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ABSTRACT

GF
(
2M
)

MULTIPLIER IMPLEMENTATION ON A PARTIALLY
RECONFIGURABLE FPGA

Kocalar, Gizem
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı

May 2015, 88 pages

The thesis aims to design and implement a Galois field multiplier IP block that adapts
to changing input traffic conditions, using partial reconfiguration feature of FPGAs.
Two different multiplier blocks are used for high and low traffic rates. First, an area
efficient multiplier block with small area utilization and low power consumption is de-
signed by using splitting type multiplication algorithms. Second, a high performance
multiplier IP block with higher resource consumption but better time performance is
designed. At low traffic rates, area efficient multiplier block is used for better area and
power utilization. However, when multiplication requests exceed a certain threshold,
area efficient multiplier is not capable of serving the incoming requests within an
acceptable time. In such cases, the high performance multiplier is activated by recon-
figuring the FPGA using a partial bit file to be able to serve the multiplication requests
faster. Although power consumption of high performance multiplier is high, on aver-
age it is balanced by use of area efficient multiplier when throughput requirement is
variable.

Keywords: Galois Field, Karatsuba-Ofman multiplication, multiplication by splitting,
FPGA, partial reconfiguration

v



ÖZ

KISMİ YENİDEN YAPILANDIRILABİLİR FPGA ÜZERİNDE GF
(
2M
)

ÇARPMA UYGULAMASI

Kocalar, Gizem
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cüneyt Fehmi Bazlamaçcı

Mayıs 2015 , 88 sayfa

Bu tez, FPGA’lerin kısmi yeniden yapılandırılabilirlik özelliği kullanılarak, değişen
giriş trafik koşullarına uyum sağlayabilen bir Galois alanı çarpım IP bloğu tasarımı ve
uygulamasını amaçlamaktadır. Yüksek ve düşük trafik oranları için iki farklı çarpım
bloğu kullanılmaktadır. İlk olarak, parçalı çarpma algoritmaları kullanılarak, küçük
alan kullanımlı ve düşük güç tüketimli bir alan etkin çarpım bloğu tasarlanmıştır.
İkinci olarak, daha yüksek kaynak tüketimli ancak daha iyi zaman performanslı bir
yüksek performans çarpım IP bloğu tasarlanmıştır. Düşük trafik oranlarında, daha iyi
alan ve güç kullanımı için alan etkin çarpım bloğu kullanılmaktadır. Ancak, çarpma
istekleri belli bir eşiği aştığında, alan etkin çarpım gelen isteklere geçerli bir zamanda
servis verememektedir. Böyle durumlarda çarpma isteklerine daha hızlı servis vere-
bilmek için FPGA kısmi bit dosyası kullanılarak yeniden yapılandırılıp yüksek per-
formans çarpım etkinleştirilmektedir. Yüksek performans çarpımın güç tüketimi yük-
sek olmakla birlikte işlem hacim gereksinimi değişken olduğunda alan etkin çarpımın
kullanımıyla ortalamada dengelenmektedir.

Anahtar Kelimeler: Galois Alanı, Karatsuba-Ofman çarpımı, parçalı çarpma, FPGA,
kısmi yeniden yapılandırılabilirlik
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CHAPTER 1

INTRODUCTION

As the technology advances, communication via electronic devices becomes more

widespread. Information exchange through communication networks using electronic

devices such as smart phones, personal computers, integrated circuit cards get more

common, bringing in the ease of rapid access to any information in our lives. How-

ever, sharing information through communication networks has also the disadvantage

of threatening confidentiality. During data transmission between two devices via an

insecure media such as the Internet, someone else may interfere with by eavesdrop-

ping, where information is undamaged but privacy is compromised, by tampering,

where information is changed and then sent to the receiver node, or by imperson-

ation, where the information is delivered to a node that pretends to be the intended

recipient [1]. In such cases cryptographic applications are of critical importance to

provide information security.

Main cryptographic algorithms used for Internet security are symmetric key cryp-

tography and public key cryptography. Symmetric key cryptography uses the same

key for encryption and decryption of data. Therefore, it requires transmission of the

encryption key along with the encrypted data. On the other hand, public key cryptog-

raphy encrypts and decrypts the data using two separate keys, public key and private

key, which are mathematically connected. Although public key cryptography may

provide higher level of security, symmetric key cryptography has better performance

in authenticated encryption applications.

In implementation of cryptographic algorithms, efficiency is the main objective [2].

Two criteria considered in the implementation of a cryptographic application are
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achieving high speed operation and efficient use of hardware resources. Achieving

high speed operation is important in order to provide high speed data transmission

between the communicating nodes. Since encryption and decryption of communi-

cation data is one of the most time consuming operations, fast implementation of

cryptographic application is an essential constraint for the whole system. In addition

to the timing constraints, since cryptographic applications are implemented mostly

on portable devices with limited resources, area efficiency is also a critical goal to

achieve. Resource constraint is not only for providing area efficiency, but it is also

necessary for reducing power consumption.

Galois Field multiplication is an essential functional block in cryptographic algo-

rithms. During encryption and decryption processes, arithmetic operations are han-

dled in binary Galois fields. Although it is most popular for its use in cryptographic

applications, there are many other areas that Galois Field arithmetic has a significant

role. In coding theory, for almost all error correcting coding applications algebraic

properties of Galois Field are used for achieving data transmission without errors. It

is also used in digital signal processing applications in order to perform operations

like convolution, filtering, discrete Fourier transform. Another area that Galois Field

arithmetic has important functionality is computer algebra. In computer algebra sys-

tems, factorization of polynomials over Galois Fields is a fundamental mathematical

block. Since Galois Field arithmetic applications have wide range of implementation

areas, achieving high speed performance without wasting large amount of resources

is an inevitable requirement.

In a GF (2m) arithmetic unit the basic operations are addition and multiplication.

Other operations such as division, inversion and exponentiation are performed through

several number of multiplications. Multiplication operation in GF (2m) is modular

multiplication. In other words, in order to obtain the product of two numbers, first

the multiplicands are multiplied and then modulo the characteristic polynomial of the

result is computed. Complexity of addition in GF (2m) is very low compared to mul-

tiplication. Therefore, multiplier block in a GF (2m) arithmetic unit determines the

overall performance.
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1.1 AIM OF THE THESIS

A fast and compact GF (2m) multiplier block is an essential requirement in crypto-

graphic applications. Area complexity and power consumption should be low in an

effective design. Scalability is also an important point to consider. These require-

ments can be satisfied by designing a dedicated hardware block for GF (2m) multi-

plication. An FPGA based implementation of GF (2m) multiplier block can provide

sufficient time, area and power performances for these requirements. Plus, the flex-

ible and easily reconfigurable structure of FPGAs eases design and implementation

processes.

In the first implementation part of this thesis, different algorithms for GF (2m) mul-

tiplication are evaluated to design an area efficient multiplier. Since cryptographic

applications require multiplication of large numbers, the design is based on divide-

and-conquer approach to reduce the problem of large number multiplication into sev-

eral smaller number multiplications. This approach also reduces the complexity of

operation by replacing large number multiplication by addition and some smaller

number multiplications. Bit parallel architecture is preferred to provide higher oper-

ation speed.

In the second implementation part, a multiplication block design is proposed to be

used in Advanced Encryption Standard - Galois Counter Mode (AES-GCM) core,

which is the main Internet data security algorithm today. Galois Field multiplier is

an essential functional block in an AES-GCM core. The two important criteria in im-

plementation of Galois Field multiplier for AES-GCM applications are low delay and

power efficiency. In order to achieve these goals, we included two different multi-

plier blocks in our Galois Field multiplication module. The area optimized multiplier

block designed in the first implementation part is used for less resource utilization

and lower power consumption. A high performance multiplier is also used in the

design to meet low delay and high throughput requirements. Using the partial recon-

figuration feature of FPGAs, high performance multiplier block is included in design

at high traffic rates to provide better service to incoming data hence multiplication

requests and excluded at low traffic rates in order to reduce area and power consump-

tion. As a result, both time and area performances of our AES-GCM multiplier block

3



are improved by making real time adaptations to changing traffic conditions.

1.2 CONTENT OF THE THESIS

Rest of the thesis is organized in the following way.

First some background information about cryptographic algorithms, Galois Fields

and arithmetic operations in GF (2m), and some concepts related to hardware block

design are given in Chapter 2. Some commonly used algorithms for Galois field

multiplier design are introduced.

Then, in Chapter 3, literature work about GF (2m) multiplication is included and

the algorithms combined in the design are explained in detail. Some Galois field

multiplication applications in cryptography are examined. Also some dynamically

reconfigurable hardware designs are overviewed.

In Chapter 4, an area optimized GF (2m) multiplier block is implemented. Imple-

mentation results of this multiplier are analyzed and compared to similar designs that

are already introduced in literature.

Chapter 5 includes a multiplier block design for cryptographic applications, which

uses the area optimized multiplier block designed in the fourth chapter and a high

performance multiplier block. Partial reconfiguration feature of FPGAs is utilized in

this implementation. AES-GCM is chosen as the example cryptographic application

and Galois field multiplication in GHASH function is simulated.

After the analysis of results, thesis is concluded with Chapter 6.

4



CHAPTER 2

BACKGROUND INFORMATION

2.1 CRYPTOGRAPHIC ALGORITHMS

Effective protection of information is possible by making a good organization of se-

curity requirements. In order to achieve this, six atomic elements of information, also

known as the Parkerian hexad, are defined in [3] as follows:

• Confidentiality: Information is accessible only for authorized parties.

• Possession: Access to information resources is restricted. Possession is differ-

ent from confidentiality. If resource of information is accessed by an unautho-

rized party this is a loss of possession, but there is not breach of confidentiality

as long as the information is not reached.

• Integrity: Information is modified only by authorized parties.

• Authenticity: Origin or authorship of information is correctly identified.

• Availability: Accessibility of system resources by authorized parties whenever

needed.

• Utility: Usefulness of information. If information is encrypted and then de-

cryption key is lost, this is an example to breach of utility.

A security attack destroys one of the above information elements during flow of infor-

mation. In [4], security attacks are characterized according to the destroyed function

of data transmission as follows:

5



• Interruption: Attack on availability, shown in Figure 2.1. Some system re-

sources are destroyed or they become unavailable or unusable.

Figure 2.1: Interruption of flow of information

• Interception: Attack on confidentiality, shown in Figure 2.2. Information is

accessed by an unauthorized party.

Figure 2.2: Interception of information

• Modification: Attack on integrity, shown in Figure 2.3. An unauthorized party

tampers with the information.

Figure 2.3: Modification of information

• Fabrication: Attack on authenticity, shown in Figure 2.4. Counterfeit infor-

mation is inserted by an unauthorized party.
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Figure 2.4: Fabrication of information

For transmission of data through an insecure media, such as the Internet, a crypto-

graphic algorithm should be used in order to meet security needs. Numerous crypto-

graphic algorithms are defined to achieve communication security. These algorithms

can be mainly grouped as symmetric key cryptography, public key cryptography, el-

liptic key cryptography and hash functions. All types of cryptographic algorithms are

used in Internet security applications for providing different levels of security.

2.1.1 SYMMETRIC KEY CRYPTOGRAPHY

In symmetric key cryptography, the same key is shared by transmitter and receiver

nodes. The key is distributed among all nodes on the communication channel before

any information is encrypted and sent or it is sent to the receiver node after encryp-

tion of data at the transmitter node along with the ciphertext. On reception of the

ciphertext and the key, data is decrypted on the receiver side to obtain the plaintext.

An operational diagram of symmetric key cryptography is shown in Figure 2.5.

Figure 2.5: Symmetric key cryptography operational diagram
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Symmetric key cryptography algorithms are simple to implement and fast in opera-

tion. However, they require transmission of the key between communicating nodes

and key exchange should be done in a secure way to prevent unauthorized access.

Numerous algorithms exist for key exchange between the nodes that provide secure

transmission of the encryption key. Two types of symmetric key encryption are de-

fined [5]. One is block cipher, which segments the plaintext into blocks of fixed

length. Each block is encrypted using the symmetric key to obtain the corresponding

ciphertext block. Ciphertext blocks have the same size as plaintext blocks. They are

concatenated to form the ciphertext and sent to the receiver side. The other is stream

cipher, which breaks the original plaintext into blocks with a fixed beginning but no

fixed end. In this type of symmetric key ciphers, message block length is indefinite

and thus modeled as an infinite length stream. However, in practice encryptor has

finite memory and end of a message segment is defined by continuous observation.

Data Encryption Standard (DES) and Advanced Encryption Standard (AES) are ex-

amples of symmetric key cryptography algorithms. Both DES and AES are block

ciphers. DES uses 64-bit-long blocks with 56-bit-long key. Because of its small key

size it is no longer considered to be secure. On the other hand, AES uses 128-bit-long

blocks with 128-bit, 192-bit or 256-bit-long keys. Therefore it is more secure and still

provides adequate protection when used with 128-bit key. For higher security levels

longer keys are used [6].

2.1.2 PUBLIC KEY CRYPTOGRAPHY

Public key cryptography, or asymmetric key cryptography, is based on use of two

separate keys for ciphering and deciphering the data. The reason this approach is

called asymmetric is that the two keys used for encryption and decryption, namely

public key and private key, are not the same. Since encryption and decryption keys are

different, this approach is regarded to be more secure than symmetric cryptography

[5].

Principle of operation in public key cryptography is described in [4] as follows: In a

network where public key cryptography is used, every user is provided a public key

and a private key. Public key of a user is contained in a public directory and available
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to all other users in the network, whereas private key is only known by the user itself.

Whenever a data transmission is to occur between two nodes, namely transmitter and

receiver, first the data is encrypted at transmitter side using the public key of receiver.

Then the encrypted data is sent through the insecure media. When receiver gets the

encrypted data, it is decrypted using the private key, which is mathematically linked

to the public key. The operational diagram in Figure 2.6 illustrates data transmission

in an insecure media using public key cryptography algorithm.

Figure 2.6: Public key cryptography operational diagram

Key generations in public key cryptography algorithms are based on difficult math-

ematical problems. What is meant by difficult is that computational complexity of

solution of the problem is so high that it is not feasible to compute the private key

using the public key. Integer factorization and discrete logarithm problems are exam-

ples of difficult problems, which are used for key generation in different public key

cryptography algorithms.

Some examples of public key cryptography algorithms are Digital Signature Algo-

rithm (DSA), Diffie-Hellman (DH) algorithm and RSA algorithm. However, these

algorithms are not considered to be secure when used with small key sizes since

subexponential attacks to break them exist. In order to provide a sufficient security

level, their key sizes must be increased, which may not be an effective solution in

practice.
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2.1.3 ELLIPTIC KEY CRYPTOGRAPHY

Elliptic curve cryptography is an approach to public key cryptography, which is based

on elliptic curves over finite fields. It uses Elliptic Curve Discrete Logarithm Prob-

lem to provide security, since it is a difficult problem to solve. The advantage of el-

liptic curve cryptography over public key cryptography algorithms is that it requires

less hardware resources and consumes less power while providing high throughput

and equal level of security [4]. Some examples of elliptic curve cryptography al-

gorithms are Elliptic Curve Digital Signature Algorithm (ECDSA), Elliptic Curve

Diffie-Hellman (ECDH) algorithm.

2.1.4 HASH FUNCTIONS

As defined in [5], a cryptographic hash function is a one-way function to output a

digest from the input message. The input message may have any length but the hash

function produces fixed length digests. Cryptographic hash functions are used for

authentication in communication security applications. A cryptographic hash func-

tion is a deterministic function that always produces the same digest for a specific

message. A good hash function is easy to compute and infeasible to invert. Another

property a cryptographic hash function has that it is collision resistant, that is, it is

hard to find two different messages for which the function produces the same digest.

Some examples of cryptographic hash functions are Message Digest 5 (MD5), Secure

Hash Algorithm 256 (SHA-256).

2.2 GALOIS FIELD

A field is defined as an abstraction of familiar number systems and their essential

properties in [7]. A set of numbers, F, with addition and multiplication operations,

which satisfies the usual arithmetic properties, namely additive identity, multiplicative

identity and distributive law, is a field. Galois field, or finite field, is a field that

contains finite number of elements in it.1 It is represented using the notationGF (pn),
1 More details on Galois field types and arithmetic operations can be found in the book [7] Chapter 2: Finite

Field Arithmetic.
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whereGF represents Galois Field, p is the characteristic of the field and n is a positive

integer. In a Galois field, the characteristic p is a prime number and defines the basis

used in that field. In other words, elements of the field GF (pn) are represented using

the numbers in the set GF (p) = 0, 1, . . . , p− 1. The power n gives the length of

numbers in the field. A Galois field contains pn elements, where pn is called the order

of the field. For example, the field GF (23) has characteristic 2 and order 8, meaning

that elements of the field are represented using basis 2, which is the binary form, and

they are 3-digit-long. Order of the field is 8, that is, total number of elements in this

field is 8.

In addition to characteristic and order, another element that defines a Galois field is

the characteristic polynomial. Characteristic polynomial of GF (pn) is an irreducible

polynomial of degree n. Irreducibility of a polynomial means that it is not possible to

express that polynomial as a product of polynomials with smaller degrees [7]. As an

example, characteristic polynomial of the field GF(23) can be f(x) = x3 + x+ 1.

Two operations are defined over a Galois field, being addition and multiplication. As

an example, consider the fieldGF (pn). A and B are two elements of this field, where

A =
n−1∑
i=0

aix
i

B =
n−1∑
i=0

bix
i

for (a, b) ε {0, 1, . . . , p−1}. Characteristic polynomial of the field is f(x). Arithmetic

operations are defined as follows.

i. Addition

Addition is the usual addition of polynomials with coefficient arithmetic per-

formed modulo p. It is formulated as given in 2.1.

A+B =
n−1∑
i=0

(ai + bi) mod p ∗ xi (2.1)

ii. Multiplication

Multiplication is performed modulo the characteristic polynomial. It is usually

done in two steps, which are polynomial multiplication and modular reduction.
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First a product is generated by usual polynomial multiplication. Then the actual

result is obtained by dividing the product by the characteristic polynomial and

taking the remainder. It is formulated as given in 2.2.

A ∗B =

(
n−1∑
i=0

aix
i

n−1∑
j=0

bjx
j

)
mod f(x) (2.2)

=

(
2n−2∑
k=0

ckx
k

)
mod f(x)

=

(
n−1∑
i=0

dix
i

)

Subtraction in Galois fields is defined in terms of addition using additive inverse of

the subtrahend. Similarly, division is defined in terms of multiplication using multi-

plicative inverse of the divisor.

Galois fields of characteristic 2 are called binary fields. Binary fields are preferred

in many applications of Galois fields for their suitability to software and hardware

implementations. Addition in binary fields is done by bitwise XOR operation. For bit

multiplication, bitwise AND operation is done.

2.3 IMPLEMENTATION PLATFORM

In many cryptographic applications, basic arithmetic operations are performed over

Galois Fields. Among these operations, addition and multiplication are the most es-

sential ones, since the other operations such as inversion, exponentiation and division

are carried out by using these two basic operations. In GF (2m) arithmetic, carry-

less addition is performed on binary numbers, which is represented by simple bitwise

XOR operation. On the contrary, complexity of multiplication is much higher. Poly-

nomial multiplication and modular reduction operations are performed consecutively

to achieve a single multiplication in GF (2m). Exponentiation, inversion and divi-

sion are performed by multiple multiplications. Hence, time and area complexities of

multiplication operation determine the overall performance of the arithmetic unit. In

order to provide better service to end user, multiplier block should be able to satisfy

some time constraints. Plus, for portable devices power efficiency and area reduction
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are of critical importance. This fact brings out the need for a fast multiplier with high

throughput and low circuit complexity.

Delay performance and circuit complexity of the multiplier block in a GF (2m) arith-

metic unit is important, since it is the most complex arithmetic block and has critical

importance in determining the overall performance of the unit. There are numer-

ous works related to GF (2m) multiplier design for satisfying these two constraints

both in software and hardware. However, most of the more recent works focus on

hardware implementation. The reason why software implementation of the multiplier

block in a cryptographic application is not attracting much attention is its poor timing

performance compared to hardware implementation [8]. Although many micropro-

cessors have special instructions for Galois Field multiplication, such as Polynomial

Multiplication Instruction PCLMULQDQ of Intel processors, none is able to provide

better timing performance compared to a dedicated hardware implementation. Plus,

such instructions are restricted to perform multiplication over 1-word-length multi-

plicands, which are 32-bit or 64-bit numbers; thus, long number multiplication is not

possible using a single instruction. Such operations take more time and are not able to

satisfy high speed requirements. Although fast multiplication algorithms for software

implementation such as Comba and Karatsuba are used in some encryption systems

[9], they are only able to satisfy basic security needs, where performance is not the

primary concern, such as message encryption, file or folder encryption, as indicated

in [8]. On the other hand, hardware solutions achieve high speed performance. In ad-

dition, they scale well to very large number multiplication requirements. Therefore,

using a dedicated hardware block for GF (2m) multiplication seems to be a better

solution for fast implementation with low resource consumption, especially in high

performance security critical systems.

It is easy to implement GF (2m) arithmetic related operations on hardware platforms

since operations are performed over binary fields anyway. As hardware implementa-

tion platform, two alternatives exist, which are Application Specific Integrated Cir-

cuits (ASIC) and Field Programmable Gate Arrays (FPGA). A comparison of these

two implementation platforms is made in [10] to state the advantageous and disad-

vantageous aspects of designing on either platform. ASIC technology is generally

preferred for high density implementations, whereas FPGA based architectures are
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preferred for smaller size designs. In terms of area and power consumption perfor-

mances ASIC designs are far more advantageous compared to FPGAs. Plus, ASIC

designs have better time performances with smaller delay and higher frequency oper-

ations. Another work in the literature related to performance comparison of ASIC and

FPGA designs is [11], showing that ASIC designs outperform FPGA designs in terms

of area, time and power consumption. In [11], it is stated that for designs using only

logic clusters FPGA implementations are an average of 35 times larger than ASIC

implementations and consume an average of 14 times more dynamic power, with an

average of 3.4 times slower time performance. Despite these advantages ASIC de-

signs offer, their design and implementation processes are costly. Moreover, it is not

possible to make changes in the design after its production. Therefore, optimization

in terms of logic gates is critical before the manufacturing process. On the other

hand, FPGAs have the advantage of reprogrammability. Design on an FPGA can be

changed as needed until the final specification is satisfied. With this flexibility pro-

vided by the reprogrammability feature of FPGA, it is possible to make even real time

adaptions in hardware configuration, which is also the case for GF (2m) multiplier

block implementation done in this thesis. Moreover, applications of GF (2m) mul-

tiplication involves small to medium size designs, for which optimization on ASIC

platform is not a cost effective approach. As a result, an FPGA based implementation

is regarded as a more suitable solution for GF (2m) multiplier design field, especially

for real time reconfiguration ability.

2.3.1 INTERNAL STRUCTURE OF FPGA

Many multiplication methods are proposed for GF (2m) multiplier block implemen-

tation, claiming to have better time or area performances. Circuit complexity is the-

oretically calculated by number of mathematical operations. Number of bit additions

and bit multiplications give the total number of gates used. Time performance has

two elements, which are critical path and total circuit delay. Critical path is the part

of circuit which has the longest delay. To compute total delay, one needs to know

in how many steps total operation is done and what is the delay of each step. All

these complexities obtained by theoretical computations give valid results for ASIC

implementations. However, they are not meaningful for FPGA designs. Since FPGA
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structure is not based on gates, theoretical time and area computations can not be used

for computing FPGA implementation complexities.

FPGAs consist of five types of main blocks, which are Configurable Logic Blocks

(CLB), dedicated blocks such as DSP slices, gigabit transceivers and block RAMs,

input and output blocks providing interface to external devices, routing to provide

connection between internal blocks and clocking resources. CLBs are the functional

blocks where HDL code is implemented unless other block types are specified for

implementation. Inside CLBs there are slices that contain several number of Look

Up Tables (LUT). Any function defined by HDL code is implemented by the LUTs,

which are the basic functional blocks of an FPGA. A LUT gets a certain number of

input signals to produce one output. Number of LUTs consumed in a design is not

determined by the circuit complexity, but it is determined by the number of input sig-

nals. When the same HDL code is implemented both on ASIC and FPGA, there is not

one-to-one gate conversion due to their internal structure difference. Although theo-

retical gate count gives circuit complexity of ASIC implementation, it is not possible

to state how many LUTs would be used exactly to implement a circuit on an FPGA,

but it can only be estimated. Also for time complexity analysis, theoretical results

are not meaningful. In an FPGA, all LUTs have the same delay and LUT delay is

computed by the synthesis tool. Once the LUT delay is known total time of operation

is calculated by using number of steps.2

Experimental work in this thesis is carried out on two different FPGA platforms,

namely Virtex 5 and Kintex 7. Cited literature on the other hand has utilized Virtex

4 and Virtex 5 FPGAs. All three FPGA platforms (Virtex 4, 5 and Kintex 7) have

different internal structures. Virtex 4 has 4-input 1-output LUT structure. Virtex 5

and Kintex 7 have 6-input 2-output LUT structures. For Virtex 5 and Kintex 7, 6-

input 1-output or 5-input 2-output configurations can be used. Gate definitions in

the HDL code are not directly implemented on an FPGA, but they are converted into

logic functions to be implemented on LUTs. Resource consumption of LUT based

implementations is not limited by the complexity of the circuit but by the number of

inputs and outputs used [30]. Since internal structures of FPGAs are different and

2 Detailed information about FPGA architecture and FPGA and ASIC comparison can be found on
http://www.xilinx.com/
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synthesis tool preferences have serious effects on resource utilization, it is not possi-

ble to tell exact logic resource consumption of an FPGA implementation. Although

rough estimations can be made, resource utilization changes when different FPGA

types and synthesis tools are used.

To sum up, depending on an FPGA’s internal architecture, implementation of a system

design on an FPGA may not be compliant with the expected resource consumption

and timing results that are based on theoretical complexity computations. There is no

way of exactly computing FPGA resource consumption but only a rough estimate can

be done. It is possible to obtain the exact results by implementing the circuit in HDL

and then synthesizing for an actual target FPGA chip.

2.3.2 PARTIAL RECONFIGURATION

Working on a flexible and dynamically configurable platform enables faster and easier

design and implementation processes. In many cases, FPGA based designs are pre-

ferred for their reconfigurability. However, reconfiguration of FPGA generally does

not take place at run time. While changing the functionality of an FPGA, the opera-

tion does not continue. As a solution to this fact, partial reconfiguration is introduced

by FPGA vendors. For Xilinx FPGAs, partial reconfiguration is introduced for FPGA

families Virtex-4, Virtex-5, Virtex-6, Kintex-7 and Artix-7 [12].

Partial reconfiguration is a technological development that allows run time modifica-

tion of FPGA configuration. In a partially reconfigurable design, the design consists

of a static part and a reconfigurable part. The static module is implemented once

and it can not be changed during run time. The reconfigurable partition is the part

than can be configured on the fly using a partial bit file for each different configu-

ration. While static module continues its operation, reconfigurable partition can be

changed using reconfigurable modules in order to make adaptations on the hardware

designed. A partial bit file is included in the design through Internal Configuration

Access Port (ICAP). During reconfiguration time, reconfigurable partition stops op-

eration. A block diagram of a partially reconfigurable design is given in Figure 2.7.
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Figure 2.7: Partial reconfiguration block diagram

Partial reconfiguration enables more flexible use of hardware resources on an FPGA

based design. Being able to dynamically change the hardware platform and make

run time adaptations does not only reduce area and power consumption, but it also

provides more functionality with restricted amount of resources. By using partial

reconfiguration in an FPGA design it is possible to obtain more compact and more

functional hardware platform that is able to dynamically adapt to changing environ-

mental conditions, user preferences or performance metrics.

2.4 ARCHITECTURAL STRUCTURE

Various design styles are proposed for hardware implementation of Galois field mul-

tipliers, including designs that are based on different architectural structures. One

classification of hardware architectures is based on data input structures. There are

two main design styles in this classification, which are bit parallel and bit serial archi-

tectures [13]. Deciding on whether to design parallel or serial input hardware block is

a common example of area-time trade-off paradigm. Bit parallel architectures receive

input data at one clock cycle and start processing; therefore, they are faster. On the

other hand, bit serial designs get input data bit by bit at each clock cycle. Although

bit serial designs use less hardware resources, they are not suitable for high-speed

implementations. Bit parallel designs are more advantageous in terms of time per-
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Table 2.1: Area and time performances of GF (2m) multiplier designs with different
architectural structures

Design Number of Number of Number of Latency
AND gates XOR gates Registers

Bit parallel m2 m2 − 1 2m (2 + dlog2(m+ 1)e)TX
+TA

Bit serial m m+ 1 2m (m+ 1) (TX + TA)

Digit serial d ∗m d ∗ (2m+ 1) 2m dm/de ∗
(d1 + log2deTX + TA)

1 TA: delay of a 2-input AND gate.
2 TX : delay of a 2-input XOR gate.

formance. In addition, they offer high throughput when used in conjunction with

pipelining techniques.

Both design styles are proposed in numerous works in the literature. In [14], a bit

parallel architecture for Galois field multipliers is proposed to improve the time per-

formance of the multiplier block. Another hardware block design for Galois field

multiplier is proposed in [15] using bit serial approach. Resource consumption and

time performance of both designs are given in Table 2.1. Gate counts of the designs

show that, total number of gates in the parallel architecture is proportional to m2,

whereas it is proportional to m in the serial case. On the other hand, when their

latencies are compared, bit parallel design is far more advantageous then bit serial

one.

The trade-off between area and time is improved by digit-serial architectures. In a

digit serial multiplier m bit polynomials are fragmented into d bit digits, so it takes

c = dm/de cycles to get an input. Similarly, the result is generated as d bit digits and

output in c cycles. In [15], also a digit serial architecture for Galois Field multiplier

block is proposed. Comparison of area and time performances of this design is also

included in Table 2.1.

In Table 2.1, resource consumption and delay performances of designs with differ-

ent input/output structures are compared. The results show that serial input/output

structures provide better area utilization whereas parallel input/output structures have

better time performance. Digit serial architectures provide a trade-off between these
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two criteria.

In order to improve the time performance of parallel architectures, a pipelined struc-

ture can be used. Pipelining allows the hardware block to start processing a new input

data before the output of previous data is produced. An illustration of pipelining is

shown in Figure 2.8. Without using the pipeline technique, a hardware block pro-

cesses only one input at once and does not receive the next data before the output of

the currently processed data is produced. On the contrary, a pipelined hardware archi-

tecture can get a new input at each cycle. A pipelined hardware block has a structure

composed of registers, where these registers define boundaries of the pipeline stages.

After the incoming data is processed in the first stage and passed to the second one,

the first stage is ready to process the next data. As a result, a new process begins

before the previous one is finished. The first valid output is generated after a certain

amount of time, called the latency of the circuit. Then, the subsequent outputs are

obtained at each cycle as long as input data is supplied. Although it is acceptable to

wait until the end of the previous process when there is not frequent input data, at

high traffic rates pipelined architectures are far more advantageous, since it enables

effective use of hardware resources. It is important to clarify that pipelining does

not shorten the whole processing time for an input. But it provides high through-

put at high input traffic conditions and much better performance is obtained overall,

especially in high-speed systems.

Figure 2.8: Operation of pipelined architecture
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Galois field multiplier is the most time consuming block in an arithmetic unit. Con-

sidering the needs of Galois Field arithmetic applications, a fast multiplier block is a

critical requirement. Therefore, a bit parallel design is considered as the most suit-

able architectural structure for GF (2m) multiplier block for the work conducted in

this thesis.

2.5 MULTIPLICATION ALGORITHMS

Apart from the architectural structure, choosing the right multiplication algorithm is

also an important criterion that affects the performance of multiplier block. Many

hardware solutions for Galois Field multiplication with large numbers are proposed

using different algorithms such as Karatsuba-Ofman, Mastrovito, Montgomery or

classical school multiplication. Considering the application requirements, an algo-

rithm is chosen in order to design high speed, low complexity or power efficient

multiplier blocks. In this chapter, the most commonly used algorithms for hardware

implementation of Galois Field multiplication are analyzed in further detail.

2.5.1 CLASSICAL MULTIPLICATION

One method of implementing Galois field multiplication block on hardware is us-

ing classical school multiplication algorithm (CM). CM is a common multiplication

method used in hardware multiplier blocks. In this method, one multiplicand is first

multiplied by each bit of the other multiplicand to get partial products. Each partial

product is shifted by one and aligned according to the bit orders. Then the aligned

partial products are summed up to obtain the product to be reduced.

Hardware implementation of this algorithm is illustrated in Figure 2.9 [16]. Each bit

of twom-bit numbers are ANDed, resulting inm2 2-bit AND operations. Then results

of these AND operations are XORed according to their orders, requiring (m− 1)2 2-

bit XOR operations. As a result, (2m − 1)-bit product is obtained, which is to be

reduced using the characteristic polynomial of the field. Interpreting the gate counts,

it is obvious that CM is not a suitable algorithm for large number multiplications since

numbers of both AND and XOR gates increase dramatically as m gets larger.
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Figure 2.9: Implementation of CM on hardware (Zhou et al., 2010, p. 1058)

2.5.2 MONTGOMERY MULTIPLICATION

Another multiplication method is Montgomery multiplication algorithm. This algo-

rithm is specifically used in GF (2m) arithmetic for cryptographic purposes where

exponentiation is needed mostly [7]. It defines the Montgomery reduction algorithm

to be used in modular multiplication operation. The algorithm suggests that multipli-

cation is performed not using the actual inputs but their Montgomery representations

so that no reduction operation is needed at the end of the multiplication operation.

Consider the operation C (x) = A (x)B (x)mod (N). To calculate the product, C,

this algorithm defines a constant, R, such that R satisfies the two conditions,

i. R > N

ii. gcd(N,R) = 1

Montgomery reduction producesC ′ (x)∗R−1mod (N) forC ′ (x) < RN . As a result,

reduction operation after the multiplication is eliminated.

Typically, R = 2k is chosen for simplicity, where k is any positive integer. Using

the constant R, the numbers are first transformed into Montgomery representation as
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follows, where A′ and B′ are Montgomery representations of A and B respectively.

A′ (x) = A (x) ∗R

B′ (x) = B (x) ∗R

Using these representations, the product in Montgomery representation, C ′, is calcu-

lated as follows, where R−1 = 1/R mod(N).

C ′ (x) = C (x) ∗Rmod (N)

= A (x) ∗B (x) ∗Rmod (N)

= (A (x) ∗R) ∗ (B (x) ∗R) ∗R−1mod (N)

= A′ (x) ∗B′ (x) ∗R−1mod (N)

The obtained result can be used further in operations in Montgomery representation

or can be inverse transformed to GF(2m) representation as

C (x) = C ′ (x) ∗R−1mod (N)

CM algorithm in GF (2m) depends on the idea of first multiplying the multiplicands

and computing modulo characteristic polynomial afterwards. On the other hand,

Montgomery multiplication method uses Montgomery reduction algorithm to handle

the reduction operation during multiplication, through transformation to Montgomery

representation and inverse transformation steps. As a result, significant reduction in

area occupation is provided by eliminating reduction and performing two additional

operations instead.

Once the multiplicands are transformed into Montgomery representation, performing

multiple multiplication operations is possible before returning to GF (2m) represen-

tation. Therefore, this algorithm is mostly preferred for exponentiation instead of a

single multiplication in order to make use of transformation step. This algorithm is

very advantageous in large number exponentiation in GF (2m) arithmetic and widely

used in many cryptographic applications. However, it is vulnerable to side channel at-

tacks. It is possible to solve the internal working of the multiplier block by analyzing

power consumption or some parameter changes [17].
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2.5.3 KARATSUBA-OFMAN MULTIPLICATION

Karatsuba-Ofman multiplication (KOM) is another multiplication algorithm, which

is the fastest among the algorithms introduced in this chapter and consumes less re-

sources by reducing the computational complexity. In many cryptographic applica-

tions multiplication of large numbers is required, hence resulting in quite high re-

source consumption. KOM is a 2-way splitting multiplication algorithm. It is based

on divide-and-conquer approach, that is, it breaks down the problem of large num-

ber multiplication into many smaller multiplications, which are simpler to calculate.

Then, the results of sub-multiplications are combined to obtain the product of original

multiplicands. This reduces the computational complexity of CM to O(nlog2 3) [7].

KOM is not only used in GF (2m) arithmetic but is also applicable to other fields.

To comprehend the idea in KOM algorithm consider the multiplication of two-term

polynomials, A (x) = a1x+ a0 and B (x) = b1x+ b0, given in Equation 2.3.

D (x) = A (x) ∗B (x)

= (a1x+ a0) ∗ (b1x+ b0)

= (a1b1)x
2 + (a1b0 + a0b1)x+ (a0 + b0)

(2.3)

The middle term in the above expression can be rewritten as follows.

a1b0 + a0b1 = (a1 + a0) (b1 + b0)− a1b1 − a0b0

The terms a1b1 and a0b0 in this expression are already computed. Therefore, the mid-

dle term in Equation 2.3 can be calculated by computing only (a1 + a0) (b1 + b0).

The advantage is that instead of performing four multiplications, number of sub-

multiplications is reduced to three by performing two extra additions. Comparing

their complexities, addition has better time and area performances than multiplica-

tion. So, it is more efficient to replace one multiplication by two additions. As a

result, by applying KOM algorithm, one large multiplication operation is reduced

to three smaller multiplications with a computational complexity smaller than the

quadratic complexity of CM.
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Algorithm 2.1: Karatsuba-Ofman Multiplication algorithm
Inputs : A = A0 + A1X

n

B = B0 +B1X
n

Output: D

1 P0 = A0B0 = P0L + P0HX
n

2 P1 = A1B1 = P1L + P1HX
n

3 P2 = (A0 + A1) (B0 +B1) = P2L + P2HX
n

4 R0 = P0H + P1L

5 R1 = P0L + P2L

6 R2 = P1H + P2H

7 R3 = R0 +R1

8 R4 = R0 +R2

9 D = P0L +R3X
n +R4X

2n + P1HX
3n

KOM algorithm is given in Algorithm 2.1. A visualization of KOM is given in Fig-

ure 2.10. In this figure, the hardware block is divided into three stages, i.e., splitting

stage, sub-multiplication stage and recombination stage. Splitting stage is the first

stage where multiplicands are partitioned into two and inputs to sub-multipliers are

computed. Then comes the sub-multiplication stage, where the partitions are multi-

plied. In this stage, it is possible to use any multiplication algorithm. A recursive

implementation can be done by using KOM in the sub-multiplication stage. After

some number of multiplications, result of a sub-multiplication can be obtained using

an algorithm like CM. Sub-multiplications can be done in parallel since they are in-

dependent of each other, so that all partial products are obtained at the same instant.

After obtaining the partial products in the second stage, results are combined to obtain

the result of the multiplication operation in the recombination stage.

In finite field arithmetic one more step is needed to compute the actual result. The

product obtained by combination of partial products from sub-multipliers should be

reduced by computing modulo the characteristic polynomial of the result.

Similar to KOM, various algorithms based on divide-and-conquer approach exist,

which aim at splitting the large multiplicands into smaller partitions and combining

them later, in order to reduce the computation complexity. Some of these algorithms,
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Figure 2.10: Implementation of KOM in GF (2m)

which splits the multiplicands into 2, 3, 4 or 5 partitions, are used for the work con-

ducted in this thesis to implement a low cost GF (2m) multiplier.
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CHAPTER 3

LITERATURE WORK

Numerous works exists in the literature on the subject of design and implementation

of Galois field multiplier for cryptographic applications. Many works concentrate on

hardware implementation of Galois Field multiplier blocks for their ability to per-

form high-speed operation with low resource consumption, which is the most critical

requirement of cryptographic applications. Various design styles and multiplication

algorithms are proposed to achieve fast multiplication with low area complexity. Dif-

ferent design styles including systolic and non-systolic architectures, bit-parallel and

bit-serial input/output structures are implemented on hardware platforms to provide

better performance for Galois field multipliers [13]. Although design style is very

effective on resource utilization and delay of hardware block, its performance is pri-

marily determined by the implemented algorithm.

In this section, some recent works on Galois field multiplication are analyzed. Ef-

fects of preferred multiplication algorithms and their implementation are discussed

in detail. Since both area and time performances are considered, algorithms that aim

to reduce operation complexity with reasonable delay are studied, which are mainly

splitting algorithms. Also Galois Field multiplier designs for specific applications are

examined. In addition to GF (2m) multiplier designs and applications, use of partial

reconfiguration on FPGAs in different designs is overviewed with analysis of recent

works in literature.
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3.1 HARDWARE IMPLEMENTATION OF KARATSUBA-OFMAN MULTI-

PLICATION

KOM is the first splitting algorithm introduced in the literature. By splitting the

operands into two partitions and combining them after multiplication, it reduces the

quadratic complexity of multiplication toO(nlog2 3). Numerous works have been con-

ducted in literature that aim to find an efficient way to implement a multiplier block

using KOM algorithm for GF (2m) multiplication.

The most detailed implementation complexity analysis of KOM is done in [16]. In

this work, recursive implementation of KOM on different hardware platforms is ana-

lyzed through experiments. Implementation platforms, on which the experiments are

conducted, are ASIC, Virtex 4, a 4-input LUT based FPGA, and Virtex 5, a 6-input

LUT based FPGA. The aim of the work is to compare area consumptions of multipli-

ers that are implemented using KOM with different recursion depths implemented on

three types of hardware platforms. On the last step of recursion, sub-multiplications

are done using CM algorithm and recursion depth 0 implies that only one CM is

performed.

Before getting the results for comparison, first the algorithm is optimized for odd-

term and even-term polynomials. Binary fields given in the first column of Table

3.1, which are commonly used for cryptographic applications, are chosen for experi-

ments. Then delay and area complexities are computed for all three implementation

platforms at every recursion depth. Implementation results for two different FPGAs

are obtained using two different synthesis tools, Xilinx ISE 10.1 and Synplify Pro

9.0.1, with enabling and disabling “Keep Hierarchy” option. The optimum results for

area complexity on 4-input LUT based and 6-input LUT based FPGAs obtained in

[16] using Xilinx ISE 10.1 tool are also included in Table 3.1.

The results obtained in [16] provide a guide for implementation of KOM on three

different hardware platforms. The optimum solutions for GF (2m) implementations

for commonly used m values are specified as a result of area and time complexity

analysis. Effects of different hardware platforms, synthesis tools and coding styles

are also examined using the complexity analysis results.

28



Table 3.1: KOM implementation results for FPGAs obtained in [16]

Virtex 4 Virtex 5
Recursion Number of Recursion Number of

Galois Field Depth LUTs Depth LUTs
GF (2113) 4 4613 4 3727
GF (2128) 4 5520 4 4447
GF (2163) 4 8624 4 6823
GF (2193) 5 11060 4 8989
GF (2233) 5 15154 5 12243
GF (2283) 5 20321 5 16568

3.2 SPLITTING ALGORITHMS

Following introduction of 2-way splitting algorithm KOM to reduce the computa-

tional complexity of multiplication, several other algorithms based on splitting the

multiplicands into partitions are proposed. 3-way, 4-way and 5-way splitting algo-

rithms that appeared in literature are discussed in the present chapter. Their compu-

tational complexities and delay complexities of which are given in Table 3.2.

Examples of 3-way split algorithms forGF (2m) multiplication in literature are Bern-

stein’s 3-way split algorithm proposed in [18] and Karatsuba-like improved 3-way

split algorithm proposed in [19]. These algorithms are presented in Algorithm 3.1 and

Algorithm 3.2, respectively. Bernstein’s 3-way split algorithm reduces the computa-

tional complexity toO(n1.46). However, it requires performing a division operation to

compute the product. So, this algorithm is not suitable for hardware implementation

since division is performed by multiple multiplications and is not effective in terms of

both area and time. On the other hand, Karatsuba-like improved 3-way split algorithm

has a computational complexity of O(n1.63), which is higher compared to computa-

tional complexity of Bernstein’s 3-way split algorithm, but still less than the quadratic

complexity of CM. Plus, it has a logarithmic delay complexity that is far better than

that of Bernstein’s 3-way split algorithm. Therefore, Karatsuba-like improved 3-way

split algorithm is chosen as the 3-way split algorithm to be implemented on hardware

platform throughout the experiments conducted in this thesis.
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Table 3.2: Computational and delay complexities of splitting algorithms

Algorithm Computational Complexity Delay Complexity
Bernstein 3-way split 25.5n1.46 − 25.5n+ 1 (1.5n+ 8log3 (n))DX +DA

Karatsuba 3-way split 5.8n1.63 − 6n+ 1.2 4log3 (n)DX +DA

Bernstein 4-way split 6.425n1.58 − 6.8n+ 1.375 5log4 (n)DX +DA

Cenk 5-way split 6.5n1.5 − 7n+ 1.5 9log5 (n)DX +DA

In addition to 3-way split algorithms, a 4-way split algorithm, namely Bernstein’s

4-way split algorithm, is proposed in [18] and a 5-way split algorithm, namely Cenk

5-way split algorithm, is proposed in [20]. These algorithms are presented in Algo-

rithm 3.3 and Algorithm 3.4, respectively. Bernstein’s 4-way split algorithm reduces

the computational complexity of multiplication to O(n1.58). Computational com-

plexity of Cenk 5-way split algorithm is O(n1.5). Both algorithms have subquadratic

computational complexities and logarithmic delay complexities. Therefore, they are

suitable for hardware implementation with efficient area utilization and reasonable

delay values.

Algorithm 3.1: Bernstein’s 3-way split algorithm
Inputs : A = A0 + A1X

n + A2X
2n

B = B0 +B1X
n +B2X

2n

Output: C = AB

1 P0 = A0B0

2 P1 = (A0 + A1 + A2) (B0 +B1 +B2)

3 P2 = (A0 + A1X + A2X
2) (B0 +B1X +B2X

2)

4 P3 =

((A0 + A1 + A2) + (A1X + A2X
2)) ((B0 +B1 +B2) + (B1X +B2X

2))

5 P4 = A2B2

6 U = P0 + (P0 + P1)X
n

7 V = P2 + (P2 + P3) (X
n +X)

8 C = U + P4 (X
4n +Xn) +

(U+V+P4(X4+X))(X2n+Xn)
(X2n+X)
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Algorithm 3.2: Karatsuba-like improved 3-way split algorithm
Inputs : A = A0 + A1X

n + A2X
2n

B = B0 +B1X
n +B2X

2n

Output: C = AB

1 P0 = A0B0 = P0L + P0HX
n

2 P1 = A1B1 = P1L + P1HX
n

3 P2 = A2B2 = P2L + P2HX
n

4 P3 = (A1 + A2) (B1 +B2) = P3L + P3HX
n

5 P4 = (A0 + A1) (B0 +B1) = P4L + P4HX
n

6 P5 = (A0 + A2) (B0 +B2) = P5L + P5HX
n

7 R0 = P0H + P1L

8 R1 = R0 + P0L

9 R2 = R1 + P4L

10 R3 = P1H + P2L

11 R4 = R1 +R3

12 R5 = P4H + P5L

13 R6 = R4 +R5

14 R7 = R3 + P2H

15 R8 = R7 +R0

16 R9 = R8 + P3L

17 R10 = R9 + P5H

18 R11 = R7 + P3H

19 C = P0L +R2X
n +R6X

2n +R10X
3n +R11X

4n + P2HX
5n

31



The computational complexity and delay complexity values given in Table 3.2 are the-

oretical results obtained by mathematical calculations. In [21], numerous algorithms

including the ones introduced in this chapter are analyzed theoretically to obtain com-

putational and delay complexities. In order to obtain the minimum complexity, the

algorithm giving the optimum result is used for each multiplication after splitting

rather than using the same algorithm recursively. The results obtained in [21] give

meaningful results for ASIC implementation since mathematical expressions are di-

rectly converted into logic gates. However, for FPGA implementation, these results

are not valid. An experimental work to compute area and time complexities is needed

that is similar to the analysis in [16] in order to determine the most efficient algo-

rithms for different field sizes. The present thesis aims to conduct such an analysis

and obtain an area optimized GF (2m) multiplier for FPGA. The results of this effort

is presented in Chapter 4.

Algorithm 3.3: Bernstein 4-way split algorithm
Inputs : A = A0 + A1X

n + A2X
2n + A3X

3n

B = B0 +B1X
n +B2X

2n +B3X
3n

Output: C = AB

1 P0 = A0B0

2 P1 = A1B1

3 P2 = A2B2

4 P3 = A3B3

5 P4 = (A0 + A1) (B0 +B1)

6 P5 = (A2 + A3) (B2 +B3)

7 P6 = (A0 + A2 + (A1 + A3)X
n) (B0 +B2 + (B1+3)X

n)

8 C = P0 + (P0 + P1 + P4)X
n + (P0 + P1 + P2 + P6)X

2n +

(P0 + P1 + P2 + P3 + P4 + P5)X
3n + (P1 + P2 + P3)X

4n +

(P2 + P3 + P5)X
5n
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Algorithm 3.4: Cenk improved 5-way split algorithm
Inputs : A = A0 + A1X

n + A2X
2n + A3X

3n + A4X
4n

B = B0 +B1X
n +B2X

2n +B3X
3n +B4X

4n

Output: C = AB

1 m0 = A0B0 = p1 + p2X
n

2 m1 = A1B1 = p3 + p4X
n

3 m2 = A2B2 = p5 + p6X
n

4 m3 = A3B3 = p7 + p8X
n

5 m4 = A4B4 = p9 + p10X
n

6 m5 = (A0 + A1) (B0 +B1) = p11 + p12X
n

7 m6 = (A0 + A2) (B0 +B2) = p13 + p14X
n

8 m7 = (A2 + A4) (B2 +B4) = p15 + p16X
n

9 m8 = (A3 + A4) (B3 +B4) = p17 + p18X
n

10 m9 = (A0 + A2 + A3) (B0 +B2 +B3) = p19 + p20X
n

11 m10 = (A1 + A2 + A4) (B1 +B2 +B4) = p21 + p22X
n

12 m11 = (A0 + A1 + A3 + A4) (B0 +B1 +B3 +B4) = p23 + p24X
n

13 m12 = (A0 + A1 + A2 + A3 + A4) (B0 +B1 +B2 +B3 +B4) = p25+p26X
n

14 t1 = p1 + p2, t4 = p4 + p5, t5 = p12 + p13, t9 = p6 + p7, t12 = p14 + p15,

t14 = p19 + p23, t17 = p8 + p9, t22 = p16 + p17, t25 = p20 + p21, t26 = p25 + p26,

t27 = p19 + p24, t33 = p22 + p23, t36 = p22 + p24

15 t2 = t1 + p3, t6 = t4 + t5, t8 = t1 + t4, t15 = t14 + p25, t18 = t17 + p10,

t28 = t25 + t26, t37 = t12 + p26, t38 = t36 + p10

16 t3 = t2 + p11, t7 = t2 + t6, t10 = t8 + t9, t19 = t18 + p18, t21 = t18 + t20,

t29 = t28 + t27, t39 = t37 + t38

17 t11 = t10 + p9, t23 = t21 + t22, t31 = t7 + t19

18 t13 = t11 + t12, t24 = t23 + t3, t32 = t28 + t31, t35 = t11 + p1

19 t16 = t13 + t15, t30 = t29 + t24, t34 = t32 + t33, t40 = t35 + t39

20 C = p1 + t3X
n + t7X

2n + t16X
3n + t30X

4n + t34X
5n + t40X

6n + t23X
7n +

t19X
8n + p10X

9n
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Table 3.3: Cryptographic algorithms and security levels

Algorithm Operation Status
DES Encryption Avoid
3DES Encryption Legacy (Short key lifetime)
RC4 Encryption Avoid

AES-CBC Encryption Acceptable
AES-GCM Authenticated encryption Next Generation Encryption
RSA-768 Encryption Avoid

RSA-1024 Encryption Avoid
RSA-2048 Encryption Acceptable

3.3 APPLICATIONS OF GALOIS FIELD MULTIPLICATION

Galois field multiplication is most popular for its use in cryptographic applications.

Almost all cryptographic algorithms used for Internet security today is based on Ga-

lois field arithmetic. In Table 3.3 encryption algorithms recommended for Internet

security by Cisco [6] are given. In the table, status of algorithms are designated as

"avoid" for algorithms that are not able to provide adequate security against threats

and should not be used, "legacy" for algorithms that can be used only if no alternative

exists since they do not provide a high level of security, "acceptable" for algorithms

that provide adequate security and "next generation encryption" (NGE) for algorithms

that provide high security level, which is expected to be adequate for next 20 years.

The table indicates that, the most secure encryption algorithm for Internet security is

AES-GCM, status of which is designated as NGE.

Galois Counter Mode (GCM) is defined as a mode of operation1 that uses universal

hashing over a binary field to provide authenticated encryption in [22]. GCM can be

used as a stand-alone Message Authentication Code (MAC) to provide only authen-

tication, as well as with a block cipher such as AES to provide authenticated encryp-

tion. It is capable of performing at speeds more than 10 Gbps when implemented on

hardware, meeting the security requirements of high-speed systems. AES-GCM is

defined as the default cipher suite in IEEE 802.1AE Media Access Control Security

standard [23] and also used in 802.11AD Wireless Gigabit Alliance [24].

1 A mode of operation is an algorithm that defines repeated application of a single block cipher in order to
provide security and authenticity.
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Figure 3.1: AES-GCM operational block diagram

AES-GCM core consists of two main blocks. The first one is the AES block, where

encryption or decryption operation is performed. The second part is GHASH module,

which operates as the authentication block. A block diagram of AES-GCM encryp-

tion module operation is shown in Figure 3.1.

The encryption module takes four inputs:

i. K, the encryption key,

ii. IV, the initialization vector,

iii. P, the plaintext, which is the data to be encrypted,

iv. A, the additional authenticated data, which is authenticated but not encrypted.

This data generally includes network protocol related information like address,

ports, protocol version, etc.
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Outputs of the encryption module are:

i. C, the ciphertext,

ii. T, the authentication tag, which is obtained as the output of the GHASH func-

tion.

Operation of decryption module is similar. It takes five inputs, which are K, IV, C,

A and T, to produce single output P. If there exists an authentication error, a failure

signal is produced as the output of decryption operation instead of the plaintext.

Numerous works have been conducted to design and implement Galois field multi-

plier block for AES-GCM. In [25], a pipelined AES-GCM core optimized for FPGA

implementation is designed. The main work done in [25] is the analysis of area and

time complexities of Galois field multiplier block to be used in the AES-GCM core

implemented on the selected FPGA, Virtex 4. Area complexity is given in terms of

number of LUTs and delay is measured in terms of LUT delay. Improving both area

and time performances is aimed in [25]. In order to design a speed efficient Galois

field multiplier, CM is preferred as the multiplication algorithm. The multiplier block

implemented using CM is named speed-efficient multiplier. In addition to the speed-

efficient multiplier, an area-efficient multiplier is implemented. Recursive KOM is

preferred as the multiplication algorithm for the area-efficient multiplier. In order to

implement this multiplier block, area and time complexities at all recursion depths of

KOM are compared and recursion depth 4 is chosen as the optimum result with an

area utilization of 5523 LUTs. Then, both multipliers are implemented within AES-

GCM core to obtain the results for total resource consumption and delay. Area and

time performances of the multipliers designed in [25] on Virtex 4 FPGA are presented

in Table 3.4.

Table 3.4: Time and area performances of multiplier blocks designed in [25]

Multiplier Resource consumption (LUT) Delay (TLUT)
Area-efficient (4-step KOM) 5523 8

Speed-efficient (CM) 10923 4
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In [26], an AES-GCM core design on FPGA that supports 100 Gbps bandwidth is

designed. Similar to the work conducted in [25], a multiplier design for hash func-

tion is implemented using recursive KOM. In this design, 4 independent multipliers

operate in parallel to realize GHASH function. For every single multiplier block,

although area complexity is not optimized, 2-step KOM is preferred as the multipli-

cation algorithm in order to reduce the area complexity without increasing the total

delay much. Pipelining technique is also included in multiplier design. KOM based

multiplier is partitioned into 4 pipeline stages, at the splitting stages and recombi-

nation stages of two recursive multipliers. As a result, a multiplier design that can

support 100Gbps Ethernet speed for an AES-GCM core is obtained. Area utilization

is expressed in terms of number of occupied slices, which is equal to 14799 for Virtex

5 XC5VLX220 FPGA.

Another work that concentrates on design of Galois field multiplier for GHASH core

on FPGA is [27]. Similar to [26], this design also includes 4 multipliers based on

2-step recursive KOM in order to realize GHASH function on Virtex 5 FPGA. The

difference between [26] and [27] is the use of reduction block. [26] implements

one reduction block per multiplier for all four multipliers used in GHASH function,

whereas in [27], a single reduction block is used to reduce the results from all mul-

tipliers to obtain the actual product. Since the multipliers are used in a pipelined

manner, this improvement introduced in [27] does not affect the speed of the whole

design. But, it reduces area utilization by eliminating three reduction blocks and

provides better area performance than the design in [26].

Many works on design and implementation of a GF (2128) multiplier block for AES-

GCM core in literature use KOM as the multiplication algorithm for its area efficiency

and reasonable delay. Another reason it is preferred in these designs is that applying

pipelining technique with KOM is very straightforward due to its structure based on

independent stages. So, it is possible to use KOM based multipliers in high speed

systems to provide high speed operation, while reducing area utilization.
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Table 3.5: Throughput and area performances in [29] with and without partial recon-
figuration

Implementation Throughput (Gbps) Number of slices
Without partial reconfiguration 8.733 7215

With partial reconfiguration 24.922 3576

3.4 FPGA DESIGNS USING PARTIAL RECONFIGURATION

Numerous works exist in the literature that uses partially reconfigurable hardware

designs in various areas including image processing, communication networks, cryp-

tography, space applications and many others. Although a work on Galois filed mul-

tiplier design using partial reconfiguration does not exist in the literature, there are

examples of its use in implementation of some cryptographic applications such as

[28], which uses partial reconfiguration for implementation of AES and IDEA algo-

rithms on FPGA, and [29], which focuses on AES implementation on FPGA with

partial reconfiguration.

As an example of using partial reconfiguration in cryptography, in [29], AES algo-

rithm is implemented on Virtex 2 FPGA, where key expansion phase is implemented

as a partially reconfigurable module. In key expansion step of AES algorithm, a new

round key block is generated to be used in each round of the algorithm. In [29], this

phase is realized on software and resulting round keys are stored on FPGA by recon-

figuration at run time. As a result area utilization of FPGA is reduced by about 50%.

Using partial reconfiguration to store the round keys instead of calculating them on

FPGA also improves the speed of the whole design and throughput is increased from

8.73 Gbps to 24.92 Gbps. The results obtained in this work are given in Table 3.5.

Many other works using partial reconfiguration exist in the literature in various appli-

cation areas. Partial reconfiguration obviously provides efficiency in resource utiliza-

tion. Plus, it can be included in designs in order to provide higher throughput as in the

examples of [28] and [29], increase speed or add functionality to the hardware. By

including this feature in FPGA based hardware designs, it is possible to make more

flexible and efficient implementations.
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CHAPTER 4

AREA OPTIMIZED GF
(
2M
)

MULTIPLIER

IMPLEMENTATION ON FPGA

Two main objectives in design and implementation of a Galois field multiplier block

on a hardware platform are achieving short delay and resource utilization efficiency.

The most popular method for achieving fast multiplication is using look up tables.

But, this method is inefficient for large number multiplications. Therefore, it is not

useful for cryptographic applications like AES-GCM, where 128-bit numbers are

multiplied. Another method for fast multiplication is using CM algorithm. However,

it has quadratic computational complexity, thus results in high resource consumption.

In order to overcome the problem of high resource consumption in fast multiplication

methods, area optimized Galois field multipliers for fields commonly used in cryp-

tographic applications are designed in this chapter. While reducing area usage, total

delay of operation is also considered. Splitting algorithms are used in order to reduce

resource utilization, without excessively increasing time complexity.

In many cryptographic applications Galois field multiplication units are designed us-

ing recursive KOM algorithm in order to find an optimum point for area-time trade

off, since KOM divides the large number multiplication into smaller multiplications,

thus reduces area complexity, by introducing a reasonable delay. Many works in lit-

erature concentrate on optimizing recursive KOM based multipliers on various hard-

ware platforms, including different FPGA types. However, other splitting algorithms

such as Karatsuba-like improved 3-way split algorithm, Bernstein 4-way split algo-

rithm and Cenk improved 5-way split algorithm are analyzed only mathematically.

The theoretical analysis for computational complexity provides valid results for ASIC
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implementations, especially about area complexity, which is generally based on the

number of gates used. Number of bit multiplications is equal to number of AND gates

used in an ASIC design, and number of bit additions gives the number of XOR gates.

Time complexity is also computed in a similar way. However, LUT based structure of

FPGAs makes it impossible to compute area and time complexities exactly without

experimental results. To the best of our knowledge, implementation and complex-

ity analysis of 3-, 4- and 5-way splitting algorithms on FPGA does not exist in the

literature. Therefore, a complexity analysis of these algorithms on selected FPGAs

are made in order to design area optimized Galois field multiplier blocks for fields

commonly used in cryptographic applications.

In [21], splitting algorithms are examined theoretically. Theoretical analysis results

are obtained using seven different algorithms. But, as mentioned before, these results

are not valid for FPGA implementation. In this thesis, four algorithms are selected

out of seven algorithms included in [21], which are suitable for hardware implemen-

tation and provide low area complexity with subexponential delay. Area and time

complexities are analyzed experimentally for selected hardware implementation plat-

forms. The algorithms are KOM (Algorithm 2.1), Karatsuba-like improved 3-way

split algorithm (Algorithm 3.2), Bernstein 4-way split algorithm (Algorithm 3.3) and

Cenk 5-way split algorithm (Algorithm 3.4).

In [16], KOM is optimized for even and odd term multiplicands. In this thesis, all

splitting algorithms used in experiments are optimized in a similar manner. For ex-

ample, 3-way splitting algorithm is not applied only to 3n-bit multiplicands. It is also

applied to (3n− 1)− and (3n− 2)−bit long polynomials. A method of applying

this algorithm to (3n− k)−bit long polynomials, where k is equal to 1 or 2 in this

case, is to extend the polynomial lengths to 3n bits by zero padding the most signifi-

cant bits. But, instead of zero padding and increasing the length of the multiplicands,

splitting the multiplicands into partitions of unequal lengths is a better method in

terms of area complexity. In such a case, the most significant partition is shorter with

a length of (n− k) bits than the other two partitions, which are n bits long.

Selected splitting multiplication algorithms are implemented for the Galois fields ex-

amined in [16], which are given in Table 4.1. Method of implementation is as follows:
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Table 4.1: Galois fields used for experiments with characteristic polynomials

Galois Field Characterstic Polynomial
GF (2113) f (x) = x113 + x9 + 1

GF (2128) f (x) = x128 + x8 + x7 + x2 + x+ 1

GF (2163) f (x) = x163 + x7 + x6 + x3 + 1

GF (2193) f (x) = x193 + x15 + 1

GF (2233) f (x) = x233 + x74 + 1

GF (2283) f (x) = x283 + x12 + x7 + x5 + 1

For all selected fields, all possible field sizes for submultiplications using 2-, 3-, 4- and

5-way splitting are generated. For example, for the field size 113, 113-bit multipli-

cands are splitted into smaller partitions to find the field sizes of submultiplications

needed for every splitting algorithm examined in this work. For KOM algorithm,

which requires splitting the multiplicands into two, submultiplications for field sizes

57 and 56 are needed. For 3-way split algorithm, submultiplications for field sizes

38 and 37 are needed. For 4-way split algorithm, submultiplications for field sizes

58, 29 and 26 are needed. For 5-way split algorithm, submultiplications for field

sizes 23 and 21 are needed. To find the most area efficient algorithm to implement

these submultiplier blocks, the same splitting approach is applied to these resulting

field sizes, until no more splitting is possible. Then, all selected multiplication algo-

rithms including CM, which does not require any splitting, are implemented for these

field sizes beginning from the smallest one. As the most area efficient algorithm for

a field size is found, that submultiplier is implemented to be used in a larger field

multiplication. For example, to implement KOM for field size 113, the most efficient

multiplication algorithms for field sizes 57 and 56 should be known, and so on. So,

multiplier blocks for field sizes 57 and 56 should be implemented in order to realize

KOM for field size 113.

4.1 IMPLEMENTATION RESULTS

Galois fields selected for the experiments are given in Table 4.1. All multiplier blocks

are implemented using Xilinx ISE Design Suite 14.7 with "Keep Hierarchy" option

disabled. In Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6, algorithms to obtain minimum area
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utilization for the fields in Table 4.1 are visualized for Virtex 5 and Kintex 7 FPGA

platforms. Implementation results for all field sizes are included in the Appendix part.

In the Figures 4.1 - 4.6, each box represents a multiplication operation, indicating the

algorithm preferred in that step and length of the multiplicands. The initial multipli-

cation is given in the box at the top. For example, in Figure 4.1-(a), multiplication

algorithms to implement multiplier block for field size 113 are given. Then it is par-

titioned into smaller multiplications according to the algorithm used at that step. For

Figure 4.1, the most efficient multiplication algorithm for field size is indicated to be

KOM, so it is partitioned into fields GF (257) and GF (256). The arrows connect-

ing the boxes at each level indicates the resulting multiplications after splitting. The

numbers on the arrows indicates how many multiplier blocks are needed at the next

splitting stage. For the same figure,two GF (257) multiplier blocks and one GF (256)

multiplier block are needed to realize one GF (2113) multiplier block using KOM

algorithm.

The figures show that algorithms used for implementation of area optimized mul-

tiplier blocks on two different FPGAs are not the same. Moreover, the algorithms

do not match with the ones that are theoretically the most efficient in terms of area

utilization.
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(a) Area optimized GF
(
2113

)
multiplier for Virtex 5

(b) Area optimized GF
(
2113

)
multiplier for Kintex 7

Figure 4.1: Algorithms selected for area optimized GF (2113) multiplier for Virtex 5
and Kintex 7
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(a) Area optimized GF
(
2128

)
multiplier for Virtex 5

(b) Area optimized GF
(
2128

)
multiplier for Kintex 7

Figure 4.2: Algorithms selected for area optimized GF (2128) multiplier for Virtex 5
and Kintex 7
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(a) Area optimized GF
(
2163

)
multiplier for Virtex 5

(b) Area optimized GF
(
2163

)
multiplier for Kintex 7

Figure 4.3: Algorithms selected for area optimized GF (2163) multiplier for Virtex 5
and Kintex 7
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(a) Area optimized GF
(
2193

)
multiplier for Virtex 5

(b) Area optimized GF
(
2193

)
multiplier for Kintex 7

Figure 4.4: Algorithms selected for area optimized GF (2193) multiplier for Virtex 5
and Kintex 7
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(a) Area optimized GF
(
2233

)
multiplier for Virtex 5

(b) Area optimized GF
(
2233

)
multiplier for Kintex 7

Figure 4.5: Algorithms selected for area optimized GF (2233) multiplier for Virtex 5
and Kintex 7 47



(a) Area optimized GF
(
2283

)
multiplier for Virtex 5

(b) Area optimized GF
(
2283

)
multiplier for Kintex 7

Figure 4.6: Algorithms selected for area optimized GF (2283) multiplier for Virtex 5
and Kintex 7
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4.2 COMPARISON OF RESULTS

To compare the area utilization results of three multiplier designs all of them are

implemented on the same platforms. Multipliers based on recursive KOM implemen-

tation in [16] are implemented again for Virtex 5 instead of directly using the results

given in the work, since implementation tool difference has effects on implementa-

tion results. On Kintex 7, multiplier blocks with recursive KOM algorithm are imple-

mented that have the least area utilization. Theoretically most efficient algorithms are

also implemented on the selected FPGAs. Resource consumptions of theoretically

recommended algorithms and recursive KOM implementations are compared to the

area optimized multiplier block designs proposed in this work.

LUT consumption results are given in Table 4.2 for Virtex 5 and in Table 4.3 for

Kintex 7. Plus, graphics that compare the results are given in Figure 4.7 for Virtex

5 and in Figure 4.8 for Kintex 7. For both FPGAs, algorithms recommended in [21]

result in the worst area utilization. Due to LUT based internal structure of FPGA

platform, theoretically lowest complexity algorithm recommended for each polyno-

mial length gives the highest area complexity among all algorithms for the selected

fields on both FPGAs. Recursive KOM implementation has better area utilization

than implementation of algorithms recommended in [21]. The only exception is the

multiplier block implementation for GF (2113) on Virtex 5, for which recommenda-

tion in [21] gives better area performance result. However, multiplier block designs

proposed in this thesis provides the highest efficiency in terms of area utilization for

all selected fields. As illustrated in graphics given in Figure 4.7 and Figure 4.8, for

both FPGA platforms, area utilization is reduced by use of the splitting algorithm

that is the most area efficient one at every step and minimum area multipliers are ob-

tained.Only the recommended multiplier implementation for GF (2193) on Virtex 5 is

the same in both [16] and this thesis.

The results show that it is possible to obtain smaller area complexities by using dif-

ferent splitting algorithms. Some of the optimal algorithms for different polynomial

lengths are given in Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 for Virtex 5 and Kintex

7 implementations. All experimental results to choose the best algorithm for area

minimization on the selected FPGAs are included in Appendix part.
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Table 4.2: LUT consumption of analyzed multiplier designs for selected fields on
Virtex 5

Field size 113 128 163 193 233 283
[16] 3573 4357 6555 8345 12359 16009
[21] 3541 10720 10827 13858 18346 31135

This work 3416 4130 6450 8345 11286 15495

Figure 4.7: Area utilization of analyzed multiplier designs for selected fields on Virtex
5

50



Table 4.3: LUT consumption of analyzed multiplier designs for selected fields on
Kintex 7

Field size 113 128 163 193 233 283
Recursive KOM 3208 3701 5520 7302 10390 13692

[21] 3506 7658 10627 12618 18044 27694
This work 3037 3690 5504 7288 10039 13655

Figure 4.8: Area utilization of analyzed multiplier designs for selected fields on Kin-
tex 7
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Figure 4.9: Reduction block

4.3 REDUCTION BLOCK

Area optimized multiplier blocks based on splitting algorithms does not produce the

actual product of the multiplicands. The result should be reduced using the character-

istic polynomial of the Galois field. This is achieved by computing modulo charac-

teristic polynomial of the result, which requires performing multiple divisions. But,

for binary fields, the product can be computed easily without any division operation.

As illustrated in Figure 4.9, the reduction block gets the (2m− 1)-term multiplication

result, D, as the input and produces the m-term product, C. Consider the binary field

GF (2m) with characteristic polynomial, f (x).

f (x) = xm + xk + 1

Bits ofD with a degree less thanm are already contained in the field. However, terms

with a degree greater than or equal to m should be reduced. For the term xm, result

of the reduction is computed in Equation 4.1, where addition is performed modulo 2

for each term.

xm = xm + f (x) mod f (x)

= xm + xm + xk + 1 mod f (x)

= xk + 1 mod f (x)

(4.1)

According to this result, all terms can be reduced as follows.

xm = xk + 1 mod f (x)

xm+1 = xk+1 + x mod f (x)

...

x2m−2 = xm+k−2 + xm−2 mod f (x)

= xm−2 + x2k−2 + xk−2 mod f (x) , k < m/2
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To implement this mathematical expression on a hardware platform, terms of the

multiplication result, D, with degree greater than m are first reduced according to

Equation 4.1 and then XORed with the terms that they have the same degree. Thus,

reduction operation is achieved at 1 cycle on FPGA.
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CHAPTER 5

PARTIALLY RECONFIGURABLE GF
(
2128
)

MULTIPLIER

DESIGN

5.1 MOTIVATION

AES-GCM is one of the most commonly used cryptographic algorithms to provide

information security on the Internet. It is the default cipher block defined in IEEE

802.1AE, which is the standard for Media Access Control security [23]. Another

standard that mentions AES-GCM as a security protocol to provide data confidential-

ity, authentication and integrity is 802.11AD, namely Wireless LAN Medium Access

Control and Physical Layer specifications [24]. It is also recommended as the next

generation encryption algorithm, which means that the security level provided by

AES-GCM is expected to be adequate for the next two decades, whereas other known

encryption algorithms are not robust against subexponential attacks.

AES-GCM provides authenticated encryption. It has two functional blocks. One of

them is AES block cipher, which encrypts the plain text. The other one is GHASH

function. The main operation performed in the GHASH block is producing authen-

tication tag, which is obtained as the product of a sequence of multiplications. The

multiplications in GHASH function are in GF (2128). In Figure 5.1, block diagram of

GHASH function is given, where Galois field multiplication by hash key is denoted

by "·H" symbol.

Galois field multiplication is the most essential operational block in GHASH func-

tion. To implement GHASH function on a hardware platform efficiently, optimizing
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Figure 5.1: Operational block diagram for GHASHH (X1||X2||...||Xm) = Ym

resource utilization of Galois field multiplier is of critical importance. But, while

minimizing the resource utilization, total delay of operation increases. In high speed

communication systems, this may result in high transmission delay and even loss of

data. To find an optimum point for area-time trade off, a multiplier design based on

partial reconfiguration feature of FPGAs is introduced in this thesis.

5.2 DESIGN

AGF (2128) multiplier block that can adapt to changing traffic conditions is designed.

Flexibility of FPGAs with partial reconfiguration feature is used to implement an

adaptable hardware block. Two different multiplier block types are used, which are

area optimized and high performance multipliers. Area optimized multiplier block is

the 128-bit multiplier block designed in Chapter 4. This block minimizes the area uti-

lization and provides minimum power operation. However, output of a multiplication

is obtained in 5 clock cycles. On the contrary, high performance multiplier gives the

output of multiplication in 1 cycle using classical multiplication algorithm. But high

resource utilization of this multiplier results in high power consumption.

Area optimized multiplier block is implemented to realize GHASH function by de-

fault. But, since its serving capacity, µ, is 0.2 packets/cycle, it is only able to serve the
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incoming packets at low traffic rates. When the incoming traffic rate is higher than

the service rate of area optimized multiplier, the data are not served within acceptable

time. In such a case, high performance multiplier is activated to serve the packets in

queue with a higher service rate. As a result, the packets that have been waiting to

be served are multiplied by the hash key in high performance multiplier block, con-

suming more resource and power. In Figure 5.2 a visualization of the design is given.

Figure 5.2: Partially reconfigurable multiplier block and queue structure

In this design, it is critical to determine at which point the actively used multiplication

block should be changed. Though area optimized multiplier block is not capable of

serving the incoming data at high traffic rate, it is advantageous to use it for better

resource utilization when the traffic rate is low. On the contrary, high performance

multiplier block consumes high amount of resources. But, in order to provide service

to incoming data within an acceptable time so as not to cause delay in the whole

system, it is essential to use this multiplier block at high traffic rates. The overall

utilization of two multiplier blocks should provide a high throughput with a resource

consumption that is not as high as that of high performance multiplier. The switching

point between the two multipliers should be selected regarding this objective. To

define the switching points on the packet queue, where the data to be multiplied by the

hash key waits, a hysteretic buffer structure is used. In visualization of this structure

in Figure 5.2, two threshold points, t1 and t2, are defined. When the number of data
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packets waiting to be served exceeds the higher limit denoted as t2, high performance

multiplier is activated. Multiplications are performed by high performance multiplier

until queue length reduces beneath the lower threshold value denoted as t1.

Implementation of this design is realized on a partially reconfigurable FPGA. Imple-

menting the design using different methods is possible. In one method of implemen-

tation, by defining both area optimized and high performance multipliers as reconfig-

urable modules, switching between the two multiplier blocks is achieved by partial

reconfiguration. Reconfigurable partition is configured by the bit file of area opti-

mized multiplier block by default. When the queue size exceeds the high threshold,

t2, reconfigurable partition is configured by the bit file of high performance multiplier

block. After the queue size is reduced below the low threshold, t1, it is configured

by the bit file of area optimized multiplier again. The drawback of this design is

that not any multiplication is performed during reconfiguration since both multipli-

ers are defined as reconfigurable modules. In a real time application, the time spent

during reconfiguration has critical effects. In order not to stop multiplication op-

eration during reconfiguration process, another design method is considered. The

default selection, which is the area optimized multiplier block, is implemented as

a static module, whereas the high performance multiplier block is defined as a re-

configurable module. So, when the queue length exceeds the high threshold, the

high performance multiplier block is inserted into the reconfigurable partition and

multiplications are performed by this block. When the queue size is below the low

threshold, the high performance multiplier block is removed. During installation and

removal of the high performance multiplier block, the area optimized multiplier block

continues operation. One advantage of this design is that multiplication operation is

performed continuously during run time. Another advantage is that when high perfor-

mance multiplier block is not included in the design, the reconfigurable partition can

be used to implement another hardware block. This adds more functionality to hard-

ware platform. Although dedicating the reconfigurable partition to high performance

multiplier for some periods during the run time increases the area utilization of the

multiplier, the effective area utilization is much less due to this functionality. Plus,

power consumption of the adaptable multiplier is reduced without a critical change in

time performance by implementing the multiplier module using this method.
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5.3 SIMULATION AND IMPLEMENTATION

To evaluate the performance of partially reconfigurable multiplier design, simulations

are done related to delay, throughput and required buffer size. To analyze area uti-

lization and power consumption, the design is implemented on Xilinx Kintex 7 FPGA

with part number XC7K325T-2FFG900C, using Xilinx ISE Design Suite 14.2 devel-

opment tool.

Before evaluating performance of the partially reconfigurable design, first the area

optimized and high performance multiplier blocks are analyzed for their area, power,

throughput and delay behaviors. Area utilization of area optimized multiplier is 4568

LUTs for Kintex 7 FPGA, whereas high performance multiplier has an area utilization

of 7041 LUTs. Then the implemented designs are analyzed using Xilinx Power An-

alyzer. The results obtained for different traffic conditions with λ values 0.3, 0.5 and

0.7 are given in Table 5.1. To analyze throughput and delay performances, Poisson

distributed random traffics with user defined arrival rates are generated on C# soft-

ware environment. Results of 1 second simulations for λ values 0.3, 0.5 and 0.7 show

that area optimized multiplier has a throughput of 0.2 under all traffic conditions due

to its serving capacity, whereas high performance multiplier provides the maximum

throughput for all simulation conditions. For delay performances, area optimized

multiplier has large average and maximum delay values, whereas high performance

multiplier generates output without delay. In terms of buffer size, high performance

multiplier does not need a buffer since packets are served without delay, whereas

buffer requirement of area optimized multiplier is infinite under simulated traffic con-

ditions with arrival rates larger than service rate of area optimized multiplier.

After the performance of area optimized and high performance multiplier blocks are

evaluated, the same metrics are simulated also for the partially reconfigurable multi-

plier. Performance of the multiplier block depends on two variables, which are input

traffic condition and threshold values. In order to observe the impact of these variables

on multiplier performance, simulations are made under different traffic conditions and

with different threshold values.
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Figure 5.3: Implementation of partially reconfigurable multiplier on FPGA with high
performance multiplier block implemented in the reconfigurable partition

Figure 5.4: Implementation of partially reconfigurable multiplier on FPGA with non-
functional black box module implemented in the reconfigurable partition
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The same traffic conditions as the ones used in area optimized and high performance

multiplier block simulations are generated on C# software environment. Simulation

results for Poisson traffic with λ = 0.3, λ = 0.5 and λ = 0.7 are included in the next

section to analyze the behavior of multiplier block under different input conditions.

The threshold values used in simulations are selected in accordance with the partial

bit file size, which is generated after implementation on FPGA. Therefore, the design

is implemented on the FPGA before simulations. The area optimized multiplier block

is implemented in the static part whereas the high performance multiplier block is de-

fined as a reconfigurable module. When the high performance multiplier block is not

needed, it is replaced by a nonfunctional black box module. In Figure 5.3 and Figure

5.4, implementation results with and without high performance multiplier are given

respectively. Reconfigurable partition is selected in order to meet the LUT require-

ment of high performance multiplier. An area consisting of 8000 LUTs is selected

as reconfigurable partition. High performance multiplier block has 87% utilization

within this partitions when implemented as a reconfigurable module. For this imple-

mentation, size of partial bit files for the reconfigurable partition is 432 KB. Since

the ICAP interface has 400 MB/s bandwidth, required time to reconfigure the FPGA

using a partial bit file is

τ = 432KB ÷ 400MB/s

= 1054.6875µs

For implementation of the design, 100 MHz clock is used. So, reconfiguration of

FPGA is completed in approximately

c = dτ µs ∗ 100MHze

= 105469 clock cycles

During this period, area optimized multiplier block continues serving the incoming

data with a service rate of µ = 0.2. Therefore, the maximum number of packets that

may enter the queue is

N = (1− 0.2) ∗ c

= 84375 packets
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While using the high performance multiplier block, when the number data packets

in the queue drops below t1 threshold value, FPGA is reconfigured. Since high per-

formance multiplier is not active during this period, new data packets start to enter

queue. Whenever number of packets in the queue reaches t2 threshold value, FPGA

needs to be reconfigured again to install the high performance multiplier. But, this is

not possible if the previous reconfiguration process is not completed yet. Selecting

the threshold values on hysteretic buffer such that the difference between t1 and t2

is not less than N guarantees that reconfiguration process is done before the number

of packets waiting to be served in queue reaches the threshold. Plus, unless a packet

arrives at every cycle, the reconfigurable partition can be used for different purposes

by implementing a reconfigurable module with different functionality. By increas-

ing the difference between t1 and t2, it is possible to use the reconfigurable modules

with different functionalities for longer periods. However, this results in larger buffer

size requirement for multiplier block since number of packets waiting in the queue

increases in the meantime.

Time periods, during which high performance multiplier is used effectively, are also

computed in simulations. This information is necessary to calculate the power con-

sumption and effective area usage of partially reconfigurable multiplier block.

5.4 RESULTS

Partially reconfigurable multiplier block is analyzed under the traffic conditions men-

tioned before with buffer threshold values chosen as indicated in the previous section

in order to find an optimum point between power consumption and delay and through-

put performances.

Since the high performance multiplier block is implemented as a partial module for

partially reconfigurable multiplier, area utilization is 8000 LUTs, which is greater

than the area utilization of high performance multiplier block implemented as a static

block. Plus, the area optimized multiplier is implemented as a static module and con-

sumes certain amount of area during run time even if it is not active. Therefore, area

consumption of the multiplier design is higher compared to area optimized and high
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Figure 5.5: Area utilization of three multiplier types in terms of number of utilized
LUTs

performance multiplier blocks alone. Area utilization of three types of multipliers are

shown in Figure 5.5.

In contrast to area utilization, other performance metrics, which are power consump-

tion, buffer requirement, throughput and delay, are affected by the traffic condition

and threshold values. In order to observe the effect of these parameters, power,

throughput and delay performances are simulated under several different conditions.

Power consumption of the multiplier block is directly affected by the input traffic rate.

When the traffic rate is low, area optimized multiplier, whose power consumption is

lower due to less amount of resource utilization, is active most of the operation time.

In addition, input and output ports change their states less frequently at low traffic

rates, resulting in less power consumption. Power consumption of three multiplier

types under different traffic conditions are given in Table 5.1. They are also compared

in Figure 5.6 for λ values 0.3, 0.5 and 0.7.
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Table 5.1: Power consumption (in mW) of three multiplier types under different input
traffic conditions

Traffic rate (λ) 0.3 0.5 0.7
Area optimized 480 480 480

Partially reconfigurable 490 560 651
High performance 512 609 684

The graphic illustrated in Figure 5.6 shows that partially reconfigurable multiplier

design has a power consumption that is higher than that of area optimized multiplier

but not as much as that of high performance multiplier under low, average and high

traffic rates.

Figure 5.6: Power consumption of three multiplier types under different traffic rates

Throughput is another metric that is affected by the input traffic rate. For area opti-

mized multiplier, since input traffic rates chosen for simulations are higher than the

serving capacity of the multiplier, only limited number of packets are served. As a

result its throughput is low. On the contrary, high performance multiplier is capable

of serving any incoming data within 1 clock cycle. Therefore, all packets are served
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Table 5.2: Throughput of three multiplier types under different input traffic conditions
in terms of packets/clock cycle

Traffic rate (λ) 0.3 0.5 0.7
Area optimized 0.20 0.20 0.20

Partially reconfigurable 0.26 0.39 0.50
High performance 0.26 0.39 0.50

within the specified simulation time resulting in the maximum possible throughput

rate for all traffic rates. For partially reconfigurable multiplier, throughput perfor-

mance under different simulation conditions are illustrated in Figure 5.7 for λ values

0.3, 0.5 and 0.7. The results show that, partially reconfigurable multiplier provides

the maximum possible throughput under all simulated traffic conditions, like high

performance multiplier does. Throughput provided by each multiplier under different

traffic conditions are also given in Table 5.2.

Figure 5.7: Throughput of three multiplier types under different traffic rates
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Although throughput performance of partially reconfigurable multiplier block is as

high as that of high performance, some delay is introduced while processing packets.

High performance multiplier has 1 clock cycle delay since every multiplicand is mul-

tiplied by the key to obtain the product in 1 cycle. For 100 MHz clock operation this

delay is negligible. On the other hand packet delay is very high for area optimized

multiplier since its serving capacity is low. Under high traffic rates delay of incom-

ing packets grow incrementally. This causes unbounded average and maximum delay

values for area optimized multiplier. 1 second simulations under three different traffic

loads shows that partially reconfigurable multiplier introduces a delay that is very low

compared to that of area optimized multiplier. Exact values of average and maximum

delays of three multiplier types for 1 second operation are given in Table 5.3 and Ta-

ble 5.4 respectively for different traffic loads. In Figure 5.8 and Figure 5.9 average

and maximum packet delays within 1 second operation are illustrated respectively for

λ values 0.3, 0.5 and 0.7.

Table 5.3: Average delay (in ms) of three multiplier types under different input traffic
conditions

Traffic rate (λ) 0.3 0.5 0.7
Area optimized 114.2 145.9 301.4

Partially reconfigurable 1.9 1.5 1.3
High performance 0 0 0

Table 5.4: Maximum delay (in ms) of three multiplier types under different input
traffic conditions

Traffic rate (λ) 0.3 0.5 0.7
Area optimized 228.3 491.7 602.7

Partially reconfigurable 4.4 3.2 2.3
High performance 0 0 0
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Figure 5.8: Average delay values of three multiplier types under different traffic rates

Figure 5.9: Maximum delay values of three multiplier types under different traffic
rates
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Buffer requirement is another metric that is affected by input traffic load and threshold

values. High performance multiplier does not need a buffer since incoming data does

not wait for multiplication. On the contrary, area optimized multiplier has a large

buffer requirement, especially under high traffic loads. When traffic rate is higher

than multiplier capacity, number of incoming data waiting in the queue increases.

For partially reconfigurable multiplier, this is the case when high performance mul-

tiplier module is not inserted into the reconfigurable partition and area optimized

multiplier module in the static part handles all the multiplication requirements. When

the number of data waiting in the buffer exceeds t2 threshold, high performance mul-

tiplier module is inserted into the reconfigurable partition to meet the multiplication

requirements waiting in the buffer. As t2 threshold value gets higher, buffer require-

ment of the partially reconfigurable multiplier increases. High performance multiplier

continues operation until the number of multiplicands waiting in the buffer drops be-

low t1 threshold. If t1 threshold value is selected small, high performance multiplier

operates for longer period, causing higher power consumption. Therefore, selecting

threshold values in accordance with the bit file size as mentioned in the previous sec-

tion considering resource requirement and power consumption optimizes the buffer

utilization. In the simulations, buffer size requirement of partially reconfigurable mul-

tiplier under different traffic conditions with λ values 0.3, 0.5 and 0.7 is examined.

The results are given in Table 5.5.

FPGA used in this thesis has 16020 Kb BRAM resources. Since each data is 128

bits long, BRAM resources of the FPGA are sufficient to meet buffer requirement for

upto 128160 packets. For the threshold values used for the simulations in this thesis,

BRAM resources meet the buffer requirement of the partially reconfigurable multi-

plier for traffic rates λ = 0.3 and λ = 0.5. For higher traffic rates, buffer requirement

can be reduced by changing threshold values, such that t1 and t2 values are closer.

In such an implementation, buffer requirement will be met by BRAM resources. But

flexibility of hardware platform will reduce in return, since reconfigurable partition

will be used for multiplication for most of the operation time and some incoming data

might be lost during reconfiguration process since there may not be enough space in

the buffer.
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Table 5.5: Maximum buffer size requirement (in packets) of partially reconfigurable
multiplier for different threshold values (in packets) under traffic conditions

Thresholds Traffic rate
t1 t2 0.3 0.5 0.7

100 84475 112153 126322 137996
500 84875 112521 126755 138357

1000 85375 113093 127235 138878
2000 86375 114093 128245 139876

The results show that by using partially reconfigurable multiplier design it is possible

to find an optimum point for power-delay trade off. Power consumption of partially

reconfigurable multiplier is more than that of area optimized multiplier but less than

that of high performance multiplier. Although high performance multiplier has negli-

gible delay, little delay is introduced in partially reconfigurable multiplier. This delay

is very low compared to that of area optimized multiplier, which is unbounded due

to low service capacity. In addition, throughput performance that is as high as that of

high performance multiplier is achieved. As a result, optimizing power and delay per-

formances of a Galois field multiplier while achieving maximum possible throughput

is possible.

The only drawback of this design is the high area utilization. Hardware resources uti-

lized by area optimized multiplier module are in the static partition. Plus, a reconfig-

urable partition is defined where high performance multiplier module is implemented.

Therefore, total area utilized by the multiplier modules is larger than the area utiliza-

tion of both multiplier modules when implemented alone as a static block. However,

high performance module is not included in the design the whole operation time.

For time periods high performance multiplier is not required, reconfigurable partition

can be used to implement another function, meaning that reconfigurable partition is

an area that can be used for other purposes than multiplier block for periods during

which Galois field multiplication is done by area optimized multiplier. So, it is possi-

ble to define an effective area utilization, which defines the area utilization dedicated

to Galois field multiplication block during operation. To compute the effective area

utilization of partially reconfigurable multiplier block, time periods when high per-

formance multiplier is included during simulation time are recorded. Then, effective
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area utilization of the multiplier is computed as in Equation 5.1.

Aeffective = Astatic+
Timehigh performancemultiplier is active

Operation time
∗Areconfigurable

(5.1)

Using the definition given in Equation 5.1, effective area utilization of partially re-

configurable multiplier under traffic conditions with λ values 0.3, 0.5 and 0.7 is com-

puted. Results are illustrated in graphic given in Figure 5.10. In Table 5.6, numeric

values related to effective area utilization of partially reconfigurable multiplier block

in terms of utilized LUT numbers are also given.

Figure 5.10: Effective area utilization of partially reconfigurable multiplier compared
to area utilization of static area optimized and high performance multipliers under
traffic rates λ = 0.3, 0.5 and 0.7

Table 5.6: Effective area utilization of partially reconfigurable multiplier block under
different traffic rates

Traffic rate (λ) Effective area (LUT)
0.3 5577
0.5 7111
0.7 8242
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The results show that finding an optimum point between power consumption and de-

lay performances is possible for GF (2128) multiplier IP block by making real time

hardware adaptations according to incoming data traffic. The partially reconfigurable

multiplier IP block design provides low delay and low power operation while pro-

viding maximum possible throughput. Although area utilization seems to be high,

effective area utilization is comparable to area utilization of a statically implemented

multiplier block. With these results, partially reconfigurable multiplier block is a

solution to power-delay trade off.
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CHAPTER 6

CONCLUSION

Galois Field arithmetic has a wide range of applications. Cryptography is one of

them, which is an indispensable part of our lives with increasing use of electronic

communication devices. In most cryptographic algorithms, arithmetic operations are

performed on Galois Fields, where GF (2m) multiplication is considered as one of

the main functional blocks since other operations such as division, inversion, expo-

nentiation depends on multiplication. For successful operation of a cryptographic

application, it is important to have a GF (2m) multiplier block that provides high

throughput. Low power consumption of a multiplier block is also important, since

such applications are mainly used in portable devices with limited resources. Meet-

ing both throughput and resource utilization requirements is hard, since there is a

trade-off between time and power performances.

In this thesis, a method for meeting both time and power requirements of a GF (2m)

multiplier block is proposed. The implementation platform for this work is FPGA,

which is preferred for its high speed operation capability and implementation flexibil-

ity. In the design, two multiplier block types are included, namely the area optimized

multiplier and the high speed multiplier. Area optimized multiplier has low area uti-

lization and operates with low power consumption. However, its serving capacity is

low, so it may not be sufficient under high traffic conditions. On the contrary, high

performance multiplier is fast and provides high throughput. The main drawback of

this multiplier is its high resource utilization. To improve the trade-off between time

and power requirements, both multipliers are used for adapting to changing traffic

rate. For this purpose, partial reconfiguration feature of FPGA is used in the design.
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As the first step, an area optimized multiplier block is designed. For this purpose,

splitting multiplication algorithms are used recursively. However, instead of using

the same algorithm at every recursion step, the most suitable splitting algorithm is

preferred for each polynomial length. This method is proposed in [21], but the the-

oretical results obtained in [21] are not valid for FPGA implementations. Therefore,

the most efficient splitting algorithms for various polynomial lengths are verified ex-

perimentally for two FPGA types. The area optimized multiplier block that is used

in the design proposed in this thesis is obtained using this approach. In addition,

multiplier blocks for different polynomial lengths commonly used in cryptographic

applications are obtained in these experiments for Virtex 5 and Kintex 7 FPGAs of

Xilinx.

A high performance multiplier is also designed. For this purpose, a multiplier using

CM algorithm is preferred for its low delay and high throughput capability. However,

this multiplier consumes twice the area and power in comparison to the area optimized

multiplier.

After obtaining two multiplier types, a new multiplier block is designed, using partial

reconfiguration feature of FPGAs. The new multiplier block uses area optimized and

high performance multiplier designs to respond to multiplication requests, according

to a variable incoming traffic rate. A hysteretic buffer control is used to determine the

active multiplier type. Better utilization of resources is achieved by defining optimum

buffer thresholds for including and discarding the high performance multiplier.

Area optimized multiplier block is the default selection, so that power consumption

of the multiplier block is low as long as the number of multiplication requests does

not exceed the high threshold value. Whenever high threshold is exceeded, high

performance multiplier is included as a partially reconfigurable module on FPGA.

With the help of high performance multiplier, a high throughput operation is achieved

and multiplication requests are met with a little delay. In order not to consume high

power, partially reconfigurable high performance multiplier block is extracted from

the design when number of multiplication requests drops below the low threshold

value.

Performance of the partially reconfigurable multiplier IP block design is verified by
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simulations. Power, throughput and delay performances are obtained for various in-

put traffic conditions. Results obtained from these simulations show that an optimum

point for power - delay trade off can be found by making real time hardware adap-

tations. Low power operation with low delay is possible while providing maximum

throughput.

Although area utilization of the multiplier block is increased due to implementation of

both area optimized and high performance multipliers on FPGA at the same time, ef-

fective area utilization is less since high performance multiplier block is not included

in the design during the whole operation time. Plus, reconfigurable partition may

be used to implement some other functional blocks, adding flexibility to hardware

infrastructure.

One additional requirement of partially reconfigurable multiplier block is buffer im-

plementation for incoming multiplication request. Implementing an additional buffer

block results in more hardware resource consumption. But, implementing the buffer

block using BRAM resources is possible in order not to increase LUT utilization of

the Galois field multiplier IP block. The experimental works show that BRAM ca-

pacity of the selected FPGA, Kintex 7, is sufficient for the buffer size requirement for

128-bit Galois field multiplier block.

Reducing power consumption and providing low delay without reducing throughput

is achieved by using our proposed partially reconfigurable multiplier block, in return

for buffer space. The experimental work done in this thesis shows that partially re-

configurable multiplier design may provide upto 8% saving in power consumption

and 21% saving in effective area utilization compared to high performance multiplier

block while achieving the same throughput performance. In the meantime, very little

delay is introduced, which is negligible compared to the unbounded delay character-

istic of area optimized multiplier block. The partially reconfigurable multiplier block

is most suitable for bursty traffic conditions where multiplication request rate is low

on the average but gets very high from time to time.

To summarize, GF (2m) multiplication is an important functional block, and design-

ing a high throughput multiplier with low power consumption is essential for crypto-

graphic applications to provide fast security service with limited resources. The work
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conducted in this thesis shows that it is possible to make such a design with real time

hardware adaptations.

As a result of the work done in this thesis, new multiplier blocks for various poly-

nomial lengths are introduced using splitting multiplication algorithms to make area

optimization. The multiplication algorithms proposed in this thesis for Virtex 5 and

Kintex 7 FPGAs are the most area efficient ones in the literature.

Apart from the area optimization work, a multiplier block design that is adaptable to

changing traffic conditions is also realized. In this design, partially reconfigurable

modules are used to improve power - delay trade off of hardware block design. It is

proved by experimental work that it is possible to obtain a fast and high throughput

GF (2m) multiplier block with low power consumption and effective area utilization,

in return for extra buffer utilization. Changing the multiplier block characteristics in

accordance with the incoming multiplication request rates provides better time and

power performances, especially under bursty traffic conditions.
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APPENDIX A

AREA OPTIMIZATION ON VIRTEX 5

Splitting multiplication algorithms preferred to implement the most area effective

multiplier blocks for various field sizes on Virtex 5 are given in Table A.1 below.

Submultiplier sizes required for implementing the most efficient algorithm for the

field size given in the first column are given in the third column. Splitting rule in-

dicates the most efficient algorithm recommended for the corresponding field size.

For example, for field size 283, splitting rule is "2n-1", which indicates that KOM

algorithm, which splits the multiplicands into 2, should be used and since 283 cannot

be splitted into two partitions of equal length there will be one partition with length

"n=142" and one partition with length "n-1=141".

Table A.1: Recommended splitting algorithms for Galois

field multiplier implementation on Virtex 5

Multiplier size Splitting rule Submultiplier size

283 2n-1 142, 141

233 2n-1 117, 116

193 2n-1 97, 96

163 5n-2 33, 31

142 2n 71

141 2n-1 71, 70

128 2n 64

118 2n 59

117 2n-1 59, 58
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Table A.1: Recommended splitting algorithms for Galois

field multiplier implementation on Virtex 5 (Continued)

Multiplier size Splitting rule Submultiplier size

116 2n 58

113 2n-1 57, 56

98 2n 49

97 2n-1 49, 48

96 2n 48

95 2n-1 48, 47

93 2n-1 47, 46

82 5n-3 17, 14

81 5n-4 17, 13

78 5n-2 16, 14

77 5n-3 16, 13

72 2n 36

71 2n-1 36, 35

70 2n 35

65 2n-1 33, 32

64 2n 32

63 2n-1 32, 31

60 2n 30

59 2n-1 30, 29

58 2n 29

57 2n-1 29, 28

56 2n 28

55 2n-1 28, 27

53 2n-1 27, 26

50 2n 25

49 2n-1 25, 24

48 2n 24

47 2n-1 24, 23
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Table A.1: Recommended splitting algorithms for Galois

field multiplier implementation on Virtex 5 (Continued)

Multiplier size Splitting rule Submultiplier size

46 2n-2 24, 22

45 5n 9

43 2n-1 22, 21

42 2n-2 22, 20

41 2n-1 21, 20

40 2n 20

39 2n-1 20, 19

38 2n 19

37 2n-1 19, 18

36 2n 18

35 2n-1 18, 17

34 2n 17

33 2n-1 17, 16

32 2n 16

31 2n-1 16, 15

30 2n 15

29 2n-1 15, 14

28 2n 14

27 2n-1 14, 13

26 2n 13

25 2n-1 13, 12

24 2n 12

23 n 23

22 2n 11

21 n 21

20 n 20

19 n 19

18 n 18
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Table A.1: Recommended splitting algorithms for Galois

field multiplier implementation on Virtex 5 (Continued)

Multiplier size Splitting rule Submultiplier size

17 n 17

16 n 16

15 n 15

14 n 14

13 n 13

12 n 12

11 n 11

10 n 10

9 n 9

8 n 8

7 n 7

6 n 6

5 n 5

4 n 4

3 n 3

2 n 2
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APPENDIX B

AREA OPTIMIZATION ON KINTEX 7

Splitting multiplication algorithms preferred to implement the most area effective

multiplier blocks for various field sizes on Kintex 7 are given in Table B.1 below.

Submultiplier sizes required for implementing the most efficient algorithm for the

field size given in the first column are given in the third column. Splitting rule indi-

cates the most efficient algorithm recommended for the corresponding field size. For

example, for field size 283, splitting rule is "4n-1", which indicates that 4-way split-

ting algorithm should be used and since 283 cannot be splitted into four partitions of

equal length there will be three partitions with length "n=71" and one partition with

length "n-1=70".

Table B.1: Recommended splitting algorithms for Galois

field multiplier implementation on Kintex 7

Multiplier size Splitting rule Submultiplier size

283 4n-1 142, 71, 70

233 2n-1 117, 116

193 2n-1 97, 96

163 4n-1 82, 41, 40

142 2n-2 72, 70

141 2n-1 71, 70

128 2n 64

118 4n-2 60, 30, 28

117 4n-3 60, 30, 27
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Table B.1: Recommended splitting algorithms for Galois

field multiplier implementation on Kintex 7 (Continued)

Multiplier size Splitting rule Submultiplier size

116 2n 58

113 2n-1 57, 56

98 2n-2 50, 48

97 2n-1 49, 48

96 4n 48, 24

95 2n-1 48, 47

93 2n-1 47, 46

82 2n 41

81 4n-3 42, 21, 18

78 2n 39

77 2n-1 39, 36

72 2n 36

71 2n-1 36, 35

70 2n 35

65 2n-1 33, 32

64 2n 32

63 2n-1 32, 31

60 4n 30, 15

59 4n-1 30, 15, 14

58 2n-2 30, 28

57 4n-3 30, 15, 12

56 2n 28

55 2n-1 28, 27

53 2n-1 27, 26

50 2n 25

49 2n-1 25, 24

48 4n 24, 12

47 2n-1 24, 23
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Table B.1: Recommended splitting algorithms for Galois

field multiplier implementation on Kintex 7 (Continued)

Multiplier size Splitting rule Submultiplier size

46 2n 23

45 2n-1 23, 22

43 4n-1 22, 11, 10

42 2n 21

41 2n-1 21, 20

40 4n 20, 10

39 4n-1 20, 10, 9

38 2n 19

37 2n-1 19, 18

36 4n 18, 9

35 4n-1 18, 9, 8

34 2n 17

33 2n-1 17, 16

32 4n 16, 8

31 2n-1 16, 15

30 3n 10

29 2n-1 15, 14

28 4n 14, 7

27 3n 9

26 2n 13

25 2n-1 13, 12

24 2n 12

23 2n-1 12, 11

22 2n 11

21 2n-1 11, 10

20 2n 10

19 2n-1 10, 9

18 2n 9

87



Table B.1: Recommended splitting algorithms for Galois

field multiplier implementation on Kintex 7 (Continued)

Multiplier size Splitting rule Submultiplier size

17 2n-1 9, 8

16 2n 8

15 2n-1 8, 7

14 2n 7

13 n 13

12 n 12

11 n 11

10 n 10

9 n 9

8 n 8

7 n 7

6 n 6

5 n 5

4 n 4

3 n 3

2 n 2
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