust
) onstraint
Type Region Counterpart
LP model Polyhedron a'x2b LP
LP model Ellipsoidal a'x2b CQP
QCQP model Polyhedron HAXHi +b'x € @ -
QCQP model Ellipsoidal HAX‘E +b'x € @ SDP
SOCP model Ellipsoidal HAX + BHZ ® x & SDP
SDP model Ellipsoidal A" Ax 2B -

j= i

LP: Linear programming model, QCQP: Quadratic constrained quadratic
programming model, CQP: Conic quadratic programming, SDP:-8efinite
programming model.
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