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Electrical and Electronics Engineering Department, METU

Prof. Dr. Eres Söylemez
Mechanical Engineering Department, METU

Prof. Dr. Kemal Leblebicioğlu
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ABSTRACT

SELF-RECURRENT WAVELET NEURAL NETWORK BASED INDIRECT
ADAPTIVE CONTROL ARCHITECTURE WITH MODIFIED ADAPTIVE

LEARNING RATES FOR THE SPEED CONTROL OF MOTION PLATFORMS

Arı, Evrı̇m Onur
Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Erol Kocaoğlan

February 2015, 151 pages

Motion platforms are widely employed in military systems for the purpose of con-
trolling payloads like optical sensors, antennas, guns etc. One of the most critical
components of these platforms is the motion control sub-system which is responsible
for controlling the speed of the platform. In this thesis, the components of the speed
control are investigated in detail and finally a novel control architecture was proposed
in order to improve the transient performance of the speed control without any adverse
effect on its robustness. This architecture is a form of indirect adaptive control using
Self-Recurrent Wavelet Neural Networks (SRWNNs). The architecture is enhanced
by a novel parameter update method in order to guarantee fast convergence, and an
additional algorithm for structural evolution. The performance of the proposed archi-
tecture has been shown with simulations and verified with experiments. Moreover, its
performance is compared with several robust RST-based control designs.

Keywords: Motion Platforms,Lumped-Mass Systems, Multi-body System, Wavelet
Networks, Adaptive Control
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ÖZ

HAREKETLİ PLATFORMLARIN HIZ DENETİMİ İÇİN KENDİNİ
TEKRARLAYAN DALGACIK SİNİR AĞI TEMELLİ DEĞİŞTİRİLMİŞ

UYARLAMALI ÖĞRENME HIZLI DOLAYLI UYUMLU DENETİM YAPISI

Arı, Evrı̇m Onur
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Erol Kocaoğlan

Şubat 2015 , 151 sayfa

Askeri sistemlerde hareketli platformlar optik sensör, anten, silah gibi faydalı yüklerin
kontrolü amacıyla sıkça kullanılmaktadır. Bu platformarın en önemli bileşenlerinden
bir tanesi hareket denetim alt sistemidir ve temel olarak platformun hız denetiminden
sorumludur. Bu tezde, bu tip hareketli platformlarin hız denetimine yönelik olarak
detaylı inceleme ve deneyler gerçekleştirilmiş, sonuç olarak da hız denetimi geçiş
rejimi başarımını gürbüzlüğü olumsuz etkilemeksizin iyileştiren bir denetim mima-
risi önerilmiştir. Bu mimari Kendini-Tekrarlayan Dalgacık Yapay Sinir Ağı yapılarını
kullanan bir dolaylı uyumlama denetlecine hızlı kararlı durumu garantileyen yeni bir
parametre güncelleme yöntemi ve yapısal öğrenme algoritması eklenerek oluşturul-
muştur. önerilen denetim mimarisinin başarımı gerek benzetim, gerekse deneylerle
sınanmıştır. Ayrıca, önerilen yöntemin RST temelli gürbüz denetim algoritmaları ile
başarım kıyaslaması yapılmış ve tüm bulgular bu tezde raporlanmıştır.

Anahtar Kelimeler: Hareketli Platformlar,Çok Kütleli Sistemler, Esnek Elemanlı Sis-
temler, Dalgacık Ağları, Uyumlu Denetim
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CHAPTER 1

INTRODUCTION

1.1 Motion Platforms

Motion platforms with payloads are widely used in modern defense systems. While

the payloads may vary according to application (see Fig.1.1, Fig. 1.2, Fig. 1.3, Fig.

1.4 for some examples), the models, and hence techniques used for motion control

are usually the same. In most of the motion platforms actuation is achieved by driv-

ing brushless electric motors via power electronic components (widely Metal-Oxide

Semiconductor Field Effect Transistors (MOSFETs) or Insulated Gate Bipolar Tran-

sistors (IGBTs) and their driver circuits). These components are controlled by pro-

cessors which are capable of performing real-time calculations which use sensory

information from gyroscopes, encoders, resolvers, inclinometers, force/torque sen-

sors etc. The aim of control during these calculations is generating "the correct motor

current" which will move the platform with desired speed with respect to Earth ref-

erence frame, which will in turn carry the platform to a desired position. Hence, the

calculations try to suppress the disturbances (hull motion, windage , sea waves etc.)

while trying to obtain a closed loop transfer function from reference command to load

speed equal to or at least very close to unity.

1.2 Typical Motion Control Architecture for Motion Platforms

A typical motion control architecture for a Main Battle Tank’s (MBT) gun is given in

Fig. 1.5. All the motion platforms have more or less the same structure for motion
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Figure 1.1: A typical example of a motion platform: Leopard-2A4 R© Main Battle

Tank from Krauss Maffei Wegman. In this system optics and gun motion control are

performed independently.(Photo Courtesy of KMW Inc.)

Figure 1.2: Another example of a motion platform: Pedestal Mount Stinger Launch-

ing System - PMS ATILGAN R©.(In this system the payload is eight land-to-air mis-

siles and optics to detect and track possible threats.(Photo Courtesy of Aselsan Inc.)
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Figure 1.3: Another example of a motion platform: Stabilized Machine Gun Platform

- STAMP R© .In this system the payload is a machine gun and optics to detect and track

possible threats. (Photo Courtesy of Aselsan Inc.)

Figure 1.4: In the KORKUT air defense system developed by Aselsan Inc. there are

independent motion platforms on the same system (one for optics / RADARs and

other for the gun) (Photo Courtesy of Aselsan Inc.)
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Figure 1.5: General structure of a director type gun control system - Case of a Main

Battle Tank (MBT) [35]

control: A reference speed command either originating from sighting (target tracking)

system’s position error command or from directly user input (usually in the form of

a command handle signal). Performing the "speed control" with high performance

is one of the most critical problems in successful operation of these systems. In this

study, we will be mainly dealing with this problem, i.e. "speed control".

As given in the block diagram of Fig. 1.6, for a typical motion platform speed control

"the plant" consists of mainly three parts: The motion generation part, the motion

transmission part, and the load (gun and turret for the MBT example of Fig. 1.6).

In the past, hydraulic actuation was usually employed as the motion generation part,

whereas in today’s technology permanent magnet synchronous motors (PMSM) and

a Digital Signal Processor (DSP) based motor controller, in order to generate the

motor controlling signals, are usually used. The dynamics of PMSMs are inherently

non-linear and several techniques are developed to perform seamless torque control

of these motors under various operating conditions. These techniques usually rely on

field-orientation and vector control. The required voltages for the motor commutation

are generated using special Pulse Width Modulation (PWM) patterns, which injects

further high-frequency components and torque ripples to the motor response.

The motion transmission part consists of gearboxes for matching the load’s speed and

torque requirements, and mechanisms to shape the motion in a desired fashion. This

part introduces backlash, friction, stiffness and inertial effects, usually hindering the

4



control design. Backlash and friction are frequently modelled on the contact points

as non-linear connection elements. Stiffness and inertia are modelled as bodies con-

nected with flexible joints. If we continue our example with the MBT case: The

turret is usually driven via a gear stage connected to the output shaft of the motor.

The output of this gear stage is connected to a ring gear which is fixed to the hull and

the turret is connected to the hull with a ring bearing which is free to rotate about

its center. The gun is driven by either using rack-pinion mechanisms or a lead-screw

drive, mimicking the behavior of the hydraulic pistons.

The load is the mechanical component whose speed is to be controlled. It usually

corresponds to parts with distributed inertia connected with finite stiffness. Both the

inertia and stiffness of these parts effect the control design. Moreover, the inertia,

friction and unbalance of the load are key factors in sizing the components of the

speed control system, some of which are given in Table 1.1. For the MBT example,

load consists of the turret in traverse axis and the gun in elevation axis.
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It is also worth mentioning that -despite the three parts mentioned in above paragraphs-

in modelling motion platforms for speed control purpose, the system is usually di-

vided into two parts as "electrical" and "mechanical" subsystems. The electrical sub-

system does usually have a wider bandwidth and under certain conditions it can sim-

ply be modelled as unity or as a simple first-order low-pass filter [85]. The mechanical

part of the motion platform is usually modelled as a multi-body system with elastic

connections in between. Mechanical models with three inertias are usually preferred

for the purpose of control, while models with two inertias are also common.

As for the control technique used for speed control, we can very roughly divide the

approaches into two branches, as usual: linear control and non-linear control.

Linear control theory is a mature subject and it has a serious number of methods

that can be used for analysis and design including Nyquist, Bode, Root-Locus tech-

niques. Moreover, it has a long history of successful applications in engineering

world, especially in the form of proportional-integral-derivative (PID) controller and

its variations. However, it cannot deal with model uncertainties, serious non-linear

effects and operational constraints that must be imposed to the system such as ac-

tuator limitations. Nevertheless, PID control has been very frequently employed for

speed control of motion platforms. This is just because of the fact that, for some of

the applications, performance of PID controllers might be sufficient. For some others,

even if it is not sufficient, additional precautions have been taken in order to compen-

sate for the non-linear effects hindering PID controller’s performance. The certain

disadvantage of this design approach is long engineering hours wasted for identifi-

cation and compensation of non-linear effects. Moreover, automatic tuning of PID

controllers under several non-linearities is not a straightforward task to perform. In

any case, a vast number of studies from the literature rely on PID control and/or its

variations.

Due to severe non-linear effects hindering linear controllers’ performance, several

techniques from non-linear control have also been employed for speed control of mo-

tion platforms. Techniques ranging from H∞, sliding-mode control (SMC), model-

predictive control (MPC), model-reference adaptive control (MRAC) to several forms

of neural-networks, genetic algorithms and their variations have been used. The most
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basic drawback of non-linear control is the fact that analysis and design of a non-

linear controller are not as straightforward as those of a linear controller. Tools and

techniques are usually limited and successful application in practical systems (for the

case of speed control of motion platforms) is rare as compared to linear control. On

the other hand, if practical difficulties can be overcome; it is obvious that non-linear

control would be more effective than the linear control for the speed control of motion

platforms.

Before giving a more detailed review of the current literature on the topic, it is worth

introducing the basic terms and difficulties for the speed control of motion platforms.

Since there is a vast variety of motion platforms with similar properties and control

design goals, we will perform the introduction considering the MBT gun-turret speed

control example of Fig. 1.6, without loss of generality.

A key feature of an MBT is its ability to engage targets while moving on rough terrain.

Meanwhile, varying operational conditions pose significant challenges in maintaining

a high level of accuracy which is an essential requirement for the operation of MBTs.

An efficient control strategy must be employed to ensure precision pointing of the

weapon according to the gunner’s sighting system (see Fig. 1.5), and speed control is

certainly the most crucial and challenging part of the control loop. Besides, it is es-

sential that the control system implemented maintains its performance in the presence

of large disturbances induced due to the movement of the vehicle along the rough ter-

rain [75]. During operation of the gun-turret system, it is also critical that the gun

maneuvered to avoid any obstacles existing on the vehicle’s own platform (examples

include antennas, open hatches and the vehicle chassis itself). This introduces sev-

eral constraints for actuator limitations. Moreover, the gun speed control is subject

to non-linearities such as backlash, Coulomb friction, and actuator saturation; un-

modelled dynamics such as gun barrel flexible modes; parameter variations such as

changes of load, torsional stiffness, and disc friction; and external disturbances such

as base motion and firing effects. Accordingly, the design must be robust, adaptive,

and -hopefully- intelligent in order to accommodate these uncertainties. In summary,

the design objectives of speed control of a MBT gun include

• Rapid and precise pointing (command tracking) capability requiring a very stiff

8



speed control,

• Robustness against un-modeled flexible modes of the mechanical system,

• Disturbance rejection against base motion and (possible) firing,

• Accommodation of parameter variations and inherent non-linear effects,

• Integration with target tracking and gunner models when necessary.

To summarize, all reasons usually cited to justify the need for robust and adaptive

control are to be found in "the speed control of a motion platform" problem:

• Moments of inertia, unbalance and friction disturbance torques change rapidly

with the platform position.

• Friction and other non-linearities change over time because of uneven mainte-

nance, and differ greatly between samples of the same system model because

of production tolerances.

• There are uncertain disturbance due to platform movement over rough terrain.

Keeping these facts in mind, control engineers have developed several methods in

order to deal with the speed control of a motion platform problem, a brief summary

of these methods is the subject of the following section.
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1.3 Goal and Scope of The Study

Control system design for the speed control of motion platforms is a challenging

task. In this study, the aim is to decrease the amount of design effort needed by uti-

lizing modern techniques from the literature, and develop a novel method in order to

achieve this. For this purpose literature survey was performed, system modeling and

identification studies were conducted, and at the end a novel architecture by adding

additional improvements to a state-of-the art Self-Recurrent Wavelet Neural Network

based Indirect Adaptive Controller was proposed. The effectiveness of the proposed

improvements was proven by analysis, simulations and experiments.

The next chapter is dedicated to the literature survey and description of the experimen-

tal setup employed during the study. Chapter 3 is reserved for the experimental and

theoretical efforts on modeling and identification of the system under study. More-

over, in the same chapter, some controller designs for the system under study has

been performed to address their performance as a reference. Chapter 4 is dedicated

to the proposed control architecture and analysis of the improvement gained by this

architecture by theory, simulations and experiments. The manuscript is finalized with

the conclusions given in Chapter 5. There is one appendix for explaining the genetic

algorithm method employed during the system identification procedure.
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CHAPTER 2

LITERATURE SURVEY AND MODELING

2.1 A Summary of the Literature

The literature regarding the speed control of servo systems is very broad. On the other

hand, due to confidentiality, most of the studies conducted for military motion plat-

forms were either not published, or published without giving candid details regarding

the real system under consideration. Hence, it is not possible to access all the relevant

literature. In this section, a brief summary of the accessible literature is provided in a

chronological order.

As stated in the previous sections, linear control techniques are widely used for mo-

tion platform speed control. In [3], "the gunner" is modelled as a variable gain el-

ement and authors propose a digital filter to be added to the command path taking

the gunner’s current "gain" into account. By this way decoupling between sight and

gun controls is achieved, making the "driven-reticle" (sight following gun) and "gun

director" (gun following sight) configurations realized with minimum loss of perfor-

mance during "low gain" of the gunner. In [4], same authors give their experimental

findings and report an improvement of 50% in gunner tracking error, weapon pointing

accuracy and opportunity to fire.

In [8] authors apply Linear Quadratic Gaussian with Loop Transfer Recovery (LQG

/ LTR) method for the robust control of a helicopter gun-turret. They employ a 12th

order linearized model from motor current to gun position and reduce it to 7th order

for control design (see Fig. 2.1). They only provide simulation results where system

matrix entries are perturbed by 5%, driving a standard controller to sustained oscilla-

13



Figure 2.1: System model schematic used by [8] with linear model’s original, domi-

nant and closed-loop poles.

tions, while the oscillations are suppressed with their robust controller. For this case,

we may state that the system is not adaptive, but only robust, i.e., the performance is

reduced to achieve robustness.

In [10] , the same helicopter gun system is modeled using non-linear effects as well.

LQG/LTR approach is employed with a 40th order model. In addition to mechanical

enhancements to reduce firing effects on control performance; a digital filter is also

added to suppress firing shocks. Moreover, a feed-forward compensator is also added

to the control loop in order to suppress the effects of residual offset during firing.

Authors report that the system goes unstable after only a parameter variation of 50%.

In [15] authors reviewed different control schemes and methodologies used for gun-

turret pointing control. During their study robust control (including LQG / LTR and

H∞ ), non-linear control and intelligent control (fuzzy combined with H∞ ) are eval-

uated in simulation. Their claimed result is that fuzzy and H∞ control together gives

the best step response for tracking control under firing disturbance (see Fig. 2.2).

In [16] authors applied variable structure control (VSC) for a tank gun. They base the

design on a 2nd order LTI system model. They claim that the designed system shows

14



Figure 2.2: Step position responses for gun position control: LQG/LTR simulation

(left), H∞ simulation (right) [15] under firing disturbance.

perfect robustness. Moreover, they insist on that the simulation results obtained with a

nonlinear model (not given in the study) is well-fitted with the test data collected on a

real tank, the only disadvantage being the fact that the sliding mode caused chattering

which resulted in power drain. However, as seen in Fig. 2.3, the chattering in the

speed of the platform is unarguably not acceptable in practice.

In [13] authors followed the robotic formulation to derive system dynamical equations

for both tank and helicopter turret-gun systems (including axis couplings, Coriolis

terms etc.). They then propose a standard PD control for direct position control and

provide simulation results on gun positioning. The main focus of the study is the

robotic formulation of the modeling phase and control performance is not stressed.

In [11] torque sensors are situated on the harmonic drive gear-trains to feed the joint

torques back for the use of controller (See Fig. 2.4). Utilization of the torque feed-

back is shown to be effective in suppressing the vibration due to joint flexibility and

also Coulomb friction effects. Although this approach seems useful, it will decrease

the mean-time between failures (MTBF) of the system and increase costs due to ad-

ditional hardware requirements.

In [19] authors incorporate linearized models of backlash and friction in designing

a non-linear controller. They use a 10th order non-linear model and incorporate

non-linear servo-mechanism controller as a remedy to non-linearities. In [21], same

authors propose a fuzzy logic control (FLC) on top of alternative control designs

(H2, H∞ and non-linear servo), in order to inform the controller on the temporal
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Figure 2.3: Experimental result with variable structure control (VSC) given

in[16].(Note the chattering in gun speed)
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Figure 2.4: Torque sensor drawing and mechanical model employed in [11].
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Figure 2.5: Control architecture with FLC compensation (left) and improvement of

control performance after utilization of the FLC (right, with solid lines) as given in

[20].

behaviour of the system, i.e. a kind of sensitivity. They introduce an adaptation

mechanism to the control, using this sensitivity information. This approach seems

very suitable for our problem as well. However, one should note that, in order to be

able to perform the design given in this approach all the system parameters must be

known precisely.

In [17] authors compare different order-reduction techniques being "Balanced Real-

ization Method", "Routh Approximation Method", and "Litz’s Method" for construct-

ing reduced order models. They report that all three of the methods gave satisfactory

results.

In [20] authors apply a Fuzzy Logic Control (FLC) in order to improve the tracking

performance of a gun-turret system. They apply a Mamdani type FLC as an outer

loop on top of a robust controller and achieve a significant improvement in position

tracking response (see Fig. 2.5). However, they use 11 fuzzy sets during fuzzification,

resulting in 121 fuzzy rules. Both design, and implementation of such a controller are

impractical.

In [22] authors incorporate a full-state feedback controller for the speed control of

a flexible mechanical system. They use a 3 inertia model connected with flexible

links. They give simulation results comparing full state feedback and simple PI con-

trol approaches; showing that full-state feedback damps closed-loop oscillations very
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effectively, while for standard PI the oscillations must be sensed at the first mass

speed in order to be suppressed.

In [23], authors propose standard sinusoidal-input describing functions (SIDF) method

for the control of electro-mechanical pointing systems. They show the effectiveness

of their method by various simulations. However, they have no precautions for pa-

rameter variations and robustness.

In [29] authors incorporate a 10-dimensional state-space model for the gun-turret sys-

tem of a helicopter. They develop an “advanced integrated controller" which consist

of robust, non-linear and intelligent controllers. The authors emphasize the fact that

better performance needs higher control power, which is limited by the drive perfor-

mance of the motors. In their approach by employing a fuzzy controller as the higher

level controller, maximum outcome has been obtained from the motor without alter-

ing the control power. They report that “It is well-known that a linear controller can-

not effectively tolerate severe non-linearities which inherently exist in most of the real

dynamical systems. This is especially true for the gun-turret system. With the half-

width of the backlash increased by 0.2 degrees, the step response of the closed-loop

system under the linear robust controller is greatly deteriorated. When the half-width

of the backlash is increased to 0.5 degrees, the change of the operating condition of

the backlash has literally destabilized the overall closed-loop system (i.e. shifting

the closed-loop poles due to changes of operating conditions of the non-linear ele-

ments). This situation naturally demands a more robust non-linear adaptive controller

which can intelligently compute the appropriate gain values based on the new operat-

ing conditions arising from non-linearity effects and/or environmental changes.” The

main drawback of their approach is the fact that during the control design a very-well

known system model is required. Moreover, the resultant controller is static, with

a complicated structure and various parameters fixed via controller design (see Fig.

2.6).

In [27] the subject of the study is more general and it is vibration control of a two

mass system (note that, motion platforms are very popular examples of such multi-

mass systems). In the study, resonance ratio control (RRC) concept is introduced.

In this concept, an observer is used in order to sense the reaction torque information
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Figure 2.6: (Simulink models used for system dynamics (left) and H∞ controller

(right) in [29].

Figure 2.7: 2 mass system model (left) and Resonance-Ration Control (RRC) as em-

ployed in [27]. Here Kr term is to be adjusted to achieve desired inertia ratio of the

two masses, corresponding to the resonance frequency

between the rigid bodies; and then, this information is employed in order to produce

additional motor torque via observer feedback. This additional torque physically cor-

responds to controlling effective motor shaft inertia, in other words the “resonance

ratio", which is defined as a function of the ratio of load and motor shaft inertias (see

Fig. 2.7). Authors succeed in suppressing second mass position oscillations by this

way. However, no significant improvement in the agility (speed tracking response) of

the system is seen. This is expected, as by increasing the net total inertia using RRC,

achievable acceleration levels are also decreased. The need for a torque observer or

sensor is the second drawback of the approach.

In [25] authors enhanced a cascaded internal model controller with a LQR controller

to form a “Hybrid Optimal Controller" architecture. They perform the design in

discrete-time. The design of controller needs a well-fitting model of the system (10th

order for the specific case of the study) and there are 9 steps to design the controller,

based on this well-known model. They provide only simulation results to demonstrate
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Figure 2.8: Schematic of the system under consideration in [34]. Such systems are

usually equivalent to motion platforms subject to our study.

Figure 2.9: 3 mass system schematic (left) and Frequency Response Function (FRF)

(right) for the test system used in [30].

the performance of their design approach. The lack of experimental results indicates

that the practical implementation of such a design is not straightforward.

In [30], speed control of a three-mass system is studied (see Fig. 2.9). Backlash of

the gears used in the system is also taken into account and modeled as a dead-zone

non-linearity. Two observers are employed to measure the torque provided at the

output of the gear stage and the disturbance torque (see Fig. 2.10). Authors focus

on the performance of the observers used and report good results. A very similar

study was reported in [32] with only two masses in the system rather than three,

and usage of Kalman filters as state estimators, rather than Luenberger type observers

employed in the previous study. Several similar studies (full-state feedback combined

with linear control) may be cited in the literature (e.g. [34],[37],[39],[45], [46],[63],).

Despite the popularity of “full state feedback via observers combined with linear

control" approach, as stated before, there are some limitations. The performance

achievable with such architectures has been analysed by Szabat and his colleagues in

2007, and they have shown the limitations of the approach analytically (this topic will

be revisited later in this section).
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Figure 2.10: Control architecture for the speed control of a 3 mass system, as used in

[30].

Figure 2.11: Surface Acoustic Wave (SAW) shaft torque transducers (left) and mea-

surement infrastructure used by O’Sullivan and colleagues [66].

Despite the control approach is very similar with the studies just mentioned, it is worth

mentioning O’Sullivan and his colleagues’ approach ([64],[66]): In systems with full-

state feedback, observers are employed for providing information on immeasurable

states or variables. Performance of these observers is very dominant in the overall

system performance. If one could be able to use sensors for directly measuring shaft

torque of the motor with high quality, at least one of these observers would be unnec-

essary. Keeping this fact in mind, these researchers studied the ways of implementing

a rugged and simple way of torque measurement and developed Surface Acoustic

Wave (SAW) transducers for this purpose (see Fig. 2.11).

In [31], authors describe the infrastructure used for control system development at the

United States Army Research Laboratory: They use a mechanical test bed, connected
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Figure 2.12: Schematic of the quick return mechanism (left) and proposed control

architecture (right) in [50].

as hardware in the loop to the real-time computers in which controllers are imple-

mented. The infrastructure used is very similar to the one used during this study. It

is worth noting that after the conference in which this infrastructure was explained,

there have been no papers published in American Control Conference (ACC) on gun-

turret control systems. This implies that the studies conducted thereafter might have

been published with non-explicit titles on industrial conferences etc. .

In [50] a Fuzzy Neural Network is employed as an uncertainty observer and it is

combined with a computed torque controller to constitute a novel controller architec-

ture used to control a Motor-Quick-Return Servo Mechanism (see Fig. 2.12). In this

architecture, the non-linearities inherent to the mechanism are taken into account by

employing feed-forward models for computed torque, while uncertainties are handled

by the Fuzzy Neural Network (FNN) Uncertainty Observer. Despite, this architecture

takes most of the non-linearities into account, the computed torque model must be

well developed. Moreover, speed of convergence of the FNN with a feed-forward

network implementation is a well-known drawback for the use of such structures in

real-time control.

In [48] and [49] , authors investigate the two mass flexible system speed control prob-

lem in terms of resonance suppression. They use a standard PI controller cascaded

with several different types of filters for resonance suppression used in practice. They

compare performances of low-pass filtering, notch filtering, bi-quad filtering and ac-

celeration feedback methods to suppress the oscillatory behavior of the closed-loop

system due to open-loop resonance. Their findings can be summarized as: Low-pass
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Figure 2.13: FRFs of the open-loop system (left) and closed-loop system (right)

showing speed control performances achieved with PI control cascaded with different

type of resonance suppression methods in [49].

filters are popular, but evidently they sacrifice performance to avoid instability; notch-

filtering works better, however any shift in the resonance frequency during operation

may cause instability (robustness is weak); bi-quad filtering works well in theory, but

similar to notch filtering, it is not robust; acceleration feedback works best among

other methods, as it may be used to seperate resonance and anti-resonance frequen-

cies efficiently; however, need and design of an acceleration observer is the critical

issue. (see Fig. 2.13). In [48] step responses for the speed control are also given for

comparison. The authors find that the bi-quad filter (simply, inverse of the mechani-

cal system) gives the best result, however it cannot be used in practice since it is very

prone to any shift in system behavior (see Fig. 2.14).

As stated earlier, Szabat and his colleagues from Wroclaw University of Technology,

Poland have performed several studies on the speed control of multi-body systems (it

is well known that, although the studies have been presented as "industrial", Poland

is developing its MBT coded PL01 since the mid of 2000s, and these studies might

be directly or indirectly part of the project). In their enlightening work of 2007,

they analyse the limits of PI control for the speed control of a two-mass system. In

their study, it is summarized that the two-mass lumped system state-feedbacks can be

grouped in three different categories (see Fig.2.15). With only one type of feedback,

a classical PI controller can only control one free parameter of the closed loop system

dominant pole: either damping or natural frequency. In order to control both damping

and resonant frequency at least two feedbacks from two different categories must be
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Figure 2.14: Step response of the first mass speed with different type of resonance

suppression methods used in conjunction with PI control ([48]). Although bi-quad

filtering seems to give the best result for the single experiment, its robustness is un-

acceptably poor.

employed. For a three-mass system, this analysis can also be extended as in Fig. 2.16,

by modeling the effect of the third mass as a part of model uncertainty. The simplest

feedbacks that can be employed are first mass and second mass angular velocities,

which are already measured via sensors in most motion platforms. These feedbacks

can be used as "Group B" feedbacks. "Group A" feedback is actually the shaft torque

for the first shaft, whether it is derived from derivatives of the speeds or from a di-

rect measurement. For motion platforms a reliable direct torque measurement is not

available, some sort of observer structure must be employed in order to estimate the

shaft torque. This approach leads to the architecture proposed in [46] with PI and PID

controller implementations.

Having quantitatively evaluated the limits of PI speed control on two mass systems

Szabat and his colleagues have had several attempts to apply non-linear control tech-

niques to multi-mass system speed control to achieve better performance.

In [68], they propose a model-reference adaptive controller (MRAC) based on neuro-

fuzzy implementation. They employ a standard second order linear system model

as the reference to tune the neuro-fuzzy controller. This tuning aims at making the

overall closed-loop system behave similar to the reference system model (see Fig.

2.17 for the general structure). The authors implement the adaptive fuzzy controller as

a standard feed-forward neural network as shown in Fig. 2.18. The weight parameters
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Figure 2.15: The state feedbacks grouped considering their effects on closed-loop

pole locations for a two mass system [67]. Here m terms stand for torques; T terms

stand for time constants (stiffness and inertias) and ω terms stand for angular speed
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Figure 2.16: Block diagram representation of the three-mass mechanical system with

simplified dynamics ignoring viscous damping terms.

Figure 2.17: General control architecture used in [68], in which Model-Reference

Adaptive Control is combined with Neuro-Fuzzy Controller.

27



Figure 2.18: Internal structure of the "Speed Controller Fuzzy Neural Network" given

in Fig. 2.17.

between layers 3 and 4 (i.e. wi values) are adapted using the common gradient-

descent algorithm.

The results presented in [68] are quite interesting, and a sample of these results are

quoted in Fig. 2.19. As seen in the subplot “d" of this figure, the weights of Layer-3

of the neural network are updated in order to minimize the tracking error of the motor

speed feedback, and in about 10 seconds they converge.

Since the findings in [68] are quite interesting for the purpose of controlling a motion

control platform’s speed in an adaptive and robust fashion, without any need of system

parameters; simulations have been performed, using the same controller structure

with a three mass system model. The results from our simulations are given in Fig.

2.20 and Fig. 2.21. As seen in Fig. 2.20, for our case, even during simulations, the

step response does not converge to that of a linear system. Moreover, as given in

Fig. 2.21, the weights continue to update significantly even after 500 s. Hence, the
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Figure 2.19: Speed output, speed error, motor torque and weight update plots from a

sample speed controller operation obtained in [68].
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Figure 2.20: A time-domain comparison plot from our simulations with the same

neuro-fuzzy controller in [68] used for a three-mass system; showing the poor con-

vergence performance with under-damped step response at steady state.

following questions arise:

• Is a feed-forward neural network -originally designed for memorizing static

mappings- enough for "learning" the dynamic behavior of a real-time con-

troller?

• How can one evaluate the convergence performance of such a controller quan-

titatively?

• What is a "good reference system" to be used in MRAC? Is a second order

linear reference system feasible for every case?

In [74], Szabat and his colleagues propose exactly the same control architecture, with

the slight difference that the fuzzy rule-base is adjusted to have a sliding-surface type

of mapping (see. Fig. 2.22). Then the adaptation algorithm alters the switching bor-

der of this mapping by updating the neural-network weights using gradient-descent.

Authors show the good performance of the architecture on an experimental setup.

However, same questions about the previous study are still valid for this case, en-

riched with the practical application difficulties of chattering caused by the sliding
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Figure 2.21: Typical weight updates from a simulation conducted by us, employing

the neuro-fuzzy MRAC architecture proposed in [68]. This graph shows that the

convergence of the architecture proposed by the authors is not guaranteed.

Figure 2.22: The sliding surface implemented in the adaptive neuro-fuzzy structure

and a sample phase portrait as given in[74].

mode control. Actually, Sabanovic and his colleagues applied sliding mode control

(SMC) to several motion control systems ([56]). Despite their encouragement in em-

ploying SMC in motion control, evaluation of a sliding surface for successful control

requires an accurate system model, which is not practical for our case. Moreover,

chattering caused by sliding modes is practically unacceptable and requires perfor-

mance reduction to avoid.

In 2008, the same researchers propose a simpler adaptive control architecture based

on variable gain PI control and Extended Kalman Filtering (EKF) (see Fig. 2.23).

Actually, the architecture they use is very similar to those used in 1990s’ PI com-
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Figure 2.23: The non-linear adaptive control architecture proposed in [73].

bined with acceleration feedback. In the proposed architecture, PI control is replaced

with variable gain (non-linear) version and the observer for estimating the accelera-

tion torque is replaced with a (non-linear) EKF. These replacements are due to a need

for a non-linear (or higher order) control for two-mass systems (since they showed

the limitations of PI before, quantitatively); and performance drawbacks of the Lu-

enberger type observers (for which they propose the EKF observer). On the other

hand, the observer proposed by them is a Kalman filter whose performance relies on

a good system model and known disturbance characteristics. In a 2012 dated study

([82]), the same authors propose an off-line non-linear Kalman filter to be used as an

identifier. Then, a linear Extended Kalman Filter is used during operation, in order to

estimate the system states to feed them back into a PI speed controller. The change

in the approach of the same researchers may be considered as a clue for practical

difficulties of application of a non-linear Kalman filter.

In [79] and [81] -again Szabat and his colleagues- propose Model-Predictive Control

for speed control and vibration suppression for a three mass system. In this study

output and controlling variable limitations were also embedded into the controller

design and the control surface in Fig. 2.24 is obtained which uses first and third mass

velocities as input. Looking at this figure, the controller seems like a "sliding-mode"

one and tries to equate first mass velocity to third mass velocity; even if there are

also other state variables used as inputs to the controller. The authors use off-line

evaluation of the controller and embed it into a look-up table for on-line operation.

The authors also claim that the resulting controller is robust to parameter changes.

However, due to probable practical difficulties, only simulation results are provided.

Actually, a literature survey on the speed control of motion platforms could well be
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Figure 2.24: Simple architecture proposed with model-predictive control (top) and

motor torque mapping from first and third mass speeds for the model predictive con-

trol design performed (top) in [79] and [81].

extended to include compensation of friction and backlash, which are inherent and ef-

fective non-linearities in such systems. Moreover, there is a vast number of papers on

both modeling and compensating these phenomenons. On the other hand, the focus of

this study is not backlash or friction compensation, but the speed control comprehen-

sively. Moreover, our colleague Yumrukcal had an MSc. thesis on backlash modeling

([87]) and Sincar had an MSc. thesis on friction compensation ([86]). The reader

is kindly invited to investigate the literature surveys of these studies and discussions

on friction and backlash are postponed until system modeling and identification sec-

tion, at which simple models of these phenomenons are described for utilization in

simulations.

At this point, it is worth to summarize the evaluation of the literature on speed/posi-

tion control of multi-body systems:

• Literature on gun-turret speed/position control is limited due to confidentiality

issues.

• Several methods have been applied for the speed control of motion platforms

ranging from standard PI to advanced techniques such as H∞, ad-hoc tech-
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niques similar to neural-networks and fuzzy logic.

• As analyzed by Szabat and his colleagues in 2007 ([67]) even if with full-state

feedback, a PI controller can achieve limited performance for even a two-mass

system.

The proposed methods can be classified in terms of their drawbacks, as below:

• Methods that need a well-developed and accurate system model:

H∞,LQG/LTR,SMC,EKF

• Methods not adaptive: H∞,LQG/LTR,SMC,EKF

• Methods with convergence difficulties: MRAC with NF implementation,

• Methods with practical issues: SMC including NF implementation.

• Methods with limited performance: PI and its variations.

In the light of these findings, one can state that a novel control architecture should

possess the following properties:

• The architecture should not need a well-developed and accurate system model

(black-box). If a model is needed, a simple linear model well describing the

basic system behaviour (gray-box) should be enough.

• The architecture should be adaptive. As the system parameters drift in time, the

performance loss of the controller should be kept minimum.

• The architecture should converge in a short time. Preferably, the convergence

property should be quantitatively analysed.

• The architecture should be applicable to a practical system. For this prop-

erty, it should be realizable with standard development tools (e.g. MATLAB

/ Simulink) and there should not be limitations similar to actuator bandwidth

limits or excessive control efforts.
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Figure 2.25: General adaptive control scheme (a), and Model-Reference Adaptive

Control (MRAC) scheme (b).

• The architecture should be suitable for utilisation in optimizing a performance

measure. The process of utilization should possess an acceptable level of design

effort.

Keeping the above criteria in mind, adaptive structures that do not need a well-

developed model of the system to be controlled might be good candidates as con-

trollers. At this point, it would be worth visiting adaptive control and intelligent

control techniques very briefly.

Adaptive control is a mature topic having its roots in the 1950s [1]. It is based on

adaptation of controller parameters as the closed-loop system continues its function,

as seen in Fig.2.25. It has basically two types: Indirect and Direct. In indirect adaptive

control, a pre-tuned identifier is employed to update controller parameters. Whereas

for the direct case, the reference system error is used to update controller parameters

in a direct fashion. Since it is a wide area of research and it has several variations, the

review will include the version utilised during this study: Model-Reference Adaptive

Control (MRAC). Model Reference Adaptive Control is a variation of adaptive con-

trol, in which the output of a reference system model is used to determine the error

measure in updating the controller parameters as given in Fig. 2.25.

In their classical paper [1], Narendra et. al. investigates the stability issue for adaptive

observers and controllers. They start with identification of an algebraic equation and

extend their analysis to continuous-time linear systems. They utilize linear control

theory tools in order to evaluate stability conditions (convergence of both the output

error and parameter estimation error to zero). In [6], the author uses Narendra’s

approach and increases the transient performance by changing the feedback error
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definition. The faster convergence rate has been proven by using the "comparison of

gradient of a Lyapunov function" approach.

In Åström’s adaptive feedback control survey paper [5], a very comprehensive sum-

mary of the topic is introduced. In this paper, it is stated that the robustness of the

adaptive controllers subject to unmodeled dynamics would be an area of active re-

search. Moreover, it was stated that although the global asymptotic stability of adap-

tive controllers under certain assumptions could be proven; their transient perfor-

mance would be much more difficult to analyze and it was an active area of research.

In [7] it was stated that “Despite global stability, the mechanism and the convergence

properties of existing adaptive algorithms may be easily affected when exposed to un-

certainties from a practical point of view". In the same study, it was proposed that one

should work on the convergence of the adaptive behavior while synthesizing the con-

troller. With this idea in mind, they offer a modification to the error model and show

that the rate of convergence may be improved by this way. They -as expected- use

comparison of the gradient of a Lyapunov function in order to prove the improvement

in the rate of convergence.

In [12] it is referenced that “under exact matching conditions direct adaptive control

algorithms can be used to control a stably invertible system". It is also stated that,

usually it is easy to show that error goes to 0 as time goes to∞; however, establishing

rules for rate of adaptation is not an easy task. Moreover, it was proposed that fast

adaptation should be used initially to minimize the transient error and achieve good

l∞ (error norm) performance

Miller and Mansouri propose a linear periodic controller to be employed in a MRAC

structure and they improve its (mostly noise immunity) performance by performing

probing, estimation and control operations in parallel [78]. Their controller is specif-

ically designed for linear time varying systems.

As stated in a recent survey conducted on MRAC [84], the state of the art in MRAC

has been converging towards utilization of soft computing techniques, such as neural-

networks, fuzzy logic and genetic algorithms in constituting different parts of the

MRAC architecture. This stems from the fact that, even if it is easy to perform math-
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ematical analysis (as in [2]) and prove several performance criteria (such as stabil-

ity) for linear systems; a practical system under consideration cannot be modeled

at a complexity which is both simple enough to analyze overall system’s behaviour

mathematically and complex enough to catch all the dynamics of the system. Soft

computing techniques have been recently used as a remedy to this challenge.

Soft computing techniques range from neural networks to fuzzy logic, genetic al-

gorithms and reinforcement learning. In order to be able to use such structures in

practical real-time control systems, fast convergence of such structures is a key issue.

Recent studies on soft computing has developed new forms of neural networks which

can both represent dynamic systems and converge faster than its predecessors (includ-

ing the adaptive structures similar to ART-2 [28]). These type of neural networks will

be reviewed later in the manuscript. Here, a brief summary of convergence issues in

neural networks will be given.

ANNs are structures which can update their parameters so as to approximate a non-

linear mapping. There are usually two methods to update parameters of a feed-

forward ANN [61]:

Simple gradient descent:

wji(n+ 1) = wji(n)− η ∂ξ

∂wji
(2.1)

Batch mode:

∆wji(n) = −η∗ ∂ξ
∂wji

+ α∗∆wji(n− 1) (2.2)

in the equations (2.1) and (2.2), ξ represents the cost function to be minimized, wji

represents any weight parameter being updated, η represents the learning rate and

α represents the momentum factor. The update of the learning rate itself is an issue

highly studied in the literature. There are basically two approaches: Local and Global

Adaptation.

Local adaptive techniques are based on the weight specific information. Some of

these techniques are:
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• Sign Changes: Increase the learning rate as long as the sign of the specific

gradient of cost function with respect to specific weight remains unchanged.

Otherwise, decrease the learning rate.

• Delta Bar Delta: Control the learning rates by observing the sign changes of an

exponential averaged gradient. Moreover, increase the learning rates by adding

a constant at each iteration, rather than multiplication.

• SuperSAB: Same as delta-bar-delta except the increase in the learning rate is

exponential. Moreover an upper limit ηmax is employed.

• Quickprop: An optimization of the back propagation based on Newton’s method.

If between two iterations gradient decreases in magnitude and changes sign,

then use a parabolic estimate of the MSE to determine an estimation of exact

learning rate to find the minimum of ξ.

• Rprop: Similar to Quickprop, but uses a "Manhattan Learning Rule" for weight

updates. Only the sign of the derivative is employed to find the learning rate

update.

• Dynamic Momentum Factor: Momentum factor α is updated at each iteration

step depending on the current value of the momentum factor.

• Dynamic Learning Rate: In this method, the learning rate has its own dynamics,

which is determined by the current value of the specific gradient.

Global Adaptive Techniques, in which the overall state of the network is em-

ployed for weight updates. Some of these techniques are cited below:

• In [47], authors proposed a modification for Quickprop in order to have better

convergence characteristics to converge to global minimum, rather than local

minimum.

• In [26], authors propose an approach for the Radial-Basis Neural Networks

(RBNNs). In this modified gradient-descent (GD) approach, a dead-zone around

the origin of the error coordinates is incorporated in the training rule. They

prove their convergence improvement by the comparison of gradient of the cost

function magnitude with the standard method.
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Figure 2.26: Test setup on which experiments have been conducted.

• In [53], authors proposed a method called "magnified gradient function". They

start magnifying the learning rate as the local activation functions stuck at sat-

uration points. They prove that their approach is faster than back propagation

by comparing the gradient of the same Lyapunov function with the standard

back-propagation method.

In summary, for the ANNs, the methods to improve convergence are usually based

on heuristic updates of learning rates and momentum factors. The performance of the

approaches are evaluated by comparing the magnitudes of a Lyapunov function for

different cases.

2.2 The Setup Utilized for Experiments

The setup used during the experiments is given in Fig. 2.26. This is basically a

rotating platform mounted on a stand. It is utilized with a servo motor with 1.4 kW

rated power, an Aselsan Herkul R© series servo controller capable of delivering up

to 14 kWs of instantaneous electrical power to the motor, a gyroscope for inertial

speed measurement, an auxiliary encoder for position measurement. Moreover, there

are two mechanical interfaces for additional weight plates in order to simulate the
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load of the motion platform. A PC utilized with MATLAB-RTWT R© and capable of

communicating with Herkul servo controller is employed for implementation of the

controller by hardware in the loop approach.

2.3 Chapter Summary

This chapter has been dedicated to a detailed literature on the problem of interest and

the experimental setup employed has been introduced at the end of the chapter.

The literature survey shows that the speed control of motion platforms is a well-

studied subject. It has been under interest of the control engineering community for

more than 50 years. Several different approaches have been proposed ranging from

classical PI control to advanced model-predictive control structures. The limits of

the linear control theory has been recently (in 2007) analysed quantitatively, showing

that even with a two-mass model a PI controller alone is not able to set the perfor-

mance parameters as desired. As for the non-linear control approaches, either they

are extremely complicated to implement or rely on well-known system models.

In the next chapter the problem will be first divided into its sub-problems, and then

these "sub-problems" will be analysed, simulated and experimented on , in order to

gain more insight on the practical aspects of the problem which is specific to the type

of the system under consideration.
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CHAPTER 3

SYSTEM IDENTIFICATION AND MODELING

As explained in Chapter 1, motion platforms consist of various parts. The aim of

this study is to obtain a better performance for the overall structure. Hence, the mod-

eling techniques used for different parts of the system are investigated as the initial

step. The aim is performing system identification whenever necessary and developing

models which will be employed during design of the speed controller. This chapter

is dedicated to efforts on investigating models for the control of brushless electric

motors, non-linear effects in mechanical systems and finally distributed-inertia me-

chanical systems in three separate sections.

3.1 Control of Brushless Electric Motors

Getting more popular every day, permanent magnet synchronous motors (PMSMs)

are now widely used in industrial and military applications. These motors have a

rotor on which permanent magnets are attached to form a sinusoidal or trapezoidal

magnetic field distribution in space. The armature windings are on the stator, and

they are used to produce an MMF which is electrically perpendicular to the field cre-

ated by the rotor magnets (see Fig. 3.1). The basic advantage of these kind of motors

is that they do not require any physical commutator which is very open to create

electrical noise and suffer from ageing. On the other hand, absence of a physical

commutator forces a requirement to achieve commutation electronically. Electronic

commutation is achieved via motor controllers incorporating processing power and

power electronics in the same unit. The way commutation and control of MMF in a
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Figure 3.1: Structure of a typical brushless motor (left) and its cross-sectional

schematic (right). Rotating magnetic field created by appropriate excitation of the

field windings (electronic commutation) is necessary for successful operation of such

a motor.

PMSM is a wide research area in power electronics. The synchronous frame PI con-

trol (see Fig. 3.2) has become the standard for current regulation of poly-phase AC

machines [44], in which permanent magnet synchronous motors is a subclass. How-

ever, Multi-Input Multi-Output (MIMO) nature of this class of motors makes their

performance evaluation a difficult task. Different approaches are employed in order

to analyze these motors, evaluate their performance and design controllers. These

approaches include, modeling of the motor electromagnetic dynamics using matrix

notation (scalar notation) or equivalent Single-Input Single-Output (SISO) complex

vector notation.

For a three-phase, two-pole machine the motor output torque is given by the following

equation

te =
3Lm
2Lr

ieqds × λeqdr (3.1)

where te represents electrical torque; Lm represents equivalent magnetizing induc-

tance, Lr, represents equivalent rotor inductance; ieqds represents the equivalent stator

current vector in electrical frame; λeqdr represents the equivalent magnetic flux vector

created by the rotor magnets in electrical frame.

For the speed control of multi-body systems, during modeling and control phases,
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Figure 3.2: Typical field orientation architecture for the current control of a PMSM.

most of the studies (see the comparative study of Szabat et. al., [67]) assume that the

motor current applied to the equivalent constant flux generalized machine’s armature

is proportional to the torque applied to the load as

te(t) = ktIeq(t) (3.2)

Here kt is the torque constant and Ieq is the armature current of a permanent magnet

DC machine equivalent of the PMSM under consideration. Moreover, same studies

assume that the dynamics governing the motor current is much faster than the dynam-

ics of the mechanical system [45],[27], allowing the use of a simple low-pass filter

as a model of the electrical motor. However, for the speed control of motion plat-

forms, the current loop might also be under consideration. Moreover, the interactions

between mechanical and electrical components of the system might be an important

factor and one should have an insight of these interactions while dealing with the con-

troller design problem. Hence, before employing the simplification of “high current

bandwidth assumption", it is worth to investigate the validity of this assumption in

more detail.

In this part of the study, the effects of the mechanical system components on the

control of motor current ,the interactions between electrical motor and mechanical

system dynamics, is investigated ([85]).
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Figure 3.3: Schematic representing the system model used for analysis.

3.1.1 Simplified Electro-mechanical Model

In the control of motion platforms usually flexible lumped mass mechanical mod-

els are employed. These models usually include two [45] or three [46],[80] lumped

masses connected with flexible elements. For the control of flexible robot arms even

four or more lumped mass models are employed [63]. For the purpose of investigat-

ing the interactions between mechanical and electrical components of such a flexible

system, the model given in Fig. 3.3 is employed. The following assumptions are

made in using this model:

• The dynamics of the drive electronics are neglected.

• The motor has been modeled as an equivalent permanent magnet DC motor

with constant field flux. (generalized electrical machine model).

• The mechanical system is modeled as Jm representing motor and gearbox inertia;Jl

representing load inertia; ks and cs representing stiffness and damping coeffi-

cients,respectively, of the connections between motor and load.

• Static frictions in the system are not modeled, and the only loss in the mechan-

ical system is considered to be due to the cs term.
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3.1.1.1 Analysis

The model shown in Fig. 3.3 consists of both electrical and mechanical components

which are coupled via back-emf of the electrical motor. The parameters used in the

model are summarized in Table 3.1. One can write the voltage loop equation for the

electrical part as follows:

Vin = RaIm + Laİm + Ea (3.3)

The following equality can be used instead of Ea in (3.3)

Ea = keθ̇mng (3.4)

by using standard motor model. Even if (3.4) seems to be a rather simple equation, it

is the equation describing the physical phenomenon that interconnects the mechanical

system with the electrical one. Since the model representing the motor inertia is free

of stiffness and damping we can simply write

θm = θg (3.5)

Using this assumption and Newton’s 2nd law of motion for the motor gives:

θ̈m =
Tm + Tg
Jm

(3.6)

For the linearised torque of the equivalent DC motor, one has

Tm = ngktIm (3.7)

For the connection part, since it is inertia free one can write −Tg = Tl , which in turn

yields

− Tg = Tl = ks(θm − θl) + cs(θ̇m − θ̇l) (3.8)

Finally, applying Newton’s 2nd law of motion for the load inertia gives:

θ̈l = −Tg
Jl

(3.9)

The transfer function from input Vin to the output Im can be obtained using Laplace

transforms of the previous time-domain equations:
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Taking Laplace transforms of (3.3) and (3.4), one gets

Vin(s)− (Ra + Las)Im(s)− kengsθm(s) = 0 (3.10)

similarly, using (3.6) and (3.7), one gets

Jms
2θm = ngktIm(s)− (ks + css)(θm(s)− θl(s)) (3.11)

and lastly, using (3.8) and (3.9), one obtains

Jls
2θl = (ks + css)(θm(s)− θl(s)) (3.12)

Next, one can use (3.10),(3.11) and (3.12) to eliminate θl(s) and θm(s) and obtain

Im(s)

Vin(s)
=

s

Las2 +Ras+ kektn2
g

Jls2+css+ks
JlJms2+cs(Jm+Jl)s+ks(Jm+Jl)

(3.13)

Notice that equation (3.13) obtained above can be used to find the transfer function

from Vin to Im for the case in which motor is decoupled from the load (i.e. "Motor

Only - MO" case) by setting cs = 0, Jl = 0 and ks = 0, yielding

Im(s)

Vin(s)
=

s

Las2 +Ras+ kektn2
g

1
Jm

(3.14)

3.1.2 Investigation of the Frequency Domain Behaviour

The SISO system models for both "Motor Coupled to Load" (MCL) and "Motor

Only" (MO) cases are given in equations (3.13) and (3.14) as transfer functions. In

order to investigate the interactions between electrical and mechanical components,

one may compare these transfer functions and extend this comparison into frequency

domain in order to have a means of observing the results on a real system, by means

of frequency response tests.

In comparing these two transfer functions one must first note that they have very

similar forms except the fact that the constant motor inertia term in equation (3.14)

becomes a two-mass lumped mechanical system dynamics in (3.13) as expected. An-

other point which can be seen from the transfer functions is that the terms in denomi-

nators starting with kektn2
g couples the mechanical system to the electrical one, which
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Figure 3.4: Frequency response function plot of the SISO system models given in

equations (3.13) and (3.14).

Figure 3.5: Open- (left) Closed-loop (right) frequency response function plot of the

SISO system models given in equations (3.13) and (3.14) obtained with PI control

with parameters KP = 1 and KI = 1000.
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is purely anR−L circuit in the absence of this term. Hence this term is the one which

transform the R− L circuit into an electrical motor.

The frequency response functions (FRFs) corresponding to these transfer functions,

obtained with the parameter values given in Table 3.1 are plotted in Fig. 3.4. As it can

be seen in this figure, the two FRFs are quite different especially at low frequencies,

for which motor "sees" both inertias for the MCL case. However at higher frequencies

the two FRFs become very similar, as for the MCL case the motor and load inertias

are decoupled due to slow mechanical dynamics of the mechanical interconnection

and motor does not "see" the load inertia any more.

One of the most important information which can be obtained from FRFs are the

resonance and anti-resonance frequencies, which also usually determine the perfor-

mance of the closed-loop system since open-loop gain at the anti-resonance frequency

is attenuated and the amount of gain at the resonance frequency usually determines

the gain margin. The resonance frequency -minimizing the magnitude of the trans-

fer function denominator magnitude after inserting s = jω)- seen at the FRF of the

MO case can be approximately found by setting Ra = 0 in (3.14) and finding the

denominator roots, which in turn yields:

f3 =
ng
2π

√
kekt
LaJm

(3.15)

This term is evidently a resonance arising from energy transfer between armature

inductance and motor shaft inertia. Numerical value for f3 for our system is found as

60.9 Hz which is also observed in the frequency response plot given in Fig. 3.4. In

order to increase the resonance frequency for better control either the motor inertia

and/or the motor winding inductance values should be decreased.

The anti-resonance frequency seen for the MCL case can be approximately found by

setting cs = 0 and finding the numerator roots of (3.13) ,the result is obtained as:

f2 =
1

2π

√
ks(Jm + Jl)

JmJl
(3.16)

This value is exactly the same as the anti-resonance of the mechanical part of the

49



system (starting with the motor shaft). As can be deduced from the form of the me-

chanical system, this anti-resonance is due to energy transfer between the combined

inertia of the system and the stiffness of the connections, which is modelled as the

spring ks. f2 is calculated as 17.5 Hz using (3.16) and this can be observed in Fig.

3.4.

The resonance frequencies observed in the MCL case can be approximately found by

setting cs = 0, Ra = 0 and solving for the roots of the denominator of (3.13) after

setting s = jω, which yields the equation:

LaJlJmω
4 − [ks(jm + Jl)La + Jlkektn

2
g]ω

2 + kskektn
2
g = 0 (3.17)

the roots are then found as:

f1, f3 =
1

2π

√
1

2
[
ks(Jm + Jl)

JmJl
+
kektn2

g

LaJm
± 1

LaJmJl

√
J2
l (k2

sL
2
a + k2

ek
2
tn

2
g + 2kskektn2

gLa) + J2
mk

2
sL

2
a + 2JmJl(k2

sL
2
a − kskektn2

gLa)]

(3.18)

This result gives the first and second resonance frequencies for the MCL case as 4.43

Hz and 63.2 Hz which are also compatible with Fig. 3.4. Note that for the second

resonance the energy transfer is mainly between the inductance and the motor inertia,

while for the first resonance the effect would be more mechanical, as it is a rather low

frequency resonance.

3.1.3 Closed-Loop System Performance

In the previous sub-section we have compared open-loop system characteristics for

MCL and MO cases, and found out that they are significantly different. Despite the

open-loop responses of the MO and MCL plants are quite different at low frequencies,

while performing closed-loop control, controller transfer functions and feedback ef-

fects also come into account. In this sub-section the closed-loop performances will be

compared to discover if the open-loop discrepancies can be compensated during the

closed-loop operation. For this purpose, the closed-loop performances are observed

and compared for a certain type of controller.
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In this study, a classical PI controller is employed for both MO and MCL cases. In

determining the controller parameters one can note that the transfer functions given

in (3.13) and (3.14) both posses an open-loop zero at s = 0, hence both systems

are natural "differentiators" up to a certain frequency. This can also be observed in

the FRF given in Fig. 3.4. Hence, the integral part of the controller will effectively

become a proportional controller. With high-enough KI one can obtain the closed-

loop frequency response performance shown in Fig. 3.5. In this figure, both the

open-loop (including the controller) and closed-loop FRFs are given. In the open-loop

FRFs it is seen that there are ∞ gain and phase margins for both systems although

there is a collapse (due to resonance followed by an anti-resonance) in the phase

for the MCL case. In the closed-loop FRFs it is seen that ,although the open-loop

responses seem quite different, high open-loop gain suppresses this difference and

makes the closed loop FRFs close to 1. Therefore, as a conclusion of the analysis

one may state that with high-enough integral gain the current control performance for

MCL and MO cases are indeed very similar.

3.1.4 Performance Obtained with a Real System

In the previous sub-section of the thesis, a simplified model is utilised to show that

although open-loop system FRFs for MCL and MO cases are quite different, one

can make both systems behave as unity gain closed loop systems for a high-enough

frequency range by using a high KI value in the controller. In this sub-section, the

practical issues will be investigated to see if there are any differences between the

theoretical findings and actual system.

Open-loop frequency response tests have been performed with the experimental mo-

tion control test bed platform. The parameters of this platform are given in Table

3.1.The experimental open-loop response for the MO case is given in Fig. 3.6. If one

compares the FRF given in this figure, with the one obtained from analysis (see Fig.

3.4) the following differences can be observed:

• Although the magnitude of the FRF follows a similar pattern with respect to

frequency, the resonance is smoother, meaning that there exists further damping
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in the real system, which is possibly due to unmodeled rotor bearing friction.

• Phase of the FRF behaves differently than expected, and it is tending to be

zero at very low frequencies. This means that the system actually has more

damping terms than modeled making phase not equal to 90◦ as frequency is

lowered. Moreover, due to fact that the resonance is smoother, the phase starts

to decrease at a lower frequency, before the resonance peak.

• Phase of the FRF at high frequencies does not converge to the expected theoret-

ical value. This fact indicates that there should be a transport delay term (with

a transfer function e−Tds) causing more phase lag as the frequency is increased.

The experimental open-loop response for the MCL case is given in Fig. 3.7. If one

compares the FRF given in this figure, with the one obtained from theoretical analysis

(see Fig. 3.5) the following differences can be observed:

• Although the magnitude of the FRF follows a similar pattern with respect to

frequency, both resonance peaks are smoother, meaning that there exists further

damping in the real system, which is possibly due to unmodeled load and rotor

bearing frictions.

• Phase of the FRF at high frequencies does not converge to a final value as

expected from the analysis. This fact indicates that there is a transport delay

term (with a transfer function e−Tds) injecting more phase lag as the frequency

is increased.

The experimental closed loop responses for MO and MCL cases are given in Fig. 3.8

and Fig. 3.9, respectively. If one compares the magnitude plots given in these figures,

it is seen that high integral gain suppresses the differences in the open-loop responses

(though the resonances and anti-resonance of MCL case are still seen in the response,

their magnitudes are quite small and phase jumps are eliminated). However, there is

significant difference between expected and measured phase responses. As seen in

Fig. 3.5 expected closed-loop phase lags are about 6◦ even at a frequency of 1 kHZ;

however in the experiments it is seen that phase lag becomes about 80◦ even at 200 Hz

for the MCL case. In order to find the reason for this difference a linear phase graph
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Figure 3.6: Experimentally Obtained Open Loop System FRF for MO case.

for the open loop motor only case is given in Fig. 9. in which the trend of phase

difference between measured and expected phases is plotted. This phase scheme is

very similar to the phase scheme of a transport delay which has a phase of

θ = −Td2πf (3.19)

where Td represents the time delay in seconds. If one uses origin and a point from Fig.

3.10 (f = 66.5Hz and θ = −35.2◦ = −0.614rad), we can find the delay amount as

Td = −−0.614

2π66.5
= 1.5ms (3.20)

This very little amount of delay causes the closed loop current bandwidth of the sys-

tem to degrade significantly. Hence, it is an important point to find the causes of

this delay and try to compensate them whenever possible (via optimizing the hard-

ware and/or software design -e.g. employing a higher sampling rate, or using a faster

communication means between the sensor and the controller hardware).
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Figure 3.7: Experimentally Obtained Open Loop System FRF for MCL case.

Figure 3.8: Experimentally Obtained Closed Loop System FRF for MO case.
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Figure 3.9: Experimentally Obtained Closed Loop System FRF for MCL case.

Figure 3.10: Phase difference between theoretical and experimental MO FRF find-

ings.(Note the linear trend indicating transport delay).
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3.1.5 Section Summary - Contributions

The aim of this part of the study was to explore the interactions between mechanical

and electrical components of a motion platform. During the study both theoretical

and experimental results are obtained and compared with each other. During theoret-

ical calculations it was seen that when the motor is coupled to a load its open-loop

transfer function from motor voltage to motor current is affected and FRF changes

significantly. On the other hand, it was also shown that for a practical system (with

high enough damping terms, i.e. electrical resistance and mechanical viscosity) this

change can be suppressed via high enough integral control term while applying termi-

nal voltage using motor current feedback during close-loop control. In this condition,

the closed-loop motor current performance practically does not depend on whether

the motor shaft is free to rotate or it is coupled to a mechanical load. This theoretical

findings were observed during the experimental phase of the study as well. However,

it was also observed that transport delays (mostly due to discrete-time control and dig-

ital communications) affect the phase of the FRFs significantly, causing small gain

margins and preventing an increase in integral gain and degrading the closed-loop

performance of the current controller significantly. This transport delay is usually the

dominant factor in determining the bandwidth of the closed-loop current control and

should be minimized with careful hardware and/or software design.

To summarize this section: In motion platforms, the electrical motor dynamics and

the mechanical system dynamics do interact. In the forward direction (i.e. from elec-

tric current to mechanical speed), the bandwidth of the electrical sub-system is much

higher than that of the mechanical sub-system, hence its dynamics can be neglected.

In the backward direction (i.e. from mechanical speed to electrical current), the ef-

fects of the mechanical sub-system on the electrical one can be compensated with

high enough control gains, if one can keep the overall transport delay less than a rea-

sonable value. Although studies performed until now have made this assumption, it

was modeled and verified on the real system, before utilisation. It was confirmed that

with a high enough integral gain and low enough transport delay, the current loop can

be assumed to have a transfer function of 1, for the range of frequencies for which the

mechanical part of the system can respond.
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Figure 3.11: Backlash phenomenon between two paired gears schematized.

3.2 Non-linear Effects in The Motion Transmission Part

A frequent problem encountered in the speed control of motion platforms is the dis-

turbance created by the components in relative motion. This problem is due to two

physical phenomenons: Backlash (gear play) and friction. In this part of the thesis,

the models of these phenomenons were briefly reviewed and the identification studies

performed on the system regarding the friction and backlash parameters of the real

system were reported.

3.2.1 BACKLASH

Backlash -also termed as "gear play"- is a common non-linear phenomenon in me-

chanical systems (see Fig. 3.11). It may be termed as the loss of motion caused by

the clearance between pairing gears. Although backlash causes a non-linear behavior,

undesirable for control design, it is unavoidable and even necessary for reliable oper-

ation of gear pairs. In high performance motion platforms, some sort of mechanical

precautions are taken to reduce (practically prevent) backlash. As given in [87], the

two most popular methods are utilization of an anti-backlash pinion and usage of a

anti-backlash gear assembly.

In the anti-backlash pinion solution, two gears of the same type are placed on top

of each other and pre-loaded against each other to provide direct contact even if the

paired gear starts to move in either direction (see Fig. 3.12). This type of anti-

backlash solution is usually practical for low-torque systems.
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Figure 3.12: Utilization of anti-backlash pinion to avoid backlash. Note that, the

drawing is two-dimensional and there are two different gears on top of each other on

the right-hand side gear; pre-loaded with small springs. [87]

For systems with higher torque specifications the driving gear is directly pre-loaded

against the driven gear. This may be achieved either by applying a direct pre-loading

force or using extra idler gears to prevent backlash (see Fig. 3.13 for an illustra-

tion and example). In the experimental system utilized during this study, the second

method is employed for preventing backlash.

3.2.1.1 Backlash Modeling

Depending on the mechanical surrounding of the backlash and operating conditions,

different models must be utilized to model the behavior of the systems with back-

lash ([52]). There are several models ranging from the simple kinematic "dead-zone

model" to "physical model" which deals with the stiffness and damping terms dur-

ing the system is in backlash zone. There are even models with varying backlash

for uneven structures similar to ring gears with hundreds of teeth [87]. The simplest

model for the backlash behavior is the dead-zone model, which is a static, non-linear

function used to represent backlash, as given below.

The Dead-Zone Model [40]: The schematic representing the model used for back-

lash is given in Fig. 3.14. If one neglects the shaft damping (i.e. assume cs = 0),

shaft torque is proportional to the shaft twist, θs and hence
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Figure 3.13: A typical example of a pre-loaded anti-backlash gear assembly with idler

gears schematic (left), and an example of a direct pre-load mechanism (right - inside

the red ellipse). [87]

Figure 3.14: Schematic showing the backlash phenomenon in a two-mass system,

where torque from a motor is transferred to a load via a shaft with a backlash angle

of α. (refer to Table 3.2 for the list of parameters given in the figure)
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Table 3.2: Parameter Definitions for the Backlash Model Schematic of Fig. 3.14

Parameter Definition

θ1(t) Angle of the motor

θ2(t) Angle of the load

θ3(t) Angle of the driving axis at the backlash

θd(t) = θ1(t)− θ2(t) Displacement

θs(t) = θ1(t)− θ3(t) Shaft twist

θb(t) = θ3(t)− θ2(t) Backlash angle

α Backlash angle is [−α, α]

Jm Motor inertia

ωm Motor speed

ks Shaft stiffness coefficient

cs Shaft damping coefficient

Jl Load inertia

ωl Load speed

Td Load disturbance torque input

Tm Motor torque input

Ts Shaft torque developed

Ts = ksθs (3.21)

When there is backlash and no shaft damping (i.e. cs = 0 ), shaft twist θs is given by

the following dead-zone function (see Fig. 3.15)

θs = Dα(θd) =


θd − α, if θd > α

0, if |θd| ≤ α

θd + α, if θd < −α

(3.22)

hence we get

Ts = ksθs = ksDα(θd) (3.23)
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Figure 3.15: Non-linear dead-zone function used for modeling the backlash behavior.

In the literature, very precise models are proposed and tested for the identification and

estimation of backlash behaviour. However, it was stated that explicitly estimating

backlash behavior is usually non-robust and black-box models should be preferred

if the main focus is the speed control of the load [87]. Moreover, in high perfor-

mance military systems, gearboxes are very low-backlash (≤ 1 arcmin typically) and

mechanical backlash compensation is utilized. In this study the concern is not the

dynamics of the backlash, nor precisely modeling the system. The main purpose is

to investigate the effect of backlash on the system behaviour, and if possible derive a

suitable mathematical expression which can be used in our simulation models for the

controller development. Hence only the dead-zone backlash model is provided here.

Readers concerned with the detailed modeling of backlash and backlash compensa-

tion may refer to M.Sc. thesis of Yumrukcal ([87]), and the comprehensive survey of

Nordin on backlash modeling and compensation ([52]).

3.2.1.2 Measuring Backlash Experimentally

There are several methods to measure the backlash amount in a system. “The indi-

rect dynamic backlash identification" described in [41] is utilized in this study. The

procedure and the idea of this technique is as follows:

• Move the motor shaft in one direction (which may be referred as the negative
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Figure 3.16: Figure illustrating the identification of backlash via indirect dynamic

identification approach.

direction without loss of generality) to engage the gears and then stop the sys-

tem,

• At the given position start applying small torque pulses to the motor shaft in the

positive direction so that the motor shaft moves inside the backlash (of course

duration and amplitude of the pulses should be tuned experimentally),

• When the motor shaft displacement in positive direction equals the backlash

angle the load engages to the motor, increasing the total inertia "seen" by the

motor dramatically,

• After the point of engagement, the displacements in the motor shaft with same

torque pulses must be much more less than the displacements before,

• The total amount that the motor shaft displaced during the torque pulses applied

in the positive direction gives -approximately- the amount of backlash in the

system.

Illustration of the idea of "indirect dynamic backlash identification" is given in Fig.

3.16.

After utilising the hinge mechanism to reduce the overall backlash, the above iden-

tification procedure has been applied. The data obtained during these tests are given
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in Fig. 3.17. Test results are summarized in Table 3.3, showing that one can obtain

a backlash angle as low as 0.042◦ in the system, on the motor side, which makes

around 0.00019◦ on the load side. Actually, this backlash amount can easily be ne-

glected, however the identified value is employed during the simulations for the sake

of completeness (despite no effect on the controller performance).
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3.2.2 FRICTION

Friction is present in every mechanical system in which the moving parts are in con-

tact. There are several studies on friction including models of this physical phenom-

ena. However, there exist no efficient analytic methods to describe friction and the

introduced complex, non-linear friction models with un-measurable internal states

and time-varying parameters can only be applied for practical friction compensa-

tion problems with difficulty. As a very complex physical phenomenon, friction is

a sub-problem of tribology, as indicated in our colleague Sincar’s M.Sc. thesis [86]

“Besides the field of tribology, there are several other domains where friction plays

a crucial role since most engineering mechanisms are composed of a certain number

of interfaces between the machine parts. Some of these domains are control, geo-

mechanics, structural dynamics and design and life-cycle engineering. Each of these

fields approaches friction in a different manner since the required degree of complex-

ity of friction models changes within these fields. In cases where frictional effects

to the system performance are small, the friction models are considered in simple

form". According to this statement, if possible, the simplest friction model (Coulomb

friction model) should be utilised in modelling a system. Actually, since the aim of

this study is developing a controller independent of the system uncertainties, the con-

troller should have no explicit information regarding the friction model. Moreover,

the friction would already change behaviour, since it depends on, [86]:

• Real contact area,

• Normal force on the body,

• Relative motion between contacting bodies,

• Local temperature at the contact points,

• Wear of material,

• Stiffness of the contacting surfaces,

• Adhesion of the contacting surfaces,

• Lubricant
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Table 3.3: Experimentally obtained backlash angles for the system under study (motor

side).

DIRECTION BACKLASH

Negative-Exp.-1 0.041◦

Negative-Exp.-2 0.044◦

Negative-Exp.-3 0.047◦

Negative-Exp.-4 0.038◦

Negative-Average 0.043◦

Positive-Exp.-1 0.038◦

Positive-Exp.-2 0.042◦

Positive-Exp.-3 0.044◦

Positive-Exp.-4 0.041◦

Positive-Average 0.041◦

• Welding of the contacting points

• History of the friction contact

• Surface geometry,

• Elastic and plastic deformation

• Dynamic friction forces on the bodies

In summary, friction is a very complex physical phenomenon whose physics is be-

yond the scope of this thesis. In this study, the simplest friction model is utilized

during simulations and modeling. This model is the very well known "Coulomb Fric-

tion Model".

3.2.2.1 Coulomb Friction Model

Coulomb friction model -assuming the body at rest- defines the friction force between

contacting bodies as
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Tf =

Ta, if Ta < |Ts|

Ts × sgn(Ta), if Ta ≥ Ts

(3.24)

Where Ts is the pre-specified friction torque and Ta is the externally applied torque.

Due to its simplicity, Coulomb friction model is frequently used. It can be further

improved by adding viscous friction, however this is not critical for the purposes of

this study, as the main motivation is to keep the friction as a black-box behaviour. In

the next sub-section the experimental results on friction measurement are provided.

3.2.2.2 Experimental Results on Friction

The method utilized for friction measurement is simply moving the system with con-

stant speed at different directions and observe the required torque levels. Notice that

Ta = α× Js + Tf (3.25)

where Ta is the torque applied to the system; α is the angular acceleration of the

system; Js is the equivalent system inertia; and, Tf is the constant friction torque.

During motion with constant speed, the angular acceleration is zero, i.e.:

α = 0 (3.26)

yielding

Ta = Tf (3.27)

The torque data has been collected for a small speed (3 deg/s in each direction) of

the system to see the level of static friction. Moreover the very same experiment was

performed with a speed of 30 deg/s in order to see the viscosity effects.

As seen in Fig. 3.18 the friction at opposing directions has very similar characteristics

and viscosity effects seem to be negligible (a 10−15% increase with a speed increased
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10 times). The average static friction torque values evaluated for opposing directions

are listed in Table 3.4. As seen in this table, they are very similar and around 4% of

the maximum torque.

68



Fi
gu

re
3.

18
:T

he
ex

pe
ri

m
en

ta
lly

m
ea

su
re

d
st

at
ic

fr
ic

tio
n.

Po
si

tiv
e

di
re

ct
io

n
fr

ic
tio

n
da

ta
(r

ed
),

its
av

er
ag

e
(b

lu
e)

.N
eg

at
iv

e
di

re
ct

io
n

fr
ic

tio
n

da
ta

(g
re

en
),

its
av

er
ag

e
(b

la
ck

).
T

he
hi

gh
sp

ee
d

fr
ic

tio
n

pl
ot

s
ar

e
gi

ve
n

as
a

re
fe

re
nc

e
fo

rm
od

el
in

g
er

ro
rb

y
ig

no
ri

ng
vi

sc
ou

s
be

ha
vi

or
.

69



Table 3.4: Experimentally obtained static friction values.

DIRECTION STATIC FRICTION

Negative −0.0368 p.u.

Positive 0.0370 p.u.

Figure 3.19: Schematic representation of the linear three-mass mechanical system

model.

3.3 Distributed Inertia Model for The Mechanical Components

In the control of motion platforms, lumped-mass models are employed for describing

the behavior of the mechanical part of the system. These models usually include two

(e.g. [45],[68] [74]) or three (e.g.: [46],[79]) lumped masses connected with flexible

elements. For a typical motion platform in a military system, usually the actuator is

situated at "one end" and the load is located at "the other end" of the system; whereas

the feedback sensor is usually situated in between. Hence, it is wise to employ a

three-mass model to represent two "end" masses and one "in between" mass.

The schematic of a typical model for a three-mass system connected with flexible

elements is shown in Fig. 3.19. The parameters used in this figure are summarized in

Table 3.5.

3.3.1 Analysis in s-domain

One can easily derive a linear MIMO model for such a system by writing down the

equations of motion for each body as:

Jmω̇m = Tm − Ts1 − cmωm (3.28)
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Table 3.5: Parameters of the model given in Fig. 3.19

PARAMETER UNIT REMARKS SAMPLE VALUE
Tm Nm Motor Torque (controlled input) -
Td Nm Equivalent Disturbance Torque (uncontrolled input) -
θm rad Position of the Motor Shaft -
θg rad Position of the Second Mass -
θl rad Position of the Third Mass -
cm Nm.s/rad Viscosity of the Motor Shaft Bearing 100
cg Nm.s/rad Viscosity of the Second Mass Bearing 100
cl Nm.s/rad Viscosity of the Third Mass Bearing 100
cs1 Nm.s/rad Equivalent Viscosity of the First Joint 0
cs2 Nm.s/rad Equivalent Viscosity of the Second Joint 0
ks1 Nm/rad Equivalent Stiffness of the First Joint 1.8× 105

ks2 Nm/rad Equivalent Stiffness of the Second Joint 1.8× 105

Jm kgm2 Equivalent Inertia of the First Mass 30
Jg kgm2 Equivalent Inertia of the Second Mass 100
Jl kgm2 Equivalent Inertia of the Third Mass 300

Jgω̇g = Ts1 − Ts2 − cgωg (3.29)

Jlω̇l = Ts2 − Td − clωl (3.30)

where

Ts1 = ks1(θm − θg) + cs1(ωm − ωg) (3.31)

Ts2 = ks2(θg − θl) + cs2(ωg − ωl) (3.32)

If one substitutes (3.31) and (3.32) into (3.28)-(3.30), takes the Laplace transforms of

the resulting equations, and finally solves for inertia speeds in terms of input torques

(being the motor and disturbance torques), one gets the following MIMO transfer

function model:
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Ωm(s)

Ωg(s)

Ωl(s)

 =
s

∆


(D2 − CE) BD

−BE AD

−BD (AC −B2)


Tm(s)

Td(s)

 (3.33)

with

A = Jms
2 + (cm + cs1)s+ ks1 (3.34)

B = cs1s+ ks1 (3.35)

C = Jgs
2 + (cg + cs1 + cs2)s+ ks1 + ks2 (3.36)

D = cs2s+ ks2 (3.37)

E = Jls
2 + (cl + cs2)s+ ks2 (3.38)

∆ = B2E + AD2 − ACE (3.39)

in the above equations Ωm(s),Ωg(s) and Ωl(s) represent the Laplace transforms of

ωm(t), ωg(t) and ωl(t), respectively.

3.3.2 An Investigation of Frequency-domain Behavior for Second Mass Speed

Output

In most of the previous studies the main concern had been usually control of the

motor speed ωm ([27],[45] etc.) or the control of the load speed ωl ([49],[67] etc.).

However, in most of the military motion platforms the sensor used for the angular

speed feedback to the controller is placed in between the motor (or actuator) and the
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Figure 3.20: Typical Frequency Response Function (FRF) plot for the second mass

speed output of a 3 mass system.

load; meaning the most appropriate feedback is the second mass speed, ωg. One may

argue that, the "load speed" should be critical; however during the mechanical design

it is guaranteed that if one controls the "feedback sensor speed", the motion platform

speed control requirement is satisfied. Hence, it is worth investigating the frequency

domain characteristics of this additional speed element.

Taking the second mass speed as the output, if one investigates the frequency response

function

Ggm(jω) =
Ωg(jω)

Tm(jω)
(3.40)

it is obvious that the behaviour is dependent on the values of the system parameters

given in Table 3.5. The mechanical modes of the system are functions of stiffness

and inertia values, while mode damping values are highly dependent on viscosity

terms. For a typical motion platform (i.e. with Jl >> Jm and ks2 ≈ ks1) the fre-

quency response function defined in (3.40) is similar to the one given in Fig. 3.20.

If one investigates this figure, it is easily seen that there is an anti-resonance at a

lower frequency than resonances. In order to deal with this anti-resonance, the con-

troller must have a very high gain at least in the close neighborhood of this frequency.

On the other hand, in order to have a large enough gain margin, the open-loop FRF

must be far less than 0 dB whenever the phase lag is −180◦. Hence the controller
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Figure 3.21: Simplified system model with all damping terms neglected.

must suppress the resonances shown in Fig. 3.20. Finally, in order not to have a

spillover effect, which may be defined as the instability caused by higher frequency

modes which are not modeled, the controller must suppress the high frequency con-

tent. In order to achieve such a performance several notch or bi-quad filter designs are

proposed ([48]). Moreover the anti-resonance effect can simply be dealt with poles

placement ([49],[62]) by employing the method of Truxal and Guillemin. However, it

is very well known that, without using additional sensors (not practical for our case)

and taking precautions for avoiding instability, these methods are simply not robust

and pose un-damped oscillations in a practical system. Hence, one needs a control

architecture that provides high gain in the vicinity of the anti-resonance frequency;

suppresses the response about the resonance frequencies and adapts itself accordingly

for the case these critical frequencies somehow shift during operation.

3.3.3 Effects of System Parameters on Dynamic Behaviour

In this sub-section, the mechanical model used for the system is investigated by per-

forming a parametric analysis. This analysis is used to enlighten the effects of system

parameters on the open-loop system behaviour, i.e. on the pole and zero locations of

the plant.

For the sake of simplicity, the simplified system model given in Fig. 3.21 is utilised

for mathematical analysis. In other words, the friction terms are neglected in the

transfer function equation. For this model, the transfer function from motor torque to

second inertia angular speed output can easily be evaluated as
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Ωg

Tm
= ks1(Jls

2+ks2)
sJm[JgJls4+JgJlks1s3+(ks2(Jl+Jg)+ks1Jl)s2+ks1ks2(Jl+Jg)s+ks1ks2]

(3.41)

This open-loop transfer function has two zeros and four poles whose values depend

on system parameters. There is an additional pole at the origin due to torque input to

speed output transition.

The change of pole and zero locations as parameters change can be investigated using

the following definitions

SZij
,
∂zi
∂aj

, SPkj
,
∂pk
∂aj

(3.42)

Where zi represents ith zero, pk represents kth pole, aj represents jth parameter, SZij

represents “sensitivity measure of ith zero to jth parameter" and SPkj
represents “sen-

sitivity measure of the kth pole to jth parameter". Although it is straightforward to

evaluate pole and zero locations by finding numerator and denominator polynomial

roots, performing these operations analytically on paper is very cumbersome. Hence,

the sensitivity measure evaluation was performed using Symbolic Math Toolbox of

MATLAB. With the parameter vector

a ,
[
Jm Jg Jl ks1 ks2

]
(3.43)

One gets the following sensitivity measure values with the sample system parameters

SZ =

0 0 −j0.0408 0 j6.8x10−5

0 0 j0.0408 0 −j6.8x10−5

 (3.44)

SP =



0 0 0 0 0

0 −j1.71x10−1 −1.78x10−15 − j9.16x10−4 1.26x10−8 + j2.31x10−4 −1.34x10−8 + j2.15x10−5

0 j1.71x10−1 −1.78x10−15 + j9.16x10−4 1.26x10−8 − j2.31x10−4 −1.34x10−8 − j2.15x10−5

0 −j2.03x10−1 −j2.12x10−2 −1.26x10−8 + j9.72x10−6 1.34x10−8 + j1.09x10−4

0 j2.03x10−1 j2.12x10−2 −1.26x10−8 − j9.72x10−6 1.34x10−8 − j1.09x10−4


(3.45)
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Figure 3.22: Torque input to second mass speed output FRF change w.r.t. first mass

inertia, Jm.

As seen in (3.44), the anti-resonance frequency value, which corresponds to the sys-

tem zeros is dependent on load inertia and second shaft stiffness values. In order to

visualize the sensitivity of the open-loop plant behavior w.r.t. system parameters, the

FRF plots for the open-loop plant as system parameters change are shown in Figs.

3.22,3.23,3.24,3.25,3.26. From these plots and above analysis it is straightforward to

say that if the mechanical system had a higher ks2 or lower Jl value, then it would be

possible to obtain a better performance for the speed control of the second mass with-

out much design effort [83]. This is due to fact that the first anti-resonance frequency

is shifted towards higher values with these parameter changes. Especially increasing

ks2 shifts all critical frequencies (anti-resonance and resonance) to higher values.

3.3.4 Controllability and Observability Analysis

In this study, the aim is controlling the speed of the second mass. The feedbacks are

the motor (first) mass and second mass speed signals, the only manipulating variable

is the motor torque. In order to be able to comment on the extents of the linear

control, one needs to analyse both controllability and observability of the system.

This is because controllability is a measure relating control actions to desired states
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Figure 3.23: Torque input to second mass speed output FRF change w.r.t. second

mass inertia, Jg.

Figure 3.24: Torque input to second mass speed output FRF change w.r.t. third mass

inertia, Jl.
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Figure 3.25: Torque input to second mass speed output FRF change w.r.t. first shaft

stiffness, ks1.

Figure 3.26: Torque input to second mass speed output FRF change w.r.t. second

shaft stiffness, ks2.
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while observability is a measure relating measured outputs to internal states of the

plant.

In order to analyse controllability and observability we should find the controllability

and observability Grammians of our system, which are given by

QC =
[
B AB A2B A3B ... An−1B

]
(3.46)

QO =



C

CA

CA2

CA3

...

CAn−1


(3.47)

for a linear system described by the following state-space model,

Ẋ = AX +BU (3.48)

Y = CX (3.49)

the system model considered in this study can be described in state-space as

X =



θm

˙θm

θg

θ̇g

θl

θ̇l


(3.50)
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Ẋ =



0 1 0 0 0 0

−ks1
Jm
− cm+cs1

Jm
ks1
Jm

cs1
Jm

0 0

0 0 0 1 0 0

ks1
Jg

cs1
Jg

−ks1+ks2
Jg

− cs1+cs2+cg
Jg

ks2
Jg

cs2
Jg

0 0 0 0 0 1

0 0 ks2
Jl

cs2
Jl

−ks2
Jl
− cs1+cs2

Jl


X +



0

1
Jm

0

0

0

0


Tm

(3.51)

C =

0 1 0 0 0 0

0 0 0 1 0 0

 (3.52)

As seen in above expressions, a parametric evaluation of the observability and con-

trollability Grammians is impractical. Hence, both Grammians are evaluated numer-

ically, for the sample system whose parameters are given in Table 3.5. This yields

QC =



0 3.3× 10−2 −1.11× 10−1 −2× 102 1.33× 102 1.55× 106

3.3× 10−2 −1.11× 10−1 −2× 102 1.33× 103 1.55× 106 −1.47× 107

0 0 0 6× 101 −2.6× 102 −5.75× 105

0 0 6× 101 −2.6× 102 −5.75× 105 3.91× 106

0 0 0 0 0 3.6× 104

0 0 0 0 3.6× 104 −1.68× 105


(3.53)

with rank(QC) = 6 and a 12 × 6 QO matrix with rank(QO) = 5. Hence the linear

system model is theoretically completely controllable but not observable.

The Grammians calculated above show that even if the linear system is theoretically

controllable, the control effort to control the "far states" (i.e. load mass speed) is much

greater than the "close states" (i.e. motor mass speed) - note the difference in order

of magnitudes of different column entries of the QC matrix. Moreover, our system is

not observable with the current first and second mass velocity feedbacks and further

feedbacks may be needed in order to be able to completely observe the states.
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3.3.5 Some Studies on the Experimental Setup

Up until this point, several analysis on the linear plant model have been performed.

The utilised linear plant model has a physical parameter set, which can be used to

enlighten the relationship between the mechanical properties of the system and its

dynamic behaviour. However, as it will be explored in this sub-section, the real sys-

tem has more complicated dynamics, and even a linear model catching the rough

behaviour of these dynamics has an order of 9. Hence, instead of trying to match

the 3-mass model’s parameters with the experimental setup, a more general transfer

function fitting technique has been employed. Afterwards, the discrepancies between

the real system and the fitted linear model behaviours have been investigated to gain

more insight on the level of the non-linearity inherent to the system.

3.3.5.1 Transfer Function Identification

In order to fit a linear transfer function to the dynamic behaviour of the experimental

system, the frequency sweep tests are employed. An example set of results from such

a test is shown in Fig. 3.27. The frequency response function (FRF) of the system is

measured using the motor quadrature current (corresponding to motor torque) as the

input and the gyroscope feedback (corresponding to feedback speed measurement) as

the output. With the assumption that the system is stable, the resultant magnitude plot

(assuming a minimum phase system, one can claim that the phase response is unique)

has a one-to-one mapping with the transfer function of the dynamic linear system.

In this study the genetic algorithm search method is employed in order to fit the s-

domain poles and zeros to the obtained FRF magnitude (see Appendix for details of

the utilised method). At this point, it is worth to note that the speed control will be

effective in the range of 0-20 Hz, hence it is satisfactory to perform the identification

process in the range of frequencies between 0-40 Hz.

In order to evaluate the pole-zero arrangements of the linear system model the fol-

lowing reasoning is used: the input of the system is torque, and the output is speed,

hence there should be a pole around zero. As seen in Fig. 3.28, there is a deep anti-

resonance point around the frequency of 7Hz, hence there should be a double zero
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around this frequency. A similar discussion is also valid for the anti-resonance fre-

quency point around 26Hz. Considering the shape of the FRF, we should at least add

a pole (to flatten the response after rise from anti-resonance frequency around 7Hz),

another pole (to roll the response down to the anti-resonance frequency at 26Hz), a

double zero (to rise the response up after the anti-resonance at 26Hz) and another

pole (to flatten the response after the anti-resonance.) to get this shape. The genetic

algorithm fitting is performed (see Appendix for details) on the above collected data,

the following result is obtained, using a transfer function with the properties given in

Table 3.6, hence the overall system being fitted to a transfer function of order 9.
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Table 3.6: Properties of the assumed transfer function employed during the genetic
algorithm process.

PROPERTY VALUE
Number of real zeros 2

Numer of complex zero pairs 3
Number of real poles 3

Number of complex pole pairs 3

The genetic algorithm process resulted in the following transfer function:

G(s) =
4.876s8 + 2.210× 103s7 + 6.869× 105s6 + 1.505× 108s5 + 1.862× 1010s4 + 2.525× 1012s3 + 1.089× 1014s2 + 4.465× 1015s+ 1.264× 1017

s9 + 1.283× 103s8 + 7.316× 105s7 + 2.450× 108s6 + 5.425× 1010s5 + 8.561× 1012s4 + 9.932× 1014s3 + 7.837× 1016s2 + 3.077× 1018s+ 2.751× 1016

(3.54)

When one calculates the poles and zeros of G(s) given in (3.54), the results shown in

Table 3.7 are obtained. Observing in this table that G(s) is both stable (all poles with

negative real parts) and minimum phase (all zeros with negative real parts), one can

justify to have a Bode plot for G(jω).
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Table 3.7: Zeros and Poles of the Transfer Function G(s) Evaluated Using Genetic
Algorithm Method.

ZEROS

−2.5133

−38.97

−75.39± j221.02

−3.57± j159.59

−2.51± j43.58

POLES

−0.01

−208.55

−214.93

−7.08± j150.72

−206.79± j117.10

−215.69± j82.75

The transfer function’s Bode plot is shown in red in Fig. 3.29, along with the mea-

sured sine-swept frequency response function. As expected, the magnitude response

shows a considerable degree of fit. One might argue that the phase response does

not fit very correctly; however this may be overcome with incorporating the phase

response in the genetic algorithm runs. Moreover, the tendency of the phase response

is mostly similar between measured and fitted FRF data. When a proper delay term

(transport delays in measurements and commands) and a constant phase offset are

added for structural damping (originating from the test-bed’s non-rigid connection

with the ground), one gets the result shown in Fig. 3.30
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In summary, one can approximate the "linear behaviour" of the utilised system with

a 9th order transfer function. On the other hand, a multi-body model with proper

mechanical parameters is more useful to be able to comment on the system behaviour

in terms of mechanical design parameters. That is the analysis is performed using

approximate values given in Table 3.5. Nevertheless, employing a well-matching

linear model for the plant is only useful to gain insight, rather than performing the

control design using this linear model, as the real system behaves in a quite non-linear

fashion, as it will be investigated in the next sub-section.

3.3.5.2 Discrepancies Between Experimental Results and Linear Behaviour

As one can deduce from the preceding sub-sections, it is possible to employ the exper-

imental results to generate a linear model of the system to approximate the dynamic

behaviour. In this sub-section, the validity of the linear model is investigated in more

detail, in order to gain insight and be able to comment on the type and complexity

of the controller that should be employed to control the system, even beyond the first

open-loop anti-resonance frequency. For this purpose, two experimental methods are

employed: First, the frequency sweep test is repeated with different torque (motor

current) amplitudes. Second, the time-domain behaviour of the system was investi-

gated in steady-state, when it is excited with a single-tone sine input torque at several

different frequencies.
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When the frequency sweep tests are performed with different torque amplitudes, the

result given in Fig. 3.31 is obtained. This result shows that even if the system is dom-

inated by a "linear transfer function model", this model (matching the FRF) changes

with the input torque (excitation) amplitude. Moreover, onecan make the following

observations:

• For the smallest excitation amplitude, since the stiction is dominant, system

cannot even move properly. Hence, at very low frequencies the gain is low.

• As the excitation torque amplitude is increased, low frequency system gain

converges through the same value, which corresponds to (the inverse of) the

equivalent inertia of the system, as at these frequencies the system may be

approximated by T = Jω̇, yielding Ω(s)/T (s) = 1/J .

• The anti-resonance and resonance frequencies slightly increase with increasing

excitation amplitude, but overall change is on the order of 0.1 Hz

• The gain at the resonance frequency decreases as excitation amplitude increases.

This corresponds to the fact that as the excitation torque amplitude increases the

system starts moving faster resulting in higher effective damping

The above observations can be used to deduce the fact that a solely linear model is

not satisfactory to completely represent the abstract system and perform the control

design.

Besides the dynamics altering as the input excitation amplitude is increased, it is

worth to investigate the time-domain behavior of the system to single-tone sinu-

soidal excitation at different frequencies. This would give insight on the level of

non-linearity of the system.

From Fig. 3.33 to Fig. 3.38, time-domain data for a very low frequency (0.75 Hz),

two moderate frequencies (2 Hz and 5 Hz), a frequency close to the anti-resonance

(7 Hz), a frequency close to the resonance (18 Hz), and a high frequency (38 Hz) are

represented. Fig. 3.32 is also given in order to show the gyro noise level, which is in

the order of a few mili-degrees per second (i.e. measured speed levels are not mere

gyro noise). From all these figures, one can state the following observations:

91



Figure 3.32: Gyro noise for the stationary system, whose level is in the order of

0.002 deg /s peak-peak.

• At low frequencies the system is mainly linear, giving mere sinusoidal output

for a sinusoidal torque input (Fig. 3.33)

• As the frequency is increased to a few Hz (Fig. 3.34 and Fig. 3.35), output

diverges from a pure sinusoidal one, meaning non-linear effects come into play

• At the anti-resonance frequency, the linear gain of the system is too low, and

output is dominated by the harmonics, meaning that the behavior of the system

is mostly non-linear at this frequency (Fig. 3.36).

• At around the resonance frequency (Fig. 3.37), the linear gain of the system is

large and the system behaves mostly as a gain, i.e. linear.

• At a frequency higher than the resonance (Fig. 3.38), the gain of the system is

low, on the other hand, as the load is ’decoupled’ from the remaining part of the

system linear behavior dominates.

Looking at the observations on the time-domain response of the system to single-

tone sinusoidal excitations, one can state that by suppressing the system dynamics

at and above anti-resonance, a linear controller would perform satisfactory perfor-

mance. However, if the aim of the control is to increase the bandwidth beyond the
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Figure 3.33: Time domain data from frequency sweep tests, at the frequency 0.75Hz.

anti-resonance frequency, then linear control is not enough to accomplish the speed

control problem.

This subsection can be summarized as follows: In the given system, a linear system

model may be employed to describe the FRF behaviour. However, one cannot directly

employ a high performance linear controller, even a non-linear one without consider-

ing the non-linear effects, which are easily observed via changing excitation ampli-

tude or investigating time-domain data. On the other hand, non-linear effects usually

cannot be completely modeled. Hence most suitable methods for speed control of

motion platforms should include some "adaptive" controllers with system behavior

"predictors".

3.4 Reference Controller Designs

In this section, three different techniques are employed for designing speed con-

trollers for the given system. The first controller is a PIDF controller, this type of

controller is employed as it is the most popular controller form with practical impor-

tance. The second controller is a fuzzy logic controller and it is utilised as a popular
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Figure 3.34: Time domain data from frequency sweep tests, at the frequency 2Hz.

Figure 3.35: Time domain data from frequency sweep tests, at the frequency 5Hz.
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Figure 3.36: Time domain data from frequency sweep tests, at the frequency 7Hz.

Figure 3.37: Time domain data from frequency sweep tests, at the frequency 18Hz.

95



Figure 3.38: Time domain data from frequency sweep tests, at the frequency 38Hz.

example of a non-linear intelligent controller. The third controller is a direct pole-

placement design and it is utilised to show the limits of theoretical linear control and

its fragility against system parameter variations.

3.4.1 Proportional-Integral-Derivative with Filter (PIDF) Design

Using the transfer function model obtained via the identification process, speed con-

trol of the system has been performed using the PIDF controller. The design is

achieved using MATLAB’s Control Design Toolbox, with optimum step response

performance with maximum controller output of 120 Nm (which is the real limit of

the motor utilised in the experimental setup).

The Simulink model used for simulation is shown in Fig. 3.39, whereas the step

response is given in Fig. 3.40. The parameters and transient performance of the

controlled system are summarized in Table 3.8.
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Figure 3.39: Simulink Model used to perform simulations for the response of G(s)

with a simple PIDF controller.

Figure 3.40: Step response of the closed loop system employing a PIDF controller.
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Table 3.8: PIDF Controller Parameters and Performance Measures.

PARAMETER VALUE
KP 195.6

KI 12.81

KD 9.688

TF (filtertimeconstant) 4.954× 10−2

Rise Time 223ms

Settling Time 308ms

Percent Overshoot 1.56%

Figure 3.41: Membership functions of the 7 fuzzy sets used for both input and output

variables.

3.4.2 Sample Fuzzy Controller Design

A fuzzy logic controller has been designed for the closed loop control of the identified

plant. A 2 input - 1 output fuzzy logic controller has been employed, which is similar

to a PI control structure. First input is the error and the second input is the integral

of the error. Triangular membership functions given in Fig. 3.41 is used for all the

variables, with normalized gains.

The rule base has been obtained by “AND"ing the two input variable sets in order to

find the output fuzzy set, yielding a rule-base consisting of 49 rules. The resulting I/O

mapping with this rule base and above membership functions is given in Fig. 3.42

In order to evaluate the performance of the fuzzy logic controller, a simulation has

been performed in the Simulink environment, as shown in Fig. 3.43. The result ob-

tained is shown in Fig. 3.44. It can be stated that fuzzy logic controller is a promising
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Figure 3.42: Fuzzy Logic Controller I/O mapping with the membership functions

given in Fig. 3.41 and a 49-rule rule base.

Figure 3.43: Simulink Implementation of the closed loop system with fuzzy logic

controller.
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Figure 3.44: Step response of the closed-loop system given in Fig. 3.43.

method for closed loop speed control of a motion platform, however it needs some

modifications and enhancements in order to obtain a satisfactory result: Note that,

unlike PIDF controller, the fuzzy logic controller can demand full torque at the begin-

ning of the step command. However, there occurs to be a "non-minimum phase"-like

behaviour and error starts to increase for some time after the "full-demand". This is

actually not a good performance for a speed control system due to high jerks caused.

Both of the above mentioned designs did not perform as expected on the real sys-

tem during experiments. Actually, this is an expected result since both of the designs

assumed that the system was completely defined by the transfer function, which cor-

responds to the linear behaviour. Hence, one can state that there occurs to be strong

non-linear effects in our system (as observed in the last section), which might not be

modeled or compensated directly.

3.4.3 The Method of Truxal and Guillemin (Direct Pole-Placement)

The method of Truxal and Guillemin is a realizable version of direct pole-placement.

Consider the classical closed-loop system with controller GC(s) and plant GP (s) as

given in Fig. 3.45.

100



Figure 3.45: Typical closed loop control structure.

The general form of the plant transfer function is

GP (s) =
D(s)

C(s)
=
d0 + d1s+ d2s

2 + ...+ dms
m

c0 + c1s+ c2s2 + ...+ cnsn
(3.55)

withD(s) andC(s) polynomials having no common roots, cn = 1 andm < n. GP (s)

is assumed to be stable and minimum phase (true for our case). Let the controller to

be designed have the following form

GC(s) =
B(s)

A(s)
=
b0 + b1s+ b2s

2 + ...+ bws
w

a0 + a1s+ a2s2 + ...+ azsz
(3.56)

with az = 1 and w < z.

Let the controller be designed such that the closed-loop transfer function becomes

KW (s) =
α(s)

β(s)
=
α0 + α1s+ α2s

2 + ...+ αvs
v

β0 + β1s+ β2s2 + ...+ βusu
(3.57)

which could be freely chosen, under the condition that the controller is realizable (i.e.

w < z).

The closed-loop transfer function can be written in terms of plant and controller trans-

fer functions as follows

KW (s) =
GC(s)GP (s)

1 +GC(s)GP (s)
(3.58)

Given the desired closed-loop transfer function KW (s), the controller GC(s) can be
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Figure 3.46: Structure of the controller in Truxal and Guillemin design.

evaluated using 3.58; which gives:

GC(s) =
1

GP (s)

KW (s)

(1−KW (s))
(3.59)

The condition of realizability of GC(s) becomes:

deg(B(s)) ≤ deg(A(s)) =⇒ (n+ v) ≤ (m+ u) =⇒ (u− v) ≥ (n−m) (3.60)

The above equation can be written in words as follows: The pole excess of the desired

closed-loop transfer function must be larger than or equal to the pole excess of the

plant. Within these constraints the closed-loop transfer function is free. The controller

has the form given in Fig. 3.46.

For this case the linear model with mechanical parameters is employed (as this will

result in a more complicated closed loop dynamics). The pole excess of the plant is

3 (see 3.41). Hence, the closed-loop transfer function must at least have 3 excessive

poles. Let it have the simplest realizable form with 0 dB DC gain, triple poles which

are far enough from the origin:

KW (s) =
603

(s+ 60)3
(3.61)

When one performs the design using the plant transfer function given in (3.41), the

fifth order controller transfer function shown below is obtained
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Figure 3.47: Open-loop FRF with Truxal-Guillemin design simulation of three mass

linear system.

GC(s) =
3.888× 1010 + 5.576× 1010s+ 8.568× 107s2 + 3.674× 107s3 + 1.68× 104s4 + 3600s5

6.48× 106s+ 1.116x105s2 + 1.146× 104s3 + 180.3s4 + s5

(3.62)

This is the simplest controller form one can obtain with Truxal-Guillemin method,

since the minimum number of pole excess in the controller with no zeros is utilised.

Theoretical open-loop and closed FRF plots with this design are given in Fig. 3.47

and Fig. 3.48, respectively.

As seen in these figures, the anti-resonance of the open-loop plant has been com-

pletely eliminated via pole-placement. However, when one investigates the time-

domain behaviour of the control signal (output of the controller) during an open-loop

sine sweep (Fig. 3.49), it is easily observed that at the anti-resonance frequency the

control signal reaches very high values, this is indeed something needed for control

purpose in theory, however in practice any shift in the anti-resonance frequency will

lead to very high open-loop gains and therefore possible instabilities.
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Figure 3.48: Closed-loop FRF with Truxal-Guillemin design simulation of three mass

linear system.

Figure 3.49: Controller output during a sine-sweep velocity reference with Truxal-

Guillemin design simulation of three mass linear system.
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3.4.4 Section Summary

This section has been dedicated to control designs with PIDF, fuzzy logic and direct

pole-placement approaches. As the plant model, we employed either higher-order

FRF fit (PIDF and fuzzy logic cases) or lower-order mechanical model (direct pole-

placement). After performing these control designs, the following observations can

be stated:

• PIDF controller may show a good performance for a linear time-invariant sys-

tem. However, as the real system changes behaviour with different torque input

levels, its practical performance would be limited.

• Fuzzy logic control design has been performed since it is a popular and well-

studied non-linear control approach. At the end, it is possible to obtain an ac-

ceptable step response in simulations. However, practical application of fuzzy-

logic controller would at least need adaptation of its fuzzy set parameters.

• Direct pole-placement is performed to show the fragility of the approach in a

practical application: It is possible to set the closed-loop system transfer func-

tion to a high performance one (i.e. fast responding, nearly unity at frequencies

of interest). As the open-loop poles are directly cancelled via the controller,

any shift in these pole locations may cause instability.

3.5 Chapter Summary

In this chapter, efforts given to modeling and performing experiments in order to gain

insight on different sub-problems of a motion platform were explained in detail. The

findings on these efforts may be summarized as follows:

• Current control of brushless electric motors may be treated separately if one is

concerned with the speed control of a motion platform, as long as bandwidth of

the current control is carefully evaluated and set high enough. This can mainly

be achieved by minimizing the transport delays in the current control loop.
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Even if current loop interacts with the mechanical components in the system,

this interaction can be compensated via the current controller.

• Backlash and friction are the main non-linear effects dominating in a motion

platform - as in the case of any mechanical system. As long as our system is

concerned, as the main focus is the speed control, and backlash value (being

0.043◦ on the motor side) and friction value (being 4%) are low enough, it

might be said that they do not dominate statically.

• The analysis of the multi-body dynamics of the mechanical system showed

that it is dominated especially by the stiffness of the second link (ks2) and the

inertia of the third mass (Jl), which determine the location of the very first

anti-resonance for our case.

• Several experiments performed on the setup showed that, the non-linearities in

the system are actually quite dynamic and dominant; making it an impractical

effort to model them. They change behaviour both with the frequency and the

amplitude of the input excitation. It was also shown that a multi-order (9 in our

case) linear transfer function maybe fitted to the FRF to be employed as a plant

model for controller design. However, as this model has no physical parame-

ters, employing a lower order model corresponding to a three-mass mechanical

system with physical parameters maybe more useful for simulation studies.

• PIDF, fuzzy-logic and direct-pole placement controllers were designed by util-

ising the linear system models evaluated in this chapter. The simulation results

for all of the controller designs are promising. However, none of the controllers

perform as expected on the real system. This is an expected result, as the real

system possess several non-linear effects which are not taken into account by

the controller designs.

Keeping the above evaluations in mind, one can say that a control architecture to

perform the speed control of a motion platform should be best with an intelligent, fast

converging, self-structuring, non-linear and adaptive controller, possessing an on-line

system identifier as well.
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In the next chapter, a novel control approach for the speed control of motion platforms

will be proposed, analysed, simulated and experimented. Several findings from this

chapter will be employed to evaluate the performance of the proposed method.
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CHAPTER 4

SELF-RECURRENT WAVELET NEURAL NETWORK BASED

INDIRECT ADAPTIVE CONTROLLER WITH OPTIMIZED

ADAPTIVE LEARNING RATES AND STRUCTURE

LEARNING

4.1 Wavelets and Wavelet Neural Networks

A wavelet is a small wave function (i.e. it grows and decays in finite time) ,usually

denoted by ψ(.), with the following properties

∫ ∞
−∞

ψ(u)du = 0;

∫ ∞
−∞

ψ2(u)du = 1; 0 <

∫ ∞
−∞

|Ψ(f)|2

f
df <∞ (4.1)

where Ψ(f) denotes the Fourier transform of ψ(u). A typical wavelet, which is also

employed in this study, is called the Gaussian derivative given by

ψ(u) = −ue−
u2

2 (4.2)

Its mother wavelet plot (with no translation and unity dilation) is shown in Fig. 4.1.

In multi-resolution analysis (MRA) the mother wavelet ψ(.) is translated and dilated

in order to build up resolution levels as indicated below:

ψλ,t(u) =
1√
λ
ψ(
u− t
λ

) (4.3)
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Figure 4.1: Plot of the Gaussian derivative wavelet.

Figure 4.2: Recurrent Neural Network in State-Space Model form. ([58])

where λ is called the "dilation" and t is called the "translation" of the wavelet. Wavelet

theory is a very versatile tool in signal processing and a comprehensive coverage of

wavelets and wavelet analysis may be found in [43].

Wavelet Neural Networks (WNNs) are neural networks in which neurons’ activation

functions are wavelets (hence such neurons are termed as "wavelon"s.). The main

advantage of WNNs with respect to the standard NNs is that they converge faster.

Moreover, employing concepts from MRA, WNNs are able to mimic dynamic system

behaviour with very high performance when used in recurrent form as given in Fig.

4.2. Such a neural network is literally termed as a "Self-Recurrent Wavelet Neural

Network" (SRWNN).

4.1.1 Indirect Adaptive Controller Employing SRWNNs

The SRWNN structure used in this study was proposed in [60]. As seen in Fig. 4.3

this structure consists of mainly four layers:

• Layer 1: The input layer.It consists of Ni nodes representing inputs to the SR-
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WNN.

• Layer 2: The mother wavelet layer. It consists of Nw wavelon groups each

having Ni wavelons corresponding to every element of the input vector of the

SRWNN. ith wavelon of the jth wavelon group performs the following calcu-

lation

φjk(zjk) = φ(
ujk −mjk

djk
) (4.4)

where

zjk =
ujk −mjk

djk
, ujk(n) = xk(n) + φjk(n− 1)θjk (4.5)

In (4.4) and (4.5), xk denotes the kth element of the input vector; mjk, djk

and θjk denote the translation, dilation and feedback gain of the wavelon jk ,

respectively.

• Layer 3: The product layer. It consists of Nw product elements. jth product

element merges the corresponding mother wavelet group activation as

Φj(x) =

Ni∏
k=1

φ(zjk) (4.6)

• Layer 4: The output layer: Consists of a summer and calculates the output as

y =
Nw∑
j=1

wjΦj(x) +

Ni∑
k=1

akxk (4.7)

where wj is the weight of the jth wavelon group, and ak is the weight of the

kth input vector element. Note that, in (4.7) the second sum denotes a linear

component between the input and the output, which behaves similar to a pro-

portional controller. In [88] this linear component is not used, but the SRWNN

itself replaces the proportional part of a PID controller.

4.1.2 Modified Adaptive Learning Rates (MALR)

The SRWNN structure given in Fig. 4.3 is an adaptive structure, whose weight vector

is defined as
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Figure 4.3: SRWNN internal structure proposed in [60]

~W =
[
~a ~m ~d ~θ ~w

]
(4.8)

~W is adapted according to the gradient descent algorithm, which is described by

~W (n+ 1) = ~W (n)− η̄ ~∇WJ (4.9)

where η̄ is the diagonal matrix of learning rates,η̄ = diag(ηa, ηm, ηd, ηθ, ηw), and
~∇WJ denotes the gradient of the cost function J with respect to the weights vector
~W . Cost function is usually quadratic and it’s in the form

J(n) =
1

2
[yd(n)− y(n)]2 =

1

2
e2(n) (4.10)

where yd(n) is the desired output at time step n. The above definition of cost function

results in

~∇WJ = −e(n)~∇Wy (4.11)

where the term ~∇Wy can be easily evaluated by applying the chain rule for each

weight vector entry as given in [60]:
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∂y(n)

∂ak(n)
= xk (4.12)

∂y(n)

∂mjk(n)
= −wj

djk

∂Φj(x)

∂zjk
(4.13)

∂y(n)

∂djk(n)
= −wj

djk
zjk

∂Φj(x)

∂zjk
(4.14)

∂y(n)

∂θjk(n)
=
wj
djk

φjk(n− 1)
∂Φj(x)

∂zjk
(4.15)

∂yI(n)

∂wj(n)
= Φj(x) (4.16)

one can evaluate the partial derivative of Φj(x) w.r.t. zjk using chain rule as:

∂Φj(x)

∂zjk
= φ(zj1)φ(zj2)...φ̇(zjk)...φ(zjNi

) (4.17)

and with simple differentiation of the Gaussian derivative wavelet as:

φ̇(zjk) = (z2
jk − 1)e−

1
2
z2jk (4.18)

A set of adaptive upper bounds for learning rates have been proposed in [60] as fol-

lows:

ηa =
1

Ni|xI,max|2
(4.19)

ηm = ηθ =
1

NiNw

[
1

|wI,max| 2e−0.5

|dI,min|

]2 (4.20)

ηd =
1

NiNw

[
1

|wI,max| 2e0.5

|dI,min|

]2 (4.21)
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ηw =
1

Nw

(4.22)

where η represents the learning rate and its superscript represents the related adaptive

parameter. However, the approach employed in evaluating these learning rates is

based on Lyapunov stability theory and they guarantee the convergence of SRWNN

at all times, rather than optimizing the speed of convergence. The following idea is

employed to modify the learning rates in a different manner, in order to optimize the

speed of convergence of error:

If we denote the system output as y(n) and the identifier output as yI(n), one can

write the identification error as

e(n) = y(n)− yI(n) (4.23)

in discrete-time, assuming the dynamics of the plant output y is much slower than

that of the identifier output, yI (the identifier designed should catch the bandwidth of

the plant), i.e.

|y(n+ 1)− y(n)| << |yI(n+ 1)− yI(n)| (4.24)

one can write

e(n+ 1)− e(n) = (y(n+ 1)− y(n))− (yI(n+ 1)− yI(n)) ≈ −(yI(n+ 1)− yI(n))

(4.25)

If the identifier output error dynamics is considered in terms of the weight vector, one

has:

∆eI = [
∂eI
∂W

] T∆W (n) (4.26)

For the change in weights, the following expression can be employed

114



∆W (n) = −ηI
∂JI
∂W

= ηI
∂yI
∂W

(4.27)

and for the gradient of the error w.r.t the weights, one can write:

~∇W e
T = −[

∂yI
∂W

] T (4.28)

Combining the above expressions yields:

∆eI(n) = −ηIeI ||
∂yI
∂W
||2 (4.29)

Hence, we can control the change in the error using the learning rate ηI . Our aim is to

make eI(n + 1) = 0, as in the case of a dead-beat controller -i.e. optimum transient

performance. For this purpose, one should select

∆eI(n) = −ηIeI ||
∂yI
∂W
||2 = eI(n+ 1)− eI(n) = −eI(n) (4.30)

yielding

ηI =
1

|| ∂yI
∂W
||2

(4.31)

This evaluation gives the approximate learning rate on the immediate convergence of

the error to zero, not taking the stability into consideration. On the other hand, as

error approaches to zero, main concern becomes the stability of the system and hence

one should stick to Lyapunov theory results and use η∗ as proposed in [60].

In conclusion the adaptive learning rates algorithm may be modified to have a better

transient performance, as below:

η(n) =

η
∗, if n > n∗

ηI , if n < n∗
(4.32)

115



Figure 4.4: SRWNN based iterative adaptive controller (SRWNN IAC) structure sim-

ilar to the one in [69].

where η∗ is the adaptive learning rate, calculated as in [60], guaranteeing Lyapunov

stability. In words, at the beginning of the adaptation process, by keeping higher

learning rates, the process of learning is accelerated. The value n∗ is determined

by observing the convergence of error to 0. This learning rate update mechanism is

termed as the Modified Adaptive Learning Rates (MALR) throughout this study.

4.1.3 Control Architecture

SRWNN structure has been used in various architectures for control purpose. These

include a predictive controller ([60]), an indirect adaptive controller ([69]), and the

proportional part of a standard PID controller([88]). In this study, the indirect adap-

tive control architecture ([69]) with modified learning rates update algorithm is used.

The general structure of indirect adaptive control employing SRWNN-MALR com-

ponents is shown in Fig. 4.4. As seen in this figure, there are two MALR structures

along with two SRWNN structures: One being employed as the controller and other

as the identifier.

Most of the studies based on model-reference control (e.q. [68]) use a second order

linear system model as the reference for the closed-loop. However, one should keep in
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mind that even in a linear pole-placement approach, for the controller to be realizable,

the pole excess of the closed-loop system must be larger than or equal to the pole

excess of the plant itself. If the simple three-mass linear system model is considered,

it is seen that the plant has 3 excessive poles. Hence, in this study a reference model

with three excessive poles is employed. If one puts triple poles to a frequency higher

than the anti-resonance (see Fig. 3.20), and sets the DC gain to unity by adding a

constant to the numerator, the following reference model is obtained:

GR(s) =
603

(s+ 60)3
(4.33)

Another issue in this control architecture is that the gradient given in (4.11) cannot be

used directly because we have the cost function given as

J(n) =
1

2
[ω∗gr(n)− ωg(n)]2 =

1

2
e2
C(n) (4.34)

and ωg is not a direct output of the SRWNN. By applying the chain rule, one can write

~∇WJ = −eC(n)
∂ωg
∂Tm

~∇WTm (4.35)

where the ~∇WTm term can be easily found using the chain rule, as stated before.

However, the sensitivity term given by ∂ωg

∂Tm
cannot be calculated directly. For this

purpose the approach given in [69] is utilized and an SRWNN identifier is incorpo-

rated into the architecture, for which the term ∂ωg

∂Tm
can be calculated easily by utilising

the chain rule (see Fig. 4.4 and [69] for details).

4.2 Simulations

During simulations the three-mass system linear model is employed as the plant. A

speed command (in the form of unit step) reference has been applied to the system.

SRWNN structures with Nw = 4 has been utilized for both the identifier and the con-

troller. The results for the step response is shown in Fig. 4.5. In this figure, it is seen

that when the SRWNN IAC is utilized with the standard adaptive learning algorithm,
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Figure 4.5: Step Response with the original ALR algorithm (Top two plots) and the

Modified ALR algorithm (bottom two plots).
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Figure 4.6: Step Response when stiffness values are reduced by 50%. The Truxal-

Guillemin design(Top two plots) and SRWNN IAC (bottom two plots).
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it takes around 4 seconds for the system to follow the command. But with the mod-

ified learning rate algorithm it takes about 0.5 seconds. The robustness performance

of the SRWNN IAC is tested by reducing the stiffness values by a factor of 0.5 during

the simulation. As expected, the pole placement (Truxal-Guillemin) design shows un-

der damped oscillatory behavior; while SRWNN IAC controller adapts itself equally

well to the new stiffness values as given in Fig. 4.6.

4.3 Experiments

During the experiments an SRWNN structure with Nw = 4 has been employed for

both identifier and the controller parts, as in the simulations. With 2 inputs for the SR-

WNN, this sums up to a total of 30 learning parameters for both SRWNN structures.

The comparison between the ALR and the proposed MALR learning rate updates are

given in Fig. 4.8. It is easily observed that the SRWNNI converges to the system

output at about 2.2 seconds for ALR, and 1.05 seconds for the MALR case. Note also

from the same figure that the system is quite non-linear (producing a non-exponential

speed output for a square torque input, and the response is different at each step cycle),

however SRWNNI structure is complicated enough to capture these non-linearities

and find the system sensitivity correctly. The performance of the controller is com-

pared with a high performance PI speed controller as well. The PI controller is tuned

so as to have a gain margin of only 2 dBs, making it non-robust, but with a stiff, high

command tracking performance. As seen in Fig. 4.9 the SRWNN adaptive controller

structure outperforms the high performance PI controller in step response, and it al-

most makes the overall system mimic the reference system behaviour. To make a few

comments: The SRWNN controller saturates the motor torque very rapidly in the case

of a step command and uses all the available acceleration of the system in an efficient

way; hence using the torque loop bandwidth much more better than the PI controller.

One can also state that the main reason for the SRWNN IAC cannot do better in mak-

ing the system mimic the 3rd order reference system is the actuator saturation (note

that the p.u. torque demand saturates to 1 immediately for the SRWNN IAC case).
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4.4 Performance Comparison with Robust Control Designs on a Benchmark

System

As the performance of the proposed architecture has been verified with simulations

and experiments; it is further compared with RST robust designs for a similar sys-

tem. In European Control Conference of the year 1995, a benchmark system has

been proposed to be controlled using the robust control design [33] for discrete-time

RST control. This benchmark problem is basically a three-mass system with elastic

couplings; which is very similar to the system considered in this study. A schematic

describing the system is given in Fig. 4.10. Here, the aim is to control the third

mass position , Φm by controlling the first mass position Φ1. Despite it has differ-

ent input and output (when compared with the problem considered in this study), the

basic challenge of keeping the system robust while providing high performance input-

output response has similar difficulties, i.e. dealing with mechanical resonances and

anti-resonances. Moreover, there exist several controller designs whose performance

has been evaluated using this system, which can be compared with the proposed tech-

nique. Hence, this system is taken as a simulation playground to test the proposed

control architecture performance and compare it with the originally proposed robust

designs.

The following discrete-time system model has been provided as a plant model, after

an identification procedure [33]

H(z−1) = z−d
B(z−1)

A(z−1)
(4.36)

where z−1 is the unit delay operator, d is a fixed number representing transport de-

lay. with a sampling time of 5ms (i.e. 20Hz sampling frequency), the following

polynomials are provided for different configurations of the load:

Unloaded Case:

A(z−1) = 1− 1.41833z−1 + 1.58939z−2 − 1.31608z−3 + 0.88642z−4 (4.37)
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Figure 4.10: The schematic and block diagrams showing the structure of the bench-

mark three mass system ([33])
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B(z−1) = 0.28261z−1 + 0.50666z−2 (4.38)

Half-loaded Case:

A(z−1) = 1− 1.99185z−1 + 2.20265z−2 − 1.84083z−3 + 0.89413z−4 (4.39)

B(z−1) = 0.10276z−1 + 0.18123z−2 (4.40)

Full-loaded Case:

A(z−1) = 1− 2.209679z−1 + 2.31962z−2 − 1.93353z−3 + 0.87129z−4 (4.41)

B(z−1) = 0.06408z−1 + 0.10407z−2 (4.42)

For every model the transport delay parameter d is provided as 2.

The frequency response plots for these discrete-time transfer functions are provided

in Fig. 4.11. As seen in this figure, the gain margins for all three configurations are

much less than 1, and it is not easy to control such a system with high performance

using linear control techniques, at least in a robust manner.

Several (eight) designs have been performed by different engineering research teams

and the performance results have been published in ECC ’95 along with the compar-

ison in [33]. When one investigates the designs and their comparison, the following

drawbacks are obvious:

• The best performing controller is based on Quantitative Feedback Theory (QFT).

The design procedure maps the performance criteria into frequency domain pa-

rameters and solves for three polynomials resulting in two 9th order and one 2nd

order polynomials. Once the coefficients of these polynomials are determined,

no adaptation is possible.
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Figure 4.11: Frequency Response Functions of the benchmark system in [33].
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Table 4.1: Performance Comparison on Benchmark System Control

Perf. Measure Method No Load Half Load Full Load

Rise Time (s) RST - Robust 0.813 0.598 0.660

IAC SRWNN-MALR 0.28 0.31 0.31

Overshoot (%) RST - Robust 0.26 0.89 9.27

IAC SRWNN-MALR 0 0 0

Settling Time (s) RST - Robust 1.667 1.961 1.923

IAC SRWNN-MALR 0.58 0.62 0.62

• During the design of the best performing controller, actually manual tuning of

parameters has been employed. The tuning process was made easy by perform-

ing iterations via MATLAB scripts; nevertheless, the designer selects some

loop parameters by visual inspection of the expected frequency response.

• While comparing the performance for different designs on the same experi-

mental setup, the experimental setup parameters were different than the ones

utilised for the design of the controllers. This caused a significant decrease in

the performance values, as the controller designs were robust but not adaptive,

hence a re-tuning was necessary before practical implementation.

Sample simulation responses for the unloaded case of the benchmark system with

the proposed control architecture are given in Fig. 4.12 and Fig. 4.13. The first

figure shows the performance of the identifier with identification error converging to

zero. The second figure shows the performance of the controller, starting with an

under-damped response and adapting quickly to a fast and over-damped closed-loop

response. As seen in these figures, SRWNN-IAC with MALR can be used to control

the given three mass system with high performance.

The comparison of the SRWNN-IAC with MALR and the designs given in [33] is

given in Table 4.1. It is easily seen in this table that the proposed architecture outper-

forms the best performing robust design.

Having shown that the performance of the proposed controller is quite well as com-

pared to classical robust control designs, an issue to address is the automatic determi-
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Figure 4.12: Performance of the SRWNN identifier for the un-loaded benchmark

system in [33]. Initial (top 3 plots) and steady-state (bottom 3 plots)
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Figure 4.13: Step Response for the un-loaded benchmark system utilising SRWNN-

MALR IAC. Initial (top 2 plots) and steady-state (bottom 2 plots).
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nation of the complexity of the proposed controller, which corresponds to "structural

learning" or "self-evolution". Next section is dedicated to a method proposed for this

purpose.

4.5 Automatic Determination of the Network Complexity - Self Evolution

Since the early times of neural networks, automatic construction of the network struc-

ture has been a concern. For this purpose, a variety of approaches have been devel-

oped: For feed-forward neural networks used for function mapping, the evolutionary

algorithms basically employ input space coverage measures (clustering, similarity

measures etc.) ([42], [55]). For the neural networks used for control purposes, the

structural learning algorithms are embedded into fuzzy rules, and the number of fuzzy

rules ([70], [89] etc.) are adjusted using either the input space clustering or fuzzy rule

firing strength thresholds.

For recurrent neural networks, the structural learning is based on genetic algorithms

or reinforcement learning ([71]) which are not suitable for on-line purposes.

In our earlier studies, the utilized neural-network’s complexity was determined man-

ually, via the knowledge of a human expert. However, determination of the network

complexity via trial and error makes it hard for the engineer to design and commis-

sion the final controller. As a remedy to this problem, the following algorithm to

construct the neural network from scratch, while performing parameter learning in

the mean-time is proposed:

1. Initialize the SRWNN structure with Nw(0) = 1.

2. Run the network and find Φi, i = 1, ..., Nw.

3. Run the network parameter updates.

4. if Φmax = max{Φi} > Φth (see below) then go to step-(2), else continue

execution

5. Set Nw(k + 1) = Nw(k) + 1
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6. Initialize the new wavelet parameters such that dhNw = xh(k)(h = 1, ..., Ni)

and assign other wavelet and connection parameters using the standard network

initialization.

7. Go to step-(2).

In this algorithm, Φth determines the speed of complexity update of the neural net-

work. Using a small value will cause a redundantly complex network while a big

value will lead to an under-determining structure. Hence, a wise selection of this pa-

rameter is important for the sake of the evolution algorithm. For assigning Φth, the

following equation is proposed:

Φth =
1

Ni + 1

Ni∏
k=1

φmax (4.43)

where φmax represents the maximum value of the wavelet function being employed (it

is 0.6065 for the Gaussian derivative wavelet). This heuristic threshold corresponds

to a fraction of the maximum possible wavelet activation. As the number of inputs

(Ni) is increased Φth is lowered to make wavelet evolution faster. A sample result

for the proposed self-evolving structure from the identifier of the un-loaded bench-

mark system is shown in Fig. 4.14 . As seen in this figure, the Nw parameter is

determined automatically and it converges to 8. Note also that, as the proposed algo-

rithm includes 1 mathematical comparison, 1 mathematical assignment and 3 random

number generation steps only, it is suitable for running on-line.
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4.6 Contributions

The problem of controlling the speed of a motion platform has been addressed. An

SRWNN based controller architecture with modified adaptive learning rates for fast

convergence has been proposed for providing a fast settling step response while pre-

serving robustness and stability. High performance of the proposed architecture has

been verified by both computer simulations and experiments conducted at ASELSAN

facilities. Moreover, the effectiveness of the architecture with proposed modification

has been proven with simulations on a benchmark system, over-performing the orig-

inal robust RST designs. Finally, a structure learning algorithm for automatic de-

termination of network complexity has been proposed and its performance has been

verified via simulations on the benchmark three mass mechanical system.
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CHAPTER 5

CONCLUSION

In conclusion, the speed control problem of a motion platform has been addressed in

this study. First of all, some modelling and experiment effort has been performed in

order to divide the problem to its sub-problems. During this process, it has been ob-

served that the problem can be seen as a combination of "brushless AC motor current

control", "suppression of non-linear effects like friction and backlash", and "control

of a three-mass system connected with elastic elements". The first sub-problem has

been investigated briefly and it was found that the bandwidth of the current control

is high enough and any more improvements would not improve the overall perfor-

mance. Moreover, with a modelling and experimental study it was shown that the

motor current loop can be tuned independent of the mechanical components of the

motion platform [85]. The second sub-problem (i.e. suppression of non-linear ef-

fecs like friction and backlash) has also been investigated briefly and it was seen that

modelling friction and backlash explicitly is usually very complicated. Moreover,

controllers using such models do usually have complicated structures and are non-

robust in general and they can be worked out with careful mechanical design or other

methods before starting the controller design. In addition to this,during the literature

survey, it was seen that using black-box models for the non-linear effects is a handy

approach for the suppression of such non-idealities. Finally, the problem of control-

ling the speed of the second mass in an elastically connected three mass system has

been addressed broadly. Several experiments have been performed on a real system,

showing that the motion platform might be modelled as a three-mass linear system

connected with elastic elements, whose behaviour changes with the amount of input

torque. In other words, it is actually a non-linear system, but as long as one knows
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about "the input sensitivity" of the system (i.e. the temporal dynamic behaviour), it

might be controlled effectively. After the literature survey showing that linear con-

trollers give limited performance both due to robustness performance and ineffective

utilisation of the actuator (i.e. transient performance), it was decided to work on adap-

tive controllers employing black-box models. At this point, a Self-Recurrent Wavelet

Neural Network (SRWNN) based controller architecture with adaptive learning rates

has been found very effective for the solution of the problem so as to achieve a robust

performance, while increasing the system bandwidth beyond the anti-resonance fre-

quency of the open-loop system. The learning rate update algorithm of the original

approach ([69]) has been modified to achieve a better convergence rate. High perfor-

mance of the modified controller has been verified by both simulations and experi-

ments. In addition to this, the effectiveness of the control architecture with proposed

modification has been also compared with several robust RST designs evaluated on

a three mass benchmark system ([33]), over-performing the original robust RST de-

signs. Finally, an evolutionary algorithm in order to decide the complexity of the

network has also been proposed and its performance was also tested with simulations

on the benchmark system. A possible future work for this study is utilisation of the

proposed approach on different motion platforms and optimization of the real-time

implementation, in order to be able to append the proposed controller algorithm to a

processor which is already being utilised for other purposes.
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APPENDIX A

GENETIC ALGORITHMS USED TO FIT TRANSFER

FUNCTION TO FRF DATA

"Genetic Algorithms" (GA), first introduced by John Holland of University of Michi-

gan in the mid 1970s, is a branch of evolutionary computing. This topic is an inspi-

ration from Darwin’s theory of evolution. Genetic algorithms uses concepts from the

genetics of living creatures, and optimization problems are tried to be solved using

a similar approach. If we are solving a problem, we are usually looking for some

solution that will be the best among others. The space of all feasible solutions (the

set of solutions among which the desired solution resides) is called search space (also

state space). Each point in the search space represents one possible solution. Each

possible solution can be "marked" by its value (or fitness) for the problem. With GA

we look for the best solution among a number of possible solutions - represented by

one point in the search space. Looking for a solution is then equal to looking for some

extreme value (minimum or maximum) in the search space. At times the search space

may be well defined, but usually we know only a few points in the search space. In

the process of using GA, the process of finding solutions generates other points (pos-

sible solutions) as evolution proceeds. The problem is that the search can be very

complicated. One may not know where to look for a solution or where to start. There

are many methods one can use for finding a suitable solution, but these methods do

not necessarily provide the best solution. Some of these methods are hill climbing,

tabu search, simulated annealing and the genetic algorithm. The solutions found by

these methods are often considered as good solutions, because it is not often possible

to prove what the optimum is. Genetic algorithm begins with a set of solutions (rep-

resented by chromosomes) called (initial) population. Solutions from one population
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are taken and used to form a new population. This is motivated by a hope, that the new

population will be better than the old one. Solutions which are then used to form new

solutions (offspring) are selected according to their fitness - the more suitable they

are the more chances they have to reproduce. This is repeated until some condition

(for example number of populations or improvement of the best solution) is satisfied.

Outline of the Basic Genetic Algorithm can be described with the following steps [9]

1. (Start) Generate random population of n chromosomes (suitable solutions for

the problem)

2. (Fitness) Evaluate the fitness f(x) of each chromosome x in the population

3. (New population) Create a new population by repeating following steps until

the new population is complete

(a) (Selection) Select two parent chromosomes from a population according

to their fitness (the better fitness, the bigger chance to be selected)

(b) (Crossover) With a crossover probability cross over the parents to form

new offspring (children). If no crossover was performed, offspring is the

exact copy of parents.

(c) (Mutation) With a mutation probability mutate new offspring at each locus

(position in chromosome).

(d) (Accepting) Place new offspring in the new population

4. (Replace) Use new generated population for a further run of the algorithm

5. (Test) If the end condition is satisfied, stop, and return the best solution in

current population

6. (Loop) Go to step 2.

Since genetic algorithms is not a basic element of this thesis; but rather used for

implementing a search algorithm for system identification; details of it are not given in

this study. However, several works concerning this topic may be found in the artificial

intelligence literature. For a thorough introduction to the topic of genetic algorithms

the reader may refer to [9]. The genetic algorithm search parameters employed in this
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study are given in Table A.1. Some performance figures of the algorithm are given in

Table A.2.

Table A.1: Parameters of the Genetic Algorithm Used for Transfer Function Fitting
to FRF.

PROPERTY VALUE
Population Size 100

Elite Count 2
Mutation Function Adaptation of Feasible
Population Range [0, 240]

Number of Poles (Complex,Real) 3, 3

Number of Zeros (Complex,Real) 2, 3

Selection Function Stochastic Uniform
Cost Function Scaled RMS Error

Table A.2: Basic Performance Figures of the Employed Genetic Algorithm.

PROPERTY VALUE
Initial Average Cost (Scaled) 89
Final Average Cost (Scaled) 1.8

Number of Populations Needed for Convergence 641
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