UTILIZATION OF BORAX SLUDGE IN SOFT SUBGRADE SOIL STABILIZATION

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

 $\mathbf{B}\mathbf{Y}$

CAN CEYLAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING

JUNE 2015

Approval of the thesis:

UTILIZATION OF BORAX SLUDGE IN SOFT SUBGRADE SOIL STABILIZATION

Submitted by **CAN CEYLAN** in partial fulfillment of the requirements for the degree of **Master of Science in Civil Engineering Department, Middle East East Technical University** by,

Prof. Dr. Gülbin Dural Ünver	
Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Ahmat Caudat Valamar	
Prof. Dr. Anmet Cevdet Taiçmer	
Head of Department, Civil Engineering	
Prof. Dr. Murat Güler	
Supervisor, Civil Engineering Dept., METU	
Examining Committee Members	
Prof. Dr. Erdal Çokça	
Civil Engineering Dept., METU	
Prof. Dr. Murat Güler	
Civil Engineering Dept., METU	
Asst. Prof. Hande Işık Öztürk	
Civil Engineering Dept., METU	
Asst. Prof. Dr. Mustafa Kürşat ÇUBUK	
Civil Engineering Dept., Gazi University	
Asst. Prof. Dr. Neian Huvai Sarıhan	
Civil Engineering Dept., METU	

Date: June 29, 2015

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: CAN CEYLAN

Signature:

ABSTRACT

UTILIZATION OF BORAX SLUDGE IN SOFT SUBGRADE SOIL STABILIZATION

Ceylan, Can M.S., Department of Civil Engineering Supervisor : Prof.Dr. Murat Güler

June 2015, 173 pages

As a result of its unfavorable natural behavior (e.g., high shrinkage or swelling capacity, weakness, excessive plasticity, poor grading) soft subgrade soils are not generally preferred in road constructions. Chemical stabilization is used as a solution to improve engineering properties of the weak soil. This study aimed at investigation of stabilization of a soft subgrade soil by using Borax Sludge (from ETİ Maden İşletmeleri). The index properties (e.g. Atterberg limits, specific gravity and sieve analysis) of soft sub-grade soil and borax sludge samples are determined with these series of experiments. Also, compaction characteristics, unconfined compressive strength and California Bearing Ratio of the samples are observed. By mixing different percentages of borax sludge (e.g. 0% 3%, 6%, 10%, 15%) specimens representing soft subgrade soil are prepared to test for a number of engineering properties. The test specimens compacted to the maximum dry densities are subjected to unconfined compressive strength (UCS) and California bearing ratio (CBR) tests after 0, 7, and 28 days of curing in damp room. The results show that borax sludge addition increases liquid limit, compressive strength, bearing ratio, optimum moisture content and decreases dry density, plasticity and swell. Nevertheless improvement level is not sufficient for stabilization purposes except for swell which is satisfactory.

Keywords: California Bearing Ratio, unconfined compressive strength, chemical stabilization, Soft Sub-Grade Soil, Borax Sludge, Swell.

BORAKS ŞLAMININ YUMUŞAK ALT TEMEL TABAKASI STABİLİZASYONUNDA KULLANILMASI

Ceylan, Can Yüksek Lisans, İnşaat Mühendisliği Bölümü Tez Yöneticisi : Prof. Dr. Murat Güler

Haziran 2015, 173 sayfa

Doğal davranışlarının sonucunda yüksek şişme ve büzülme kapasitesi, zayıflık, yüksek plastisitesi ve zayıf gradasyon özellikleri nedeniyle karayolu inşaası çalışmalarında zayıf zeminlerin alt temel olarak kullanılması tercih edilmeyen bir durumdur. Bu istenmeyen koşulların aşılmasında bazı katkı maddelerinin kullanılması bu tür zeminlerin iyileştirilmesine yardımcı olabilir. Bu çalışmada, ETİ Maden İşletmelerinden temin edilen borax çamuru katkısında zayıf zemin olarak kullanılan Ankara Kili nin stabilizasyon açısından davranışı araştırılmıştır. Bir dizi deneysel çalışma sonucunda zayıf alt temel malzemesinin ve borax çamurunun indeks özellikleri (Atterberg limitleri, özgül ağırlık, elek analizi) belirlenmiştir. Bununla birlikte Standart Sıkışma Deneyi(UCS) ve Kaliforniya Taşıma Kapasitesi(CBR) deneyleri yapılmıştır. Değişik oranlarda (0%, 3%, 6%, 10%, 15%) boraks çamuru karıştırılarak yumuşak zemini temsil eden numuneler hazırlanmış ve mühendislik özellikleri test edilmistir. Maksimum kuru yoğunluklarına gore sıkıstırılan bu numuneler UCS ve CBR için 0, 7 ve 28 günlük periyotlarla kür odasında bekletilmiştir. Sonuçlar boraks çamurunun likit limiti, basınç dayanımını, optimum su muhtevasını artırdığını, kuru birim ağırlığını, plastisiteyi ve şişmeyi düşürdüğünü göstermiştir. Ancak yumuşak zeminin mühendislik

özelliklerindeki gelişme, şişmedeki tatmin edici azaltma haricinde yetersiz kalmıştır

Anahtar Kelimeler: Kaliforniya Taşıma Oranı, Serbest Basınç Dayanımı, Kimyasal Stabilizasyon, Zayıf Zemin, Boraks Çamuru, Şişme, To My Family

ACKNOWLEDGEMENTS

There are a number of people whom I owe my sincere gratitute that contributed to the research and completion of this thesis.

Foremost, I would like to express my deepest gratitude to my supervisor Prof. Dr. Murat GÜLER for their guidance, encouragement, advice, criticism, and insight throughout the research.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Dr. Erdal Çokça, Asst. Prof. Dr. Hande Işık Öztürk, Asst. Prof. Dr. Mustafa Kürşat Çubuk and Asst. Prof. Dr. Nejan Huvaj Sarıhan for their insightful comments and hard questions.

I would like to thank to Middle East Technical University Civil Engineering Department Soil Mechanics and Transportation Laboratory staff for their support and assistance during laboratory work.

To my dear friends Yalçın Karakaya, Pınar Karataş, Meltem Tangüler, Ayhan Öner Yücel, Başak Varlı and Reza Shabani for their friendship during my graduate studies.

The last but not the least, I am thankful to my wife for her endless patience and encouragement during my studies.

This research study consists of personal opinions of the researcher.

Bu çalışma öğrencinin kişisel görüşlerini içermektedir.

TABLE OF CONTENTS

ABSTRACT
ÖZvii
ACKNOWLEDGEMENTSix
TABLE OF CONTENTSixi
LIST OF TABLES
LIST OF FIGURESxiv
LIST OF ABBREVIATIONSxvi
CHAPTERS
1 INTRODUCTION1
1.1 Background1
1.2 The Research Hypotheses
1.3 The Scope
1.4 Outline of Thesis
2 LITERATURE REVIEW7
2.1. Stabilization of Soft Soils
2.2 Borax sludge10
2.2.1 General
2.2.2 Boron Waste in Brick Production
2.2.3 Boron Waste in Cement Production14
3 EXPERIMENTAL RESULTS
3.1 Introduction
3.2 Materials
3.2.1 Borax Sludge
3.2.2 Soft Soil
3.3 Experimental Design and Performed Tests
3.3.1 XRF Analysis
3.3.2 X-RAY Diffraction Test
3.3.3 Specific Gravity
3.3.4 Sieve Analysis
3.3.5 Atterberg Limits

3.3.6 Soil Classification	,
3.3.7 Standard Proctor Test	
3.3.8 California Bearing Ratio (CBR) Test	
3.3.8.1 Sample Preparation	
3.3.8.2 Test Apparatus)
3.3.8.3 Test Procedure	
3.3.8.4 CBR Calculation	
3.3.8.5 Swell Measurements	
3.3.9 Unconfined Compressive Strength (UCS) Test	
3.3.9.1 Sample Preparation	
3.3.9.2 Test Procedure and Calculation	
4 DISCUSSION OF TEST RESULTS	,
4.1 Plasticity Characteristics	
4.2 Swell Characteristics	1
4.3 Compaction Characteristics	
4.4 California Bearing Ratio53	
4.5 Unconfined Compressive Strength	
5 CONCLUSIONS AND RECOMMENDATIONS	
5.1 Conclusions	,
5.2 Recommendations for Future Studies	,
REFERENCES	1
APPENDICES	
A XRF TEST RESULTS73	
B XRD TEST RESULTS	
C SIEVE ANALYSIS RESULTS	
D ATTERBERG TEST FORMS	
E PROCTOR TEST DATA SHEETS	,
F CBR and UCS TEST SAMPLE CALCULATIONS	
G CALIFORNIA BEARING RATIO TEST DATA SHEETS95	
H UNCONFINED COMPRESSIVE STRENGTH TEST DATA SHEETS 135	

LIST OF TABLES

TABLES

Table 2.1 Application and Associated Functions of Geosynthetics	(FHWA,
2008)	9
Table 2.2 World Boron Production Capacities	11
Table 2.3 World Boron Reserves	11
Table 2.4 Geotechnical Properties of Waste Clay from Kırka Facto	r (Ulutaș et
al., 2014)	
Table 3.1 Properties of Soft Soil Used For the Research	
Table 3.2 Mixture Designations and Performed Tests for the Resea	rch 23
Table 3.3 XRF Test Results	
Table 3.4 Specific Gravity Results	
Table 3.5 Borax Sludge Sieve Analysis	
Table 3.6 Atterberg Test Results of BS Combinations	
Table 3.7 AASHTO Soil Classification (ASTM D3282, 2009)	
Table 4.1 Mixture Designations and Performed Tests for the Resea	rch 47
Table 4.2 Atterberg Limits Test Results	
Table 4.3 Swelling Results	50
Table 4.4 Proctor Test Results	51
Table 4.5 California Bearing Ratio Test Results	53
Table 4.6 ANOVA output of California Bearing Ratio Test Results	55
Table 4.7 Unconfined Compressive Strength Test Results	59
Table 4.8 ANOVA Output of Unconfined Compressive Strength To	est Results
	60

LIST OF FIGURES

FIGURES

Figure 1.1 Asphalt Pavement Structure and Subgrade	1
Figure 1.2 Mechanical Stabilization Using Geosynthetics	2
Figure 1.3 Chemical Stabilization Using Lime	2
Figure 2.1 Boron Ore	10
Figure 2.2 Boron Production Rates (Bor Sector Report, 2013)	11
Figure 2.3 World Boron Market Share (Bor Sector Report, 2013)	12
Figure 3.1 Bigadiç Factory Site and Tailing Pond	18
Figure 3.2 Sacks Containing Borax Sludge Used For The Research	19
Figure 3.3 Borax Sludge	19
Figure 3.4 Borax Sludge After Crusher	20
Figure 3.5 Borax Sludge After Ball Mill	20
Figure 3.6 Soft Soil in Sack	21
Figure 3.7 Soft Soil Used For The Research	22
Figure 3.8 Soft Soil Gradation Curve	29
Figure 3.9 Atterberg Limits Test Tools and Materials	31
Figure 3.10 Execution of Liquid Limit Test	31
Figure 3.11 USCS Group Symbol Flow Chart (ASTM D 2487-11)	33
Figure 3.12 Plasticity Chart (ASTM D 2487-11)	34
Figure 3.13 Plasticity Index for AASHTO Soil Classification (ASTM D32	82,
2009)	35
Figure 3.14 Proctor Machine Used For the Research	37
Figure 3.15 Soil Soft After Sieving	39
Figure 3.16 Soft Soil and Borax Sludge Mixture	39
Figure 3.17 California Bearing Ratio Test Device and Data Processing	
Equipment	40
Figure 3.18 Stress/Penetration Curve	42
Figure 3.19 California Bearing Ratio Correction Using Trendline	42
Figure 3.20 Swell Measurement Tools	43

Figure 3.21 Sieved Soil Samples for Unconfined Compressive Strength Test 45
Figure 4.1 Plasticity Characteristics
Figure 4.2 Average Swelling
Figure 4.3 Proctor Moisture Curves
Figure 4.4 Family of expected wet density compaction curves, based on 18,000
compaction tests compiled by the Ohio DOT
Figure 4.5 California Bearing Ratio Test Results
Figure 4.6 Boxplot of Residuals for California Bearing Ratio Test Results 56
Figure 4.7Residual Plots for California Bearing Ratio Test Results
Figure 4.8 Factorial Fitted Means Graph of California Bearing Ratio Test
Results
Figure 4.9 California Bearing Ratio Polynomial Model for 28 Days Curing 58
Figure 4.10 Scatterplot of Unconfined Compressive Test Results
Figure 4.11 Boxplot of Residuals of Unconfined Compressive Strength Test
Results
Figure 4.12 Residual Plots for Unconfined Compressive Strength Test
Results61
Figure 4.13 Main Effects Plot for Unconfined Compressive Strength Test 62
Figure 4.14 Polynomial Model for Unconfined Compressive Strength Test
Results
Figure A.1 XRD Test Results75
Figure B.1 Sieve Analysis Test Results of Soft Soil
Figure C.1 Atterberg Limits Test Data Sheets
Figure D.1 Standard Proctor Test Data Sheets
Figure F.1 Sample of CBR Calculation Sheet
Figure F.2 Sample UCS Calculation Sheet94
Figure G.1 California Bearing Ratio Test Data Sheets
Figure H.1Unconfined Compressive Strength Test Data Sheets

LIST OF ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation Officials
ANOVA	Analysis of Variance
ASTM	American Society for Testing and Materials
BS	Borax Sludge
CBR	California Bearing Ratio
СН	Fat Clay
GI	Group Index
Gs	Specific Gravity
Lab.	Laboratory
LL	Liquid Limit
MDD	Maximum Dry Density
METU	Middle East Technical University
Mr	Resillient Modulus
OMC	Optimum Moisture Content
PC	Portland Cement
PI	Plasticity Index
PL	Plastic Limit
SS	Soft Soil
TRB	Transportation Research Board
TS	Türk Standartları
UCS	Unconfined Compressive Strength
USCS	Unified Soil Classification System
XRD	X-Ray Diffraction
XRF	X-RayFluorescence

CHAPTER 1

INTRODUCTION

1.1 Background

Subgrade is the underlying ground which forms the bottom layer of pavement structure and plays a very important role on the structural design of highways. Soft subgrade soils such as silt and clay are composed of fine materials with low strength, high swelling and frost susceptible characteristics which cause a significant problem in highway construction. They can cause roughness and deterioration of pavement with different forms of cracking or rutting, both of which degrades the serviceability level and lowers the expected service life of highways by requiring earlier maintenance and rehabilitation activities. In order to overcome this problem, the solution could be either removing soft soil or replacing it with a quality material (e.g. crushed rock), or applying several stabilization methods to achieve a stronger foundation for the pavement structure. Due to high cost of replacement of poor soils, in many cases soil stabilization methods are preferred to reduce plasticity and swelling to improve subgrade stability and create a solid working platform for the pavement structure.

Figure 1.1 Asphalt Pavement Structure and Subgrade

Since soil is heterogeneous and variant in structure, a proper stabilization technique must be identified by taking into account of the engineering properties of the subgrade. The stabilization methods can be separated in two broad categories as mechanical and chemical stabilization. While mechanical stabilization is used to achieve desired soil properties by altering the physical nature of soil, the latter relies on chemical reactions between soil and stabilizer additive. Chemical stabilization is most commonly used for fine grained granular materials which have large surface areas such as clays. Cement, lime and fly ash are known as the most commonly used stabilizing agents. There has been an increase in researches on the utilization of by-products in road construction in order to minimize disposal costs and improve properties of subgrade soil. In this research boron waste material borax sludge is chosen as a candidate stabilization agent to improve the weak soil properties.

Figure 1.2 Mechanical Stabilization Using Geosynthetics

Figure 1.3 Chemical Stabilization Using Lime

Boron is a valuable industrial material which can be found in nature more than 230 different types of minerals. These minerals are concentrated by physical procedures and then refined and turned into various boron chemicals. These chemicals are used in many different industrial sectors such as aviation and space, nuclear, military, electronics, agriculture, glass, chemical, detergent, ceramics and polymeric materials, nanotechnology, metallurgy and construction. Turkey is the leading country in terms of boron reserves (%72.8), production (%47) and market share (%47) in the world. Boron production is increasing every year and as in 2013, 1.8 million tons of boron products were produced in Turkey. (Maden, 2013).

After mining the boron minerals are concentrated in a concentration plant, and then reacted with sulfuric acid to produce boric acid. The concentrator waste is removed to ponds as sludge and contains about 6 to 20% boron trioxide (B_2O_3) respectively. Previous researchers stated that 600.000 tones waste is produced as a result of borax production (Güyagüler, 2001). 900.000 tons of boron waste is accumulated every year in Turkey. (Maden, 2010). Although boron is a known micro nutrient, higher concentrations are reported to be deleterious for plants and therefore high boron concentration can be considered as pollutant (Kaya et al., 2006). Open field disposal of boron waste raises substantial environmental concerns in fear of leaching and groundwater pollution. In order to solve this environmental problem as well as an economical one, there has been researches on recycling and utilization of borax sludge on other sectors.

As mentioned above, the amount of boron waste material in Turkey is significant and its utilization is essential. In this research boron waste material borax sludge is used as an additive to improve soft clay soil's bearing capacity and swelling characteristics. It is expected that utilization of waste material for subgrade stabilization can reduce the road construction cost, reduce the amount of disposed sludge in the mining area and hence reduce its detrimental effects on environment. The research will give guidance on borax sludge usability as a stabilizer for soft clay subgrade soils.

1.2. The Research Hypotheses

The main goal of this study is to demonstrate that the borax sludge produced in Balıkesir Bigadiç region can be used in subgrade soil stabilization. To achieve this, a series of experimental program were designed to investigate the effect of borax sludge addition on strength and swelling potential of subgrade soil samples. The study program was, therefore, furnished to prove the following research hypotheses;

• Borax sludge addition can improve the bearing capacity of soft subgrade soils,

- Borax sludge addition can reduce the swelling of high plastic soils,
- Borax sludge addition improves plasticity characteristics of soft soils.

1.3 Scope of The Study

The scope of this study includes laboratory tests for soft subgrade soil, CBR (California Bearing Ratio) tests, UCS (Unconfined Compressive Strength) tests for measuring bearing capacity and tests for evaluating the mineralogical properties of borax sludge. Soft sub-grade soil samples were obtained from Limak Batı Çimento in Ankara, Turkey. Stabilizing material called Borax Sludge was obtained from ETİ Maden İşletmeleri, Bigadiç, Turkey. A literature review of the previous studies on boron waste and soil stabilization is made in the first place. Engineering properties of soft soil and Borax Sludge are investigated by applying standard ASTM laboratory tests. X-Ray Diffraction and X-Ray Fluorescense Tests are conducted in order to identify minerals and study the crystal structure in METU Central Laboratory. Atterberg limits, specific gravity, sieve analysis tests were also carried out to determine the index properties of the test samples. Borax sludge stabilized samples were prepared at different borax sludge contents. Optimum moisture contents and maximum dry densities of the borax sludge-soil mixtures are determined as a result of Standard Proctor compaction tests. The samples were compacted to the maximum dry densities at the optimum moisture contents and

then cured for three different curing periods. After each curing period and 4 days of soaking, samples were subjected to CBR test. Using the same the moisture contents, same dry density values and the curing periods without soaking, Unconfined Compression Tests were performed. Throughout this research study, soil tests were performed at the Middle East Technical University, Transport Laboratory and Soil Mechanics Laboratory of Civil Engineering Department.

1.4 Outline of Thesis

The research report is divided into five chapters:

• Chapter 1 gives a brief introduction about the background of the subject, the research hypothesis, the research objectives, scope and the outline of the thesis.

- Chapter 2 discusses soil stabilization, borax sludge and related studies.
- Chapter 3 includes a description of the materials used, detailed test procedures and the analysis performed in the study.
- Chapter 4 discusses the results obtained from the laboratory experiments, their statistical analyses and proposed models.
- Finally, Chapter 5 includes conclusions and recommendations for further research.
- Data sheets of the experiments can be found at appendix section.

CHAPTER 2

LITERATURE REVIEW

2.1. Stabilization of Soft Soils

Soft soils such as silt and clay are composed of fine materials with low strength and high compressibility. Especially cohesive clay soils are frost susceptible and have a very high potential for swelling. Due to varying climatic conditions, normally physical and engineering properties (namely void ratio, compressibility, grain size distribution, water content, permeability and strength) show a consequential variation. Stiffness of soils for road construction is expressed in various ways such as resilient modulus (Mr), California Bearing Ratio, unconfined compressive strength, R-value and k value. CBR and Mr values are the most common used tests and values for pavement design today. CBR is still the most common used strength property for base, subbase and subgrade in Turkey. Technical Specification Book of Turkish Directorate of Highways suggests embankment as 15%, subbase 20%, base layer 50% and subgrade 10%. Inappropriate soft soil is considered as soils with a liquid limit higher than 60%, plasticity index higher than 35%, maximum dry density equal or lower than 1.45 t/m^3 and a swelling ratio of more than 3%. (Technical Specification for Highways, 2013)

Soil stabilization and modification are similar terms for improvement of engineering properties such as strength, compressibility, volume stability, permeability and durability of existing soil. They both aim at increasing soil strength and water resistance by bonding soil particles together. While modification can be described as short term improvement (within hours or 7 days), stabilization is a longer term improvement method providing improved soil properties. In order to define an improvement as stabilization, a strength increase of 350 kPa or higher should be expected (Little & Nair, 2009). Since

soil has a heterogeneous structure and variation in structure, a proper stabilization technique should be selected. The soil stabilization methods can be separated in two general categories as mechanical stabilization and chemical stabilization.

Mechanical stabilization is used to obtain desired soil properties by physically altering the nature of soil and includes compaction, gravel or lightweight fill, blending and geosynthetics applications. Very weak silts and clays can be improved by mechanical stabilization methods. FHWA suggests the usage of geosynthetics for stabilization (separation, filtration and some reinforcement) of soils with a CBR of lower than 3% (Holtz et al., 2008). Table-1 demonstrates the applications and associated functions of geosynthetics with different soil strength parameters.

Chemical stabilization however relies on facilitating the chemical reactions between soil and stabilizer additive. It is most commonly used for fine grained soils as clays. For instance, cement, lime and fly ash are the most commonly used stabilizing agents. Cement is used for a wide range of soils, decreasing plasticity, compressibility and increasing the strength of the stabilized soil. Its advantage comes from the fact that its pozzolanic reaction is initiated by water, hence stabilization becomes independent of soil type. Cement is quite successful in decreasing plasticity, volume expansion, compressibility and increasing strength (Makusa, 2012) (Little & Nair, 2009). Another stabilization agent that is commonly used in field applications is the lime stabilization, which provides a cheaper way of improving soil properties. In this method, the desired strength increase is achieved by cation exchange mechanism with soil minerals. That's why it can give different results with different soil types. The reactivity of the soil can be improved with pozzolan additives (source of silica and alumina). The results are dependent on the soil type or other pozzolan additives to improve the effect. Quicklime (CaO) or hydrated lime (CaOH₂) can be used with the former having more advantages

over the latter. It is widely used for slope stabilization, highway capping and foundation improvement (NLA, 2004).

Application	Function(s)	Subgrade Strength	Qualifier
Separator	Separation Secondary: filtration*	2000 psf $\leq c_u \leq 5000$ psf (90 kPa $\leq c_u \leq 240$ kPa) $3 \leq CBR \leq 8$ 4500 psi $\leq M_R \geq 11,600$ psi (30 MPa $\leq M_R \geq 80$ MPa)	Soils containing high fines (SC, CL, CH, ML, MH, SM, SC, GM,GC)
Stabilization	Separation, filtration and some reinforcement (especially CBR <1) Secondary: Transmission	c _u < 2000 psf (90 kPa) CBR < 3 M _R < 4500 psi (30 MPa)	Wet, saturated fine grained soils (i.e., silt, clay and organic soils)
Base Reinforcement	Reinforcement Secondary: separation	$\begin{array}{l} 600 \ psf \leq c_u \leq 5000 \ psf \\ (30 \ kPa \leq c_u \leq 240 \ kPa) \\ 3 \leq CBR \leq 8 \\ 1500 \ psi \leq M_R \geq 11,600 \ psi \\ (10 \ MPa \leq M_R \geq 80 \ MPa) \end{array}$	All subgrade conditions. Reinforcement located within 6 to 12 in. (150 to 300 mm) of pavement
Drainage	Transmission and filtration Secondary: separation	not applicable	Poorly draining subgrade

Table 2.1 Application and Functions of Geosynthetics (FHWA, 2008)

Fly ashes and blast furnace slags are other pozzolanic agents which provide cheap, yet environmentally friendly solutions. Fly ash is a byproduct retrieved from coal power plants. Whilst Class C fly ashes with high free lime content can be sufficient for stabilization, class F fly ash with less than 20% lime content needs extra lime or cement addition. Blast furnace slags are the byproduct in pig iron production which are not cementitious by themselves. Due to its latent hydraulic properties it can improve the hydraulic properties of soil with addition of lime (Makusa, 2012). Technical Specification Book of Turkish Directorate of Highways suggests that according to AASHTO A5, A6, A7, A-2-6 and A-2-7 or according to USCS CH,CL,MH,ML,GC,SC class soils with CBR below 10% and plasticity index higher than 10% be considered as weak soil and may be improved with lime. In addition, CBR swell measurement higher than 3% is appropriate for lime stabilization. The minimum values after

stabilization shall be CBR over 15%, swelling less than 2% and Plasticity index less than 20% (Technical Specification for Highways, 2013).

2.2 Borax sludge

2.2.1 General

Boron is a valuable industrial material which can be found in nature more than 230 different types of minerals (Figure 2.1). These minerals are concentrated by physical procedures and then refined and transformed into various boron chemicals (Bor Sector Report, 2003). Commercially the most important minerals are tincalconite (Na₂B₄O₇_10H₂O), colemanite (Ca₂B₆O₁₁_5H₂O) and Ulexite (NaCaB₅O₉_8H₂O) (Helvacı C, 2005). Boron is used in many different industrial sectors such as aviation and space technology, nuclear, military, electronics, agriculture, glass, chemical, detergent, ceramics and polymeric materials, nanotechnology, metallurgy and construction. Around 85% of boron products are used in glass, ceramic-frit, agriculture and detergent sectors. Boron production is increasing every year and in 2013 1.8 million tons of boron products were produced (Bor Sector Report, 2013). Some statistical data are listed on the following page in order to demonstrate the extent of boron industry and production in Turkey (Figure 2.2, 2.3, Table 2.2, 2.3). It is apparent that boron production is significant for Turkey and waste utilization of this material needs serious consideration.

Figure 2.1 Boron Ore

Figure 2.2 Boron Production Rates (Bor Sector Report, 2013)

Table 2.2	World Bor	on Production	n Capacities
-----------	-----------	---------------	--------------

Countries	Capacity (1000 tons of B ₂ O ₃)
USA	1.092
South America	652
Asia	350
World Total	324

Table 2.3 World Boron Reserves

Countries	Total Reserves (1000 tons of B ₂ O ₃)	World Share
		(%)
Turkey	955.300	72.8
USA	80.000	6.1
Russia	100.000	7.6
China	47.000	3.6
Argentina	9.000	0.7
Bolivia	19.000	1.4
Chile	41.000	3.2
Peru	22.000	1.7
Kazakhstan	15.000	1.2
Serbia	24.000	1.7
TOTAL	1.312.300	100

Figure 2.3 World Boron Market Share (Bor Sector Report, 2013)

Table 2.3 and Figure 2.3 apparently demonstrates that Turkey is the leading country in terms of boron reserves and market share in the world. Boron is a valuable resource for Turkey and needs to be utilized properly. Commercial boron ores are in the form of colemanite, tincal and ulexite. After colemanite is mined, it is concentrated in a concentration plant, and then reacted with sulfuric acid to produce boric acid. Waste from the concentration plant is called colemanite concentrator waste (CW) and that of boric acid plant is borogypsum. The waste material contains about 6 to 20% boron trioxide (B₂O₃). Previous researchers stated that 600.000 tpy waste is produced as a result of borax production and 900.000 tons of boron waste is accumulated every year in Turkey (Güyagüler, 2001), (Bor Sector Report, 2010).

Although boron is known as micro nutrient, higher concentrations are reported to be deleterious for plants and, therefore, high boron concentration can be considered as pollutant (Kaya et al., 2006). The production route of boron products results in significant amounts of different types of boron wastes. Their open field disposal raises substantial environmental concerns in fear of leaching and groundwater pollution. Due to increasing environmental awareness and regulations in the world, manufacturing companies have started seeking ways of waste management. In order to solve this environmental problem, first alternative is to recover boron minerals from tailings and then utilize the remainder of mainly clay minerals in suitable sectors. Recycling or utilization on other sectors of these waste materials have been studied by various authors.

In recent years, waste materials collected in ponds were recycled by producing various borax products (Sönmez & Aytekin, 1992) (Mordoğan et al., 1995), (Griffin & Downing, 1998).

Due to high clay content, research on utilization of these wastes on different sectors are mostly focused on ceramics, brick and cement production. Studies have been mostly aimed in improving physical or mechanical characteristics of materials such as brick, cement and ceramics which were produced using traditional methods.

2.2.2 Boron Waste in Brick Production

Experimental studies show that boron waste addition improves physical properties of bricks and that's why many researchers studied boron waste in brick production. Demir and Orhan (2002) used pumice sand and borax waste in different mixtures to build light and porous building blocks and found out that at 900C porous blocks with low gravity can be made with 50% borax waste addition.

Kavas and Önce (2002) mixed two different types of borax wastes as flux material in different proportions to improve the physical properties of structural bricks. They suggested that 10% borax sludge increased the compressive strength and reduced the firing temperature. He also studied the usability of clay and fine wastes of boron from the concentrator plant in Kırka (Turkey) as a fluxing agent in production of red mud brick. He suggested that the samples obtained by adding 15% wt clay waste and fine waste to red mud showed the

best mechanical characteristics. In addition, in this study using clay waste and fine waste, energy consumption in sintering is reduced because of the fact that boron is a flux material (Kavas T. , 2006).

Uslu and Arol (2004) suggested that addition of concentrator waste clay up to 30% was successful in increasing the compressive strength, water absorption and density. Abalı et al. (2007) stated that boron concentrator waste addition was not useful in producing structural bricks because the specimens ended up crashing whilst firing.

2.2.3 Boron Waste in Cement Production

There has been various studies on boron waste on cement production. Borax sludge were mixed with Portland cement and the effects were investigated by various authors. Erdoğan et al. (1998) suggested that up to 5% colemanite wastes can be used as cement additives. Kula et al. (2001) suggested that using colemanite waste, pond ash and fly ash compressive strength of portland cement can be increased. On another study, Kula et. al (2002) suggested that adding the same material above can be used as cement additive.

Boncukçuoğlu et al. (2002) investigated using borogypsum as an alternative to natural gypsum and found out that concrete with borogypsum has higher compressive strength and setting time of cement is higher than the natural one. They suggested that borogypsum can be used as set retarder up to 10%. Özdemir and Öztürk (2003) investigated the use of two types of boron clay waste as cement additive and stated that B_2O_3 and clay waste amount decreased the compressive and tensile strength of Portland cement. Targan et al. (2003) suggested that different proportions of colemanite waste could be utilized in cement production and provide energy savings in clinker production. Erdoğmuş et al. (2004) investigated mechanical properties of Portland cement with concentrator waste in different proportion. They found out that setting times have changed in a positive way and compressive strength of the PC

increased slightly with 28 days of curing. However 2 days of curing reduced the compressive strength. They state that while fly ash increases the strength, concentrator waste reduces it.

Zeybek et al. (2004) suggested that in order to increase early compressive strength and reduce setting time, some chemicals such as formaldehite sulfonate (NFS), melanine formaldehite (MFR), potassium sulfate (PS) and sodium sulfate (SS) could be used. Borax clay was added in cement and mechanical properties were compared with traditional cement and suggested that borax clay acts as retarder and can be used as an alternative to gypsum. Borax waste has the same elements as clay and therefore has a slight puzzolanic character. It was stated that B_2O_3 content gave positive results, more than 7% gave either neutral or negative results (Topçu et al., 2006). Erdoğmuş et al. (2004) tried to add a combination of concentrator waste, fly ash, blast furnace slag on portland cement durability. Although compressive strength of the mixed specimens were lower than that of traditional PC, given enough curing time, the values were above the minimum.

2.2.3 Boron Waste in Wall Tiling-Ceramics

Genç et al. (1998) suggested that boron wastes can be used to produce glaze for wall tilings. Karasu and Gerede (2002) suggested that borax waste can be used as additive in floor tiling production. Borax waste obtained from the crystallization unit of Etibor Kırka Borax Company, was investigated in terracotta production in an attempt to improve final product properties. It was found out that increased presence of TSW as a co-fluxing material accelerated the vitrification process. (Kurama et al., 2006)

Christegorou et al. (2009) suggested that usage of boron waste in small percentages in heavy clay production is feasible whereas higher additions may necessitate the optimization of the sintering profile of pre calcination step. Kavas et.al (2011) investigated four different types of boron containing wastes and mixtures of them with other materials to produce lightweight aggregates. They suggested that 20% clay mixture, 35% sieve boron waste, 35% dewatering boron waste and 10% quartz sand gave the best results.

Through literature research boron wastes have been studied mainly on ceramics, cement and brick production due to its clay content. There has been very few studies on its usage for geotechnical purposes. Ulutaş et al. (2014) studied geotechnical aspects of waste clay from Kırka factory. According to their study the properties of waste boron material is shown at Table 4. They suggested that the waste material could be used in solid waste landfill sites as impermeable liner.

Table 2.4 Geotechnical Properties of Waste Clay from Kırka Factor (Ulutaş et al., 2014)

Specific Gravity	2.77 g/cm^3
Liquid Limit	58 %
Plastic Limit	30 %
Plasticity Index	28 %
Optimum Water Content	33 %
Unconfined Compressive Strength	2.16 kg/cm2
Swell	10.4 %
Soil Classification	СН

CHAPTER 3

EXPERIMENTAL STUDY AND RESULTS

3.1 Introduction

In order to prove the research hypotheses highlighted in the introduction section, the main objective of this study is to determine the effect of borax sludge on strength, plasticity and swell characteristics of soft clay soil. Whilst strength parameters are tested by CBR and UCS, swell characteristics are measured by CBR test. Therefore the main test objectives are California Bearing Ratio and Unconfined Compressive Strength tests. These tests require determining index properties such as Atterberg limits, specific gravity, sieve analysis and standard proctor compaction.

In the first phase, borax sludge and test soil were obtained from the related plants. Meanwhile statistical experimental design and research plan was developed. Tools and materials in the laboratory were prepared and calibrated, required maintenance and repairs were performed. Additional materials and tools such as swell apparatus and CBR molds were procured. Tests were conducted in the METU Transportation and Geotechnical Laboratory by the researcher himself in accordance with the relevant ASTM standards. Three basic experimental design principles as randomization, replication and blocking were used during the experiments. XRF and XRD tests were performed in METU Central Laboratory by the Lab staff. In due course statistical analysis was performed and finally conclusions were made.

This chapter gives information about the physical and chemical properties of borax sludge, soft soil and their engineering properties, explains the experimental design and exemplifies tests procedures, standards and results in detail subsequently.

3.2 Materials

3.2.1 Borax Sludge

The borax sludge material was obtained from Borax plant in Bigadiç Turkey, working under Eti Maden İşletmeleri. The plant produces 200,000 tons of borax decahydrate (Na₂B₄O₇.10H₂O) and 120,000 tons borax pentahydrate (Na₂B $_4$ O₇.5H₂O) per year. Borax sludge is a byproduct obtained during production of borax from tincal ore at borax concentrator plant (Figure 3.1) (Bor Sector Report, 2013). During borax production process, tincal concentrate is supplied to a solving reactor. The reactor contains water at 95-100 °C where the clay content of tincal becomes colloidal and moves to the thickener. Borax waste is formed during the precipitation process and discharged into the waste dams near the plant area. It is stated that the waste material used for this research is produced roughly 25000 tons/year (Elbeyli et al, 2004).

Figure 3.1 Bigadiç Factory Site and Tailing Pond

The material was brought in sacks and contained in METU Transportation Laboratory (Figure 3.2). The material was in solid form resembling to granular materials due to containment and desiccation (Figure 3.3).

Figure 3.2 Sacks Containing Borax Sludge Used For The Research

Figure 3.3 Borax Sludge

In order to use the waste borax sludge in the experiments it was first broken to smaller sizes by using a jaw crusher (Figure 3.4) and then grinded using a ball mill in the METU Materials Laboratory (Figure 3.5). The material was contained in room temperature in METU Transportation Laboratory throughout research. Material properties are explained in detail on tests section.

Figure 3.4 Borax Sludge After Crusher

Figure 3.5 Borax Sludge After Ball Mill
3.2.2 Soft Soil

Soft subgrade soil samples were obtained from Limak Batı Çimento factory in Ankara, Turkey. The soil wasobtained from the plant, dried and used throughout the research study.

Summary of the soil properties and test results is demonstrated in Table 3.1. It can be seen that all the parameters are below the minimum subgrade values specified by the Turkish Directorate Highway Technical Criteria as discussed in the previous chapter. The soil sample falls into fat clay with sand in unified soil classification system and A-7 (very poor) in AASHTO classification. It is a highly plastic clay type that is unacceptable for road subgrade and therefore needs to be improved. The detailed test procedure and the results are explained in the following sections.

Figure 3.6 Soft Soil in Sack

Figure 3.7 Soft Soil Used For The Research

PROPER	TIES OF SOFT S	SOIL
Specific Gravity (g/cm ³)	2.72	
Clay (%)	45	
Silt (%)	25.5	
Sand (%)	23.2	
Gravel (%)	6.3	
USCS Soil Class	СН	Fat clay with sand
AASHTO Soil Class	A-7-6 (29.45)	Very poor
Liquid Limit	71	
Plastic Limit	28	
Plasticity Index	43	
Optimum Water Content (%)	26	Standard Proctor Test
Maximum Dry Density (g/cm ³)	1.45	
Swell (%)	6.25	
Average CBR soaked	2	ASTM D1883
Average UCS (kPa)	165.3	ASTM D2166, remolded,
		compacted.

3.3 Experimental Design and Performed Tests

Statistical design of experiments is essential in answering the research hypotheses and evaluate the effect of borax sludge experiments. A factorial design with two main effects, i.e., Borax sludge and curing time, is satisfactory to perform the experiments and analyze the result data. In order to analyze the effect of borax sludge content, five different levels of sludge content (0, 3%, 6%, 10% and 15% dry weight) were found to be appropriate as a shorter range might have caused more time, effort, material and results which could be difficult to interpret. In addition, a wider range would have caused questionable results to observe the stabilizing effect. For curing time, on the other hand, three levels were selected (0, 7 and 28 days) in a traditional manner. Mixture combinations, their related designations and tests which were performed for each mixture is in Table 3.2.

Mixture Designations (% dry weight)	XRF	XRD	Gs	Sieve Analysis	Atterberg Limits	Standard	Cu	CBR	g Tin	ne (c	S) lays))
SS = Soft soil BS = Borax Sludge							0	7	28	0	7	28
SS (% 100 SS)		+	+	+	+	+	+			+		
3%BS (97% SS + 3 % BS)			+		+	+	+	+	+	+	+	+
%6 BS (94% SS + 6 % BS)			+		+	+	÷	+	+	+	+	+
10%BS (90% SS+ 10 % BS)			+		+	+	+	+	+	+	+	+
15%BS (85%SS + 15 % BS)			+		+	+	÷	÷	+	+	+	+
BS (%100 BS)	+	+	+	+	+							

Table 3.2 Mixture Designations and Performed Tests for the Research

The model representation of a two-factor design of experiment can be written as,

 $Y_{ijk} = \beta_0 + \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \varepsilon_{ijk}$

where

 Y_{ijk} = The observed response when factor A (borax sludge) is at ith level, B (curing time) is at jth level for the kth replicate. Response refers to CBR or UCS test result which are analyzed separately.

 μ = overall mean effect,

i = 1,2,3,4,5 (5 levels of Borax Sludge content, %0, %3, %6, %10, %15),

j = 1,2,3 (3 levels of curing time 0, 7 and 28 days),

k = 1,2,3 (for UCS and CBR 3 replications of each combination is performed),

 $\tau_i = effect \ of \ the \ ith \ level \ of \ borax \ sludge \ factor,$

 β_i = effect of the ith level of curing time factor,

 ε_{ijk} = random error component,

 $(\tau\beta)_{ij}$ = the effect of interaction between borax sludge and curing time factors.

For ANOVA, testing hypotheses were built on the assumption that the factors were fixed and of equal interest. The first hypotheses is that all borax sludge content has the same effect on response, namely CBR and UCS results,

 $H_0: \tau_1 = \tau_2 = \tau_3 = \tau_4 = \tau_5 = 0$

 H_1 : at least one $\tau_i \neq 0$

The equality on curing time effect on response,

 $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$

$$H_1$$
: at least one $\beta_i \neq 0$

In factorial design it is necessary to control any interaction between the factors. Therefore the hypotheses for the interaction effects,

 H_0 : $(\tau\beta)_{ij}$ for all i,j

 H_1 : at least one $(\tau\beta)_{ij} \neq 0$

The hypotheses and test results are discussed in Chapter 5. In the following sections, a detailed description of the procedure used is given.

3.3.1 XRF Analysis

XRF Analysis of borax sludge was performed at the METU Central Laboratory and additional test results made by Eti Maden Laboratory was used for the research study. Results of both tests and averages are shown in Table 3.3. It is important to note that the material has an average of 7% B2O3 (boron), and 18.2% CaO (lime). Class C Fly,another by product that can be used for stabilization purpose, improves soft soils by the lime content which is generally more than 20%. Lime content of borax sludge may have an effect on stabilization, however using without any additive may not be sufficient to achieve the intended strength improvements. On the other hand, siliceous and aluminous pozzolan materials can react chemically with calcium hydroxide and therefore should be taken into consideration. In the samples tested, SiO₂ was found around 15% and Al₂O₃ content was less than 1%. These values are less than that of common fly ash content but closer to that of fly ash. Bituminous fly ashes have less self-cementing properties (Benson & Bradshaw, 2011).

Component	1 st Test	2 nd Test	Average
CO2 (%)	NA	33.4	NA
CaO (%)	16.7	19.7	18.2
MgO (%)	15	18.3	16.7
SiO2 (%)	16.6	14.3	15.5
B2O3 (%)	6.8	7.2	7
Na2O (%)	3.5	3.1	3.3
SrO (%)	.9	1.2	1.1
F (%)	.5	.8	.7
Al2O3 (%)	.6	.8	.7
K2O (%)	.1	.5	.3
Fe2O3 (%)	.3	.16	.17
Cl (%)	NA	.04	
Rb2O (%)	.01	.01	.01

Table 3.3 XRF	Test Results	S
---------------	--------------	---

3.3.2 X-RAY Diffraction Test

X-Ray Diffraction test is useful for analysis of crystal structures. The test is basically initiated with crystalline atoms to result diffracted x-rays to many specific directions. Diffracted atoms constitute a sample in compliance with Bragg's law (formulation shown below) and their distances can be measured. The d-spacings and their intensities are unique for all minerals and are used as fingerprints. By this fingerprint, identification of crystallites in the range of 2-100 nm can be made (Mitchell & Kenichi, 2005).

Bragg's Law is defined as, $n\lambda = 2d \sin\theta$.

Where n= order of the diffracted beam, λ =wavelength of X-Ray beam, d=d spacing (space between two beams), and θ = beam angle

In order to identify minerals and therefore understand engineering behavior of the materials, x-ray diffraction tests were done in the METU Central Laboratory. The peak lists of the tests and mineral structure are demonstrated at Appendix C. Rikagu database was used to identify the phase pattern. For the borax sludge test, the most dominant phases observed are dolomite and calcium bis (borate). Dolomite is a carbonate mineral which consist of calcium magnesium carbonate. Calcium borate is a result of calcium reacting with boric acid. The graphical demonstration of Borax sludges mineral structure is shown at Appendix C. For the soft soil, the Rikagu database identifies the nonclay minerals as quartz and calcite. Most possible candidates for 4 unknown minerals (minerals with asterisk) were found as feldspar, smectite, and illite (Mitchell & Kenichi, 2005). Quartz, feldspar and calcite are very common non clay minerals. Smectite is a group of minerals including montmorillonite and bentonite with high swelling properties. Illite is another group of minerals commonly found with less cation exchange capacity than smectite.

3.3.3 Specific Gravity Test

Specific gravity tests of all BS mixtures were performed in compliance with ASTM D5550-06 Standard Test Method for Specific Gravity of Soil Solids by Gas Pycnometer. Specific gravity is ratio of density of a substance to that of distilled water at 4°C. It is a fundamental parameter which is necessary to calculate soil properties like degree of saturation and void ratio. Standard commercially used gas pycnometer with two chambers was used for the test. In order to execute the test, specimens were dried in oven at 105 °C and a constant mass was obtained. The specimen was removed from the oven and placed into a desiccator. The mass of the specimen was recorded when the temperature of the specimen was back at room temperature. The soil was transferred to the test chamber where the volume of the specimen was recorded. Subsequently, the mass of the specimen was obtained again and specific gravity of the soil was calculated using the equation,

$Gs = (M_s/V_s)/P_w$ (distilled water density)

The results show that specific gravity of BS is below 2.6 g/cm³, which is seen usually for organic soils. Gs of the soft soil falls in the inorganic clay category (2.7-2.8) (FM5-472, 2001).

Material	Specific Gravity - g/cm ³
Borax Sludge	2.523
SS+0%BS	2.718
SS+3%BS	2.712
SS+6%BS	2.706
SS+10%BS	2.699
SS+15%BS	2.689

Table 3.4 Specific Gravity Results

3.3.4 Sieve Analysis

Sieve Analysis of soft soil was performed in accordance with ASTM C136/14 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates and ASTM C117-13 Standard Test Method for Materials Finer than 75µm (No.200) sieve in Mineral Aggregates by Washing (ASTM C117, 2013) (ASTM C136, 2014). 1800 grams of dry weight samples were used with no curing applied in the METU Geotechnical Laboratory. The results show that the soil which is used is very fine (70.5%) and uniformly graded.

In order to determine fine particle size distribution and clay fraction hydrometer test was performed to in accordance with ASTM D 422-63 (Standard Test Method for Particle-Size Analysis of Soils). First, 50 gr. of sample soil retained on No.10 sieve was added into control cylinder full with 125 ml. of 4% NaPO₃ solution. After waiting for 12 hours, the mixture was transferred to a dispersion cup and mixed using a mixer. The mixture was added back to a 1000 ml. cylinder and mixed by turning the cylinder upside down repeatedly. Subsequently, a stopwatch was started and at specific intervals such as 0.5 min., 1 min. etc. The hydrometer was inserted into the cylinder and upper level of meniscus was read. (ASTM D 422-63(2007)e2, 2007). Calculation was started with hydrometer reading correction for meniscus and temperature. Then percent of fines were calculated using readings and specific gravity. For the last step, the percentages were combined and calculated with the sieve analysis values tested previously. As a result, percent of fines were determined and shown in Appendix C.

As a result of both tests, the sieve gradation curve is demonstrated in Figure 3.8. From the gradation charts and curves, it is determined that the soil to be used on research consists of 6.3% gravel, 23.2%sand, 25.5% silt and 45% clay. In order to determine the soil classification, plasticity characteristics were necessary and therefore Atterberg limits tests were performed. Sieve analysis

of borax sludge was conducted by Etibor Company and the results are given in Table 3.5.

Figure 3.8 Soft Soil Gradation Curve

Sieve Analysis	
Sieve Size	Passing %
+0,315 mm	0,12
+0,250 mm	0,35
+0,106 mm	1,01
+0,063 mm	3,40
-0,063 mm	96,60

Table 3.5 Borax Sludge Sieve Analys	e Sieve Analysis	Sludge	Borax	3.5	Table
-------------------------------------	------------------	--------	-------	-----	-------

3.3.5 Atterberg Limits

Atterberg limits, namely plastic and liquid limits of soil are the water contents at which defined consistency levels are obtained. While the water content at which soil passes from plastic to liquid state is liquid limit, from a plastic state to brittle state is the plastic limit. These limits are an indication of plasticity of clay and can be used to estimate various engineering properties.

The Atterberg limit tests were carried out on uncured (0 day cured) samples according to ASTM D 4318 "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils". Tests were performed in the Soil Mechanics and Transportation Laboratories in the METU Civil Engineering Department with the tools available. The purpose of the test was to determine the plastic and liquid limits of fine grained soil. Liquid limit was conducted with a Cassagrande device, which consists of a hard base and a sliding carriage assembled to a brass cup 100 mm. in diameter (Figure 3.9). The cup can be elevated up to 10 mm. height with the carriage and then dropped to the rubber base. The sample soil was sieved through No.40 sieve, air dried and then mixed with a small amount of water to a uniform mass of stiff consistency. Then the soil was placed in the cup of Cassagrande device to a depth of 10 mm. properly. The soil was divided with a firm stroke of the grooving tool along the diameter through centerline (Figure 3.10). The crank was turned to raise and drop and the number of blows were recorded. The used soil was put in a cup and dried to obtain moisture content. For each combination test was repeated 4 times and moisture contents were recorded. In the end, a linear regression analysis was done and the moisture content for 25 blows was accepted as the liquid limit for the tested soil sample. In order to determine the plastic limit of the soil, 8 to 12 gr. of wet soil sample was formed into a uniform ellipsoidal shape. The ball was rolled by hand on the rolling surface until 3 mm. thickness till it starts crumbling. These portions were gathered and placed in a tare to dry and determine the moisture content (ASTM D4318, 2010).

Figure 3.9 Atterberg Limits Test Tools and Materials

Figure 3.10 Execution of Liquid Limit Test

The results obtained from Atterberg limit tests of soft soil is shown in Table 3.6. It can be seen that the soil is highly plastic (PI over 30%) with a PI of 43%. The detailed data sheets can be found in Appendix D. Atterberg limits of the borax sludge was also tested in the same way and the results showed that the material is very plastic with a liquid limit over 100%. The same test was conducted with all soft soil – borax sludge mixtures and it was observed that all the measured consistency parameters increase with addition of borax sludge. Whilst liquid limit increased slightly, plastic limit increased little higher causing a slight decrease in plasticity index. Decrease in plasticity index is an indication of improvement in geotechnical properties and it is common with stabilizing agents such as lime and fly ash.

Borax sludge	Plastic limit (PL-	Liquid Limit	Plasticity Index
Content %	%)	(LL-%)	(PI-%)
0 (Soft Soil)	27.9	70.6	42.6
3	31.0	71.2	40.1
6	32.5	71.7	39.2
10	33.9	72.9	39.1
15	35.1	74.1	39.0
100	31.9	107.3	75.5

Table 3.6 Atterberg Test Results of BS Combinations

3.3.6 Soil Classification

Using Atterberg limits and sieve analysis test results, the group symbol (e.g. soil type) of the samples are determined according to Unified and AASHTO Classification systems respectively. Procedures werre performed in accordance with ASTM D 2487 "Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)" and ASTM D3282 "Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes".

Unified soil class system is based on three major soil divisions which are coarse grained soils (more than 50% retained on No.200 sieve), fine-grained soils (more than 50% passing No.200 sieve), and highly organic soils. These classes are further divided resulting in 15 basic soil groups. The procedure is using a simple flow chart beginning with percentage of specimen passing or retaining no.200 sieve. The soft soil is fine grained ($\geq 50\%$ passes #200), Liquid limit is over 50, over 70% passes 200, sand content (23.2%) is over than gravel (6.3%). Using the Flow chart (Figure 3.11) first, the group symbol was determined as fat clay with sand. The second step is the Plasticity chart (Figure 3.12) which is divided into empirically determined boundaries where plasticity levels of the soil indicate engineering properties. The A line separates inorganic clays (over the line) with inorganic silts and organic soils (below the line). The U line is a control level for erroneous data because it defines upper limit for natural soils. Using plasticity levels required from Atterberg tests, the index properties fall above A line and below U line indication inorganic fat clay. As a result, the soil is classified as fat clay with sand (CH) according to USCS (ASTM D 2487-11, 2011).

Figure 3.11 USCS Group Symbol Flow Chart (ASTM D 2487-11)

Figure 3.12 Plasticity Chart (ASTM D 2487-11)

AASHTO Soil Classification system is used for subgrade rating in road construction. It consists of 8 groups, from A1 to A8 with several subgroups and a group index number. AASHTO soil classes range between A-1 (best) to A-7 (worst) with subcategories according to its plastic properties.A-1 and A-3 are granular materials which indicate 35% retained on no.200 sieve and A-4 to A-7 silt-clay materials. Group index ranges from 0 (good soils) to 20 or more (very poor soils) (ASTM D3282, 2009). In order to determine the soil class, Table 3.7 is used. More than 36% passes #200 sieve, the liquid limit is over 40, the plastic limit of the soil is over 11 and finally plasticity index (43) is more than LL (71) - 30 = 41. The table suggests that the soil sample used falls in A-7 category. In order to identify the subgroup of the soil, AASHTO Plasticity Index (Figure 3.13) was used. AASHTO Classification of the soft soil was found as A-7-6, which means a poor soil. Additionally group index was calculated by the suggested formula;

 $GI = (F_{200} - 35) ((0.2 + 0.005(LL - 40)) + 0.01(F_{200} - 15)(PI - 10) = 29.81.$

Therefore the AASHTO Soil Classification is A-7-6 (29.81) which indicates a very poor clay soil.

General Classification	Granular Materials (35 % or less passing No. 200 (75 µm))			Silt-Clay Materials (More than 35 % passing N 200 (75 µm))			
Group Classification	A-1	A-3 [≜]	A-2	A-4	A-5	A-6	A-7
Sieve analysis, % passing:							
No. 10 (2.00 mm)							
No. 40 (425 µm)	50 max	51 min					•••
No. 200 (75 µm)	25 max	10 max	35 max	36 min	36 min	36 min	36 min
Characteristics of fraction passing No. 40 (425 µm):							
Liquid limit Plasticity index	 6 max	 N.P.		40 max 10 max	41 min 10 max	40 max 11 min	41 min 11 min
General rating as subgrade	Excellent to Good			Fair to Poor			

Table 3.7 AASHTO Soil Classification (ASTM D3282, 2009)

Figure 3.13 Plasticity Index for AASHTO Soil Classification (ASTM D3282, 2009)

3.3.7 Standard Proctor Test

Compaction is the mechanical effort to remove air voids and improve geotechnical properties of soils such as density, strength, stiffness and permeability. Various researchers have mentioned that compaction is crucial in dense graded pavement performance. Compaction effort aims to achieve a more solid material in the same volume using mechanical equipment. Water content of the compacted soil plays an important role during compaction. While too much water results in a dispersed soil structure, too less water results in a flocculated one, both of which are less than highest dry density value achievable by the optimum water content. Compaction tests aim in determining maximum dry density and optimum water content of subgrade soils. Standard laboratory test for compaction of soils is routinely performed using two different ways namely Standard Proctor and Modified Proctor tests. Both tests are based on compaction effort which is provided by a hammer which falls on to a molded soil. The distinction of the tests are the weight of the hammer, the number of layers compacted and number of drops. Each test has 3 different methods to be applied for different type of soils or purposes.

The Standard Proctor compaction tests were carried out on uncured samples in accordance with ASTM D 698-12 "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (56,000 ft-lbf/ft³(2,700 kN-m/m³))". The results of Standard Proctor compaction tests were to be used in sample preparation for the California Bearing Ratio tests. Therefore, the Method C, which requires using 6 inch mold was chosen (ASTM D-1883). Proctor Machine in the METU Transportation Laboratory was used to conduct the tests.

Large amount of soil sample was air dried, sieved through ³/₄ inch sieve and existing water content was measured. The plasticity results obtained from Atterberg tests were used to estimate the optimum water content and determine the starting water content for the tests. For every combination at least 6 different water content was selected and the amount of water, soil and borax

sludge to add was determined. For each test 6 kg of dry sample was taken, and then calculated amount of water was added before mixing. The necessary measurements such as weight and volume of the mold, weight of the moisture cans were made. The soil sample was placed into the mold carefully, then compacted with 3 layers and 56 blows per layer using the mechanical proctor machine available in the METU Transportation Laboratory (Figure 3.14). The soil in the mold was trimmed and the mass of the mold was measured. Samples were taken from the mold for measuring the water content and added into moisture cans, dried in oven at 105°C for 24 hours and water content was determined. For each combination at least 6 different water contents were tried and the same procedure applied (ASTM D698-12, 2012). For BS combinations the optimum water content, maximum dry densities, air void percentages were calculated and finally the compaction curves were plotted. The Proctor test results are given on the next chapter and the detailed data sheets and calculations can be found in Appendix E.

Figure 3.14 Proctor Machine Used For the Research

3.3.8 California Bearing Ratio (CBR) Test

California Bearing Ratio Test is a penetration test which was developed during 1930s in order to measure bearing capacity of subgrade, subbase or base materials. CBR of a soil is calculated by measuring load and penetration when a 76.2 mm. diameter piston penetrates the soil at a standard rate (1.27 mm./min.). Although slowly replaced by Resilient Modulus parameter, CBR is still used by many agencies around the world including Turkey. On this research, CBR tests were conducted in accordance with ASTM D 1883 "Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils". (ASTM D1883, 2007) The following sections briefly explains the testing process and results.

3.3.8.1 Sample Preparation

For compaction and bearing capacity tests, disturbed samples of soft soil were air-dried and then passed through ³/₄ inch sieve (Figure 3.15). The amount of soil which was retained on the sieve was replaced by the material passing $\frac{3}{4}$ inch but retained on No.4 sieve. 6 kg weight samples were prepared by mixing the calculated amount of stabilizing agent with SS (Figure 3.16). The predetermined amounts of soil and stabilizing agent, namely borax sludge, are mixed manually and also by using a dry and clean trowel. For the soaked CBR tests on cured samples, the samples which were prepared according to the above procedure were compacted according to the Standard Compaction Effort Method C (ASTM D 698) in 6 inch CBR molds and then taken to damp room to prevent the loss of moisture. The samples were set to cure in the damp room for 7 and 28 days. The curing temperature and relative humidity in the humidity room were approximately 20°C and 99%, respectively. After 7 and 28 days, the cured samples were taken out of the humidity room and soaked in water for 4 days in order to perform soaked CBR tests. During 4 days of soaking swell measurements were made and swell rate calculated.

Figure 3.15 Soil Soft After Sieving

Figure 3.16 Soft Soil and Borax Sludge Mixture

3.3.8.2 Test Apparatus

CBR tests were performed in the Transportation Laboratory in METU Civil Engineering Department. The machine to be used was a modified ELE Multiplex 50 device (Figure 3.17). The dial gages of the original machine were removed and instead a digital scale and load cell was implanted on the mainframe to obtain more precise results. The scale and load cell were connected to pc with connectors and labview software was set up to read and record data. As a result the modified machine was capable of measuring load and deformation in each second, thus showing more detailed and dependable data. Loading piston was 3 inch (49.63 mm.) in diameter and the moving plate speed was adjusted to 1.27 mm./min. The mold to contain tested soil was a rigid metal cylinder with an inside diameter of 152.4 mm, a height of 177.8 mm and a volume of 2,124 cm³ with a metal extension collar and a metal base plate. Metal base plate had at least twenty eight 1.59 mm diameter holes uniformly spaced over the plate within the inside circumference of the mold.

Figure 3.17 California Bearing Ratio Test Device and Data Processing Equipment

3.3.8.3 Test Procedure

As mentioned before, the specimens were compacted to its predetermined optimum moisture content ($\pm 0.5\%$) and the maximum dry density using the proctor device, cured in damp room and soaked for 4 days in water. After the final swell measurements were done, free water was removed and the specimen was allowed to drain downward for 15 minutes. After weight measurement, the mold was placed on the moving plate of CBR machine. Surcharge weights of 4.54 kg were placed onto the test sample and the penetration piston was lowered as close as possible without disturbing the specimen. The device adjustments were checked and the load rate was set to 1.27 mm/min. The labview program was turned on and the connection between PC, scale and load cell was assured. As moving plate moved upward and provides piston penetration into the specimen, data transfer on PC and visual control of device was maintained. The moving motion namely penetration was removed from the mold and the water content was determined.

3.3.8.4 CBR Calculation

The load readings were recorded to a txt file including time, deformation and load readings. Using excel worksheet loads were converted to the stresses by dividing them into the cross-sectional area of the penetration piston. To illustrate, part of a sample worksheet is shown in Appendix F. In order to make the calculations easier universal units were converted to psi and inches. Stress at 0.1 and 0.2 inches were recorded and CBR was calculated. The stresses at 0.1 and 0.2 inche penetrations were divided to 1000 and 1500 psi respectively and then multiplied with 100. The California Bearing Ratio value was calculated as the one at 2.54 mm (0.1 inch) penetration. However if the value at 5.08 mm (0.2 inch) penetration was higher than the one at 2.54 mm (0.1 inch) then the CBR at 5.08 mm penetration was accepted. In order to visualize the stress penetration relation, stress - penetration curve is plotted on Figure 3.18.

In some instances, due to surface irregularities or initial contact of piston and sample, the curve was concave upward shape. The CBR value was then corrected using Excel trendline function (Figure 3.19). The equation for the initial slope was calculated and deformations at 0.1 and 0.2 inches were adjusted.

Figure 3.18 Stress/Penetration Curve

Figure 3.19 California Bearing Ratio Correction Using Trendline

3.3.8.5 Swell Measurements

Swell measurements were performed during soaking step of CBR tests in the METU Transportation Laboratory. The procedure was applied in accordance with ASTM D 1883 "Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils" (ASTM D1883, 2007). The compacted soil in 6 inch molds were soaked under water with 4.54 kg. surcharge weights. Standard CBR molds provided water access through openings and filter paper at top and bottom of the soil. This additional free water caused the soil in the mold to swell and swell readings were measured with dial gages capable of reading 0.001 in. mounted on metal tripod attached to the top of the mold. The readings were recorded every 24 hours until the end of soaking period. The final swell measurement was calculated as percentage over the initial specimen height. The results and discussion are on the next chapter and swell readings of each specimen are recorded on CBR data sheets.

Figure 3.20 Swell Measurement Tools

3.3.9 Unconfined Compressive Strength (UCS) Test

Unconfined Compressive Strength Test is an undrained and unconsolidated test without lateral confinement to determine an approximate value of strength of cohesive soils. It is a quick test to determine shear strength parameters of cohesive soils. Its standards are designated by ASTM D 2166 (Standard Test Method for Unconfined Compressive Strength of Cohesive Soil) (ASTM D2166, 2013). Whereas CBR is a penetration test, UCS is a compression one. Unconfined specimen was compressed until failure and stress with strain was calculated. If failure occured before 15% strain the highest stress, otherwise strength (q_u). Shear strength (s_u) was calculated as half of the unconfined compressive strength. Because CBR tests were done at soaked conditions, UCS tests were preferred to perform at unsoaked condition for this research. Therefore the soil had a stiff condition and UCS results were expected higher than normal conditions.

3.3.9.1 Sample Preparation

Generally it is preferred to use undisturbed specimens for UCS test. However for this research, remolded method was used due to the availability of disturbed soil. ASTM suggests sample height to diameter ratio to be between 2-2.5 with a minimum diameter of 30 mm. For convenience and mold availability, 100 mm (height) 50 mm. (diameter) molds were preferred for the research. ASTM suggests that the largest particle diameter can not be larger than 1/10 of the diameter. For that reason, soil was sieved through No.4 sieve (4.76 mm.) (Figure 3.21). The amount of dry soil and water mass were calculated according to the dry densities and optimum moisture contents which were previously determined by standard proctor tests. The soil was compacted in the mold using laboratory tools and later removed by an extruder. The specimens prepared for curing were kept in molds, wrapped in plastic bags and placed in a damp room for curing. Samples were prepared in the METU Geotechnics Laboratory.

Figure 3.21 Sieved Soil Samples for Unconfined Compressive Strength Test

3.3.9.2 Test Procedure and Calculation

The same loading device used for CBR tests in METU Transport Laboratory was used to perform the UCS tests. The sample was located on the moving plate without wrap and upper plate is lowered until it contacted the specimen. The load was applied at a strain rate of 1.27 mm/min which was the same for CBR. Load and deformation were recorded by loadcell and electronic scale respectively. Labview program was set to save the data to a .txt file and drew a stress/strain graph. The load was applied until the load values decrease. New dimensions of the specimen was measured by scale and a photo of the specimen was taken showing the breaking form. Subsequently, the water content was determined using the entire specimen and recorded on the data sheet. An excel worksheet was prepared to calculate stress, strain and corrected

area. As load was applied, the length of the sample decreased and its cross sectional area increased. The stress was calculated according to the new cross sectional area. A sample of excel worksheet and related calculations are shown at Appendix G. Following section will describe discussion of test results.

CHAPTER 4

DISCUSSION OF TEST RESULTS

The objective, scope and procedure of experimental program aimed to investigate the effect of borax sludge addition on soft soils were previously presented. Additionally, results and discussion of the index tests such as XRF, XRD, Gs etc. were introduced in the previous chapter. In this chapter the questions which was initially presented for research hypotheses and related test results (Table 4.1) are discussed, their statistical analysis and model are represented. The research hypotheses suggest that plasticity, swell, bearing capacity parameters are to be improved and curing time effect to have a meaningful effect. CBR, UCS, plasticity, compaction tests and a proposed statistical model is suggested in the following sections.

Mixture Designations	Atterberg Limits	Standard Proctor	CBR UCS			5		
(% dry weight)			Curing Time (days)					
SS = Soft soil			0			uy5)	7	20
BS = Borax Sludge			0	/	28	0	/	28
SS (% 100 SS)	+	+	+			+		
3%BS	+	+	+	+	+	+	+	+
(97% SS + 3 % BS)			1	Ĩ	1	1	1	-1
%6 BS	+	+	+	+	+	+	+	+
(94% SS + 6 % BS)								-
10%BS	+	+	_L		4	_		L.
(90% SS +10 % BS)			т	Ŧ	Ŧ	Ŧ	Т	Ŧ
15%BS	+	+				1		
(85% SS +15 % BS)			+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
BS	+							
(%100 BS)								
			1				1	

Table 4.1 Mixture Designations an	nd Performed Test	s for the Research
-----------------------------------	-------------------	--------------------

4.1 Plasticity Characteristics

Atterberg limit tests were conducted with all soft soil – borax sludge mixtures and it is apparent from the results (Table 4.2, Figure 4.1) that all parameters increase with BS content. While the liquid limit increases slightly, plastic limit increases little higher causing a slight decrease in plasticity index. Decrease in the plasticity index is an improvement of geotechnical properties soft soil and commonly seen during stabilization with agents such as lime and fly ash. As discussed sn the first chapter, Turkish General Directorate of Highways recommends PI to be less than 20% for subgrades. Considering the plasticity indexes obtained, the values are still too high to meet the criteria. Therefore, it can be concluded that the improvement in plasticity of the soil is not sufficient.

Borax sludge Content %	Plastic limit (PL-%)	Liquid Limit (LL-%)	Plasticity Index (PI-%)
0	28	70.6	42.6
3	31	71.2	40.2
6	32.5	71.7	39.2
10	33.9	72.9	39.1
15	35.1	74.1	39
100	31.9	107.3	75.5

Table 4.2 Atterberg	Limits	Test	Results
---------------------	--------	------	---------

Figure 4.1 Plasticity Characteristics

4.2 Swelling Characteristics

Swell results after 4 days of soaking are presented in Table 4.3 and the histogram of average swell rates are demonstrated in Figure 4.2. BS content and curing time both reduce swelling significantly. As curing time increases the amount of swelling decreases from 6.25% up to 1.4%. Borax Sludge has an improving effect on swelling. The improvement can be monitored highest at 6% BS content. 10% and 15% BS have similar values. Decrease in sweling complies with the Turkish General Directorate of Highways criteria which requires swelling less than 2%. Therefore, swelling improvement obtained by borax sludge addition is satisfactory.

Expansive clay soils swell due to cation exchange of clay minerals when exposed to water. Swelling of soil depends on soil characteristics, environmental factors and the state of stress. The main factors of swelling related to soil characteristics are clay content, mineralogy, chemical structure, dry density and fine grained fraction (Yazıcı, 2004). As mentioned previously, XRD results demonstrated that the soil has smectite and illite minerals which cause high swell. Additionally it is fine grained with a low dry density. Stabilization of swelling can be achieved through modification of cation exchange capacity, flocculation and pozzolanic reactions. Stabilization process starts with a very quick cation exchange and continues with flocculation and agglomeration. A secondary process of pozzolanic reaction occurs between calcium and silica or alumina ions. The lime (CaO) content of BS which is 18.2% is expected to cause reduction of swelling in this research.

Table 4.3 Swelling Results

CuringTime/BS	SS (%)	%3BS	%6BS	%10BS	%15 BS
Content					
0 Days	6.20	4.77	4.14	4.42	3.99
	6.15	4.47	3.98	4.16	3.90
	6.41	4.63	4.02	4.20	4.05
7 Days	NA	3.24	1.95	2.97	2.67
		3.46	1.84	2.30	2.01
		3.11	2.13	2.16	2.50
28 Days	NA	NA	1.27	1.62	1.82
		2.45	1.38	1.33	1.49
		2.21	1.53	1.37	2.01

Figure 4.2 Average Swelling

4.3 Compaction Characteristics

A summary of compaction principles and test methodology used in this research were explained in previous chapter. Compaction tests are required to determine the optimum water content and maximum dry density to assess the compaction characteristics of the soil and use the related values for further CBR and UCS tests. Standard Proctor Compaction Test (Method C) results are demonstrated on Table 4.4 and related moisture curves are shown on Figure 4.3. The dry density of the soft soil is quite low, indicating poor geotechnical properties including the compressive strength. BS addition increases the optimum moisture content while reducing the dry density. The reduction in the dry density can be explained due to the low specific gravity of BS. It can also be seen that the curves get closer to zero air void line indicating better compaction and less air voids.

 Table 4.4 Proctor Test Results

Material	Optimum Moisture Content (%)	Max. Dry Density (g/cm ³)
SS+0%BS	26	1.449
SS+3%BS	29.3	1.430
SS+6%BS	31.04	1.411
SS+10%BS	32.34	1.398
SS+15%BS	33.1	1.387

Figure 4.3 Proctor Moisture Curves

Some correlations between plasticity characteristics can be used to check the validity of the results. Figure 4.4 shows typical moisture curves based on many standard proctor tests compiled by the Ohio Dept. to be used as a simple reference tool. To illustrate, for the soft soil with no borax sludge addition, the wet density is 1.827 g/cm3 (114 pounds/cu ft.). dry density is 1.449 g/cm3 (90.5 pounds per cu ft.) and OMC is 26%. These values comply with the chart values represented on the figure. On the other hand, ASTM suggests that generally OMC is slightly lower than PI (ASTM D 698-12, 2012). All samples have a slightly lower OMC than their respective plasticity indices indicating the proctor test results are similar to that of literature.

Figure 4.4 Family of expected wet density compaction curves, based on 18,000 compaction tests compiled by the Ohio DOT

4.4 California Bearing Ratio

The CBR Test Results are tabulated in Table 4.5. The soft soil has an average CBR value of 2% which is considered as weak soil and either needs to be improved or removed. As a matter of fact this CBR value is predictable when plasticity, compaction properties and soil classification is considered. Yoder and Witczak (1975) suggest that fat clays (CH) might have field CBR values between 1 and 5 Additionaly, it is suggested that presumptive CBR values of CH can be between 2 and 3 (IRC-SP72, 2007). The value is not acceptable for subgrade minimum requirements suggested by Turkish Directorate of Highways and necessitates strength improvement.

CuringTime/BS	SS	%3BS	%6BS	%10BS	%15 BS
0 Days	1.918	2.57	3.17	2.982	2.518
	2.083	2.508	3.087	3.078	2.57
	2.008	2.713	2.99	3.005	2.563
7 Days		2.89	3.747	3.649	2.848
		2.997	3.634	3.762	2.93
		3.065	3.852	3.492	2.878
28 Days		3.297	4.099	4.135	3.372
		3.372	4.166	4.017	3.364
		3.23	4.03	3.964	3.237

Table 4.5 California Bearing Ratio Test Results

To begin with, a simple comparison between results easily demonstrate that there is an increase in CBR values of BS added specimens. When vertically analyzed a CBR increase with curing time is also visible. The highest CBR improvement has been 4.166% with 6% BS addition and 28 days of curing. Although there is a 100% strength increase, this value is not sufficient for stabilization alone as discussed at previous chapters. Borax sludge content and curing effect can be observed more easily using a scatterplot. A bell curve shape of borax sludge content indicates that CBR increases in all cases but it is highest when BS content is between 6 and 10% and lower at 3 and 15%. It can also be seen that curing effect for 7 days is higher than that of 28 days, however 28 day results are highest. Therefore it can be suggested that CBR increase with BS content and curing.

Figure 4.5 California Bearing Ratio Test Results

The experimental design and statistical testing hypotheses for ANOVA were previously presented. While Borax sludge has α = 5 levels (0,3,6,10,15 %) and n=3 replicates, curing time has α = 3 levels (0,7,28 days) and n=3 replicates. Because soft soil without borax addition was not cured and tested, an unbalanced experimental design is tested using general linear model option of Minitab software. ANOVA results retrieved from Minitab 16 statistical software are demonstrated in Table 4.6. For 5% confidence interval P values are approximately zero at ANOVA table which represents that both borax sludge addition and curing times have a significant effect on CBR value. F values suggest that curing time has a more significant effect than BS content. The model suggests that there are no interaction between factors. Two observations seem as outliers and labeled as unusual response (%3BS 0Day Sample 1 and %6BS 0 Day Sample 3).

Table 4.6 ANOVA output of California Bearing Ratio Test Results

```
Results for: cbr minitab.txt
General Linear Model: response versus BS, Curing
Factor Type Levels Values
BS fixed 5 0, 3, 6, 10, 15
                             3 0, 7, 28
Curing fixed
Analysis of Variance for response, using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS
                                                               ਸ
                                                                           Ρ
     4 8.4492 5.5659 1.3915 126.49 0.000
BS
Curing 2 4.6484 4.6484 2.3242 211.28 0.000
Error 32 0.3520 0.3520 0.0110
Error 32 0.3520
Total 38 13.4497
S = 0.104885 R-Sq = 97.38% R-Sq(adj) = 96.89%
Unusual Observations for response

        Dbs
        response
        Fit
        SE
        Fit
        Residual
        St
        Resid

        6
        2.71300
        2.50136
        0.04282
        0.21164
        2.21 R

        15
        2.99000
        3.18281
        0.04282
        -0.19281
        -2.01 R

Obs response
```

Residual plots are useful in analyzing the data and checking model adequacy. Boxplot of residuals (Figure 4.6) indicate that the variances are generally symmetrical and equal. However 15%BS with 0 day and 28 day results seem skewed indication outliers. In Figure 4.7, residual plots for the experimental data are presented. Residual vs. Fitted Values graph helps us to detect non linearity, outliers and unequal error variances. It is apparent that the residuals do not bounce very randomly around the 0 line which indicates a non-linearity. Results around 2.5 is inclined to be over and around 3 lower than the residual line. Variances of error terms seem to be equal and there are no outliers. Residual histogram can be used to check if residual variance is normally distributed. The histogram suggests that residual deviation is normally distributed. Residuals vs. order plot can be used to question if error terms, namely serial correlation are independent. On the plot the residuals are on the y axis and the order data is collected on the x axis. Although residuals between 7 and 15 are mostly below the zero line, generally error terms show no obvious trend. That means error terms are independent. Normal probability plot is

useful in showing deviations from normality. The plot for CBR results suggests that residuals comply with normal distribution. All the additional charts show that the experimental results are statistically acceptable and no data transformation is necessary.

Figure 4.6 Boxplot of Residuals for California Bearing Ratio Test Results

Figure 4.7Residual Plots for California Bearing Ratio Test Results
Plot of the main effects (Figure 4.8) can be useful to visualize the effects of factors on the response variables. It can be seen that around 6% BS content the values are highest and shows a bell shape curve indicating a quadratic function. On the other hand, curing effect has a linear shape indicating the more curing time the better CBR performance is achieved.

Figure 4.8 Factorial Fitted Means Graph of California Bearing Ratio Test Results

CBR results with 28 days of curing are highest and more curing time was not tested. Therefore a model including curing time is only applicable within 28 days. It is possible to determine a simple model for borax sludge addition if curing time is assumed as 28 days. Therefore BS is chosen as independent variable and curing effect has been fixed for 28 days. In order to model the 28 day curing effect of borax sludge only 28 day cured sample results are evaluated. Using Excel software and trendline function a 4th level polynomial model with a satisfactory R-Sq .9931 is determined (Figure 4.9).

CBR at 28D Curing =
$$0.0002x^4$$
- $0.0056x^3$ + $0.0081x^2$ + $0.4518x$ + 2.003

When the derivative is applied to find the peak point of the equation, borax sludge content is found 7.7% BS resulting 4.2 CBR. Therefore we can suggest that according to our experimental results, the maximum CBR gain is achieved

with 7.7% BS addition in 28 days as approximately 4.2 CBR. However, the calculated value is still below the criteria suggested by many agencies including Turkish Directorate of Highways. CBR improvement is not sufficient.

Figure 4.9 California Bearing Ratio Polynomial Model for 28 Days Curing

4.5 Unconfined Compressive Strength

Unconfined Compressive Strength Test Results are demonstrated on Table 4.7. The average UCS value for the SS is 165 kPa. Black (1961) suggests a correlation formula between CBR and UCS.

$CBR = q_u (kPa) / 70$

Using formula, the expected value is slightly lower than the results which was determined in this research. This can result from the disturbed and remoulded specimens. The values prove that the soil and mixtures were in stiff condition. Borax sludge content and curing effect can easily be observed using a scatterplot (Figure 4.10). The bell curve shape of borax sludge content similar to CBR can easily be seen. However, the shape bends on 10% and higher on 3% than CBR results. Also, the strength difference between 7 and 28 day cured samples is lower. The peak at 6% is more evident.

Curing Time		SS	%3BS	%6BS	%10BS	%15 BS
/BS Content		(kPa)	(kPa)	(kPa)	(kPa)	(kPa)
0 Days	Test 1	162.5	207.4	231.8	201.2	181.7
	Test 2	173.9	190.9	217.9	191.9	181.2
	Test 3	159.5	195.5	229.5	199.6	191.2
7 Days	Test 1		256.9	288.0	242.9	233.5
	Test 2		245.7	282.3	246.4	229.4
	Test 3		250.5	278.9	234.0	235.6
28 Days	Test 1		295.2	318.6	285.4	248.2
	Test 2		282.8	312.0	266.9	258.1
	Test 3		295.5	316.0	289.3	246.6

Table 4.7 Unconfined Compressive Strength Test Results

Figure 4.10 Scatterplot of Unconfined Compressive Test Results

In order to analyze the UCS test results, the same ANOVA procedure and Minitab software was used. While Borax sludge has α = 5 levels (0,3,6,10,15) and n=3 replicates, curing time has α = 3 levels (0,7,28) and n=3 replicates. ANOVA output is demonstrated in Table 4.8. Checking P values at ANOVA table, we can clearly state that both borax sludge addition and curing times have a significant effect on UCS value. F values suggest that curing time has a higher effect than BS content. The model suggests that there is no interaction between factors and R-Sq value is similar to that of CBR. One observation seem as an outlier and labeled as unusual response in the table (15% BS 28Day Sample 3).

Table 4.8 ANOVA Output of Unconfined Compressive Strength Test Results

General Linear Model: response versus BS, Curing Factor Type Levels Values fixed 5 0, 3, 6, 10, 15 BS 3 0, 7, 28 Curing fixed Analysis of Variance for response, using Adjusted SS for Tests Source DF Seq SS Adj SS Adj MS F Ρ
 BS
 4
 30826
 15933
 3983
 63.37
 0.000

 Curing
 2
 41879
 41879
 20939
 333.11
 0.000

 Error
 32
 2012
 2012
 63
 63
Total 38 74717 S = 7.92844 R-Sq = 97.31% R-Sq(adj) = 96.80% Unusual Observations for response Fit SE Fit Residual St Resid Obs response 39 246.620 261.313 3.237 -14.693 -2.03 R R denotes an observation with a large standardized residual.

Residual plots are evaluated for the UCS test results (Figure 4.11 & 4.12). Boxplot of residuals shows that variance is generally close to equal, however results of 28 days cured 3%BS and uncured 15%BS test results are skewed. A transformation is not necessary. Residual histogram shows normal distribution although weight can be seen on the positive side. Residuals vs. order plot looks normal and that error terms are independent. Sample 3 remains very below zero line. This was considered as an outlier and presented at ANOVA output in Table 19. Normal probability plot shows that residuals comply with normal distribution. No significant outlier is detected and there is no need for a data transformation. Residual vs. Fitted Values graph suggests that variances of error terms are equal and randomly placed.

Figure 4.11 Boxplot of Residuals of Unconfined Compressive Strength Test Results

Figure 4.12 Residual Plots for Unconfined Compressive Strength Test Results

Figure 4.13 Main Effects Plot for Unconfined Compressive Strength Test

Main effects plot (Figure 4.13) shows that around 6% BS content the values are highest and an inclined bell shape curve indicating a polynomial function. On the other hand, curing effect has a linear shape so similar to that of CBR. In a similar manner to fit the data to a simple model, curing time is fixed as 28 days and BS content is selected as independent variable. Using Excel software and trendline function a 4th order polynomial model is determined (figure 4.14). More orders changes the R-Sq value only 1 in 10⁻¹⁵ therefore 4th order is accepted as sufficient.

Figure 4.14 Polynomial Model for Unconfined Compressive Strength Test Results

Suggested Model, R-Sq = 0.9853: UCS at 28D Curing = $-0.0064x^4 + 0.4454x^3 - 9.2445x^2 + 65.857x + 165.31$ pol

When the derivative is applied in order to find the peak point, the root is found at 5.5%. Subsequently when the model is applied for 5.5% BS addition, UCS is found as 316.1 kPa. Therefore we can suggest that according to our experimental results, the maximum UCS gain is achieved with %5.5 BS addition. In the next chapter, a summary of the conclusions and further recommendations are presented.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The conclusions made from this research and recommendations for future studies are included in this chapter. More studies will be useful in the utilization of boron waste materials for construction of transport structures and geotechnical applications. In this research, the effect of borax sludge obtained from concentrator plant on compressive strength and other geotechnical properties of soft soil was investigated. BS was mixed 0, 3, 6, 10 and 15% by dry weight with soft soil and cured for 0, 7 and 28 days and changes in geotechnical properties were studied with standard laboratory tests. Mainly, Unconfined Compressive Strength and California Bearing Ratios were tested and analyzed. The soil which was used for this research was a fat clay (CH) with high plasticity and very low strength properties. It is a type of subgrade which needs to be removed or stabilized by different means. Borax Sludge was retrieved from concentrator plant from Bigadiç, Turkey. It is highly plastic soil and consists of very fine particles.

5.1 Conclusions

Based on the results of analyses on laboratory outcomes, the following conclusions can be drawn from the study.

• XRD Analysis shows that the main minerals of borax sludge include dolomite and borates, and soft soil quartz, feldspar, smectite and illite. Smectite and illite explain the high swelling and plastic character of the soil.

• XRF Analysis demonstrates that borax ludge has an average of 7% B2O3 (boron), and 18.2% CaO (lime). Lime content may have an effect on stabilization, however this amount alone may not be sufficient to achieve the intended strength improvements. On the other hand pozzolanic content consists

only around 15% of silica, which may not be sufficient to create a reaction with calcium in the case of fly ash.

• Borax Sludge content increases liquid limit slightly and plastic limit significantly. This results in a decrease in the plasticity index, which is a preferred effect. However, this improvement is not satisfactory in terms of field applications.

• Optimum moisture content increases while the maximum dry density decreases with the increasing borax sludge content. This may result from the difference between the specific gravity of the soft soil (2.718) and the borax sludge (2.523). It was found that borax sludge addition decreases air void ratio which is a sign of higher compactibility.

• CBR of soft soil increases in all borax sludge combination, however the highest increase can be gained between 6%BS and 10%BS. 28 day cured model suggests a BS content of 7.7% for the highest CBR result.

• Curing has also significant effect on CBR results. An average of 25% strength gain is achieved at 7 days of curing and additional 17% more gain is achieved after 28 days of curing.

• While the highest CBR value was 4.1, according to the model, 4.2 CBR could be achieved with 7.7% BS. Although this value is twice as much as the CBR of the soft soil, the strength gain is still not sufficient for stabilization purposes.

• Satisfactory reduction in swelling was achieved by the addition of borax sludge in that the swelling was decreased from 6.3% to 1.4% after 28 days of curing. This improvement complies with the criteria stated by the Turkish General Directorate of Highways.

• Unconfined compressive strength results were similar to those of CBR, however, samples with 10%BS content did not perform well. The highest increase was observed with 6%BS samples. The estimated model demonstrates

that an optimum BS content as of 5.6 % can increase the strength from 165.3 kPa to 316.1 kPa. However, the improvement is not as high as 350kPa to be named as stabilization.

• Curing for UCS tests had a similar effect to that of CBR. 7 days of curing had an average of 27% strength increase while the additional 15% average strength gain was achieved after 28 days of curing.

• To sum up, Borax Sludge addition increases liquid limit, compressive strength, bearing ratio, optimum moisture content and decreases dry density, plasticity and swell rate. Nevertheless the improvement level is not sufficient for stabilization purposes except for swelling which was found to be satisfactory.

• Finally, it can be stated that BS can be used for soft soil modification and improvement of swelling characteristics. Even though sufficient bearing ratio was not obtained, borax sludge can be used on low volume road construction as a waste utilization resort.

5.2 Recommendations for Future Studies

After the literature review and experimental studies conducted for this research, the following recommendations for future studies can be made as follows,

• Borax sludge can be used to modify soft soils and be utilized as a waste management solution. However, research on varying combination with different stabilizing agents such as lime, fly ash and cement are recommended. Such a combination may result with a better strength improvement.

• Borax sludge was also studied on cement production. Further research on its usage for Portland cement and asphalt concrete may provide more utilization areas. • This research was done using only soft subgrade soil. Further research using granular materials for base or subbase layers of pavement should be evaluated.

REFERENCES

Abalı, Y., Yurdusev M. A, Zeybek, M. S., Kumanlıoğlu A. A. (2007). Using Phosphogypsume and Boron Concentrator Wastes in Light Brick production. *Construction and Building Materials*-21,52–56.

ASTM C117-13, Standard Test Method for Materials Finer than 75µm (No.200) Sieve in Mineral Aggregates by Washing. *ASTM International, West Conshohocken, PA*, 2013.

ASTM C136/136M Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, *ASTM International, West Conshohocken, PA*, 2014,

ASTM D2487-11. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). *ASTM International, West Conshohocken, PA*, 2011.

ASTM D422-63(2007)e2. Standard test Method for Particle-Size Analysis of Soils. *ASTM International, West Conshohocken, PA*, 2007.

ASTM D698-12. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. *ASTM International, West Conshohocken, PA*, 2012.

ASTM D1883-07. Standard Test Method for CBR(California Bearing Ratio) of Laboratory Compacted Soils. *ASTM International, West Conshohocken, PA*, 2007.

ASTM D2166. Standard Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, West Conshohocken, PA, 2013

ASTM D3282-09. Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes. *ASTM International, West Conshohocken, PA*, 2009.

ASTM D4318-10e1. Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils. *ASTM International, West Conshohocken, PA*, 2010.

ASTM D5550-06 Standard Test Method for Specific Gravity of Soil Solids by Gas Pycnometer, *ASTM International, West Conshohocken, PA*, 2006.

Benson, H. C., Bradshaw, S., (2011). User Guideline for Coal Fly Ash in Green Infrastructure Construction. *Recycled Materials Resource Center, Madison*.

Black, W. P. M. (1961). The calculation of Laboratory and in-situ values of California Bearing Capacity Data. *Geotechnique-11*, 14-21.

Boncukçuoğlu R., Yılmaz, M.T., Kocakerim, M.M., Tosunoğlu, V., (2002). Utilization of Borogypsum As Set Retarder in Portland Cement Production. *Cement and Concrete Research* 32, 471-475.

Bor Sector Report (2003). Eti Maden İşletmeleri.

Bor Sector Report (2010). Eti Maden İşletmeleri.

Bor Sector Report (2013). Eti Maden İşletmeleri.

Christogerou, A., Kavas, T., Evcin, A., Pontikes, Y., Koyas, S., Tabak, Y., Angelopoulos, G.N., (2009). Use of Boron Waste in The Production of Heavy Clay Ceramics. *Ceramics International Vol.35*, 447-452.

Demir İ., Orhan, M. (2002). Utilization of Boron Waste in the Production Construction Materials. *I. International Boron Symposium*, (s. 235-239). Kütahya/Turkey).

Erdoğan, Y., Zeybek, M. S., Demirbaş, A., (1998). Cement Mixes Containing Colemanite From Concentrator Wastes. *Cement and Concrete Research* 28, 605-609.

Erdoğmuş, E., Yılmaz, B., Erdoğan, Y. (2004). The effect of Sodium Carbonate on Mechanical Properties of Portland Cement Containing Colemanite Concentrator Tailings and Karabük Ashes. *Uluslararası Bor Sempozyumu*, (s. 425-430). Eskişehir, Turkey.

Erdoğmuş E., Yılmaz, B.(2012). Influence of Colemanite Admixture on Portland Cement Durability. *Advances in Cement Research Vol.24*, 155-164.

FM5-472. (2001). *Materials Testing*. Washington D.C.: Department of The Army Field Manual.

Genç S., Sevinç, V., Özşeker, A., Çakı, M., (1998). Etibank Kırka Boraks İşletmesi Konsantratör Atığının Sır Hammaddesi Olarak Değerlendirilmesi. *4. Seramik Kongresi*, (s. 119-124). Eskişehir.

Griffin T. S., Downing, T. L. (2001). Rio Tinto Borax's Pond Reprocessing and Sustainable Development. *New Developments in Mineral Processing, 9th Balkan Mineral Processing Congress.* 319-324, İstanbul.

Güyagüler, T. (2001). Türkiye Bor Potansiyeli, 4'üncü Endüstriyel Hammaddeler Sempozyumu, (s. 18-27). İzmir. Helvacı, C. (2005). Borates. Encyclopedia of Geology (s. 510-522). Holtz R. D., Christopher, B. R., Berg, R. R. (2008). *Geosynthetic Design and Construction Guidelines, FHWA HI-07-092,* Washington D.C., U.S. Department of Transportation Federal Highway Administration.

IRC:SP72. (2007). Guidelines for the design of flexible pavements for low volume rural roads.

Karasu B., Gerede, E. (2002). Firitleştirilmiş Boraks Konsantre Atığının Yer Karosu Sırlarının Özelliklerine Etkisi. *Kütahya I. Uluslararası Bor Sempozyumu Bildiriler Kitapçığı*, (s. 198-201). Kütahya.

Kavas T., Christogerou, A., Pontikes, Y., Rathossi, C., Angelopoulos, G. N. (2011). Valorisation of Different Types of Boron Containing Wastes for the Production of Lightweight Aggregates. *Journal Of Hazardous Materials 185, Issues 2-3,* 1381-1389.

Kavas, T. (2006). Use of Boron Waste as a Fluxing Agent in Production of Red Mud Brick. *Building and Environment 41*, 1779-1783.

Kavas, T., Önce, G. (2002). The Usage Capacity of Etibor Kırka Borax Company's Wastes in The production of Structural Bricks as a Flax Material. *1st International Boron Symposium*, (s. 219-223). Kütahya, Turkey.

Kaya, G., Karasu, B., Karacaoğlu, E. (2006). Utilizing of Borax Solid Wastes in Roof Tile and Brick Bodies. *The Minerals, Metals and Materials Society*, 535-543.

Kula, I., Erdoğan, Y., Olgun, A., Kalfa, O. M., Sevinç, V. (2001). Effets of Colemanite Waste, Coal Bottom Ash and Fly Ash on the Properties of Cement. *Cement and Concrete Research, Vol 31.*, 491-494.

Kula, I., Olgun, A., Sevinç, V., Erdoğan, Y. (2002). An Investigation on the Use of Tincal Ore Waste, Fly Ash and Coal Bottom Ash as Portland Cement Replacement Materials. *Cement and Concrete Research, Vol.32*, 227-232.

Kurama, S., Kara, A., Kurama, H., (2006). The Effect Of Boron Waste in Phase and Microstructural Development of Terracotta Body During Firing. *Journal Of European Ceramics Society Volume 26 Issues 4-5*, 755-760.

Makusa, G. P. (2012). Soil Stabilization Methods.

Mitchell J. K., Kenichi S. (2005). *Fundamentals of Soil Behavior, 3rd Edition,* Wiley.

Mordoğan H., Helvacı, C., Malayoğlu, U., (1995). Bor Yatakları Killeri ve Güncel Göllerdeki Lityum Varlığı ve Değerlendirme Olanakları. *Endüstriyel Hammaddeler Sempozyumu*, 185-196, İzmir.

Little, N. D., Nair, S. (2009). NCHRP Report 20-07, Recommended Practice For Stabilization of Subgrade Soils and Base Materials, *Transportation Research Board, Texas*.

NLA. (2004). Lime Stabilization and Modification. *National Lime Association Bulletin*, 326, 1-43.

Özdemir, M., Öztürk, N. (2003). Utilization of Clay Wastes Containing Boron as Cement Additives. *Cement and Concrete Research Vol.33*, 1659-1661.

Özdemir, M. A.(2011). Improvement of Bearing Capacity of a Soft Soil by the Addition of Fly Ash, METU, Ms Thesis.

Sönmez E., Aytekin, Y. (1992). Kırka Tinkal Cevherinden Doğrudan Çözeltme ve Üç Kademeli İlokülasyon Yoluyla B₂O₁ Kazanılması. *4. Uluslararası Cevher Hazırlama Sempozyumu*, 751-764.

Targan Ş., Olgun, A., Erdoğan, Y., Sevinç, V. (2003). Influence of Natural Pozzolan, Colemanite Ore Waste, Bottom Ash and Fly Ash on the Properties of Portland Cement. *Cement and Concrete Research Vol.33*, 1175-1182.

Technical Specification for Highways (2013), Turkish Directorate of Highways, Ankara

Topçu, İ. B., Özdemir, M., Uğurlu, A. (2006). Borax Üretiminde Ortaya Çıkan Malzemenin Çimento İçerisinde Değerlendirilmesi. *DSİ Teknik Bülteni Vol.102*, 14-23.

Ulutaş D., Bayrakci, E., Cokaygil, Z., Özkan, A., Güney, Y., Banar, M. (2014). Geotechnical, Chemical and Structural Characterization of Waste Clay from Boron Production. *Athens Journal of Technology Engineering*, 171-179.

Uslu, T., Arol, A. (2004). Use of Boron Waste as an Additive in Red Bricks. *Waste Management* 24, 217-220.

Yoder, E. J., Witczak, M. W. (1975). *Principles of Pavement Design*. New York: Wiley.

Zeybek B., Olgun, A., Erdoğan, Y. (2004). Tinkal Konsantratör Atığı İçeren Çimentoya Bazı Polimer ve Alkali Tuzların Etkisi. *DPÜ Fen Bilimleri Enstitüsü Dergisi Vol.6*, 135-151.

Yazıcı, V. (2004) Stabilization of Expansive Clays Using Granulated Blast Furnace Slag (GBFS), GBFS-Lime Combinations and GBFS Cement, METU, thesis

APPENDIX A

BORAX SLUDGE XRF ANALYSIS REPORT

ETİ MADEN İŞLETMELERİ GENEL MÜDÜRLÜĞÜ BANDIRMA BOR VE ASİT FABRİKALARI İŞLETME MÜDÜRLÜĞÜ LABORATUVARLARI

ANALİZ RAPORU

Numune	e : BORAKS ŞLAMI	Tarih :
22/03/20	012	
1	150 KG BORAKS ŞLAMI NUMUNESİ	ANALİZ SONUÇLARI.

B2O3	%	6,77
SO4	%	0,54
CaO	%	16,70
Na2O	%	3,50
SiO2	%	16,60
MgO	%	15,00
SrO	%	0,91
A12O3	%	0,61
Fe2O3	%	0,16
As2O3	%	0,0029
<u>Elek Analizi</u>		
+0,315 mm	%	0,12
+0,250 mm	%	0,35
+0,106 mm	%	1,01
+0,063 mm	%	3,40
-0,063 mm	%	96,60

APPENDIX B

XRD TEST RESULTS

Figure B.1 XRD Test Results

Intensity (cps)

P	eak	list																				
Phase name	Dolomite, (0,1,2)	Unknown,	calcium bis(borate), (1,1,1)	Unknown,	Dolomite, (1,0,4), 01-078-1277@calcium bis(borate), (0,3,1)	Dolomite, (0,0,6)	Dolomite, (0,1,5), 01-078-1277@calcium bis(borate), (1,3,1)	Dolomite, (1,1,0)	Dolomite, (1,1,3), 01-078-1277@calcium bis(borate), (0,0,2)	Dolomite, (0,2,1), 01-078-1277@calcium bis(borate), (1,0,2)	Dolomite, (2,0,2)	Dolomite, (0,2,4), 01-078-1277@calcium bis(borate), (2,5,0)	Dolomite, (0,1,8), 01-078-1277@calcium bis(borate), (2,0,2)	Dolomite, (1,1,-6), 01-078-1277@calcium bis(borate), (3,2,1)	Dolomite, (1,2,-1), 01-078-1277@calcium bis(borate), (4,0,0)	Dolomite, (2,1,-2), 01-078-1277@calcium bis(borate), (0,7,1)	Dolomite, (1,2,-4), 01-078-1277@calcium bis(borate), (4,1,1)	Dolomite, (3,0,0)	Dolomite, (0,0,12), 01-078-1277@calcium bis(borate), (3,4,2)	Dolomite, (1,2,-7), 01-078-1277@calcium bis(borate), (2,8,0)	Dolomite, (2,1,-8), 01-078-1277@calcium bis(borate), (4,5,1)	Dolomite, (3,1,-4), 01-078-1277@calcium bis(borate), (3,7,2)
Size	442(42)	425(39)	354(31)	769(209)	306(8)	360(52)	77(5)	413(29)	354(15)	545(193)	328(23)	335(36)	219(11)	206(14)	374(42)	273(17)	341(45)	432(43)	156(18)	152(51)	94(19)	284(46)
FWHM(deg)	0.192(18)	0.200(19)	0.24(2)	0.11(3)	0.281(7)	0.24(3)	1.13(8)	0.212(15)	0.250(11)	0.16(6)	0.274(19)	0.27(3)	0.42(2)	0.45(3)	0.25(3)	0.35(2)	0.29(4)	0.23(2)	0.65(8)	0.7(2)	1.1(2)	0.41(7)
Int. I(cps deg)	13.1(13)	11.4(9)	12.3(9)	26.5(18)	388(5)	11.3(13)	65(3)	36.1(17)	112(2)	15.4(13)	58(2)	13.1(10)	60(5)	96(5)	12.2(9)	29.8(12)	13.6(12)	23.0(14)	10.6(11)	12(2)	10.5(12)	18.8(16)
Height(cps)	64(10)	54(9)	48(9)	142(15)	1103(43)	38(8)	40(8)	134(15)	346(24)	54(9)	174(17)	42(8)	127(15)	186(18)	44(9)	79(11)	45(9)	76(11)	15(5)	13(5)	8(4)	33(7)
d (A)	3.704(4)	3.531(4)	3.445(4)	3.0360(16)	2.8903(8)	2.672(2)	2.555(5)	2.4125(7)	2.1932(4)	2.0709(6)	2.0206(8)	1.8481(9)	1.8042(6)	1.7898(8)	1.5676(8)	1.5443(5)	1.4660(9)	1.3906(3)	1.3337(11)	1.300(3)	1.235(4)	1.1102(5)
2-theta(deg)	24.01(2)	25.20(3)	25.84(3)	29.395(16)	30.913(9)	33.50(3)	35.09(6)	37.239(11)	41.124(8)	43.673(12)	44.817(19)	49.26(3)	50.548(19)	50.98(2)	58.86(3)	59.84(2)	63.40(4)	67.271(17)	70.56(7)	72.7(2)	77.2(3)	87.86(5)

Figure B.1 (Continued)

Quantitative Analysis Results (RIR)

General information

Analysis date Sample name	12/30/2014 4:50:50 PM TEST SAMPLE	Measurement date	6/30/2014
File name Comment	01_BorAtigi.raw	Operator	metu-xrd

Qualitative analysis

Phase name	Formula	Figure of merit	Phase reg. detail
Dolomite	Ca Mg (C O3)2	0.4309137259854437	10732324 (ICDD)
calcium bis(borate)	Ca (B O2)2	1.097427952851041	10781277 (ICDD)

Weight ratio

Phase name	Content(%)	OAGraphs.emf
Dolomite	89(6)	C
calcium bis(borate)	10.7(12)	

Figure B.1 (Continued)

General information

Analysis date Sample name File name Comment 7/1/2014 2:11:10 PM TEST SAMPLE 03_AnkaraKili.raw

Measurement date Operator 7/1/2014 10:24:24 AM metu-xrd

Measurement profile

Intensity (cps)

Intensity (cps)

Figure B.1 (Continued)

Pea	k lis	t																			
Phase name	Unknown,	Quartz, (1,0,0)	Unknown,	Calcite, syn, (0,1,2)	Quartz, (0,1,1)	Unknown,	Calcite, syn, (1,0,4)	Unknown,	Quartz, (1,0,2), 00-005-0586@Calcite, syn, (1,1,3)	Quartz, (2,0,0)	Calcite, syn, (2,0,2)	Calcite, syn, (0,1,8)	Calcite, syn, (1,1,6)	Quartz, (1,1,2)	Quartz, (0,2,2), 00-005-0586@Calcite, syn, (2,1,1)	Quartz, (1,2,1)	Calcite, syn, (2,1,4)	Quartz, (1,2,2)	Quartz, (2,0,3)	Quartz, (2,1,3)	Quartz, (3,1,0), 00-005-0586@Calcite, syn, (2,1,10)
Size	139(10)	699(47)	466(86)	943(303)	810(46)	188(12)	529(27)	83(6)	751(100)	734(180)	446(51)	423(55)	506(52)	878(115)	41(4)	834(87)	77(6)	774(114)	721(120)	270(84)	337(66)
FWHM(deg)	0.61(4)	0.121(8)	0.18(3)	0.09(3)	0.105(6)	0.45(3)	0.162(8)	1.04(8)	0.117(16)	0.12(3)	0.20(2)	0.21(3)	0.180(18)	0.104(14)	2.3(2)	0.115(12)	1.26(10)	0.129(19)	0.14(2)	0.40(12)	0.32(6)
Int. I(cps deg)	80(3)	22.5(13)	12.5(13)	12.0(14)	124(2)	31.5(18)	82.1(19)	91(5)	24.4(17)	8.9(9)	13.5(13)	21.7(12)	15.3(10)	16.3(11)	23(2)	9.0(9)	30.2(19)	7.3(8)	16.0(12)	4.7(6)	8.3(10)
Height(cps)	84(12)	154(16)	51(9)	87(12)	836(37)	59(10)	396(26)	49(9)	164(17)	50(9)	60(10)	60(10)	80(12)	111(14)	9(4)	74(11)	23(6)	44(9)	67(11)	10(4)	18(6)
d (A)	4.488(6)	4.2570(11)	4.045(6)	3.856(4)	3.3469(5)	3.188(3)	3.0340(10)	2.5833(15)	2.2815(8)	2.1283(11)	2.0912(10)	1.9096(7)	1.8746(9)	1.8185(4)	1.685(6)	1.5417(3)	1.500(2)	1.3817(2)	1.3755(3)	1.1997(4)	1.1807(6)
2-theta(deg)	19.77(3)	20.849(5)	21.95(3)	23.04(2)	26.612(4)	27.96(2)	29.415(10)	34.70(2)	39.465(15)	42.44(2)	43.23(2)	47.579(18)	48.52(2)	50.121(13)	54.4(2)	59.949(14)	61.79(10)	67.763(13)	68.113(15)	79.89(4)	81.44(5)

Figure B.1 (Continued)

APPENDIX C

Kuru örneğin	toplam ağı	rlığı (g)= 1800,00			Deney tipi:	WET/ YAŞ			
Total mass of	f dry sample	e:			Test type:				
TEST SIEVES	S	Mass retained	Cumulativ	e mass	Cumulative	percentage	Cumulative percentage		
ELEK SERİS	i		retair	ed	retai	ned	passing		
Sieve no:		Kalan ağırlık	Kalan topla	m ağırlık.	Kalan topla	am yüzde	Geçen toplam yüzde		
Elek no:	mm	g	g		%	Ď	%		
2 in	50	0	0		0		100		
1 1/2 inc	37,5	0	0		0		100		
1 İnc	25	32,32	32,3	32	1,	8	98,2		
3/4 inc	19	0,00	32,3	32	1,	8	98,2		
1/2 inc	12,5	32,63	64,9	95	3,	6	96,4		
3/8 inc	9,5	16,98	81,9	93	4,	6	95,4		
1/4 inc	6,3	31,81	113,	74	6,	3	93,7		
4	4,75	18,03	131,	77	7,	3	92,7		
10	2	71,10	202,	87	11	,3	88,7		
30	0,6	93,58	296,	45	16	,5	83,5		
50	0,300	65,63	362,	08	20	,1	79,9		
70	70 0,212 37,96		400,	04	22	,2	77,8		
100	0,150	48,70	448,	74	24	,9	75,1		
200	0,075	82,35	531,	09	29	,5	70,5		
Hidrometre tür	ü / Hydrom	eter type: H 151			Özgül ağ.	/ Specific g	ravity G _s = 2,718		
Kuru örn. ağırl	ığı / Dry ma	ass of sample Mb=	50,0		Menüsküs dü	zelt./Meniscus	s Correc. Cm: 0,5		
Geçen süre	Sıcaklık	Hidrometre okuması	Düz. hid.oku.	Dane çapı	Sıc.düzelt.		Geçen dane yüzdesi		
Elapsed time	Temp.	Hydrometer reading	Cor.hydr.rdg.	Part.diameter	Temp. cor.	R _h +M _t -X	Percent finer than D		
Dk./ Min.	⁰ C	R'h	R _h	D (mm)	M _t		%		
0,50	22	27,10	27,60	0,0641	0,39	23,99	68,83		
1	22	26,90	27,40	0,0454	0,39	23,79	68,26		
2	22	26,50	27,00	0,0323	0,39	23,39	67,11		
4	22	26,00	26,50	0,0229	0,39	22,89	65,68		
8	22	25,20	25,70	0,0163	0,39	22,09	63,38		
15	22	24,30	24,80	0,0120	0,39	21,19	60,80		
30	22	24,10	24,60	0,0085	0,39	20,99	60,23		
60	22	22,30	22,80	0,0061	0,39	19,19	55,06		
120	22	21,50	22,00	0,0044	0,39	18,39	52,77		
240	22	20,60	21,10	0,0031	0,39	17,49	50,18		
1440	22	17,50	18,00	0,0013	0,39	14,39	41,29		

SIEVE ANALYSIS TEST RESULTS

Figure C.1 Sieve Analysis Test Results of Soft Soil

APPENDIX D

	1		1			
Numune	SS (%0BS)			23.01.20)14
	LL	LL	LL	LL	PL	PL
No.Of Drops	36	27	21	18	0	0
Mass of Container + wet soil	29.00	24.30	24.90	29.40	37.61	38.02
Mass of Container + dry soil	23.40	20.14	19.90	22.54	35.89	36.58
Mass of Container	14.10	14.00	13.30	13.60	29.8	31.37
Mass of Moisture	5.60	4.16	5.00	6.86	1.72	1.44
Mass of Dry Soil	9.30	6.14	6.60	8.94	6.09	5.21
Moisture Content	60.22	67.75	75.76	76.73	28.243	27.639
LL	70.599	y = -0.965'	7x + 94.741		$R^2 = 0.9$	835
PL	27.941					
PI	42.657			•	•	•

ATTERBERG LIMITS TEST FORMS

Numune	3% BS	_			23.01.201	4
	LL	LL	LL	LL	PL	PL
No.Of Drops	13	22	33	47	0	0
Mass of Container + wet soil	42.27	38.83	37.98	38.45	29.1	32.39
Mass of Container + dry soil	34.59	32.61	31.05	31.11	28.08	30.78
Mass of Container	24.03	23.9	21.16	20.46	24.77	25.63
Mass of Moisture	7.68	6.22	6.93	7.34	1.02	1.61
Mass of Dry Soil	10.56	8.71	9.89	10.65	3.31	5.15
Moisture Content	72.727	71.412	70.071	68.92	30.816	31.262
LL	71.201	y = -0.11	15x + 73.98	38	$R^2 = 0.983$	32
PL	31.039					
PI	40.162					

Figure D.1 (Continued)

Numune	%6BS	5%			23.01.2014	
	LL	LL	LL		PL	PL
No.Of Drops	46	35	23	13	0	0
Mass of Container + wet soil	47.57	46.7	45.31	48.56	31.16	28.87
Mass of Container + dry soil	38.01	37.35	34.94	38.11	30.07	27.89
Mass of Container	23.9	24	20.46	24.1	26.76	24.83
Mass of Moisture	9.56	9.35	10.37	10.45	1.09	0.98
Mass of Dry Soil	14.11	13.35	14.48	14.01	3.31	3.06
Moisture Content	67.753	70.037	71.616	74.59	32.931	32.026
LL	71.84	y=0198x-	+76.79		$R^2 = 0.9773$	
PL	32.478					
PI	39.362					

Figure D.1 (Continued)

Numune	%10 BS			24.01.20	24.01.2014			
		LL	LL	LL	LL	PL	PL	
No.Of Dro	ops	41	32	22	15	0	0	
Mass of C wet soil	Container +	44.46	42.6	47.06	43.02	27.69	34.27	
Mass of Container + dry soil		36.09	35.29	37.4	33.5	26.43	32.55	
Mass of C	Mass of Container		25.1	24.18	20.88	22.67	27.52	
Mass of M	Mass of Moisture		7.31	9.66	9.52	1.26	1.72	
Mass of D	ry Soil	12.12	10.19	13.22	12.62	3.76	5.03	
Moisture (Content	69.059	71.737	73.071	75.436	33.511	34.195	
LL 72.904		y=-0.24386179558011x+78.816056685						
PL	33.853					$R^2 = 0.9$	741	
PI		39.051						

Figure D.1 (Continued)

Numune	%15 BS	24.01			24.01.2014	4.01.2014	
	LL	LL	LL	LL	PL	PL	
No.Of Drops	41	32	22	15	0	0	
Mass of Container + wet soil	42.6	42.6	38.8	51.8	28.12	34.25	
Mass of Container + dry soil	35.33	35.25	31.04	40.35	26.48	32.1	
Mass of Container	25.1	25.1	20.6	25.4	21.8	26	
Mass of Moisture	7.27	7.35	7.76	11.45	1.64	2.15	
Mass of Dry Soil	10.23	10.15	10.44	14.95	4.68	6.1	
Moisture Content	71.065	72.414	74.33	76.589	35.043	35.246	
LL	74.12	y=-0.25651553571429x+83.61632982143					
PL	35.144		$R^2 = 0.9734$			4	
PI	38.976						

Figure D.1 (Continued)

Numune	BS				24.01.2	014
	LL	LL	LL	LL	PL	PL
No.Of Drops	31	28	23	19		
Mass of Container + wet soil	25.5	25.3	25	24	24.76	25.93
Mass of Container + dry soil	19.7	19.5	18.9	18.5	22.21	23.02
Mass of Container	14	14	13.3	13.6	14.10	14.00
Mass of Moisture	5.8	5.8	6.1	5.5	2.55	2.91
Mass of Dry Soil	5.7	5.5	5.6	4.9	8.11	9.02
Moisture Content	101.75	105.45	108.93	112.24	31.44	32.26
LL	107.31	y=128.41844x			$R^2 = 0.9$	9882
PL	31.852					
PI	75.458					

Figure D.1 (Continued)

APPENDIX E

PROCTOR DATA SHEETS

Sample No	SS		Tested by	Can CEYLA	N	
Standard Method C	ASTM	D 698	Date	03.02.2014		
6 inch mold 56 blows	1101101	D 070	Dute	METU Trans	port Laborat	orv
Volume of mould	2124	³ C-		2 718	g/cm ³	ory
Test Nember	1	2	3	4	5	6
Mass of mould+base+ specimen	8588.1	8719.1	8907.5	8985.7	8983.1	8923.6
Mass of mould+base	5106	5106	5106.6	5106	5105.7	5105.6
Mass of specimen	3482.1	3613.1	3800.9	3879.7	3877.4	3818
Bulk density	1.639	1.701	1.790	1.827	1.826	1.798
Moisture Content	209	0.229	0.248	0.260	0.281	0.308
Dry Density	1.356	1.384	1.434	1.449	1.425	1.375
Dry Density kN	13.298	13.576	14.058	14.213	13.976	13.481
Dry Density lb/ft3	84.652	86.426	89.492	90.477	88.971	85.819
MOISTURE CONTENT						
Container+Wet Sample	4741.3	4406.7	2993.71	5052.8	4662	4987.8
Container+Dry Sample	4143.2	3739	2560.5	4259.8	3819.5	4099.7
Mass of container	1281.5	820	816	1213.7	820.2	1212.6
Mass of moisture	598.1	667.7	433.21	793	842.5	888.1
Dry mass	2861.7	2919	1744.5	3046.1	2999.3	2887.1
Moisture content	0.209	0.229	0.248	0.260	0.281	0.308
AIR VOID CURVES						
100%	1.733	1.676	1.623	1.592	1.541	1.480
95%	1.647	1.592	1.542	1.512	1.464	1.406
90%	1.560	1.508	1.460	1.433	1.387	1.332
Max Dry Dens	1 45		OMC	26.00%		

Figure E.1 Standard Proctor Test Data Sheets

Sample No	% 3 BS Standard Method C		Tested by	Can CEYL	Can CEYLAN		
Method			Date	05.02.2014			
ASTM D 698			Location	METU Tra	ansport Lab.		
6 inch mold 56 blows			Device	Yüksel Ma	ıkina		
Volume of mould	2124	cm ³	Gs	2.712	g/cm ³		
Test Number	1	2	3	4	5	6	
Mass of mould+base+ specimen	8691.5	8703.4	8812.8	8996.4	9025.3	6109.1	
Mass of mould+base	5152.2	5067.5	5068.9	5068.9	5153.1	2270.5	
Mass of specimen	3539.3	3635.9	3743.9	3927.5	3872.2	3838.6	
Bulk density	1.666	1.712	1.763	1.849	1.823	1.807	
Moisture Content	0.242	0.253	0.270	0.293	0.323	0.347	
Dry Density	1.341	1.366	1.388	1.430	1.378	1.341	
Dry Density kN	13.155	13.393	13.614	14.028	13.515	13.155	
Dry Density lb/ft3	83.742	85.258	86.667	89.301	86.034	83.745	
MOISTURE CONTENT							
Container+Wet Sample	4035.1	4748.2	4894.7	4971.6	5039.6	4349.6	
Container+Dry Sample	3380	4060.6	4131.8	4140.3	4138.5	3444.7	
Mass of container	675.5	1347.5	1302.9	1299.8	1347.5	838.6	
Mass of moisture	655.1	687.6	762.9	831.3	901.1	904.9	
Dry mass	2704.5	2713.1	2828.9	2840.5	2791	2606.1	
Moisture content	0.242	0.253	0.270	0.293	0.323	0.347	
AIR VOID CURVES							
100%	1.637	1.607	1.566	1.512	1.446	1.397	
95%	1.555	1.527	1.488	1.436	1.374	1.327	
90%	1.473	1.447	1.410	1.361	1.301	1.257	

Figure E.1 (Continued)

Sample No % 6 BS			Tested by	Can CEYLAN					
Method	Standard N	Iethod C	Date	07.02.2014	ŀ				
ASTM D 698		Location	METU Transport Lab.						
6 inch mold 56 blows			Device	Yüksel Ma	kina	N port Lab. na /cm ³ 6 129.1 6062.6 271 2271 858.1 3791.6 .816 1.785 .334 0.362 .362 1.311 3.354 12.855 5.012 81.832 598.3 5223 657.2 4181.5 38.6 1303.1 41.1 1041.5			
Volume of mould	2124	cm ³	Gs	2.706	g/cm ³				
Test Number	1	2	3	4	5	6			
Mass of mould+base+ specimen	5956.4	6089.9	6201	6168.8	6129.1	6062.6			
Mass of mould+base	2271	2271	2271	2271	2271	2271			
Mass of specimen	3685.4	3818.9	3930	3897.8	3858.1	3791.6			
Bulk density	1.735	1.798	1.850	1.835	1.816	1.785			
Moisture Content	0.285	0.301	0.310	0.325	0.334	0.362			
Dry Density	1.350	1.382	1.412	1.385	1.362	1.311			
Dry Density kN	13.240	13.557	13.847	13.579	13.354	12.855			
Dry Density lb/ft3	84.287	86.304	88.149	86.445	85.012	81.832			
MOISTURE CONTENT									
Container+Wet Sample	5048.4	5106.6	5068.8	5090.8	4598.3	5223			
Container+Dry Sample	4198	4205.3	4186.8	4156.6	3657.2	4181.5			
Mass of container	1215.5	1206.6	1345.2	1284.5	838.6	1303.1			
Mass of moisture	850.4	901.3	882	934.2	941.1	1041.5			
Dry mass	2982.5	2998.7	2841.6	2872.1	2818.6	2878.4			
Moisture content	0.285	0.301	0.310	0.325	0.334	0.362			
AIR VOID CURVES									
100%	1.527	1.492	1.471	1.439	1.422	1.367			
95%	1.451	1.418	1.397	1.367	1.351	1.299			
90%	1.375	1.343	1.324	1.295	1.279	1.231			

Figure E.1 (Continued)

Sample No	%10 BS		Tested by	Can CEYLAN		
Method	Standard Method C		Date	10.02.2014		
ASTM D 698			Location	METU Transport Lab.		
6 inch mold 56 blows		Device	Yüksel Maki	na		
Volume of mould	2124	cm ³	Gs	2.699	g/cm ³	
Test Number	1	2	3	4	5	6
Mass of mould+base+ specimen	8708.7	8785.3	8888.6	9035.4	9002.1	8943.8
Mass of mould+base	5107	5105.2	5106.4	5106.9	5105.1	5105.3
Mass of specimen	3601.7	3680.1	3782.2	3928.5	3897	3838.5
Bulk density	1.696	1.733	1.781	1.850	1.835	1.807
Moisture Content	0.252	0.271	0.294	0.323	0.341	0.362
Dry Density	1.354	1.363	1.377	1.398	1.368	1.326
Dry Density kN	13.279	13.366	13.500	13.705	13.413	13.008
Dry Density lb/ft3	84.531	85.085	85.941	87.247	85.388	82.810
MOISTURE CONTENT						
Container+Wet Sample	4364.1	4561.3	5009.4	4553.4	4948.6	4469.9
Container+Dry Sample	3648.1	3763.1	4167.8	3640.1	4015.3	3457.4
Mass of container	810.5	820.4	1300.4	816.3	1281.5	663.5
Mass of moisture	716	798.2	841.6	913.3	933.3	1012.5
Dry mass	2837.6	2942.7	2867.4	2823.8	2733.8	2793.9
Moisture content	0.252	0.271	0.294	0.323	0.341	0.362
AIR VOID CURVES						
100%	1.606	1.558	1.506	1.441	1.405	1.364
95%	1.525	1.480	1.431	1.369	1.334	1.296
90%	1.445	1.402	1.355	1.297	1.264	1.228

Sample No	%15 BS Standard Mathad		Tested by	Can CEYLA	Can CEYLAN			
Method	C	i Method	Date	12.02.2014				
ASTM D 698			Location	METU Trans	port Lab.			
6 inch mold 56 blows			Device	Yüksel Makin	na			
Volume of mould	2124	cm ³	Gs	2.689	g/cm ³			
Test Number	1	2	3	4	5	6		
Mass of mould+base + specimen	8601.4	8837.5	8962.8	8679.1	9036.3	8989.6		
Mass of mould+base	5067.5	5153.2	5153.2	4757.9	5152.8	5153.2		
Mass of specimen	3533.9	3684.3	3809.6	3921.2	3883.5	3836.4		
Bulk density	1.664	1.735	1.794	1.846	1.828	1.806		
Moisture Content	0.274	0.298	0.318	0.331	0.344	0.359		
Dry Density	1.306	1.336	1.361	1.387	1.360	1.329		
Dry Density kN	12.806	13.105	13.342	13.601	13.340	13.032		
Dry Density lb/ft3	81.520	83.425	84.937	86.584	84.920	82.963		
MOISTURE CONTENT								
Container+WetSample	4758.3	5019.6	5051.9	5059.7	5030	4965.7		
Container+DrySample	4011	4176.6	4140.7	4125.8	4076.8	3995.8		
Mass of container	1285	1348	1277.8	1305.1	1306.8	1295.2		
Mass of moisture	747.3	843	911.2	933.9	953.2	969.9		
Dry mass	2726	2828.6	2862.9	2820.7	2770	2700.6		
Moisture content	0.274	0.298	0.318	0.331	0.344	0.359		
AIR VOID CURVES								
100%	1.548	1.493	1.449	1.423	1.397	1.368		
95%	1.471	1.418	1.376	1.351	1.327	1.299		
90%	1.393	1.343	1.304	1.280	1.257	1.231		

Figure E.1 (Continued)
APPENDIX F

TEST SAMPLE CALCULATIONS FOR UCS AND CBR TESTS

13 May 20)14 Sal,17:52					
Time (sec.	Deformation (mm)	Load	Unit Load N/mm2	Stress psi	Def. (Inch)	Stress Psi
0	71.023	0	-0.020170023	-2.922516259	0	0
1	70.946	0.003	-0.018618483	-2.697707316	0.00083333	0.224808943
2	70.948	0.008	-0.016032583	-2.323025744	0.00166667	0.599490515
3	70.903	0.011	-0.014481042	-2.098216801	0.0025	0.824299458
4	70.909	0.012	-0.013963862	-2.023280487	0.00333333	0.899235772
5	70.911	0.013	-0.013446682	-1.948344173	0.00416667	0.974172086
6	70.88	0.018	-0.010860782	-1.573662601	0.005	1.348853658
7	70.911	0.02	-0.009826422	-1.423789972	0.00583333	1.498726287
8	70.819	0.022	-0.008792061	-1.273917344	0.00666667	1.648598915
9	70.768	0.021	-0.009309242	-1.348853658	0.0075	1.573662601
10	70.861	0.027	-0.006206161	-0.899235772	0.00833333	2.023280487
11	70.697	0.031	-0.004137441	-0.599490515	0.00916667	2.323025744
12	70.827	0.03	-0.004654621	-0.674426829	0.01	2.24808943
13	70.753	0.035	-0.00206872	-0.299745257	0.01083333	2.622771002
14	70.665	0.038	-0.00051718	-0.074936314	0.01166667	2.847579945
15	70.599	0.041	0.00103436	0.149872629	0.0125	3.072388888
16	70.729	0.044	0.0025859	0.374681572	0.01333333	3.297197831
17	70.649	0.044	0.0025859	0.374681572	0.01416667	3.297197831
18	70.617	0.05	0.005688981	0.824299458	0.015	3.746815717
19	70.52	0.05	0.005688981	0.824299458	0.01583333	3.746815717
20	70.602	0.052	0.006723341	0.974172086	0.01666667	3.896688345
21	70.53	0.05	0.005688981	0.824299458	0.0175	3.746815717
22	70.541	0.056	0.008792061	1.273917344	0.01833333	4.196433603
23	70.485	0.057	0.009309242	1.348853658	0.01916667	4.271369917
24	70.437	0.059	0.010343602	1.498726287	0.02	4.421242546
25	70.406	0.061	0.011377962	1.648598915	0.02083333	4.571115174
26	70.284	0.063	0.012412322	1.798471544	0.02166667	4.720987803
27	70.313	0.065	0.013446682	1.948344173	0.0225	4.870860432
28	69.775	0.065	0.013446682	1.948344173	0.02333333	4.870860432
29	69.73	0.068	0.014998222	2.173153116	0.02416667	5.095669375
30	69.667	0.072	0.017066943	2.472898373	0.025	5.395414632

Figure F.1 Sample of CBR Calculation Sheet

03 Eki 2014				
	Deformation	Load	Cor.Area (mm2)	Stress (kPa)
Time (sec.)	d = mm.	P=kN	A°=A*d/L	$\sigma = P/A^{o}$
0	0	0	1963.5	0
1	0.020833333	0.001	1963.909148	0.509188524
2	0.041666667	0.002	1964.318466	1.018164842
3	0.0625	0.004	1964.727955	2.035905271
4	0.083333333	0.005	1965.137615	2.544351074
5	0.104166667	0.008	1965.547445	4.070112894
6	0.125	0.008	1965.957447	4.069264069
7	0.145833333	0.009	1966.367619	4.57696715
8	0.166666667	0.01	1966.777963	5.084458026
9	0.1875	0.011	1967.188478	5.591736695
10	0.208333333	0.013	1967.599165	6.607036754
11	0.229166667	0.014	1968.010023	7.113784908
12	0.25	0.017	1968.421053	8.636363636
13	0.270833333	0.02	1968.832254	10.15830575
14	0.291666667	0.022	1969.243627	11.17180205
15	0.3125	0.022	1969.655172	11.16946779
16	0.333333333	0.027	1970.06689	13.70511841
17	0.354166667	0.032	1970.478779	16.239708
18	0.375	0.035	1970.890841	17.75846702

Figure F.2 Sample UCS Calculation Sheet

APPENDIX G

CALIFORNIA BEARING RATIO TEST DATA SHEETS

Middle East Technical University Transport Laboratory California Bearing Ratio Test Data Sheet Project Information %0 BS Start Date 04.05.2014 Project Name Curing Period 0 days End Date 08.05.2014 Sample Number 1 ASTM D 1883-07, D 698-12 Standard Method Of Compaction Standard Effort, Method C Tested By Can CEYLAN Condition of Sample Soaked Soil Classification CH Surcharge 4.54 kg. Maximum Dry Density g/cm3 SwellReading (mm.) 1.45 7.19 Optimum Moisture Content (%) 26 Swell Rate (%) 6.20 1.935 ELE Multip 50 Area of Penetration (mm2) Device Before Soaking After Soaking **Dry Density Determination** Mass of Mould + Base + Soil (g) 11155.71 11417.1 7293.5 Mass of Mould + Base (g) 7293.5 Mass of Compacted Specimen 3862.21 4123.6 Bulk Density (g/cm3) 1.818 1.941 Dry Density (g/cm3) 1.440 1.396 **Moisture Content Determination** Before Soaking After Soaking Mass of Container + Wet Soil 851.2 653.1 Mass of Container + Dry Soil 755.9 505.7 Mass of Container 393.2 128.3

95.3 Mass of Moisture 147.4 26.275 Moisture Content 39.057 **California Bearing Ratio Determination** Corrected Pressure Final Pressure CBR Deformation kPa psi Pressure (psi) CBR 125.547 0.1 Inch 18.209 19.384 1.821 1.918 0.2 Inch 168.391 24.423 24.729 1.628

Figure G.1 California Bearing Ratio Test Data Sheets

Project Info	ormatio	n				
Project Nam	ne		%0 BS	Start Date		04.05.2014
Curing Perio	od		0 days	End Date		08.05.2014
Sample Nun	nber		2			
Standard			ASTM D 1883-0	07, D 698-12		
Method Of O	Compac	tion	Standard Effort,	Method C		
Tested By			Can CEYLAN	Condition of Sa	mple	Soaked
Soil Classifi	cation		СН	Surcharge		4.54 kg.
Maximum E	Dry Den	sity g/cm3	1.45	Swell Dial (mm.)	Reading	7.14
Optimum M	loisture	Content (%)	26	Swell Rate (%)		6.155
Area of Pen	etration	(mm2)	1.935	Device		ELE Multip 50
Dry Density	y Deter	mination		Before Soaking		After Soaking
Mass of Mo	uld + B	ase + Soil	(g)	8233.9		8446
Mass of Mo	uld + B	ase	(g)	4362.2		4362.2
Mass of Cor	npacted	Specimen	(g)	3871.7		4083.8
Bulk Densit	у		(g/cm3)	1.823		1.923
Dry Density	,		(g/cm3)	1.445		1.370
Moisture Content Determination		n	Before Soaking		After Soaking	
Mass of Cor	ntainer -	⊦ Wet Soil	(g)	488.1		538.4
Mass of Cor	ntainer -	⊦ Dry Soil	(g)	414.4		421.8
Massof Con	tainer		(g)	132.9		132.9
Mass of Mo	isture		(g)	73.7		116.6
Moisture Co	ontent		%	26.181		40.35998615
California I	Bearing	Ratio Deter	mination	-		
Deformation	1	Pressure kPa	Pressure psi	Corrected Pressure (psi)	CBR	Final CBR
0.1 Inch		143.632	20.832	20.832	2.083	2.092
0.2 Inch		159.650	23.155	31.248	2.083	2.083
35			Ctucco /Doubt			
			stress/Peneti	ation		
30			psiyinch		- A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER	
25						
(isd 20						
ss (
Stre Stre						

0,1

0,2

10

5

0

0

0,3 Penetration (inch)

0,4

0,5

0,6

	Middle East Technical University
	Transport Laboratory
	California Bearing Ratio Test Data Sheet
Project Informat	ion

1 roject morma	.1011				1	
Project Name		%0 BS	Start Date		04.0)5.2014
Curing Period		0 days	End Date	End Date 08.05.2014		
Sample Number		3				
Standard		ASTM D 188	33-07, D 698-12			
Method Of Comp	action	Standard Effe	ort, Method C		1	
Tested By		Can CEYLAN	Condition of Sa	ample	Soa	ked
Soil Classification	ı	СН	Surcharge		4.54	4 kg.
Maximum Dry De	ensity g/cm3	1.45	Swell Dial R (mm.)	Reading	7.43	3
Optimum Moistur	re Content (%)	26	Swell Rate (%))	6.40)5
Area of Penetratio	on (mm2)	1.935	Device		ELE	E Multip50
Dry Density Dete	ermination		Before Soaking	g	Afte	er Soaking
Mass of Mould +	Base + Soil	(g)	8508.5		883	5
Mass of Mould +	Base	(g)	4662.8		466	2.8
Mass of Compact	ed Specimen	(g)	3845.7		417	2.2
Bulk Density		(g/cm3)	1.811		1.96	54
Dry Density		(g/cm3)	1.441		1.38	35
Moisture Conten	t Determinati	on	Before Soaking	5	Afte	er Soaking
Mass of Containe	r + Wet Soil	(g)	432.1	-	535	.1
Mass of Containe	iner + Dry Soil (g) 370			401	.7	
Mass of Containe	r	(g)) 128.2 7		70.5	5
Mass of Moisture		(g)	62.1		133	.4
Moisture Content		%	25.682		40.2	278
California Beari	ng Ratio Deter	mination				
Deformation	Pressure	Pressure	Corrected	CPD		Final
Deformation	kPa	psi	Pressure (psi)	CDK		CBR
0.1 Inch	138.467	20.083	20.083	2.008		2 009
0.2 Inch	187.034	27.127	27.127	1.808		2.008
40		Chucas /Dava	ture tie w			
35		Stress/Pene	chation		•	
		psi/inc	.11			
30						
(isd) 25						
s 20					_	
15 IS	r					
10					_	
5						
0						
0	0,1	0,2 0, Penetrati	3 0,4 on (inch)		0,5	0,6

Figure G1(Continued)

_ .

Project Informatio	n					
Project Name		%3 BS	Start Date		10.05.2014	
Curing Period		0 days	End Date		14.05.2014	
Sample Number		1				
Standard		ASTM D 1883-0	07, D 698-12			
Method Of Compac	tion	Standard Effort,	Method C			
Tested By		Can CEYLAN	Condition of Sa	ımple	Soaked	
Soil Classification		СН	Surcharge		4.54 kg.	
Maximum Dry Den	sity g/cm3	1.43	Swell Dial (mm.)	Reading	7.19	
Optimum Moisture	Content (%)	29.3	Swell Rate (%)		6.198	
Area of Penetration	(mm2)	1.935	Device		ELE Multip50	
Dry Density Deter	mination		Before Soaking		After Soaking	
Mass of Mould + B	ase + Soil	(g)	8074.9		8268.8	
Mass of Mould + B	ase	(g)	4166.6		4166.6	
Mass of Compacted	l Specimen	(g)	3908.3		4102.2	
Bulk Density		(g/cm3)	1.840		1.931	
Dry Density		(g/cm3)	1.426		1.377	
Moisture Content	Determinatio	n	Before Soaking		After Soaking	
Mass of Container -	+ Wet Soil	(g)	549.2		538.4	
Mass of Container -	+ Dry Soil	(g)	454.4		421.8	
Massof Container		(g)	128.2		132.9	
Mass of Moisture		(g)	94.8		116.6	
Moisture Content		%	29.062		41.360	
California Bearing	g Ratio Deter	mination				
Deformation	Pressure	Pressure	Corrected	CBR	Final	
Deformation	kPa	psi	Pressure (psi)	CDK	CBR	
0.1 Inch	177.217	25.703	25.703	2.570	2 570	
0.2 Inch	257.817	37.393	37.393	2.493		
60		Stress/Penet	tration			
		nsi/incl	h			
50		po.,			·	
<u> </u>						
(psi						
s 30						
Stre						
20						
10						
0						
0	0,1	^{0,2} Penetratio	on (inch) ^{0,4}	0,	5 0,6	

Figure G1(Continued)

Project Information	on						
Project Name		%3 BS	Start Date			10.05.2014	
Curing Period		0 days	End Date			14.05.2014	
Sample Number		2					
Standard		ASTM D 1883-	07, D 698-12				
Method Of Compa	ction	Standard Effort,	Method C				
Tested By		Can CEYLAN	Condition of Sa	ample	Soa	aked	
Soil Classification		СН	Surcharge		4.5	4 kg.	
Maximum Dry Der	nsity g/cm3	1.43	Swell Dial R (mm.)	eading	7.1	3	
Optimum Moisture	Content (%)	29.5	Swell Rate (%)		6.1	47	
Area of Penetration	n (mm2)	1.935	Device		EL	E Multip50	
Dry Density Deter	mination		Before Soaking	5	Aft	ter Soaking	
Mass of Mould + E	ase + Soil	(g)	8104.3		828	88.5	
Mass of Mould + E	ase	(g)	4166.6		416	56.6	
Mass of Compacted	d Specimen	(g)	3937.7		412	21.9	
Bulk Density		(g/cm3)	1.854		1.9	41	
Dry Density		(g/cm3)	1.429		1.3	74	
Moisture Content	Determinatio	n	Before Soaking	5	Aft	ter Soaking	
Mass of Container	+ Wet Soil	(g)	479.5		480.4		
Mass of Container	+ Dry Soil	(g)	400.1		377.6		
Mass of container		(g)	133		128	8.4	
Mass of Moisture		(g)	79.4		102.8		
Moisture Content		%	29.727		41.252		
California Bearing	g Ratio Deter	mination	1	1			
Deformation	Pressure kPa	Pressure psi	Corrected Pressure (psi)	CBR		Final CBR	
0.1 Inch	171.534	24.879	24.879	2.488		2 508	
0.2 Inch	259.367	37.618	37.618	2.508		2.300	
60 50 40 (bsi) 0 80 80		Stress/E psi - in	Def. ch				
Ly 20 10 0	0.1	0.2 0.3	0.4		0.5		
U U	0 0,1 0,2 0,3 0,4 0,5 0,6 Penetration (inch)						

Figure G1(Continued)

Project Informatio	n					
Project Name		%3 BS	Start Date			10.05.2014
Curing Period		0 days	End Date			14.05.2014
Sample Number		3				
Standard		ASTM D 1883-0	07, D 698-12			
Method Of Compac	tion	Standard Effort,	Method C			
Tested By		Can CEYLAN	Condition of Sa	mple	Soal	ked
Soil Classification		СН	Surcharge		4.54	kg.
Maximum Dry Den	sity g/cm3	1.43	Swell Dial Re (mm.)	ading	7.43	3
Optimum Moisture	Content (%)	29.5	Swell Rate (%)		*	
Area of Penetration	(mm2)	1.935	Device		ELF	E Multip 50
Dry Density Deter	mination		Before Soaking		Afte	er Soaking
Mass of Mould + B	ase + Soil	(g)	8103.5		8254	4.5
Mass of Mould + Ba	ase	(g)	4166.7		416	6.7
Mass of Compacted	Specimen	(g)	3936.8		4087.8	
Bulk Density		(g/cm3)	1.853		1.925	
Dry Density		(g/cm3)	1.433		1.372	
Moisture Content Determination		1	Before Soaking		Afte	er Soaking
Mass of Container -	- Wet Soil	(g)	457.4		480	.8
Mass of Container -	- Dry Soil	(g)	382.8		377.	.3
Mass of Container		(g)	128.4		128	.6
Mass of Moisture		(g)	74.6		103.5	
Moisture Content		%	29.324		41.616	
California Bearing	Ratio Detern	nination				
Deformation	Pressure kPa	Pressure psi	Corrected Pressure (psi)	CBR		Final CBR
0.1 Inch	187.034	27.127	27.127	2.713		2 512
0.2 Inch	266.084	38.592	38.592	2.573		2.713
60		Stars og /Da	£			
		Stress/De	51.			
50		psi - me			***	
4 0					_	
(psi						
ss 30					_	
Stre						
20					_	

Figure G1(Continued)

0,1

0,2

10

0

0

0,3 Penetration (inch) 0,4

0,5

0,6

Ducio

r roject information				
Project Name	%6 BS	Start Date		16.05.2014
Curing Period	0 days	End Date		20.05.2014
Sample Number	1			
Standard	ASTM D 1883-0	07, D 698-12		
Method Of Compaction	Standard Effort,	Method C		
Tested By	Can CEYLAN	Condition of Sample	Soak	ed
Soil Classification	СН	Surcharge	4.54	kg.
Maximum Dry Density g/cm3	1.42	Swell Dial Reading (mm.)	5.53	
Optimum Moisture Content (%)	31.1	Swell Rate (%)	4.767	1
Area of Penetration (mm2)	1.935	Device	ELE	Multip50
Dry Density Determination		Before Soaking	After	Soaking
Mass of Mould + Base + Soil	(g)	8096.3	8190	.7
Mass of Mould + Base	(g)	4144.3	4144	.3
Mass of Compacted Specimen	(g)	3952	4046	.4
Bulk Density	(g/cm3)	1.861	1.905	5
Dry Density	(g/cm3)	1.419	1.367	1
Moisture Content Determination	n	Before Soaking	After	Soaking
Mass of Container + Wet Soil	(g)	462.6	482.5	5
Mass of Container + Dry Soil	(g)	389.5	375.9)
Mass of container	(g)	154.4	128.4	Ļ
Mass of Moisture	(g)	73.1	105.6	5
Moisture Content	%	31.093	43.07	'1
California Bearing Ratio Deter	mination			

Deformation	Pressure kPa	Pressure psi	Corrected Pressure (psi)	CBR	Final CBR
0.1 Inch	183.417	26.602	31.698	3.170	2 170
0.2 Inch	259.367	37.618	44.437	2.962	3.170

Figure G1(Continued)

Project Inform	nation					
Project Name		%6 BS	Start Date			16.05.2014
Curing Period		0 days	End Date			20.05.2014
Sample Numb	er	2				
Standard		ASTM D 1883-0	07, D 698-12			
Method Of Co	mpaction	Standard Effort,	Method C			
Tested By		Can CEYLAN	Condition Sample	of	Soak	ed
Soil Classifica	tion	СН	Surcharge		4.54	kg.
Maximum Dry	Density g/cm3	1.42	Swell Dial Rea (mm.)	ding	5.19	
Optimum Mo (%)	oisture Content	31.1	Swell Rate (%)		4.474	Ļ
Area of Penetr	ation (mm2)	1.935	Device		ELE	Multip50
Dry Density I	Determination		Before Soaking		After	Soaking
Mass of Mould	d + Base + Soil	(g)	8100.7		8258	.4
Mass of Mould	d + Base	(g)	4170.4		4170	.4
Mass of Comp	acted Specimen	(g)	3930.3		4088	
Bulk Density		(g/cm3)	1.850		1.925	5
Dry Density		(g/cm3)	1.411 1.361		l	
Moisture Con	tent Determinat	ion	Before Soaking		After	Soaking
Mass of Conta	iner + Wet Soil	(g)	581.7		494.3	3
Mass of Conta	iner + Dry Soil	(g)	488.4		384.3	3
Mass of Conta	iner	(g)	188.8		128.6	5
Mass of Moist	ure	(g)	93.3		110	
Moisture Cont	ent	%	31.142		43.01	9
California Be	aring Ratio Dete	rmination				
Deformation	Pressure	Pressure	Corrected	CBR		Final
Deformation	kPa	psi	Pressure (psi)	CDI		CBR
0.1 Inch	212.867	30.874	30.874	3.08	7	3.087
0.2 Inch	301.734	43.763	43.763	2.91	8	
50		Stress/D psi - inc	ef. ch		~~~	
40 (is						
d)						
Less						
20						
10						
0	0.1	0.2 Depotrotiar	(lnch) = 0.4		05	0.6
	0,1		(IIICII) 0,4		0,5	0,0

Project Informa	ation					
Project Name		%6 BS	Start Date 16.05.2			16.05.2014
Curing Period		0 days	End Date			20.05.2014
Sample Number		3				
Standard		ASTM D 1883-0	07, D 698-12			
Method Of Com	paction	Standard Effort,	Method C			
Tested By		Can CEYLAN	Condition Sample	of	Soak	ed
Soil Classification	on	СН	Surcharge		4.54	kg.
Maximum Dry I	Density g/cm3	1.42	Swell Dial Read (mm.)	ding	5.37	
Optimum Moist	ure Content (%)	31.1	Swell Rate (%)		4.629	9
Area of Penetrat	ion (mm2)	1.935	Device	ice ELF		Multip50
Dry Density Determination			Before soaking		After Soaking	
Mass of Mould + Base + Soil		(g)	8072.3		8190	0.7
Mass of Mould -	+ Base	(g)	4144.3		4144	.3
Mass of Compac	cted Specimen	(g)	3928		4046	.4
Bulk Density		(g/cm3)	1.849		1.905	
Dry Density		(g/cm3)	1.413		1.370	
Moisture Conte	ent Determinatio	n	Before Soaking		After	Soaking
Mass of Contain	er + Wet Soil	(g)	591.3		566.3	
Mass of Contain	er + Dry Soil	(g)	483.6		432.3	3
Mass of Contain	er	(g)	134.6		128.4	4
Mass of Moistur	e	(g)	107.7		134	
Moisture Conter	ıt	%	30.860		44.09	94
California Bean	ring Ratio Deter	mination				
Deformation	Pressure kPa	Pressure	Corrected Pressure (psi)	CBR	2	Final CBR
0.1 Inch	204 600	29.675	29.900	2 99	0	
0.2 Inch	284.684	41.290	41.365	2.75	8	2.990
0.2	-000.				0	

Figure G1(Continued)

Project Informa	ation				
Project Name		%10 BS	Start Date		27.05.2014
Curing Period		0 days	End Date		31.05.2014
Sample Number		1			
Standard		ASTM D 1883	3-07, D 698-12		
Method Of Com	paction	Standard Effor	t, Method C		
Tested By		Can CEYLAN	Condition of S	ample	Soaked
Soil Classification	on	СН	Surcharge		4.54 kg.
Maximum Dry I	Density g/cm3	1.39	Swell Dial R (mm.)	eading	4,8
Optimum Moistu	ure Content (%)	32,4	Swell Rate (%)	4,138
Area of Penetrat	ion (mm2)	1,935	Device		ELE Multip50
Dry Density De	termination		Before Soakin	g	After Soaking
Mass of Mould -	+ Base + Soil	(g)	8235,4		8341,9
Mass of Mould -	+ Base	(g)	4349,3		4349,3
Mass of Compac	ted Specimen	(g)	3886,1		3992,6
Bulk Density		(g/cm3)	1,830		1,880
Dry Density		(g/cm3)	1,377		1,344
Moisture Conte	ent Determinat	ion	Before Soakin	g	After Soaking
Mass of Contain	er + Wet Soil	(g)	477,8		652,6
Mass of Contain	er + Dry Soil	(g)	391,4		489,3
Mass of Contain	er	(g)	128,3 1		128,6
Mass of Moistur	e	(g)	86,4		163,3
Moisture Conter	ıt	%	32,839		45,273
California Bear	ing Ratio Dete	ermination		T	
Deformation	Pressure	Pressure	Corrected	CBR	Final
0.1.1.1	kPa	psi	Pressure (psi)	2.025	CBR
0.1 Inch	201,692	29,253	29,253	2,925	2,925
0.2 Inch	302,767	43,913	43,913	2,928	
45		Stress/Pen	etration		
40		psi/in	ch		
25					
55 () 00					
bs by					
s 25					
20 Str					
15					
10					
5					
0	0.1	0.2	03 04		0.5 0.6
0	0,1	Donotro	tion (Inch)		5,5 6,0
		renetia			

Middle East Technical University Transport Laboratory California Bearing Ratio Test Data Sheet

Froject morma				
Project Name		%10 BS	Start Date	27.05.2014
Curing Period		0 days	End Date	31.05.2014
Sample Number		2		
Standard		ASTM D 1883-0	07, D 698-12	
Method Of Com	paction	Standard Effort,	Method C	
Tested By		Can CEYLAN	Condition of Sample	Soaked
Soil Classification	on	СН	Surcharge	4.54 kg.
Maximum Dry I	Density g/cm3	1,39	Swell Dial Reading (mm.)	4,6168
Optimum Moist	are Content (%)	32,4	Swell Rate (%)	3,980
Area of Penetrat	ion (mm2)	1,935	Device	ELE Multip50
Dry Density De	termination		Before Soaking	After Soaking
Mass of Mould -	+ Base + Soil (g)		10932,6	11083,4
Mass of Mould -	⊦ Base (g)		7026,9	7026,9
Mass of Compac	ted Specimen		3905,7	4056,5
Bulk Density (g/	(cm3)		1,839	1,910
Dry Density (g/c	em3)		1,388	1,362
Moisture Conte	nt Determination	1	Before Soaking	After Soaking
Mass of Contain	er + Wet Soil		344,1	545,7
Mass of Contain	er + Dry Soil		277,7	400,3
Mass of Contain	er		73,2	70,7
Mass of Moisture			66,4	145,4
Moisture Content		32,469	44,114	
California Bear	ing Ratio Detern	nination		
Defermation	Pressure	Pressure	Corrected	CDD Final
Deformation	kPa J	osi	Pressure (psi)	CBR CBR
0.1 Inch	193,750	28,101	29,975	2,997 3 077
0.2 Inch	312,067	45,262	46,161	3,077
70 60		Stress/Penetration psi/inch	on	
50				
(isd) 40				
ess				
Str. 30				
20				
10				
0 0,0	5 0,1 0,15	0,2 0,25 Penetration (II	0,3 0,35 0,4 nch)	0,45 0,5

Project	Informa	ation						
Project	Name		%10 BS		Start Date		2	7.05.2014
Curing	Period		0 days		End Date		3	1.05.2014
Sample	Number		3					
Standard	d		ASTM D 18	83-0	07, D 698-12			
Method	Of Com	paction	Standard Eff	fort,	Method C		_	
Tested I	Ву		Can CEYLAN	Co	ondition of Sa	mple	Soa	nked
Soil Cla	ssificatio	on	СН	Su	rcharge		4.5	4 kg.
Maximu	ım Dry D	Density g/cm3	1,39	Sw (m	vell Dial R m.)	eading	4,6	6
Optimu	m Moistu	ure Content (%)	32,4	Sv	vell Rate (%)		4,0	17
Area of	Penetrati	ion (mm2)	1,935	De	evice		EL	E Multip50
Dry De	nsity Det	termination		Be	fore Soaking			Soaking
Mass of	Mould +	+ Base + Soil (g)	10	838,7			10950,8
Mass of	Mould +	Base (g)		69	78,1			6978,4
Mass of	Compac	ted Specimen		38	60,6			3972,4
Bulk De	ensity (g/	cm3)		1,8	318			1,870
Dry Der	nsity (g/c	m3)		1.377				1,328
Moistu	re Conte	nt Determinati	ermination Befor				A	After Soaking
Mass of Container + Wet Soil			42	1,4			425,5	
Mass of	Contain	er + Dry Soil		35	0.4			317,9
Mass of	Contain	er		128.7				128
Mass of	Moistur	e		71				107.6
Moistur	e Conten	t		32.025				44.777
Califor	nia Bear	ing Ratio Dete	rmination		,			,
		Pressure	Pressure		Corrected		_	Final
Deform	ation	kPa	psi		Pressure (psi) CBR	ł	CBR
0.1 Inch	1	205.117	29.750		30.049	3.00	5	_
0.2 Inch	1	274.351	39.791		39,866	2.65	8	3,005
60			1		. ,	.,		l
			Stress/Pe	netr	ation			
50			psi/i	inch				
40								
(psi) ³⁰								
ess								
⁵⁰ Str	-/			_				
10								
10								
0	0	0,1	^{0,2} Penetra	atiðr	n (Inch) ^{0,4}		0,	.5 0,6
					····/			

Project Information					
Project Name	%15 BS	Start Date		09.05.2014	
Curing Period	0 days	End Date		13.05.2014	
Sample Number	1				
Standard	ASTM D 1883-0	07, D 698-12			
Method Of Compaction	Standard Effort, Method C				
Tested By	Can CEYLAN	Condition of Sample	e	Soaked	
Soil Classification	СН	Surcharge	4.54	4 kg.	
Maximum Dry Density g/cm3	1.37	Swell Dial Reading (mm.)	4.6	3	
Optimum Moisture Content (%)	33,1	Swell Rate (%)	3.9	91	
Area of Penetration (mm2)	1,935	Device	ELI	E Multip50	
Dry Density Determination		Before Soaking	Aft	er Soaking	
Mass of Mould + Base + Soil		7980.6	819	2.2	
(g)		1900.0	017	2.2	
Mass of Mould + Base (g)		4133.9	413	3.9	
Mass of Compacted Specimen		3846.7 405		8.3	
Bulk Density (g/cm3)		1.811 1.9		11	
Dry Density (g/cm3)		1.364	1.34	48	
Moisture Content Determination	ion	Before Soaking	Aft	er Soaking	
Mass of Container + Wet Soil		467.2	529	.4	
Mass of Container + Dry Soil		381	405	.6	
Mass of Container		118.2	128		
Mass of Moisture		86.2	123	.8	
Moisture Content		32.801	44.	597	
California Bearing Ratio Deter	rmination				
	-	~ ·			

Deformation	Pressure kPa	Pressure psi	Corrected Pressure (psi)	CBR	Final CBR
0.1 Inch	166.884	24.204	25.179	2.518	2 519
0.2 Inch	245.934	35.670	36.419	2.428	2.510

Figure G1(Continued)

Project Information	on							
Project Name		%15 B		Start Date			09.05.201	14
Curing Period		0 days		End Date			13.05.201	14
Sample Number		2						
Standard		ASTM D 188	383-07, D 698-12					
Method Of Compa	ction	Standard Eff	fort, Method C					
Tested By		Can CEYLAN	Co	Condition of Sample S		So	Soaked	
Soil Classification		СН	Su	Surcharge		4.	4.54 kg.	
Maximum Dry Der	sity g/cm3	1.37	Sv	well Dial Read	ing (mm.)	4.	53	
Optimum Moisture	Content (%)	33.1	Sv	well Rate (%)		3.	905	
Area of Penetration	(mm2)	1.935	D	evice		El	ELE Multipl50	
Dry Density Deter	mination		Be	efore Soaking		A	fter Soakin	g
Mass of Mould + B	ase + Soil	(g)	80	035		81	64.1	
Mass of Mould + B	ase	(g)	41	.66.3		41	66.3	
Mass of Compacted	l Specimen	(g)	38	868.7		39	997.8	
Bulk Density		(g/cm3)	1.	1.821			882	
Dry Density		(g/cm3)	1.	1.369			1.325	
Moisture Content	Determinatio	n	Be	efore Soaking		A	fter Soakin	g
Mass of Container	+ Wet Soil	(g)	79	94.9		57	71.9	
Mass of Container	+ Dry Soil	(g)	64	644.4		43	37.6	
Mass of Container		(g)	18	188.7		13	35.4	
Mass of Moisture		(g)	15	50.5		13	34.3	
Moisture Content		%	33	33.026		44	4.441	
California Bearing	g Ratio Deter	mination			r	-		
Deformation	Pressure kPa	Pressure psi	Co Pr	Corrected Pressure (psi) CBR		Final CBR		
0.1 Inch	162.234	23.530	25	5.703	2.570	2	570	
0.2 Inch	222.684	32.298	33	3.197	2.213	4.	570	
60 50 40 (isi) 30 20 10		Stress/Per psi/ii	nch	ation				
0 0	0,1	0,2 (Penetr	0,3 atio	0,4 on (Inch)	0,	.5	0,	6

Figure G1(Continued)

Project Information	0 n							
Project Name		%15 B		Start Date			09.05.2014	
Curing Period		0 days		End Date			13.05.2014	
Sample Number		3						
Standard		ASTM D 18	83-0	7, D 698-12				
Method Of Compa	ction	Standard Eff	ort, l	Method C				
Tested By		Can CEYLAN	Co	ondition of Sar	nple	Soak	ed	
Soil Classification		СН	Su	rcharge		4.54	kg.	
Maximum Dry Der	nsity g/cm3	1.37	Sw (m	vell Dial l m.)	Reading	4.7		
Optimum Moistu (%)	re Content	^t 33.1	Sw	vell Rate (%)		4.052	2	
Area of Penetration	n (mm2)	1.935	De	evice		ELE	Multip50	
Dry Density Deter	mination		Be	fore Soaking		After	Soaking	
Mass of Mould + E	Base + Soil	(g)	80	11.2		8170		
Mass of Mould + E	lase	(g)	41	45.1		4145	.1	
Mass of Compacted	d Specimen	(g)	38	66.1		4024	.9	
Bulk Density		(g/cm3)	1.8	1.820			1.895	
Dry Density		(g/cm3)	1.3	367		1.337	7	
Moisture Content	Determinat	ion	Be	fore Soaking		After	Soaking	
Mass of Container	+ Wet Soil	(g) 571.6		526.7	7			
Mass of Container	+ Dry Soil	(g)	446.8		407.5	5		
Mass of Container	-	(g)	70.5		153.4	1		
Mass of Moisture		(g)	12	124.8		119.2	2	
Moisture Content		%	33	.165		46.91	1	
California Bearing	g Ratio Dete	ermination						
Deformation	Pressure	Pressure	Co	orrected	CBD	Fir	nal	
Deformation	kPa	psi	Pre	essure (psi)	CDK	CE	BR	
0.1 Inch	165.850	24.055	25	.179	2.518	2.5	63	
0.2 Inch	264.534	38.367	38	.442	2.563	2.0	05	
70		Stress/Pe	netra	ation				
60		psi/i	nch					
		po., .						
50								
(isi								
) s								
e30								
S								
20								
10								
0								
0 0),1	0,2 Penetra	0.3 tíon l	(Inch) ^{0,4}		0,5	0,6	
		i chettu						

Figure G1(Continued)

Project Information	on					
Project Name		%3 B	Start Date			01.07.2014
Curing Period		7 days	End Date			12.07.2014
Sample Number		1				
Standard		ASTM D 1883-0	07, D 698-12			
Method Of Compac	ction	Standard Effort,	Method C			
Tested By		Can CEYLAN	Condition of Sa	ample	Soal	ked
Soil Classification		СН	Surcharge		4.54	kg.
Maximum Dry Der	nsity g/cm3	1.43	Swell Dial Re (mm.)	ading	3.76	
Optimum Moisture	Content (%)	29.3	Swell Rate (%)		3.24	1
Area of Penetration	n (mm2)	1.935	Device		ELE	E Multip 50
Dry Density Deter	rmination		Before Soaking	5	Afte	r Soaking
Mass of Mould + B	Base + Soil	(g)	8074.9		8268	8.8
Mass of Mould + B	Base	(g)	4166.6		416	5.6
Mass of Compacted	d Specimen	(g)	3908.3		4102	2.2
Bulk Density		(g/cm3)	1.840		1.93	1
Dry Density		(g/cm3)	1.426		1.37	7
Moisture Content	Determinatio	n	Before Soaking	ŗ.	Afte	er Soaking
Mass of Container	+ Wet Soil	(g)	549.2		538.	.3
Mass of Container	+ Dry Soil	(g)	454.4		401.	.6
Mass of Container		(g)	128.2		70.5	
Mass of Moisture		(g)	94.8		136.	.7
Moisture Content		%	29.062		41.2	.87
California Bearing	g Ratio Deter	mination	ſ	T		F
Deformation Pr	ressure	Pressure	Corrected	CBR		Final
	Pa	psi	Pressure (psi)	2 902		CBR
0.1 Inch 19	99.373	28.917	28.917	2.892		2.892
0.2 Inch 24	46.785	35.793	35.793	2.386		
50		Stress/Penetr	ation			
45		psi/inch				
40						
35					_	
a 30						
isd)						
ses						
Str. 20						
15						
10						
5						
0	0,1	0,2 0,3 Penetratior	0,4 n (Inch)		0,5	0,6

Figure G1(Continued)

Project Inforn	nation					
Project Name		%3 B	Start Date		01.07.2014	
Curing Period		7 days	End Date		12.07.2014	
Sample Numbe	er	2	2			
Standard		ASTM D 188	83-07, D 698-12			
Method Of Cor	npaction	Standard Effe	ort, Method C			
Tested By		Can CEYLAN	an Condition of Sample			
Soil Classificat	ion	СН	Surcharge		4.54 kg.	
Maximum Dry	Density g/cm3	1.43	Swell Dial (mm.)	Reading	4.01	
Optimum Mois	ture Content (%)	29.5	Swell Rate (%)		3.457	
Area of Penetra	ation (mm2)	1.935	Device		ELE Multip 50	
Dry Density D	etermination		Before Soaking		After Soaking	
Mass of Mould	+ Base + Soil	(g)	8056.1		8288.5	
Mass of Mould	+ Base	(g)	4165.7		4166.6	
Mass of Compa	acted Specimen	(g)	3890.4		4121.9	
Bulk Density		(g/cm3)	1.832	1.941		
Dry Density		(g/cm3)	1.418	1.374		
Moisture Cont	tent Determinatio	n	Before Soaking			
Mass of Contai	ner + Wet Soil	(g)	543.9	480.4		
Mass of Contai	ner + Dry Soil	(g)	453.4		377.6	
Mass of Contai	ner	(g)	143	128.4		
Mass of Moistu	ire	(g)	90.5		102.8	
Moisture Conte	ent	%	29.156 41.252			
California Bea	ring Ratio Deter	mination				
Deformation	Pressure	Pressure	Corrected	Final		
Deformation	kPa	psi	Pressure (psi)	CDK	CBR	
0.1 Inch	206.667	29.975	29.975	2.997	2 007	
0.2 Inch	266.084	38.592	38.592	2.573	2.771	
50 50 (isi) 30 20 10		Stress/Pen psi/ir	etration hch			
0 0	0,1	0,2 (Penetra	0,3 0,4 htion (Inch)		0,5 0,6	

Figure G1(Continued)

Project Infor	mation					
Project Name		%3 B	Start Date		01.07.2014	
Curing Period		7 days	End Date		12.07.2014	
Sample Numb	er	3	3			
Standard		ASTM D 18	83-07, D 698-12			
Method Of Co	mpaction	Standard Eff	ort, Method C			
Tested By		Can CEYLAN	Condition of Sa	mple	Soaked	
Soil Classifica	tion	СН	Surcharge		4.54 kg.	
Maximum Dry	/ Density g/cm?	3 1.43	Swell Dial Read	ling (mm.)	3.61	
Optimum Moi	sture Content (%) 29.5	Swell Rate (%)		3.112	
Area of Penetr	ration (mm2)	1.935	Device		ELE Multip 50	
Dry Density I	Determination		Before Soaking		After Soaking	
Mass of Moule	d + Base + Soil	(g)	8103.5		8254.5	
Mass of Moule	d + Base	(g)	4166.7		4166.7	
Mass of Comp	acted Specime	n (g)	3936.8		4087.8	
Bulk Density		(g/cm3)	1.853		1.925	
Dry Density		(g/cm3)	1.433		1.372	
Moisture Cor	tent Determin	nation	Before Soaking		After Soaking	
Mass of Conta	iner + Wet Soi	l (g)	457.4		514.7	
Mass of Conta	iner + Dry Soil	l (g)	382.8		384.5	
Mass of Conta	iner	(g)	(g) 128.4		70.5	
Mass of Moist	ure	(g)	74.6		130.2	
Moisture Cont	ent	%	29.324		41.465	
California Be	aring Ratio D	etermination				
Deformation	Pressure	Pressure	Corrected	CBR	Final	
Deformation	kPa	psi	Pressure (psi)	СЫК	CBR	
0.1 Inch	197.046	28.579	30.646	3.065	3.065	
0.2 Inch	275.081	39.897	40.569	2.705		
60		Stress/Per psi/ii	netration nch			
50					•	
40						
psi						
05 SS						
otre						
20						
10						
0						
0	0,1	0,2	0,3	0,4	0,5	
		Penetra	tion (Inch)			

Figure G1(Continued)

Project Name%6 BStart Date29.07.2014Curing Period7 daysEnd Date10.08.2014Sample Number11StandardASTM D 1883-07, D 698-12Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoil ClassificationCHSurchargeMaximum Dry Density g/cm31.42Swell Dial Reading (mm.)Optimum Moisture Content (%)31.1Swell Rate (%)Area of Penetration (mm2)1.935DeviceDry Density DeterminationBefore SoakingMass of Mould + Base + Soil(g)8019.1Mass of Mould + Base(g)4133.5Mass of Compacted Specimen(g)3885.6Honsity(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Wet Soil(g)347.9467.5Mass of Container + Dry Soil(g)347.9467.5Mass of Container + Wet Soil(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationPressure (psi)CBRDeformationPressurePressure (psi)CBRCalifornia Persure Ratio DeterminationPressure (psi)CBRDeformationPressurePressure (psi)CBRCalifornia Bearing Ratio Determin	Project Informa	ition						
Curing Period7 daysEnd Date10.08.2014Sample Number11StandardASTM D 1883-07, D 698-12Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.42Swell Dial Reading (mm.)2.26Optimum Moisture Content (%)31.1Swell Rate (%)1.948Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density Determinationg)8019.18190.7Mass of Mould + Base + Soil(g)8019.18190.7Mass of Compacted Specimeng)3885.64057.2Bulk Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Wet Soil(g)347.9467.5Mass of Container + Wet Soil(g)30.80142.222California Bearing Ratio DeterminationSolation42.222California Bearing Ratio DeterminationCorrected Pressure (psi)CBRCalifornia DeterminationPressure (psi)CBRFinal CBR	Project Name		%6 B	Start Date			29.07.201	4
Sample Number1StandardASTM D 1883-07, D 698-12Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.42Swell Dial Reading (mm.)2.26Optimum Moisture Content (%)31.1Swell Rate (%)1.948Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base(g)4133.54133.5Mass of Compacted Specimen(g)3885.64057.2Bulk Density(g/cm3)1.3291.910Dry Density(g/cm3)1.3991.461Moisture Content PeterminationBefore SoakingAfter SoakingMass of Compacted Specimen(g)3885.64057.2Bulk Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)347.9467.5Mass of Container + Ury Soil(g)347.9467.5Mass of Moisture(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationCorrected Pressure (psi)CBRDeformationPressureCorrected Pressure (psi)CBRMass of Moisture%30.80142.222	Curing Period		7 days	End Date			10.08.201	4
StandardASTM D 1883-07, D 698-12Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.42Swell Dial Reading (mm.)2.26Optimum Moisture Content (%)31.1Swell Rate (%)1.948Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base(g)4019.18190.7Mass of Compacted Specimen(g)3885.64057.2Bulk Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Wet Soil(g)347.9467.5Mass of Container + Dry Soil(g)30.80142.222Catifornia Bearing Ratio DeterminationPressure psiCorrected pressure (psi)CBRDeformationPressure psiCorrected psiCBRFinal CBR	Sample Number		1					
Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.42Swell Dial Reading (mm.)2.26Optimum Moisture Content (%)31.1Swell Rate (%)1.948Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8019.18190.7Mass of Mould + Base(g)3885.64057.2Bulk Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Wet Soil(g)347.9467.5Mass of Container + Dry Soil(g)30.80142.222California Bearing Ratio Determination%30.80142.222DeformationPressure kPaPressure (psi)CBRFinal CBR	Standard		ASTM D 188	3-07, D 698-12				
Tested ByCan CEYLANCondition SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.42Swell Reading (mm.)2.26Optimum Moisture Content (%)31.1Swell Rate (%)1.948Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil Mass of Mould + Base(g)4133.54133.5Mass of Compacted Specimen Ury Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil Mass of Container + Dry Soil (g)(g)347.9467.5Mass of Container + Dry Soil (g)(g)60117.8Mass of Moisture Container + Dry Soil (g)60117.8Mass of Moisture Content W%30.80142.222California Bearing Ratio Determination Pressure (PaCorrected Pressure (Pressure (Pressure (psi)CBRFinal CBR	Method Of Comp	paction	Standard Effo	ort, Method C				
Soil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.42Swell Dial Reading (mm.)2.26Optimum Moisture Content (%)31.1Swell Rate (%)1.948Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8019.18190.7Mass of Mould + Base(g)4133.54133.5Mass of Compacted Specimen(g)3885.64057.2Bulk Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Ury Soil(g)347.9467.5Mass of Container + Ory Soil(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationCBRFinal CBRDeformationPressure kPapriceCorrected Pressure (psi)Final CBR	Tested By		Can CEYLAN	N Condition Sample	of	Soa	aked	
Maximum Dry Density g/cm31.42Swell mail Reading (mm.)2.26Optimum Moisture Content (%)31.1Swell Rate (%)1.948Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8019.18190.7Mass of Mould + Base(g)4133.54133.5Mass of Compacted Specimen(g)3885.64057.2Bulk Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Wet Soil(g)347.9467.5Mass of Container + Dry Soil(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationCorrected pressure kPaPressure (psi)Corrected kPaPressure (psi)CBRFinal 	Soil Classificatio	n	СН	Surcharge		4.5	54 kg.	
Optimum Moisture Content (%)31.1Swell Rate (%)1.948Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8019.18190.7Mass of Mould + Base(g)4133.54133.5Mass of Compacted Specimen(g)3885.64057.2Bulk Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Dry Soil(g)347.9467.5Mass of Container + Ory Soil(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationCorrected psiCBRFinal CBR	Maximum Dry D	ensity g/cm3	1.42	Swell Reading (n	Dial m.)	2.2	.6	
Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8019.18190.7Mass of Mould + Base(g)4133.54133.5Mass of Compacted Specimen(g)3885.64057.2Bulk Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Dry Soil(g)347.9467.5Mass of Container + Ory Soil(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationPressure psiCBRFinal CBRDeformationPressure kPapsi07.46()27.47	Optimum Moistu	re Content (%)	31.1	Swell Rate	(%)	1.9	48	
Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g) 8019.1 8190.7 Mass of Mould + Base(g) 4133.5 4133.5 Mass of Compacted Specimen(g) 3885.6 4057.2 Bulk Density(g/cm3) 1.829 1.910 Dry Density(g/cm3) 1.399 1.461 Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g) 407.9 585.3 Mass of Container + Dry Soil(g) 347.9 467.5 Mass of Container + Dry Soil(g) 60 117.8 Moisture Content% 30.801 42.222 California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi) Final CBRDeformation $Pressure$ $Corrected$ psiCBR Final CBR	Area of Penetrati	on (mm2)	1.935	Device		EL	E Multip 50)
Mass of Mould + Base + Soil(g)8019.18190.7Mass of Mould + Base(g)4133.54133.5Mass of Compacted Specimen(g)3885.64057.2Bulk Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Dry Soil(g)347.9467.5Mass of Container + Dry Soil(g)153.1188.5Mass of Moisture(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)CBRFinal CBR	Dry Density Det	ermination		Before Soa	king	Aft	ter Soaking	
Mass of Mould + Base(g)4133.54133.5Mass of Compacted Specimen(g)3885.64057.2Bulk Density(g/cm3)1.8291.910Dry Density(g/cm3)1.3991.461Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Dry Soil(g)347.9467.5Mass of Container(g)153.1188.5Mass of Moisture(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)Final CBRDeformationPressure kPa9577467	Mass of Mould +	- Base + Soil	(g)	8019.1		819	90.7	
Mass of Compacted Specimen(g) 3885.6 4057.2 Bulk Density(g/cm3) 1.829 1.910 Dry Density(g/cm3) 1.399 1.461 Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g) 407.9 585.3 Mass of Container + Dry Soil(g) 347.9 467.5 Mass of Container + Dry Soil(g) 153.1 188.5 Mass of Container(g) 60 117.8 Moisture Content% 30.801 42.222 California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)Final CBRData base 67.5 67.5 67.5	Mass of Mould +	- Base	(g)	4133.5		413	33.5	
Bulk Density $(g/cm3)$ 1.829 1.910 Dry Density $(g/cm3)$ 1.399 1.461 Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil (g) 407.9 585.3 Mass of Container + Dry Soil (g) 347.9 467.5 Mass of Container (g) 153.1 188.5 Mass of Moisture (g) 60 117.8 Moisture Content $\%$ 30.801 42.222 California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)Final CBRDeformation $Pressure$ psi 27.460 27.477	Mass of Compac	ted Specimen	(g)	3885.6		403	57.2	
Dry Density $(g/cm3)$ 1.399 1.461 Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil (g) 407.9 585.3 Mass of Container + Dry Soil (g) 347.9 467.5 Mass of Container + Dry Soil (g) 153.1 188.5 Mass of Container (g) 60 117.8 Mass of Moisture (g) 60 117.8 Moisture Content $\%$ 30.801 42.222 California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)Final CBRDeformation $Pressure$ kPa 95 77.460 9.747	Bulk Density		(g/cm3)	1.829		1.9	10	
Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)407.9585.3Mass of Container + Dry Soil(g)347.9467.5Mass of Container(g)153.1188.5Mass of Moisture(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)Final CBRData L25.67027.46027.470	Dry Density		(g/cm3)	1.399		1.4	-61	
Mass of Container + Wet Soil(g) 407.9 585.3 Mass of Container + Dry Soil(g) 347.9 467.5 Mass of Container(g) 153.1 188.5 Mass of Moisture(g) 60 117.8 Moisture Content% 30.801 42.222 California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)Final CBRData L L L 82.670 27.470 27.470	Moisture Conte	nt Determinatio	n	Before Soa	king	Aft	ter Soaking	
Mass of Container + Dry Soil(g) 347.9 467.5 Mass of Container(g) 153.1 188.5 Mass of Moisture(g) 60 117.8 Moisture Content% 30.801 42.222 California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)Final CBRDeformation $Pressure$ psi CBR Final CBR	Mass of Containe	er + Wet Soil	(g)	407.9		585	5.3	
Mass of Container(g)153.1188.5Mass of Moisture(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)Final CBR0.1 LkPapsiPressure (psi)CBR	Mass of Containe	er + Dry Soil	(g)	347.9		467	7.5	
Mass of Moisture(g)60117.8Moisture Content%30.80142.222California Bearing Ratio DeterminationDeformationPressure psiCorrected Pressure (psi)Final CBRDeformationPressure psiCorrected Pressure (psi)Final CBR	Mass of Containe	er	(g)	153.1	153.1		8.5	
Moisture Content%30.80142.222California Bearing Ratio DeterminationPressureCorrectedFinalDeformationPressurePressure (psi)CBRFinal0.14 min245.02425.67027.46027.470	Mass of Moisture	9	(g)	60	60		7.8	
California Bearing Ratio DeterminationDeformationPressure kPaPressure psiCorrected Pressure (psi)Final CBR0.14 minPressure kPa0.5 c700.7 4 c00.7 4 c0	Moisture Conten	t	%	30.801		42.	.222	
DeformationPressure kPaPressure psiCorrected Pressure (psi)Final CBR0.1 k - k245 02425 67027 46027 470	California Beari	ing Ratio Deteri	mination					
beformation kPa psi Pressure (psi) CBR CBR	Deformation	Pressure	Pressure	Corrected	CBR		Final	
	2 01011111101	kPa	psi	Pressure (psi)	0.511		CBR	
0.1 Inch 245.934 35.670 37.468 3.747 3.747	0.1 Inch	245.934	35.670	37.468	3.747	7	3.747	
0.2 Inch 328.601 47.659 47.959 3.197	0.2 Inch	328.601	47.659	47.959	3.197	7		
70 Stress/Penetration	70		Stress/Pene psi/inc	tration h				
60	60							
50	50					_		
	(isd)							
ss.	SS (
St 20	Stre							
20	20							
10	10					_		
	0							
0 0,1 0,2 0,3 0,4 0,5 0,6 Penetration (Inch)	0	0,1 0,	,2	0,4 on (Inch)		0,5	0,	6

Figure G1(Continued)

Project Information	ation						
Project Name		%6 B		Start Date		29.07.2014	
Curing Period		7 days		End Date		10.08.2014	
Sample Number		2					
Standard		ASTM D 1	1883-0	7, D 698-12			
Method Of Com	paction	Standard E	Effort,	Method C			
Tested By		Can CEYL	LAN	Condition Sample	of	Soaked	
Soil Classification	on	СН		Surcharge		4.54 kg.	
Maximum Dry I	Density g/cm3	1.42		Swell Reading (n	Dial nm.)	2.14	
Optimum Moist	ure Content (%)	31.1		Swell Rate	(%)	1.845	
Area of Penetrat	ion (mm2)	1.935		Device		ELE Multip 50	
Dry Density De	termination			Before Soa	lking	After Soaking	
Mass of Mould -	+ Base + Soil	(g)		8039.7		8258.4	
Mass of Mould -	+ Base	(g)		4159.5		4159.5	
Mass of Compac	cted Specimen	(g)		3880.2		4098.9	
Bulk Density	-	(g/cm3)		1.827		1.930	
Dry Density		(g/cm3)		1.390		1.464	
Moisture Conte	ent Determinatio	n	Before Soaking		After Soaking		
Mass of Contain	er + Wet Soil	(g)		415.1		550.2	
Mass of Contain	er + Dry Soil	(g)		342		427.1	
Mass of Contain	er	(g)		109.3		135.2	
Mass of Moistur	e	(g)		73.1		123.1	
Moisture Conter	nt	%		31.414		42.172	
California Beau	ing Ratio Deter	mination					
	Pressure	Pressure	Corr	rected	~~~	Final	
Deformation	kPa	psi	Pres	sure (psi)	CBR	CBR	
0.1 Inch	241.801	35.070	36.3	44	3.634		
0.2 Inch	323.434	46.910	48.3	34	3.222	3.634	
70							
		Stress/Pe	enetral	tion			
60		psi/	inch				
50							
50							
(iso							
) ss (
0							
20							
10							
0							
0	0,1 0,7	2 Penetra	0,3 tion (I	0,4 nch)		0,5 0,6	
				/			

Project Inform	ation					
Project Name		%6 B	Start Date		29.07.2014	
Curing Period		7 days	End Date		10.08.2014	
Sample Number		3				
Standard		ASTM D 1	883-07, D 698-12			
Method Of Com	paction	Standard E	ffort, Method C			
Tested By		Can CEYL	AN Condition	of Sample	Soaked	
Soil Classification	on	СН	Surcharge		4.54 kg.	
Maximum Dry I	Density g/cm3	1.42	Swell Dia (mm.)	l Reading	2.47	
Optimum Moist	ure Content (%)	31.1	Swell Rate	: (%)	2.129	
Area of Penetrat	ion (mm2)	1.935	Device		ELE Multip 50	
Dry Density De	termination		Before Soa	aking	After Soaking	
Mass of Mould	+ Base + Soil	(g)	8315.4		8190.7	
Mass of Mould	+ Base	(g)	4332.5		4332.5	
Mass of Compac	cted Specimen	(g)	3928		3858.2	
Bulk Density		(g/cm3)	1.849		NA	
Dry Density		(g/cm3)	1.413		NA	
Moisture Conte	ent Determinatio	n	Before Soa	aking	After Soaking	
Mass of Contain	er + Wet Soil	(g)	435.7		413.4	
Mass of Contain	er + Dry Soil	(g)	366.5		432.3	
Mass of Contain	er	(g)	(g) 142.8		142	
Mass of Moistur	e	(g) 69.2		NA		
Moisture Conter	nt	%	30.934		NA	
California Beau	ring Ratio Deter	mination				
Deformation	Pressure	Pressure	Corrected	CBR	Final	
Deformation	kPa	psi	Pressure (psi)	CDK	CBR	
0.1 Inch	251.617	36.494	38.517	3.852	3.852	
0.2 Inch	371.484	53.879	54.554	3.637		
80		Stress/P	enetration			
70		psi	/men			
60						
. 50						
<u>d</u> s 40						
res						
5 30						
20	, 					
10						
0						
0	0,1),2 Peneti	0,3 0,4	1	0,5 0,6	1
		Peneli				

Figure G1(Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Project Information	ation					
Curing Period7 daysEnd Date10.07.2014Sample Number1IStandardASTM D 1883-07, D 698-12Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.39Swell Dial Reading (mm.)3.45Optimum Moisture Content (%)32.4Swell Rate (%)2.974Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)3877.54186.7Bulk Density(g/cm3)1.8261.971Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base (g)675.1391.8Mass of Container + Wet Soil(g)675.1391.8Mass of Container + Wet Soil(g)131.482.1Mass of Container + Wet Soil(g)131.482.1Moisture Content%31.97943.211Cattornia Bearing Ratio DeterminationPressure (psi)CBROpiaPressurePressure (psi)CBROpiaStress/PenetrationSocial3.6490.1 Inch251.61736.4943.6490.2 Inch34.80148.5593.237Orige 40Stress/PenetrationSocialSocial01Stress/PenetrationSocialSocial02Stress/Pen	Project Name		%10 B	Start Date		29.07.2014	
Sample Number 1 Standard ASTM D 1883-07, D 698-12 Method Of Compaction Standard Effort, Method C Tested By Can CEYLAN Condition of Sample Soaked Soil Classification CH Surcharge 4.54 kg. Maximum Dry Density g/cm3 1.39 Swell Dial Reading (mm.) 3.45 Optimum Moisture Content (%) 32.4 Swell Rate (%) 2.974 Area of Penetration (mm2) 1.935 Device ELE Multip 50 Dry Density Determination Before Soaking After Soaking Mass of Mould + Base + Soil<(g)	Curing Period		7 days	End Date		10.07.2014	
StandardASTM D 1883-07, D 698-12Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.39Swell Dial Reading (mm.)3.45Optimum Moisture Content (%)32.4Swell Rate (%)2.974Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base(g)4155.24186.7Mass of Compacted Specimen(g)3877.54186.7Bulk Density(g/cm3)1.3831.484Moisture Container + Wet Soil(g)675.1391.8Mass of Container + Wet Soil(g)543.7309.7Mass of Container + Wet Soil(g)131.482.1Moisture Content%31.97943.211CarleformiationDeformationPressure (g)131.482.1Moisture Content%31.97943.211Categrame (g)0.1 Inch251.61736.49436.4943.6490.2 Inch34.80148.5593.2373.6490.1 Inch251.61736.49436.4943.6490.2 Inch34.80148.5593.2373.6490.1 Inch251.61736.49436.4943.6490.1 Inch251.61736.49436.4943.649	Sample Number		1				
Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.39Swell Dial Reading (mm.)3.45Optimum Moisture Content (%)32.4Swell Rate (%)2.974Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8032.78341.9Mass of Mould + Base + Soil(g)3877.54186.7Bulk Density(g/cm3)1.8261.971Dry Density DeterminationBefore SoakingAfter SoakingMass of Compacted Specimen(g)675.1391.8Bulk Density(g/cm3)1.3831.484Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)675.1391.8Mass of Moisture(g)131.482.1Mass of Moisture(g)131.482.1Mass of Moisture(g)131.482.1Mass of Moisture Content%31.97943.211California Bearing Ratio DeterminationPressure (psi)CBRFinal CBR0.1 Inch251.61736.49436.4943.6490.2 Inch334.80148.5593.23736490111110111110	Standard		ASTM D 188	3-07, D 698-12			
Tested ByCan CEYLANCondition of SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.39Swell Dial Reading (mm.)3.45Optimum Moisture Content (%)32.4Swell Rate (%)2.974Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base(g)4155.24155.2Mass of Compacted Specimen(g)3877.54186.7Bulk Density(g/cm3)1.8261.971Dry Density Container + Wet Soil(g)675.1391.8Mass of Container + Wet Soil(g)543.7309.7Mass of Container + Dry Soil(g)131.482.1Moisture Content%31.97943.211California Bearing Ratio DeterminationCorrected psiCBRDeformationPressure (paiStress/Penetration psi/inchSchap (g)70Stress/Penetration psi/inchStress/PenetrationSchap (g)70Stress/PenetrationSchap (g)3.64970Stress/PenetrationSchap (g)3.64970Stress/PenetrationSchap (g)3.64970Stress/PenetrationSchap (g)3.64970Stress/PenetrationSchap (g)Schap70Stress/PenetrationSchap (g)Schap70Stress/PenetrationSchapSchap70 <td>Method Of Com</td> <td>paction</td> <td>Standard Effo</td> <td>ort, Method C</td> <td></td> <td></td> <td></td>	Method Of Com	paction	Standard Effo	ort, Method C			
Soil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.39Swell Dial Reading (mm.)3.45Optimum Moisture Content (%)32.4Swell Rate (%)2.974Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8032.78341.9Mass of Compacted Specimen(g)3877.54186.7Buk Density(g/cm3)1.8261.971Dry Density(g/cm3)1.3831.484Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)675.1391.8Mass of Container + Wet Soil(g)131.482.1Moisture Content%31.97943.211California Bearing Ratio DeterminationPressure (psi)CBRFinal CBR0.1 Inch251.61736.49436.4943.6490.2 Inch334.80148.55948.5593.2370101010101001010101010010101010101001010101010100101010101010101010101010101110101010101012131010<	Tested By		Can CEYLAN	N Condition of	Sample	Soaked	
Maximum Dry Density g/cm31.39Swell Dial Reading (mm.)3.45Optimum Moisture Content (%)32.4Swell Rate (%)2.974Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g) 8032.7 8341.9 Mass of Mould + Base(g) 3877.5 4186.7 Bulk Density(g/cm3) 1.326 1.971 Dry Density DeterminationBefore SoakingAfter SoakingMass of Compated Specimen(g) 3877.5 4186.7 Bulk Density(g/cm3) 1.383 1.484 Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g) 675.1 391.8 Mass of Container + Dry Soil(g) 543.7 309.7 Mass of Container + Dry Soil(g) 131.4 82.1 Moisture Content% 31.979 43.211 California Bearing Ratio DeterminationCBRFinal CBR0.1 Inch 251.617 36.494 3.649 0.2 Inch 334.801 48.559 3.237 70 (g) 50 50 50 50 93 50 50 50 50 93 50 50 50 50 93 50 50 50 50 93 50 50 50 50 93 50 50 50 50	Soil Classification	on	СН	Surcharge		4.54 kg.	
Optimum Moisture Content (%)32.4Swell Rate (%)2.974Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8032.78341.9Mass of Mould + Base(g)4155.24186.7Bulk Density(g/cm3)1.8261.971Dry Density(g/cm3)1.3831.484Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)675.1391.8Mass of Container + Dry Soil(g)543.7309.7Mass of Container + Dry Soil(g)131.482.1Moisture Content%31.97943.211Corrected pressure (psi)CBRDeformationPressure psiCorrected Pressure (psi)CBROut 1 Inch251.61736.4943.6493.6490.2 Inch334.80148.55948.5593.2373.649	Maximum Dry I	Density g/cm3	1.39	Swell Dial (mm.)	Reading	3.45	
Area of Penetration (mm2)1.935DeviceELE Multip 50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g) 8032.7 8341.9 Mass of Mould + Base(g) 4155.2 4155.2 Mass of Compacted Specimen(g) 3877.5 4186.7 Bulk Density(g/cm3) 1.326 1.971 Dry Density(g/cm3) 1.383 1.484 Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g) 675.1 391.8 Mass of Container + Dry Soil(g) 543.7 309.7 Mass of Container + Ury Soil(g) 131.4 82.1 Moisture Content% 31.979 43.211 Corrected pressure frequency in the second s	Optimum Moist	ure Content (%)	32.4	Swell Rate (%)	2.974	
Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8032.78341.9Mass of Mould + Base(g)4155.24155.2Mass of Compacted Specimen(g)3877.54186.7Bulk Density(g/cm3)1.8261.971Dry Density(g/cm3)1.8261.971Dry Density(g/cm3)1.3831.484Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)675.1391.8Mass of Container + Dry Soil(g)543.7309.7Mass of Container(g)131.482.1Moisture Content%31.97943.211California Bearing Ratio DeterminationPressureCorrected Pressure (psi)CBRDeformationPressure Presure psiCorrected Pressure (psi)CBRFinal CBR0.1 Inch251.61736.49436.4943.6493.6490.2 Inch334.80148.55948.5593.2373.6490.2 Inch334.80148.55948.5593.2373.6490.2 Inch0.10.20.20.40.50.5	Area of Penetrat	ion (mm2)	1.935	Device		ELE Multip 5	50
Mass of Mould + Base + Soil (g) 8032.7 8341.9 Mass of Mould + Base (g) 4155.2 4155.2 Mass of Compacted Specimen (g) 3877.5 4186.7 Bulk Density (g/cm3) 1.826 1.971 Dry Density (g/cm3) 1.383 1.484 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 675.1 391.8 Mass of Container + Dry Soil (g) 543.7 309.7 Mass of Container + Ory Soil (g) 131.4 82.1 Moisture Content % 31.979 43.211 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 251.617 36.494 3.649 3.649 3.649 302 0.4 Stress/Penetration psi/inch 0 0 0 02 04 03 04 0 0 0 030 03 03 04 0 0	Dry Density De	termination		Before Soak	ing	After Soaking	g
Mass of Mould + Base (g) 4155.2 4155.2 Mass of Compacted Specimen (g) 3877.5 4186.7 Bulk Density (g/cm3) 1.826 1.971 Dry Density (g/cm3) 1.383 1.484 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 675.1 391.8 Mass of Container + Dry Soil (g) 543.7 309.7 Mass of Container + Wet Soil (g) 131.4 82.1 Moisture Content (g) 131.4 82.1 Moisture Content % 31.979 43.211 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 251.617 36.494 36.494 3.649 3.649 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 0 0 0 0 0 0 0 0 0 0 0 0 0	Mass of Mould -	+ Base + Soil	(g)	8032.7		8341.9	
Mass of Compacted Specimen(g) 3877.5 4186.7 Bulk Density(g/cm3) 1.826 1.971 Dry Density(g/cm3) 1.383 1.484 Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g) 675.1 391.8 Mass of Container + Dry Soil(g) 543.7 309.7 Mass of Container + Dry Soil(g) 132.8 119.7 Mass of Container(g) 131.4 82.1 Moisture Content% 31.979 43.211 California Bearing Ratio DeterminationDeformationPressure RPaPressure psiCorrected Pressure (psi) Final CBR0.1 Inch 251.617 36.494 3.649 3.649 0.2 Inch 334.801 48.559 48.559 3.237 70 60 50 50 50 50 50 50Stress/Penetration psi/inchImage: Content of the second	Mass of Mould -	+ Base	(g)	4155.2		4155.2	
Bulk Density(g/cm3)1.8261.971Dry Density(g/cm3)1.3831.484Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)675.1391.8Mass of Container + Dry Soil(g)543.7309.7Mass of Container + Dry Soil(g)132.8119.7Mass of Container - Ury Soil(g)131.482.1Moisture Content%31.97943.211Corrected pressure Corrected Pressure (psi)Final CBRDeformationPressure psiPressure (psi)CBRFinal CBR0.1 Inch251.61736.49436.4943.6490.2 Inch334.80148.55948.5593.23770Stress/Penetrationpsi/inch93.0495.0490000000910000009300000093000000	Mass of Compac	cted Specimen	(g)	3877.5		4186.7	
Dry Density (g/cm3) 1.383 1.484 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 675.1 391.8 Mass of Container + Dry Soil (g) 543.7 309.7 Mass of Container + Dry Soil (g) 132.8 119.7 Mass of Container (g) 131.4 82.1 Moisture Content % 31.979 43.211 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 251.617 36.494 36.494 3.649 3.649 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 30 Stress/Penetration psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch <th< td=""><td>Bulk Density</td><td></td><td>(g/cm3)</td><td>1.826</td><td></td><td>1.971</td><td></td></th<>	Bulk Density		(g/cm3)	1.826		1.971	
Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g) 675.1 391.8 Mass of Container + Dry Soil(g) 543.7 309.7 Mass of Container - (g) 132.8 119.7 Mass of Moisture Content% 31.979 43.211 California Bearing Ratio DeterminationPressure RPaPressure (psi)0.1 Inch 251.617 36.494 36.494 3.649 0.2 Inch 334.801 48.559 48.559 3.237 Of stress/Penetration70 60 50Stress/Penetration71 60 50Of stress/Penetration72 60 50Of stress/Penetration73 60 50Of stress/Penetration70 60 50Of stress/Penetration70 60 50Of stress/Penetration70 60 50Of stress/Penetration70 60 50Of stress/Penetration70 60 50Of stress/Penetration70 60 70Of stress/Penetration70 70 70 70Of stress/Penetration70 70 70 70Of stress/Penetration70 70 70 70Of stress/Penetration70 70 70 70Of stress/Penetration70 70 70 70Of stress/Penetration70 70 70 70Of stress	Dry Density		(g/cm3)	1.383		1.484	
Mass of Container + Wet Soil (g) 675.1 391.8 Mass of Container + Dry Soil (g) 543.7 309.7 Mass of Container (g) 132.8 119.7 Mass of Moisture Content % 31.979 43.211 California Bearing Ratio Determination Deformation Pressure Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 251.617 36.494 36.494 3.649 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 70 Stress/Penetration psi/inch 93 Stress/Penetration psi/inch 93 One of a colspan="3">One of a colspan="3">One of a colspan="3">One of a colspan="3">One of a colspan= 3.5	Moisture Conte	ent Determinatio	n	Before Soak	ing	After Soaking	g
Mass of Container + Dry Soil (g) 543.7 309.7 Mass of Container (g) 132.8 119.7 Mass of Moisture Content % 31.979 43.211 California Bearing Ratio Determination Deformation Pressure Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 251.617 36.494 36.494 3.649 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 0.2 Inch 334.801 48.559 48.559 3.247 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 0.50 9 9 9 9 9 9 9 0.50 9 9 9 9 9 9 9 9 0.1 9 9 9 9 9 9 9 9	Mass of Contain	er + Wet Soil	(g)	675.1		391.8	
Mass of Container(g)132.8119.7Mass of Moisture(g)131.482.1Moisture Content%31.97943.211California Bearing Ratio DeterminationDeformationPressure kPaCorrected psiCBRFinal CBR0.1 Inch251.61736.49436.4943.6490.2 Inch334.80148.55948.5593.23770 60 50Stress/Penetration psi/inch5570 60 50Stress/Penetration psi/inch5570 60 50Stress/Penetration psi/inch5570 60 50Stress/Penetration psi/inch5570 60 50Stress/Penetration psi/inch5570 60 50Stress/Penetration psi/inch5570 60 50Stress/Penetration psi/inch5570 60 60 60Stress/Penetration 605570 60 60 60Stress/Penetration 605570 60 60 60Stress/Penetration 605570 60 60Stress/Penetration 605570 60 60Stress/Penetration 605570 <br< td=""><td>Mass of Contain</td><td>er + Dry Soil</td><td>(g)</td><td>543.7</td><td></td><td>309.7</td><td></td></br<>	Mass of Contain	er + Dry Soil	(g)	543.7		309.7	
Mass of Moisture(g)131.482.1Moisture Content%31.97943.211California Bearing Ratio DeterminationDeformationPressure kPaPressure psiCorrected Pressure (psi)Final CBR0.1 Inch251.61736.49436.4943.6490.2 Inch334.80148.55948.5593.23770 60 50Stress/Penetration psi/inch	Mass of Contain	ainer (g) 132.		132.8		119.7	
Moisture Content % 31.979 43.211 California Bearing Ratio Determination Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 251.617 36.494 36.494 3.649 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 70 5tress/Penetration psi/inch 9 9 9 9 9 10 0	Mass of Moistur	Mass of Moisture		131.4		82.1	
California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 251.617 36.494 36.494 3.649 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 70 Stress/Penetration	Moisture Conter	nt	%	31.979		43.211	
Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 251.617 36.494 36.494 3.649 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 70 Stress/Penetration	California Beau	ring Ratio Deter	mination		T	1	
kPa psi Pressure (psi) CBR 0.1 Inch 251.617 36.494 36.494 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 70 Stress/Penetration	Deformation	Pressure	Pressure	Corrected	CBR	Final	
0.1 Inch 251.617 36.494 36.494 3.649 3.649 0.2 Inch 334.801 48.559 48.559 3.237 3.649 70 60 5		kPa	psi	Pressure (psi)	2 6 4 0	CBR	
0.2 Inch 334.801 48.559 3.237 70 60 50 50 50 50 50 50 50 10 0 0 0	0.1 Inch	251.617	36.494	36.494	3.649	3.649	
70 Stress/Penetration 60 psi/inch 50 psi/inch 20 psi/inch 10 psi/inch 0 psi/inch 0 psi/inch	0.2 Inch	334.801	48.559	48.559	3.237		
60 50 50 50 50 50 50 50 50 50 50 50 50 50	70		Stress/Pene	tration			
50 (ig 40 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	60		psi/inc				
	50						
	(isd 40						
) ses (
	Š						
	20						
	10						
0 0,1 0,2 0,5 0,4 0,5 0,6	0	0,1 0),2 0.3	3 0.4	0	,5 0.6	6
Penetration (Inch)		,	Penetratio	on (Inch)			

Figure G1(Continued)

Project Inform	nation					
Project Name		%10 B	Start Date		29.07.2014	
Curing Period		7 days	End Date		10.08.2014	
Sample Number	er	2				
Standard		ASTM D 18	883-07, D 698-12			
Method Of Con	mpaction	Standard Ef	fort, Method C			
Tested By		Can CEYLA	AN Condition Sample	Condition of Sample		
Soil Classificat	tion	СН	Surcharge		4.54 kg.	
Maximum Dry	Density g/cm3	1.39	Swell Dial (mm.)	Reading	4.826	
Optimum Mois	sture Content (%)	32.4	Swell Rate	(%)	4.160	
Area of Penetra	ation (mm2)	1.935	Device		ELE Multip	50
Dry Density D	etermination		Before Soal	king	After Soaki	ng
Mass of Mould	l + Base + Soil	(g)	8064.7		8283.1	
Mass of Mould	l + Base	(g)	4154.2		4154.2	
Mass of Compa	acted Specimen	(g)	3910.5		4128.9	
Bulk Density		(g/cm3)	1.841		1.944	
Dry Density		(g/cm3)	1.389		1.354	
Moisture Con	tent Determination	ı	Before Soaking		After Soakin	ng
Mass of Contai	iner + Wet Soil	(g)	535.5		559.8	
Mass of Contai	iner + Dry Soil	(g)	439.1		430.1	
Mass of Contai	of Container (g) 14		142.8		132.7	
Mass of Moist	ass of Moisture (96.4		129.7	
Moisture Conte	Disture Content % 32.535			43.611		
California Bea	aring Ratio Detern	nination				
Deformation	Pressure kPa	Pressure psi	Corrected Pressure (psi)	CBR	Final CBR	
0.1 Inch	259.367	37.618	37.618	3.762	2 = (2	
0.2 Inch	382.334	55.453	55.453	3.697	3.762	
80		Stress/Pene	etration]
70		psi/inc	ch			-
60						-
50						-
) sa						-
30 Str						-
20						-
10						-
0	0.1	2	2 2 4	-		
0	0,1 0,	2 0, Penetrati	3 0,4 on (Inch)	0	,5 (1,6

Figure G1(Continued)

Project Inform	ation					
Project Name		%10 B	Star	t Date		29.07.2014
Curing Period		7 days	End	Date		10.08.2014
Sample Number	•	3				
Standard		ASTM D 1	883-07, D	698-12		
Method Of Com	npaction	Standard E	ffort, Meth	od C		
Tested By		Can CEYL	AN Con	dition of	of Sample	e Soaked
Soil Classification	on	CH	Surc	charge		4.54 kg.
Maximum Dry l	Density g/cm3	1.39	Swe (mn	ell Dial 1.)	Reading	^g 2.51
Optimum Moist	ure Content (%)	32.4	Swe	ll Rate	(%)	2.164
Area of Penetrat	tion (mm2)	1.935	Dev	ice		ELE Multip 50
Dry Density De	etermination		Befo	ore Soa	king	After Soaking
Mass of Mould	+ Base + Soil	(g)	819	7.5		8401.3
Mass of Mould	+ Base	(g)	434	6.1		4346.1
Mass of Compa	cted Specimen	(g)	385	1.4		4055.2
Bulk Density		(g/cm3)	1.81	3		1.909
Dry Density		(g/cm3)	1.36	55		1.327
Moisture Conte	ent Determinatio	n	Befo	ore Soa	king	After Soaking
Mass of Contair	ner + Wet Soil	(g)	506.	.9		469.5
Mass of Contair	ner + Dry Soil	(g)	418.	.4		374.7
Mass of Contair	ner	(g)	149.	.3		158.4
Mass of Moistur	re	(g) 8		5		94.8
Moisture Conter	nt	% 32.887			43.828	
California Beau	ring Ratio Deter	mination				
Deformation	Pressure	Pressure	Corrected	l	CBR	Final
2 4 7 4	kPa	psi	Pressure ((psi)		CBR
0.1 Inch	228.884	33.197	34.920		3.492	3.492
0.2 Inch	323.951	46.985	47.510		3.167	
60		Stress/P	enetration /inch		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
50				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
40						
(isq	and the second s					
s30						
tre						
20	·					
10						
10						
0 4						
0	0,1	D,2 Penet	0,3 ration (Inch	0,4)	ļ	0,5 0,6

Figure G1(Continued)

Project Inform	nation				
Project Name		%15 B	Start Date		01.07.2014
Curing Period		7 days	End Date		12.07.2014
Sample Numb	er	1			
Standard		ASTM D 188	3-07, D 698-12		
Method Of Co	mpaction	Standard Effe	ort, Method C		
Tested By		Can CEYLA	N Condition of	Sample	Soaked
Soil Classifica	tion	СН	Surcharge		4.54 kg.
Maximum Dry	Density g/cm3	1.37	Swell Dial 1 (mm.)	Reading	3.09
Optimum Mois	sture Content (%)	33.1	Swell Rate (9	%)	2.664
Area of Penetr	ation (mm2)	1.935	Device		ELE Multip 50
Dry Density D	Determination		Before Soaki	ng	After Soaking
Mass of Mould	l + Base + Soil	(g)	8011.3		8192.2
Mass of Mould	l + Base	(g)	4135.1		4135.1
Mass of Comp	acted Specimen	(g)	3876.2		4057.1
Bulk Density		(g/cm3)	1.825		1.910
Dry Density		(g/cm3)	1.368		1.312
Moisture Con	tent Determination	n	Before Soaki	After Soaking	
Mass of Conta	iner + Wet Soil	(g)	459.3		521.4
Mass of Conta	iner + Dry Soil	(g)	377.9		402.6
Mass of Conta	iner	(g)	134.3		142.1
Mass of Moist	Mass of Moisture		81.4		118.8
Moisture Cont	ent	%	33.415		45.605
California Be	aring Ratio Deter	mination		1	Γ
Deformation	Pressure	Pressure	Corrected	CBR	Final
0.1 1 1	kPa	ps1	Pressure (psi)	2.0.40	CBR
0.1 Inch	191.684	27.801	28.476	2.848	2.848
0.2 Inch	275.901	40.016	40.391	2.693	
60		Stress/Pene psi/inc	tration h		
50				_	
40					
psi					
0 SS 30					
otre					
20					
10					
0					
0	0,05 0,1	0,15 0,	2 0,25	0,3	0,35 0,4
		Penetrati	on (Inch)		

Figure G1(Continued)

Project Inform	ation				
Project Name		%15 B	Start Date	e	01.07.2014
Curing Period		7 days	End Date	;	12.07.2014
Sample Number	ſ	2			
Standard		ASTM D 1	883-07, D 698-1	12	
Method Of Con	npaction	Standard E	Effort, Method C		•
Tested By		Can CEYL	AN Condition	n of Sample	Soaked
Soil Classificati	on	СН	Surcharg	e	4.54 kg.
Maximum Dry	Density g/cm3	1.37	Swell Di (mm.)	al Reading	2.33
Optimum Moist	ure Content (%)	33.1	Swell Ra	te (%)	2.009
Area of Penetra	tion (mm2)	1.935	Device		ELE Multip50
Dry Density De	etermination		Before Se	oaking	After Soaking
Mass of Mould	+ Base + Soil	(g)	8038.1		8164.1
Mass of Mould	+ Base	(g)	4154.3		4154.3
Mass of Compa	cted Specimen	(g)	3883.8		4009.8
Bulk Density		(g/cm3)	1.829		1.888
Dry Density		(g/cm3)	1.373		1.298
Moisture Cont	ent Determinatio	n	Before Se	oaking	After Soaking
Mass of Contain	ner + Wet Soil	(g)	587.7		551.4
Mass of Contain	ner + Dry Soil	(g)	473.9		425.7
Mass of Contain	Mass of Container		130.8		149.2
Mass of Moisture		(g)	113.8		125.7
Moisture Conte	nt	%	33.168		45.461
California Bea	ring Ratio Deter	mination	•		
Deformation	Pressure	Pressure	Corrected	CBR	Final
	kPa	psi	Pressure (psi)	-	CBR
0.1 Inch	201.970	29.293	29.293	2.929	2.929
0.2 Inch	255.281	37.025	37.025	2.468	
45		Stress/Pe	enetration		
40		psi/	Inch		
35					
30 30					
<u>d</u> 25					
20 III					
5 15					
10					
5					
0					
0	0,1	^{0,2} Pene	tration (Inch)	0,4	0,5

Project Inform	ation				
Project Name		%15 B	Start Date	•	01.07.2014
Curing Period		7 days	End Date		12.07.2014
Sample Number		3			
Standard		ASTM D 1	883-07, D 698-1	2	
Method Of Com	paction	Standard E	ffort, Method C		
Tested By		Can CEYL	AN Condition	of Sample	Soaked
Soil Classification	on	CH	Surcharge	•	4.54 kg.
Maximum Dry I	Density g/cm3	1.37	Swell Di (mm.)	al Reading	2.9
Optimum Moist	ure Content (%)	33.1	Swell Rat	e (%)	2.500
Area of Penetrat	ion (mm2)	1.935	Device		ELE Multip50
Dry Density De	termination		Before Sc	aking	After Soaking
Mass of Mould	+ Base + Soil	(g)	8207.7		8170
Mass of Mould	+ Base	(g)	4346.1		4346.1
Mass of Compa	cted Specimen	(g)	3861.6		3823.9
Bulk Density		(g/cm3)	1.818		1.800
Dry Density		(g/cm3)	1.368		1.222
Moisture Conte	ent Determinatio	n	Before Sc	aking	After Soaking
Mass of Contain	er + Wet Soil	(g)	455.2		553.5
Mass of Contain	er + Dry Soil	(g)	376.1		418.9
Mass of Contain	er	(g)	135.4		134.3
Mass of Moisture		(g)	79.1		134.6
Moisture Conter	nt	%	32.862		47.294
California Beau	ring Ratio Deter	mination	T		-
Deformation	Pressure	Pressure	Corrected	CBR	Final
0.1.1.1	kPa	ps1	Pressure (psi)	2.510	CBR
0.1 Inch	165.850	24.055	25.179	2.518	- 2.563
0.2 Inch	264.534	38.367	38.442	2.563	
70		Stress/Pe	netration		
60					
50					
fisd 40					
tre					
20					
10					
0					
0	0,1 (^{),2} Penet	ration (psi) ^{0,4}	- 0,	,5 0,6

Figure G1(Continued)

Project Inform	ation						
Project Name		%3 B	St	art Date		29.06.2014	1
Curing Period		28 days	Eı	nd Date		31.07.2014	1
Sample Number		1	1				
Standard		ASTM D 1883-07, D 698-12					
Method Of Com	paction	Standard E	Effort, Me	thod C			
Tested By		Can CEYL	LAN C	ondition	of Sample	Soaked	
Soil Classification	on	CH	Sı	ırcharge		4.54 kg.	
Maximum Dry I	Density g/cm3	1.43	Sv (n	well Dial	l Reading	NA	
Optimum Moist	ure Content (%)	29.3	Sv	vell Rate	(%)	NA	
Area of Penetrat	ion (mm2)	1.935	D	evice		ELE Multi	p50
Dry Density De	termination		B	efore Soa	ıking	After Soak	ing
Mass of Mould	+ Base + Soil	(g)	81	.00.5		8233.4	
Mass of Mould	+ Base	(g)	41	66.6		4166.6	
Mass of Compa	cted Specimen	(g)	39	933.9		4066.8	
Bulk Density		(g/cm3)	1.	852		1.915	
Dry Density		(g/cm3)	l.	429 6	1	1.357	•
Moisture Conte	ent Determinatio	(\mathbf{r})	B	etore Soa	iking	After Soak	ing
Mass of Contain	er + Wet Soll	(g)	44	12.0 10.9		512.8 400.3	
Mass of Contain	Vlass of Container + Dry Soil		57 10	0.0		400.5	
Mass of Moistur		(g) (g)	12	8		120.8	
Moisture Conter	Mass of Moisture		20			112.5	
California Real	ring Ratio Deter	mination	2,2			41.135	
	Pressure	Pressure	Correct	ed		Final	
Deformation	kPa	psi	Pressure	e (psi)	CBR	CBR	
0.1 Inch	189.100	27.427	32.972		3.297	2 205	
0.2 Inch	324.467	47.060	49.008		3.267	3.297	
70		CI /D					_
		Stress/Pe	enetratior linch	1			
60		psi/					-
50							
(is a							
d 40 ss							
Stre							_
20							_
10							_
0							
0	0,1	0,2 Penetr	ation (Inc	0,3 :h)	0,4		0,5

Project Inform	ation						
Project Name		%3 B	Start	Date	29.06.2014		
Curing Period		28 days	End 1	Date	31.07.2014		
Sample Number	r	2	2				
Standard		ASTM D 1	883-07, D 6	98-12			
Method Of Con	npaction	Standard E	ffort, Metho	d C			
Tested By		Can CEYL	AN Cond	lition of Sample	Soaked		
Soil Classificati	on	СН	Surch	narge	4.54 kg.		
Maximum Dry	Density g/cm3	1.43	Swel (mm.	l Dial Reading	2.84		
Optimum Moist	ture Content (%)	29.5	Swel	l Rate (%)	2.448		
Area of Penetra	tion (mm2)	1.935	Devi	ce	ELE Multip50		
Dry Density De	etermination		Befor	re Soaking	After Soaking		
Mass of Mould	+ Base + Soil	(g)	8062	.9	8248.7		
Mass of Mould	+ Base	(g)	4155	.2	4155.2		
Mass of Compa	cted Specimen	(g)	3907	.7	4093.5		
Bulk Density		(g/cm3)	1.840)	1.927		
Dry Density		(g/cm3)	1.423	3	1.363		
Moisture Cont	ent Determinatio	on ()	Befor	re Soaking	After Soaking		
Mass of Contain	her + Wet Soil	(g)	405.7	1	564.7		
Mass of Contain	Mass of Container + Dry Soil		348.8	5	439		
Mass of Contain	Mass of Container		154.4	ŀ	135.4		
Mass of Moistu	Mass of Moisture		56.9 20.25	70	125.7		
Moisture Conte	nt nin a Datia Datan	%	29.27	/0	41.403		
California Bea	Program	Draggura	Corrected		Final		
Deformation	kPa	nsi	Pressure (r	CBR	CBR		
0.1 Inch	209.250	30.349	33.721	3.372			
0.2 Inch	302.767	43.913	44.812	2.987	- 3.372		
70							
		Stress/Pe	netration				
60		psi/	INCh				
50							
50							
(isd) 40							
Less							
St							
20							
10							
0							
0	0,1	0,2	0,3	0,4	0,5		
	Penetration (Inch)						

Project Inform	ation						
Project Name		%3 B		Start Date		29.06.2014	
Curing Period		28 days		End Date		31.07.2014	
Sample Number	r	3					
Standard		ASTM D	ASTM D 1883-07, D 698-12				
Method Of Con	npaction	Standard	Effort,	Method C			
Tested By		Can CEY	Can CEYLAN		of Sample	e Soaked	
Soil Classificati	on	СН		Surcharge		4.54 kg.	
Maximum Dry	Density g/cm3	1.43		Swell Dial (mm.)	Reading	^g 2.56	
Optimum Moist	ture Content (%) 29.5		Swell Rate	(%)	2.207	
Area of Penetra	tion (mm2)	1.935		Device		ELE Multi	p50
Dry Density De	etermination			Before Soa	king	After Soak	ting
Mass of Mould	+ Base + Soil	(g)		8701.4		8864.5	
Mass of Mould	+ Base	(g)		4751		4751	
Mass of Compa	cted Specimen	(g)		3950.4		4113.5	
Bulk Density		(g/cm3)		1.860		1.937	
Dry Density		(g/cm3)		1.431 D. C C.	1	1.366	•
Moisture Cont	ent Determinat	(n)		Before Soa	King	After Soak	ing
Mass of Contain	her + wet Soll	(g) (a)		339.3 116 2		344.4 422.2	
Mass of Contain	her + Dry Soli	(g) (g)	(g) 134.7			423.2	
Mass of Moistu	s of Moisture (g) 134.7			135			
Moisture Conte	nt	(g) %		20.052		121.2	
California Bea	n ring Ratio Deta	70 rmination		29.932		41.704	
	Drossuro	Drossuro	Corr	rected		Final	
Deformation	kPa	psi	Pres	sure (psi)	CBR	CBR	
0.1 Inch	205.117	29.750	32.2	98	3.230	2.020	
0.2 Inch	322.401	46.760	47.7	34	3.182	3.230	
60							7
		Stress/P	enetral	tion			
50		psi	/ 111C11				_
40							-
si)							
<u> </u>							_
ress							
ts ²⁰							_
10							-
0							
0	0,1	0,2 Penetr	ation (I	0,3 Inch)	0,4	(),5
		reneu	auon (1				

Project Inform	ation						
Project Name		%6 B	Start Date		28.06.2014		
Curing Period		28 days	End Date		30.07.2014		
Sample Number	r	1					
Standard		ASTM D	188 <mark>3-07, D 698-1</mark> 2	2			
Method Of Com	npaction	Standard E	Effort, Method C				
Tested By		Can CEYI	LAN Condition Sample	of	Soaked		
Soil Classificati	on	СН	Surcharge		4.54 kg.		
Maximum Dry	Density g/cm3	1.42	Swell Reading (1	Dial nm.)	1.48		
Optimum Moist	ture Content (%)	31.1	Swell Rate	e (%)	1.276		
Area of Penetra	tion (mm2)	1.935	Device		ELE Multiplex 50		
Dry Density De	etermination		Before Soa	aking	After Soaking		
Mass of Mould	+ Base + Soil	(g)	8095.4		8240.7		
Mass of Mould	+ Base	(g)	4144.8		4133.5		
Mass of Compa	cted Specimen	(g)	3950.6		4107.2		
Bulk Density		(g/cm3)	1.860		1.934		
Dry Density		(g/cm3)	1.418		1.358		
Moisture Cont	Moisture Content Determination		Before Soa	aking	After Soaking		
Mass of Contair	ner + Wet Soil	(g)	542.8		524.9		
Mass of Contain	ner + Dry Soil	(g)	445.8		409.1		
Mass of Contair	ner	(g)	134.7		135.7		
Mass of Moistur	re	(g)	97		115.8		
Moisture Conten	nt	%	31.180		42.355		
California Bear	ring Ratio Deter	mination	-				
Deformation	Pressure kPa	Pressure psi	Corrected Pressure (psi)	CBR	Final CBR		
0.1 Inch	259.884	37.693	40.990	4.099	4.000		
0.2 Inch	385.434	55.902	56.802	3.787	4.099		
80		Stress/Pe	enetration	• •			
70 60		psi/	'inch				
5 0							
jisd) 40							
1 tress							
20							
10							
0							
0	0 0,1 0,2 Penetration (Inch) 0,4 0,5						

Figure G1(Continued)

Project Inform	ation	T			
Project Name		%6 B	Start Date		28.06.2014
Curing Period		28 days	End Date		30.07.2014
Sample Number	r	2			
Standard		ASTM D 18	83-07, D 698-12		
Method Of Con	npaction	Standard Ef	fort, Method C		
Tested By		Can CEYLA	AN Condition o	f Sample	Soaked
Soil Classificati	on	СН	Surcharge		4.54 kg.
Maximum Dry	Density g/cm3	1.42	Swell Dial (mm.)	Reading	1.6
Optimum Moist	ture Content (%)	31.1	Swell Rate	(%)	1.379
Area of Penetra	tion (mm2)	1.935	Device		ELE Multip50
Dry Density De	etermination		Before Soal	king	After Soaking
Mass of Mould	+ Base + Soil	(g)	8102.9		8200.4
Mass of Mould	+ Base	(g)	4172		4159.5
Mass of Compa	cted Specimen	(g)	3930.9		4040.9
Bulk Density		(g/cm3)	1.851		1.902
Dry Density		(g/cm3)	1.407		1.355
Moisture Cont	ent Determination	n	Before Soal	king	After Soaking
Mass of Contain	ner + Wet Soil	(g)	447.2		598.9
Mass of Contain	ner + Dry Soil	(g)	368.7		476.4
Mass of Contain	ner	(g)	119.9		188.4
Mass of Moistu	re	(g)	78.5		122.5
Moisture Conte	nt	%	31.551		42.535
California Bea	ring Ratio Deterr	nination			
Deformation	Pressure	Pressure	Corrected	CBR	Final
201011111101	kPa	psi	Pressure (psi)	obn	CBR
0.1 Inch	243.867	35.370	39.641	3.964	3.964
0.2 Inch	365.284	52.980	54.029	3.602	
60 50		Stress/Pene psi/inc	etration ch		
20 10					
0	0,1	0,2 Penetratio	0,3 on (Inch)	0,4	0,5

Project Inform	ation							
Project Name		%6 B	3 Start Date		28.06.2014			
Curing Period		28 days	End Date		30.07.2014			
Sample Number		3						
Standard		ASTM D 1883-07, D 698-12						
Method Of Compaction		Standard Effort, Method C						
Tested By		Can CEYI	LAN Condition	of Sample	Soaked			
Soil Classification		СН	Surcharge		4.54 kg.			
Maximum Dry Density g/cm3		1.42	Swell Dia (mm.)	al Reading	1.78			
Optimum Moist	ure Content (%)	31.1	Swell Rat	e (%)	1.534			
Area of Penetrat	tion (mm2)	1.935	Device		ELE Multip50			
Dry Density Determination			Before So	aking	After Soaking			
Mass of Mould	+ Base + Soil	(g)	8170		8210.7			
Mass of Mould	+ Base (g)	(g)	4131		4131			
Mass of Compa	cted Specimen	(g)	4039		4079.7			
Bulk Density (g	/cm3)	(g/cm3)	1.849		1.921			
Dry Density (g/cm3)		(g/cm3)	(g/cm3) 1.414		1.379			
Moisture Conte	ent Determinatio	n	Before So	aking	After Soaking			
Mass of Container + Wet Soil		(g)	406		469.4			
Mass of Contain	ner + Dry Soil	(g) 342.1			371.5			
Mass of Container		(g) 134.4		142.8				
Mass of Moisture		(g) 63.9		97.9				
Moisture Conter	nt	% 30.766		42.807				
California Beau	ring Ratio Deter	mination	I		r			
Deformation	Pressure	Pressure	Corrected	CBR	Final			
	kPa	psi	Pressure (psi)	1.022	CBR			
0.1 Inch	253.167	36.719	40.316	4.032	4.032			
0.2 Inch	389.568	56.502	57.551	3.837				
90								
80			psi/inch					
70								
60								
(. 50								
d) sg 40								
30 Stree								
20								
10								
0								
0 0,1 0,2 0,3 0,4 0,5 0,6								
Penetration (Inch)								

Project Name %10 B Start Date 29.07.2014 Curing Period 28 days End Date 10.07.2014 Sample Number 1 1 10.07.2014 Standard ASTM D 1883-07, D 698-12 5086d 5086d Soil Classification CAn CEYLAN Condition of Sample \$5086d Soil Classification CH Surcharge 4.54 kg. Maximum Dry Density g/cm3 1.39 \$Well Rate (%) 1.621 Area of Penetration (mm2) 1.935 Device ELE Multip50 Dry Density Determination Before Soaking After Soaking Mass of Mould + Base + Soil (g) 3896 3976.8 Bulk Density (g/cm3) 1.834 1.872 Dry Density (g/cm3) 1.384 1.296 Mass of Container + Wet Soil (g) 711.6 417.7 Mass of Container + Dry Soil (g) 583.4 330.8 Mass of Container + Dry Soil (g) 128.2 86.9 Moisture Content % 32.497 <	Project Informa	ation								
Curing Period 28 days End Date 10.07.2014 Samdard ASTM D 1883-07, D 698-12 Standard Effort, Method C Soaked Tested By Can CEYLAN Condition of Sample Soaked Soil Classification CH Surcharge 4.54 kg. Maximum Dry Density g/cm3 1.39 Swell Dial Reading (mm.) 1.88 Optimum Moisture Content (%) 32.4 Swell Rate (%) 1.621 Area of Penetration (mm2) 1.935 Device ELE Multip50 Dry Density Determination g) 3896 3976.8 Bulk Density (g/cm3) 1.834 1.872 Dry Density Determination g) 1.384 1.296 Mass of Mould + Base (g) 3896 3976.8 Bulk Density (g/cm3) 1.384 1.872 Dry Density Etermination g) 188.9 135.2 Mass of Mould + Base (g) 1.884 1.872 Dry Density (g/cm3) 1.884 1.320 135.2 Mass of Container + Wet Soil (g) </td <td colspan="2">Project Name</td> <td>%10 B</td> <td colspan="2">Start Date</td> <td>29.07.2014</td>	Project Name		%10 B	Start Date		29.07.2014				
$ \begin{array}{ c c c c c c } Standard & ASTM D 1883-07, D 698-12 \\ \hline Standard & SATM D 1883-07, D 698-12 \\ \hline Method Of Compaction & Standard Effort, Wethod C \\ \hline Tested By & Can CEYLAN & Condition of Sample & Soaked \\ \hline Soil Classification & CH & Surcharge & 4.54 kg. \\ \hline Maximum Dry Density g/cm3 & 1.39 & Swell Dial Reading \\ mm.) & Optimum Moisture Content (%) & 32.4 & Swell Rate (%) & 1.621 \\ \hline Area of Penetration (mm2) & 1.935 & Device & ELE Multip50 \\ \hline Dry Density Determination & g(g) & M061.6 & 8142.4 \\ \hline Mass of Mould + Base & (g) & 4165.6 & 4165.6 \\ \hline Mass of Mould + Base & (g) & 4165.6 & 4165.6 \\ \hline Mass of Mould + Base & (g) & 1.834 & 1.872 \\ Dry Density Determination & g(g/cm3) & 1.834 & 1.872 \\ Dry Density & (g/cm3) & 1.834 & 1.296 \\ \hline Moisture Content + Determination & g(g/cm3) & 1.834 & 1.296 \\ \hline Moisture Container + Wet Soil & (g) & 583.4 & 330.8 \\ \hline Mass of Container + Pry Soil & (g) & 583.4 & 330.8 \\ \hline Mass of Container + Dry Soil & (g) & 583.4 & 330.8 \\ \hline Mass of Container + Dry Soil & (g) & 583.4 & 330.8 \\ \hline Mass of Container + Pry Soil & (g) & 128.2 & 86.9 \\ \hline Moisture Content & \% & 32.497 & 44.427 \\ \hline Catiffornia Bearburg Ratio Determination & Pressure (psi) & CBR & Final CBR \\ \hline 0.1 Inch & 276.934 & 40.166 & 41.365 & 4.136 \\ 0.2 Inch & 334.801 & 48.559 & 54.104 & 3.607 \\ \hline \ \end{tabular} & Fressure (psi) & CBR & Final CBR \\ \hline 0.1 Inch & 276.934 & 40.166 & 41.365 & 4.136 \\ \hline 0.2 Inch & 334.801 & 48.559 & 54.104 & 3.607 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Curing Period		28 days	End Da	te	10.07.2014				
	Sample Number		1							
Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.39Swell Dial Reading (mm.)1.88Optimum Moisture Content (%)32.4Swell Rate (%)1.621Area of Penetration (mm2)1.935DeviceELE Multip50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8061.68142.4Mass of Mould + Base(g)4165.64165.6Mass of Compacted Specimen(g)38963976.8Bulk Density(g/cm3)1.3841.872Dry Density UperterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)711.6417.7Mass of Container + Wet Soil(g)188.9135.2Mass of Container + Wet Soil(g)128.286.9Moisture Content%32.49744.427California Bearing Ratio DeterminationDeformationPressure pres pressure (psi)CBRFinal CBR0.1 Inch276.93440.16641.3654.1360.2 Inch334.80148.55954.1043.6074.1360.2 Inch334.80148.55954.1043.6074.1360.1 Inch276.93440.16641.3654.1364.1360.2 Inch334.80148.55954.1043.6074.136 <t< td=""><td>Standard</td><td></td><td colspan="6">ASTM D 1883-07, D 698-12</td></t<>	Standard		ASTM D 1883-07, D 698-12							
$ \begin{array}{ c c c c } \hline Tested By & Can CEYLAN & Condition of Sample & Soaked \\ \hline Soil Classification & CH & Surcharge & 4.54 kg. \\ \hline Maximum Dry Density g/cm3 & 1.39 & Swell Dial Reading \\ \hline (mm.) & (mm.) & 1.935 & Device & ELE Multip50 \\ \hline Dry Density Determination & Before Soaking & After Soaking \\ \hline Mass of Mould + Base + Soil (g) & 8061.6 & 8142.4 \\ \hline Mass of Mould + Base & (g) & 4165.6 & 4165.6 \\ \hline Mass of Mould + Base & (g) & 4165.6 & 4165.6 \\ \hline Mass of Mould + Base & (g) & 1.834 & 1.872 \\ Dry Density & (g/cm3) & 1.834 & 1.872 \\ Dry Density & (g/cm3) & 1.834 & 1.872 \\ Dry Density & (g/cm3) & 1.834 & 1.872 \\ Dry Density & (g/cm3) & 1.834 & 1.872 \\ Dry Density & (g/cm3) & 1.834 & 1.872 \\ \hline Moisture Content Determination & Before Soaking & After Soaking \\ \hline Mass of Container + Wet Soil (g) & 711.6 & 417.7 \\ \hline Mass of Container + Wet Soil (g) & 128.2 & 86.9 \\ \hline Moisture Content & \% & 32.497 & 44.427 \\ \hline California Bearing Ratio Determination & 276.934 & 40.166 & 41.365 \\ 0.1 Inch & 276.934 & 40.166 & 41.365 & 4.136 \\ 0.2 Inch & 334.801 & 48.559 & 54.104 & 3.607 \\ \hline \hline g & 40 & gg & 30 \\ g & 40 & gg & 30 \\ g & 40 & gg & 0 \\ g & 40 & gg & 0 \\ g & 40 & 0 & 0 & 0 \\ \hline g & 40 & 0 & 0 \\ \hline g & 40 & 0 & 0 \\ \hline g $	Method Of Com	paction	Standard Effort, Method C							
Soil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.39Swell Dial Reading (mm.)1.88Optimum Moisture Content (%)32.4Swell Rate (%)1.621Area of Penetration (mm2)1.935DeviceELE Multip50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil (g)8061.68142.4Mass of Compacted Specimen(g)38963976.8Bulk Density(g/cm3)1.8341.872Dry Density WeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)711.6417.7Mass of Container + Ury Soil(g)188.9135.2Mass of Container + Ury Soil(g)128.286.9Moisture Content%32.49744.427California Bearing Ratio DeterminationPressure (psiCorrected Pressure (psi)Final CBR0.1 Inch276.93440.16641.3654.1360.2 Inch334.80148.55954.1043.60770Stress/Penetration psi/inchStress/Penetration psi/inch4.1360.10.1Presure (psi/inchCorrected psi/inchCorrected psi/inch6.1360.10.1Presure (psi/inch0.40.5	Tested By		Can CEYL	AN Condi	tion of Sample	Soaked				
Maximum Dry Density g/cm3 1.39 Swell Dial Reading (mm.) 1.88 Optimum Moisture Content (%) 32.4 Swell Rate (%) 1.621 Area of Penetration (mm2) 1.935 Device ELE Multip50 Dry Density Determination Before Soaking After Soaking Mass of Mould + Base + Soil (g) 8061.6 8142.4 Mass of Compacted Specimen (g) 3896 3976.8 Bulk Density (g/cm3) 1.834 1.872 Dry Density Container + Wet Soil (g) 711.6 417.7 Mass of Container + Wet Soil (g) 583.4 330.8 Mass of Container + Wet Soil (g) 188.9 135.2 Mass of Container + Wet Soil (g) 128.2 86.9 Moisture Content % 32.497 44.427 California Bearing Ratio Determination Corrected Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 0.2 Inch 334.801 48.559 54.104 3.607	Soil Classification		СН	Surcha	arge	4.54 kg.				
Optimum Moisture Content (%)32.4Swell Rate (%)1.621Area of Penetration (mm2)1.935DeviceELE Multip50Dy Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil (g)4165.64165.6Mass of Compacted Specimen (g)38963976.8Bulk Density(g/cm3)1.8341.872Dry Density(g/cm3)1.3841.296Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil (g)711.6417.7Mass of Container + Wet Soil (g)188.9135.2Mass of Container + Wet Soil (g)188.9135.2Mass of Container + Wet Soil (g)128.286.9Moisture Content%32.49744.427California Bearing Ratio DeterminationCorrected Pressure (psi)Final CBRDeformationPressure paid (psi/inchCorrected Pressure (psi)Final CBR70Stress/Penetration	Maximum Dry Density g/cm3		1.39	Swell (mm.)	Dial Reading	1.88				
Area of Penetration (mm2)1.935DeviceELE Multip50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8061.68142.4Mass of Mould + Base(g)4165.64165.6Mass of Compacted Specimen(g)38963976.8Bulk Density(g/cm3)1.8341.872Dry Density(g/cm3)1.3841.296Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)711.6417.7Mass of Container + Dry Soil(g)583.4330.8Mass of Container + Ury Soil(g)128.286.9Moisture Content%32.49744.427California Bearing Ratio DeterminationPressure (psi)CBRFinal CBRDeformationPressure psiCorrected pressure (psi)CBRCBRNo11 Inch276.93440.16641.3654.1360.2 Inch334.80148.55954.1043.6074.13610930931.016931.0161.0161.1361.0161000.192enetration93.6070.40.5	Optimum Moistu	ure Content (%)	32.4	Swell	Rate (%)	1.621				
Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g) 8061.6 8142.4 Mass of Mould + Base(g) 4165.6 4165.6 Mass of Compacted Specimen(g) 3896 3976.8 Bulk Density(g/cm3) 1.834 1.872 Dry Density(g/cm3) 1.384 1.296 Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g) 711.6 417.7 Mass of Container + Dry Soil(g) 583.4 330.8 Mass of Container + Dry Soil(g) 188.9 135.2 Mass of Moisture(g) 128.2 86.9 Moisture Content Bearing Ratio Determination Y 44.427 California Bearing Ratio Determination Y Q_2 44.427 DeformationPressure psiCorrected Pressure (psi) CBR Final CBR0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4136 70 0 $5tress/Penetration$ $psi/inch$ -1 -1 -1 70 0 $0,1$ 92 -netration (Inch 3 $0,4$ $0,5$	Area of Penetrat	ion (mm2)	1.935	Device	9	ELE Multip50				
Mass of Mould + Base + Soil (g) 8061.6 8142.4 Mass of Mould + Base (g) 4165.6 4165.6 Mass of Compacted Specimen (g) 3896 3976.8 Bulk Density (g/cm3) 1.834 1.872 Dry Density (g/cm3) 1.384 1.296 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 711.6 417.7 Mass of Container + Dry Soil (g) 583.4 330.8 Mass of Container + Dry Soil (g) 188.9 135.2 Mass of Moisture (g) 128.2 86.9 Moisture Content Bearing Ratio Determination Pressure Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 0.9 0.1 Pressure (psi) Image: psi/inch (psi/inch (psi/inch (psi/inch (psi/inch (psi/inch (psi/inch (psi/inch (psi/inch (psi/inch (psi/inch (p	Dry Density De	termination		Before	e Soaking	After Soaking				
Mass of Mould + Base (g) 4165.6 4165.6 Mass of Compacted Specimen (g) 3896 3976.8 Bulk Density (g/cm3) 1.834 1.872 Dry Density (g/cm3) 1.384 1.296 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 711.6 417.7 Mass of Container + Dry Soil (g) 583.4 330.8 Mass of Container + Ory Soil (g) 128.2 86.9 Moisture Content % 32.497 44.427 California Bearing Ratio Determination Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 0.2 Inch 0.1 G G G G G G 0.2 Inch 0.1 G G G G G G	Mass of Mould -	+ Base + Soil	(g)	8061.6	5	8142.4				
Mass of Compacted Specimen (g) 3896 3976.8 Bulk Density (g/cm3) 1.834 1.872 Dry Density (g/cm3) 1.384 1.296 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 711.6 417.7 Mass of Container + Dry Soil (g) 583.4 330.8 Mass of Container (g) 128.2 86.9 Moisture Content % 32.497 44.427 California Bearing Ratio Determination Deformation Pressure kPa Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 0.2 Inch 334.801 48.559 54.104 3.607 Stress/Penetration psi/inch 0 Stress/Penetration Image: psi/inch Image: psi/inch Image: psi/inch 30 0 0 0 Image: psi/inch Image: psi/inch Image: psi/inch Image: psi/inch 30 0 0 0 0 Image: psi/inch Image: psi/i	Mass of Mould -	+ Base	(g) 4165.6		5	4165.6				
Bulk Density (g/cm3) 1.834 1.872 Dry Density (g/cm3) 1.384 1.296 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 711.6 417.7 Mass of Container + Wet Soil (g) 583.4 330.8 Mass of Container + Dry Soil (g) 188.9 135.2 Mass of Container (g) 128.2 86.9 Moisture Content % 32.497 44.427 California Bearing Ratio Determination Pressure (g) CBR Final CBR Deformation Pressure RPa Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 0.2 Inch 334.801 48.559 54.104 1.60 1.136 0.2 Inch 0.1 Pressure (psi) CBR Final CBR 0.1 0.1 Pressure (psi) 0.4 0.5 0.1 0.1 Prenetration (Inch 3 0.4	Mass of Compac	cted Specimen	(g)	3896		3976.8				
Dry Density (g/cm3) 1.384 1.296 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 711.6 417.7 Mass of Container + Dry Soil (g) 583.4 330.8 Mass of Container + Dry Soil (g) 188.9 135.2 Mass of Container (g) 128.2 86.9 Moisture Content % 32.497 44.427 California Bearing Ratio Determination Deformation Pressure RPa Pressure Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 0.2 Inch 0.1 Pressure (psi) Cmassity (psi) Cmassity (psi) Cmassity (psi) Cmassity (psi) 0.0 0.1 Pressure (psi) Cmassity (psi) Cmassity (psi) Cmassity (psi)	Bulk Density		(g/cm3)	1.834		1.872				
Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)711.6417.7Mass of Container + Dry Soil(g)583.4330.8Mass of Container + Dry Soil(g)188.9135.2Mass of Container -(g)128.286.9Moisture Content%32.49744.427California Bearing Ratio DeterminationDeformationPressure kPaPressure psiCorrected Pressure (psi)CBRFinal CBR0.1 Inch276.93440.16641.3654.1364.1360.2 Inch334.80148.55954.1043.6074.136Offer Soaking Corrected pressure (psi)CBRFinal CBR0.1 Inch276.93440.16641.3654.1364.1360.2 Inch334.80148.55954.1043.6074.1360.000.1Penetration93.6070.40.5	Dry Density		(g/cm3) 1.384			1.296				
Mass of Container + Wet Soil (g) 711.6 417.7 Mass of Container + Dry Soil (g) 583.4 330.8 Mass of Container (g) 188.9 135.2 Mass of Moisture (g) 128.2 86.9 Moisture Content % 32.497 44.427 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 Stress/Penetration 0 Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration Image: Stress/Penetration I	Moisture Content Determination		n Before Soal		e Soaking	After Soaking				
Mass of Container + Dry Soil (g) 583.4 330.8 Mass of Container (g) 188.9 135.2 Mass of Moisture Content % 32.497 44.427 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 70 Stress/Penetration psi/inch - - - 93 0 0 0.1 Pressure (psi) 0.4 0.5	Mass of Container + Wet Soil		(g) 711.6			417.7				
Mass of Container (g) 188.9 135.2 Mass of Moisture Content % 32.497 44.427 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 70 Stress/Penetration	Mass of Container + Dry Soil		(g) 583.4			330.8				
Mass of Moisture (g) 128.2 86.9 Moisture Content % 32.497 44.427 California Bearing Ratio Determination Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 70 Stress/Penetration psi/inch - - - 60 Stress/Penetration - - - - 10 0.0 0.1 Presence (psi) - - - 60 0 0.1 92/enetration - - - - 10 0 0.1 Presence (psi) 0.4 0.5 0.4 0.5	Mass of Container		(g) 188.9			135.2				
Moisture Content % 32.497 44.427 California Bearing Ratio Determination Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 70 Stress/Penetration 9si/inch - - - 60 50 - - - - - 930 - - - - - - - 10 0 0,1 9cenetration (Inch3 0,4 0,5 0,4 0,5	Mass of Moisture		(g) 128.2			86.9				
California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 70 Stress/Penetration psi/inch	Moisture Content		% 32.497		7	44.427				
Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 70 Stress/Penetration psi/inch - - - - 60 Stress/Penetration psi/inch - - - - 60 - - - - - - 50 - - - - - - 50 - - - - - - 50 - - - - - - - 50 - - - - - - - 50 - - - - - - - 50 - - - - - - - - - -	California Bearing Ratio Determination									
kPa psi Pressure (psi) CAR CBR 0.1 Inch 276.934 40.166 41.365 4.136 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 70 Stress/Penetration	Deformation Pressure		Pressure	ssure Corrected		Final				
0.1 Inch 276.934 40.166 41.365 4.136 0.2 Inch 334.801 48.559 54.104 3.607 4.136 70 60 51 51 51 51 51 51 60 50 51 51 51 51 51 51 51 60 50 51		kPa	psi	Pressure (psi))	CBR				
0.2 Inch 334.801 48.559 54.104 3.607 1000 0 0 Stress/Penetration psi/inch 0 0 10 0 0,1 92netration (Inch3) 0,4 0,5	0.1 Inch	276.934	40.166	41.365	4.136	4.136				
70 Stress/Penetration 60 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 50 psi/inch 20 psi/inch 10 psi/inch 0 0,1 92 psi/inch 0,4 0,5	0.2 Inch	334.801	48.559	54.104	3.607					
60 50 50 50 50 50 50 50 50 50 5	70 Stress/Penetration									
60 50 50 50 50 50 50 50 50 50 5	60		/iza	inch						
50 50 50 50 50 50 50 50 50 50	00									
is 40 is 40 is 40 is 40 is 40 is 10 is 0	50									
20 10 0 0 0 0,1 0 0,1 0,1 0,4 0,5	50									
20 10 0 0 0,1 0,1 0,4 0,5	(isd 40									
20 10 0 0 0,1 0,1 0,4 0,5	ss (
20 10 0 0 0 0,1 Penetration (Inch ³) 0,4 0,5	00 gtre									
20 10 0 0 0 0,1 Penetration (Inch ³) 0,4 0,5	5									
10 0 0,1 Pénetration (Inch ³) 0,4 0,5	20									
0 0,1 Penetration (Inch ³ 0,4 0,5	10									
0 0,1 Penetration (Inch ³ 0,4 0,5	0									
	0 0,1 Penetration (Inch) ³ 0,4 0,									

Figure G1(Continued)

Project Inform	ation						
Project Name		%10 B		Start Date		29.	06.2014
Curing Period		28 days		End Date		10.	08.2014
Sample Number		2					
Standard		ASTM D 1	883-0	7, D 698-12			
Method Of Com	paction	Standard E	ffort, N	Method C			
Tested By		Can CEYL	LAN	Condition of	of Sample		Soaked
Soil Classification	on	СН		Surcharge		4.54	kg.
Maximum Dry I	Density g/cm3	1.39		Swell Dial (mm.)	Reading	1.54	
Optimum Moist	ure Content (%)	32.4		Swell Rate	(%)	1.328	\$
Area of Penetrat	tion (mm2)	1.935		Device		ELE	Multip50
Dry Density De	etermination			Before Soa	king	After	Soaking
Mass of Mould	+ Base + Soil	(g)		8059.5		8216	.4
Mass of Mould	+ Base	(g)		4165.3		4165	.3
Mass of Compac	cted Specimen	(g)		3894.2		4051	.1
Bulk Density		(g/cm3)		1.833		1.907	1
Dry Density		(g/cm3)		1.381		1.350)
Moisture Conte	ent Determinatio	n		Before Soa	king	After	Soaking
Mass of Contain	er + Wet Soil	(g)		699.2		411.2	2
Mass of Contain	er + Dry Soil	(g)) 558.4			322	
Mass of Contain	ner	(g)	128.8			119.6	
Mass of Moistur	re	(g)	140.8		83.2		
Moisture Conter	nt	%		32.775		44.07	'11
California Bear	ring Ratio Deter	mination	1			1	
Deformation	Pressure kPa	Pressure psi	Corre Press	ected ure (psi)	CBR	Final CBR	
0.1 Inch	276.934	40.166	40.16	66	4.017	4 017	,
0.2 Inch	367.867	53.355	53.35	55	3.557	4.017	
80 70		Stress/Pe psi/	netrati inch	on			
60							
(isd)							
ss 40							
05 St							
20							
10							
0	0.1 (<u>ן</u>	0.2	0.4	0		0.6
U	U,1 (Penetra	ation (I	nch)	0,	,ɔ	0,6

Project Information									
Project Name		%101	В	Sta	art Date			29.	.07.2014
Curing Period		28 da	ys	En	d Date			10.	.08.2014
Sample Number		3							
Standard		ASTN	M D 1	883	-07, D é	598-12			
Method Of Compaction		Stand	ard Et	ffort	, Metho	od C			
Tested By		Can CEYI	LAN		Condi	tion of San	nple		Soaked
Soil Classification		CH			Surcha	arge	4.54	4 kg	g.
Maximum Dry Density g/cm3		1.39			Swell Readin	Dial ng (mm.)	1.59	9	
Optimum Moisture Content (9	6)	32.4			Swell	Rate (%)	1.3	71	
Area of Penetration (mm2)		1.935			Device	e	ELI	ΕN	Iultip50
Dry Density Determination					Before Soakir	e 1g	Aft	er S	Soaking
Mass of Mould + Base + Soil	(g)				8052.9)	818	30.4	ŀ
Mass of Mould + Base	(g)				4157.2	2	415	57.1	
Mass of Compacted Specimen	(g)				3895.7	7	402	23.3	3
Bulk Density	(g/c	m3)			1.834		1.89	94	
Dry Density	(g/c	cm3)			1.386		1.316		
Moisture Content Determina				Before Soakir	e 1g	Aft	er S	Soaking	
Mass of Container + Wet Soil	(g)				465.3		497	.3	
Mass of Container + Dry Soil	(g)				386.3		392	2	
Mass of Container	(g)				142.1		149	9.3	
Mass of Moisture	(g)				79		106	5.3	
Moisture Content	%				32.351	l	43.9	98	
California Bearing Ratio De	termi	ination	l				-		
Deformatio Pressure n kPa	Pres psi	sure	Corr Pres	ecte sure	d (psi)	CBR		Fir CB	nal BR
0.1 Inch 287.267	41.6	65	41.6	65		4.166		41	66
0.2 Inch 412.301	59.7	'99	59.7	99		3.987		7.1	
60 40 (isd) \$20		Stress	s/Peno psi/in	etra ch	tion				
0 22									
0 0,1	0,	2 Per	netrat	i o n	(Inch)	0,4	0),5	0,6

Project Informat	ion					
Project Name		%15 B	Start Date			28.06.2014
Curing Period		28 days	End Date			12.07.2014
Sample Number		1				
Standard		ASTM D 188	3-07, D 698-12			
Method Of Compa	action	Standard Effo	rt, Method C			
Tested By		Can CEYLAN	V Condition of	Sample	Soak	ed
Soil Classification	1	CH	Surcharge		4.54	kg.
Maximum Dry De	ensity g/cm3	1.37	Swell Dial (mm.)	Reading	2.11	
Optimum Moist (%)	ure Content	33.1	Swell Rate (%	%)	1.819)
Area of Penetratio	on (mm2)	1.935	Device		ELE	Multip50
Dry Density Dete	ermination		Before Soaki	ng	After	Soaking
Mass of Mould Soil	+ Base +	(g)	8219.4		8314	.5
Mass of Mould +	Base	(g)	4361.4		4361	.4
Mass of C Specimen	Compacted	(g)	3858		3953	.1
Bulk Density		(g/cm3)	1.816		1.861	
Dry Density		(g/cm3)	1.366		1.275	
Moisture Conten	t Determina	tion	Before Soaki	ng	After	Soaking
Mass of Contain Soil	er + Wet	(g)	597.8		489.3	3
Mass of Contain Soil	her + Dry	(g)	489		380.1	l
Mass of Container	r	(g)	158.8		142.8	3
Mass of Moisture		(g)	108.8		109.2	2
Moisture Content		%	32.950		46.01	18
California Bearin	ng Ratio Det	ermination		r	-	
Deformation	Pressure kPa	Pressure psi	Corrected Pressure (psi)	CBR	Fi Cl	nal BR
0.1 Inch	214.417	31.099	33.721	3.372	2	
0.2 Inch	321.367	46.610	47.510	3.167	3.:	572
60		Stress/Pene psi/inc	tration ch			
(psi)						
otress 0						
20						
0) 1		(lnch) 0.4	0	5	0.6
0 (J, L	v, 2 Penetravio	on (Inch) 0,4	0,	J	0,0

Figure G1(Continued)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Project Inform	ation					
Curing Period 28 days End Date 12.07.2014 Samdard ASTM D 1883-07, D 698-12	Project Name		%15 B	Start Date		28.06.2014	
Sample Number 2 Standard ASTM D 1883-07, D 698-12 Method Of Compaction Standard Effort, Method C Tested By Can CEYLAN Condition of Sample Soaked Soil Classification CH Surcharge 4.54 kg. Maximum Dry Density g/cm3 1.37 Swell Dial Reading (mm.) 1.73 Optimum Moisture Content (%) 33.1 Swell Rate (%) 1.491 Area of Penetration (mm2) 1.935 Device ELE Multip50 Dry Density Determination Before Soaking After Soaking Mass of Mould + Base + Soil (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.824 1.898 Dry Density Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 38.92 333.4 Mass of Container (g) <t< td=""><td>Curing Period</td><td></td><td>28 days</td><td>End Date</td><td></td><td>12.07.2014</td><td></td></t<>	Curing Period		28 days	End Date		12.07.2014	
Standard ASTM D 1883-07, D 698-12 Method Of Compaction Standard Effort, Method C Tested By Can CEYLAN Condition of Sample Soaked Soil Classification CH Surcharge 4.54 kg. Maximum Dry Density g/cm3 1.37 Swell Dial Reading (mm.) 1.73 Optimum Moisture Content (%) 33.1 Swell Rate (%) 1.491 Area of Penetration (mm2) 1.935 Device ELE Multip50 Dry Density Determination Before Soaking After Soaking Mass of Mould + Base (g) 4642.5 4642.5 Mass of Compacted Specimen (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.824 1.898 Dry Density (g/cm3) 1.371 1.299 Mass of Container + Wet Soil (g) 389.2 333.4 Mass of Container + Very Soil (g) 389.2 333.4 Mass of Container + Ury Soil (g) 75. 99.4 Moisture Content % 33.646 33.646 3.365 0.1 Inch 231.984 33.646 33.646 3.36	Sample Number		2				
Method Of CompactionStandard Effort, Method CTested ByCan CEYLANCondition of SampleSoakedSoil ClassificationCHSurcharge4.54 kg.Maximum Dry Density g/cm31.37Swell Dial Reading (mm.)1.73Optimum Moisture Content (%)33.1Swell Rate (%)1.491Area of Penetration (mm2)1.935DeviceELE Multip50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8515.78673.7Mass of Mould + Base(g)3873.24031.2Bulk Density(g/cm3)1.8241.898Dry Density DeterminationBefore SoakingAfter SoakingMass of Compacted Specimen(g)389.2333.4Mass of Container + Wet Soil(g)389.2333.4Mass of Container + Wet Soil(g)77.599.4Moisture Content%33.02146.147California Bearing Ratio DeterminationCorrected pressureCorrected Pressure (psi)CBR0.1 Inch231.98433.64633.6453.3650.2 Inch296.05142.9392.8633.3650.3Stress/Penetration 	Standard		ASTM D	1883-07, D 698-12	2		
$ \begin{array}{ c c c c c } \hline Tested By & Can CEYLAN & Condition of Sample & Soaked \\ \hline Soil Classification & CH & Surcharge & 4.54 kg. \\ \hline Maximum Dry Density g/cm3 & 1.37 & Swell Dial Reading (mm.) & 1.73 \\ \hline Optimum Moisture Content (%) & 33.1 & Swell Rate (%) & 1.491 \\ \hline Area of Penetration (mm2) & 1.935 & Device & ELE Multip50 \\ \hline Dry Density Determination & Before Soaking & After Soaking \\ Mass of Mould + Base & (g) & 4642.5 & 4642.5 \\ \hline Mass of Mould + Base & (g) & 4642.5 & 4642.5 \\ \hline Mass of Mould + Base & (g) & 3873.2 & 4031.2 \\ \hline Bulk Density & (g/cm3) & 1.824 & 1.898 \\ Dry Density & (g/cm3) & 1.371 & 1.299 \\ \hline Moisture Content Determination & Before Soaking & After Soaking \\ \hline Mass of Container + Wet Soil & (g) & 389.2 & 333.4 \\ \hline Mass of Container + Wet Soil & (g) & 154.5 & 118 \\ \hline Mass of Container + Dry Soil & (g) & 389.2 & 333.4 \\ \hline Mass of Container + Dry Soil & (g) & 154.5 & 118 \\ \hline Mass of Moisture Content & \% & 33.021 & 46.147 \\ \hline California Bearing Ratio Determination \\ \hline Deformation & Pressure & pressure (psi) & CBR & Final CBR \\ \hline 0.1 Inch & 231.984 & 33.646 & 3.365 \\ \hline 0.2 Inch & 296.051 & 42.939 & 2.863 \\ \hline 0 & & & & & & & & & & & & & & & & & &$	Method Of Com	paction	Standard E	Effort, Method C			
Soil Classification CH Surcharge 4.54 kg. Maximum Dry Density g/cm3 1.37 Swell Dial Reading (mm.) 1.73 Optimum Moisture Content (%) 33.1 Swell Rate (%) 1.491 Area of Penetration (mm2) 1.935 Device ELE Multip50 Dry Density Determination Before Soaking After Soaking Mass of Mould + Base (g) 4642.5 4642.5 Mass of Compacted Specimen (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 466.7 432.8 Mass of Container + Dry Soil (g) 38.021 333.4 Mass of Container + Wet Soil (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.656 3.365 <td< td=""><td>Tested By</td><td></td><td>Can CEYI</td><td>LAN Condition</td><td>of Sample</td><td colspan="2">Soaked</td></td<>	Tested By		Can CEYI	LAN Condition	of Sample	Soaked	
Maximum Dry Density g/cm3 1.37 Swell Dial Reading (mm.) 1.73 Optimum Moisture Content (%) 33.1 Swell Rate (%) 1.491 Area of Penetration (mm2) 1.935 Device ELE Multip50 Dry Density Determination Before Soaking After Soaking Mass of Mould + Base + Soil (g) 8515.7 8673.7 Mass of Compacted Specimen (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.824 1.898 Dry Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 466.7 432.8 Mass of Container + Ory Soil (g) 389.2 333.4 Mass of Container + Ory Soil (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 2.863 3.365	Soil Classification	on	СН	Surcharge		4.54 kg.	
Optimum Moisture Content (%) 33.1 Swell Rate (%) 1.491 Area of Penetration (mm2) 1.935 Device ELE Multip50 Dy Density Determination Before Soaking After Soaking Mass of Mould + Base + Soil (g) 8515.7 8673.7 Mass of Mould + Base + Soil (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.824 1.898 Dry Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 389.2 333.4 Mass of Container + Dry Soil (g) 33.021 46.147 California Bearing Ratio Determination Pressure Corrected Pressure (psi) EBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.1 Inch 231.984 33.646 3.3.64	Maximum Dry I	Density g/cm3	1.37	Swell Dia (mm.)	1 Reading	1.73	
Area of Penetration (mm2)1.935DeviceELE Multip50Dry Density DeterminationBefore SoakingAfter SoakingMass of Mould + Base + Soil(g)8515.78673.7Mass of Mould + Base + Soil(g)3873.24031.2Mass of Compacted Specimen(g)3873.24031.2Bulk Density(g/cm3)1.8241.898Dry Density(g/cm3)1.3711.299Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)389.2333.4Mass of Container + Dry Soil(g)154.5118Mass of Container + Ury Soil(g)77.599.4Moisture Content%33.02146.147California Bearing Ratio DeterminationDeformationPressure RPaPressure psiCorrected Pressure (psi)Final CBR0.1 Inch231.98433.6463.36463.3653.3650.2 Inch296.05142.93942.9392.8633.3650.3Stress/Penetration psi/inchStress/Penetration psi/inchJ.J.00,10,20,30,40,50,6	Optimum Moist	ure Content (%)	33.1	Swell Rate	e (%)	1.491	
Dry Density Determination Before Soaking After Soaking Mass of Mould + Base + Soil (g) 8515.7 8673.7 Mass of Mould + Base (g) 4642.5 4642.5 Mass of Compacted Specimen (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.824 1.898 Dry Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 466.7 432.8 Mass of Container + Dry Soil (g) 389.2 333.4 Mass of Container + Dry Soil (g) 77.5 99.4 Moisture Content To Hear (g) 77.5 99.4 Moisture Content Ratio Determination Pressure Corrected Pressure CBR Deformation Pressure fpsi CBR Final CBR CBR 0.1 Inch 231.984 33.646 3.365 3.365 0.2 Inch 296.051 42.939 2.863 3.66 99 <	Area of Penetrat	tion (mm2)	1.935	Device		ELE Multip	50
Mass of Mould + Base + Soil (g) 8515.7 8673.7 Mass of Mould + Base (g) 4642.5 4642.5 Mass of Compacted Specimen (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.824 1.898 Dry Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 466.7 432.8 Mass of Container + Dry Soil (g) 389.2 333.4 Mass of Container + Dry Soil (g) 154.5 118 Mass of Moisture (g) 77.5 99.4 Moisture Content Beatring Ratio Determination Corrected Pressure (psi) CBR Deformation Pressure hypa Pressure (psi) CBR 0.1 Inch 231.984 33.646 3.365 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.2 Inch 0.1 0.2 0.3 0.4 0.5 0.6 99 0.1 0.2 0.3 0.4 0.5 0.6 99	Dry Density De	etermination		Before So	aking	After Soaki	ng
Mass of Mould + Base (g) 4642.5 4642.5 Mass of Compacted Specimen (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.824 1.898 Dry Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 389.2 333.4 Mass of Container + Dry Soil (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Deformation Pressure KPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 0.2 Inch 0.1 0.2 0.3 0.4 0.5 0.6 90 0.1 0.2 0.3 0.4 0.5 0.6 90 0.1	Mass of Mould	+ Base + Soil	(g)	8515.7		8673.7	
Mass of Compacted Specimen (g) 3873.2 4031.2 Bulk Density (g/cm3) 1.824 1.898 Dry Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 466.7 432.8 Mass of Container + Dry Soil (g) 389.2 333.4 Mass of Container (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.0 0 0,1 0,2 0,3 0,4 0,5 0,6 Public Superior (Inch)	Mass of Mould	+ Base	(g)	4642.5		4642.5	
Bulk Density (g/cm3) 1.824 1.898 Dry Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 466.7 432.8 Mass of Container + Wet Soil (g) 389.2 333.4 Mass of Container + Dry Soil (g) 154.5 118 Mass of Container (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Pressure Corrected CBR Final Deformation Pressure RPa Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.2 Inch 0.1 0.2 0.3 0.4 0.5 0.6 000000000000000000000000000000000000	Mass of Compa	cted Specimen	(g)	3873.2		4031.2	
Dry Density (g/cm3) 1.371 1.299 Moisture Content Determination Before Soaking After Soaking Mass of Container + Wet Soil (g) 389.2 333.4 Mass of Container + Dry Soil (g) 154.5 118 Mass of Container (g) 154.5 118 Mass of Moisture (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Corrected CBR Final Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 01 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6	Bulk Density		(g/cm3)	1.824		1.898	
Moisture Content DeterminationBefore SoakingAfter SoakingMass of Container + Wet Soil(g)466.7432.8Mass of Container + Dry Soil(g)389.2333.4Mass of Container(g)154.5118Mass of Moisture(g)77.599.4Moisture Content%33.02146.147California Bearing Ratio DeterminationDeformationPressure kPaCorrected psiCBRFinal CBR0.1 Inch231.98433.64633.6463.3653.3650.2 Inch296.05142.93942.9392.8633.3650.0 Inch296.05142.93942.9392.8633.3650.1 Inch231.98433.64633.6463.3653.3650.2 Inch296.05142.93942.9392.8633.3650.2 Inch296.05142.93942.9392.8633.3650.0 0,10,20,30,40,50,60 0,10,20,30,40,50,6	Dry Density		(g/cm3)	1.371		1.299	
Mass of Container + Wet Soil (g) 466.7 432.8 Mass of Container + Dry Soil (g) 389.2 333.4 Mass of Container (g) 154.5 118 Mass of Moisture (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 0.30 0 0 0,1 0,2 0,3 0,4 0,5 0,6 Preserve psi/inch 0 0,1 0,2 0,3 0,4 0,5 0,6	Moisture Conte	ent Determinatio	n	Before So	aking	After Soaki	ng
Mass of Container + Dry Soil (g) 389.2 333.4 Mass of Container (g) 154.5 118 Mass of Moisture (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Deformation Pressure Pressure Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 0.0 Stress/Penetration psi/inch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mass of Contain	er + Wet Soil	(g)	466.7		432.8	
Mass of Container (g) 154.5 118 Mass of Moisture (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 0.0 Inch 296.051 42.939 2.863 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0 Stress/Penetration psi/inch 9 9 10 10 0 0,1 0,2 0,3 0,4 0,5 0,6 0 0,1 0,2 0,3 0,4 0,5 0,6	Mass of Contain	er + Dry Soil	(g)	389.2	389.2		
Mass of Moisture (g) 77.5 99.4 Moisture Content % 33.021 46.147 California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 0.0 Stress/Penetration psi/inch 50 51 51 51 51 0.0 0,1 0,2 0,3 0,4 0,5 0,6 0.0 0,1 0,2 0,3 0,4 0,5 0,6	Mass of Contain	er	(g)	154.5		118	
Moisture Content % 33.021 46.147 California Bearing Ratio Determination Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 0 0 Stress/Penetration 0 0 0 0.1 0 0 0.1 0 0 0.1 0 0 0.1 0 0 0 0.1 0 <td>Mass of Moistur</td> <td>re</td> <td colspan="2">(g) 77.5</td> <td></td> <td>99.4</td> <td></td>	Mass of Moistur	re	(g) 77.5			99.4	
California Bearing Ratio Determination Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 60 Stress/Penetration psi/inch	Moisture Conter	nt	%	33.021		46.147	
Deformation Pressure kPa Pressure psi Corrected Pressure (psi) CBR Final CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 60 50 Stress/Penetration psi/inch	California Beau	ring Ratio Deter	mination			-	
belomination kPa psi Pressure (psi) CBK CBR 0.1 Inch 231.984 33.646 33.646 3.365 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 60 50 Stress/Penetration 50	Deformation	Pressure	Pressure	Corrected	CBR	Final	
0.1 Inch 231.984 33.646 33.646 3.365 0.2 Inch 296.051 42.939 2.863 3.365 0.2 Inch 296.051 42.939 42.939 2.863 3.365 0.0 Stress/Penetration psi/inch 100 100 100 100 100 100 100 100 100 10	Deformation	kPa	psi	Pressure (psi)	CDK	CBR	
0.2 Inch 296.051 42.939 42.939 2.863 5.503	0.1 Inch	231.984	33.646	33.646	3.365	2.265	
60 50 40 40 50 40 50 50 40 50 50 40 50 50 40 50 50 50 50 50 50 50 50 50 5	0.2 Inch	296.051	42.939	42.939	2.863	5.505	
50 40 40 50 40 50 40 40 50 40 40 50 50 40 40 50 50 50 50 50 50 50 50 50 5	60		Stress/Pe	enetration /inch			
40 30 30 30 30 30 30 30 30 30 3	50			~~~~			-
40 30 30 30 30 30 30 30 30 30 3							
30 30 30 30 30 30 30 30 30 30	40						-
in in<	30						-
20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	(jsci						
33 10 0 0,1 0,2 0,3 0,4 0,5 0,6 Penetration (Inch)	y 20						_
5 10 0 0,1 0,2 0,3 0,4 0,5 0,6 Penetration (Inch)	tres						
0 0,1 0,2 0,3 0,4 0,5 0,6 Penetration (Inch)	ت 10						_
0 0,1 0,2 0,3 0,4 0,5 0,6 Penetration (Inch)							
0 0,1 0,2 0,3 0,4 0,5 0,6 Penetration (Inch)	0						
Penetration (Inch)	0	0,1 0),2	0,3 0,4	0	,5 0),6
			Penetr	ation (Inch)			

Project Inform	ation	-				
Project Name		%15 B		Start Date		01.07.2014
Curing Period		28 days		End Date		12.07.2014
Sample Number	•	3				
Standard		ASTM D	1883-07	7, D 698-12		
Method Of Com	npaction	Standard E	Effort, N	Method C		
Tested By		Can CEYI	LAN	Condition of	of Sample	e Soaked
Soil Classificati	on	СН		Surcharge		4.54 kg.
Maximum Dry I	Density g/cm3	1.37		Swell Reading (n	Dial nm.)	2.33
Optimum Moist	ure Content (%)	33.1		Swell Rate	(%)	2.009
Area of Penetrat	tion (mm2)	1.935		Device		ELE Multip50
Dry Density De	etermination			Before Soa	king	After Soaking
Mass of Mould	+ Base + Soil	(g)		8012.4		8270
Mass of Mould	+ Base	(g)		4154		4346.1
Mass of Compa	cted Specimen	(g)		3858.4		3923.9
Bulk Density		(g/cm3)		1.817		1.847
Dry Density		(g/cm3)		1.362		1.325
Moisture Conte	ent Determinatio	n		Before Soa	king	After Soaking
Mass of Contair	ner + Wet Soil	(g)		435.7		524.9
Mass of Contair	ner + Dry Soil	(g)		366.4		401.4
Mass of Contair	ner	(g)		158.5		135.2
Mass of Moistur	re	(g)		69.3		123.5
Moisture Conter	nt	%		33.333		46.394
California Beau	ring Ratio Deter	mination				
Deformation	Pressure	Pressure	Corre	ected	CBR	Final
	kPa	psi	Press	sure (psi)		CBR
0.1 Inch	221.651	32.148	32.37	12	3.237	3.237
0.2 Inch	310.001	44.962	44.73	37	2.982	
70		Stress/Pe	enetrati 'inch	ion		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		p 0.7				-
60						
50						
jsd 10						
) ss (
06 ette						
20						
10						
0						
0	0,1	0,2 Penetr	0,3 ration (0,4 inch)		0,5 0,6
			•			

APPENDIX H

UNCONFINED COMPRESSIVE STRENGTH TEST DATA SHEETS

Project Information				
Project Name	0 BS		Prep. Date	
Curing Period	0 days		Test Date	
Sample Number	1		Tested By	Can CEYLAN
Standard	ASTM D 21	166	Device	ELE Multip50
Soil Classification	CH/A-7-6			
Location	METU Trar	nspor	t Lab.	
Condition of Sample	Disturbed-R	lemo	lded-Unsoaked	
Specimen Properties and Unco	onfined Com	press	sive Strength	
Initial Volume (cm3)	198.314	Init	tial Length (mm.)	101.000
Mass of Cont. + Wet Soil (gr.)	471.000	Init	tial Diameter (mm.)	50.000
Mass of Cont. + Dry Soil (gr.)	395.800	L/I)	2.020
Mass of Container (gr.)	109.260	Init	tial Area (mm2)	1963.500
Mass of Sample (gr.)	361.740	Str	ain Rate (mm./min.)	1.250
Mass of Dry Sample (gr.)	286.540	Str	ain at failure (mm.)	5.950
Mass of Moisture (gr.)	75.200 Axial Strain %		5.891	
Moisture Content %	26.2	Co	rrected Area (mm2)	2086.412
Specific Gravity (g/cm3)	2./12			1(0.400
Dry Density (g/cm3)	1.445		Strength (kPa)	162.489
Bulk Density (g/cm3)	1.824	Sne	ear Strength (kPa)	81.245
0,18 Stres	s/Strain			
0,16 MP	a/mm			~~~~~
0.14		~~~		
0,17				
0,12 g				
Š 0,1				
80,0 km				
0,06				
0,04				
0,02				
0 1 2	3 C+i	4 rain (5 6	7 8

Figure H.1 Unconfined Compressive Strength Test Data Sheets

Project Information				
Project Name	0 BS		Prep. Date	
Curing Period	0 days		Test Date	
Sample Number	2		Tested By	Can CEYLAN
Standard	ASTM D 216	66	Device	ELE Multip50
Soil Classification	CH/A-7-6			
Location	METU Trans	port	Lab.	
Condition of Sample	Disturbed-Re	mol	ded-Unsoaked	
Specimen Properties and Unco	nfined Compre	essiv	ve Strength	
Initial Volume (cm3)	197.332	Ini	tial Length (mm.)	100.500
Mass of Cont. + Wet Soil (gr.)	479.430	Ini	tial Diameter (mm.)	50.000
Mass of Cont. + Dry Soil (gr.)	405.700	L/]	D	2.010
Mass of Container (gr.)	119.800	Ini	tial Area (mm2)	1963.500
Mass of Sample (gr.)	359.630	Stı	rain Rate (mm./min.)	1.250
Mass of Dry Sample (gr.)	285.900	Stı	rain at failure (mm.)	6.060
Mass of Moisture (gr.)	73.730	Ах	xial Strain %	6.030
Moisture Content %	25.8	Co	orrected Area (mm2)	2089.493
Specific Gravity (g/cm3)	2.712			
Dry Density (g/cm3)	1.449 UCS Stree		CS Strength (kPa)	173.759
Bulk Density (g/cm3)	1.822	Sh	ear Strength (kPa)	86.880

Figure H.1 (Continued)

Project Info	rmation					
Project Nam	e	0 BS		Prep. Date		
Curing Perio	od	0 days		Test Date		
Sample Num	ıber	3		Tested By	Can CEYLAN	
Standard		ASTM D 2	166	Device	ELE Multip 50	
Soil Classifie	cation	СН				
Location		METU Tra	nspor	t Lab.		
Condition of	Sample	Disturbed-	Remo	lded-Unsoaked		
Specimen P	roperties and Unco	nfined Com	pressi	ve Strength		
Initial Volun	ne (cm3)	197.921	Initi	al Length (mm.)	100.800	
Mass of Con	t. + Wet Soil (gr.)	509.120	Initi	al Diameter (mm.)	50.000	
Mass of Con	t. + Dry Soil (gr.)	435.700	L/D		2.016	
Mass of Con	tainer (gr.)	149.800	Initi	al Area (mm2)	1963.500	
Mass of Sam	ple (gr.)	359.320	Strai	in Rate (mm./min.)	1.250	
Mass of Dry	Sample (gr.)	285.900	Strai	in at failure (mm.)	5.787	
Mass of Moi	sture (gr.)	73.420	Axia	al Strain %	5.741	
Moisture Co	ntent %	25.7	Corr	rected Area (mm2)	2083.092	
Specific Gra	vity (g/cm3)	2.712				
Dry Density	(g/cm3)	1.445	UCS	5 Strength (kPa)	159.527	
Bulk Density	/ (g/cm3)	1.815	Shea	ar Strength (kPa)	79.764	
0,18 0,16 0,14 (mbas) 0,12 0,1 0,1 0,1 0,08 0,06 0,04 0,02 0		Stress(MPa)	/Strai	n (mm)		
0	1 2	3 St	4 rain (r	5 6 mm)	7 8	
		50		,		

Figure H.1 (Continued)

Project Information				
Project Name	3 BS	Prep. Date	05.10.14	
Curing Period	0 days	Test Date	05.10.14	
Sample Number	1	Tested By	Can CEYLAN	
Standard	ASTM D 216	56 Device	ELE Multip50	
Soil Classification	СН			
Location	METU Trans	port Lab.		
Condition of Sample	Disturbed-Re	molded-Unsoaked		
Specimen Properties and Unco	nfined Compr	essive Strength		
Initial Volume (mm3)	198.314	Initial Length (mm.)	101.000	
Mass of Cont. + Wet Soil (gr.)	487.230	Initial Diameter (mm.)	50.000	
Mass of Cont. + Dry Soil (gr.)	403.100	L/D	2.020	
Mass of Container (gr.)	118.060	Initial Area (mm2)	1963.500	
Mass of Sample (gr.)	369.170	Strain Rate (mm./min.)	1.250	
Mass of Dry Sample (gr.)	285.040	Strain at failure (mm.)	5.640	
Mass of Moisture (gr.)	84.130	Final Length	96.542	
Moisture Content %	0.295	Corrected Area	2054.175	
Specific Gravity (g/cm3)	2.712			
Dry Density (g/cm3)	1.437	UCS Strength	207.385	
Bulk Density (g/cm3)	1.862	Shear Strength	103.692	
0,25 0,2 (ed) 0,15 ss	Stress(MPa)/S	train (mm)		
0,05 0 1 2	3 4	5 6 7	8 9	
	Strai	in (mm)		

Figure H.1 (Continued)

Project Information					
Project Name	3 BS		Prep. Date	05.10.14	
Curing Period	0 days		Test Date	05.10.14	
Sample Number	2		Tested By	Can CEYLAN	
Standard	ASTM D 2	166	Device	ELE Multip50	
Soil Classification	СН				
Location	METU Tra	nsport	Lab.		
Condition of Sample	Disturbed-l	Remol	ded-Unsoaked		
Specimen Properties and Uncor	nfined Comj	pressiv	ve Strength		
Initial Volume (mm3)	196.350	Initia	al Length (mm.)	100.000	
Mass of Cont. + Wet Soil (gr.)	518.230	Initia	al Diameter (mm.)	50.000	
Mass of Cont. + Dry Soil (gr.)	434.800	L/D		2.000	
Mass of Container (gr.)	153.260	Initia	al Area (mm2)	1963.500	
Mass of Sample (gr.)	364.970	Strai	n Rate (mm./min.)	1.250	
Mass of Dry Sample (gr.)	281.540	Strai	n at failure (mm.)	3.883	
Mass of Moisture (gr.)	83.430	Axia	l Strain %	6.043	
Moisture Content %	0.296	Corr	ected Area (mm2)	2089.786	
Specific Gravity (g/cm3)	2.712				
Dry Density (g/cm3)	1.434	UCS	Strength (kPa)	192.188	
Bulk Density (g/cm3)	1.859	Shea	r Strength (kPa)	96.094	
0,25 0,2 0,15 0,15 0,05 0,05 0 1 2	Stress(MPa),	/Strair	n (mm)	7 8	
	S	train (mm)		

Project Information				
Project Name	3 BS		Prep. Date	05.10.14
Curing Period	0 days		Test Date	05.10.14
Sample Number	3		Tested By	Can CEYLAN
Standard	ASTM D 2	2166	Device	ELE Multip50
Soil Classification	СН			
Location	METU Tra	ansport	t Lab.	
Condition of Sample	Disturbed-	Remol	lded-Unsoaked	
Specimen Properties and Unc	onfined Com	pressi	ve Strength	
Initial Volume (cm3)	198.314	Initia	al Length (mm.)	101.000
Mass of Cont. + Wet Soil (gr.)	556.880	Initia	al Diameter (mm.)	50.000
Mass of Cont. + Dry Soil (gr.)	470.500	L/D		2.020
Mass of Container (gr.)	188.400	Initia	al Area (mm2)	1963.500
Mass of Sample (gr.)	368.480	Strai	in Rate (mm./min.)	1.250
Mass of Dry Sample (gr.)	282.100	Strai	in at failure (mm.)	6.188
Mass of Moisture (gr.)	86.380	Axia	al Strain %	6.127
Moisture Content %	0.306	Corr	rected Area (mm2)	2091.650
Specific Gravity (g/cm3)	2.712			
Dry Density (g/cm3)	1.422	UCS	S Strength (kPa)	195.523
Bulk Density (g/cm3)	1.858	Shea	ar Strength (kPa)	97.762
	Stress(MPa)	/Strai	n (mm)	
0,25				
0.2				
0,2		~~~~		
-0.15				
W Ba				
Se 0,1				
Stre				
0,05				
and the second s				
	2 4			7 0 0
0 1 2	ع 4 ۲۱	rain (m	ວ ຍ າm)	/ 8 9
	50	(11	,	

Project Information						
Project Name	6 BS		Prep. Date	05.10.14		
Curing Period	0 days		Test Date	05.10.14		
Sample Number	1		Tested By	Can CEYLAN		
Standard	ASTM D 2	166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	nsport	t Lab.			
Condition of Sample	Disturbed-l	Remol	ded-Unsoaked			
Specimen Properties and Unco	nfined Comj	pressiv	ve Strength			
Initial Volume (cm3)	196.350	Initia	al Length (mm.)	100.000		
Mass of Cont. + Wet Soil (gr.)	491.310	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	405.100	L/D		2.000		
Mass of Container (gr.)	124.200	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	367.110	Strai	n Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	280.900	Strai	n at failure (mm.)	5.033		
Mass of Moisture (gr.)	86.210	Axia	ll Strain %	5.033		
Moisture Content %	30.691	Corr	ected Area (mm2)	2067.560		
Specific Gravity (g/cm3)	2.706					
Dry Density (g/cm3)	1.431	UCS	Strength (kPa)	231.848		
Bulk Density (g/cm3)	1.870	Shea	ar Strength (kPa)	115.924		
Stress(MP	a)/Strain (m	ım)				
0,2						
Stress (WGa)						
0,05						
0 1 2	3	. ,	4 5	6 7		
Strain (mm)						

Project Information						
Project Name	6 BS		Prep. Date	05.10.14		
Curing Period	0 days		Test Date	05.10.14		
Sample Number	2		Tested By	Can CEYLAN		
Standard	ASTM D 2	2166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	ansport	t Lab.			
Condition of Sample	Disturbed-	Remol	ded-Unsoaked			
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (cm3)	196.350	Initia	al Length (mm.)	100.000		
Mass of Cont. + Wet Soil (gr.)	517.900	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	429.700	L/D		2.000		
Mass of Container (gr.)	149.400	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	368.500 Strain		n Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	280.300 Stra		n at failure (mm.)	5.013		
Mass of Moisture (gr.)	88.200 Axi		ll Strain %	5.013		
Moisture Content %	31.466 Corr		ected Area (mm2)	2067.125		
Specific Gravity (g/cm3)	2.706					
Dry Density (g/cm3)	1.428	UCS	S Strength (kPa)	216.204		
Bulk Density (g/cm3)	1.877	Shea	ar Strength (kPa)	108.102		
0,25 0,2 0,2 0,15 0,15 0,01 0,05 0 0	Stress(MPa)	/Strain	n (mm)	7 8		
Strain (mm)						

Project Information						
Project Name	6 BS		Prep. Date	05.10.14		
Curing Period	0 days		Test Date	05.10.14		
Sample Number	3		Tested By	Can CEYLAN		
Standard	ASTM D 216	66	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Transport Lab.					
Condition of Sample	Disturbed-Remolded-Unsoaked					
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (cm3)	200.201	Initial Length (mm.)		100.800		
Mass of Cont. + Wet Soil (gr.)	502.800	Initial Diameter (mm.)		50.300		
Mass of Cont. + Dry Soil (gr.)	414.100	L/]	D	2.004		
Mass of Container (gr.)	126.600	Initial Area (mm2)		1986.121		
Mass of Sample (gr.)	376.200	Str	rain Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	287.500	Str	rain at failure (mm.)	6.090		
Mass of Moisture (gr.)	88.700	Ax	xial Strain %	6.042		
Moisture Content %	30.852	Co	prrected Area (mm2)	2113.831		
Specific Gravity (g/cm3)	2.706					
Dry Density (g/cm3)	1.436	U	CS Strength (kPa)	229.506		
Bulk Density (g/cm3)	1.879	Sh	ear Strength (kPa)	114.753		

Figure H.1 (Continued)

Project Information							
Project Name	10 BS		Prep. Date	05.10.14			
Curing Period	0 days		Test Date	05.10.14			
Sample Number	1		Tested By	Can CEYLAN			
Standard	ASTM D 2	2166	Device	ELE Multip50			
Soil Classification	СН						
Location	METU Transport Lab.						
Condition of Sample	Disturbed-Remolded-Unsoaked						
Specimen Properties and Unconfined Compressive Strength							
Initial Volume (cm3)	196.250	Initia	l Length (mm.)	100.000			
Mass of Cont. + Wet Soil (gr.)	482.430	Initia	l Diameter (mm.)	50.000			
Mass of Cont. + Dry Soil (gr.)	394.600	L/D		2.000			
Mass of Container (gr.)	118.000	Initia	l Area (mm2)	1962.500			
Mass of Sample (gr.)	364.430	Strain	n Rate (mm./min.)	1.250			
Mass of Dry Sample (gr.)	276.600	276.600 Strain at failure (mm.)		5.940			
Mass of Moisture (gr.)	87.830 Axial Strain %		Strain %	5.940			
Moisture Content %	31.753 Corrected Area (mm2		ected Area (mm2)	2086.434			
Specific Gravity (g/cm3)	2.706						
Dry Density (g/cm3)	1.409	UCS	Strength (kPa)	201.198			
Bulk Density (g/cm3)	1.857	Shear	r Strength (kPa)	100.599			
0,25 0,2 0,2 0,15 0,1 0,05	Stress(MPa)/S	Strain (mm)				
	2 3	Strain (r	4 5 mm)	6 7			

Figure H.1 (Continued)

Project Inf	ormation						
Project Nar	ne	10 BS		Prep. Date		05.10.14	
Curing Peri	od	0 days		Test Date		05.10.14	
Sample Nu	mber	1		Tested By		Can CEYLAN	1
Standard		ASTM D 2	166	Device		ELE Multip50)
Soil Classif	ication	СН					
Location		METU Tra	METU Transport Lab.				
Condition of	of Sample	Disturbed-	Remol	ded-Unsoaked			
Specimen Properties and Unconfined Compressive Strength							
Initial Volu	ume (cm3)	196.250 Initial		ıl Length (mm.)		100.000	
Mass of Co	ont. + Wet Soil (gr.)	496.540	Initia	ıl Diameter (mm	ı.)	50.000	
Mass of Co	ont. + Dry Soil (gr.)	408.400	L/D			2.000	
Mass of Co	ntainer (gr.)	130.800	Initia	ıl Area (mm2)		1962.500	
Mass of Sa	mple (gr.)	365.740 Strain		n Rate (mm./mii	n.)	1.250	
Mass of Dr	y Sample (gr.)	277.600 Strain		n at failure (mm	.)	5.623	
Mass of Mo	oisture (gr.)	88.140 Axia		1 Strain %		5.623	
Moisture C	ontent %	31.751 Corre		ected Area (mm	2)	2079.426	
Specific Gr	avity (g/cm3)	2.706					
Dry Densit	y (g/cm3)	1.415 UCS S		Strength (kPa))	191.878	
Bulk Densi	ty (g/cm3)	1.864	Shea	ar Strength (kPa	a)	95.939	
0,25 0,2 0,15 0,1 0,1 0,05		Stress(MPa),	/Strain	ו (mm)			
0) 1 2	3 Stra	4 ain (m	5 m)	6	7	8

Figure H.1 (Continued)

Project Information							
Project Name	10 BS		Prep. Date	05.10.14			
Curing Period	0 days		Test Date	05.10.14			
Sample Number	3		Tested By	Can CEYLAN			
Standard	ASTM D 2	2166	Device	ELE Multip50			
Soil Classification	СН						
Location	METU Tra	ansport	Lab.				
Condition of Sample	Disturbed-Remolded-Unsoaked						
Specimen Properties and Unconfined Compressive Strength							
Initial Volume (cm3)	196.250	Initia	al Length (mm.)	100.000			
Mass of Cont. + Wet Soil (gr.)	498.400	Initia	al Diameter (mm.)	50.000			
Mass of Cont. + Dry Soil (gr.)	408.200	L/D		2.000			
Mass of Container (gr.)	131.000	Initia	al Area (mm2)	1962.500			
Mass of Sample (gr.)	367.400	Strai	n Rate (mm./min.)	1.250			
Mass of Dry Sample (gr.)	277.200	277.200 Strain at failure (mm.)		5.400			
Mass of Moisture (gr.)	90.200	90.200 Axial Strain %		5.400			
Moisture Content %	32.540	32.540 Corrected Area (mm2)		2074.524			
Specific Gravity (g/cm3)	2.706						
Dry Density (g/cm3)	1.412	UCS	Strength (kPa)	199.649			
Bulk Density (g/cm3)	1.872	Shea	ar Strength (kPa)	99.825			
0,25 0,2 0,15 0,15 0,15 0,01 0,05 0 1	Stress(MPa))/Strain	n (mm)	6 7			
		strain (mm)				

Figure H.1 (Continued)

Project Information						
Project Name	15 BS		Prep. Date	05.10.14		
Curing Period	0 days		Test Date	05.10.14		
Sample Number	1		Tested By	Can CEYLAN		
Standard	ASTM D 2	166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	nsport	Lab.			
Condition of Sample	Disturbed-Remolded-Unsoaked					
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (cm3)	196.350	Initia	al Length (mm.)	100.000		
Mass of Cont. + Wet Soil (gr.)	515.900	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	425.900	L/D		2.000		
Mass of Container (gr.)	153.200	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	362.700	Strai	n Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	272.700 Strain at failure (mm.)		5.883			
Mass of Moisture (gr.)	90.000 Axial Strain		l Strain %	5.883		
Moisture Content %	33.003 Corrected Area (mm2)		2086.233			
Specific Gravity (g/cm3)	2.706					
Dry Density (g/cm3)	1.389	.389 UCS Strength (kPa)		180.531		
Bulk Density (g/cm3)	1.847	Shear Strength (kPa)		90.266		
0,2 0,18	Stress(MPa),	/Strair	ו (mm)	*****		
0,16			- Ward and a second sec			
e 0.12		- AND - AND				
S 0,1						
80,08						
0,06						
0,04						
0,02						
	2 3		4 5	6 7		
	S	train (mm)			

Figure H.1 (Continued)

Project Information						
Project Name	15 BS		Prep. Date	05.10.14		
Curing Period	0 days		Test Date	05.10.14		
Sample Number	1		Tested By	Can CEYLAN		
Standard	ASTM D 2	2166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	insport	Lab.			
Condition of Sample	Disturbed-	Remol	ded-Unsoaked			
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (cm3)	198.314	Initia	al Length (mm.)	101.000		
Mass of Cont. + Wet Soil (gr.)	513.820	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	420.100	L/D		2.020		
Mass of Container (gr.)	142.800	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	371.020 Strai		n Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	277.300 Strai		n at failure (mm.)	5.990		
Mass of Moisture (gr.)	93.720 Axia		ll Strain %	5.931		
Moisture Content %	33.797 Com		ected Area (mm2)	2087.291		
Specific Gravity (g/cm3)	2.706					
Dry Density (g/cm3)	1.398	UCS	Strength (kPa)	181.203		
Bulk Density (g/cm3)	1.871	Shea	ar Strength (kPa)	90.602		
0.2	tress(MPa)	/Strai	n (mm)			
0,18				~~~~~		
0,16		~~~~		•		
0,14						
O,12						
2 0,1 S						
80,0 Etre						
0,06						
0,04						
0,02						
0 1 2	3	4	5 6	7 8		
Strain (mm)						

Project Information				
Project Name	15 BS		Prep. Date	05.10.14
Curing Period	0 days		Test Date	05.10.14
Sample Number	3		Tested By	Can CEYLAN
Standard	ASTM D 2	2166	Device	ELE Multip50
Soil Classification	СН			
Location	METU Tra	insport	t Lab.	
Condition of Sample	Disturbed-	Remol	ded-Unsoaked	
Specimen Properties and Unco	nfined Com	pressi	ve Strength	
Initial Volume (cm3)	196.350	Initia	al Length (mm.)	100.000
Mass of Cont. + Wet Soil (gr.)	559.880	Initia	al Diameter (mm.)	50.000
Mass of Cont. + Dry Soil (gr.)	467.300	L/D		2.000
Mass of Container (gr.)	192.400	Initia	al Area (mm2)	1963.500
Mass of Sample (gr.)	367.480	Strai	n Rate (mm./min.)	1.250
Mass of Dry Sample (gr.)	274.900	Strai	n at failure (mm.)	5.985
Mass of Moisture (gr.)	92.580 Axia		ll Strain %	5.985
Moisture Content %	33.678 Corre		ected Area (mm2)	2088.497
Specific Gravity (g/cm3)	2.706			
Dry Density (g/cm3)	1.400	UCS	Strength (kPa)	191.167
Bulk Density (g/cm3)	1.872	Shea	ar Strength (kPa)	95.584
0,25	Stress(MPa)	/Straiı	n (mm)	
0,2				~~~~
			www	
eq 0,15				
SS (N				
St 0,1				
0,05				
0				
0 1 2	3	4	5 6	7 8
	Str	rain (m	nm)	

Figure H.1 (Continued)

Project Information						
Project Name	3 BS		Prep. Date	05.10.14		
Curing Period	7 days		Test Date	05.10.14		
Sample Number	1		Tested By	Can CEYLAN		
Standard	ASTM D 2	2166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	insport	Lab.			
Condition of Sample	Disturbed-	Remol	ded-Unsoaked			
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (mm3)	197.921	Initia	al Length (mm.)	100.800		
Mass of Cont. + Wet Soil (gr.)	502.800	Initia	al Diameter (mm.)	50.400		
Mass of Cont. + Dry Soil (gr.)	420.200	L/D		2.000		
Mass of Container (gr.)	134.500	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	368.300	Strai	n Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	285.700 Strai		n at failure (mm.)	5.529		
Mass of Moisture (gr.)	82.600 Axi		ll Strain %	5.485		
Moisture Content %	0.289 Cor		ected Area (mm2)	2077.451		
Specific Gravity (g/cm3)	2.712					
Dry Density (g/cm3)	1.444	UCS	Strength (kPa)	256.918		
Bulk Density (g/cm3)	1.861	Shea	ar Strength (kPa)	128.459		
0,3 0,25 (0,2 (0,2 (0,2) 0,15 0,15 0,1 0,05 0	Stress(MPa)	/Strain	n (mm)			
0 1 2	3 Strair	4 (mm)	5 6	7 8		
	Sudi	. ()				

Project Information						
Project Name	3 BS		Prep. Date	05.10.14		
Curing Period	7 days		Test Date	05.10.14		
Sample Number	2		Tested By	Can CEYLAN		
Standard	ASTM D 2	166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	nsport	Lab.			
Condition of Sample	Disturbed-Remolded-Unsoaked					
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (mm3)	198.314	Initia	al Length (mm.)	100.200		
Mass of Cont. + Wet Soil (gr.)	481.000	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	397.600	L/D		2.004		
Mass of Container (gr.)	114.200	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	366.800 Strain		n Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	283.400 Strain		n at failure (mm.)	5.333		
Mass of Moisture (gr.)	83.400 Fina		l Length	96.542		
Moisture Content %	0.294 Corre		ected Area	2054.175		
Specific Gravity (g/cm3)	2.712					
Dry Density (g/cm3)	1.429	UCS	Strength	245.730		
Bulk Density (g/cm3)	1.850	Shea	r Strength	122.865		
0,3 0,25 0,2 0,15 0,15 0,05 0 0	Stress(MPa),	/Strain	n (mm)			
	S	train (mm)			

Figure H.1 (Continued)

Project Information						
Project Name	3 BS		Prep. Date	05.10.14		
Curing Period	7 days		Test Date	05.10.14		
Sample Number	3		Tested By	Can CEYLAN		
Standard	ASTM D 2	2166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	insport	Lab.			
Condition of Sample	Disturbed-Remolded-Unsoaked					
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (cm3)	196.939	Initia	al Length (mm.)	100.300		
Mass of Cont. + Wet Soil (gr.)	500.500	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	416.200	L/D		2.006		
Mass of Container (gr.)	134.700	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	365.800 Strai		n Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	281.500 Strai		n at failure (mm.)	6.251		
Mass of Moisture (gr.)	84.300 Axi		l Strain %	6.232		
Moisture Content %	0.299 Corr		ected Area (mm2)	2094.005		
Specific Gravity (g/cm3)	2.712					
Dry Density (g/cm3)	1.429	UCS	Strength (kPa)	250.482		
Bulk Density (g/cm3)	1.857	Shea	r Strength (kPa)	125.241		
	Stress(MPa)	/Straiı	n (mm)			
0,3						
0,25						
e 0,2						
ق 0.15						
s s s s s s s s s s s s s s s s s s s						
ъ 0,1						
0,05						
0						
0 2	4		6	8 10		
	Strain	ı (mm)				

Figure H.1 (Continued)

Project Information					
Project Name	6 BS		Prep. Date	05.10.14	
Curing Period	7 days		Test Date	05.10.14	
Sample Number	1		Tested By	Can CEYLAN	
Standard	ASTM D 2	166	Device	ELE Multip50	
Soil Classification	СН				
Location	METU Tra	nsport	Lab.		
Condition of Sample	Disturbed-l	Remol	ded-Unsoaked		
Specimen Properties and Unconfined Compressive Strength					
Initial Volume (cm3)	196.350	196.350 Initial Length (mm.)		100.000	
Mass of Cont. + Wet Soil (gr.)	500.300	Initial Diameter (mm.)		50.000	
Mass of Cont. + Dry Soil (gr.)	413.100	L/D		2.000	
Mass of Container (gr.)	130.900	Initial Area (mm2)		1963.500	
Mass of Sample (gr.)	369.400	Strain Rate (mm./min.)		1.250	
Mass of Dry Sample (gr.)	282.200	Strain at failure (mm.)		5.383	
Mass of Moisture (gr.)	87.200	Axia	l Strain %	5.383	
Moisture Content %	30.900	Corr	ected Area (mm2)	2075.208	
Specific Gravity (g/cm3)	2.706				
Dry Density (g/cm3)	1.437	UCS	Strength (kPa)	288.015	
Bulk Density (g/cm3)	1.881	Shea	ar Strength (kPa)	144.008	

Figure H.1 (Continued)

Project Information	Project Information					
Project Name	6 BS		Prep. Date	05.10.14		
Curing Period	7 days		Test Date	05.10.14		
Sample Number	2		Tested By	Can CEYLAN		
Standard	ASTM D 2	2166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	insport	Lab.			
Condition of Sample	Disturbed-	Disturbed-Remolded-Unsoaked				
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (cm3)	196.350	Initia	l Length (mm.)	100.000		
Mass of Cont. + Wet Soil (gr.	.) 534.900	Initia	l Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.) 447.800	L/D		2.000		
Mass of Container (gr.)	165.600	Initia	l Area (mm2)	1963.500		
Mass of Sample (gr.)	369.300	Strain Rate (mm./min.)		1.250		
Mass of Dry Sample (gr.)	282.200	2.200 Strain at failure (mm.)		4.063		
Mass of Moisture (gr.)	87.100	Axia	l Strain %	4.063		
Moisture Content %	30.865	30.865 Corrected Area (mm2)		2046.656		
Specific Gravity (g/cm3)	2.706					
Dry Density (g/cm3)	1.437	.437 UCS Strength (kPa)		282.263		
Bulk Density (g/cm3)	1.881	Shea	r Strength (kPa)	141.132		
0,3 0,25 (e 0,2 0,15 0,15 0,0 0,05 0 0 1	Stress(MPa)	/Strain	a (mm)	5 6		
	S	Strain (I	mm)			

Project Information					
Project Name	6 B		Prep. Date	05.10.14	
Curing Period	7 days		Test Date	05.10.14	
Sample Number	3		Tested By	Can CEYLAN	
Standard	ASTM D 2166		Device	ELE Multip50	
Soil Classification	СН				
Location	METU Tra	nsport	Lab.		
Condition of Sample	Disturbed-l	Remol	ded-Unsoaked		
Specimen Properties and Unconfined Compressive Strength					
Initial Volume (cm3)	197.231	Initia	al Length (mm.)	100.500	
Mass of Cont. + Wet Soil (gr.)	488.700	Initia	al Diameter (mm.)	50.000	
Mass of Cont. + Dry Soil (gr.)	400.300	L/D		2.010	
Mass of Container (gr.)	118.400	Initia	al Area (mm2)	1962.500	
Mass of Sample (gr.)	370.300	370.300 Strain Rate (mm./min.)		1.250	
Mass of Dry Sample (gr.)	281.900 Strain at fai		n at failure (mm.)	5.600	
Mass of Moisture (gr.)	88.400 Ax		l Strain %	5.572	
Moisture Content %	31.359	Corr	ected Area (mm2)	2078.306	
Specific Gravity (g/cm3)	2.706				
Dry Density (g/cm3)	1.429	UCS	Strength (kPa)	278.931	
Bulk Density (g/cm3)	1.877	Shea	r Strength (kPa)	139.466	
0,3 0,25 0,2 0,15 0,15 0,05 0	Stress(MPa),	/Strain	n (mm)		
0 1 2	3 St	4 rain (n	5 6 nm)	7 8	

Figure H.1 (Continued)

Project Information						
Project Name	10 B		Prep. Date	05.10.14		
Curing Period	7 days		Test Date	05.10.14		
Sample Number	1		Tested By	Can CEYLAN		
Standard	ASTM D 2	2166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	insport	Lab.			
Condition of Sample	Disturbed-Remolded-Unsoaked					
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (cm3)	196.250	Initia	al Length (mm.)	100.000		
Mass of Cont. + Wet Soil (gr.)	460.400	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	369.300	L/D		2.000		
Mass of Container (gr.)	89.700	Initia	al Area (mm2)	1962.500		
Mass of Sample (gr.)	370.700	Strain Rate (mm./min.)		1.250		
Mass of Dry Sample (gr.)	279.600	Strai	n at failure (mm.)	5.750		
Mass of Moisture (gr.)	91.100 Ax		ll Strain %	5.750		
Moisture Content %	32.582	Corr	ected Area (mm2)	2082.228		
Specific Gravity (g/cm3)	2.706					
Dry Density (g/cm3)	1.425	UCS	Strength (kPa)	242.902		
Bulk Density (g/cm3)	1.889	Shea	ar Strength (kPa)	121.451		
	Stress	s(MPa)/Strain (mm)			
0,3						
0,25						
R 0,2						
۳ <u>ـ</u> 0.15						
tress 1						
У 0,1						
0,05						
0 1 2	3	4	5 6	7 8		
	S	Strain (mm)			

Proj	Project Information						
Proje	ect Nan	ne	10 BS		Prep. Date	0)5.10.14
Curi	ng Peri	od	7 days		Test Date	()5.10.14
Samj	ple Nur	nber	2		Tested By	(Can CEYLAN
Stand	dard		ASTM D 2	166	Device	I	ELE Multip50
Soil	Classifi	ication	СН				
Loca	tion		METU Tra	nsport	Lab.		
Cond	lition o	f Sample	Disturbed-	Remol	ded-Unsoaked		
Spec	imen F	Properties and Unco	nfined Com	pressiv	ve Strength		
Initia	ıl Volu	me (cm3)	196.250	Initia	Initial Length (mm.) 100.000		
Mass	s of Co	nt. + Wet Soil (gr.)	499.540	Initia	al Diameter (mm	ı.)	50.000
Mass	s of Co	nt. + Dry Soil (gr.)	408.400	L/D			2.000
Mass	s of Co	ntainer (gr.)	129.900	Initia	al Area (mm2)		1962.500
Mass	s of Sar	nple (gr.)	369.640	Strain Rate (mm./min.)		1.250	
Mass	s of Dry	y Sample (gr.)	278.500	Strain at failure (mm.)		l.)	5.440
Mass	s of Mo	isture (gr.)	91.140) Axial Strain %			5.440
Mois	sture Co	ontent %	32.725	Corrected Area (mm2)		2)	2075.402
Spec	ific Gra	avity (g/cm3)	2.706				
Dry	Density	v (g/cm3)	1.419	UCS	Strength (kPa)	246.351
Bulk	Densit	y (g/cm3)	1.884	Shear Strength (kPa)			123.176
			Stress	(MPa)	/Strain (mm)		
	0,3						
	,						
	0,25					~~~~	
	0,2						
a)	0.15						
(MP	0,10						
ress	0,1						
St	0,05						
	0						
	0	0 1	2 3	}	4 5	5	6 7
	-0,05		S	Strain ((mm)		
					-		

Project Information						
Project Name	10 BS		Prep. Date	05.10.14		
Curing Period	7 days		Test Date	05.10.14		
Sample Number	3		Tested By	Can CEYLAN		
Standard	ASTM D 2	2166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	insport	Lab.			
Condition of Sample	Disturbed-	Remol	ded-Unsoaked			
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (cm3)	196.250	Initia	al Length (mm.)	100.000		
Mass of Cont. + Wet Soil (gr.)	514.000	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	423.100	L/D		2.000		
Mass of Container (gr.)	146.700	Initia	al Area (mm2)	1962.500		
Mass of Sample (gr.)	367.300	Strain Rate (mm./min.)		1.250		
Mass of Dry Sample (gr.)	276.400	Strai	n at failure (mm.)	5.025		
Mass of Moisture (gr.)	90.900		ll Strain %	5.025		
Moisture Content %	32.887	Corr	ected Area (mm2)	2066.333		
Specific Gravity (g/cm3)	2.706					
Dry Density (g/cm3)	1.408	UCS	Strength (kPa)	234.038		
Bulk Density (g/cm3)	1.872	Shea	ar Strength (kPa)	117.019		
0,25	Stress(MPa)	/Straiı	n (mm)			
0,2		_		~		
ed 0,15						
5 0,1						
0,05						
0 1	2 2		4 5	6 7		
	S	Strain (mm)	~ /		

Figure H.1 (Continued)

Project Information						
Project Name	15 BS		Prep. Date	05.10.14		
Curing Period	7 days		Test Date	05.10.14		
Sample Number	1		Tested By	Can CEYLAN		
Standard	ASTM D 2166		Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	nsport	Lab.			
Condition of Sample	Disturbed-l	Remol	ded-Unsoaked			
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (cm3)	198.314	Initia	Initial Length (mm.) 101.000			
Mass of Cont. + Wet Soil (gr.)	491.600	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	400.300	L/D		2.020		
Mass of Container (gr.)	124.400	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	367.200 St		n Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	275.900	Strain at failure (mm.)		6.220		
Mass of Moisture (gr.)	91.300	Axial Strain %		6.158		
Moisture Content %	33.092	Corrected Area (mm2)		2092.356		
Specific Gravity (g/cm3)	2.706	2.706				
Dry Density (g/cm3)	1.391	UCS Strength (kPa)		233.451		
Bulk Density (g/cm3)	1.852	Shear Strength (kPa)		116.726		
0,25 0,2 0,2 0,15 0,15 0,05 0,05	Stress(MPa),	/Strain	n (mm)			
~ 1 L	S	train (mm)	. 0		

Figure H.1 (Continued)

Project Information							
Project Name	15 BS		Prep. Date	05.10.14			
Curing Period	7 days		Test Date	05.10.14			
Sample Number	2		Tested By	Can CEYLAN			
Standard	ASTM D 2	166	Device	ELE Multip50			
Soil Classification	СН						
Location	METU Tra	insport	Lab.				
Condition of Sample	Disturbed-Remolded-Unsoaked						
Specimen Properties and Unconfined Compressive Strength							
Initial Volume (cm3)	196.350	Initia	al Length (mm.)	100.000			
Mass of Cont. + Wet Soil (gr.)	463.100	Initial Diameter (mm.)		50.000			
Mass of Cont. + Dry Soil (gr.)	370.900	L/D		2.000			
Mass of Container (gr.)	97.500	Initial Area (mm2)		1963.500			
Mass of Sample (gr.)	365.600	Strai	n Rate (mm./min.)	1.250			
Mass of Dry Sample (gr.)	273.400	Strai	n at failure (mm.)	6.362			
Mass of Moisture (gr.)	92.200	Axia	l Strain %	6.362			
Moisture Content %	33.723	Corr	ected Area (mm2)	2096.905			
Specific Gravity (g/cm3)	2.706						
Dry Density (g/cm3)	1.392	UCS	Strength (kPa)	229.415			
Bulk Density (g/cm3)	1.862	Shea	r Strength (kPa)	114.708			

Figure H.1 (Continued)

Project Information							
Project Name	15 BS		Prep. Date	05.	10.14		
Curing Period	7 days		Test Date	05.	10.14		
Sample Number	3		Tested By	Car	n CEYLAN		
Standard	ASTM D 2	166	Device	EL	E Multip50		
Soil Classification	СН						
Location	METU Tra	nsport	t Lab.				
Condition of Sample	Disturbed-l	Remol	ded-Unsoaked				
Specimen Properties and Unconfined Compressive Strength							
Initial Volume (cm3)	196.350	Initia	al Length (mm.)		100.000		
Mass of Cont. + Wet Soil (gr.)	509.800	Initia	al Diameter (mm	ı.)	50.000		
Mass of Cont. + Dry Soil (gr.)	418.600	L/D			2.000		
Mass of Container (gr.)	143.000	Initia	al Area (mm2)		1963.500		
Mass of Sample (gr.)	366.800	00 Strain Rate (mm./min.)			1.250		
Mass of Dry Sample (gr.)	275.600	275.600 Strain at failure (mm.)			5.750		
Mass of Moisture (gr.)	91.200 Axi		ıl Strain %		5.750		
Moisture Content %	33.091	33.091 Corrected Area (mm2)			2083.289		
Specific Gravity (g/cm3)	2.706						
Dry Density (g/cm3)	1.404	UCS	Strength (kPa))	235.574		
Bulk Density (g/cm3)	1.868	Shea	ar Strength (kPa	a)	117.787		
0,25	Stress((MPa),	/Strain (mm)				
0,2							
(ed W) 5							
Sties 0,1							
0,05							
	2 3		4 5		6 7		
	Strain (mm)						

Figure H.1 (Continued)

Project Information						
Project Name	3 B		Prep. Date	05.10.14		
Curing Period	28 days		Test Date	05.10.14		
Sample Number	1		Tested By	Can CEYLAN		
Standard	ASTM D 2	166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Transport Lab.					
Condition of Sample	Disturbed-l	Remol	ded-Unsoaked			
Specimen Properties and Unconfined Compressive Strength						
Initial Volume (mm3)	196.350	Initia	al Length (mm.)	100.000		
Mass of Cont. + Wet Soil (gr.)	502.570	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	418.200	L/D		2.000		
Mass of Container (gr.)	134.500	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	368.070 Strain		n Rate (mm./min.)	1.250		
Mass of Dry Sample (gr.)	283.700 Strai		n at failure (mm.)	5.700		
Mass of Moisture (gr.)	84.370 Ax		ll Strain %	5.700		
Moisture Content %	0.297 0		ected Area (mm2)	2082.185		
Specific Gravity (g/cm3)	2.712					
Dry Density (g/cm3)	1.445	UCS	Strength (kPa)	295.178		
Bulk Density (g/cm3)	1.875	Shea	ar Strength (kPa)	147.589		
0,35 0,3 0,25 (eg 0,2 0,15 0,1 0,05	Stress(MPa)/	/Strain (mm)			
0						
0 1 2	3 Str	ain (m	4 5 nm)	6 7		

Figure H.1 (Continued)

Project In	formation					
Project Nat	me	3 BS		Prep. Date	05.10.14	
Curing Per	iod	28 days		Test Date	05.10.14	
Sample Nu	mber	2		Tested By	Can CEYLAN	
Standard		ASTM D 2166 Device			ELE Multip50	
Soil Classi	fication	СН				
Location		METU Transport Lab.				
Condition	of Sample	Disturbed-Remolded-Unsoaked				
Specimen Properties and Unconfined Compressive Strength						
Initial Volu	ume (mm3)	198.314	Initia	al Length (mm.)	101.000	
Mass of Co	ont. + Wet Soil (gr.)	477.500	Initia	al Diameter (mm.)	50.000	
Mass of Co	ont. + Dry Soil (gr.)	394.000	L/D		2.020	
Mass of Co	ontainer (gr.)	109.300	Initia	al Area (mm2)	1963.500	
Mass of Sa	mple (gr.)	368.200	Strain Rate (mm./min.)		1.250	
Mass of Dr	ry Sample (gr.)	284.700	700 Strain at failure (mm.)		5.933	
Mass of M	oisture (gr.)	83.500	Axia	l Strain %	5.874	
Moisture C	Content %	0.293	Corrected Area (mm2)		2086.039	
Specific G	ravity (g/cm3)	2.712				
Dry Densit	y (g/cm3)	1.436	UCS	Strength	282.832	
Bulk Densi	ity (g/cm3)	1.857	Shea	ar Strength	141.416	
0.2	5	Stress(MPa),	/Straiı	n (mm)		
0,5						
0,25						
- 0.2						
MPa						
l) ssa						
Stre 0,1						
0.07						
0,05						
0						
	0 1	2 3		4 5	6 7	

Figure H.1 (Continued)

Strain (mm)

Project Information						
Project Name	3 BS		Prep. Date	05.10.14		
Curing Period	28 days		Test Date	05.10.14		
Sample Number	3		Tested By	Can CEYLAN		
Standard	ASTM D 2	2166	Device	ELE Multip50		
Soil Classification	СН					
Location	METU Tra	insport	Lab.			
Condition of Sample	Disturbed-	Remol	ded-Unsoaked			
Specimen Properties and Unco	nfined Com	pressi	ve Strength			
Initial Volume (cm3)	196.350	Initia	al Length (mm.)	100.000		
Mass of Cont. + Wet Soil (gr.)	514.700	Initia	al Diameter (mm.)	50.000		
Mass of Cont. + Dry Soil (gr.)	429.800	L/D		2.000		
Mass of Container (gr.)	145.200	Initia	al Area (mm2)	1963.500		
Mass of Sample (gr.)	369.500	Strain Rate (mm./min.)		1.250		
Mass of Dry Sample (gr.)	284.600) Strain at failure (mm.)		5.583		
Mass of Moisture (gr.)	84.900	4.900 Axial Strain %		5.583		
Moisture Content %	0.298	98 Corrected Area (mm2)		2079.604		
Specific Gravity (g/cm3)	2.712					
Dry Density (g/cm3)	1.449	UCS	Strength (kPa)	295.543		
Bulk Density (g/cm3)	1.882	Shea	ar Strength (kPa)	147.772		
0,35 0,3 0,25 0,2 0,25 0,15	Stress(MPa)	/Strain	n (mm)			
0,05						
0 1 2 3 4 5 6 7 Strain (mm)						

Project Information					
Project Name	6 BS		Prep. Date	05.10.14	
Curing Period	28 days Test D		Test Date	05.10.14	
Sample Number	1 Tested By C			Can CEYLAN	
Standard	ASTM D 2166 Device			ELE Multip50	
Soil Classification	СН				
Location	METU Tra	nsport	Lab.		
Condition of Sample	Disturbed-l	Remol	ded-Unsoaked		
Specimen Properties and Unco	nfined Com	pressiv	ve Strength		
Initial Volume (cm3)	196.350	Initia	al Length (mm.)	100.000	
Mass of Cont. + Wet Soil (gr.)	503.100	Initia	al Diameter (mm.)	50.000	
Mass of Cont. + Dry Soil (gr.)	414.800	L/D		2.000	
Mass of Container (gr.)	132.900	Initia	al Area (mm2)	1963.500	
Mass of Sample (gr.)	370.200	Strai	n Rate (mm./min.)	1.250	
Mass of Dry Sample (gr.)	281.900	Strain at failure (mm.)		5.733	
Mass of Moisture (gr.)	88.300	Axial Strain %		5.733	
Moisture Content %	31.323	Corr	ected Area (mm2)	2082.913	
Specific Gravity (g/cm3)	2.706				
Dry Density (g/cm3)	1.436	UCS	Strength (kPa)	318.560	
Bulk Density (g/cm3)	1.885	Shear Strength (kPa)		159.280	
0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 0 1	Stress(MPa),	/Strain	n (mm)	5 6	
	S	Strain	(mm)		

Project Info	rmation							
Project Name	e	6 BS		Prep. Date	05.10.14			
Curing Perio	d	28 days		Test Date	05.10.14			
Sample Num	ıber	2 Tested By C		Can CEYLAN				
Standard		ASTM D 2	2166	Device	ELE Multip50			
Soil Classific	cation	СН						
Location		METU Tra	insport	t Lab.				
Condition of	Sample	Disturbed-	Remol	ded-Unsoaked				
Specimen Properties and Unconfined Compressive Strength								
Initial Volum	ne (cm3)	196.350	Initia	al Length (mm.)	100.000			
Mass of Con	t. + Wet Soil (gr.)	502.500	Initia	al Diameter (mm.)	50.000			
Mass of Con	t. + Dry Soil (gr.)	415.800	L/D		2.000			
Mass of Con	tainer (gr.)	134.700	Initia	al Area (mm2)	1963.500			
Mass of Sam	ple (gr.)	367.800	Strai	n Rate (mm./min.)	1.250			
Mass of Dry	Sample (gr.)	281.100	Strai	n at failure (mm.)	4.333			
Mass of Moi	sture (gr.)	86.700	Axia	ll Strain %	4.333			
Moisture Con	ntent %	30.843	Corr	ected Area (mm2)	2052.432			
Specific Grav	vity (g/cm3)	2.706						
Dry Density	(g/cm3)	1.432	UCS	S Strength (kPa)	311.996			
Bulk Density	/ (g/cm3)	1.873	Shea	ar Strength (kPa)	155.998			
		Stress(MPa)	/Straiı	n (mm)				
0,35								
0,3								
0.25								
(11a)								
2) SS								
Stres								
0,1								
0,05								
0								
0	1	2	3	4	5 6			
		Str	ain (m	im)				

Figure H.1 (Continued)

Pro	ject Inf	ormation				
Proj	ect Nar	ne	6 BS		Prep. Date	05.10.14
Cur	ing Peri	od	28 days		Test Date	05.10.14
Sam	ple Nu	mber	3		Tested By	Can CEYLAN
Star	ndard		ASTM D 2166 Device		ELE Multip50	
Soil	Classif	ication	СН			
Loc	ation		METU Tra	insport		
Con	dition o	of Sample	Disturbed-	Remol	ded-Unsoaked	
Spe	cimen l	Properties and Unco	nfined Com	pressi	ve Strength	
Initi	al Volu	me (cm3)	196.250	Initia	al Length (mm.)	100.000
Mas	ss of Co	nt. + Wet Soil (gr.)	533.000	Initia	al Diameter (mm.)	50.000
Mas	ss of Co	nt. + Dry Soil (gr.)	445.700	L/D		2.000
Mas	ss of Co	ntainer (gr.)	163.100	Initia	al Area (mm2)	1962.500
Mas	ss of Sa	mple (gr.)	369.900	Strain Rate (mm./min.)		1.250
Mas	ss of Dr	y Sample (gr.)	282.600	Strain at failure (mm.)		5.100
Mas	ss of Mo	oisture (gr.)	87.300	Axia	ıl Strain %	5.100
Moi	sture C	ontent %	30.892 Corr		rected Area (mm2)	2067.966
Spe	cific Gr	avity (g/cm3)	2.706			
Dry	Densit	y (g/cm3)	1.440	UCS	S Strength (kPa)	316.017
Bull	k Densi	ty (g/cm3)	1.885	Shea	ar Strength (kPa)	158.009
			Stress(MPa)	/Straiı	n (mm)	
	0.5			,	(),	
	0,45					
	0,4					
	0,35					
a)	0,3					
M)	0,25					
ess	0,2					
Str	0,15					
	0,1					
	0,05					
	0					
	(0 1	2		3	4 5
			S	Strain ((mm)	

Figure H.1 (Continued)

Project Inf	ormation							
Project Nar	ne	10 BS		Prep. Date	05.10.14			
Curing Peri	od	28days		Test Date	05.10.14			
Sample Nur	mber	1		Tested By	Can CEYLAN			
Standard		ASTM D 2	2166	Device	ELE Multip50			
Soil Classif	ication	СН						
Location		METU Tra	insport	Lab.				
Condition of	of Sample	Disturbed-	Remol	ded-Unsoaked				
Specimen Properties and Unconfined Compressive Strength								
Initial Volu	me (cm3)	197.231	Initia	al Length (mm.)	100.500			
Mass of Co	nt. + Wet Soil (gr.)	516.600	Initia	al Diameter (mm.)	50.000			
Mass of Co	nt. + Dry Soil (gr.)	425.500	L/D		2.010			
Mass of Co	ntainer (gr.)	144.700	Initia	al Area (mm2)	1962.500			
Mass of San	mple (gr.)	371.900	Strai	n Rate (mm./min.)	1.250			
Mass of Dr	y Sample (gr.)	280.800	Strai	n at failure (mm.)	5.180			
Mass of Mo	oisture (gr.)	91.100	Axia	l Strain %	5.154			
Moisture C	ontent %	32.443	Corr	ected Area (mm2)	2069.149			
Specific Gr	avity (g/cm3)	2.706						
Dry Density	y (g/cm3)	1.424	UCS	285.368				
Bulk Densi	ty (g/cm3)	1.886	Shea	ar Strength (kPa)	142.684			
	:	Stress(MPa)	/Straiı	n (mm)				
0,4								
0,35					~			
0,3								
e 0,25								
<u>ک</u> 0,2								
si 0,15								
ο · · · · · · · · · · · · · · · · · · ·								
0.05								
0								
() 1	2 3		4 5	6 7			
		S	Strain (mm)				

Project	Informati	ion										
Project	Name			101	BS		Prep.	Date	05	05.10.14		
Curing	Period			28 c	lays		Test I	Date	05	5.10.1	4	
Sample	Number			2 Tested By C					an CE	EYLAN		
Standar	d			AS	ГM D 2	166	Devic	e	E	LE M	ultip50	
Soil Cla	ssification			CH								
Location	n			ME	TU Tra	nsport	Lab.					
Conditio	on of Samp	ole		Dist	turbed-]	Remol	ded-Un	soaked				
Specim	en Proper	ties and U	Incon	nfine	d Com	pressi	ve Stre	ngth				
Initial V	olume (cr	n3)		196	.250	Initia	al Lengt	th (mm.)		100.0	000	
Mass of	Cont. + W	vet Soil (gi	r.)	516	.090	Initia	al Diam	eter (mm.)		50.00	00	
Mass of	Cont. + D	ry Soil (gr	:.)	424	.800	L/D				2.000)	
Mass of	Container	(gr.)		147	.000	Initia	al Area	(mm2)		1962	.500	
Mass of	Sample (g	r.)		369	.090	Strai	n Rate	(mm./min.)		1.250		
Mass of	Dry Samp	le (gr.)		277	.800	Strai	n at fail	ure (mm.)		5.750		
Mass of	Moisture	(gr.)		91.2	290	Axia	l Strain	%		5.750		
Moistur	e Content	%		32.8	862	Corr	ected A	rea (mm2)		2082.228		
Specific	Gravity (g	g/cm3)		2.70)6							
Dry Der	nsity (g/cm	3)		1.41	16	UCS	Streng	gth (kPa)		266.9	960	
Bulk De	ensity (g/cr	m3)		1.88	81	Shea	r Strer	ngth (kPa)		133.480		
0,3			5	Stress	s(MPa)	/Strair	ո (mm)					
0.25									~~~~			
0,25												
0,2												_
MPa)					/							
J) 0,15				-								_
Stre												
0,1												
0,05			/									_
0					2						-	
	U 1	L 2	2		خ ۲+۲	4 rain (m	5 m)	o 6			/	8
					50	ann (n						

Project I	nformation					
Project N	ame	10 BS		Prep. Date	05.10.14	
Curing Pe	eriod	28 days		Test Date	05.10.14	
Sample N	lumber	3		Tested By	Can CEYLAN	
Standard		ASTM D 2	2166	Device	ELE Multip50	
Soil Class	sification	СН				
Location		METU Tra	insport	Lab.		
Condition	n of Sample	Disturbed-	Remol	ded-Unsoaked		
Specimer	n Properties and Unco	nfined Com	pressi	ve Strength		
Initial Vo	lume (cm3)	196.250	Initia	al Length (mm.)	100.000	
Mass of C	Cont. + Wet Soil (gr.)	496.600	Initia	al Diameter (mm.)	50.000	
Mass of C	Cont. + Dry Soil (gr.)	406.800	L/D		2.000	
Mass of C	Container (gr.)	126.400	Initia	al Area (mm2)	1962.500	
Mass of S	Sample (gr.)	370.200	Strai	n Rate (mm./min.)	1.250	
Mass of I	Dry Sample (gr.)	280.400	Strai	n at failure (mm.)	5.317	
Mass of M	Moisture (gr.)	89.800	Axia	ll Strain %	5.317	
Moisture	Content %	32.026	Corr	ected Area (mm2)	2072.706	
Specific O	Gravity (g/cm3)	2.706				
Dry Dens	sity (g/cm3)	1.429	UCS	Strength (kPa)	289.330	
Bulk Den	sity (g/cm3)	1.886	Shea	ar Strength (kPa)	144.665	
0,35		Stress(MPa)	/Straiı	n (mm)		
0.3						
-,-						
0,25						
ba						
N) s						
0,15						
0.1						
0,1						
0,05						
0						
0	0 1 2	2 3		4 5	6 7	
		St	train (r	nm)		

Figure H.1 (Continued)

Project Information							
Project Name		15 BS		Prep. Date		05.10.14	
Curing Period		7 days		Test Date		05.10.14	
Sample Number		1		Tested By		Can CEYI	LAN
Standard		ASTM D	2166	Device		ELE Mult	ip50
Soil Classification		СН					
Location		METU Tr	ansport	t Lab.			
Condition of Sample		Disturbed-	Remol	ded-Unsoaked			
Specimen Propertie	s and Unco	nfined Com	pressi	ve Strength			
Initial Volume (cm3)		197.332	Initia	al Length (mm.))	100.500	
Mass of Cont. + Wet	Soil (gr.)	535.100	Initia	al Diameter (mr	n.)	50.000	
Mass of Cont. + Dry	Soil (gr.)	442.700	L/D			2.010	
Mass of Container (g	r.)	165.200	Initia	al Area (mm2)		1963.500	
Mass of Sample (gr.)		369.900	Strai	n Rate (mm./m	in.)	1.250	
Mass of Dry Sample	(gr.)	277.500	Strai	n at failure (mr	n.)	5.739	
Mass of Moisture (gr	.)	92.400	Axia	ıl Strain %		5.710	
Moisture Content %		33.297	Corr	ected Area (mn	n2)	2082.415	
Specific Gravity (g/c	m3)	2.706					
Dry Density (g/cm3)		1.406	UCS	UCS Strength (kPa)		248.232	
Bulk Density (g/cm3))	1.875	Shea	ar Strength (kF	Pa)	124.116	
0,3							
		Stress(M	Pa)/Sti	rain (mm)			
0,25							
				www.			
0,2							
MPa							
),15 Ssa							
Str							
0,1							
0,05							
	2 3	4 Sti	ain₅(m	m) 6 7		8 9	10
Einen II 1 (Contin						-	-

Proje	ect Inform	nation						
Projec	t Name		15 BS		Prep. Date	05	.10.14	
Curing	g Period		7 days Test Date 05			.10.14		
Sampl	e Number		2		Tested By	Ca	n CEYLAN	
Standa	urd		ASTM D	2166	Device	EL	LE Multip50	
Soil C	lassification		СН					
Locati	on		METU Tra	ansport	t Lab.			
Condi	tion of Samp	ole	Disturbed-	Remol	ded-Unsoaked			
Specin	nen Proper	ties and Unco	nfined Com	pressi	ve Strength			
Initial	Volume (cn	n3)	196.350	Initia	al Length (mm.)		100.000	
Mass of	of Cont. + W	/et Soil (gr.)	494.210	Initia	al Diameter (mn	n.)	50.000	
Mass of	of Cont. + D	ry Soil (gr.)	402.700	L/D			2.000	
Mass of	of Container	(gr.)	127.200	Initia	al Area (mm2)		1963.500	
Mass of	of Sample (g	gr.)	367.010	Strai	n Rate (mm./mi	n.)	1.250	
Mass of	of Dry Samp	ole (gr.)	275.500	Strai	n at failure (mm	ı.)	5.518	
Mass of	of Moisture	(gr.)	91.510	Axia	ll Strain %		5.518	
Moistu	ure Content	%	33.216	Corr	ected Area (mm	2)	2078.174	
Specif	ïc Gravity (g	g/cm3)	2.706					
Dry D	ensity (g/cm	13)	1.403	UCS	S Strength (kPa)	258.093	
Bulk I	Density (g/cr	m3)	1.869	Shea	ar Strength (kP	a)	129.047	
0,3			Stres	s(MPa))/Strain (mm)			
0.25				()		······		
0,25								
0,2								
1Pa)								
2,15								
Stre								
0,1								
0.05								
0,05								
0								
	0 2	1 2	3		4 5		6 7	
			Str	ain (m	m)			

Project	Information					
Project 1	Name	15 BS		Prep. Date	05.10.14	
Curing I	Period	28 days	28 days Test Date			
Sample	Number	3		Tested By	Can CEYLAN	
Standard	1	ASTM D 2	2166	Device	ELE Multip50	
Soil Cla	ssification	СН				
Location	n	METU Tra	nsport	t Lab.		
Conditio	on of Sample	Disturbed-	Remol	ded-Unsoaked		
Specim	en Properties and Unco	onfined Com	pressi	ve Strength		
Initial V	folume (cm3)	196.350	Initia	al Length (mm.)	100.000	
Mass of	Cont. + Wet Soil (gr.)	509.000	Initia	al Diameter (mm.)	50.000	
Mass of	Cont. + Dry Soil (gr.)	417.200	L/D		2.000	
Mass of	Container (gr.)	143.000	Initia	al Area (mm2)	1963.500	
Mass of	Sample (gr.)	366.000	Strai	n Rate (mm./min.)	1.250	
Mass of	Dry Sample (gr.)	274.200	Strai	n at failure (mm.)	5.973	
Mass of	Moisture (gr.)	91.800	Axia	ll Strain %	5.973	
Moistur	e Content %	33.479	Corr	rected Area (mm2)	2088.230	
Specific	Gravity (g/cm3)	2.706				
Dry Der	nsity (g/cm3)	1.396	UCS	S Strength (kPa)	246.620	
Bulk De	ensity (g/cm3)	1.864	Shea	ar Strength (kPa)	123.310	
300		Stress	(MPa)	/Strain (mm)		
250		50000				
250					~~~~	
200						
MPa						
) 150						
ג 100						
50						
	- And - And					
0	0 1 2	3	4	5 6	7 8	
		St	rain (n	nm)		

Figure H.1 (Continued)