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ABSTRACT 

DYNAMIC QUANTIZATION FOR TRACK FUSION UNDER 

COMMUNICATION CONSTRAINTS  

 

 

Gök, Görkem 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Umut Orguner 

 

June 2015, 69 pages 

 

Quantization is one of the important problems for track fusion in defense systems. 

Due to the communication constraints, the track information has to be quantized 

while it is sent from local agents to the fusion center. In this study, a new 

quantization approach is proposed for track fusion in fusion systems under 

communication constraints. The quantization algorithm used in practice for track 

fusion is a static nearest neighbor approach which selects the closest vector and the 

covariance in a table to the current track information. The quantization algorithm 

proposed here involves posing the quantization problem in an optimization 

framework and solving it by also including the predicted future values of the track 

into the picture. Since the approach considers the inherent dynamic characteristics of 

the tracks, the resulting methodology is called as dynamic quantization. The 

simulation results show that the dynamic quantization is much more advantageous 

compared to static quantization even under very low bit rates.  

 

Keywords: Track Fusion, Fusion System, Communication Constraint, Quantization 
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ÖZ 

İLETİŞİM KISITLARI ALTINDA İZ BİRLEŞTİRME İÇİN DİNAMİK 

NİCEMLEME KULLANIMI 

 

 

Gök, Görkem 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Umut Orguner 

 

Haziran 2015, 69 sayfa 

 

Savunma sistemlerinde iz birleştirme için nicemleme işlemi önemli 

problemlerden biridir. İletişim kısıtlarından dolayı iz bilgisi, yerel merkezlerden 

füzyon merkezine gönderilirken nicemlenmek zorundadır. Bu çalışmada iletişim 

kısıtları altındaki bir füzyon sistemindeki iz birleştirme için yeni bir nicemleme 

yöntemi önerilmektedir. Pratikte bu iş için kullanılan statik nicemleme yöntemi belli 

bir anda bir bilgi kaynağından iz bilgisini gönderirken sabit bir tablodan izin o 

andaki durum vektörü ve kovaryansına en yakın vektör ve kovaryansı seçmektedir. 

Önerilen yöntem ise iz bilgisi gönderme problemini izin olası gelecek değerlerini de 

öngören bir eniyileme problemi olarak modelleyip bu problemi çözmektedir. Elde 

edilen nicemleme yöntemi izlerin dinamik yapılarını da hesaba kattığından dinamik 

nicemleme olarak adlandırılmaktadır. Elde edilen benzetim sonuçları dinamik 

nicemlemenin statik nicemlemeye göre düşük bit sayılarında dahi çok daha avantajlı 

olduğunu göstermektedir. 

 

Anahtar Kelimeler: İz Birleştirme, Füzyon Sistemi, İletişim Kısıtları, Nicemleme 
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CHAPTER 1 

INTRODUCTION 

Target tracking is one of the important problems of the contemporary defense 

systems. In a simple sense, target tracking can be defined as extracting kinematic 

and/or attribute information from one or more than one measurements coming from 

varying number of sources by using association and state estimation algorithms [1]. 

The purpose of target tracking is to determine the kinematic quantities, i.e., position, 

velocity and other characteristics/attributes of the targets, such as their type. In order 

to collect information from targets, sensors are utilized. A sensor can be any 

measuring device which collects information from the objects existing in the 

environment. One of the most widespread sensors used for target tracking in both 

commercial and defense applications is the radar. A radar utilizes radio waves to 

measure the range, altitude, direction and speed of detected objects. Sonar, camera, 

ultrasound, infrared sensors can be given as other examples of the common sensors 

used in target tracking. Some typical target tracking examples are the radar tracking 

of aircraft, tracking a person or a vehicle in video surveillance systems, tracking 

weather balloons in weather monitoring and tracking of lymphocyte cells in cell 

biology [2]. 

Target tracking problem is essentially a state estimation problem. Tracking uses 

the tools of estimation and statistical decision theory [3]. A general target tracking 

system is shown in Figure 1.1. The figure is composed of a target or targets to be 

detected, a sensor for measurement, a signal processor and information processor for 

the state estimation and data association [2].  
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Figure 1.1: A target tracking system block diagram 

The most widespread algorithm used for target tracking in the literature is 

Kalman filter (KF). Kalman filter is a well-known Bayesian algorithm and follows 

from general Bayesian recursive equation using Gaussian densities. Under linear and 

Gaussian assumptions, the posterior density of the state of linear system at any time 

becomes a Gaussian density which can be represented by a mean and a covariance 

matrix. Therefore, instead of propagating densities, Kalman filter propagates only 

the sufficient statistics – the mean and the covariance [2]. In literature, [4, 5] 

describes the Kalman filter for linear Gaussian systems. Because of its ubiquitous 

use and practical convenience, we will use Kalman filter in our analysis and 

experiments in this thesis.  

Other state estimation algorithms commonly used in target tracking are 

Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Particle Filter 

(PF). EKF and UKF are generally used in nonlinear non-Gaussian Bayesian state 

estimation problems where the nonlinearities are mild. While EKF utilizes a 

linearized model system [6], UKF uses unscented transform which propagates a 

number of points in the state-space to represent nonlinear transformation of 

Gaussian random variables [7, 8]. A particle filter which is a stochastic 

generalization of UKF can be used in general cases [9]. A general description of PF 

and relation with other algorithms can be found in [10]. 

In target tracking literature, a track is defined as the filtered information 

obtained from targets by using KF or other state estimation algorithms. A track is 

represented by the estimated state statistics which are the posterior mean and the 
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posterior covariance in a Kalman filter. Target tracking can be performed with only 

one sensor as well as with the help of more than one sensor. Hence, one of the main 

problems of target tracking is “Multiple Sensor Tracking” which is to obtain a track 

with information coming from multiple sensors.  

There are five important problems of multiple sensor tracking as explained 

below: 

- Registration: Coordinates of different sensors, local and fusion centers may 

not be aligned in time or space [11]. They must be aligned for tracking. In 

this thesis we assume that all coordinates of the sensors are already aligned 

in our experiments. 

- Bias: Because of the transformations from/to different coordinates, biases may 

exist between different sensors. They have to be removed by using bias 

estimation tools. In this thesis, we assume that there is no bias problem in our 

system [11]. 

- Correlation: Though measurements might be conditionally independent across 

different sensors, due to the common process noise, processed information 

can be correlated. This effect can be calculated and compensated. In this 

thesis there exists and we handle correlation in our system [11]. 

- Rumor Propagation: Because of the correlation, the same information can 

travel in loops in a sensor network and can result in unrealistic error statistics 

making the fused system overconfident. Rumor Propagation is more 

common in systems with memory and feedback [11]. In the thesis, the fusion 

architectures we use does not involve loops. 

- Out of Sequence Measurements: Measurements sometimes arrive to a fusion 

center later than more recent measurements because of delays in the 

communication channels and the recent measurement might have been 

processed already [11]. In this thesis, we assume that there is no 

communication delay in the fusion system we consider.  
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Combining information coming from the multiple sources is usually called as 

“fusion” [1] in the literature. A crucial point in multiple sensor tracking is the fusion 

architecture. There are mainly 4 types of fusion architectures as shown in Figure 1.2. 

While the circles show sensors, the squares show fusion or local centers. 
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Hierarchical Fusion with Feedback   Distributed Fusion 

Figure 1.2: Fusion architectures [12] 

The first fusion architecture is the centralized fusion architecture. In centralized 

fusion, the information taken from the sensors are directly sent to and collected in 

the fusion center. This information is then processed in the fusion center by using 

tracking algorithms. The information sent from the sensors is composed of raw 

measurements. Since the local sensors do not process the raw measurements, sensors 

always have to send this information to the fusion center. In other words, a piece of 

information not sent to the fusion center disappears since the local centers related to 

each sensor do not obtain or keep any processed information. Although the 
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traditional centralized architecture has optimal performance, it has important 

drawbacks. It requires high bandwidth communication links between local agents 

and fusion center. Moreover, lags or saturations can happen in the communication 

links and these lags/saturations can cause Out-of-Sequence Measurements [13] or 

data disappearance. 

In the hierarchical fusion architecture, there are local centers that take the raw 

measurements from sensors and process them by tracking algorithms. It is then this 

processed information which is sent to the higher node which is called as the fusion 

center. When the fusion center processes information, if the processed data are sent 

back to the local centers and used for reducing the estimation errors, the architecture 

is called as hierarchical fusion architecture with feedback. Hierarchical fusion 

architectures can work on limited communication bandwidths since local centers can 

keep processed information. In other words, thanks to the capability of the local 

centers to keep processed information, the communication rates between the local 

centers and the fusion center can be reduced without any information loss. 

The last alternative to traditional centralized architecture is the distributed 

fusion architecture where there is no superior center in the network. All centers can 

send and receive processed information among each other. Like hierarchical fusion 

architectures, distributed fusion architectures can have reduced communication rates 

between the nodes.  

Another advantage of both hierarchical and distributed architectures is that the 

computational loads can be distributed to different nodes as opposed to a centralized 

architecture where all of the computation is at the fusion center [12]. Furthermore, 

hierarchical and decentralized architectures have multiple centers which keep 

processed information. Therefore, if one or more of the centers are lost in a battle 

scenario, the rest of the network can still function with valuable (processed) 

information. On the other hand, centralized systems have a single weak point, which 

is the fusion center, and the loss of this weak point leads to the loss of all of the 

useful information. 

In reality, the selection of a fusion architecture should be made by considering 

all of the factors described above. Most of the times, the optimal centralized 
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architecture has to be traded off for a hierarchical or distributed system due to 

communication constraints. Another case when a hierarchical or distributed 

approach has to be used is the case of legacy systems in which sensors might not be 

able to provide raw information to the fusion center, which might be the case, for 

example, with radars purchased from foreign countries. In this thesis we use 

hierarchical fusion architecture without feedback in our experiments. 

There are two main tasks in multiple sensor information fusion. The first one is 

the track association which is the task of deciding whether two tracks coming from 

different local sensors belong to the same target [14]. The second task in multiple 

sensor tracking is the track fusion whose aim is to obtain a single fused track from 

the associated tracks coming from the local sensors [14]. Since the topic of track 

fusion is the main subject of this thesis, we give a detailed literature survey about it 

below.  

1.1. Literature Survey on Track Association and Fusion 

In multisensor target tracking, an important problem is to decide whether two 

tracks coming from different sensors represent the same target or not. This is called 

as the track association problem. There are several methods in the literature to 

overcome the track association problem. One method proposed by [15] is a test for 

track association for two local agents. When track association is for more than two 

local agents, multi-dimensional assignment problem can be utilized. Moreover, there 

is another test in literature given in [16] which decides whether two tracks from 

different systems represent the same target by comparing the latest estimates of two 

tracks. 

After it is known that two tracks are from the same target, the next question is to 

combine the tracks, which is named as the track fusion problem [17]. There has been 

a large amount of research conducted about track fusion since 1970s. Many exact 

and approximate solutions to the track fusion problem have been proposed and 
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different evaluation techniques have been applied to these solutions to find the 

optimum approach. 

An optimal fusion solution is proposed by [18], [19] and [20] under arbitrary 

communication patterns. This solution is optimal provided that the system is 

deterministic, i.e., no process noise. However, in practice, there is crosscorrelation 

between local agents due to the common process noise of the target. In 1986, the 

study [21] is conducted to show the effect of the common process noise on the track 

fusion for two 𝛼 − 𝛽 filters where a fusion formula was proposed. Then, [17] shows 

that this formula is optimal only in a maximum likelihood sense.  

A kinematic state vector fusion algorithm is proposed in [22] for dissimilar 

sensors by considering the effects of cross-correlation. This cross-correlation has 

been obtained in terms of the steady-state covariances of Kalman filters. Also, when 

the cross-correlation is positive, it is observed that the performance of track fusion is 

increased. [23] has also proposed an efficient algortihm for track fusion by 

considering the effects of cross-covariance and analized the structure of cross-

covariance matrix.         

[24] and [25] propose a unified linear model as a general optimal solution for 

centralized, distributed and hybrid fusion architectures. This model is optimal under 

the presence of cross-correlation for arbitrary number of sensors. For this purpose, 

the fusion techniques of the best linear unbiased estimation (BLUE) and optimal 

weighted least-squares (WLS) are presented. Moreover, the formulae are given in 

[26-29] to obtain cross correlations, filter gains and observation matrices of local 

agents under linearity assumptions. [30] proposes a different method for obtaining 

the exact fusion algorithm by calculating the cross-covariances for sequential fusion. 

Different sequential fusion structures such as track fusion with no feedback, T2TF 

(Track-to-Track Fusion) with partial feedback and T2TF wtih full feedback are 

examined. Furthermore, an approximate implementation is proposed for systems 

with low communication capacity. 

Another good reference is [31] which proposes an optimal solution to the 

distributed track fusion problem for maneuvering targets when communication rates 

are irregular. The disadvantage of cross-correlation between local tracks are handled 



 

8 

with the decorrelation of all local tracks. The track decorrelation and optimal fusion 

are achieved provided that sensor properties are known in each center. Other similar 

studies were performed by W. Koch in [32, 33]. In addition, [34] and [35] generalize 

these solutions for the multi-sensor case. 

In [36], the analysis of track fusion problem is performed and a methodology is 

decribed to compare the performance of several fusion algorithms with information 

matrix fusion. Also, this study analyzes the hiearchical fusion architecture and 

concludes that the partial feedback case has better performance than complete and 

no feedback cases. With the approach given in [36], performance evaluation of track 

fusion algorithms become much simpler. Also, it is concluded that the quality of the 

information to be fused is much more important than the quantity. 

Another performance evaluation of track fusion is performed for various 

numbers of sensors in [37]. This study generalizes the result given in [14] to the 

cases with more than 2 sensors. In this study, exactly the same kinematic model is 

used for centralized and distributed trackers and an exact algorithm is applied to 

them by using 𝛼 − 𝛽 filters. The study shows that the performance of the distributed 

architecture gets worse with respect to the centralized architecture as the number of 

sensors increases. A similar work has also been realized by [38] for only two 

sensors. 

In the light of these references given, we can now classify the track fusion 

methods. The first proposed method to track fusion is naïve fusion. In this method, 

common process noise and common priors are neglected and conditional 

independence is assumed, i.e. no process noise and previous communication. Since 

this method does not take the correlation between the estimation errors into account, 

it usually gives very bad results and it is extremely suboptimal. 

The second method is Channel Filter (Information Matrix Fusion). This assumes 

that common prior is dominant and common process noise is negligible. This 

method is a little bit more complicated than Naïve Fusion. Moreover, this method is 

almost optimal if process noise is not significant [12].  

 Maximum A Posteriori Fusion (MAP) is the third method to track fusion. It 

considers the effect of both common prior and common process noise. Therefore, 
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MAP fusion is the most accurate and the most complicated solution to the track 

fusion problem [12]. However, this is not a practical method due to its complexity. 

The last method is Covariance Intersection (CI) Fusion. It is a general fusion 

technique that makes no assumption about the independence of estimation errors. In 

CI Fusion, a convex combination of the local mean and covariance estimates is 

calculated to avoid overconfidence in the fused estimates [39].  

According to [40], channel filter seems to be the most suitable algorithm for 

track fusion among all other methods in terms of scalability, estimation errors and 

memory. As a result, we use the Channel Filter method (Information Matrix Fusion) 

to solve track fusion problem in this thesis work.  

1.2. Thesis Content  

One of the crucial problems encountered in track fusion is the track quantization 

problem. Due to the communication constraints between the nodes, the track 

information has to be quantized while it is sent from local agents to the fusion 

center. In many applications, this information has to be squeezed into only a few 

bits. Therefore, the quantization mechanism to be used in track fusion plays an 

important role in performance of a multisensory target tracking algorithm.  

In a local center where Kalman filter is used for state estimation, since the 

information is kept and sent as a state vector and its covariance, the track 

quantization has to be applied to these processed state and covariance matrix to be 

sent to the fusion center. Then, these quantized processed track information is sent to 

the fusion center from each local agent and fused there in order to obtain a single 

track. There are only few studies in the literature about the quantization problem for 

track fusion.  Different representations of a covariance matrix for track quantization 

are analyzed and compared in [41].  

The widespread quantization technique used in practice for track fusion is a 

static nearest neighbor approach which selects the closest state vector and the 

covariance to the current track information from fixed tables at the local center. 
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Afterwards, the selected state vector and the corresponding covariance matrix are 

sent to the fusion center for track fusion. The selected quantized values from the 

tables depend only on the current state vector and the covariance at the local agent. 

Therefore, the nearest neighbor approach can be named as static quantization. On 

the other hand, since the Kalman filter operating at the fusion center has a dynamic 

nature, it is easily understandable that performing quantization by only looking at 

the current state vector and the covariance (at the local center) is highly myopic. By 

benefiting from the fact that Kalman filter operating at fusion center is essentially a 

low-pass filter, a better quantization approach can be developed by using the 

predicted values of tracks as well in the quantization at the local center. 

In this thesis study, based on the idea given above, a new track quantization 

algorithm is proposed. The proposed algorithm poses the quantization problem as an 

optimization problem and then solves it by also including the predicted local track 

information into the picture. The optimization problem is defined over a certain time 

horizon which takes the low-pass filter nature of the Kalman filter into account. 

Since this approach considers the inherent dynamic characteristics of the tracks, the 

resulting methodology is named as dynamic quantization. As understood from the 

proposed approach above, the main purpose of this study is improving quantization 

performance for track fusion under communication constraints even under very low 

bit rates by proposing a more advantageous quantization technique named as 

dynamic quantization. 

The outline of this thesis study is as follows. General information about target 

tracking, fusion architectures, algorithms and track quantization has been given in 

this chapter along with a detailed literature survey on track fusion. In Chapter 2, the 

track quantization and the proposed optimization problem will be presented on a 

simple architecture. Moreover, Chapter 2 will give a brief description of the simple 

static track quantization method applied in practice. The solution of the optimization 

problem and the proposed track quantization method are given in Chapter 3 which 

utilizes the solution of a similar optimization problem used in a different context in 

the literature. The results obtained by the proposed method are examined and 

compared to those of the static quantization approach in Chapter 4 using 
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simulations. Chapter 5 summarizes the results obtained from this study and finalizes 

the thesis by mentioning about possible future work. 

1.3. Publication  

Within the scope of this thesis the conference article [1] was written and presented at 

the 23rd Signal Processing and Communications Applications Conference (SIU’15) 

on May 18th, 2015 in Malatya. 
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CHAPTER 2 

PROBLEM DEFINITION 

The simple fusion architecture we are working with in this chapter is shown in 

Figure 2.1. In the fusion system, there are a local center (local agent) and a fusion 

center which are shown by the blue rectangles for each time 𝑘. The green circles in 

the figure denote the sensor measurements. The arrows represent data flow and the 

block labeled as 𝑄(∙) represents the quantization operation. As shown in the Figure 

2.1 a single sensor is connected to the local center and the information to the fusion 

center comes only from the local center after a quantization operation. 

  

 

Figure 2.1: The simple fusion architecture used in the chapter   
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2.1. Local Center Used in Practice 

In the local center, the state vector of the target to be estimated is denoted as 𝑥𝑘.  

The measurements coming from the sensors belonging to the target are denoted 

as 𝑦𝑘
1. The state vector 𝑥𝑘 𝜖 ℝ

𝑛 and the measurement 𝑦𝑘
1𝜖 ℝ𝑚 are modeled with the 

linear Gaussian state-space representation given below. 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑤𝑘,    

𝑦𝑘
1 = 𝐶𝑥𝑘 + 𝑣𝑘,

(2.1) 

(2.2) 

where 𝐴, 𝐵 and 𝐶 show the state transition matrix, process noise gain matrix and 

measurement matrix respectively. The quantity 𝑤𝑘 denotes the white process noise 

of the target which has Gaussian distribution with zero-mean and covariance 𝑄. The 

term 𝑣𝑘 is the white measurement noise of the sensor of the local agent which is 

independent of the process noise and has Gaussian distribution with zero-mean and 

covariance 𝑅. The initial state 𝑥0 has also a Gaussian distribution with zero-mean 

and covariance 𝑃0
1. 

By using the model shown in (2.1)-(2.2), the local agent performs state 

estimation and covariance calculation by running its own Kalman filter. The 

prediction and the measurement update equations of the Kalman Filter that local 

agent operates are given in the following. 

 

Prediction Update:    

𝑥̂𝑘|𝑘−1
1 = 𝐴𝑥̂𝑘−1|𝑘−1

1  

𝑃𝑘|𝑘−1
1 = 𝐴𝑃𝑘−1|𝑘−1

1 𝐴 + 𝐵𝑄𝐵𝑇 

(2.3) 

(2.4) 

Measurement Update:  

𝑥̂𝑘|𝑘
1 = 𝑥̂𝑘|𝑘−1

1 + 𝐾𝑘
1(𝑦𝑘

1 − 𝑦̂𝑘|𝑘−1
1 ) 

𝑃𝑘|𝑘
1 = 𝑃𝑘|𝑘−1

1 − 𝐾𝑘
1𝑆𝑘|𝑘−1

1 (𝐾𝑘
1)𝑇 

(2.5) 

(2.6) 

where 
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𝑦̂𝑘|𝑘−1
1 =  𝐶𝑥̂𝑘|𝑘−1

1  

𝑆𝑘|𝑘−1
1 = 𝐶𝑃𝑘|𝑘−1

1 𝐶𝑇 + 𝑅1 

𝐾𝑘
1 = 𝑃𝑘|𝑘−1

1 𝐶𝑇(𝑆𝑘|𝑘−1
1 )−1 

(2.7) 

(2.8) 

(2.9) 

In (2.5)-(2.6), 𝑥̂𝑘|𝑘
1  and 𝑃𝑘|𝑘

1  are the posterior state estimate and its covariance 

obtained by the Kalman filter in the local agent. The quantities 𝑆𝑘|𝑘−1
1  and 𝐾𝑘

1 are the 

measurement/innovation covariance and the Kalman gain respectively. After the 

local agent obtains state and covariance estimates from its own Kalman Filter, it 

quantizes the corresponding information and sends the quantized information to the 

fusion center.  

In the fusion systems used in practice, static quantization is used for quantizing 

posterior state estimate and covariance to obtain the data sent from the local agent to 

the fusion center. The static quantization used in practice, which is denoted 

as 𝑄𝑠(. ), represents a nearest-neighbor selection of the quantized state vector and 

covariance from predetermined fixed tables. We will show these tables with the 

symbol “T”. The data sent from the local center to the fusion center then becomes 

the quantized versions of 𝑥̂𝑘|𝑘
1  and 𝑃𝑘|𝑘

1  given as; 

𝑥̂𝑘|𝑘
1→2, 𝑃𝑘|𝑘

1→2 =  𝑄𝑠(𝑥̂𝑘|𝑘
1 , 𝑃𝑘|𝑘

1 ), (2.10) 

where 𝑥̂𝑘|𝑘
1→2 and 𝑃𝑘|𝑘

1→2 are the quantized posterior state and its covariance 

respectively. 

2.2. Fusion Center Structure Used in Practice 

Since the information coming from the local center is correlated along time (since 

the communicated data is the estimates and covariances of a Kalman filter), the 

fusion center used in practice applies the so-called Channel Filter to obtain its own 

estimates 𝑥̂𝑘|𝑘
2  and 𝑃𝑘|𝑘

2  from 𝑥̂𝑘|𝑘
1→2 and 𝑃𝑘|𝑘

1→2. The corresponding Channel Filter 

equations are given as follows.  

(𝑃𝑘|𝑘
2 )

−1
𝑥̂𝑘|𝑘
2 = (𝑃𝑘|𝑘−1

2 )
−1
𝑥̂𝑘|𝑘−1
2 + (𝑃𝑘|𝑘

1→2)
−1
𝑥̂𝑘|𝑘
1→2 − (𝑃𝑘|𝑘−1

1→2 )
−1
𝑥̂𝑘|𝑘−1
1→2  

(𝑃𝑘|𝑘
2 )

−1
= (𝑃𝑘|𝑘−1

2 )
−1
+ (𝑃𝑘|𝑘

1→2)
−1
− (𝑃𝑘|𝑘−1

1→2 )
−1

 

(2.11) 
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(2.12) 

The equations given above are simply Kalman filter equations in the so-called 

information form. The explanations for the terms in (2.11)-(2.12) are given below. 

 𝑥̂𝑘|𝑘−1
2  and 𝑃𝑘|𝑘−1

2  are the predicted state estimate and covariance in the 

fusion center; 

 𝑥̂𝑘|𝑘
2  and 𝑃𝑘|𝑘

2  are the updated state estimate and covariance in the fusion 

center; 

 𝑥̂𝑘|𝑘−1
1→2  and 𝑃𝑘|𝑘−1

1→2  are the predicted versions of the previously communicated 

information 𝑥̂𝑘−1|𝑘−1
1→2  and 𝑃𝑘−1|𝑘−1

1→2  between the local center and the fusion 

center.  

In the expressions (2.11)-(2.12) it is seen that the predicted information in the fusion 

center 𝑥̂𝑘|𝑘−1
2 , 𝑃𝑘|𝑘−1

2  is first combined/summed with the new information 

𝑥̂𝑘|𝑘
1→2,  𝑃𝑘|𝑘

1→2 coming from the local center. Since the new information 𝑥̂𝑘|𝑘
1→2, 𝑃𝑘|𝑘

1→2 is 

correlated with the previously communicated information 𝑥̂𝑘−1|𝑘−1
1→2 , 𝑃𝑘−1|𝑘−1

1→2  (which 

are implicit in the predicted information 𝑥̂𝑘|𝑘−1
2 , 𝑃𝑘|𝑘−1

2  of the fusion center) the 

predicted versions 𝑥̂𝑘|𝑘−1
1→2 , 𝑃𝑘|𝑘−1

1→2  of the previously communicated information 

𝑥̂𝑘−1|𝑘−1
1→2 , 𝑃𝑘−1|𝑘−1

1→2  are subtracted from the combined information. In a general 

fusion architecture, the predicted information 𝑥̂𝑘|𝑘−1
2 , 𝑃𝑘|𝑘−1

2  in the fusion center is 

distinct from the predicted previously communicated information 𝑥̂𝑘|𝑘−1
1→2 , 𝑃𝑘|𝑘−1

1→2 . 

However, in the simple architecture we consider in Figure 2.1, since the fusion 

center receives information only from the local center, we have 

𝑥̂𝑘|𝑘−1
2 = 𝑥̂𝑘|𝑘−1

1→2 ,                   𝑃𝑘|𝑘−1
2 = 𝑃𝑘|𝑘−1

1→2 . (2.13) 

Hence in the fusion architecture we consider, we get 

𝑥̂𝑘|𝑘
2 = 𝑥̂𝑘|𝑘

1→2                        𝑃𝑘|𝑘
2 = 𝑃𝑘|𝑘

1→2. (2.14) 

That is, the quantized posterior quantities sent from the local agent at each time are 

the posterior quantities of the fusion center at the corresponding instant. Hence we 
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see that the estimates obtained in the fusion center used in practice are directly equal 

to the quantized information coming from the local center. 

2.3. Proposed Local and Fusion Center Structures 

In the proposed fusion center structure there also exists a quantization operation 

between the local agent and the fusion center. However, unlike the static 

quantization used in practice, the quantization in the proposed system is performed 

not only by considering the current values of posterior state estimate and  

covariance, but also looking at the expected predicted future values of these 

quantities. The proposed quantization method is called as dynamic quantization and 

shown as 𝑄𝑑(. ).  

 𝑥̂𝑘|𝑘
1→2, 𝑃𝑘|𝑘

1→2 =  𝑄𝑑(𝑥̂𝑘|𝑘
1 , 𝑃𝑘|𝑘

1 ) (2.15) 

Since the low-pass nature of the Kalman filter will be used in proposed quantization 

method, the following Kalman filter equations are used in the fusion center. 

𝑥̂𝑘|𝑘
2 = 𝑥̂𝑘|𝑘−1

2 + 𝐾𝑘
2(𝑥̂𝑘|𝑘

1→2 − 𝑥̂𝑘|𝑘−1
2 ) 

𝑃𝑘|𝑘
2 = 𝑃𝑘|𝑘−1

2 − 𝑃𝑘|𝑘−1
2 (𝑆𝑘|𝑘−1

2 )−1𝑃𝑘|𝑘−1
2  

𝑆𝑘|𝑘−1
2 = 𝑃𝑘|𝑘−1

2 + 𝑃𝑘|𝑘
1→2 

𝐾𝑘
2 = 𝑃𝑘|𝑘−1

2 (𝑆𝑘|𝑘−1
2 )−1 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

where 𝑥̂𝑘|𝑘
2  and 𝑃𝑘|𝑘

2  are the posterior state estimate and covariance of the fusion 

center respectively. The predicted state estimate and covariance of the fusion center 

are shown by 𝑥̂𝑘|𝑘−1
2  and 𝑃𝑘|𝑘−1

2  respectively. The Kalman filter equations above 

utilize the quantized posterior state 𝑥̂𝑘|𝑘
1→2 and the covariance 𝑃𝑘|𝑘

1→2 sent from the 

local agent as the measurement and measurement noise covariance respectively. The 

quantities 𝑆𝑘|𝑘−1
2  and 𝐾𝑘

2 are the measurement/innovation covariance and the 

Kalman gain respectively in the fusion center.  

It is assumed in this study that the Kalman filter structure applied in the fusion 

center given above is known by the local center. Therefore, the local center can 

select the quantized information 𝑥̂𝑘|𝑘
1→2, 𝑃𝑘|𝑘

1→2 sent to the fusion center in a clever 
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manner to make the fusion center estimate and covariance 𝑥̂𝑘|𝑘
2 , 𝑃𝑘|𝑘

2  as close to the 

unquantized local center estimate and covariance 𝑥̂𝑘|𝑘
1 , 𝑃𝑘|𝑘

1  as possible. Note that 

such an approach would solve the issue of correlation between the consecutive 

communicated estimates automatically. 

In this study, we propose that the quantized quantities  𝑥̂𝑘|𝑘
1→2, 𝑃𝑘|𝑘

1→2 sent to the fusion 

center should be selected to be the values which solve the following optimization 

problem. 

{𝑥̂𝑙|𝑙
1→2, 𝑃𝑙|𝑙

1→2}
𝑙=𝑘

𝑘+𝑁−1
=  arg min

{𝑥̂𝑙|𝑙
1→2,𝑃𝑙|𝑙

1→2}
𝑙=𝑘

𝑘+𝑁−1
∈ Τ

 𝐽 ({𝑥̂𝑙|𝑙
1→2, 𝑃𝑙|𝑙

1→2}
𝑙=𝑘

𝑘+𝑁−1
)  

(2.20) 

where the cost function 𝐽(∙) is defined as 

𝐽 ({𝑥̂𝑙|𝑙
1→2, 𝑃𝑙|𝑙

1→2}
𝑙=𝑘

𝑘+𝑁−1
) = ∑ 𝐸 {‖𝑥̂𝑙|𝑙

2 − 𝑥̂𝑙|𝑙
1 ‖

2

2
+ 𝜆‖𝑃𝑙|𝑙

2 − 𝑃𝑙|𝑙
1 ‖

𝐹

2
 |𝑦0:𝑘

1 }

𝑘+𝑁−1

𝑙=𝑘

 (2.21) 

In (2.21) the notations ‖∙‖2 and  ‖∙‖𝐹 represent 𝐿2 and Frobenius norms 

respectively, which are defined as 

‖𝑣‖2 = √∑|𝑣𝑖|2
𝑛

𝑖=1

 

‖𝑉‖𝐹 = √∑∑|𝑣𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

= √trace(𝑉𝑇𝑉) 

where the notation 𝑣𝑖 denotes the 𝑖th element of a vector 𝑣 and 𝑣𝑖𝑗 denotes the 𝑖𝑗th 

element of a matrix 𝑉. 𝑉𝑇 denotes the transpose of the matrix 𝑉.  

In the optimization problem (2.20), the function 𝐽(∙) defined in (2.21) is to be 

minimized with respect to the optimization variables {𝑥̂𝑙|𝑙
1→2, 𝑃𝑙|𝑙

1→2}
𝑙=𝑘

𝑘+𝑁−1
  which are 

to be selected from the quantization tables denoted by T.  The function 𝐽(∙) depends 

on the optimization variables {𝑥̂𝑙|𝑙
1→2, 𝑃𝑙|𝑙

1→2}
𝑙=𝑘

𝑘+𝑁−1
 through the fusion center state 

estimates and covariances {𝑥̂𝑙|𝑙
2 , 𝑃𝑙|𝑙

2 }
𝑙=𝑘

𝑘+𝑁−1
 via the Kalman filter equations in (2.16)-

(2.19). The term 𝑁 in the summation operator denotes the time horizon in the 
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optimization problem over which the squared 𝐿2-differences of the state estimates 

𝑥̂𝑘|𝑘
1  and 𝑥̂𝑘|𝑘

2   and squared Frobenius-differences of the covariances  𝑃𝑘|𝑘
1  and 𝑃𝑘|𝑘

2  

are summed in the cost function 𝐽(∙). The term 𝜆 is a scaling constant determining 

the weights of the covariances in the cost function. The operator 𝐸{∙} denotes the 

statistical expectation and it is used to eliminate the unknown stochastic 

measurements 𝑦𝑘+1, 𝑦𝑘+2, … , 𝑦𝑘+𝑁−1 (unknown at time 𝑘) which appears in the cost 

function (in the estimates {𝑥̂𝑙|𝑙
1 }

𝑙=𝑘+1

𝑘+𝑁−1
). 

In the optimization problem, the quantized states and covariances  

{𝑥̂𝑙|𝑙
1→2, 𝑃𝑙|𝑙

1→2}
𝑙=𝑘

𝑘+𝑁−1
 are obtained for 𝑁 time instants, namely, 𝑘, 𝑘 + 1,… , 𝑘 + 𝑁 −

1. Afterwards, only the quantized results corresponding to time 𝑘, i.e., 𝑥̂𝑘|𝑘
1→2, 𝑃𝑘|𝑘

1→2, 

are sent to the fusion center. The operation is repeated for future time instants by 

shifting the optimization horizon. This type of optimization/control topology is 

called as receding horizon control in the literature [42]. 

Receding horizon control method has been used in different applications in 

literature. According to [42], many design problems in control and signal processing 

such as power conversion problems, audio quantization problems, design of FIR 

filters with quantized coefficients and equalization of band-limited communication 

channels etc. can be expressed as optimization problems where decision variables 

can only take several finite values. By restricting the optimization to a finite horizon 

and solving the problem in a receding horizon fashion, excellent optimization results 

can be achieved even with very small horizons. In this study, we will apply the 

receding horizon control technique explained in [42] to the quantization problem 

posed in (2.20). 

The quantization approach we propose above requires the state estimate of the 

fusion center state estimates and covariances in order to solve the optimization 

problem (2.20) at the local center. Since these quantities are the products of the 

Kalman filter at the fusion center and since it is assumed that the parameters of this 

Kalman filter is known at the local center, these quantities can be calculated at the 

local center by running a local copy of the fusion center Kalman filter and feeding it 
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with the transmitted quantized state and covariance. Therefore, at the local center, 

two Kalman filters are executed. The first Kalman filter is the original Kalman filter 

of the local center processing the measurements coming from the sensor. The second 

Kalman filter is the local copy of the fusion center Kalman filter which is fed by the 

quantized states and covariances sent to the fusion center. The proposed architecture 

of the local center is shown in Figure 2.2. 

 

 

 

 

 

Local 
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Fusion Center 
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Measurements 
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Information 
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Figure 2.2: Architecture of the proposed local center. 
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2.4. A Simple Example 

In order to make the proposed quantization/optimization problem more 

understandable, in this section, we illustrate the main idea of our study on a very 

simple deterministic example. Consider that we have a local agent and a fusion 

center in this problem as shown in Figure 2.1. The state evolution in the local agent 

is deterministic and is given as  

𝑥𝑘
1 = 0.95𝑥𝑘−1

1  (2.22) 

where 𝑥𝑘
1  is a scalar and the initial state is given as 𝑥0 = 1. The state evolution in 

(2.22) represents the Kalman filter of the local agent in our original problem. We 

consider the fusion center in two different parts.  

The first fusion center represents the fusion center used in practice and it uses the 

results of static quantization. We consider only two bits in the quantization table T 

of the static quantization. Hence, the information sent to the first fusion center is 

given as 

𝑥𝑘
1→2 =  𝑄𝑠(𝑥𝑘

1) = {
1, 𝑥𝑘

1 ≥ 0.5

0, 𝑥𝑘
1 < 0.5

, 
 

(2.23) 

which represents as nearest neighbor type quantization. As in the original problem, 

the state at the first fusion center is directly equated to the quantized data received 

from the local center, i.e.,  

𝑥𝑘
2 = 𝑥𝑘

1→2. (2.24) 

The second fusion center represents the fusion center we propose in this study and it 

uses the dynamic quantization. It is assumed that the second fusion center uses the 

following state evolution. 

𝑥𝑘
2 = 0.9𝑥𝑘−1

2 + 0.1𝑥𝑘
1→2 (2.25) 

where the quantity 𝑥̂𝑘
1→2 denotes the received data from the local center quantized by 

dynamic quantization. The state evolution (2.25) represents the Kalman filter 
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running in the fusion center in the original problem which uses the quantized data as 

its input. Note that the filter given in (2.25) has a low-pass characteristics similar to 

a Kalman filter. The optimization problem for the quantization is given as 

𝑥𝑘
1→2 = arg min

𝑥𝑘
1→2∈{0,1}

 (𝑥𝑘
2 − 𝑥𝑘

1)2 (2.26) 

where we selected the time horizon 𝑁 = 1. We can write the cost function in (2.26) 

as follows. 

𝐽 = (𝑥𝑘
2 − 𝑥𝑘

1)2 

= (0.9𝑥𝑘−1
2 + 0.1𝑥𝑘

1→2 − 𝑥𝑘
1)2 

= (0.9𝑥𝑘−1
2 − 𝑥𝑘

1 + 0.1𝑥𝑘
1→2)2 

= 0.01 (𝑥𝑘
1→2 −

𝑥𝑘
1 − 0.9𝑥𝑘−1

2

0.1
)

2

. 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

With the form of the cost function in (2.30) it can be seen that the dynamic 

quantization rule is given as 

𝑥𝑘
1→2 =  𝑄𝑑(𝑥𝑘

1) =

{
 

 1,
𝑥𝑘
1 − 0.9𝑥𝑘−1

2

0.1
≥ 0.5

0,
𝑥𝑘
1 − 0.9𝑥𝑘−1

2

0.1
< 0.5

. 

 

(2.31) 

Note that in the local center, the quantity 𝑥𝑘
1 is known exactly. Similarly, since the 

local center knows both the state evolution in (2.25) and the quantized data 

{𝑥𝑙
1→2}𝑙=0

𝑘−1  sent to the fusion center, it can calculate the fusion center state 𝑥𝑘−1
2 . 

Therefore, the local center can easily calculate the quantized data 𝑥𝑘
1→2 in (2.31). 

There is also an issue we should pay attention to in this example in order to obtain 

reasonable results from (2.31). The scalar state transition coefficient of the state 

evolution in the second fusion center must be selected smaller than that of the state 

evolution in the local center. Hence, the bandwidth of the low-pass filter in the 

fusion center must be larger than that of the process in the local center. In this 

example, we have selected the state transition coefficient of the fusion center as 0.9 

which is smaller than 0.95. 
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In order to observe and compare the results of the quantization methods, a 

simulation is performed for the simple example described above. Figure 2.3 shows 

the unquantized states 𝑥𝑘
1 (blue) in the local center along with the fusion center states 

𝑥𝑘
2  obtained with static (red) and dynamic (green) quantization. 

 

Figure 2.3: Unquantized states in the local center and quantized states in the fusion 

center obtained with static and dynamic quantization. The communicated quantized 

states between the local center and the fusion center are shown with dots for both 

static and dynamic quantization methods. 

As shown in Figure 2.3, the static quantization (red curve) selects ‘1’ when 𝑥𝑘
1 

values in the local agent are higher than or equal to ‘0.5’ and ‘0’ otherwise, as 

expected. These values then become the states 𝑥𝑘
1→2 in the fusion center which gets 

the data with static quantization. On the other hand, the fusion center with dynamic 

quantization (green curve) can get much closer states to the unquantized states. It 

can do this by selecting occasional ‘0’ values when the unquantized state value is 
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closer to ‘1’ and occasional ‘1’ values when the unquantized state value is closer to 

‘0’. The low-pass nature of the fusion center smooths out the jumps considerably. 

Now we describe the similarities and the differences between the simple 

example and our original fusion scenario.  

 In the simple example, the state process was deterministic. In the original fusion 

scenario, the state process (i.e., Kalman filter) is stochastic in that it is driven 

with stochastic measurements of the state. 

  In the simple example, the fusion center runs a low-pass filter with the 

quantized data as its input. The filter run in the fusion center was known by the 

local center. In the original scenario, the fusion center will run a Kalman filter 

with low-pass characteristics and this filter will be known by the local center.  

 In the simple example, the local center can calculate the state at the fusion 

center using the information of the low-pass filter (running in the fusion center) 

and the previously sent quantized data to the fusion center. In the original 

scenario, the local center will be able to calculate the state (of the Kalman filter) 

at the fusion center using the information of the Kalman filter (running in the 

fusion center) and the previously sent quantized data. 
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CHAPTER 3 

MATHEMATICAL ANALYSIS 

As previously mentioned, there are a local agent and a fusion center in our 

fusion system (see Figure 2.1). The local agent has its own measurements, runs its 

own Kalman Filter with these measurements and it has its own estimates. After the 

local agent obtains the state estimates and their covariances from its own Kalman 

filter, it quantizes the information and sends these estimates to the fusion center. At 

the same time, the fusion center operates its own Kalman filter, as well. It uses the 

quantized track information, coming from the local agent, as measurements; i.e., the 

fusion center utilizes the quantized state and covariance as measurement and 

measurement noise covariance respectively. Since our approach considers the 

quantization problem in an optimization framework and solves the problem by 

including the predicted future values of the states and covariances, it is named as 

dynamic quantization.  

In this chapter, we will make the mathematical analysis of the optimization 

problem (2.20) and present a solution to it. When the quantized posterior covariance 

values {𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
 sent from the local center are known in the cost function (2.21), 

the cost function becomes quadratic in the unknown quantized state values 

{𝑥̂𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
. For this special case, there is a solution proposed in literature to the 

optimization problem (2.20) which can be used to find the optimal quantized 

posterior states {𝑥̂𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
. Hence we will separate this chapter into two main 

sections. In Section 3.1, we will study the (hypothetical) case in which the quantized 
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covariance {𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
 are known and find out how quantized posterior states 

 {𝑥̂𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
should be selected. Afterwards we will study the general case in which 

the quantized covariance values {𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
 are also unknown in Section 3.2. By 

using the method proposed in Section 3.1, a simple solution will also be suggested 

for this general and realistic case.  

In order to be able to solve the optimization problem we are going to use a 

theorem taken from the literature. For being able to use the theorem, we are going to 

bring the cost function (2.21) into a form suitable for the application of the result of 

the theorem. The cost function will be first separated into two parts, namely state 

and covariance parts. Then the expected values will be taken and the random terms 

will be eliminated. The minimum cost and corresponding quantized states and 

covariances will then be calculated. 

3.1. The Case of Known Quantized Covariances 

In this section, it is assumed that the quantized covariances {𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
 in the 

cost function (2.21) are already known. In this case, it is going to be shown that the 

cost function will be quadratic in the unknown quantized states  {𝑥̂𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
. The 

following theorem taken from [42] describes how a quadratic function can be 

minimized on a finite number of points by utilizing a nearest-neighbor quantization 

rule.  

Theorem 1 [42]: Consider the following quadratic function 𝐽(𝑢). 

𝐽(𝑢) = 𝑢𝑇𝑊𝑢 + 2𝑢𝑇𝐹𝑥. (3.1) 

where 𝑢, 𝑥 ∈ ℝ𝑛 and 𝑊 and 𝐹 are real valued matrices with dimension 𝑚 ×𝑚. 𝑊 

is assumed to be symmetric and positive definite. The aim is to minimize the cost 

function 𝐽(∙) on 𝑈 ≜ {𝑢1, 𝑢2, … , 𝑢𝐾} which is a finite set defined as the quantization 

table. Hence the solution of the following optimization problem is desired. 
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𝑢̂ = argmin
𝑢∈𝑈

𝐽(𝑢). (3.2) 

The solution to this optimization problem can be obtained by a nearest-neighbor 

quantization rule as below. 

𝑢̂ = 𝑊−1/2𝑄𝑁𝑁(−𝑊
−1/2𝐹𝑥) (3.3) 

where the function 𝑄𝑁𝑁(. ) represents the nearest-neighbor quantization rule which 

is defined as follows. 

𝑄𝑁𝑁(𝑡) ≜ arg min
𝑣∈𝑉

 ‖𝑡 − 𝑣‖2 (3.4) 

where the set 𝑉 ≜ {𝑣1, 𝑣2, … , 𝑣𝐾}   has been defined as 

𝑣𝑖 ≜ 𝑊
1/2𝑢𝑖,               𝑖 = 1, … , 𝐾. (3.5) 

The notation 𝑊1/2 denotes the positive-definite square-root of the matrix 𝑊.   The 

value of 𝑄𝑁𝑁(𝑡) in (3.4) is the nearest vector to the vector 𝑡 in the set 𝑉 with respect 

to 𝐿2 norm. 

In the theorem given above, the optimal unquantized vector 𝑢 which minimizes the 

cost function 𝐽(∙) in ℝ𝑛 is given as 

𝑢̃ = −𝑊−1𝐹𝑥. (3.6) 

The nearest-neighbor vector given in (3.3) on the set  𝑈 is usually different from the 

optimal unconstrained solution 𝑢̃ in (3.6). 

 In order to be able to apply Theorem 1 to our quantization problem, we need to 

have the cost function in (2.21) in the form (3.1). When the quantized covariance 

values sent from the local center, {𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
, are known, the cost function in 

(2.21) can be written as shown below after the expected values are taken. 

𝐽 (Γ|{𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
) = Γ𝑇𝑊Γ+ 2Γ𝐴

𝑇Γ + Λ (3.7) 

where the augmented vector Γ 𝜖 ℝ𝑛𝑁 includes all quantized state vectors over the 

time horizon and is defined as 

Γ ≜ [(𝑥̂𝑘|𝑘
1→2)

𝑇
 (𝑥̂𝑘+1|𝑘+1

1→2 )
𝑇
⋯(𝑥̂𝑘+𝑁−1|𝑘+𝑁−1

1→2 )
𝑇
]
𝑇

.  (3.8) 

The matrix 𝑊, the vector Γ𝐴 and the scalar Λ are some complicated functions of the 

variables {𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
 and 𝑥̂𝑘|𝑘

1 , 𝑃𝑘|𝑘
1  as given below. 
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𝑊 ≜ 𝑊 ({𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
) 

                                          Γ𝐴 ≜ Γ𝐴 ({𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
, 𝑥̂𝑘|𝑘
1 , 𝑃𝑘|𝑘

1 ) 

                Λ ≜ Λ({𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
, 𝑥̂𝑘|𝑘
1 , 𝑃𝑘|𝑘

1 ) 

(3.9) 

(3.10) 

(3.11) 

The more detailed expressions for 𝑊, Γ𝐴 and Λ are given below.  

𝑊 ≜ ∑(𝐵̅𝑙
2)𝑇Ω𝐵̅𝑙

2

𝑁−1

𝑙=0

 

Γ𝐴 ≜ (∑(𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇 + 𝑋̅𝑇(𝐵̅𝑙
1)𝑇)Ω𝐵̅𝑙

2

𝑁−1

𝑙=0

)

𝑇

 

(3.12) 

 

(3.13) 

Λ ≜ ∑ (
𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω𝐴𝑘+𝑙:𝑘𝜉𝑘−1 + 2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω𝐵̅𝑙
1𝑋̅

+tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑃̅) +  tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑅̅)
)

𝑁−1

𝑙=0

 (3.14) 

where 

𝜉𝑘 ≜ [
𝑥̂𝑘|𝑘
1

𝑥̂𝑘|𝑘
2 ] 

Ω ≜ [
𝐼𝑛 −𝐼𝑛
−𝐼𝑛 𝐼𝑛

] 

𝐵̅𝑙
1 ≜ [𝐴𝑘+𝑙:𝑘+1𝐵𝑘

1 𝐴𝑘+𝑙:𝑘+2𝐵𝑘+1
1 … 𝐴𝑘+𝑙𝐵𝑘+𝑙−1

1 𝐵𝑘+𝑙
1   0𝑚 … 0

𝑚] 

𝐵̅𝑙
2 ≜ [𝐴𝑘+𝑙:𝑘+1𝐵𝑘

2 𝐴𝑘+𝑙:𝑘+2𝐵𝑘+1
2 … 𝐴𝑘+𝑙𝐵𝑘+𝑙−1

2 𝐵𝑘+𝑙
2   0𝑛 … 0𝑛]. 

The matrices 𝐴𝑖:𝑗, 𝐵𝑘
1, 𝐵𝑘

2, 𝑃̅, 𝑋̅,  and 𝑅̅ are defined as 

𝐴𝑖:𝑗 ≜ 𝐴𝑖 ×⋯× 𝐴𝑗  

𝐴𝑘 ≜ [
(𝐼 − 𝐾𝑘

1𝐶)𝐴 0𝑛
0𝑛 (𝐼 − 𝐾𝑘

2)𝐴
] 

𝐵𝑘
1 ≜ [

𝐾𝑘
1

0𝑛,𝑚
] 

𝐵𝑘
2 ≜ [

0𝑛
𝐾𝑘
2] 

𝑃̅ ≜

[
 
 
 
 𝑦𝑘

1(𝑦𝑘
1)𝑇 𝑦𝑘

1(𝑦̂𝑘+1|𝑘
1 )

𝑇
⋯ 𝑦𝑘

1(𝑦̂𝑘+𝑁−1|𝑘
1 )

𝑇

𝑦̂𝑘+1|𝑘
1 (𝑦𝑘

1)𝑇 𝑃1,1 ⋯ 𝑃1,𝑁−1
⋮ ⋮ ⋱ ⋮

𝑦̂𝑘+𝑁−1|𝑘
1 (𝑦𝑘

1)𝑇 𝑃𝑁−1,1 ⋯ 𝑃𝑁−1,𝑁−1 ]
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𝑋̅ ≜

[
 
 
 
 
 
 
 

𝑦𝑘
1

𝑦̂𝑘+1|𝑘
1

:
:

𝑦̂𝑘+𝑙|𝑘
1

:
𝑦̂𝑘+𝑁−1|𝑘
1

]
 
 
 
 
 
 
 

 

𝑅̅ ≜ [

0𝑚 0𝑚 ⋯ 0𝑚
0𝑚
⋮
0𝑚

𝑅
⋮
0𝑚

⋯
⋱
…

0𝑚
⋮
𝑅

] 

where the submatrices 𝑃𝑖,𝑗 are defined as 

𝑃𝑖,𝑗 ≜  𝐶(𝑃min (𝑘+𝑖,𝑘+𝑗)|𝑘
1 + 𝑥̂min (𝑘+𝑖,𝑘+𝑗)|𝑘

1 𝑥̂min(𝑘+𝑖,𝑘+𝑗)|𝑘
1 𝑇

)(𝐴|𝑖−𝑗|)𝑇𝐶𝑇. 

The matrices 0𝑛 and 0𝑛,𝑚 denote the zero matrices of size 𝑛 × 𝑛 and 𝑛 × 𝑚 

respectively. The detailed derivations of the expressions (3.12)-(3.14) are made in 

Appendix A. 

At this point, it is appropriate to calculate the unquantized optimal solution for  

Γ since we will use it in our experiments to reduce number of the elements in the 

quantization table (See Section 3.3 for details). We can modify the expression for 𝐽(∙

) in (3.7) as shown below. 

𝐽 (Γ|{𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
) = Γ𝑇𝑊Γ+ 2Γ𝐴

𝑇𝑊𝑊−1Γ + (𝑊−𝑇Γ𝐴)
𝑇𝑊(𝑊−𝑇Γ𝐴)                                      

                                    −(𝑊−𝑇Γ𝐴)
𝑇𝑊(𝑊−𝑇Γ𝐴) +  Λ 

                                    = Γ𝑇𝑊Γ+ 2Γ𝐴
𝑇𝑊𝑊−1Γ + (𝑊−𝑇Γ𝐴)

𝑇𝑊(𝑊−𝑇Γ𝐴) + Λ̅  

 

(3.15) 

(3.16) 

where 

Λ̅ = −(𝑊−𝑇Γ𝐴)
𝑇𝑊(𝑊−𝑇Γ𝐴) +  Λ. 

 

The expression (3.16) can be written as 

𝐽 = (Γ +𝑊−𝑇Γ𝐴)
𝑇𝑊(Γ +𝑊−𝑇Γ𝐴)+Λ̅. 

(3.17) 

Hence the optimal solution (unquantized state vectors) without considering any 

constraints on Γ can be found as 

Γ̅𝑢𝑐
𝑜𝑝𝑡 = −𝑊−𝑇Γ𝐴. (3.18) 
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This is the perfect case when no quantization is considered. For the quantized case, 

the optimal solution can be given by using Theorem 1 as  

Γ̅𝑜𝑝𝑡 = 𝑊−
𝑇
2𝑄𝑁𝑁(−𝑊

−1/2Γ𝐴) (3.19) 

where 𝑄𝑁𝑁(. ) is the nearest-neighbor quantizer that maps ℝ𝑛𝑁 (since there are 𝑁 

state vectors of size 𝑛 in Γ) to the finite set 𝑉 defined as 

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝐾} (3.20) 

where 𝐾 is the number of elements in 𝑉 and 

𝑣𝑖 = 𝑊
𝑇

2𝑢𝑖. (3.21) 

After finding the optimal quantized states Γ̅𝑜𝑝𝑡 corresponding to times 𝑘, 𝑘 +

1, … , 𝑘 + 𝑁 − 1, the first quantized state 𝑥̂𝑘|𝑘
1→2 is sent to the fusion center. 

Γ𝑜𝑝𝑡(𝑘) = [𝐼𝑛 0𝑛 … 0𝑛]Γ̅𝑜𝑝𝑡 (3.22) 

where 𝐼𝑛 and 0𝑛 are the identity and zero matrices of size 𝑛 × 𝑛.  

At time 𝑘 + 1, in order to be able to find Γ𝑜𝑝𝑡(𝑘 + 1)  the same optimization is 

applied on the interval [𝑘 + 1, 𝑘 + 𝑁] , in other words, the horizon is shifted by one. 

For the other time instants, the procedure is continued in a similar fashion. 

3.2. The General Case 

We have explained how the optimal quantization is performed in Section 3.1 

when the quantized covariance matrices are known. When the covariance matrices 

{𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
 sent from the local agent, are not known, which is the general and the 

realistic case, the cost function in (2.20) becomes too complicated in terms of all of 

the unknown optimization variables. Therefore, there is no simple solution to the 

optimization problem as in Section 3.1. On the other hand, in practice, only few 

different quantized values are communicated between the local center and the fusion 

center. In other words, the covariance quantization table in the local center is 

composed of only a small number of covariances. In this section, using this practical 

information, we propose the following simple solution for the general case when the 
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quantized covariance values are unknown and they are to be found by the 

optimization problem.  

Suppose that the covariance quantization table in the local center is composed 𝐾 

different covariances where 𝐾 is a small positive integer (≪ 100). We assume that 

all covariances to be sent from the local agent in the optimization horizon are the 

same, i.e., 

𝑃𝑘|𝑘
1→2 = 𝑃𝑘+1|𝑘+1

1→2 = ⋯ = 𝑃𝑘+𝑁−1|𝑘+𝑁−1
1→2 . (3.23) 

The optimization problem (2.20) is then solved for each covariance in the covariance 

quantization table as explained in Section 3.1 and the covariance value which gives 

the minimum cost is selected as the optimal quantized covariance. Note that when 

we try to solve the optimization (2.20) after selecting one of the covariance values in 

the covariance quantization table, thanks to the assumption (3.23), all quantized 

covariance values to be sent to the fusion center (in the optimization horizon) are 

known. Therefore the problem turns into the case of known quantized covariances 

and hence the solution obtained in Section 3.1 is valid.  

3.3. Implementation Issue: Size of the Quantization Table 

In this section, we consider an implementation issue for the quantization 

algorithm proposed in the previous two sections. For this purpose, we consider a 

simple tracking problem where the state vector is composed to 4 variables, namely 

x-position, y-position, x-velocity and y-velocity. Suppose that we use 𝐵 bits in order 

to quantize the state vector. If we use equal number of bits to quantize each variable 

in the state vector, then each variable will be quantized with 𝐵/4 bits. Assuming 

minimum and maximum values for the variables, we form a quantization table of 

𝐾𝑘=2𝐵/4𝑥2𝐵/4𝑥2𝐵/4𝑥2𝐵/4 = 2𝐵 values for the state vector for time 𝑘. Since a 

different state vector can be selected from the quantization table for each time 

instant 𝑘 in the optimization horizon, the overall quantization table over the whole 

optimization horizon turns out to be 𝐾 = 𝐾𝑘
𝑁 = 2𝐵𝑁.  Therefore, the quantization 

table in Theorem 1 will have length 𝐾 = 2𝐵𝑁 which is impossible to process. This is 
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the main issue that would be encountered in implementing the quantization 

algorithm proposed in the previous sections.  

Reducing the quantization table size by reducing the number of bits in order to 

solve this issue is not a reasonable approach since such an approach would need to 

use too few bits for each variable and the performance would be terrible. In this 

section, we propose an algorithm which reduces the size of the quantization table 

cleverly by removing unlikely rows from the quantization table by using the 

unquantized optimal state vector given in (3.18).  

We propose the following reduction method. For each time instant 𝑘 

 Find the unquantized optimal state vector Γ̅𝑢𝑐
𝑜𝑝𝑡

 given in (3.18). 

 Consider each element of 𝛾𝑖
𝑜𝑝𝑡

 of Γ̅𝑢𝑐
𝑜𝑝𝑡
 where 𝑖 = 1,… ,4𝑁.  

o If  𝛾𝑖
𝑜𝑝𝑡

 is a position variable, find the nearest three quantized 

position values 𝛾𝑖
1, 𝛾𝑖

2, 𝛾𝑖
3 to 𝛾𝑖

𝑜𝑝𝑡 from the position quantization 

table. 

o If  𝛾𝑖
𝑜𝑝𝑡

 is a velocity variable, find the nearest three quantized 

velocity values 𝛾𝑖
1, 𝛾𝑖

2, 𝛾𝑖
3 to 𝛾𝑖

𝑜𝑝𝑡 from the velocity quantization 

table. 

 Construct the reduced quantization from all possible combinations of the 

sets {𝛾1
𝑗
}
𝑗=1

3
, {𝛾2

𝑗
}
𝑗=1

3
, … , {𝛾4𝑁

𝑗
}
𝑗=1

3
 . 

In the reduction procedure described above, since only 3 quantized values are used 

for each element of the vector Γ, the size of the reduced quantization table becomes   

𝐾 = 34𝑁 which is much smaller than the value 2𝐵𝑁 and quite manageable for small 

horizon lengths. 

 



 

33 

CHAPTER 4 

SIMULATION RESULTS 

In this section we compare the quantization method applied in the literature 

with the one proposed in this study by making a simulation study on three fusion 

architectures. The simulation results obtained for each architecture are examined in 

separate sections.    

4.1. Architecture 1 

Architecture 1 represents the simple fusion architecture used in the earlier 

chapters which consists of a local agent F1 and a fusion center F2. The local agent 

has its own sensor collecting measurements. The local agent operates its own 

Kalman filter and quantizes the track information with static or dynamic 

quantization methods. After the quantization process, the local agent sends its 

quantized track information to the fusion center. At the same time, the fusion center 

operates its own Kalman filter as well. In this architecture there is no sensor 

belonging to the fusion center. Hence the only data that the fusion center takes from 

outside is the quantized track information of the local agent.  Architecture 1 is 

illustrated in Figure 4.1.  

 

 

 

Figure 4.1: Information graph of architecture 1 

S

1 

F1 F2 
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4.1.1. Target Model 

True target states and measurements are generated according to the following linear 

Gaussian model. 

      𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑤𝑘 

       𝑦𝑘
1 = 𝐶𝑥𝑘 + 𝑣𝑘

1 

(4.1) 

(4.2) 

where the state 𝑥𝑘 is composed of x-y positions and x-y velocities of the target and 

𝑦𝑘
1 is the position measurements of the local center. The matrices 𝐴, 𝐵 and 𝐶 are 

given as  

𝐴 = [
𝐼2 𝑇𝐼2
02 𝐼2

],       𝐵 = [
𝑇2

2
𝐼2

𝑇𝐼2
],      𝐶 = [𝐼2 02] (4.3) 

where 𝑇 = 1s. The initial state 𝑥0 = [𝑝0
𝑇 , 𝑣0

𝑇]𝑇  of the target is constructed randomly 

as follows. The initial position vector 𝑝0 = [5000m, 5000m]
T  is fixed. The 

components of the initial velocity 𝑣0 are random and independent. Each component 

of 𝑣0 is selected to be Gaussian distributed with zero mean and standard deviation 

100m/s. The white process noise 𝑤𝑘 is Gaussian with zero-mean and 

covariance 𝑄 = 22𝐼2. The white measurement noise 𝑣𝑘
1 is Gaussian with zero-mean 

and covariance 𝑅 = 202𝐼2. The target data is formed for 20 seconds which 

corresponds to 21 samples. 

4.1.2. Quantization Parameters 

For the quantized state vector sent from the local agent to the fusion center, M bits 

are used for quantizing the state vector where M is going to be selected as 16, 32 and 

64. Additional 4 bits are used for quantizing the covariance. 

Since the state vector is 4-dimensional, M/4 bits are reserved for each element of the 

state vector. A uniform grid of 2M/4 values between [0, 10000m] is formed as the 

quantization table for the position values. A uniform grid of 2M/4 values between 

[−250m/s, 250m/s] is formed as the quantization table for the velocity values. The 

quantized covariances 𝑃𝑖
1→2, 𝑖 = 1,2. , … , 𝐾 are selected as 
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𝑃𝑖
1→2 = [

𝜎𝑝,𝑖
2 𝐼2 02

02 𝜎𝑣,𝑖
2 𝐼2

] 

where the position and velocity standard deviation values 𝜎𝑝,𝑖 and 𝜎𝑣,𝑖 are selected 

are given in Table 4.1.  

Table 4.1: Covariance quantization table 

𝑖 𝜎𝑝,𝑖 (m) 𝜎𝑣,𝑖 (m/s) 

1 2 0.4 

2 4 0.8 

3 6 1.2 

4 8 1.6 

5 10 2 

6 12 2.4 

7 14 2.8 

8 16 3.2 

9 20 20/3 

10 24 24/3 

11 28 28/3 

12 32 32/3 

13 36 36/3 

14 40 40/3 

15 44 44/3 

16 48 48/3 

 

For dynamic quantization the horizon length is selected to be 𝑁 = 3 and the 

constant 𝜆  determining the effect of covariances in the cost function (2.21) is 

selected as 𝜆 = 1000.  

4.1.3. Methods 

Three sets of results are obtained. In the first set of results, the optimal fusion result 

that would be obtained in the fusion center if no quantization was involved is 

calculated.  This result is used as a baseline for comparing the results of the fusion 

centers using static and dynamic quantization methods. 
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The second set of results is the fusion results in the fusion center when static 

quantization is used between the local center and the fusion center.  

The third set of results is the fusion results in the fusion center when dynamic 

quantization is used between the local center and the fusion center.  

4.1.4 Results 

A total of 100 Monte Carlo simulations are made for 𝑀 = 16, 32 and 64 bits. In 

each run, a different realization for the true target state vectors and measurements is 

used. Figure 4.2 shows the position estimates at the fusion center for 𝑀 = 16 for a 

typical single run. 

 

Figure 4.2: Position estimates in the fusion center with no quantization, static and 

dynamic quantization when 𝑀 = 16 bits: (a) x-positions (b) y-positions 

As shown in Figure 4.2-a, static quantization method is able to send only 3 

different x-position values to the fusion center from quantization table. On the other 

hand, although dynamic quantization has utilized the same model and exactly the 

same quantization table with static quantization method, it has obtained much closer 
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results to the no quantization case than the static quantization by using low pass 

structure of Kalman filter in the fusion center. Likewise, there is only one value 

which static quantization sends to the fusion center from the quantization table in 

Figure 4.2-b. In this case, the fusion center results obtained by dynamic quantization 

are again much closer to the results of the no quantization case. Figure 4.3 shows the 

x-y position estimates in Figure 4.2 on a single graph.  

 

Figure 4.3: Position estimates in the fusion center with no quantization, static and 

dynamic quantization when 𝑀 = 16 bits. 

Figure 4.4 shows the velocity estimates at the fusion center for 𝑀 = 16 for a 

single run. As shown in the figure, the velocity estimates obtained with dynamic 

quantization are again much closer to the no quantization case. 
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Figure 4.4: Velocity estimates in the fusion center with no quantization, static and 

dynamic quantization when 𝑀 = 16 bits: (a) x-velocity (b) y-velocity 

Over the Monte Carlo runs RMS position and velocity errors are calculated 

between the results obtained with and without quantization. The RMS errors are 

shown in Figure 4.5. As expected the RMS errors of dynamic quantization is much 

lower than those of static quantization.  

For 𝑀 = 32 and 64 bits, the simulations are repeated. In these cases, the single 

run results are not shown. Figure 4.6 and Figure 4.7 show the RMS position and 

velocity errors obtained by the algorithms for 𝑀 = 32 and 𝑀 = 64 respectively. As 

expected, errors for both quantization methods get smaller as the number of bits 

increases. The errors obtained with dynamic quantization are still much smaller than 

those obtained with static quantization.  
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Figure 4.5: RMS errors in the fusion center with static and dynamic quantization 

when 𝑀 = 16: (a) RMS position errors (b) RMS velocity errors 

 

Figure 4.6: RMS errors in the fusion center with static and dynamic quantization 

when 𝑀 = 32: (a) RMS position errors (b) RMS velocity errors 
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Figure 4.7: RMS errors in the fusion center with static and dynamic quantization 

when 𝑀 = 64: (a) RMS position errors (b) RMS velocity errors 

In order to summarize, average RMS errors (over time) for 𝑀 = 16, 32 and 64 

bits are given in Table 4.2. In the table, in addition to the average RMS position and 

velocity errors related to the state vector, average RMS position and velocity 

covariance errors are also provided. The covariance errors in each case are 

calculated using the Frobenius norm of the difference between the covariances 

obtained by methods with quantization and without quantization.   

Table 4.2: RMS errors for Architecture 1 

RMS Error 
16 Bit 32 Bit 64 Bit 

Static Dynamic Static Dynamic Static Dynamic 

Position (m) 266.80 56.70 31.78 14.96 8.74 4.51 

Velocity (m/s) 15.87 8.89 6.65 3.91 3.89 1.98 

Cov. Position  (m) 3.99  3.22 3.95 3.22 3.81 3.23  

Cov. Velocity  (m/s) 3.96 2.59 3.96 2.59 3.96 2.60 
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As observed in the table, the difference between errors in the covariances obtained 

with dynamic quantization and static quantization is not as large as the difference 

between the position and velocity errors of the two methods. Nevertheless, the 

covariance errors of the dynamic quantization are still slightly smaller than static 

quantization. 

4.2. Architecture 2 

Architecture 2 consists of a local agent and a fusion center as Architecture 1. 

The only difference of Architecture 2 from Architecture 1 is that the fusion center in 

Architecture 2 has its own sensor. Architecture 2 is illustrated in Figure 4.8. 

 

 

 

Figure 4.8: Information graph of Architecture 2 

4.2.1. Target Model 

True target states and measurements are generated according to the following linear 

Gaussian model. 

      𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑤𝑘 

       𝑦𝑘
1 = 𝐶𝑥𝑘 + 𝑣𝑘

1 

      𝑦𝑘
2 = 𝐶𝑥𝑘 + 𝑣𝑘

2 

(4.4) 

(4.5) 

(4.6) 

The quantities 𝑥𝑘 ,  𝑦𝑘
1, 𝑤𝑘, 𝑣𝑘

1 and the matrices 𝐴, 𝐵, 𝐶 are the same as those defined 

in Seciton 4.1.1. The quantities  𝑦𝑘
2 represent the measurements of the fusion center. 

The white measurement noise 𝑣𝑘
2 is Gaussian with zero-mean and covariance 𝑅 =

202𝐼2. The measurement noise 𝑣𝑘
2 is independent of 𝑣𝑘

1.   

S1 F1 F2 S2 
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4.2.2. Quantization Parameters 

Quantization parameters are the same as those given in Section 4.1.2. 

4.2.3. Methods 

In this architecture, the only difference in the methods used is that the fusion center 

has now measurements 𝑦𝑘
2 to process in addition to the quantized information 

coming from the local center. Due to the additional measurements, the estimates of 

the fusion center are no longer directly equal to the quantized values coming from 

the local center. Therefore, the Channel Filter equations to obtain 𝑥̂𝑘|𝑘
𝑓

 and 𝑃𝑘|𝑘
𝑓

 from 

𝑥̂𝑘|𝑘
1→2 and 𝑃𝑘|𝑘

1→2 in the fusion center used in practice are different from (2.11)-(2.12) 

due to the presence of measurements 𝑦𝑘
2. The corresponding Channel Filter 

equations are given as follows. 

(𝑃𝑘|𝑘
𝑓
)
−1

𝑥̂𝑘|𝑘
𝑓

= (𝑃𝑘|𝑘
2 )

−1
𝑥̂𝑘|𝑘
2 + (𝑃𝑘|𝑘

1→2)
−1
𝑥̂𝑘|𝑘
1→2 − (𝑃𝑘|𝑘−1

1→2 )
−1
𝑥̂𝑘|𝑘−1
1→2  

(𝑃𝑘|𝑘
𝑓
)
−1

= (𝑃𝑘|𝑘
2 )

−1
+ (𝑃𝑘|𝑘

1→2)
−1
− (𝑃𝑘|𝑘−1

1→2 )
−1

 

(4.7) 

(4.8) 

. The explanations for the terms in (4.7)-(4.8) are given below. 

 𝑥̂𝑘|𝑘
2  and 𝑃𝑘|𝑘

2  are the posterior state estimate and covariance in the fusion 

center obtained using only the local measurements 𝑦𝑘
2; 

 𝑥̂𝑘|𝑘
𝑓

 and 𝑃𝑘|𝑘
𝑓

 are the updated state estimate and covariance in the fusion 

center; 

 𝑥̂𝑘|𝑘−1
1→2  and 𝑃𝑘|𝑘−1

1→2  are the predicted versions of the previously communicated 

information 𝑥̂𝑘−1|𝑘−1
1→2  and 𝑃𝑘−1|𝑘−1

1→2  between the local center and the fusion 

center.  

Note that, in this case, since the measurements 𝑦𝑘
2 are not available in the local 

center, the local copy of the fusion center Kalman filter running at the local center 

still uses only the quantized information of the local center as measurements.  
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4.2.4. Results 

A total of 100 Monte Carlo simulations are made for 𝑀 = 16, 32 and 64 bits. In 

each run, a different realization for the true target state vectors and measurements is 

used.  

Figure 4.9 shows the position estimates obtained in the fusion center for the no 

quantization case and static and dynamic quantization based methods when 𝑀 = 16 

bits for a typical single run. Figure 4.10 shows the results in Figure 4.9 on a single 

graph. Velocity estimates obtained in the fusion center for the different quantization 

schemes are illustrated in Figure 4.11. All three figures confirm the superiority of 

the dynamic quantization over static quantization approach.  

 

 

Figure 4.9: Position estimates in the fusion center with no quantization, static and 

dynamic quantization when 𝑀 = 16 bits: (a) x-positions (b) y-positions 



 

44 

 

Figure 4.10: Position estimates in the fusion center with no quantization, static and 

dynamic quantization when 𝑀 = 16 bits. 

 

Figure 4.11: Velocity estimates in the fusion center with no quantization, static and 

dynamic quantization when 𝑀 = 16 bits: (a) x-velocity estimates (b) y-velocity 

estimates. 
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RMS position and velocity errors are calculated between the results obtained 

with and without quantization. The RMS errors are shown in Figure 4.12 which 

shows the better performance of dynamic quantization once again.  

For 𝑀 = 32 and 64 bits, the simulations are repeated. In these cases, the single 

run results and RMS errors are not illustrated with figures. Instead, only the average 

RMS errors (over time) for 𝑀 = 16, 32 and 64 bits are presented in Table 4.3. The 

results observed in the table are similar to those obtained in Table 4.2. 

4.3 Architecture 3 

Architecture 3 consists of two local agents and a fusion center. All agents in the 

architecture have their own sensors collecting measurements independently. 

Architecture 3 is illustrated in Figure 4.13. 

   

 

 

Figure 4.12: RMS errors in the fusion center with static and dynamic quantization 

when 𝑀 = 16 bits: (a) RMS position errors (b) RMS velocity errors. 
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Table 4.3: RMS errors for Architecture 2 

RMS Error 
16 Bit 32 Bit 64 Bit 

static dynamic static dynamic static dynamic 

Position (m) 96.91 30.12 43.37 22.57 8.25 5.51 

Velocity (m/s) 16.02 6.30 11.51 6.13 6.29 1.39 

Cov. Position  (m) 6.86 2.74 6.86 2.73 6.87 2.74  

Cov. Velocity  (m/s) 3.42 2.05 3.42 2.05 3.42 2.05 

 

In Figure 4.13, F1 and F2 represent the local agents and S1 and S2 represent the 

sensors belonging to the corresponding local agents. F3 represents the fusion center 

and S3 represents the sensor belonging to the fusion center. 

4.3.1. Target Model 

True target states and measurements are generated according to the following linear 

Gaussian model. 

      𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑤𝑘 

       𝑦𝑘
1 = 𝐶𝑥𝑘 + 𝑣𝑘

1 

      𝑦𝑘
2 = 𝐶𝑥𝑘 + 𝑣𝑘

2 

      𝑦𝑘
3 = 𝐶𝑥𝑘 + 𝑣𝑘

3 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

The quantities in (4.9)-(4.12) are defined similarly to those in Section 4.1.1 and 

4.2.1. 

 

 

 

    

 

 

 Figure 4.13: Information graph of architecture 3 

S1 F1 

F3 S3 

S2 F2 
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4.3.2. Quantization Parameters 

Quantization parameters are the same as those given in Section 4.1.2. 

4.3.3. Methods 

Methods are the same as those given in Section 4.1.3. The difference is that the 

fusion center has now measurements 𝑦𝑘
3 to process in addition to the quantized 

pieces of information coming from the first and the second local centers. Note that, 

in this case, each the local center keeps a local copy of the fusion center Kalman 

filter using only the quantized information of the corresponding local center as 

measurements.  

4.3.4 Results 

For Architecture 3, only the final RMS errors are shown in Table 4.4. The results are 

very similar to those obtained for the earlier architectures.  

Table 4.4: RMS errors for Architecture 3 

RMS Error 
16 Bit 32 Bit 64 Bit 

static dynamic static dynamic static dynamic 

Position (m) 119.62 30.99 9.33 5.40 8.08 5.22 

Velocity (m/s) 13.8 6.71 4.51 1.29 4.91 1.45 

Cov. Position  (m) 6.04 2.96 6.04 2.95 6.04 2.95 

Cov. Velocity  (m/s) 3.46 2.33 3.46 2.33 3.46 2.33 
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4.4 Effects of Horizon Length 

In this section we will show the effects of the time horizon length on the 

performance of the quantization operation. Note that in all simulations above the 

time horizon was selected as 𝑁 = 3. Now it is appropriate to change the time 

horizon and observe the quantization results. For this purpose we repeat the 

simulations of Architecture 1 by only changing the time horizon. RMS errors for 

𝑀 = 16, 32 and 64 bits are calculated for static and dynamic quantization methods 

and they are shown in Table 4.5.  

While the RMS covariance errors obtained by dynamic quantization methods 

are similar to the errors obtained by static quantization, in terms of RMS position 

and velocity errors, all dynamic quantization methods are significantly better than 

the static quantization irrespective of the horizon length used. If we compare the 

RMS errors of dynamic quantization methods with different horizon lengths among 

themselves, it is seen that reducing the horizon length does not reduce the 

performance of dynamic quantization. In fact, we observe interestingly that RMS 

position and velocity errors slightly decrease as the horizon length is reduced. The 

reason for this counter-intuitive reduction in the RMS errors for shorter horizons lies 

in the covariance selection process applied in our algorithm. It is seen in Table 4.5 

that the covariance errors of the algorithms decrease as the horizon length is 

decreased. Hence, the algorithm can select better covariances as the time horizon 

gets shorter. The assumption (3.23) used in covariance selection constrains all of the 

quantized covariances over the horizon to be equal. Due to this restriction, as the 

horizon gets longer, worse and worse covariances are selected in the algorithm 

which leads to the increase in the RMS errors in the state variables. As the horizon 

becomes shorter, the effect of the restriction diminishes making the results better.  
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Table 4.5: RMS errors of quantization methods for different time horizons 

RMS Error Position 

(m) 

Velocity 

(m/s) 

Cov. Position  

(m) 

Cov. Velocity 

(m/s) 

1
6
 B

it
 

Static 266.7994 15.8678 3.9922 3.9609 

Dynamic (N=3) 56.6983 8.8933 3.2209 2.5929 

Dynamic (N=2) 54.9329 8.4419 2.9896 2.5933 

Dynamic (N=1) 52.6651 7.4909 2.9121 2.5904 

3
2
 B

it
 

Static 31.7848 6.6476 3.9450 3.9602 

Dynamic (N=3) 14.9589 3.9120 3.2246 2.5928 

Dynamic (N=2) 14.9678 3.9043 2.9941 2.5939 

Dynamic (N=1) 14.7358 3.8469 2.8957 2.5921 

6
4
 B

it
 

Static 8.7383 3.8937 3.8140 3.9630 

Dynamic (N=3) 4.5133 1.9750 3.2302 2.5956 

Dynamic (N=2) 4.3491 1.9421 2.9765 2.5979 

Dynamic (N=1) 4.4926 1.9525 2.8865 2.5954 

It must be said here that, if receding horizon idea could be applied without any 

restrictions as the one imposed in the assumption (3.23), increasing the horizon 

length would cause a decrease in the errors. However, when we impose the 

assumption (3.23), the errors increase more than they would decrease thanks to the 

increase in the horizon length which results in the counter-intuitive behavior 

observed in Table 4.5.  

As a final remark, we can still conclude that the dynamic quantization method 

proposed in this study is more advantageous than the static quantization method 

used in practice even with a short time horizon.  
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4.5 Computation Time 

In this section, we give the computation times of dynamic and static 

quantization approaches (per each time step). The computation times for different 

time horizon lengths, which were calculated in Matlab R2011b running on a PC with 

Intel Core 2 Duo P8800 2.67GHz CPU and 4GB RAM, are given in Table 4.6.  

Table 4.6: Computation times for different time horizons 

Computation Time (s) 16 Bit 32 Bit 64 Bit 

Static 0.0135 0.0138 0.0157 

Dynamic (N=3) 6.6548 7.3894 8.0594 

Dynamic (N=2) 0.1258 0.1339 0.2577 

Dynamic (N=1) 0.0174 0.0179 0.0715 

 

As shown in Table 4.6, the computation times of static quantization are very 

low for all bit rates. As the time horizon gets shorter, the computation times of 

dynamic quantization decreases dramatically. When the time horizon length is unity, 

the computation times of dynamic quantization are very close to those of static 

quantization.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

This thesis study has proposed a new quantization algorithm for track fusion 

under communication constraints. The quantization algorithm used in practice is a 

simple nearest neighbor methodology which is named here as static quantization. On 

the other hand, the new quantization algorithm proposed here involves posing the 

quantization problem in an optimization framework. The objective function of the 

optimization measures the distance between the estimates/covariances of the local 

and remote Kalman filters over a time horizon. Thanks to the time horizon, the 

predicted future values of the track are brought into the picture. Since this approach 

considers the inherent dynamic characteristics of the tracks, the corresponding 

methodology has been named as dynamic quantization. 

The optimization involved in the quantization operation has been solved using 

the receding horizon control methodology. The solution of the optimization was 

achieved in two stages. In the first stage, the assumption of known quantized 

covariances was made. In this case, it turned out that the cost function was quadratic 

in the unknown quantized state vectors. An existing solution in the literature has 

been used to solve the optimization problem for this case. In the second stage, the 

assumption of known quantized covariances was removed and the general problem 

is solved. For this purpose, the assumption that the quantized covariances are the 

same over the time horizon was made for ensuring computational feasibility. 

The simulation studies have shown that the proposed quantization methodology 

is much better than the static quantization used in practice in terms of RMS errors in 
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state variables for all time horizon lengths considered. In terms of RMS covariance 

errors, the difference between the methods is less although dynamic quantization 

still is slightly better than static quantization. It has been seen that the assumption of 

“equal quantized covariances over the time horizon” used for solving the 

optimization problem results in counter-intuitive results for different time horizon 

lengths. The investigation of less restrictive assumptions under which the 

optimization problem can still be solved is left as a future work. 

It has been seen that dynamic quantization takes much more computation time 

than static quantization for horizon lengths 𝑁 = 2 and 3. However, for horizon 

length 𝑁 = 1 there is still no performance degradation and the computation time 

difference between static and dynamic quantization approaches is negligible. 

Therefore, horizon length can safely be decreased until the computation time for 

dynamic quantization is feasible for a specific application.  

The simulation results show that the proposed dynamic method achieves much 

better results than static approach even with very low bit rates. As expected, the 

difference between static and dynamic quantization approaches decreases as the bit 

rate is increased. The extreme case of 𝑀 = 16 bits showed that while the static 

quantization approach can barely go below 100m position error standard deviation, 

the dynamic quantization approach can well obtain position errors around 50m 

standard deviation or less.  

As future work, the applicability of the methodology for more complicated state 

estimators, such as interacting multiple model (IMM) filter, extended Kalman filter 

etc., can be investigated. Also tests in more complex fusion architectures can be 

useful as future work. 
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APPENDIX A 

DERIVATIONS FOR THE TERMS 𝑾,𝚪𝑨 AND 𝚲 

In this Appendix, we are going to present a derivation for the expressions for the 

variables 𝑊, Γ𝐴 and Λ in the cost function (3.7).  

A.1 Expressing the Cost in Matrix Form 

When the quantized covariance matrices are known the cost function for the 

optimization problem equivalently becomes  

𝐽 (Γ|{𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
) = ∑ 𝐸{||𝑥̂𝑙|𝑙

2 − 𝑥̂𝑙|𝑙
1 ||2

2|𝑦0:𝑘
1 }

𝑘+𝑁−1

𝑙=𝑘

 (A.1) 

 

In the following, the cost function   𝐽 (Γ|{𝑃𝑙|𝑙
1→2}

𝑙=𝑘

𝑘+𝑁−1
) will be called as 𝐽(∙). In 

order to be able to make our analysis in a structured manner, we are going to write 

the cost function in (A.1) as given below. 

𝐽(∙) =  ∑ 𝐸{||[𝐼𝑛 −𝐼𝑛]𝜉𝑙||
2|𝑦0:𝑘

1 }

𝑘+𝑁−1

𝑙=𝑘

 

= ∑ 𝐸{𝜉𝑙
𝑇Ω𝜉𝑙|𝑦0:𝑘

1 }

𝑘+𝑁−1

𝑙=𝑘

 

= ∑ 𝐸{||𝜉𝑙||Ω
2 |𝑦0:𝑘

1 }

𝑘+𝑁−1

𝑙=𝑘

 

 

(A.2) 

 

 

(A.3) 

 

 

(A.4) 
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= ∑𝐸 {||𝜉𝑘+𝑙||Ω
2
|𝑦0:𝑘
1 }

𝑁−1

𝑙=0

 (A.5) 

where the augmented state vector 𝜉𝑘 is defined as 

𝜉𝑘 ≜ [
𝑥̂𝑘|𝑘
1

𝑥̂𝑘|𝑘
2 ]. (A.6) 

The matrix Ω and the Mahalanobis norm || ∙ ||Ω in (A.3)-(A.5) are defined as 

Ω ≜ [
𝐼𝑛 −𝐼𝑛
−𝐼𝑛 𝐼𝑛

] 

||𝑥||Ω ≜ 𝑥𝑇Ω𝑥. 

(A.7) 

(A.8) 

The recursions for the components of the augmented state, i.e.,  𝑥̂𝑘|𝑘
1  and 𝑥̂𝑘|𝑘

2 , can 

be written as 

𝑥̂𝑘|𝑘
1 = (𝐼 − 𝐾𝑘

1𝐶)𝐴1𝑥̂𝑘−1|𝑘−1
1 + 𝐾𝑘

1𝑦𝑘
1, 

𝑥̂𝑘|𝑘
2 = (𝐼 − 𝐾𝑘

2)𝐴2𝑥̂𝑘−1|𝑘−1
2 + 𝐾𝑘

2𝑥̂𝑘|𝑘
1→2, 

(A.9) 

(A.10) 

Using (A.9) and (A.10) we can write the recursion for the augmented state 𝜉𝑘 as 

𝜉𝑘 =  𝐴𝑘𝜉𝑘−1 + 𝐵𝑘
1𝑦𝑘

1 + 𝐵𝑘
2𝑥̂𝑘|𝑘

1→2 (A.11) 

where 

𝐴𝑘 ≜ [
(𝐼 − 𝐾𝑘

1𝐶)𝐴1 0

0 (𝐼 − 𝐾𝑘
2)𝐴2

]     𝐵𝑘
1 ≜ [𝐾𝑘

1

0
],    𝐵𝑘

2 ≜ [
0
𝐾𝑘
2].   

Since the cost function 𝐽(∙).has stochastic terms, namely 𝑦𝑘+1
1 , 𝑦𝑘+2

1 ,…, 𝑦𝑘+𝑁−1
1 , our 

first aim is to get rid of expectations inside the cost function and to eliminate these 

random terms. Defining 𝑢𝑘 ≜ 𝑥̂𝑘|𝑘
1→2. Then the equation (A.11) becomes 

𝜉𝑘 =  𝐴𝑘𝜉𝑘−1 + 𝐵𝑘
1𝑦𝑘

1 + 𝐵𝑘
2𝑢𝑘 (A.12) 

The augmented state at time 𝑘 + 1 can be written as: 

𝜉𝑘+1 =  𝐴𝑘+1𝜉𝑘 + 𝐵𝑘+1
1 𝑦𝑘+1

1 + 𝐵𝑘+1
2 𝑢𝑘+1.  (A.13) 

Substituting 𝜉𝑘 in (A.12) into (A.13), the augmented state at time 𝑘 + 1 becomes: 

𝜉𝑘+1 = 𝐴𝑘+1( 𝐴𝑘𝜉𝑘−1 + 𝐵𝑘
1𝑦𝑘

1 + 𝐵𝑘
2𝑢𝑘) + 𝐵𝑘+1

1 𝑦𝑘+1
1 + 𝐵𝑘+1

2 𝑢𝑘+1 

    = 𝐴𝑘+1𝐴𝑘𝜉𝑘−1 + 𝐴𝑘+1(𝐵𝑘
1𝑦𝑘

1 + 𝐵𝑘
2𝑢𝑘) + 𝐵𝑘+1

1 𝑦𝑘+1
1  

                   + 𝐵𝑘+1
2 𝑢𝑘+1 

(A.14) 

 

(A.15) 

Similarly, the augmented state at time 𝑘 + 2 can be written as follows. 
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𝜉𝑘+2 = 𝐴𝑘+2𝜉𝑘+1 + 𝐵𝑘+2
1 𝑦𝑘+2

1 + 𝐵𝑘+2
2 𝑢𝑘+2  (A.16) 

When substituting 𝜉𝑘+1 in (A.15) into (A.16), the augmented state becomes: 

𝜉𝑘+2 = 𝐴𝑘+2(𝐴𝑘+1𝐴𝑘𝜉𝑘−1 + 𝐴𝑘+1(𝐵𝑘
1𝑦𝑘

1 + 𝐵𝑘
2𝑢𝑘) + 𝐵𝑘+1

1 𝑦𝑘+1
1   

                     + 𝐵𝑘+1
2 𝑢𝑘+1) + 𝐵𝑘+2

1 𝑦𝑘+2
1 + 𝐵𝑘+2

2 𝑢𝑘+2 

                   = 𝐴𝑘+2𝐴𝑘+1𝐴𝑘𝜉𝑘−1 + 𝐴𝑘+2𝐴𝑘+1(𝐵𝑘
1𝑦𝑘

1 + 𝐵𝑘
2𝑢𝑘) 

                     +𝐴𝑘+2(𝐵𝑘+1
1 𝑦𝑘+1

1 + 𝐵𝑘+1
2 𝑢𝑘+1) + 𝐵𝑘+2

1 𝑦𝑘+2
1 + 𝐵𝑘+2

2 𝑢𝑘+2. 

 

(A.17) 

 

(A.18) 

These equations can be generalized as follows. 

𝜉𝑘+𝑛 = (𝐴𝑘+𝑛…𝐴𝑘+1𝐴𝑘)𝜉𝑘−1 + (𝐴𝑘+𝑛…𝐴𝑘+2𝐴𝑘+1)(𝐵𝑘
1𝑦𝑘

1 + 𝐵𝑘
2𝑢𝑘) 

                  +⋯+ (𝐵𝑘+𝑛
1 𝑦𝑘+𝑛

1 + 𝐵𝑘+𝑛
2 𝑢𝑘+𝑛) 

            = 𝐴𝑘+𝑛:𝑘𝜉𝑘−1 + ∑ 𝐴𝑘+𝑛:𝑘+𝑖+1(𝐵𝑘+𝑖
1 𝑦𝑘+𝑖

1 + 𝐵𝑘+𝑖
2 𝑢𝑘+𝑖)

𝑛
𝑖=0   

 

(A.19) 

(A.20) 

where 𝐴𝑘+𝑛:𝑘 ≜ 𝐴𝑘+𝑛…𝐴𝑘+1𝐴𝑘. Hence we have  

𝜉𝑘+𝑙 = 𝐴𝑘+𝑙:𝑘𝜉𝑘−1 +∑𝐴𝑘+𝑙:𝑘+𝑖+1(𝐵𝑘+𝑖
1 𝑦𝑘+𝑖

1 + 𝐵𝑘+𝑖
2 𝑢𝑘+𝑖)

𝑙

𝑖=0

 (A.21) 

We can write (A.21) in matrix form as follows. 

𝜉𝑘+𝑙 = 𝐴𝑘+𝑙:𝑘𝜉𝑘−1 + 𝐵̅𝑙
1𝑌 + 𝐵̅𝑙

2Γ (A.24) 

where 

𝐵̅𝑙
1 ≜ [𝐴𝑘+𝑙:𝑘+1𝐵𝑘

1 𝐴𝑘+𝑙:𝑘+2𝐵𝑘+1
1 … 𝐴𝑘+𝑙𝐵𝑘+𝑙−1

1 𝐵𝑘+𝑙
1   0𝑚 … 0

𝑚] 

𝐵̅𝑙
2 ≜ [𝐴𝑘+𝑙:𝑘+1𝐵𝑘

2 𝐴𝑘+𝑙:𝑘+2𝐵𝑘+1
2 … 𝐴𝑘+𝑙𝐵𝑘+𝑙−1

2 𝐵𝑘+𝑙
2   0𝑛 … 0𝑛]. 

 

𝑌 ≜

[
 
 
 
 
 
 
𝑦𝑘
1

𝑦𝑘+1
1

:
:

𝑦𝑘+𝑙
1

:
𝑦𝑘+𝑁−1
1 ]

 
 
 
 
 
 

,     Γ ≜

[
 
 
 
 
 
𝑢𝑘
𝑢𝑘+1
:
:

𝑢𝑘+𝑙
:

𝑢𝑘+𝑁−1]
 
 
 
 
 

 

 

 𝐵̅𝑙
1 and 𝐵̅𝑙

2 have 𝑁 partitions first 𝑙 + 1 of which are nonzero. 𝑌 and Γ are the 

measurement matrix of the local agent and the quantized state matrix respectively. 

Substituting 𝑦𝑘+𝑙
1 = 𝐶𝑥𝑘+𝑙 + 𝑣𝑘+𝑙

1  into the measurement matrix 𝑌, we get 
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𝑌 =

[
 
 
 
 
 
 
𝑦𝑘
1

𝑦𝑘+1
1

:
:

𝑦𝑘+𝑙
1

:
𝑦𝑘+𝑁−1
1 ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑦𝑘
1

𝐶𝑥𝑘+1  + 𝑣𝑘+1
1

:
:

𝐶𝑥𝑘+𝑙 + 𝑣𝑘+𝑙
1

:
𝐶𝑥𝑘+𝑁−1 + 𝑣𝑘+𝑁−1

1 ]
 
 
 
 
 
 

. (A.25) 

Note that the first partition of 𝑌, i.e., 𝑦𝑘
1, in (A.25) has not been changed since 𝑦𝑘

1 is 

given in the conditioning of the expected value in the cost 𝐽(∙). The expression 

(A.26) can be written as follows. 

𝑌 =

[
 
 
 
 
 
 

𝑦𝑘
1

𝐶𝑥𝑘+1 + 𝑣𝑘+1
1

:
:

𝐶𝑥𝑘+𝑙 + 𝑣𝑘+𝑙
1

:
𝐶𝑥𝑘+𝑁−1 + 𝑣𝑘+𝑁−1

1 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑦𝑘
1

𝐶𝑥𝑘+1
:
:

𝐶𝑥𝑘+𝑙
:

𝐶𝑥𝑘+𝑁−1]
 
 
 
 
 
 

+

[
 
 
 
 
 
 

0
𝑣𝑘+1
1

:
:

𝑣𝑘+𝑙
1

:
𝑣𝑘+𝑁−1
1 ]

 
 
 
 
 
 

= [
𝑦𝑘
1

 𝐶̅𝑋1̅̅ ̅
] + [

0
𝑉1̅
]  (A.26) 

where 

𝑋̅1 =

[
 
 
 
 
 
 
𝑥𝑘+1
𝑥𝑘+2
:
:

𝑥𝑘+𝑙
:

𝑥𝑘+𝑁−1]
 
 
 
 
 
 

 and  𝑉̅1 =

[
 
 
 
 
 
 
𝑣𝑘+1
1

𝑣𝑘+2
1

:
:

𝑣𝑘+𝑙
1

:
𝑣𝑘+𝑁−1
1 ]

 
 
 
 
 
 

  

The vectors 𝑋̅1 and 𝑉̅1 are the state and measurement noise matrix of the local agent. 

The matrix  𝐶̅ is defined as 

 𝐶̅ = blkdiag(𝐶)𝑁−1×𝑁−1. 
 

For the sake of simplicity, we now define  

𝑋̀ ≜ [
𝑦𝑘
1

 𝐶̅𝑋̅1
],      𝑉̀ ≜ [

0
𝑉1̅
].   

which enables is to write (A.26) as shown below. 

𝑌 = [
𝑦𝑘
1

 𝐶̅𝑋̅1
] + [

0
𝑉̅1
] = 𝑋̀ + 𝑉̀   (A.27) 
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A.2 Calculation of the Expected Values 

We now calculate the expectation in the cost function given in (A.5). 

||𝜉𝑘+𝑙||Ω
2
≜ 𝜉𝑘+𝑙

𝑇 Ω𝜉𝑘+𝑙 

               = (𝐴𝑘+𝑙:𝑘𝜉𝑘−1 + 𝐵̅𝑙
1𝑌 + 𝐵̅𝑙

2Γ)𝑇Ω(𝐴𝑘+𝑙:𝑘𝜉𝑘−1 + 𝐵̅𝑙
1𝑌 + 𝐵̅𝑙

2Γ) 

               = (𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇 + 𝑌𝑇(𝐵̅𝑙
1)𝑇 + Γ𝑇(𝐵̅𝑙

2)𝑇)Ω(𝐴𝑘+𝑙:𝑘𝜉𝑘−1 

                   +𝐵̅𝑙
1𝑌 + 𝐵̅𝑙

2Γ) 

               = 𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω(𝐴𝑘+𝑙:𝑘)𝜉𝑘−1 

                  +2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω(𝐵̅𝑙
1𝑌 + 𝐵̅𝑙

2Γ) 

                  +(𝐵̅𝑙
1𝑌 + 𝐵̅𝑙

2Γ)𝑇Ω(𝐵̅𝑙
1𝑌 + 𝐵̅𝑙

2Γ). 

  

(A.28) 

 

(A.29) 

 

 

(A.30) 

The last expression in (A.30) can also be expanded into three terms as shown below. 

||𝜉𝑘+𝑙||𝑄
2
= 𝜉𝑘−1

𝑇 (𝐴𝑘+𝑙:𝑘)
𝑇Ω(𝐴𝑘+𝑙:𝑘)𝜉𝑘−1 

                         +2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω(𝐵̅𝑙
1𝑌 + 𝐵̅𝑙

2Γ) 

                            +𝑌𝑇(𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑌 + 2𝑌𝑇(𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

2Γ 

                                              +Γ𝑇(𝐵̅𝑙
2)𝑇Ω𝐵̅𝑙

2Γ.  

 

 

 

(A.31) 

Substituting  𝑋̀ + 𝑉̀ for the measurement matrix 𝑌, we get 

||𝜉𝑘+𝑙||𝑄
2
= 𝜉𝑘−1

𝑇 (𝐴𝑘+𝑙:𝑘)
𝑇Ω𝐴𝑘+𝑙:𝑘𝜉𝑘−1 

                                               +2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω(𝐵̅𝑙
1(𝑋̀ + 𝑉)̀ + 𝐵̅𝑙

2Γ) 

                                               +(𝑋̀ + 𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀ + 𝑉̀) 

                                               +2(𝑋̀ + 𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
2Γ + Γ𝑇(𝐵̅𝑙

2)𝑇Ω𝐵̅𝑙
2Γ . 

 

 

 

 

(A.32) 

Taking the expectation of both sides of (A.32) condition on the measurements 𝑦0:𝑘
1 , 

we obtain 

      𝐸[||𝜉𝑘+𝑙||Ω
2
|𝑦0:𝑘
1 ] = 𝐸[𝜉𝑘−1

𝑇 (𝐴𝑘+𝑙:𝑘)
𝑇Ω𝐴𝑘+𝑙:𝑘𝜉𝑘−1|𝑦0:𝑘

1 ] 

                                      +𝐸[2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω(𝐵̅𝑙
1(𝑋̀ + 𝑉)̀ + 𝐵̅𝑙

2Γ)|𝑦0:𝑘
1 ] 

                                      +𝐸[(𝑋̀ + 𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀ + 𝑉̀)|𝑦0:𝑘

1 ] 

                                      +𝐸 [2(𝑋̀ + 𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
2Γ|𝑦0:𝑘

1 ] 

                                      +E[Γ𝑇(𝐵̅𝑙
2)𝑇Ω𝐵̅𝑙

2Γ |𝑦0:𝑘
1 ].                        

 

 

 

 

 

(A.33) 
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The only random terms in (A.33) are 𝑋̀ and 𝑉̀. Hence the expectations of the other 

terms are equal to theirselves, which gives 

   𝐸 [||𝜉𝑘+𝑙||Ω
2
|𝑦0:𝑘
1 ] = 𝜉𝑘−1

𝑇 (𝐴𝑘+𝑙:𝑘)
𝑇Ω𝐴𝑘+𝑙:𝑘𝜉𝑘−1 

                                    +2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω(𝐵̅𝑙
1𝐸[𝑋̀ + 𝑉̀ |𝑦0:𝑘

1 ] + 𝐵̅𝑙
2Γ) 

                                    +𝐸 [(𝑋̀ + 𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀ + 𝑉̀) |𝑦0:𝑘

1 ] 

                                     +𝐸[2(𝑋̀ + 𝑉̀)
𝑇
 |𝑦0:𝑘

1 ](𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

2Γ + Γ𝑇(𝐵̅𝑙
2)𝑇Ω𝐵̅𝑙

2Γ. 

 

 

 

 

 

(A.34) 

Calculating the first and the third expectations in (A.34) gives the following. 

𝐸 [||𝜉𝑘+𝑙||Ω
2
|𝑦0:𝑘
1 ] = 𝜉𝑘−1

𝑇 (𝐴𝑘+𝑙:𝑘)
𝑇Ω𝐴𝑘+𝑙:𝑘𝜉𝑘−1 

                                                      +2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω(𝐵̅𝑙
1𝑋̅ + 𝐵̅𝑙

2Γ) 

                                                      +𝐸 [(𝑋̀ + 𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀ + 𝑉̀) |𝑦0:𝑘

1 ] 

                                                      +2𝑋̅𝑇(𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

2Γ + Γ𝑇(𝐵̅𝑙
2)𝑇Ω𝐵̅𝑙

2Γ 

 

 

 

(A.35) 

where 

𝑋̅ = 𝐸[𝑋̀|𝑦0:𝑘
1 ] 

    = 𝐸 [[
𝑦𝑘
1

𝐶̅𝑋̅1
] |𝑦0:𝑘

1 ] 

= 𝐸

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 

𝑦𝑘
1

𝐶𝑥𝑘+1
:
:

𝐶𝑥𝑘+𝑙
:

𝐶𝑥𝑘+𝑁−1]
 
 
 
 
 
 

|𝑦0:𝑘
1

]
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 

𝑦𝑘
1

𝐶𝐸[𝑥𝑘+1|𝑦0:𝑘
1 ]

:
:

𝐶𝐸[𝑥𝑘+𝑙|𝑦0:𝑘
1 ]

:
𝐶𝐸[𝑥𝑘+𝑁−1|𝑦0:𝑘

1 ]]
 
 
 
 
 
 

 

(A.36) 

(A.37) 

 

 

(A.38) 

 

 

 

 

 

(A.39) 
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=

[
 
 
 
 
 
 
 

𝑦𝑘
1

𝐶𝑥̂𝑘+1|𝑘
1

:
:

𝐶𝑥̂𝑘+𝑙|𝑘
1

:
𝐶𝑥̂𝑘+𝑁−1|𝑘

1
]
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 

𝑦𝑘
1

𝑦̂𝑘+1|𝑘
1

:
:

𝑦̂𝑘+𝑙|𝑘
1

:
𝑦̂𝑘+𝑁−1|𝑘
1

]
 
 
 
 
 
 
 

 

(A.40) 

The second expectation in (A.35) can be calculated as follows. 

𝐸 [(𝑋̀ + 𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀ + 𝑉̀)|𝑦0:𝑘

1 ] =  𝐸 [(𝑋̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀)|𝑦0:𝑘

1 ] 

                                                                     +𝐸 [(𝑋̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑉̀)|𝑦0:𝑘

1 ] 

                                                                 +𝐸 [(𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀)|𝑦0:𝑘

1 ] 

                                                                     +𝐸 [(𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑉̀)|𝑦0:𝑘

1 ]. 

 

 

 

 

(A.41) 

Since the term (𝑋̀ + 𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀ + 𝑉̀) is a scalar, the trace of this term is 

equal to itself. Therefore the first term in (A.41) can be written as follows. 

𝐸 [(𝑋̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀)|𝑦0:𝑘

1 ] =  𝐸 [tr((𝑋̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀))|𝑦0:𝑘

1 ]   

                                               =  𝐸 [tr ((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1(𝑋̀)(𝑋̀)
𝑇
) |𝑦0:𝑘

1 ] 

               = tr ((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝐸 [(𝑋̀)(𝑋̀)
𝑇
|𝑦0:𝑘
1 ]) 

                                               = tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑃̅)   

(A.42) 

(A.43) 

(A.44) 

(A.45) 

where 

             𝑃̅ = 𝐸 [(𝑋̀)(𝑋̀)
𝑇
|𝑦0:𝑘
1 ] (A.46) 
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= 𝐸

(

 
 
 
 

[
 
 
 
 
 
 

𝑦𝑘
1

𝐶𝑥𝑘+1
:
:

𝐶𝑥𝑘+𝑙
:

𝐶𝑥𝑘+𝑁−1]
 
 
 
 
 
 

[(𝑦𝑘
1)𝑇 𝑥𝑘+1

𝑇 𝐶𝑇 ⋯ 𝑥𝑘+𝑁−1
𝑇 𝐶𝑇]|𝑦0:𝑘

1

)

 
 
 
 

 

         =

𝐸

[
 
 
 
 

[
 
 
 
𝑦𝑘
1(𝑦𝑘

1)𝑇                   𝑦𝑘
1𝑥𝑘+1

𝑇 𝐶𝑇 ⋯ 𝑦𝑘
1𝑥𝑘+𝑁−1

𝑇 𝐶𝑇

𝐶𝑥𝑘+1(𝑦𝑘
1)𝑇

⋮
𝐶𝑥𝑘+𝑁−1(𝑦𝑘

1)𝑇

𝐶𝑥𝑘+1𝑥𝑘+1
𝑇 𝐶𝑇

⋮
𝐶𝑥𝑘+𝑁−1𝑥𝑘+1

𝑇 𝐶𝑇

⋯
⋱
…

𝐶𝑥𝑘+1
1 𝑥𝑘+𝑁−1

𝑇 𝐶𝑇

⋮
𝐶𝑥𝑘+𝑁−1

1 𝑥𝑘+𝑁−1
𝑇 𝐶𝑇]

 
 
 

|𝑦0:𝑘
1

]
 
 
 
 

. 

 

 

(A.47) 

 

 

 

 

(A.48) 

Considering the  components of the matrix in (A.48) one by one, we get 

 𝐸[𝑦𝑘
1(𝑦𝑘

1)𝑇|𝑦0:𝑘
1 ] =  𝑦𝑘

1𝑦𝑘
1𝑇 

 

 𝐸[𝐶𝑥𝑘+𝑖(𝑦𝑘
1)𝑇|𝑦0:𝑘

1 ] = 𝐶𝐸[𝑥𝑘+𝑖|𝑦0:𝑘
1 ](𝑦𝑘

1)𝑇 

= 𝐶𝑥̂𝑘+𝑖|𝑘
1 (𝑦𝑘

1)𝑇 = 𝑦̂𝑘+𝑖|𝑘
1 (𝑦𝑘

1)𝑇  

 𝐸[𝐶𝑥𝑘+1𝑥𝑘+𝑖
𝑇 𝐶𝑇|𝑦0:𝑘

1 ] = 𝐶𝐸[𝑥𝑘+1𝑥𝑘+𝑖
𝑇 |𝑦0:𝑘

1 ]𝐶𝑇 

                                   = 𝐶𝐸[𝑥𝑘+1(𝐴
𝑛−1𝑥𝑘+1 + ∑𝛽𝑤𝑘)

𝑇|𝑦0:𝑘
1 ]𝐶𝑇 

                                   = 𝐶𝐸[𝑥𝑘+1𝑥𝑘+1
𝑇 (𝐴𝑛−1)𝑇 + 𝑥𝑘+1(∑𝛽𝑤𝑘)

𝑇|𝑦0:𝑘
1 ]𝐶𝑇 

                                   = 𝐶(𝑃𝑘+1|𝑘
1 + 𝑥̂𝑘+1|𝑘

1 (𝑥̂𝑘+1|𝑘
1 )

𝑇
)(𝐴𝑛−1)𝑇𝐶𝑇.  

 

 

Note that the last equality can be written because 𝐸[𝑥𝑘+1(∑𝛽𝑤𝑘)
𝑇|𝑦0:𝑘

1 ] is ′0′ since 

𝑥𝑘+1 and the process noise terms in ∑𝛽𝑤𝑘 are independent and the expectations of 

the process noise terms are zero. The general expression is given as 

𝐸[𝐶𝑥𝑘+𝑖𝑥𝑘+𝑗
𝑇 𝐶𝑇|𝑦0:𝑘

1 ] = 𝐶𝐸[𝑥𝑘+𝑖𝑥𝑘+𝑗
𝑇 |𝑦0:𝑘

1 ]𝐶𝑇 

                             = 𝐶(𝑃min (𝑘+𝑖,𝑘+𝑗)|𝑘
1  

                                 +𝑥̂min (𝑘+𝑖,𝑘+𝑗)|𝑘
1 𝑥̂min(𝑘+𝑖,𝑘+𝑗)|𝑘

1 𝑇
)(𝐴|𝑖−𝑗|)𝑇𝐶𝑇. 

(A.49) 

 

(A.50) 

Continuing with the second term of (A.41) we write 
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𝐸 [(𝑋̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑉̀)|𝑦0:𝑘

1 ] = 𝐸 [tr((𝑋̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑉̀))|𝑦0:𝑘

1 ] 

                                              =  𝐸 [tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1(𝑉̀)(𝑋̀)
𝑇
)|𝑦0:𝑘

1 ] 

                                                    =  tr ((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝐸 [(𝑉̀)(𝑋̀)
𝑇
|𝑦0:𝑘
1 ]) 

                                                    = 0 

  

 

  

where the last equality can be written since 𝑉̀ and 𝑋̀ matrices are independent and 

the expectations of the measurement noise terms are zero. Similarly, the third term 

of (A.41), i.e., 𝐸 [(𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀)|𝑦0:𝑘

1 ], is zero. 

The forth term of (A.41) can be calculated as follows. 

𝐸 [(𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑉̀)|𝑦0:𝑘

1 ] = 𝐸 [tr((𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑉̀))|𝑦0:𝑘

1 ] 

                                                  = tr ((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝐸 [(𝑉̀)(𝑉̀)
𝑇
|𝑦0:𝑘
1 ]) 

                                                  = tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑅̅)  

(A.51) 

(A.52) 

 

(A.53) 

where 

                       𝑅̅ ≜  𝐸 [(𝑉̀)(𝑉̀)
𝑇
|𝑦0:𝑘
1 ]

= 𝐸

[
 
 
 
 
 
 

[
 
 
 
 
 
0𝑚,1
𝑣𝑘+1
:
:

𝑣𝑘+𝑙
:

𝑣𝑘+𝑁−1]
 
 
 
 
 

[01,𝑚 𝑣𝑘+1
𝑇 𝑣𝑘+2

𝑇 ⋯ 𝑣𝑘+𝑁−1
𝑇 ]

|

|

𝑦0:𝑘
1

]
 
 
 
 
 
 

 

                           = 𝐸 (

[
 
 
 
0𝑚 0𝑚          ⋯ 0𝑚
0𝑚
⋮
0𝑚

𝑣𝑘+1𝑣𝑘+1
𝑇

⋮
𝑣𝑘+𝑁−1𝑣𝑘+1

𝑇

⋯
⋱
…

𝑣𝑘+1𝑣𝑘+𝑁−1
𝑇

⋮
𝑣𝑘+𝑁−1𝑣𝑘+𝑁−11

𝑇 ]
 
 
 
|𝑦0:𝑘
1 ) 

                           = [

0𝑚 0𝑚 ⋯ 0𝑚
0𝑚
⋮
0𝑚

𝑅
⋮
0𝑚

⋯
⋱
…

0𝑚
⋮
𝑅

]. 

 

 

 

 

 

 

 

As a result, the expectation in (A.41) can be written as shown below.   
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𝐸 [(𝑋̀ + 𝑉̀)
𝑇
(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1(𝑋̀ + 𝑉̀)] =  tr((𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1𝑃̅) +  tr((𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
1𝑅̅)        (A.54) 

Finally, substituting the result (A.54) into the expectation in (A.36) we can write  

𝐸 [||𝜉𝑘+𝑙||Ω
2
|𝑦0:𝑘
1 ] = 𝜉𝑘−1

𝑇 (𝐴𝑘+𝑙:𝑘)
𝑇Ω𝐴𝑘+𝑙:𝑘𝜉𝑘−1 

                                 +2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω(𝐵̅𝑙
1𝑋̅ + 𝐵̅𝑙

2Γ) + tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑃̅) 

                                +tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑅̅) + 2𝑋̅𝑇(𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

2Γ + Γ𝑇(𝐵̅𝑙
2)𝑇Ω𝐵̅𝑙

2Γ  

 

 

(A.55) 

A.3 Final form of the Cost Function 

We can now separate the terms which are independent of the quantized states as 

follows. 

𝐸 [||𝜉𝑘+𝑙||Ω
2
|𝑦0:𝑘
1 ]   = 2𝜉𝑘−1

𝑇 (𝐴𝑘+𝑙:𝑘)
𝑇Ω𝐵̅𝑙

2Γ + 2𝑋̅𝑇(𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

2Γ 

                                               +Γ𝑇(𝐵̅𝑙
2)𝑇Ω𝐵̅𝑙

2Γ + 𝐽𝑙   

 

(A.53) 

where the term 𝐽𝑙  which is independent of the quantized states is defined as follows. 

𝐽𝑙 ≜ 𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω𝐴𝑘+𝑙:𝑘𝜉𝑘−1 + 2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω𝐵̅𝑙
1𝑋̅ 

                     +tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑃̅) +  tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑅̅). 

 

(A.54) 

Note that although the term 𝐽𝑙 is independent of the quantized states, it is still 

dependent on the quantized covariances. Hence for the general optimization problem 

where the quantized covariances are also unknown, the terms 𝐽𝑙 will be necessary. 

By using (A.53), the cost function 𝐽(∙) in (A.5) can be written as follows. 

𝐽(∙) = ∑ 𝐸[||𝜉𝑘+𝑙||Ω
2
|𝑦0:𝑘
1 ]

𝑁−1

𝑙=0

 

= ∑ 2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω𝐵̅𝑙
2Γ + 2𝑋̅𝑇(𝐵̅𝑙

1)𝑇Ω𝐵̅𝑙
2Γ

𝑁−1

𝑙=0

+ Γ𝑇(𝐵̅𝑙
2)𝑇Ω𝐵̅𝑙

2Γ + 𝐽𝑙  

= Γ𝑇𝑊Γ+ 2Γ𝐴
𝑇Γ + Λ. 

(A.55) 

 

(A.56) 

(A.57) 

where 

𝑊 ≜ ∑(𝐵̅𝑙
2)𝑇Ω𝐵̅𝑙

2

𝑁−1

𝑙=0

 (A.58) 
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Γ𝐴
𝑇 ≜ ∑(𝜉𝑘−1

𝑇(𝐴𝑘+𝑙:𝑘)
𝑇 + 𝑋̅𝑇(𝐵̅𝑙

1)𝑇)Ω𝐵̅𝑙
2

𝑁−1

𝑙=0

 

Λ ≜  ∑ 𝐽𝑙

𝑁−1

𝑙=0

 

≜ ∑ (
𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω𝐴𝑘+𝑙:𝑘𝜉𝑘−1 + 2𝜉𝑘−1
𝑇 (𝐴𝑘+𝑙:𝑘)

𝑇Ω𝐵̅𝑙
1𝑋̅

+tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑃̅) +  tr((𝐵̅𝑙
1)𝑇Ω𝐵̅𝑙

1𝑅̅)
)

𝑁−1

𝑙=0

 

(A.59) 

 

(A.60) 

 

(A.61) 

 


