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ABSTRACT

DYNAMIC QUANTIZATION FOR TRACK FUSION UNDER
COMMUNICATION CONSTRAINTS

Gok, Gorkem
M.S., Department of Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Umut Orguner

June 2015, 69 pages

Quantization is one of the important problems for track fusion in defense systems.
Due to the communication constraints, the track information has to be quantized
while it is sent from local agents to the fusion center. In this study, a new
quantization approach is proposed for track fusion in fusion systems under
communication constraints. The quantization algorithm used in practice for track
fusion is a static nearest neighbor approach which selects the closest vector and the
covariance in a table to the current track information. The quantization algorithm
proposed here involves posing the quantization problem in an optimization
framework and solving it by also including the predicted future values of the track
into the picture. Since the approach considers the inherent dynamic characteristics of
the tracks, the resulting methodology is called as dynamic quantization. The
simulation results show that the dynamic quantization is much more advantageous

compared to static quantization even under very low bit rates.

Keywords: Track Fusion, Fusion System, Communication Constraint, Quantization
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ILETiSIM KISITLARI ALTINDA iZ BIRLESTIRME iCIiN DINAMIK
NICEMLEME KULLANIMI

Gok, Gorkem
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Bolimii
Tez Yoneticisi: Dog. Dr. Umut Orguner

Haziran 2015, 69 sayfa

Savunma sistemlerinde iz birlestirme i¢in nicemleme islemi Onemli
problemlerden biridir. Iletisim kisitlarindan dolay: iz bilgisi, yerel merkezlerden
flizyon merkezine gonderilirken nicemlenmek zorundadir. Bu c¢alismada iletisim
kisitlar1 altindaki bir flizyon sistemindeki iz birlestirme igin yeni bir nicemleme
yontemi Onerilmektedir. Pratikte bu is i¢in kullanilan statik nicemleme yontemi belli
bir anda bir bilgi kaynagindan iz bilgisini gonderirken sabit bir tablodan izin o
andaki durum vektorii ve kovaryansina en yakin vektor ve kovaryansi segmektedir.
Onerilen yontem ise iz bilgisi gonderme problemini izin olas1 gelecek degerlerini de
ongoren bir eniyileme problemi olarak modelleyip bu problemi ¢dzmektedir. Elde
edilen nicemleme yontemi izlerin dinamik yapilarin1 da hesaba kattigindan dinamik
nicemleme olarak adlandiriimaktadir. Elde edilen benzetim sonuglar1 dinamik
nicemlemenin statik nicemlemeye gore diisiik bit sayilarinda dahi ¢ok daha avantajl

oldugunu gostermektedir.

Anahtar Kelimeler: Iz Birlestirme, Fiizyon Sistemi, iletisim Kisitlar1, Nicemleme
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CHAPTER 1

INTRODUCTION

Target tracking is one of the important problems of the contemporary defense
systems. In a simple sense, target tracking can be defined as extracting kinematic
and/or attribute information from one or more than one measurements coming from
varying number of sources by using association and state estimation algorithms [1].
The purpose of target tracking is to determine the kinematic quantities, i.e., position,
velocity and other characteristics/attributes of the targets, such as their type. In order
to collect information from targets, sensors are utilized. A sensor can be any
measuring device which collects information from the objects existing in the
environment. One of the most widespread sensors used for target tracking in both
commercial and defense applications is the radar. A radar utilizes radio waves to
measure the range, altitude, direction and speed of detected objects. Sonar, camera,
ultrasound, infrared sensors can be given as other examples of the common sensors
used in target tracking. Some typical target tracking examples are the radar tracking
of aircraft, tracking a person or a vehicle in video surveillance systems, tracking
weather balloons in weather monitoring and tracking of lymphocyte cells in cell
biology [2].

Target tracking problem is essentially a state estimation problem. Tracking uses
the tools of estimation and statistical decision theory [3]. A general target tracking
system is shown in Figure 1.1. The figure is composed of a target or targets to be
detected, a sensor for measurement, a signal processor and information processor for

the state estimation and data association [2].
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Figure 1.1: A target tracking system block diagram

The most widespread algorithm used for target tracking in the literature is
Kalman filter (KF). Kalman filter is a well-known Bayesian algorithm and follows
from general Bayesian recursive equation using Gaussian densities. Under linear and
Gaussian assumptions, the posterior density of the state of linear system at any time
becomes a Gaussian density which can be represented by a mean and a covariance
matrix. Therefore, instead of propagating densities, Kalman filter propagates only
the sufficient statistics — the mean and the covariance [2]. In literature, [4, 5]
describes the Kalman filter for linear Gaussian systems. Because of its ubiquitous
use and practical convenience, we will use Kalman filter in our analysis and
experiments in this thesis.

Other state estimation algorithms commonly used in target tracking are
Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Particle Filter
(PF). EKF and UKF are generally used in nonlinear non-Gaussian Bayesian state
estimation problems where the nonlinearities are mild. While EKF utilizes a
linearized model system [6], UKF uses unscented transform which propagates a
number of points in the state-space to represent nonlinear transformation of
Gaussian random variables [7, 8]. A particle filter which is a stochastic
generalization of UKF can be used in general cases [9]. A general description of PF
and relation with other algorithms can be found in [10].

In target tracking literature, a track is defined as the filtered information
obtained from targets by using KF or other state estimation algorithms. A track is

represented by the estimated state statistics which are the posterior mean and the



posterior covariance in a Kalman filter. Target tracking can be performed with only
one sensor as well as with the help of more than one sensor. Hence, one of the main
problems of target tracking is “Multiple Sensor Tracking” which is to obtain a track
with information coming from multiple sensors.

There are five important problems of multiple sensor tracking as explained

below:

Registration: Coordinates of different sensors, local and fusion centers may
not be aligned in time or space [11]. They must be aligned for tracking. In
this thesis we assume that all coordinates of the sensors are already aligned

In our experiments.

- Bias: Because of the transformations from/to different coordinates, biases may
exist between different sensors. They have to be removed by using bias
estimation tools. In this thesis, we assume that there is no bias problem in our
system [11].

Correlation: Though measurements might be conditionally independent across
different sensors, due to the common process noise, processed information
can be correlated. This effect can be calculated and compensated. In this
thesis there exists and we handle correlation in our system [11].

- Rumor Propagation: Because of the correlation, the same information can

travel in loops in a sensor network and can result in unrealistic error statistics
making the fused system overconfident. Rumor Propagation is more
common in systems with memory and feedback [11]. In the thesis, the fusion

architectures we use does not involve loops.

Out of Sequence Measurements: Measurements sometimes arrive to a fusion

center later than more recent measurements because of delays in the
communication channels and the recent measurement might have been
processed already [11]. In this thesis, we assume that there is no

communication delay in the fusion system we consider.



Combining information coming from the multiple sources is usually called as
“fusion” [1] in the literature. A crucial point in multiple sensor tracking is the fusion
architecture. There are mainly 4 types of fusion architectures as shown in Figure 1.2.

While the circles show sensors, the squares show fusion or local centers.

000 OO0 O

N \

F1

F2
F1 \ /
Fs3

Centralized Fusion Hierarchical Fusion without Feedback

RY KPP Y
~ .

F3 —>| ks

Hierarchical Fusion with Feedback Distributed Fusion

Figure 1.2: Fusion architectures [12]

The first fusion architecture is the centralized fusion architecture. In centralized
fusion, the information taken from the sensors are directly sent to and collected in
the fusion center. This information is then processed in the fusion center by using
tracking algorithms. The information sent from the sensors is composed of raw
measurements. Since the local sensors do not process the raw measurements, sensors
always have to send this information to the fusion center. In other words, a piece of
information not sent to the fusion center disappears since the local centers related to

each sensor do not obtain or keep any processed information. Although the



traditional centralized architecture has optimal performance, it has important
drawbacks. It requires high bandwidth communication links between local agents
and fusion center. Moreover, lags or saturations can happen in the communication
links and these lags/saturations can cause Out-of-Sequence Measurements [13] or
data disappearance.

In the hierarchical fusion architecture, there are local centers that take the raw
measurements from sensors and process them by tracking algorithms. It is then this
processed information which is sent to the higher node which is called as the fusion
center. When the fusion center processes information, if the processed data are sent
back to the local centers and used for reducing the estimation errors, the architecture
is called as hierarchical fusion architecture with feedback. Hierarchical fusion
architectures can work on limited communication bandwidths since local centers can
keep processed information. In other words, thanks to the capability of the local
centers to keep processed information, the communication rates between the local
centers and the fusion center can be reduced without any information loss.

The last alternative to traditional centralized architecture is the distributed
fusion architecture where there is no superior center in the network. All centers can
send and receive processed information among each other. Like hierarchical fusion
architectures, distributed fusion architectures can have reduced communication rates
between the nodes.

Another advantage of both hierarchical and distributed architectures is that the
computational loads can be distributed to different nodes as opposed to a centralized
architecture where all of the computation is at the fusion center [12]. Furthermore,
hierarchical and decentralized architectures have multiple centers which keep
processed information. Therefore, if one or more of the centers are lost in a battle
scenario, the rest of the network can still function with valuable (processed)
information. On the other hand, centralized systems have a single weak point, which
is the fusion center, and the loss of this weak point leads to the loss of all of the
useful information.

In reality, the selection of a fusion architecture should be made by considering

all of the factors described above. Most of the times, the optimal centralized



architecture has to be traded off for a hierarchical or distributed system due to
communication constraints. Another case when a hierarchical or distributed
approach has to be used is the case of legacy systems in which sensors might not be
able to provide raw information to the fusion center, which might be the case, for
example, with radars purchased from foreign countries. In this thesis we use
hierarchical fusion architecture without feedback in our experiments.

There are two main tasks in multiple sensor information fusion. The first one is
the track association which is the task of deciding whether two tracks coming from
different local sensors belong to the same target [14]. The second task in multiple
sensor tracking is the track fusion whose aim is to obtain a single fused track from
the associated tracks coming from the local sensors [14]. Since the topic of track
fusion is the main subject of this thesis, we give a detailed literature survey about it

below.

1.1. Literature Survey on Track Association and Fusion

In multisensor target tracking, an important problem is to decide whether two
tracks coming from different sensors represent the same target or not. This is called
as the track association problem. There are several methods in the literature to
overcome the track association problem. One method proposed by [15] is a test for
track association for two local agents. When track association is for more than two
local agents, multi-dimensional assignment problem can be utilized. Moreover, there
is another test in literature given in [16] which decides whether two tracks from
different systems represent the same target by comparing the latest estimates of two
tracks.

After it is known that two tracks are from the same target, the next question is to
combine the tracks, which is named as the track fusion problem [17]. There has been
a large amount of research conducted about track fusion since 1970s. Many exact

and approximate solutions to the track fusion problem have been proposed and



different evaluation techniques have been applied to these solutions to find the
optimum approach.

An optimal fusion solution is proposed by [18], [19] and [20] under arbitrary
communication patterns. This solution is optimal provided that the system is
deterministic, i.e., no process noise. However, in practice, there is crosscorrelation
between local agents due to the common process noise of the target. In 1986, the
study [21] is conducted to show the effect of the common process noise on the track
fusion for two a — g filters where a fusion formula was proposed. Then, [17] shows
that this formula is optimal only in a maximum likelihood sense.

A kinematic state vector fusion algorithm is proposed in [22] for dissimilar
sensors by considering the effects of cross-correlation. This cross-correlation has
been obtained in terms of the steady-state covariances of Kalman filters. Also, when
the cross-correlation is positive, it is observed that the performance of track fusion is
increased. [23] has also proposed an efficient algortihm for track fusion by
considering the effects of cross-covariance and analized the structure of cross-
covariance matrix.

[24] and [25] propose a unified linear model as a general optimal solution for
centralized, distributed and hybrid fusion architectures. This model is optimal under
the presence of cross-correlation for arbitrary number of sensors. For this purpose,
the fusion techniques of the best linear unbiased estimation (BLUE) and optimal
weighted least-squares (WLS) are presented. Moreover, the formulae are given in
[26-29] to obtain cross correlations, filter gains and observation matrices of local
agents under linearity assumptions. [30] proposes a different method for obtaining
the exact fusion algorithm by calculating the cross-covariances for sequential fusion.
Different sequential fusion structures such as track fusion with no feedback, T2TF
(Track-to-Track Fusion) with partial feedback and T2TF wtih full feedback are
examined. Furthermore, an approximate implementation is proposed for systems
with low communication capacity.

Another good reference is [31] which proposes an optimal solution to the
distributed track fusion problem for maneuvering targets when communication rates

are irregular. The disadvantage of cross-correlation between local tracks are handled



with the decorrelation of all local tracks. The track decorrelation and optimal fusion
are achieved provided that sensor properties are known in each center. Other similar
studies were performed by W. Koch in [32, 33]. In addition, [34] and [35] generalize
these solutions for the multi-sensor case.

In [36], the analysis of track fusion problem is performed and a methodology is
decribed to compare the performance of several fusion algorithms with information
matrix fusion. Also, this study analyzes the hiearchical fusion architecture and
concludes that the partial feedback case has better performance than complete and
no feedback cases. With the approach given in [36], performance evaluation of track
fusion algorithms become much simpler. Also, it is concluded that the quality of the
information to be fused is much more important than the quantity.

Another performance evaluation of track fusion is performed for various
numbers of sensors in [37]. This study generalizes the result given in [14] to the
cases with more than 2 sensors. In this study, exactly the same kinematic model is
used for centralized and distributed trackers and an exact algorithm is applied to
them by using a — g filters. The study shows that the performance of the distributed
architecture gets worse with respect to the centralized architecture as the number of
sensors increases. A similar work has also been realized by [38] for only two
Sensors.

In the light of these references given, we can now classify the track fusion
methods. The first proposed method to track fusion is naive fusion. In this method,
common process noise and common priors are neglected and conditional
independence is assumed, i.e. no process noise and previous communication. Since
this method does not take the correlation between the estimation errors into account,
it usually gives very bad results and it is extremely suboptimal.

The second method is Channel Filter (Information Matrix Fusion). This assumes
that common prior is dominant and common process noise is negligible. This
method is a little bit more complicated than Naive Fusion. Moreover, this method is
almost optimal if process noise is not significant [12].

Maximum A Posteriori Fusion (MAP) is the third method to track fusion. It

considers the effect of both common prior and common process noise. Therefore,



MAP fusion is the most accurate and the most complicated solution to the track
fusion problem [12]. However, this is not a practical method due to its complexity.
The last method is Covariance Intersection (CI) Fusion. It is a general fusion
technique that makes no assumption about the independence of estimation errors. In
Cl Fusion, a convex combination of the local mean and covariance estimates is
calculated to avoid overconfidence in the fused estimates [39].

According to [40], channel filter seems to be the most suitable algorithm for
track fusion among all other methods in terms of scalability, estimation errors and
memory. As a result, we use the Channel Filter method (Information Matrix Fusion)

to solve track fusion problem in this thesis work.

1.2. Thesis Content

One of the crucial problems encountered in track fusion is the track quantization
problem. Due to the communication constraints between the nodes, the track
information has to be quantized while it is sent from local agents to the fusion
center. In many applications, this information has to be squeezed into only a few
bits. Therefore, the quantization mechanism to be used in track fusion plays an
important role in performance of a multisensory target tracking algorithm.

In a local center where Kalman filter is used for state estimation, since the
information is kept and sent as a state vector and its covariance, the track
guantization has to be applied to these processed state and covariance matrix to be
sent to the fusion center. Then, these quantized processed track information is sent to
the fusion center from each local agent and fused there in order to obtain a single
track. There are only few studies in the literature about the quantization problem for
track fusion. Different representations of a covariance matrix for track quantization
are analyzed and compared in [41].

The widespread quantization technique used in practice for track fusion is a
static nearest neighbor approach which selects the closest state vector and the

covariance to the current track information from fixed tables at the local center.



Afterwards, the selected state vector and the corresponding covariance matrix are
sent to the fusion center for track fusion. The selected quantized values from the
tables depend only on the current state vector and the covariance at the local agent.
Therefore, the nearest neighbor approach can be named as static quantization. On
the other hand, since the Kalman filter operating at the fusion center has a dynamic
nature, it is easily understandable that performing quantization by only looking at
the current state vector and the covariance (at the local center) is highly myopic. By
benefiting from the fact that Kalman filter operating at fusion center is essentially a
low-pass filter, a better quantization approach can be developed by using the
predicted values of tracks as well in the quantization at the local center.

In this thesis study, based on the idea given above, a new track quantization
algorithm is proposed. The proposed algorithm poses the quantization problem as an
optimization problem and then solves it by also including the predicted local track
information into the picture. The optimization problem is defined over a certain time
horizon which takes the low-pass filter nature of the Kalman filter into account.
Since this approach considers the inherent dynamic characteristics of the tracks, the
resulting methodology is named as dynamic quantization. As understood from the
proposed approach above, the main purpose of this study is improving quantization
performance for track fusion under communication constraints even under very low
bit rates by proposing a more advantageous quantization technique named as
dynamic quantization.

The outline of this thesis study is as follows. General information about target
tracking, fusion architectures, algorithms and track quantization has been given in
this chapter along with a detailed literature survey on track fusion. In Chapter 2, the
track quantization and the proposed optimization problem will be presented on a
simple architecture. Moreover, Chapter 2 will give a brief description of the simple
static track quantization method applied in practice. The solution of the optimization
problem and the proposed track quantization method are given in Chapter 3 which
utilizes the solution of a similar optimization problem used in a different context in
the literature. The results obtained by the proposed method are examined and

compared to those of the static quantization approach in Chapter 4 using

10



simulations. Chapter 5 summarizes the results obtained from this study and finalizes

the thesis by mentioning about possible future work.

1.3. Publication

Within the scope of this thesis the conference article [1] was written and presented at
the 23" Signal Processing and Communications Applications Conference (SIU’15)

on May 18", 2015 in Malatya.
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CHAPTER 2

PROBLEM DEFINITION

The simple fusion architecture we are working with in this chapter is shown in
Figure 2.1. In the fusion system, there are a local center (local agent) and a fusion
center which are shown by the blue rectangles for each time k. The green circles in
the figure denote the sensor measurements. The arrows represent data flow and the
block labeled as Q(+) represents the quantization operation. As shown in the Figure
2.1 a single sensor is connected to the local center and the information to the fusion

center comes only from the local center after a quantization operation.
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Figure 2.1: The simple fusion architecture used in the chapter
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2.1. Local Center Used in Practice

In the local center, the state vector of the target to be estimated is denoted as x,.
The measurements coming from the sensors belonging to the target are denoted
as yi. The state vector x, € R™ and the measurement yie R™ are modeled with the
linear Gaussian state-space representation given below.
X = Axi_1 + Bwy, (2.1)
Vi = Cxy + vy, 2.2)
where A, B and C show the state transition matrix, process noise gain matrix and
measurement matrix respectively. The quantity w,, denotes the white process noise
of the target which has Gaussian distribution with zero-mean and covariance Q. The
term v, is the white measurement noise of the sensor of the local agent which is
independent of the process noise and has Gaussian distribution with zero-mean and
covariance R. The initial state x, has also a Gaussian distribution with zero-mean
and covariance PZ.
By using the model shown in (2.1)-(2.2), the local agent performs state
estimation and covariance calculation by running its own Kalman filter. The
prediction and the measurement update equations of the Kalman Filter that local

agent operates are given in the following.

Prediction Update:

551%|k—1 = Afl%—ﬂk—l (2.3)
Pijk—1 = APi_1—1A + BQB” (2.4)
Measurement Update:
Riee = Riee—r + K (Vk — Pie-1) (2.5)
Pk = Pijre—1 — KieSiee—1 (Kid)” (2.6)

where
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571%|k—1 = Cflhk—l (2.7)

Sl%|k—1 = Cplg|k—1CT + Ry (2.8)

Ky = Pl%|k—1CT(SI%|k—1)_1 (2.9)

In (2.5)-(2.6), f,%lk and P,ilk are the posterior state estimate and its covariance

obtained by the Kalman filter in the local agent. The quantities S,§|k_1 and K}} are the

measurement/innovation covariance and the Kalman gain respectively. After the

local agent obtains state and covariance estimates from its own Kalman Filter, it

quantizes the corresponding information and sends the quantized information to the
fusion center.

In the fusion systems used in practice, static quantization is used for quantizing
posterior state estimate and covariance to obtain the data sent from the local agent to
the fusion center. The static quantization used in practice, which is denoted
as Qq(.), represents a nearest-neighbor selection of the quantized state vector and
covariance from predetermined fixed tables. We will show these tables with the
symbol “T”. The data sent from the local center to the fusion center then becomes
the quantized versions of £, and Py, given as;

s Pepe” = Qs Rkpior P, (2.10)

where %4* and Pgp> are the quantized posterior state and its covariance

respectively.

2.2. Fusion Center Structure Used in Practice

Since the information coming from the local center is correlated along time (since
the communicated data is the estimates and covariances of a Kalman filter), the
fusion center used in practice applies the so-called Channel Filter to obtain its own

estimates %, and P, from %;;;* and P,>. The corresponding Channel Filter

equations are given as follows.
(Pfuc)_l??im = (P1?|k—1)_19?13|k—1 + (Plgﬁc)z)_ljc\lll—l)cz - (P1§|7c31 _19?11|7<2_1 (2.11)
(PE) ™ = (Phir)™ + (Pl = (PER20)™
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(2.12)
The equations given above are simply Kalman filter equations in the so-called

information form. The explanations for the terms in (2.11)-(2.12) are given below.

o J?,Em_l and P,flk_l are the predicted state estimate and covariance in the

fusion center;

o 55,%“( and P,§|k are the updated state estimate and covariance in the fusion
center;
J Q,iﬁf_l and P,}ﬁjl are the predicted versions of the previously communicated
012 1-2

information %, ”{},_, and P, 7., between the local center and the fusion

center.

In the expressions (2.11)-(2.12) it is seen that the predicted information in the fusion
center :?,%lk_l, P,flk_l is first combined/summed with the new information
Xiix’» Prjn’ coming from the local center. Since the new information %%, Pyj” is
correlated with the previously communicated information ;=7 _;, Ps_7jx—, (which
are implicit in the predicted information X7,,_,, P¢jx—, Of the fusion center) the
predicted versions f,ﬁﬁf_l, P,\}ﬁil of the previously communicated information
R4 _tik—1» Pifik—1 are subtracted from the combined information. In a general
fusion architecture, the predicted information f,ﬁlk_l, P,§|k_1 in the fusion center is

distinct from the predicted previously communicated information ﬁ,irkz_l, P,§|7(31.

However, in the simple architecture we consider in Figure 2.1, since the fusion

center receives information only from the local center, we have

o2 — £1-2 2 — pl-2
Xklk—=1 = Xk|k—1 Pire-1 = Pije=1- (2.13)

Hence in the fusion architecture we consider, we get

R = R P = Pije”- (2.14)
That is, the quantized posterior quantities sent from the local agent at each time are
the posterior quantities of the fusion center at the corresponding instant. Hence we
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see that the estimates obtained in the fusion center used in practice are directly equal

to the quantized information coming from the local center.

2.3.  Proposed Local and Fusion Center Structures

In the proposed fusion center structure there also exists a quantization operation
between the local agent and the fusion center. However, unlike the static
quantization used in practice, the quantization in the proposed system is performed
not only by considering the current values of posterior state estimate and
covariance, but also looking at the expected predicted future values of these
quantities. The proposed quantization method is called as dynamic quantization and
shown as Q4 (.).

X P = Qa (R Prejie) (2.15)
Since the low-pass nature of the Kalman filter will be used in proposed quantization
method, the following Kalman filter equations are used in the fusion center.

fl%lk = 551%|k—1 + Ki?(’?llﬁcz - J?1§|k—1) (2.16)
Plflk = P13|k—1 - P13|k—1(513|k—1)_1plf|k—1 (2.17)
Sij—1 = Plj—1 + Puj’ (2.18)
K¢ = P13|k—1(51§|k—1)_1 (2.19)

where fﬁlk and P,flk are the posterior state estimate and covariance of the fusion
center respectively. The predicted state estimate and covariance of the fusion center
are shown by 9?,§|k_1 and P,flk_l respectively. The Kalman filter equations above
utilize the quantized posterior state f,iﬁcz and the covariance P,%lzz sent from the
local agent as the measurement and measurement noise covariance respectively. The
quantities S,?lk_l and K? are the measurement/innovation covariance and the
Kalman gain respectively in the fusion center.

It is assumed in this study that the Kalman filter structure applied in the fusion
center given above is known by the local center. Therefore, the local center can

select the quantized information %3;;%, P> sent to the fusion center in a clever
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manner to make the fusion center estimate and covariance 3?,§|k, P,§|k as close to the
unquantized local center estimate and covariance 9?,§|k,P,§|k as possible. Note that

such an approach would solve the issue of correlation between the consecutive

communicated estimates automatically.
In this study, we propose that the quantized quantities £j;;%, Pyj> sent to the fusion

center should be selected to be the values which solve the following optimization

problem.
o152 pl-o21ktN-1 . ~1-2 plo2)ktN-1
{Zi% P}, = arg M v ]({xlll P, ) 2.20
(sl pic?), et (2:20)
where the cost function J(+) is defined as
k+N-1
o152 plo2)kTN-1\ _ o2 o1 12 2 1|2
]({xzu Prjp }l=k )— Z E{”xzu— xz|z||2+/1”Pz|z_ Pz|z||F |Y3;k} (2.21)
1=k
In (2.21) the notations |||, and ||:||z represent L, and Frobenius norms

respectively, which are defined as

vl =

Wil =

m n
Z z |vi; |2 = \/trace(VTV)
i=1 1

j=

where the notation v; denotes the ith element of a vector v and v;; denotes the ijth

element of a matrix V. VT denotes the transpose of the matrix V.
In the optimization problem (2.20), the function j(-) defined in (2.21) is to be

N : S : k+N— :
minimized with respect to the optimization variables {fflfz,Pﬁfz lj: ' which are
to be selected from the quantization tables denoted by T. The function J () depends

. . . k+N-1 .
on the optimization variables {f}lfz,Pﬁfz}ljk through the fusion center state

. . k+N-1 . . . .
estimates and covariances {fﬁl,Plzll}ljk via the Kalman filter equations in (2.16)-

(2.19). The term N in the summation operator denotes the time horizon in the
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optimization problem over which the squared L,-differences of the state estimates
Xy and %5, and squared Frobenius-differences of the covariances Py, and Py

are summed in the cost function J(+). The term A is a scaling constant determining
the weights of the covariances in the cost function. The operator E{-} denotes the
statistical expectation and it is used to eliminate the unknown stochastic

measurements V.1, Ye+2, - » Yr+n—1 (UNknown at time k) which appears in the cost

k+N-1
)

function (in the estimates {2/,
I=k+1
In the optimization problem, the quantized states and covariances

k+N-— . . .
{a?ﬁfz,Pﬁfz}lj: " are obtained for N time instants, namely, k,k + 1, ...,k + N —

1. Afterwards, only the quantized results corresponding to time k, i.e., £x°, Peje”

are sent to the fusion center. The operation is repeated for future time instants by
shifting the optimization horizon. This type of optimization/control topology is
called as receding horizon control in the literature [42].

Receding horizon control method has been used in different applications in
literature. According to [42], many design problems in control and signal processing
such as power conversion problems, audio quantization problems, design of FIR
filters with quantized coefficients and equalization of band-limited communication
channels etc. can be expressed as optimization problems where decision variables
can only take several finite values. By restricting the optimization to a finite horizon
and solving the problem in a receding horizon fashion, excellent optimization results
can be achieved even with very small horizons. In this study, we will apply the
receding horizon control technique explained in [42] to the quantization problem
posed in (2.20).

The quantization approach we propose above requires the state estimate of the
fusion center state estimates and covariances in order to solve the optimization
problem (2.20) at the local center. Since these quantities are the products of the
Kalman filter at the fusion center and since it is assumed that the parameters of this
Kalman filter is known at the local center, these quantities can be calculated at the

local center by running a local copy of the fusion center Kalman filter and feeding it
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with the transmitted quantized state and covariance. Therefore, at the local center,
two Kalman filters are executed. The first Kalman filter is the original Kalman filter
of the local center processing the measurements coming from the sensor. The second
Kalman filter is the local copy of the fusion center Kalman filter which is fed by the
quantized states and covariances sent to the fusion center. The proposed architecture

of the local center is shown in Figure 2.2.

Measurements
LOCAL CENTER
\4 . d
uantize
Local N .
o Information FUSION
Kalman Quantization | >
_ CENTER
Filter J

A

Fusion center
estimates and

covariances

( Local Caopy of

Fusion Center

Kalman Filter

Figure 2.2: Architecture of the proposed local center.
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2.4. A Simple Example

In order to make the proposed quantization/optimization problem more
understandable, in this section, we illustrate the main idea of our study on a very
simple deterministic example. Consider that we have a local agent and a fusion
center in this problem as shown in Figure 2.1. The state evolution in the local agent

is deterministic and is given as
X = 0.95xj_4 (2.22)

where xi is a scalar and the initial state is given as x, = 1. The state evolution in
(2.22) represents the Kalman filter of the local agent in our original problem. We

consider the fusion center in two different parts.

The first fusion center represents the fusion center used in practice and it uses the
results of static quantization. We consider only two bits in the quantization table T
of the static quantization. Hence, the information sent to the first fusion center is

given as

, x,% > 0.5

. xl <05 (2.23)

1
x}%—)Z = Qs(xli) = {O

which represents as nearest neighbor type quantization. As in the original problem,
the state at the first fusion center is directly equated to the quantized data received

from the local center, i.e.,

x2 = x12, (2.24)

The second fusion center represents the fusion center we propose in this study and it
uses the dynamic quantization. It is assumed that the second fusion center uses the

following state evolution.
xz = 0.9x7_; + 0.1x; 72 (2.25)

where the quantity £ 2 denotes the received data from the local center quantized by

dynamic quantization. The state evolution (2.25) represents the Kalman filter
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running in the fusion center in the original problem which uses the quantized data as
its input. Note that the filter given in (2.25) has a low-pass characteristics similar to

a Kalman filter. The optimization problem for the quantization is given as

152 _ - 2 _ 132
X, ¢=arg min (x;—x
k g <1-Pe(0,1) (e = xx) (2.26)

where we selected the time horizon N = 1. We can write the cost function in (2.26)

as follows.
J = (xic — xi0)? (2.27)
= (0.9x2_, + 0.1x}7% — x})? (2.28)
= (0.9x2_; — x} + 0.1x}72)? (2.29)
xl—09x2_,\°
= 0.01 (x;—ﬂ — %) _ (2.30)

With the form of the cost function in (2.30) it can be seen that the dynamic
quantization rule is given as

xp —0.9x7_, - 05

xi7? = xy=4 0.1 . (2.31)
k Qd( k) 0 X,% _ 0-9XI§—1 o5
’ 0.1 '

Note that in the local center, the quantity x; is known exactly. Similarly, since the
local center knows both the state evolution in (2.25) and the quantized data
{x}72}*-4 sent to the fusion center, it can calculate the fusion center state xZ_,.

Therefore, the local center can easily calculate the quantized data x;~2 in (2.31).

There is also an issue we should pay attention to in this example in order to obtain
reasonable results from (2.31). The scalar state transition coefficient of the state
evolution in the second fusion center must be selected smaller than that of the state
evolution in the local center. Hence, the bandwidth of the low-pass filter in the
fusion center must be larger than that of the process in the local center. In this
example, we have selected the state transition coefficient of the fusion center as 0.9

which is smaller than 0.95.
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In order to observe and compare the results of the quantization methods, a
simulation is performed for the simple example described above. Figure 2.3 shows
the unquantized states x; (blue) in the local center along with the fusion center states

xZ obtained with static (red) and dynamic (green) quantization.

(a)
T T
1 oo e Rt o e Rt .
\-_ Mo Quantization
l\"5 ' ! Static
R e - -
\\ : : : Dynamic
Y R s T -
E A : : :
€ PN !
= : M :
o : \ :
1 T R \\: ---------------- S REEE L R R R P R ERRRRE R -
[] B o o o T | T \./\7}{/\/\/\./I\}'I'{/\/\f\/\.f\/\.]}(/\/l\/\/\./\/\./\/\.f\/\f\/l\/\*/\f\/\.f\/\f\/\.f\
L | L |

0 10 20 30 40 50
time(s)

Figure 2.3: Unquantized states in the local center and quantized states in the fusion
center obtained with static and dynamic quantization. The communicated quantized
states between the local center and the fusion center are shown with dots for both
static and dynamic quantization methods.

As shown in Figure 2.3, the static quantization (red curve) selects ‘1’ when xj
values in the local agent are higher than or equal to ‘0.5’ and ‘0’ otherwise, as
expected. These values then become the states x;~? in the fusion center which gets
the data with static quantization. On the other hand, the fusion center with dynamic
quantization (green curve) can get much closer states to the unquantized states. It

can do this by selecting occasional ‘0’ values when the unquantized state value is
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closer to ‘1’ and occasional ‘1’ values when the unquantized state value is closer to

‘0’. The low-pass nature of the fusion center smooths out the jumps considerably.

Now we describe the similarities and the differences between the simple

example and our original fusion scenario.

In the simple example, the state process was deterministic. In the original fusion
scenario, the state process (i.e., Kalman filter) is stochastic in that it is driven
with stochastic measurements of the state.

In the simple example, the fusion center runs a low-pass filter with the
quantized data as its input. The filter run in the fusion center was known by the
local center. In the original scenario, the fusion center will run a Kalman filter

with low-pass characteristics and this filter will be known by the local center.

In the simple example, the local center can calculate the state at the fusion
center using the information of the low-pass filter (running in the fusion center)
and the previously sent quantized data to the fusion center. In the original
scenario, the local center will be able to calculate the state (of the Kalman filter)
at the fusion center using the information of the Kalman filter (running in the

fusion center) and the previously sent quantized data.
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CHAPTER 3

MATHEMATICAL ANALYSIS

As previously mentioned, there are a local agent and a fusion center in our
fusion system (see Figure 2.1). The local agent has its own measurements, runs its
own Kalman Filter with these measurements and it has its own estimates. After the
local agent obtains the state estimates and their covariances from its own Kalman
filter, it quantizes the information and sends these estimates to the fusion center. At
the same time, the fusion center operates its own Kalman filter, as well. It uses the
quantized track information, coming from the local agent, as measurements; i.e., the
fusion center utilizes the quantized state and covariance as measurement and
measurement noise covariance respectively. Since our approach considers the
quantization problem in an optimization framework and solves the problem by
including the predicted future values of the states and covariances, it is named as
dynamic quantization.

In this chapter, we will make the mathematical analysis of the optimization

problem (2.20) and present a solution to it. When the quantized posterior covariance

values {P}lfz}f::_l sent from the local center are known in the cost function (2.21),

the cost function becomes quadratic in the unknown quantized state values

{f}lfz N1 Eor this special case, there is a solution proposed in literature to the

optimization problem (2.20) which can be used to find the optimal quantized
127K+

. N-1 . . . .
posterior states {x”l e Hence we will separate this chapter into two main

sections. In Section 3.1, we will study the (hypothetical) case in which the quantized
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. k+N-1 . . .
covariance {Plllfz}l_k are known and find out how quantized posterior states

k+N—- . . .
{2 zj: "should be selected. Afterwards we will study the general case in which

. . k+N-1 . .
the quantized covariance values {P}j;"> _, arealso unknown in Section 3.2. By

using the method proposed in Section 3.1, a simple solution will also be suggested
for this general and realistic case.

In order to be able to solve the optimization problem we are going to use a
theorem taken from the literature. For being able to use the theorem, we are going to
bring the cost function (2.21) into a form suitable for the application of the result of
the theorem. The cost function will be first separated into two parts, namely state
and covariance parts. Then the expected values will be taken and the random terms
will be eliminated. The minimum cost and corresponding quantized states and

covariances will then be calculated.

3.1. The Case of Known Quantized Covariances

In this section, it is assumed that the quantized covariances {Pllll"z};:iv_l in the

cost function (2.21) are already known. In this case, it is going to be shown that the
. . .. . k+N-—

cost function will be quadratic in the unknown quantized states {ﬁﬁfz}lj: ', The

following theorem taken from [42] describes how a quadratic function can be
minimized on a finite number of points by utilizing a nearest-neighbor quantization
rule.
Theorem 1 [42]: Consider the following quadratic function J(w).
J(w) = uTWu + 2u’Fx. (3.1)

where u, x € R" and W and F are real valued matrices with dimension m X m. W
is assumed to be symmetric and positive definite. The aim is to minimize the cost
function J(*) on U £ {uy,u,, ..., ug} which is a finite set defined as the quantization

table. Hence the solution of the following optimization problem is desired.
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@ = argminJ(w). (3.2)
The solution to this optimization problem can be obtained by a nearest-neighbor
quantization rule as below.

ol =W2Qun(-W~Y2Fx) (3.3)
where the function Quy(.) represents the nearest-neighbor quantization rule which
is defined as follows.

Qun(t) = arg rglel‘f/l It —vll; (3.4)
where the set V 2 {v,,v,, ..., vk} has been defined as

v; 2 W2y, i=1,..,K. (3.5)
The notation W /2 denotes the positive-definite square-root of the matrix W. The
value of Quy(t) in (3.4) is the nearest vector to the vector t in the set V with respect
to L, norm.
In the theorem given above, the optimal unquantized vector u which minimizes the
cost function J(-) in R™ is given as
i =—-W1Fx. (3.6)
The nearest-neighbor vector given in (3.3) on the set U is usually different from the
optimal unconstrained solution i in (3.6).
In order to be able to apply Theorem 1 to our quantization problem, we need to

have the cost function in (2.21) in the form (3.1). When the quantized covariance
k+N-— . .
values sent from the local center, {Pﬁfz}lj: ', are known, the cost function in
(2.21) can be written as shown below after the expected values are taken.
152 k+N-1 T T
J(TI{PE?) ") = TTWT + 26T + A (3.7)
where the augmented vector T e R™ includes all quantized state vectors over the

time horizon and is defined as

N c1-2\T (2152 T 12 "
r= [(xk|k ) (Rdfie) o RiSR-1peen-1) ] : (3.8)
The matrix W, the vector I, and the scalar A are some complicated functions of the

N

) k+N—1 . )
variables {P}; 2}l_k and 25, Py as given below.
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w = w ({Pi;?

[ 2Ty ({lefz}km ' fl%|kfplg|k)

- k a
A= A({leu 2} o xl%lkfplak)

k+N—1)
1=k

The more detailed expressions for W, I, and A are given below.

N-1
we Z(Elz)méf
=0
T

e
||>

5 (Z (s (Arsi)” + XT(E})T)QE?)

=0

2
;.\

As (fk 1(Aieri) " QA1 S-1 + 2851 (Airin) " QBY

+tr((BHTQBP) + tr((B)TQB}R)

'

1 1 1 1 1
Bl 2 [Avriis1Bk  Aksirs2Bisr - AksiBisi—1 Biear Om

D2 2 2 2 2
Bf £ [Aksrk+1Bic  Aksik+2Bivr - Ak+1Bivi-1 Biyr On

The matrices 4;., By, Bf, P, X, and R are defined as

Apj £ A X X4

A s |[U-KeOA  0n
Tl o, Y
- K1
Bf 2| 7k ]
k -On,m
[0
B2 2 KE]
R T
YI%(YI%)T yl%()’l%ﬂuc (}’k+1v 1|k)
p 2 yk+1|k(y1%)T Py PlN 1
yi%+N—1|k(J’l%)T Py_11 PN 1,N-1
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where the submatrices P; ; are defined as

! Rl - Ty Ali=jNT T
Pij & C(Pmingesik+ i + Tminges it pikEminGes s pe )AIDTCT.

The matrices 0, and 0,,, denote the zero matrices of size nxXn and n X m
respectively. The detailed derivations of the expressions (3.12)-(3.14) are made in
Appendix A.

At this point, it is appropriate to calculate the unquantized optimal solution for
I' since we will use it in our experiments to reduce number of the elements in the
quantization table (See Section 3.3 for details). We can modify the expression for J (-

) in (3.7) as shown below.

)i (r|{P11|72}f_+:‘1) = TTWT + 2ITWWIT + (W-TT)TWWT,)

—(WTL)TWW-TL) + A (3.15)
=TTWT 4+ 2IfWW T+ WTT)'WWTT) +A  (3.16)
where
A=-WTTH)TWW™TT,) + A
The expression (3.16) can be written as
J=T+WTL)TW(T + WTT)+A. (3.17)
Hence the optimal solution (unquantized state vectors) without considering any

constraints on T can be found as

ot =—WT,. (3.18)
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This is the perfect case when no quantization is considered. For the quantized case,

the optimal solution can be given by using Theorem 1 as

FoPt = W 2Qu (~W 12T, (3.19)
where Quy(.) is the nearest-neighbor quantizer that maps R™ (since there are N
state vectors of size n in I') to the finite set VV defined as
V ={v, vy, .., 0k} (3.20)
where K is the number of elements in V and

v; = Wgui. (3.21)
After finding the optimal quantized states '°P* corresponding to times k, k +
1,..,k + N — 1, the first quantized state %;;;” is sent to the fusion center.
rovt(k) =[I, 0, .. 0,]F°pt (3.22)
where I,, and 0,, are the identity and zero matrices of size n X n.
At time k + 1, in order to be able to find I'°P*(k + 1) the same optimization is
applied on the interval [k + 1,k + N], in other words, the horizon is shifted by one.

For the other time instants, the procedure is continued in a similar fashion.

3.2. The General Case

We have explained how the optimal quantization is performed in Section 3.1

when the quantized covariance matrices are known. When the covariance matrices
k+N-1 PPN
{Pﬁfz ., sent from the local agent, are not known, which is the general and the

realistic case, the cost function in (2.20) becomes too complicated in terms of all of
the unknown optimization variables. Therefore, there is no simple solution to the
optimization problem as in Section 3.1. On the other hand, in practice, only few
different quantized values are communicated between the local center and the fusion
center. In other words, the covariance quantization table in the local center is
composed of only a small number of covariances. In this section, using this practical

information, we propose the following simple solution for the general case when the
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quantized covariance values are unknown and they are to be found by the
optimization problem.

Suppose that the covariance quantization table in the local center is composed K
different covariances where K is a small positive integer (<< 100). We assume that
all covariances to be sent from the local agent in the optimization horizon are the
same, i.e.,

Pl%ﬁz = l%—l_-)12|k+1 == %:13—1|R+N—1' (3.23)
The optimization problem (2.20) is then solved for each covariance in the covariance
quantization table as explained in Section 3.1 and the covariance value which gives
the minimum cost is selected as the optimal quantized covariance. Note that when
we try to solve the optimization (2.20) after selecting one of the covariance values in
the covariance quantization table, thanks to the assumption (3.23), all quantized
covariance values to be sent to the fusion center (in the optimization horizon) are
known. Therefore the problem turns into the case of known quantized covariances

and hence the solution obtained in Section 3.1 is valid.

3.3. Implementation Issue: Size of the Quantization Table

In this section, we consider an implementation issue for the quantization
algorithm proposed in the previous two sections. For this purpose, we consider a
simple tracking problem where the state vector is composed to 4 variables, namely
X-position, y-position, x-velocity and y-velocity. Suppose that we use B bits in order
to quantize the state vector. If we use equal number of bits to quantize each variable
in the state vector, then each variable will be quantized with B/4 bits. Assuming
minimum and maximum values for the variables, we form a quantization table of
K, =2B/*x2B/4x2B/4x2B/* = 2B values for the state vector for time k. Since a
different state vector can be selected from the quantization table for each time
instant k in the optimization horizon, the overall quantization table over the whole
optimization horizon turns out to be K = K = 28N, Therefore, the quantization

table in Theorem 1 will have length K = 2B which is impossible to process. This is
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the main issue that would be encountered in implementing the quantization
algorithm proposed in the previous sections.

Reducing the quantization table size by reducing the number of bits in order to
solve this issue is not a reasonable approach since such an approach would need to
use too few bits for each variable and the performance would be terrible. In this
section, we propose an algorithm which reduces the size of the quantization table
cleverly by removing unlikely rows from the quantization table by using the
unquantized optimal state vector given in (3.18).

We propose the following reduction method. For each time instant k

e Find the unquantized optimal state vector T2P* given in (3.18).

o Consider each element of y’° of T,2?° where i = 1, ...,4N.

o If yP'is a position variable, find the nearest three quantized

position values y},y?, v to yP¢

L

from the position quantization

table.

o If yl."pt is a velocity variable, find the nearest three quantized
velocity values y2,y2,y7 to y°P* from the velocity quantization

table.
e Construct the reduced quantization from all possible combinations of the
. 3 .3 .3
] ] ]
sets {yl }j=1’ {YZ }j=1‘ B {V4N}j=1 '

In the reduction procedure described above, since only 3 quantized values are used
for each element of the vector T, the size of the reduced quantization table becomes
K = 3*N which is much smaller than the value 2B¥ and quite manageable for small

horizon lengths.
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CHAPTER 4
SIMULATION RESULTS

In this section we compare the quantization method applied in the literature
with the one proposed in this study by making a simulation study on three fusion
architectures. The simulation results obtained for each architecture are examined in

separate sections.

4.1. Architecture 1

Architecture 1 represents the simple fusion architecture used in the earlier
chapters which consists of a local agent F1 and a fusion center F.. The local agent
has its own sensor collecting measurements. The local agent operates its own
Kalman filter and quantizes the track information with static or dynamic
quantization methods. After the quantization process, the local agent sends its
quantized track information to the fusion center. At the same time, the fusion center
operates its own Kalman filter as well. In this architecture there is no sensor
belonging to the fusion center. Hence the only data that the fusion center takes from
outside is the quantized track information of the local agent. Architecture 1 is
illustrated in Figure 4.1.

Q F1 F

Figure 4.1: Information graph of architecture 1
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4.1.1. Target Model

True target states and measurements are generated according to the following linear
Gaussian model.
Xk = Axyg_1 + Bwy, (4.1)
Yk = Cxy + v (4.2)
where the state x; is composed of x-y positions and x-y velocities of the target and
yi is the position measurements of the local center. The matrices 4, B and C are
given as
2
A= [(1)22 Tlﬂ B = l?’Zl, C=[, 0, (4.3)
Tl,
where T = 1s. The initial state x, = [pI,v{]7 of the target is constructed randomly
as follows. The initial position vector p, = [5000m,5000m]T is fixed. The
components of the initial velocity v, are random and independent. Each component
of v, is selected to be Gaussian distributed with zero mean and standard deviation
100m/s. The white process noise w; is Gaussian with zero-mean and
covariance Q = 221,. The white measurement noise v{ is Gaussian with zero-mean
and covariance R = 20%I,. The target data is formed for 20 seconds which

corresponds to 21 samples.

4.1.2. Quantization Parameters

For the quantized state vector sent from the local agent to the fusion center, M bits
are used for quantizing the state vector where M is going to be selected as 16, 32 and
64. Additional 4 bits are used for quantizing the covariance.

Since the state vector is 4-dimensional, M/4 bits are reserved for each element of the
state vector. A uniform grid of 2™ values between [0, 10000m] is formed as the
quantization table for the position values. A uniform grid of 2M* values between
[—250m/s, 250m/s] is formed as the quantization table for the velocity values. The

quantized covariances P2, i = 1,2., ..., K are selected as
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P.1"2 — [Gg,ilz 02 l
l 0, Ug,ilz

where the position and velocity standard deviation values o,; and o,,; are selected

are given in Table 4.1.

Table 4.1: Covariance quantization table

[ [ 00 (M) [ 0 (M)
1 2 0.4
2 4 0.8
3 6 1.2
4 8 1.6
5 10 2
6 12 2.4
7 14 2.8
8 16 3.2
9 20 20/3
10 24 24/3
11 28 28/3
12 32 32/3
13 36 36/3
14 40 40/3
15 44 44/3
16 48 48/3

For dynamic quantization the horizon length is selected to be N =3 and the
constant A determining the effect of covariances in the cost function (2.21) is
selected as 4 = 1000.

4.1.3. Methods

Three sets of results are obtained. In the first set of results, the optimal fusion result
that would be obtained in the fusion center if no quantization was involved is
calculated. This result is used as a baseline for comparing the results of the fusion

centers using static and dynamic quantization methods.
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The second set of results is the fusion results in the fusion center when static

quantization is used between the local center and the fusion center.

The third set of results is the fusion results in the fusion center when dynamic

quantization is used between the local center and the fusion center.

4.1.4 Results

A total of 100 Monte Carlo simulations are made for M = 16,32 and 64 bhits. In
each run, a different realization for the true target state vectors and measurements is
used. Figure 4.2 shows the position estimates at the fusion center for M = 16 for a

typical single run.
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Figure 4.2: Position estimates in the fusion center with no quantization, static and
dynamic quantization when M = 16 bits: (a) x-positions (b) y-positions

As shown in Figure 4.2-a, static quantization method is able to send only 3
different x-position values to the fusion center from quantization table. On the other
hand, although dynamic quantization has utilized the same model and exactly the

same quantization table with static quantization method, it has obtained much closer
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results to the no quantization case than the static quantization by using low pass
structure of Kalman filter in the fusion center. Likewise, there is only one value
which static quantization sends to the fusion center from the quantization table in
Figure 4.2-b. In this case, the fusion center results obtained by dynamic quantization
are again much closer to the results of the no quantization case. Figure 4.3 shows the

X-Yy position estimates in Figure 4.2 on a single graph.
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Figure 4.3: Position estimates in the fusion center with no quantization, static and
dynamic quantization when M = 16 bits.

Figure 4.4 shows the velocity estimates at the fusion center for M = 16 for a
single run. As shown in the figure, the velocity estimates obtained with dynamic

guantization are again much closer to the no quantization case.
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Figure 4.4: Velocity estimates in the fusion center with no quantization, static and
dynamic quantization when M = 16 bits: (a) x-velocity (b) y-velocity

Over the Monte Carlo runs RMS position and velocity errors are calculated
between the results obtained with and without quantization. The RMS errors are
shown in Figure 4.5. As expected the RMS errors of dynamic quantization is much
lower than those of static quantization.

For M = 32 and 64 bits, the simulations are repeated. In these cases, the single
run results are not shown. Figure 4.6 and Figure 4.7 show the RMS position and
velocity errors obtained by the algorithms for M = 32 and M = 64 respectively. As
expected, errors for both quantization methods get smaller as the number of bits
increases. The errors obtained with dynamic quantization are still much smaller than
those obtained with static quantization.
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Figure 4.5: RMS errors in the fusion center with static and dynamic quantization
when M = 16: (a) RMS position errors (b) RMS velocity errors
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Figure 4.6: RMS errors in the fusion center with static and dynamic quantization
when M = 32: (a) RMS position errors (b) RMS velocity errors
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Figure 4.7: RMS errors in the fusion center with static and dynamic quantization
when M = 64: (a) RMS position errors (b) RMS velocity errors

In order to summarize, average RMS errors (over time) for M = 16, 32 and 64
bits are given in Table 4.2. In the table, in addition to the average RMS position and
velocity errors related to the state vector, average RMS position and velocity

covariance errors are also provided. The covariance errors in each case are

calculated using the Frobenius norm of the difference between the covariances

obtained by methods with quantization and without quantization.

Table 4.2: RMS errors for Architecture 1

16 Bit 32 Bit 64 Bit
RMS Error
Static | Dynamic | Static | Dynamic | Static | Dynamic
Position (m) 266.80 | 56.70 31.78 | 14.96 8.74 | 451
Velocity (m/s) 15.87 |8.89 6.65 |3.91 3.89 |1.98
Cov. Position (m) | 3.99 3.22 3.95 |3.22 381 |3.23
Cov. Velocity (m/s) | 3.96 2.59 3.96 |2.59 3.96 |2.60
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As observed in the table, the difference between errors in the covariances obtained
with dynamic quantization and static quantization is not as large as the difference
between the position and velocity errors of the two methods. Nevertheless, the
covariance errors of the dynamic quantization are still slightly smaller than static

quantization.

4.2. Architecture 2

Architecture 2 consists of a local agent and a fusion center as Architecture 1.
The only difference of Architecture 2 from Architecture 1 is that the fusion center in
Architecture 2 has its own sensor. Architecture 2 is illustrated in Figure 4.8.

F1 F2

Figure 4.8: Information graph of Architecture 2

4.2.1. Target Model

True target states and measurements are generated according to the following linear

Gaussian model.

Xk = AXg—1 + Bwy (4.4)
yi = Cxy + v (4.5)
yZ = Cxy + v (4.6)

The quantities x;, yi, wy, vi and the matrices A4, B, C are the same as those defined
in Seciton 4.1.1. The quantities y? represent the measurements of the fusion center.
The white measurement noise v?2 is Gaussian with zero-mean and covariance R =

2021,. The measurement noise v? is independent of vi.
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4.2.2. Quantization Parameters

Quantization parameters are the same as those given in Section 4.1.2.

4.2.3. Methods

In this architecture, the only difference in the methods used is that the fusion center
has now measurements yZ to process in addition to the quantized information
coming from the local center. Due to the additional measurements, the estimates of

the fusion center are no longer directly equal to the quantized values coming from
the local center. Therefore, the Channel Filter equations to obtain %, and Pkﬁk from
Xyix> and Py in the fusion center used in practice are different from (2.11)-(2.12)

due to the presence of measurements y?. The corresponding Channel Filter

equations are given as follows.
(R) " 2 = (PR "R+ (P2 02 — (P2 'ehiza (@)
-1 -1 - - - 4.8
(Pk]]k) = (Pie) + (Plakz) 1|k21 (48)
. The explanations for the terms in (4.7)-(4.8) are given below.

. fﬁlk and P,flk are the posterior state estimate and covariance in the fusion

center obtained using only the local measurements yZ;

xklk and Pk’;k are the updated state estimate and covariance in the fusion
center;

o Ry and Pyp2, are the predicted versions of the previously communicated

information %;~7,_, and P;"7,_; between the local center and the fusion

center.

Note that, in this case, since the measurements y2 are not available in the local
center, the local copy of the fusion center Kalman filter running at the local center

still uses only the quantized information of the local center as measurements.
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4.2.4. Results

A total of 100 Monte Carlo simulations are made for M = 16,32 and 64 bits. In
each run, a different realization for the true target state vectors and measurements is
used.

Figure 4.9 shows the position estimates obtained in the fusion center for the no
quantization case and static and dynamic quantization based methods when M = 16
bits for a typical single run. Figure 4.10 shows the results in Figure 4.9 on a single
graph. Velocity estimates obtained in the fusion center for the different quantization
schemes are illustrated in Figure 4.11. All three figures confirm the superiority of

the dynamic quantization over static quantization approach.

5200 | .

Mo Quantization

L orenseasn s ponensseneas s Static H
' ' Dynamic

5000

¥-position(m)

4900

4800

4700

6000 : |

5500 -

y-position (m)

5000 |--—¥& No Quantization
, 1 Static
Dynamic

4500 | L I

Figure 4.9: Position estimates in the fusion center with no quantization, static and
dynamic quantization when M = 16 bits: (a) x-positions (b) y-positions
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RMS position and velocity errors are calculated between the results obtained
with and without quantization. The RMS errors are shown in Figure 4.12 which
shows the better performance of dynamic quantization once again.

For M = 32 and 64 bits, the simulations are repeated. In these cases, the single
run results and RMS errors are not illustrated with figures. Instead, only the average
RMS errors (over time) for M = 16, 32 and 64 bits are presented in Table 4.3. The

results observed in the table are similar to those obtained in Table 4.2.

4.3 Architecture 3

Architecture 3 consists of two local agents and a fusion center. All agents in the
architecture have their own sensors collecting measurements independently.

Architecture 3 is illustrated in Figure 4.13.
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Figure 4.12: RMS errors in the fusion center with static and dynamic quantization
when M = 16 bits: (a) RMS position errors (b) RMS velocity errors.
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Table 4.3: RMS errors for Architecture 2

16 Bit 32 Bit 64 Bit
RMS Error i i i i i i
static | dynamic | static | dynamic | static | dynamic
Position (m) 96.91 | 30.12 43.37 | 22.57 8.25 | 551
Velocity (m/s) 16.02 | 6.30 1151 | 6.13 6.29 | 1.39

Cov. Position (m) | 6.86 | 2.74 6.86 | 2.73 6.87 | 2.74
Cov. Velocity (m/s) | 3.42 | 2.05 342 |205 3.42 |2.05

In Figure 4.13, F1 and F represent the local agents and S: and Sy represent the
sensors belonging to the corresponding local agents. F3 represents the fusion center

and Ss represents the sensor belonging to the fusion center.

4.3.1. Target Model

True target states and measurements are generated according to the following linear

Gaussian model.

X = AXp_q + Bwy 4.9

yi = Cxy + vj (4.10)
yi = Cxy + v} (4.11)
Y3 = Cxy + @.12)

The quantities in (4.9)-(4.12) are defined similarly to those in Section 4.1.1 and
4.2.1.
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Figure 4.13: Information graph of architecture 3
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4.3.2. Quantization Parameters

Quantization parameters are the same as those given in Section 4.1.2.

4.3.3. Methods

Methods are the same as those given in Section 4.1.3. The difference is that the
fusion center has now measurements y; to process in addition to the quantized
pieces of information coming from the first and the second local centers. Note that,
in this case, each the local center keeps a local copy of the fusion center Kalman
filter using only the quantized information of the corresponding local center as

measurements.

4.3.4 Results

For Architecture 3, only the final RMS errors are shown in Table 4.4. The results are

very similar to those obtained for the earlier architectures.

Table 4.4: RMS errors for Architecture 3

16 Bit 32 Bit 64 Bit
RMS Error i i i i i i
static | dynamic | static | dynamic | static | dynamic
Position (m) 119.62 | 30.99 9.33 | 5.40 8.08 |5.22
Velocity (m/s) 13.8 6.71 451 |1.29 491 |1.45

Cov. Position (m) | 6.04 |2.96 6.04 |2.95 6.04 |2.95
Cov. Velocity (m/s) | 3.46 | 2.33 3.46 | 2.33 3.46 | 2.33

47



4.4 Effects of Horizon Length

In this section we will show the effects of the time horizon length on the
performance of the quantization operation. Note that in all simulations above the
time horizon was selected as N = 3. Now it is appropriate to change the time
horizon and observe the quantization results. For this purpose we repeat the
simulations of Architecture 1 by only changing the time horizon. RMS errors for
M = 16,32 and 64 bits are calculated for static and dynamic quantization methods

and they are shown in Table 4.5.

While the RMS covariance errors obtained by dynamic quantization methods
are similar to the errors obtained by static quantization, in terms of RMS position
and velocity errors, all dynamic quantization methods are significantly better than
the static quantization irrespective of the horizon length used. If we compare the
RMS errors of dynamic quantization methods with different horizon lengths among
themselves, it is seen that reducing the horizon length does not reduce the
performance of dynamic quantization. In fact, we observe interestingly that RMS
position and velocity errors slightly decrease as the horizon length is reduced. The
reason for this counter-intuitive reduction in the RMS errors for shorter horizons lies
in the covariance selection process applied in our algorithm. It is seen in Table 4.5
that the covariance errors of the algorithms decrease as the horizon length is
decreased. Hence, the algorithm can select better covariances as the time horizon
gets shorter. The assumption (3.23) used in covariance selection constrains all of the
quantized covariances over the horizon to be equal. Due to this restriction, as the
horizon gets longer, worse and worse covariances are selected in the algorithm
which leads to the increase in the RMS errors in the state variables. As the horizon
becomes shorter, the effect of the restriction diminishes making the results better.

48



Table 4.5: RMS errors of quantization methods for different time horizons

RMS Error Position | Velocity Cov. Position | Cov. Velocity
(m) (mis) (m) (mis)
Static 266.7994 | 15.8678 3.9922 3.9609
+ | Dynamic (N=3) |56.6983 | 8.8933 3.2209 2.5929
g Dynamic (N=2) | 54.9329 | 8.4419 2.9896 2.5933
Dynamic (N=1) | 52.6651 | 7.4909 29121 2.5904
Static 31.7848 | 6.6476 3.9450 3.9602
= Dynamic (N=3) | 14.9589 | 3.9120 3.2246 2.5928
§ Dynamic (N=2) | 14.9678 | 3.9043 2.9941 2.5939
Dynamic (N=1) | 14.7358 | 3.8469 2.8957 2.5921
Static 8.7383 3.8937 3.8140 3.9630
= Dynamic (N=3) | 4.5133 1.9750 3.2302 2.5956
§ Dynamic (N=2) | 4.3491 | 1.9421 2.9765 2.5979
Dynamic (N=1) | 4.4926 1.9525 2.8865 2.5954

It must be said here that, if receding horizon idea could be applied without any
restrictions as the one imposed in the assumption (3.23), increasing the horizon
length would cause a decrease in the errors. However, when we impose the
assumption (3.23), the errors increase more than they would decrease thanks to the
increase in the horizon length which results in the counter-intuitive behavior
observed in Table 4.5.

As a final remark, we can still conclude that the dynamic quantization method
proposed in this study is more advantageous than the static quantization method

used in practice even with a short time horizon.
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4.5 Computation Time

In this section, we give the computation times of dynamic and static
quantization approaches (per each time step). The computation times for different
time horizon lengths, which were calculated in Matlab R2011b running on a PC with
Intel Core 2 Duo P8800 2.67GHz CPU and 4GB RAM, are given in Table 4.6.

Table 4.6: Computation times for different time horizons

Computation Time (s) | 16 Bit | 32 Bit | 64 Bit

Static 0.0135 | 0.0138 | 0.0157
Dynamic (N=3) 6.6548 | 7.3894 | 8.0594
Dynamic (N=2) 0.1258 | 0.1339 | 0.2577
Dynamic (N=1) 0.0174 | 0.0179 | 0.0715

As shown in Table 4.6, the computation times of static quantization are very
low for all bit rates. As the time horizon gets shorter, the computation times of
dynamic quantization decreases dramatically. When the time horizon length is unity,
the computation times of dynamic quantization are very close to those of static

quantization.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis study has proposed a new quantization algorithm for track fusion
under communication constraints. The quantization algorithm used in practice is a
simple nearest neighbor methodology which is named here as static quantization. On
the other hand, the new quantization algorithm proposed here involves posing the
quantization problem in an optimization framework. The objective function of the
optimization measures the distance between the estimates/covariances of the local
and remote Kalman filters over a time horizon. Thanks to the time horizon, the
predicted future values of the track are brought into the picture. Since this approach
considers the inherent dynamic characteristics of the tracks, the corresponding
methodology has been named as dynamic quantization.

The optimization involved in the quantization operation has been solved using
the receding horizon control methodology. The solution of the optimization was
achieved in two stages. In the first stage, the assumption of known quantized
covariances was made. In this case, it turned out that the cost function was quadratic
in the unknown quantized state vectors. An existing solution in the literature has
been used to solve the optimization problem for this case. In the second stage, the
assumption of known quantized covariances was removed and the general problem
is solved. For this purpose, the assumption that the quantized covariances are the
same over the time horizon was made for ensuring computational feasibility.

The simulation studies have shown that the proposed quantization methodology

is much better than the static quantization used in practice in terms of RMS errors in
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state variables for all time horizon lengths considered. In terms of RMS covariance
errors, the difference between the methods is less although dynamic quantization
still is slightly better than static quantization. It has been seen that the assumption of
“equal quantized covariances over the time horizon” used for solving the
optimization problem results in counter-intuitive results for different time horizon
lengths. The investigation of less restrictive assumptions under which the
optimization problem can still be solved is left as a future work.

It has been seen that dynamic quantization takes much more computation time
than static quantization for horizon lengths N = 2 and 3. However, for horizon
length N = 1 there is still no performance degradation and the computation time
difference between static and dynamic quantization approaches is negligible.
Therefore, horizon length can safely be decreased until the computation time for
dynamic quantization is feasible for a specific application.

The simulation results show that the proposed dynamic method achieves much
better results than static approach even with very low bit rates. As expected, the
difference between static and dynamic quantization approaches decreases as the bit
rate is increased. The extreme case of M = 16 bits showed that while the static
quantization approach can barely go below 100m position error standard deviation,
the dynamic quantization approach can well obtain position errors around 50m
standard deviation or less.

As future work, the applicability of the methodology for more complicated state
estimators, such as interacting multiple model (IMM) filter, extended Kalman filter
etc., can be investigated. Also tests in more complex fusion architectures can be

useful as future work.
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APPENDIX A

DERIVATIONS FOR THE TERMS W, Ty AND A

In this Appendix, we are going to present a derivation for the expressions for the

variables W, I, and A in the cost function (3.7).

A.1 Expressing the Cost in Matrix Form

When the quantized covariance matrices are known the cost function for the
optimization problem equivalently becomes

k+N-1
TP ) = D E(I1RR - RhBlve Ad)
l=k

k+N-1

In the following, the cost function ](F|{P11|72}l=k ) will be called as J(*). In

order to be able to make our analysis in a structured manner, we are going to write

the cost function in (A.1) as given below.

JO= ) Bl —hI&lPlvdd (A2)

k+N-1
= Z E{flTﬂle’é:k} (A.3)
1=k
k+N-1

DA (A4)
=k
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-1
= > E{llgealllydi) (A5)
1=

where the augmented state vector & is defined as

ik
fk = <2 | (A6)
Xk|k
The matrix Q and the Mahalanobis norm || - ||q In (A.3)-(A.5) are defined as
I -1
Q= [ n "] A7
—I, I (A7)
[1x]|q 2 xTQx. (A.8)

The recursions for the components of the augmented state, i.e., J?,Qk and 9?,§|k, can
be written as
Ripe = (I = Kg O A1 Rie_1pe—1 + KV (A.9)
R = (I — K@) ApRig_ 1 + KR’ (A.10)

Using (A.9) and (A.10) we can write the recursion for the augmented state &, as

&k = Axék—1 + BeYic + Bikigi (A.11)
where
I—-KlO)A 0 1
4y = |~ KOA ) B;é[Kk], B,ié[oz].
0 (I — K})A, 0 Ky

Since the cost function J(-).has stochastic terms, namely yi, ., Vi, ...., Vi, ny_1, OUF

first aim is to get rid of expectations inside the cost function and to eliminate these

random terms. Defining u;, £ fiﬁcz Then the equation (A.11) becomes
&k = Axér—1 + Biyi + Biuk (A.12)
The augmented state at time k + 1 can be written as:
$kt1 = ApgrSr t Bl%+13’l%+1 + Bl%+1uk+1- (A13)
Substituting &, in (A.12) into (A.13), the augmented state at time k + 1 becomes:
ka1 = Arsr (A€o + BiYie + Biwe) + Bico1Vierr + Biésiliss (A.14)
= Aks1AS—1 + Ars1(Biyic + Biug) + Bip1Viesn
+ Bip iUk (A.15)

Similarly, the augmented state at time k + 2 can be written as follows.
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_ 1 1 2
$k+2 = Ars28k+1 + Biy2Vik+2 + BrsoUks2

When substituting &, in (A.15) into (A.16), the augmented state becomes:

$k+2 = Ak2(Ak414kk—1 + Ak+1(BI%yl% + B,%uk) + BI%+1yI%+1

2 1 .1 2
+ Biy1Uk+1) + By 2Vir2 T Biy2Uk+2

= Ag124k414k8k-1 + Ap+24k41(Biyi + Biuy)

+Ag+2(Bis1Vis1 + Bisilir1) + BiyoVirs + BiioUksz.

These equations can be generalized as follows.

Sean = (Apen - Aps14k)Ek-1 + (Agsan - Ars24k+1) (Biyk + Biuyg)

+-+ (BI%+n3’chL+n + Bl%+nuk+n)
= AgsnkSi-1 + Z?:o Ak+n:k+i+1(BI%+iy11+i + BI%+iuk+i)
where Ay ink = Aksn - Ar+14x. Hence we have
l

Skvt = AkvikSk-1 + zAk+l:k+i+1(Bll+iyll+i + Biyilk+i)

=0

We can write (A.21) in matrix form as follows.
kst = Agréi—1 + BiY + BET

where
51 1 1 1 1
By £ [Ak+l:k+1Bk Agrik+2Bics1 - AxtiBiti—1 Bitr Om
52 a 2 2 2 2
Bf £ [Agsrk+1Bic  Arsik+2Bisr - Ak+1Bivi—1 By On
1 —
Yk - Ug T
1
YVi+1 Ug+1
Y £ , %
1 Uu
Vk+1 k+l
1 LUt N—1-
LY+ N—14

0,,]
0,].

(A.16)

(A.17)

(A.18)

(A.19)
(A.20)

(A.21)

(A.24)

B} and B? have N partitions first [ + 1 of which are nonzero. Y and T are the

measurement matrix of the local agent and the quantized state matrix respectively.

Substituting y£,; = Cxy4; + Vi, into the measurement matrix Y, we get
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e 1 [ Vi
YI%+1 CxXpqq +Vl%+1
=1 = L (A.25)
Vie+1 Cxpyr + Uiy
1 . C + 1
Yken-14  LeXpyn—1 T Vg n—1

Note that the first partition of Y, i.e., y{, in (A.25) has not been changed since y; is
given in the conditioning of the expected value in the cost J(-). The expression

(A.26) can be written as follows.

1 1 .
Vi Vi 10
CXip1 + Viexs CXpe1 Vie+1
: . : 1
_ ' _ ' : _ | Yk 0
Y = : = : + ; = [Z’)T + 7 (A.26)
Cxpyr + Vi c v 1
Xk+1 T Vit Xk+l k+l
L] . 1 .
[Cxpan-1 + Viin_gd LCXpin—1d Wiy
where
— 1 -
T Xk+1 Vk+1
Xie+2 k42
X, = : and V; = :
1
xk_” Vi1
XkeN-1- Vi pn-1]

The vectors X, and V; are the state and measurement noise matrix of the local agent.
The matrix C is defined as
€ = blkdiag(C)y_1xn-1-

For the sake of simplicity, we now define

1
x| 2| Vé[g].
CX, Vi

which enables is to write (A.26) as shown below.

Vi | 1972w v
r= [?Xll * [Vl] =xa+v (A27)
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A.2 Calculation of the Expected Values

We now calculate the expectation in the cost function given in (A.5).

2
||<fk+z||Q 2 &1 Wk

= (Agsiube-1 + BIY + BfD) QA radi-1 + BiY + BIT) (A.28)
= k-1 Apsr)” YT BT +TT(BHNQ( Ak 14611
+Bl'Y + B/T) (A.29)
= E{—l(Ak+l:k)T-Q(Ak+l:k)€k—1
+284—1 (Aps1) " Q(BLY + B{T)
(A.30)

+(B}Y + BIT)TQ(B}Y + BET).
The last expression in (A.30) can also be expanded into three terms as shown below.
||<fk+z||z = &1 (A1) " QU Ak 1) € -1
+285_1 (Aks1) " Q(BY + B{T)
+YT(BHTQBLY + 2YT(BHTQB}T
+I'T(BHTQBET. (A.31)
Substituting X + V for the measurement matrix Y, we get
[16ics1ll = §0-1 Aier1a0)T Qs i1
+280_1 (A1) "B (X + V) + BIT)
+(X+ V) BHTABI (X + V)
+2(X + V) (BHTQBT + TT(BA)TQBr.  (A32)
Taking the expectation of both sides of (A.32) condition on the measurements yg.,,
we obtain
E[||fk+z||;|)’3:k] = E[fl{—l(Ak+l:k)T-QAk+l:kEk—1|y(}:k]
+E[285—1 (Aer) "QUBI (X + V) + BET)|y5u]
+E[(X + V) (BHTOB} (X + V)lyds]
+E [2(X + V) (BHTQBT|yd,]

+E[T" (BT QBT |youl. (A.33)
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The only random terms in (A.33) are X and V. Hence the expectations of the other

terms are equal to theirselves, which gives
2
E [||€k+l||9|yé:k] = &1 (A1) T QA1 k-1

+2€I{—1(Ak+l:k)T-Q(EllE[X + V |ygal + ELZF)

+E[(X + V)" BHTABHE + V) Iye

+E[2(X + V)" |yL J(BHTQB2T + TT(BH)TQBIT.  (A.34)
Calculating the first and the third expectations in (A.34) gives the following.

2
E [||fk+z||g|y3:k] = &1 (A1) " Qs k-1
+2&0_1 (Ap11)TQBLX + BET)

+E[(X+ V) (BOTOBHX + V) Iyd]

+2XT(BHTQB?T + TT(BH)T QBT (A.35)
where
X = E[X1y54] (A.36)
—F [ Cy)él Iyé:k] (A.37)
Vi

Cx{<+1
=E|| . |1y A3

Cx!c+l

_—ka-.I-N—l—
Yk

CE[xk+1|3’3:k]

CE[X+11Y0.] (A.39)

—CE[xk+N—1|}’3:k]—
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1
Yk
~1
CXicr1k

~1
CXicrijk

o1
[C X+ N-1|K

A.40
Vi (A.40)

a1
Yi+1|k

~1
Yi+|k

~1
| Yie+N-1|k]

The second expectation in (A.35) can be calculated as follows.
E[(x+ V)" BHTOBIX + V)lydi] = E[(X) BHTB (X)lyd]
+E[(R) BHTOBE(YV) yd

+E (V) (BHT OB (X)) yd]

e _
+E|(V) BDTQB(V)lyox|  (a41)
Since the term (X + V)" (B1)TQB(X + V) is a scalar, the trace of this term is

equal to itself. Therefore the first term in (A.41) can be written as follows.

E[(%) BHToBH(X)lydi] = E (R BHTOB (X)) yd] (A42)
= £ ((BHTQBI(R)(X)") 1yd«] (A.43)
=t (BDHTABLE [(X)(X)[ydu]) (A44)
= tr((B})"QB}P) (A.45)

where

P=E[(X)(X) |vd] (A.46)
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(e \
Cxgr1
| : ) (A.47)
=E| : [Gi)" X1 €T - xn-1CTlYou
\ CXpti
LCXpe4N—1]
I[[ Vi )" Yixes1CT o YieXiern-1C" 1 ]|
E|| xk+1(3’k) Cxpp1Xk41CT CXier1Xiern-1C" ll)’(}-kl- (A.48)
| f : L
|LCoxpesn- 1(3’k) Cxprn-1%k+1CT  CXiean_1Xeen-1CT ]

Considering the components of the matrix in (A.48) one by one, we get
T
o Ei"yox] = vivi
o E[Cx i) Youl = CEXrilyoul )"
= Cfl%+i|k(y1%)T = }7k+i|k()’1%)T

o E[Cxps1%priCT1Yea] = CE[xpi1xt,ilyaxlCT

= CE[x 41 (A" %11 + X BWi) T 1y 1CT

= CE[xp41 %441 (A" )T + 2311 (X Bwi) T 1y0 ICT
1 o1 o1 T\ pn—1NT /T
= C(Pis1jk +xk+1|k(xk+1|k) YA H)ICT.

Note that the last equality can be written because E [x.1 (X fwi)T|vo.] is ‘0" since
Xy+1 and the process noise terms in ), fw; are independent and the expectations of

the process noise terms are zero. The general expression is given as

E[ka+ixl€+jCT|Yé:k] = CE[xk+ixl€+j|Y3:k]CT (A49)

= C(PminQic+ik+ )|k

~ . T o
+x11nin(k+i,k+j)|kx11nirl(k+i,k+j)|k )(All ]|)TC'T. (A50)

Continuing with the second term of (A.41) we write
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E[(%)" (BDTQBL(V)Iyds| = E [r((X) BHT OB (V) Iydyc]

E [tr((E})TQE}(V)(X)T)Iy%;k]

tr((BOTOBLE [(V)(X) |v])

=0
where the last equality can be written since V and X matrices are independent and
the expectations of the measurement noise terms are zero. Similarly, the third term
of (A4l1),ie, E [(V)T(E})TQE}(X)W&:,(], is zero.

The forth term of (A.41) can be calculated as follows.

E|(V) BHTBL(V)Iyds| = E [tr((V) BHTQBE(V)) Iy (A51)
_ _ R (A.52)
= (BHTABE [(V)(V) |vd])
= tr((B/)"QB[R) (A.53)
where
=, [/~ s\T 1
R E[(0)(V) |vés]
I 0m,1 1
Vk.+1
=E : [Ol,m Vks1 Uhaz v£+N—1] Yok
Vk'+z
_-vk+.N—1—
0, 0, 0,
=F O_m Uk+1.171€+1 Uk+177.1€+1v—1 |Y3:k
| O Vken-1Vk+1 = Vken-1Vien-11d
_ Om R ces Om .
o o . g

As a result, the expectation in (A.41) can be written as shown below.
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E[(X+ V) (BHTQBI(X + V)| = t((BHTQBIP) + tr((BHTABIR) (A 54)
Finally, substituting the result (A.54) into the expectation in (A.36) we can write
E | [16iatl 5|7 = €51 Aierta) ™ QA racGies
+2&4_1 (A1) " QB X + B{T) + tr((B})"QB; P)
+tr((BH)TQBIR) + 2X" (BT QBT + I (BH)TQBT  (A55)

A.3 Final form of the Cost Function

We can now separate the terms which are independent of the quantized states as

follows.
E (sl []yese] = 2601 (Akara) " QBET + 2X7 (BHTQBZT
+IT(BHTQBET + ], (A.53)
where the term J; which is independent of the quantized states is defined as follows.
Ji 2 e (A1) " QA ks 1acSie—1 + 2851 (Ari) T QBLX

+tr((BHTQB}P) + tr((B})TQB}R). (A.54)
Note that although the term J; is independent of the quantized states, it is still
dependent on the quantized covariances. Hence for the general optimization problem
where the quantized covariances are also unknown, the terms J; will be necessary.

By using (A.53), the cost function J(+) in (A.5) can be written as follows.

N-1 , (A.55)
J& = > Elllgeal 41y
=0
N-1
= > 26y (Aura)OBET + 2X7 (BT OBZT + T (BT QBT + ], (A56)
=0
=TTWT + 2IJT + A (A.57)
where
N-1
WéZ@W@f (A.58)
=0
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S o (A59)
I7 2 ) @ (i) + X7 (BHTHOB?
1=0
N (A.60)
A2 I '
1=0
N1 er T T TORpLly
N $k—1(Ar+rx)” QApsradi-1 + 28,1 (Aprre)” QB X (A.61)
B L +tr((B)TQB} P) + tr((B{)TQB[R)
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