DETERMINATION OF PEDESTRIAN LEVEL OF SERVICE FOR WALKWAYS: METU CAMPUS EXAMPLE

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY PINAR KARATAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING

JUNE 2015

Approval of the Thesis:

DETERMINATION OF PEDESTRIAN LEVEL OF SERVICE FOR WALKWAYS: METU CAMPUS EXAMPLE

submitted by **PINAR KARATAŞ** in partial fulfillment of the requirements for the degree of **Master of Science in Civil Engineering Department, Middle East Technical University** by,

Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Ahmet Cevdet Yalçıner Head of Department, Civil Engineering	
Assoc. Prof. Dr. Hediye Tüydeş Yaman Supervisor, Civil Engineering Dept., METU	
Examining Committee Members	
Prof. Dr. Murat Güler Civil Engineering Dept., METU	
Assoc. Prof. Dr. Hediye Tüydeş Yaman Civil Engineering Dept., METU	
Assoc. Prof. Dr. Ela Babalık Sutcliff City and Regional Planning Dept., METU	
Asst. Prof. Dr. Hikmet Bayırtepe Civil Engineering Dept., Gazi University	
Asst. Prof. Dr. Hande Işık Öztürk Civil Engineering Dept., METU	

Date: June 26, 2015

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Pınar Karataş

Signature :

ABSTRACT

DETERMINATION OF PEDESTRIAN LEVEL OF SERVICE FOR WALKWAYS: METU CAMPUS EXAMPLE

Karataş, Pınar M. S., Department of Civil Engineering Supervisor: Assoc. Prof. Dr. Hediye Tüydeş Yaman

June 2015, 128 Pages

While studying the level of pedestrian activity on the campus of Middle East Technical University (METU), Ankara, pedestrian flow maps, counted manually and multiple times a day, showed changes in directionality and volumes of pedestrians during a day. Also, a student survey revealed that, in overall, 60% of the participants found the METU campus walkways sufficient, while the remaining 40% found it insufficient. Students stated that existence of sidewalks on both sides, infrastructure, protection against to weather, and etc. had an important effect on increase in walking. To encourage a greater modal shift to walking on the campus, first, it is important to understand and evaluate walkability and walking concepts. While walkability assessment studies mainly deal with perception and built environment aspects, engineering studies focused on evaluating pedestrian level of service (PLOS) based on flow and infrastructure capacity measures. This perspective difference and methodological details resulted in requirement of a wide range of data, which vary greatly based on the scope of the study. PLOS evaluations for METU Campus walkways are performed using Highway Capacity Manual (HCM), Gainesville and Trip Quality methods, which resulted in contradicting ratings. Comparison of the results revealed insights about the strength and weaknesses of each method, and led to a series of recommendations to improve walkability assessments, which was the main goal of this study

Keywords: Walkability, Pedestrian Level of Service (PLOS), Pedestrian Data Collection Methods, Pedestrian Survey

YÜRÜME YOLLARI İÇİN YAYA HİZMET SEVİYESİNİN BELİRLENMESİ: ODTÜ KAMPÜS ÖRNEĞİ

Karataş, Pınar Yüksek Lisans, İnşaat Mühendisliği Bölümü Tez Yöneticisi: Doç. Dr. Hediye Tüydeş Yaman

Haziran 2015, 128 Sayfa

Orta Doğu Teknik Üniversitesi (ODTÜ), Ankara' da yaya hareketlilik seviyeleri incelenirken, yaya akım haritaları ile, elle ve gün içinde birden çok kez sayılarak, gün içerisindeki yön ve yaya yoğunluğu değişimleri gösterilmiştir. Ayrıca öğrencilere uygulanan bir anket sonuçlarında, genel olarak katılımcıların %60'ı ODTÜ kampüs yürüme yollarını yeterli bulurken, kalan %40 yetersiz görmüştür. Öğrenciler yolun her iki tarafında da kaldırım bulunması, altyapı, hava koşullarına karşı iyileştirme ve bu gibi özelliklerin yürümeyi arttırmak için önemli etkileri olduğunu belirtmiştir. Yürümeye olacak ciddi bir mod kaymasını teşvik edebilmek için öncelikle yürünebilirliğin ve yürüme kavramının belirlenmesi ve anlaşılması önemlidir. Yürünebilirlik değerlendirme çalışmaları genellikle algı ve altyapı özellikleri ile ilgilenirken, mühendislik çalışmaları değerlendirme tabanlı, akım ve altyapı kapasitesin özelliklerine bağlı Yaya Hizmet Seviyesine odaklanmaktadır. Bu değişik bakış açısı ve metodolojik ayrıntılar çalışmanın kapsamına bağlı olarak çok değişkenlik gösteren, çok geniş kapsamlı data ihtiyacına neden olmuştur. ODTÜ kampüsü yürüme yolları için Yaya Hizmet Seviyesi "Highway Capacity Manual (HCM)", "Gainesville" ve "Trip Quality" metodları kullanılarak hesaplanmış ve birbiri ile çelişen sonuçlar gözlenmiştir. Sonucların karşılaştırılması ile her bir metodun güçlü ve zayıf yönleri hakkında öngörüler

ortaya konmuş, ve yürnebilirlik değerlendirme çalışmalarının iyileştirilmesi için öneriler oluşturmuştur, ki bu çalışmanın ana hedefidir.

Anahtar Kelimeler: Yürünebilirlik, Yaya Hizmet Seviyesi, Yaya Data Toplama Yöntemleri, Yaya Anketi To My Family for Their Love and Support

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Hediye Tüydeş Yaman for her endless support, valuable guidance, and patience throughout this study.

Besides my advisor, I would like to thank Assoc. Prof. Dr. Ela Babalık Sutcliffe and Oruç Altıntaşı for the data assistance from the Sustainable Transportation Projects for Campuses (BAP-08-11-DPT.2010K121500).

My sincere thanks to Başar Özbilen and Gülçin Dalkıç for the wonderful teamwork during survey process, especially to my friend Ezgi Kundakçı, for all her help during my data collection period.

To my fellow colleagues Meltem Tangüler, Yalçın Karakaya, Ezgi Kundakçı, Ayhan Öner Yücel and Can Ceylan for their continuous support and all the fun we have had together during this study.

The last but not the least, I sincerely thank my mentor, Mehmet Karataş; my heartthrob mother, Güllü Karataş, and my dear brothers, Kaan and Cihan for their endless support and confidence during my life.

TABLE OF CONTENTS

ABSTRACTv
ÖZvii
ACKNOWLEDGEMENTSx
TABLE OF CONTENTSxi
LIST OF TABLESxii
LIST OF FIGURESxiv
CHAPTERS
1 INTRODUCTION
1.1 Motivation
1.2 Scope of the study
2 LITERATURE REVIEW
2.1 Sustainable Transportation
2.2 Walking as a Mode
2.3 Walkability
2.4 Data Collection Techniques for Walking
2.5 Level of Service Concept (LOS)
2.5.1 Vehicular LOS in HCM 11
2.5.2 Pedestrian LOS (PLOS) Studies
2.5.3 Studies Comparing PLOS Methods
2.6 Inter Rater Reliability in Subjective Measurements
3 EVALUATING PLOS VIA DIFFERENT METHODS 21
3.1 Dimensions of Pedestrian Level of Service Evaluation
3.2 PLOS Evaluation Methods Used in the Study
3.2.1 HCM-based PLOS Method
3.2.2 Gainesville Method
3.2.1 Trip Quality Method

3.3 Comparison of PLOS Ratings	28
4 CASE STUDY: METU CAMPUS PLOS AND WALKABILITY	
EVALUATIONS	31
4.1 Walking and Walkability at METU Campus	31
4.1.1 In-Campus Mode Choice for METU Campus	32
4.1.2 Students' Perception of Walkability in METU Campus	33
4.2 Campus Walking and PLOS Data Collection	36
4.2.1 Pedestrian Counts	36
4.2.2 Infrastructure Data	41
4.2.3 Vehicular Traffic Data	45
4.3 PLOS Analyses	45
4.3.1 HCM Method Results	46
4.3.2 Gainesville Method Results	48
4.3.3 Trip Quality Method Results	51
4.4 Comparisons of PLOS Rating for METU Campus5	53
5 CONCLUSIONS AND FURTHER RECOMMENDATIONS	51
5.1 Walkability and PLOS Ratings	51
5.2 Data Requirements for Evaluation of Walkability and Walking	53
5.3 Recommendations to Improve Walking and PLOS Ratings at METU	
Campus Walkways	55
REFERENCES	57
APPENDICES	
A THE METU CAMPUS AND TRANSPORTATION SURVEY	77
B DATA COUNTS INFORMATION SHEETS	79
C METU CAMPUS VEHICULAR LEVEL OF SERVICE	87
D HCM PLOS RESULTS	91
E GAINESVILLE METHOD MANUAL AND PLOS RESULTS 11	15
F TRIP QUALITY METHOD MANUAL AND PLOS RESULTS 12	21

LIST OF TABLES

TABLES

Table 2.1 Level of Service (LOS) for Automobile Mode in HCM (2010). 12
Table 2.2 Comparison of Factors Included in Pedestrian Sidewalk Assessment
Methods- Sisiopiku et. al., 2007 17
Table 2.3 Comparison of the pedestrian level of service methodologies with
regard to their criteria (Christopoulou and Pitsiava-Latinopoulou, 2012)
Table 2.4 Fleiss' (1981) Benchmark Scale for the Kappa 19
Table 2.5 Landis&Koch(1977) Benchmark Scale for the Kappa 19
Table 2.6 Altman's (1991) Benchmark Scale for the Kappa 19
Table 3.1 Average Flow Level of Service for Walkways and Sidewalks w/o
platooning in HCM (2010)
Table 3.2 Pedestrian Level of Service (PLOS) categories in Gainesville Method
(Dixon, 1996)
Table 3.3 Overall Pedestrian LOS Rating According to Trip Quality Method
(Jaskiewicz, 1999)
Table 3.4 Crosstabulation of PLOS ratings for a subset of study locations in
METU Campus Study
Table 3.5 An example frequency table for pairwise evaluation of HCM and
Gainesville PLOS ratings
Table 4.1 Participant Profile for METU Campus and Transportation Survey-
Student Perspective
Table 4.2 In-Campus Student Mode Choice Results (N= 307 Students)
Table 4.3 Evaluation of METU Campus walking areas according to selected
design, network and infrastructure parameters by students
Table 4.4 Evaluation of sidewalk design and possible improvements for METU
Table 4.4 Evaluation of sidewalk design and possible improvements for METUCampus walking areas by students

Table 4.6 The Infrastructure Data of Count Points D8 and E8
Table 4.7 The Infrastructure Data of Count Points F3 and F10 44
Table 4.8 Changes in Gainesville Method PLOS Results for Morning and Off-
Peak Hours
Table 4.9 Changes in Gainesville Method PLOS Results for Evening and Off-
Peak Hours
Table 4.10 Comparison of PLOS Values for METU Campus for Walkways
Having Interaction with Vehicular Traffic (Locations A through E)54
Table 4.11 Comparison of PLOS Values for METU Campus for Walkways
Having Interaction with Vehicular Traffic (Locations F through L)55
Table 4.12 Comparison of PLOS Values for METU Campus for Walkways
With No-interaction with Vehicular Traffic
Table 4.13 Frequency Table of Sample Locations for PLOS Result Comparison
Table 4.14 Frequency Table of Sample Locations for PLOS Result Comparison
Table 4.15 Frequency Table of Sample Locations for PLOS Result Comparison
Table D.1 HCM 2010 Pedestrian LOS Model Results for Walkways for 08:15-
09:00 and 09:15-10:00 intervals
Table D.2 HCM 2010 Pedestrian LOS Model Results for Walkways for 12:15-
13:00 and 13:15-14:00 intervals
Table D.3 HCM 2010 Pedestrian LOS Model Results for Walkways for 16:00-
16:45 and 17:00-17:45 intervals
Table D.4 HCM 2010 Pedestrian LOS Model Results for Location A and B for
08:15-09:00 and 09:15-10:00 intervals
Table D.5 HCM 2010 Pedestrian LOS Model Results for Location A and B for
12:15-13:00 and 13:15-14:00 intervals
Table D.6 HCM 2010 Pedestrian LOS Model Results for Location A and B for

Table D.7 HCM 2010 Pedestrian LOS Model Results for Location C and D for
08:15-09:00 and 09:15-10:00 intervals
Table D.8 HCM 2010 Pedestrian LOS Model Results for Location C and D for
12:15-13:00 and 13:15-14:00 intervals
Table D.9 HCM 2010 Pedestrian LOS Model Results for Location C and D for
16:00-16:45 and 17:00-17:45 intervals
Table D.10 HCM 2010 Pedestrian LOS Model Results for Location E and F for
08:15-09:00 and 09:15-10:00 intervals 100
Table D.11 HCM 2010 Pedestrian LOS Model Results for Location E and F for
12:15-13:00 and 13:15-14:00 intervals 101
Table D.12 HCM 2010 Pedestrian LOS Model Results for Location E and F for
16:00-16:45 and 17:00-17:45 intervals 102
Table D.13 HCM 2010 Pedestrian LOS Model Results for Location H and J for
08:15-09:00 and 09:15-10:00 intervals 103
Table D.14 HCM 2010 Pedestrian LOS Model Results for Location H and J for
12:15-13:00 and 13:15-14:00 intervals 104
Table D.15 HCM 2010 Pedestrian LOS Model Results for Location H and J for
16:00-16:45 and 17:00-17:45 intervals 105
Table D.16 HCM 2010 Pedestrian LOS Model Results for Location K and L for
08:15-09:00 and 09:15-10:00 intervals 106
Table D.17 HCM 2010 Pedestrian LOS Model Results for Location K and L for
12:15-13:00 and 13:15-14:00 intervals 107
Table D.18 HCM 2010 Pedestrian LOS Model Results for Location K and L for
16:00-16:45 and 17:00-17:45 intervals 108
Table E.1 Gainesville Method PLOS Results and Raodway Characteristics for
Walkway (No-interaction with Vehicular Traffic) Locations 117
Walkway (No-interaction with Vehicular Traffic) Locations
Walkway (No-interaction with Vehicular Traffic) Locations
 Walkway (No-interaction with Vehicular Traffic) Locations

Table F.1 Trip Quality Method PLOS Results by Rater 1 for Walkway (No-
interaction with Vehicular Traffic) Locations
Table F.2 Trip Quality Method PLOS Results by Rater 2 for Walkway (No-
interaction with Vehicular Traffic) Locations
Table F.3 Trip Quality Method PLOS Results by Rater 1 for Region A, B, C, D
and E
Table F.4 Trip Quality Method PLOS Results by Rater 1 for Region F, H, J, K
and L
Table F.5 Trip Quality Method PLOS Results by Rater 2 for Region A, B, C, D
and E
Table F.6 Trip Quality Method PLOS Results by Rater 2 for Region F, H, J, K
and L

LIST OF FIGURES

FIGURES

Figure 1.1 The Layout of the METU Campus 1
Figure 3.1 Dimensions of Pedestrian Level of Service Measures
Figure 3.2 An example frequency graph for pairwise evaluation of HCM and
Gainesville PLOS ratings
Figure 4.1 Count Locations of (a) All Campus and (b) Pedestrian Zone E, and (c)
with Direction Instructions for Zone E
Figure 4.2 Mapping of Volumes and Directions of Pedestrian Flows for a)
Morning (08:15-09:00) and b) Evening (16:15-17:00) Hours
Figure 4.3 A Photo Shows Noon-time Pedestrian Flow on Alley 40
Figure 4.4 Pedestrian PLOS results with HCM Method for 12.15-13.00
Figure 4.5 Pedestrian PLOS results with Gainesville Method
Figure 4.6 Pedestrian PLOS results with Trip Quality Method
Figure 4.7 Pairwise Analysis between HCM Method Results versus Trip Quality
and Gainesville Method Results 59
Figure 4.8 Pairwise Analysis between Trip Quality Method Results versus
Gainesville Method Results 60
Figure B.1 A Screenshot of Data Count Sheet for Location A
Figure B.2 Data Collection Points and Direction Map for location A 80
Figure B.3 Data Collection Points and Direction Map for location B 80
Figure B.4 Data Collection Points and Direction Map for location C
Figure B.5 Data Collection Points and Direction Map for location D
Figure B.6 Data Collection Points and Direction Map for location E
Figure B.7 Data Collection Points and Direction Map for location F 82
Figure B.8 Data Collection Points and Direction Map for location G
Figure B.9 Data Collection Points and Direction Map for location H

Figure B.10 Data Collection Points and Direction Map for location J	
Figure B.11 Data Collection Points and Direction Map for location K	
Figure B.12 Data Collection Points and Direction Map for location L	
Figure C.1 HCM Vehicular LOS for Morning Peak Hours	
Figure C.2 HCM Vehicular LOS for Evening Peak Hours	
Figure C.3 HCM Vehicular LOS for Off- Peak Hours	89
Figure D.1 HCM PLOS for 08:15- 09:00	109
Figure D.2 HCM PLOS for 09:15- 10:00	110
Figure D.3 HCM PLOS for 13:15- 14:00	111
Figure D.4 HCM PLOS for 16:00- 16:45	112
Figure D.5 HCM PLOS for 17:00- 17:45	113

CHAPTER 1

INTRODUCTION

In Ankara, Middle East Technical University (METU) is located at the 20th km of the former Ankara-Eskişehir highway, now called Dumlupinar Boulevard. As a big campus university, METU has a very large area and a population of approximately 30,000 people. Originally, METU campus was designed as a "pedestrian friendly" layout with a main central alley connecting all the academic buildings in the core loop (in Region 4) with nearby dormitories (in Region 1) and academic housings (in Region 3) in 1960s (Figure 1.1).

Figure 1.1 The Layout of the METU Campus

Over time, with the rapid growth in campus population, the academic units in the core loop and dormitories became insufficient. After the construction of the new academic units (in Region 5) and dormitories and academic housing (in Region 6), built environment spread out increasing the walking distances. Starting with the opening of Technopolis, the research and development park in Region 7, and parallel to the recent increase in the private car ownership and usage in Ankara, METU Campus has become a more "car oriented" with number of vehicles exceeding 15000 per day (Altintasi, 2013).

1.1 Motivation

The limited roadway capacity under high private car demand resulted in campus problems, such as traffic congestion during peak hours, illegal parking problems, and reduction in walking. To encourage modal shift towards more sustainable modes, such as walking, cycling and public transit, first, it is important to assess the current conditions and walkability in the campus. In a recent survey among METU students (with a sample size of 307), 60% of the participants found the METU campus walkways sufficient, while the remaining 40% found it insufficient. Students stated that existence of sidewalks on both sides of the road, infrastructure, protection against to weather, and etc. had an important effect on increase in walking. This also shows the need to further study walking and walkability in our campus.

The evaluation of walkability and walking in a region, such as the METU Campus, requires very different sets of data and methods from vehicular mobility. But, there is a big chaos about the required data and its collection in the literature, mainly because of lack of a commonly accepted method for pedestrian mobility and walking activity. Also, pedestrian data collection requires more flexible definitions in terms of network and routing, and thus, methods to analyze them. Such new approaches need special attention and use of new techniques customized for pedestrian purpose and utilities. We believe, a successful evaluation of

walkability, and development of more sustainable transportation policies on METU campus will be a good example for the city of Ankara and other campuses.

1.2 Scope of the study

To monitor the current conditions of walkability at METU Campus, we aimed to evaluate the Pedestrian Level of Service (PLOS) first. As there is no consensus on a PLOS methodology connecting design and capacity aspects, we employed three methods as i) Highway Capacity Manual (HCM), ii) Gainesville and iii) Trip Quality, using very different data sets. As the former have very different measures and scales than the latter, PLOS evaluations of the campus with the HCM method resulted in very different ratings than the others. Comparison of the results revealed insights about strength and weaknesses of each method, and led to a series of recommendations to improve walkability assessments, which was the main goal of this study. As determination of PLOS for the walkways (sidewalks and pedestrian alleys), crosswalks and stairways require much different data and methodology, the study focused on obtaining PLOS values for walkways, only.

The layout of this thesis is as follows: In Chapter 2, a brief summary of the literature on sustainable transportation, walking and walkability assessments, PLOS methods and their comparisons and pedestrian data collection techniques is provided. Since the Trip Quality method involves subjective evaluations, a summary of interrater reliability is included in this chapter. Dimension on PLOS evaluations, three PLOS methods, which are used in the case study part of the thesis, and determination of walkability are scrutinized in Chapter 3. METU Campus case study analysis and results are presented in Chapter 4. Finally conclusions and further recommendations on walking, PLOS and walkability evaluations are discussed in Chapter 5.

CHAPTER 2

LITERATURE REVIEW

Due to decreasing resources, living in urban regions focus on sustainability in many aspects, including transportation. Sustainable transportation recommends more usage of non-motorized modes, which are walking and cycling, and shared ride options, which include walking to a station, inherently. Thus, analyses of walking, walkability and pedestrian level of service are important to evaluate our real potential towards more sustainable lives. Before implementing any of these measures for METU campus, it is essential to define these concepts and their relationships in this chapter, as established in the literature. Additionally, a short introduction is provided for the concept of inter rater reliability for subjective measurement techniques, which is necessary for some of the PLOS methods.

2.1 Sustainable Transportation

A sustainable transportation system has been defined as "the current transport and mobility needs without compromising the ability of future generations to meet their needs" (Black, 1997; Richardson, 1999). Black (2010) defines the terms, related with "sustainable" and "non-sustainable transport" in detailed, categorized them into groups to define the whole concept. According to the study "A sustainable transport system is one that provides transport and mobility with renewable fuels while minimizing emissions detrimental to the local and global environment and preventing needless fatalities, injuries, and congestion." With this basic perspective Babalik-Sutcliffe (2013) recommended that the focus of transport policy should be the "reducing car trips and encouraging alternative modes such as public transport, walking and cycling". Most of the sustainable

campus initiatives in the USA aim to reduce carbon emissions by encouraging walking, biking and public transit use. Furthermore, walkability and biking are encouraged due to their positive impacts on human health (Brown et al 2009; Rosenberg et al, 2009;, Van Dyck et al, 2011). Balsas, 2003 studied eight bike and pedestrian friendly campuses in the US to understand the reasons behind the success of non-motorized modes, which were simply the implementation of Travel Demand Management (TDM) strategies. Miralles-Guasch and Domene (2010) determined the travel pattern and transportation challenges of a university in Barcelona, where the lack of adequate infrastructure, the marginal role of walking and cycling and longer time involved using public transport were detected as the main barriers to shift from private car to non-motorized modes.

2.2 Walking as a Mode

Walking is one of the main modes encouraged as a sustainable way of transportation. Rodrigue et. al. (2006) defined walking as one of the individual transportation modes, which is the consequence of personal preferences. During 1800-1890s, which were called "walking /horse-car era", the dominant mode was walking due to small city sizes. Cities were compact and their shapes were mostly circular with less than 5 km walking distance. After the invention of railroad, the urban morphology had changed. After 1930s up to now, called "the automobile era", the dominant mode becomes private cars. Traditional perspective on transportation planning discourse the improvements on infrastructure, however every increase in capacity creates its own traffic demand (Babalık-Sutcliffe, 2005; Kaiser et. al, 1995). The increase in vehicular infrastructure caused a significant decrease in walking areas and walking, and it also deteriorates the cities integrity. Traffic has become more car-oriented. To tackle with the situation, the perspective in recent years changed to the encouragement of non-motorized modes and public transit. Walking counted as one of the base modes of transportation and as a mode.

The examination of the interaction between travel mode choice and the characteristics of the physical environment revealed a great influence especially

in non-motorized modes (Rodriguez and Joo, 2004). Yazıcıoğlu Halu and Yürekli (2011) focused on the walkability and walking in urban spaces and suggested a conceptual model for more walkable public spaces with an example of Bağdat Street, Istanbul. They drew attention to the individual, group, regional, and spatial environmental variables on walking, which had a direct influence on walking choice.

As a mode, walking needs special attention on Origin-Destination (OD) estimation and also pedestrian traffic assignment methods. There are some studies on these areas, but because of the open-ended situations on walking, the studies became insufficient (Ferguson et. al., 2012; Hanseler et. al., 2015; Hoogendoorn and Bovy, 2004; Borgers and Timmermans, 1986). Pedestrian OD estimation is a very challenging area, which needs promising data sets and validations for urban regions which have a complex land use pattern (Ferguson et. al., 2012). The OD pairs and the route choice are very varied and the number of routes can be extremely high according to the purpose of the trip, familiarity of the routes, etc. Even though within the concept of more limited OD pairs in a rail station, Hanseler et. al. (2015) studied dynamic assignment for pedestrian activity with timetables and ridership estimates. Pedestrians were described as a "subjective utility maximizers" because they arrange their activities, activity areas and the paths between the activities synchronically to maximize the predicted utility of their efforts and walking (Hoogendoorn and Bovy, 2004). Because of this uncertainty in everything the pedestrian traffic assignment needs significant assumptions and attention. In another study pedestrians are modeled according to "O'Kelly's model of the demand for retail facilities in the presence of multistep, multipurpose trips" (Borgers and Timmermans, 1986). In the model, there were three submodels for i) destination choice, ii) route choice and iii) impulse stops. The analysis gave logical results for city center of Maastricht, notwithstanding, for other regions with different characteristics model should be rearranged.

2.3 Walkability

Walkability assessment studies mostly have a planning perspective and focus on major factors. Gori et al. (2014) focused on the indicators of "pedestrian friendly design", for which three major aspects of walkability were listed as, i) connectivity, ii) quality of road network and iii) the proximity. Connectivity represented the node and link condition; number and density of nodes, number of links, density and total length of the walking area. Quality of road network classified the links into groups based on number of lanes and traffic volume. Proximity indicated the travel distances pedestrian intended to walk, and also travel times. The study presented a set of measures to evaluate these aspects numerically with examples from some urban neighborhoods in the cities of Rome, Lucca and Venice. Similarly, Leslie et al. (2007) studied the walkability according to proximity and connectivity characteristics with a spatial data set to define a GISbased "Walkability Index", which was basically the transfer of a previous walkability index in Australia to GIS environment. Also, Hajna et al. (2013), performed GIS-based analyses of walkability, in addition to street-level audits and participant-reported ones, where GIS was used to derive to land use mix, street connectivity and residential density.

Gallimore, et al. (2011) studied walkability of routes to schools in different suburban regions, from different aspects (i.e. traffic safety, accessibility, pleasurability, density of housing). The study compared the perception of walkability of a region under two different land use patterns, where "shorter more direct" pathways were claimed to be more walkable. Other studies suggested even much shorter and simpler walkability evaluation tools, which are simple checklists of a selected number of local destination points as in Bias et al. (2010). As another auditing-based assessment tool, Scottish Walkability Assessment Tool was designed to assess walkability according to functional elements (walking surface and permeability), safety (personal and traffic), aesthetic (streetscape, architecture, views) and destinations (parking, land use mix, services, public transport, parks) (Millington et al, 2009). The effect of path choice decision and the environment

on a commuter's walking choice after exiting the subway was investigated by Guo (2009). The results showed that walking environment significantly affect the one's walking experience and the utility of walking. Papadimitriou et al. (2009) presented a through literature review to develop models for the route choice and crossing behaviors of pedestrians, and suggested that such models should be more flexible, disaggregate and non-stochastic.

2.4 Data Collection Techniques for Walking

Cottrell and Pal (2001) reported that before evaluating pedestrian data collection methods, one should understand the pedestrian data needs according to age distribution, how much a person walks, in what period of the day, how much distance a person intended to walk, etc. The study included comparison of three pedestrian data collection methods of "counting by hand or board", "recording with push button use" and "taping with video cameras". For a proposed "pedestrian data monitoring guide", the study foresaw the need of data characteristics should include

- time-dependent pedestrian volume,
- traveler demographic information (age, gender, time of day, season, physical ability, etc.)
- behavioral aspects that may change by location and demographics,
- available continuous counting technologies and their layout in the longterm study sites,
- issues related to short-term counts, such as sampling rates, frequency of counting, etc.
- and concluded with a highlight reminding the need of GIS contribution for data display.

Diogenes et al. (2007) further discussed the reliability of these three counting methods performed simultaneously at 10 different intersections in San Francisco, CA. The results showed that both manual count by hand and clickers gave fewer number of pedestrians than actual condition. For pedestrian counts at 50 intersections in Alameda County, CA. Schneider et al. (2009) defined a methodology for which five infrared sensors were rotated among 13 intersections to capture variations in pedestrian volume patterns due to time of day, location and weather condition. The 2-hour manual counts were used in combination with the adjustment factors to estimate weekly pedestrian volumes to be used in traffic safety analysis.

Intelligent Transportation Systems (ITS) has enabled a rapid growth in transportation field, which meets high quality data with real time information (Leduc, 2008). Unfortunately, so far, ITS has supported data collection techniques mostly for vehicular traffic. While there is a clear need for pedestrian and walkability data, it is not easy to use vehicle count technologies directly, as pedestrian flow is very flexible compared to vehicular traffic; so, data collection and location definition becomes harder. There are different automated pedestrian count products and systems in the market, such as passive infrared sensors and piezoelectric pads, infrared beam counters, Laser scanners, computer vision systems. A detailed comparative analysis of field performances of passive infrared sensors and thermal sensors on pedestrian data collection showed that thermal sensors pedestrian counts were more realistic with less error, and EcoCounter was reported to underestimate significantly more than the others (Ozbay et al, 2010). Another study focused on use of GPS data collection capability to monitor pedestrian activity along an urban corridor in London, to determine route choice, start and end points of a pedestrian trip (Bolbol & Cheng, 2010). Bauer et al. (2011) focused measurement of service times at border checkpoints and airport security controls, and used sensors (consists of light barriers) and switching mats. Both data collection tools represented high performances for this aim. As an example of pedestrian counting sensors, computer vision techniques were evaluated for automated pedestrian count, tracking and walking speed estimation purposes as in Li et al. (2012).

2.5 Level of Service Concept (LOS)

The concept of "Level-of-service (LOS)" is merely an abstraction of quality of the considered phenomenon at the study time and location. If it is traffic we are considering, LOS shows the state of traffic in a qualitative way. There may be some difference in the LOS techniques among different regions, but, LOS is generally represented by levels of A through F, where A shows high levels of comfort and/or available capacity while F stand for congestion and/or sever delays in the system. While a LOS A is the most favorable condition from a user perspective, it is not the best case from a system manager perspective, who should focus on better utilization of the existing capacity with acceptable negative outcomes for the users, such as in LOS C.

For different traffic flows (vehicular, pedestrian, bicycle, transit, etc.) different definitions of LOS are needed, based on the characteristics and factors affecting such flows. Furthermore, for a given mode, such as pedestrian or vehicular, LOS concept can be defined based on different measures, such as capacity usage, delay, fluidity of the flow, etc. However, more recently, a new and integrated approach of "multimodal LOS (MMLOS)" has been introduced in the literature, that considers interactions between modes in the assessment of traffic in a region. As this study focus on understanding and evaluating PLOS, here, we are going to focus on this concept and relevant ones needed in the assessment of PLOS, only.

2.5.1 Vehicular LOS in HCM

In HCM, which is a major reference document in traffic engineering measures mostly used in North America, the concept of "Level of Service (LOS)" basically represents a quantitative ranking of the traffic condition under flow and capacity characteristics experienced by users (2000, 2010). The concept objective has two points of views; "identifying a future problem" or "evaluating the post-implementation success of an action" and includes the choosing of suitable countermeasure for the problem. The representation of LOS differs through the use of a familiar A (best) to F (worst) "operating condition according to traveler's

perspective". For congested time periods any type of systems could reflect the LOS A condition as an expectation. For vehicular LOS A represents the free flow condition without delay, and LOS F represents the forced flow with maximum delay; while PLOS A represents the best operating condition without any need to change route and PLOS F represents the worst operating condition with severe speed restriction and frequent contact with other users. Because of high flexibility in pedestrian route choice, the delay becomes unimportant for descriptions.

The vehicular LOS concept defined in HCM is determined based upon roadway type (highway, freeway, etc.), free flow speed, hourly vehicular volume, number of lanes, widths of lanes and shoulders. The vehicular LOS could be analyzed according to volume to capacity relation, speed, and density characteristics with available data. A notable situation in vehicular LOS evaluations is that if volume-to-capacity ratio exceeds 1.0, the procedure determines a LOS F, regardless of the other characteristics (see Table 2.1). With a similar approach, HCM defines a Pedestrian LOS (PLOS) measure according to type of walkway (sidewalks, stairways, and crossings separately), effective width and hourly pedestrian volume, which will be discussed in Chapter 3 with more details

Table 2.1 Level of Service (LOS) for Automobile Mode in HCM (2010).

Travel Speed as a Percentage of Base	LOS by Volume-to-Capacity Ratio ^a		
Free-Flow Speed (%)	≤1.0	>1.0	
>85	А	F	
>67-85	В	F	
>50-67	С	F	
>40-50	D	F	
>30-40	Е	F	
≤30	F	F	

Notes: ^a The critical volume-to-capacity ratio is based on consideration of the through movement volume-to-capacity ratio at each boundary intersection in the subject direction of travel. The critical volume-to-capacity ratio is the largest ratio of those considered.

2.5.2 Pedestrian LOS (PLOS) Studies

HCM (2010) provides different formulations of the PLOS on sidewalks, crosswalks and stairways. As pedestrian flow data for more than 70 points in METU campus was available, HCM PLOS method is selected for the campus

evaluation. The details of the HCM PLOS for sidewalks are provided in the next methodology chapter. However, for pedestrian areas, HCM method has many disputable constraints (Singh and Jain, 2011), so there are lots of different perspectives and methods for PLOS, which have to be considered. A comprehensive evaluation of design and traffic flow conditions along sidewalks was suggested by Dixon (1996) for the city of Gainesville, which will be referred as Gainesville PLOS method in this study. Another PLOS methodology focusing more on the design aspects on/along sidewalks was proposed by Jaskiewicz (1999), and called as Trip Quality method. As we were able to collect data for these two methods, as well, they are also included and introduced in more details, in the following chapter.

To be able to recommend suggestions for an improved PLOS concept, it is necessary to review the other PLOS methods and concepts in the literature. Unfortunately, PLOS got less attention than vehicular LOS, even in the handbook by Yukubousky (1994), which itself supported the importance of PLOS in design, maintenance and improvement of pedestrian sidewalks, walkways and alleys for the purposes of safety, security, continuity and comfort.

For defining an accepted and better classified method there are numerous studies; some of which try to improve existing methods with comparisons and some try to create new methods (Singh and Jain, 2011; Mori and Tsukaguchi, 1986). It can be easily seen that the most apparent but highly criticized method is HCM based pedestrian LOS method (Lovas et. al. 2015). As an early attempt, Polus et. al. (1983) investigated features and properties of a pedestrian flow on sidewalks in Haifa, Israel. The data was collected with a videotape recorder connected with a digital clock, to specify the walking speeds. Level of service was determined by speed and density relationship, with linear models. The results demonstrated that there was an inverse proportion between speed and density.

Another research focused on a method to evaluate "ordinary sidewalks" with two concepts; evaluation based on pedestrian behavior and evaluation based on pedestrian opinion (Mori and Tsukaguchi, 1986). In the study the determination of PLOS was mentioned as a basic calculation using pedestrian density and sidewalk width, while evaluation of it needs detailed analysis consist of pedestrian awareness of sidewalk. Muraleetharan et al. (2003) used conjoint technique to analyze the PLOS by determining the importance of the sidewalks characteristics such as, flow rate of pedestrians, sidewalk width, existence of obstacles, crossing facilities, etc. They found that the most significant factor to determine the PLOS was the pedestrian flow rate and the sidewalk width. However, existence of an obstacle was not found significant enough to determine the PLOS.

Petritsch et. al. (2008) studied on a user-based method for pedestrians instead of a provider- based method on evaluating the quality of service. As part of the study; sidewalk width, separation of walkway from traffic, buffer width, traffic volume and speed, pedestrian volume and on-street parking effect was analyzed for pedestrian level of service on walkway segments. As a more special case, Asadi-Shekari et. al. (2014) focused on the pedestrian level of service for campus streets to evaluation and improvement. Within the scope of the study "pedestrian design indicators" based on different guidelines listed, and these 27 indicators were discussed according to 20 different guidelines. The researchers composed a formulation depending on all 27 indicators and determine the PLOS for Universiti Teknologi Malaysia (UTM).

Tan et al. (2007) assessed the PLOS by analyzing the relationship between the pedestrian perceptions and the quality of road facilities, moreover the traffic flow operation. Pedestrian survey was conducted to investigate their perceptions. Those who answered 'I am pleasant when walking' was considered as PLOS A, while if the answer was 'the sidewalks are unsuitable' the PLOS was determined as F. An average they determined the PLOS as C for their region. Another study focused on pedestrians' perception of safety and comfort in the roadside environment to provide a measure of PLOS supported by Florida Department of Transportation (Landis et. al., 2001). Within the concept of the study researchers tried to describe the factors in the right of way which significantly affect the pedestrians' feeling.

They grouped the factors had a significant effect on pedestrian environment under three perspective; performance measures (sidewalk capacity), quality (enjoyment) aspects, perceived safety or comfort. As an output the model provided guidance to designer on how to better design pedestrian environments on presence of sidewalk, lateral separation between vehicle traffic, motor vehicle volume and speed.

The Danish Road Directorate also sponsored a method to measure pedestrian and bicyclist stated satisfaction for road sections according to existing traffic operations, geometric conditions, and other variables (Jensen, 2007). Attendees rated the segments on a six-point scale ranging from "very dissatisfied" to "very satisfied". The results demonstrated that vehicular volume and speed, urban land uses, rural landscapes, type and width of pedestrian and bicycle facilities, number and width of drive lanes, pedestrian volumes, bicyclists and parked cars, presence of median, trees and bus stops significantly affect the level of satisfaction.

Besides the pedestrian level of service on segments, there are numerous studies focused on pedestrian level of service on crosswalks (Muraleetharan et. al., 2003 and 2005; Petritsch et. al., 2006 and 2008; Muraleetharan and Hagiwara, 2007; Baltes and Chu, 2002). It can be easily seen that crossing facilities, space at corner, turning vehicles, delay, number of lanes crossed, presence of crosswalk, and median type had a significant effect on pedestrian crossing level of service. As a subtitle, another research area in the literature is pedestrian level of service for signalized intersections. Petritsch et. al. (2005) studied on the pedestrians' perception of safety, comfort and operations on signalized intersections, and design and operational characteristics of the intersections. For signalized intersections the factors affecting pedestrian level of service using pedestrian's perception on comfort and safety was identified (Vegadiri and Nagraj, 2013; Bian et. al., 2009).

2.5.3 Studies Comparing PLOS Methods

In the literature there are numerous studies discussed the advantages and disadvantages of PLOS methods according to the factors used in the method. Singh and Jain (2011) compares six methods in detailed (the necessary variables and features and method of calculation for each method) and some others externally in a literature review study. In the study, the methods were divided into two categories; capacity based methods and roadway characteristics based methods. Capacity based methods are mostly useful in planning progress to give base information about pedestrian facilities such as HCM method; and roadway characteristics of walkways such as Trafitec Model (Jensen, 2007) and SCI Model (Landis et al., 2001) of Pedestrian LOS. Another study categorized the assessment of PLOS methods under three different perspectives (Tan et al, 2007). The first type only considers the pedestrian flow operation like in HCM, second type was based on road environment quality like Trip Quality method and the third type consider both of them like Australian method and Landis method.

Sisiopiku et. al. (2007) reviewed, compared and contrasted the more commonly used and accepted five methods in the literature (Table 2.2). As a test application they applied all the five methods to 13 sidewalks, in the downtown Birmingham, Alabama to compare the consistency of outcomes. The analysis confirmed that it could receive varied PLOS results for same segment according to different methods. Another remarkable result was HCM (200) overestimated the condition in general.

Issue	HCM 2000	Australian	Trip Quality	Landis	Conjoint
Geometry	Ped. Space	Path width	Ped. Path	Motor path	Width and
	v/c ratio		components	width; On-	separation
				street parking	
Flow	Pedestrian	Pedestrian	Not	Vehicle flow;	Flow rate
	flow;	volume;	considered	Speed	
	Speed	Mix of users			
Path	Not	Obstructions;	Route; Buffer;	Sidewalk an	Obstructions
	considered	Connectivity;	Trees/	buffer widths	
		Environment	Overhangs		
Vehicle	Not	Potential for	Not	Not	Bicycle
Conflicts	considered	conflicts;	considered	considered	events
		Crossing			
		opportunities			
Security	Not	State of	Buffer;	Not	Not
	considered	security	Transition to	considered	considered
			other spaces		
Support	Not	Exist or not	Not	Not	Not
facilities	considered		considered	considered	considered
Quality of	Not	Surface	Path condition	Not	Not
path	considered	quality		considered	considered

 Table 2.2 Comparison of Factors Included in Pedestrian Sidewalk Assessment Methods

 Sisiopiku et. al., 2007

In a more comprehensive study, Christopoulou (2012) compares 11 methods which were created based on the USA conditions (Table 2.3). In the study vehicle volume was interpreted as a factor which affects the pedestrians' perception of safety and comfort. The study focused on the five of the methods (6, 7, 9, 10 from Table 2.2 and HCM Method) to create a new model for Greek conditions. The results revealed that level of service results could greatly differ according to method, and the inclusion of both qualitative and quantitative parameters could reflect the actual condition.

Table 2.3 Comparison of the pedestrian level of service methodologies with regard to their criteria (Christopoulou and Pitsiava-Latinopoulou, 2012)

	Methodologies	Volume	Traffic	Safety/comfort	User's aspect
		(veh, ped, bic)	incidents		
1	Mozer D.	Veh volume	-	Buffer zone	Taken into
		and speed, ped			account
		volume			
2	Dowling R et.	Veh volume	Ped crossing	Buffer zone, on	Taken into
	al.	and speed, ped		street parking	account
		volume			
3	Landis B. et al	Veh volume	-	Buffer zone, on	Taken into
		and speed		street parking	account
4	FDOT	Veh volume	-	Buffer zone, on	Taken into
		and speed		street parking	account
5	TRB	Ped volume	-	-	-
6	Jaskiewicz F.	-	-	Buffer zone,	-
				accessibility	
7	Gallin N.	Ped volume,		Personal Safety	-
		users'			
		categories			
8	Jensen S.	Veh, ped and	-	Buffer zone,	Taken into
		bic volume		land uses, trees	account
9	Muraleetharan	Ped volume	-	Trees, parked	Taken into
	T. et al			cars etc	account
10	Tan D. et al	Ped, veh and	Roadway	Distance	Taken into
		bic volume	crossing	between	account
				sidewalk-	
				outside traffic	
				lane	
11	Dixon L.	Veh volume	Taken into	Facilities	-
			account	easing	
				pedestrian	
				movement	

2.6 Inter Rater Reliability in Subjective Measurements

Determination of PLOS with Trip Quality method is open-ended and can greatly differ by point of view. For the reliability of the results inter rater reliability should control between at least 2 raters. The study compares three inter rater estimation methods, consensus estimates, consistency estimates and measurement estimates, with their advantages and disadvantages. Within the concept of consensus estimates, raters are trained on how to interpret the rating scale, while consistency estimates based upon that there is not necessary for two raters have the same knowledge on rating scale. Measurement estimates based upon the idea that one
should use all of the information available from all raters (including discrepant ratings) when attempting to create a summary score for each respondent.

Cohen's Kappa is one of the statistical methods analyzes the consistency between two raters and is under consistency estimates methods. This method is widely used and commonly accepted method on inter rater reliability between two raters (Viera, 2005; Landis and Koch, 1977). Method considers the agreement between raters and analyzes the agreement if it occurs by change or there is a relationship between ratings. It gives more reliable results than basic proportion of agreement. The interpretation of the Kappa results has confusions and there are 3 benchmark scales see Table 2.4, Table 2.5, Table 2.6 (Gwet, 2012)

Table 2.4 Fleiss' (1981) Benchmark Scale for the Kappa

Less than 0.40	Poor
0.40 to 0.75	Intermediate to good
More than 0.74	Excellent

Table 2.5 Landis&Koch(1977) Benchmark Scale for the Kappa

Less than 0.0	Poor
0.00 to 0.20	Slight
0.21 to 0.40	Fair
0.41 to 0.60	Moderate
0.61 to 0.80	Substantial
0.81 to 1.00	Almost perfect

Table 2.6 Altman's (1991) Benchmark Scale for the Kappa

Less than 0.20	Poor
0.21 to 0.40	Fair
0.41 to 0.60	Moderate
0.61 to 0.80	Good
0.81 to 1.00	Very good

CHAPTER 3

EVALUATING PLOS VIA DIFFERENT METHODS

To be able to suggest any improvement encouraging walking on METU campus, it is important to understand dimensions of pedestrian mobility, and properties of selected PLOS evaluation methods, which are presented in this section. As the final part, ideas for cross evaluation of different PLOS method ratings are presented.

3.1 Dimensions of Pedestrian Level of Service Evaluation

Based upon the literature, the PLOS can be analyzed in five dimensions; i) user characteristics, ii) traffic characteristics, iii) land use characteristics, iv) infrastructure characteristics and v) safety/ comfort characteristics (See Figure 3.1). Among user characteristics, the age and gender distribution crates a difference on the walking tendency, and the perception has a significant effect on the walkability of a segment. In terms of traffic aspects, pedestrian traffic on the walkway and traffic of other modes are found to be important, as well as the composition of traffic and speed variations create significant differences. The prevention of incidents, vehicular LOS, lightning and the buffer area created by trees, parked car are very important under safety/comfort issues. Land use characteristics provide convenience to users by sidewalk on both side (twosideness), directness between origin and destination, connectivity within the network, complexity of network and parallel alternative routes; while having attraction by aesthetic, building articulation and such kind of design aspects. A major dimension which gets the highest attention in the literature is the sidewalk infrastructure characteristics and it could be analyzed under two subtitles.

According to type of the infrastructure (cross-section, sidewalks, intersections and walkways) the determination method varies. For example if walkways are the walking areas which is disengaged from vehicular traffic, there will not be a vehicular traffic effect on that segments. Under segment characteristics that have direct relationship on walking continuity, width of the segment, obstacles such as signs, trees, etc., medians and the area vs pedestrian ratio should be considered.

Figure 3.1 Dimensions of Pedestrian Level of Service Measures

3.2 PLOS Evaluation Methods Used in the Study

In this section three PLOS determination methods which are applied in the case study part of the thesis are analyzed in detailed. The calculation method, necessary data and determination tables are summarized.

3.2.1 HCM-based PLOS Method

HCM (2010) allocated a special chapter on pedestrian and bicycle level of service and examined at 3 conditions; exclusive off street pedestrian facilities, off street bicycle facilities and shared used facilities. Analyses are considered in the segments and segments are determined by street crossings or significant width changes or intersections where user volumes changed significantly or facility type changes such as stairways.

HCM considers three types of pedestrian facilities: walkways, cross-flow areas, and stairways. The PLOS thresholds for each category are different, but all are based on the concept of "space per pedestrian", which is considered a measure of pedestrian comfort and mobility. For each facility type LOS scores were determined in tables according to effective width and 15-minute pedestrian volume at any segment. The main steps of PLOS determination are given as:

- Step 1 Determination of effective walkway width, w_E ,
- Step 2 Calculation of pedestrian flow rate, v_p ,
- Step 3 Calculation of average pedestrian space, A_p ,
- Step 4: Determination of LOS (for walkways with and w/o platooning, and stairway)

The effective walkway width determination is rather cumbersome, which require measurement of total walkway width, fixed-object (such as trees, signs, etc.) effective width and shy distance. This effective width has to be calculated at every point of change. Pedestrian flow rate per unit width, $v_p = \frac{v_{15}}{15xW_E}$ (p/ft/min) is taken as 15-minute pedestrian counts. The average pedestrian space, A_p , is a surrogate

measure for density calculated by dividing pedestrian speed, S_p , by pedestrian flow, v_p , if speed is measured. The guidebook also suggested a capacity value of 23 p/min/ft. value for walkways with random flow. PLOS limits from A to F are decided using Table 3.1. The table allows different measures for PLOS determination according to data availability; average space, flow rate, average speed and v/c ratio.

 Table 3.1 Average Flow Level of Service for Walkways and Sidewalks w/o platooning in

 HCM (2010).

LOS	Avonago Space	Related Measures				
(PLOS _{HCM})	(AS) (ft2/p)	Flow Rate (p/min/ft.) ^a	Average Speed (ft./s)	v/c Ratio ^b		
А	AS >60	Score ≤5	4.25 <score< td=""><td>Score≤0.21</td></score<>	Score≤0.21		
В	60≥ AS >40	5< Score ≤7	4.17 <score≤4.25< td=""><td>0.21<score≤0.31< td=""></score≤0.31<></td></score≤4.25<>	0.21 <score≤0.31< td=""></score≤0.31<>		
С	40≥ AS >24	7< Score ≤10	4.00 <score≤4.17< td=""><td>0.31<score≤0.44< td=""></score≤0.44<></td></score≤4.17<>	0.31 <score≤0.44< td=""></score≤0.44<>		
D	$24 \ge AS > 15$	10 <score≤15< td=""><td>3.75<score≤4.00< td=""><td>0.44<score≤0.65< td=""></score≤0.65<></td></score≤4.00<></td></score≤15<>	3.75 <score≤4.00< td=""><td>0.44<score≤0.65< td=""></score≤0.65<></td></score≤4.00<>	0.44 <score≤0.65< td=""></score≤0.65<>		
E	15≥ AS >8	15 <score≤23< td=""><td>2.50<score≤3.75< td=""><td>0.65<score≤1.00< td=""></score≤1.00<></td></score≤3.75<></td></score≤23<>	2.50 <score≤3.75< td=""><td>0.65<score≤1.00< td=""></score≤1.00<></td></score≤3.75<>	0.65 <score≤1.00< td=""></score≤1.00<>		
F	$8 \ge AS$	Variable	Score≤2.50	Variable		

Notes: a Pedestrians per minute per foot of walkway width

^b v/c ratio= flow rate/23. LOS is based on average space per pedestrian

HCM, as a principle, does not provide any PLOS evaluation measure for locations not designed for pedestrian activity. But, pedestrians may walk along forestry, walking on the shoulder or roadway designed for vehicles, walking along bicycle lanes, which are observed in our campus evaluation. For such locations, PLOS, as a concept is considered as LOS F, as there is pedestrian flow (v) but no infrastructure capacity available (c), conceptually suggesting a v/c ratio definitely greater than "1".

3.2.2 Gainesville Method

It was developed by Dixon (1996) using a grading point system of 1 to 21, and evaluates the PLOS of a walkway segment by six categories (see Table 3.2). Category I, pedestrian facility provided, evaluates the characteristics of the pedestrian walking area according to existing of sidewalks in sides of vehicular

lanes, sidewalk width and off-street parallel alternatives and gives up to 10 points. This category gets approximately half of 21 points and the most important indicators of the method. Following category, conflicts, gets up to 4 points and gives information about interaction between the motor vehicles and pedestrians.

Table 3.2 Pedestrian	Level of Service (PLOS	b) categories in Gaine	esville Method (Dixe	on,
1996)				

(PLOS _{GM})	Score* (points)							
Α	Score >17							
В			14< Score ≤17					
С			11< Score ≤14					
D			7< Score ≤11					
Е			$3 < \text{Score} \le 7$					
F			Score ≤ 3					
*Score: C1+ C2+	- C3+C4+C5+C6							
	Point C	Categorie	es and Criteria					
Category	Criterion	Points	Category	Criterion	Points			
	 No Continuous or Non-existing 	0		Buffer not Less Than 1m(3.5')	1			
	 Continuous on One Side Continuous on 	4	C3: AMENITIES	Benches or Pedestrian Scale	0.5			
C1:	Both Sides	6	(Max Value=2)	Lightning				
PEDESTRIAN FACILITY PROVIDED	Min. 1.53m(5') Wide& Barrier Free	2		Shade Trees	0.5			
Value=10)	Sidewalk Width>1.53m(5')	1	C4:	LOS E,F or 6 or More Travel Lanes	0			
	Off-Street/ Parallel Alternative Facility	1	MOTOR VEHICLE LOS (Max Value=2)	LOS D and <6 Travel Lanes	1			
	Driveways & Side streets	1	· · ·	LOS A,B,C and <6 Travel Lanes	2			
	Pedestrian Signal Delay 40Sec. or Less	0.5	C5:	Major or Frequent Problems	-1			
C2: CONFLICTS	Reduced Turn Conflict Implementation	0.5	MAINTENANC E (Max Value=2)	Minor or Frequent Problems	0			
(Max Value=4)	Crossing Width 18.3m(60') or Less	0.5		No Problems	2			
	Posted Speeds	0.5	C6: TDM/ MULTI-	No Support	0			
	Medians Present	1	MODAL (Max Value=2)	Support Existing	1			

Category III, IV and V give up to 2 points. Amenities stated the condition of sidewalk in the right-of-way, comfort and convenience for pedestrians, and Motor vehicle LOS determine the effect of the motorized LOS on pedestrians. Category V evaluate impact of the obstacles (i.e. holes, tree root intrusion, patching) which have a big impact on pedestrian flows. Category VI represents the existence of a bus stop on the connection of intermodal accessibility. For each sidewalk/walkway segment, category points are determined, and then the summation of all category points gives the total grade for segments. According to Pedestrians are defined in the scale of A to F. Finally, segment score could be turned into corridor score by using weighted averages by the ratio of segment length over corridor length and the available segment scores.

3.2.1 Trip Quality Method

Jaskiewicz (1999) defined nine specific qualitative evaluation measures; enclosure/definition, complexity of path network, building articulation, complexity of spaces, transparency, buffer, shade trees, overhangs/ awnings/ varied roof lines, and physical component/ condition; to analyze pedestrian system for pedestrians' pleasantness, safety and comfort. For each measure 5 scale rating was applied in the mean of 5= excellent, 4=good, 3=average, 2=poor and 1=very poor. The scores of each measure averaged and overall LOS was determined according to Table 3.3. The method mostly suitable for city street design aspects such as shopping areas and working places through a street.

Enclosure / definition symbolizes the degree to which the edges of the street are defined, when buildings are constructed side-by-side along the sidewalk in the focus of minimizing the empty places between in and in front of buildings. Good enclosure increases the positive effect on safety and also on aesthetics. Complexity of path network indicates the route choice alternative in a well-designed land use pattern; and the alternative paths between each origin-destination pair. Building design, materials, color and décor has a good impact on pedestrian walking choice,

speed and interest under the title of building articulation. The varied, interesting and rapidly changing areas increases the level of interest on walking such as, natural elements, spaces, plazas and parks shows the complexity of spaces.

LOS	Aver	aged Sco	re*	Pedestrians'		
(PLOS _{TQ})		(Points)		Plea	Pleasantness	
Α	4.0 ≤	\leq Score \leq :	5.0	Very P	Very Pleasant	
В	3.4 ≤	\leq Score \leq	3.9	Comfo	rtable	
С	2.8 ≤	\leq Score \leq	3.3	Accept	able	
D	2.2 ≤	\leq Score ≤ 2	2.7	Uncom	fortable	
Е	1.6 <	\leq Score ≤ 2	2.1	Unplea	sant	
F	1.0 ≤	\leq Score \leq	1.5	Very U	Inpleasant	
*Average Score Points= (M1+M2	2+M9)/9					
Evaluation Measures and Point Levels						
Category	Very Poor	Poor	Average	Good	Excellent	
M1: Enclosure/Definition	1	2	3	4	5	
M1: Enclosure/Definition M2: Complexity of Path	1	$\frac{2}{2}$	3	4	5	
M1: Enclosure/Definition M2: Complexity of Path Network	1	$\frac{2}{2}$	3	4	5	
M1: Enclosure/Definition M2: Complexity of Path Network M3: Building Articulation	1 1 1	$\begin{array}{c} 2 \\ 2 \\ \end{array}$	3 3 3	4 4 4	5 5 5	
M1: Enclosure/Definition M2: Complexity of Path Network M3: Building Articulation M4: Complexity of Spaces	1 1 1 1	2 2 2 2 2	3 3 3 3	4 4 4 4 4	5 5 5 5 5	
M1: Enclosure/Definition M2: Complexity of Path Network M3: Building Articulation M4: Complexity of Spaces M5: Overhangs/ Awnings/	1 1 1 1 1 1	2 2 2 2 2 2	3 3 3 3 3 3	4 4 4 4 4 4	5 5 5 5 5 5	
M1: Enclosure/Definition M2: Complexity of Path Network M3: Building Articulation M4: Complexity of Spaces M5: Overhangs/ Awnings/ Varied Roof Lines	1 1 1 1 1 1	$\begin{array}{c} 2\\ 2\\ \hline 2\\ \hline 2\\ \hline 2\\ \hline 2\\ \hline \end{array}$	3 3 3 3 3	4 4 4 4 4	5 5 5 5 5	
M1: Enclosure/Definition M2: Complexity of Path Network M3: Building Articulation M4: Complexity of Spaces M5: Overhangs/ Awnings/ Varied Roof Lines M6: Buffer	1 1 1 1 1 1 1	2 2 2 2 2 2 2	3 3 3 3 3 3 3	4 4 4 4 4 4	5 5 5 5 5 5	
M1: Enclosure/DefinitionM2: Complexity of PathNetworkM3: Building ArticulationM4: Complexity of SpacesM5: Overhangs/ Awnings/Varied Roof LinesM6: BufferM7: Shade Trees	1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3	4 4 4 4 4 4 4 4	5 5 5 5 5 5 5 5	
M1: Enclosure/DefinitionM2: Complexity of PathNetworkM3: Building ArticulationM4: Complexity of SpacesM5: Overhangs/ Awnings/Varied Roof LinesM6: BufferM7: Shade TreesM8: Transparency	1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{c} 3 \\ $	$\begin{array}{c} 4\\ 4\\ 4\\ \hline 4\\ \hline 4\\ \hline 4\\ \hline 4\\ \hline 4\\ \hline 4\\$	5 5 5 5 5 5 5 5 5	
M1: Enclosure/DefinitionM2: Complexity of PathNetworkM3: Building ArticulationM4: Complexity of SpacesM5: Overhangs/ Awnings/Varied Roof LinesM6: BufferM7: Shade TreesM8: TransparencyM9: Physical Component/	1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{r} 3 \\ $	$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	5 5 5 5 5 5 5 5 5 5 5	

 Table 3.3 Overall Pedestrian LOS Rating According to Trip Quality Method (Jaskiewicz, 1999)

Overhangs/ awnings/ varied roof lines has importance on both appearance and functional perspectives. Like building articulation, it increases the level of interest, besides that it works as a protection against to sunlight and rainfall. Buffer is the barrier between pedestrians and vehicular traffic and it is very important on safety. Shade trees improve the sun protection and also the aesthetic of the sidewalks. Transparency determines the interaction between public and private by the use of windows, outdoor displays and sidewalk cafes with a smooth interface. The last measure defines the physical component/ condition, both structural and functional

view, concurred by sidewalk configuration and condition, vehicular speed and lightning characteristics.

3.3 Comparison of PLOS Ratings

To develop a more comprehensive PLOS method, we need a combination of both qualitative and quantitative measures together, which somehow reflects the user's perception and choice measures. In this study pairwise comparisons between methods are investigated to see the consistency of the method results. First, cross tabulation of the 3 PLOS rating results will prepared following the format shown in Table 3.4 for each study point and method, respectively.

nt			F	PLOS	нсм				Datar 1	Dator 2	PLOSTQ
Poir	T1	T2	Т3	T4	Т5	T6	Worst case	PLOS GM	Score Score	Rating Avg.	
••••											
A5	А	Α	Α	А	А	Α	Α	В	2.5	2.5	D
A6	Α	Α	Α	А	А	Α	Α	В	3.1	3.1	С
••••											
B2	Α	Α	Α		А	Α	Α	D	2.1	2.1	Е
••••											
B4	В	Α	В	А	А	Α	В	D	2.3	2.2	D
••••											
B6	Α	Α	С	Α	А	Α	С	С	3.4	3.3	С
••••											
D6	F		F	F	F	F	F	D	2.5	2.1	D
••••											
E4	А	А	А	Α	А	А	Α	В	2.9	2.3	D
••••											
H9	Α	Α	Α	А	А	Α	Α	В	3.5	3.5	B
••••											
J6	Α	Α	В	А	А	Α	В	F	2.4	2.1	D
••••											
K1	А	Α	Α	Α	Α	Α	Α	С	2.4	2.9	D
K7	А	Α	А	А	А	Α	Α	С	3.3	3.3	С

 Table 3.4 Cross tabulation of PLOS ratings for a subset of study points in METU Campus

 Study

In the process of the cross-tabulation,

- time-dependent HCM PLOS rating can be summarized into a representative rating which is defined as the "worst score" of the six time intervals. For example, at point B6, despite the high PLOS A levels in five tim intervals, PLOS degrades to C during the third time interval, T3, and thus, is assumed to be the representative level for this point.
- results of multiple raters in Trip Quality, must be reduced to a representative rating, which is simply done by taking the average of score points at each point. For example, at E4, Rater 1 and Rater 2 scores were 2.9 and 2.3, respectively, which is generating an average score of 2.6, that corresponds to a PLOS_{TQ} of D according to Table 3.3.

After the cross-tabulation, the frequency tables for combinations of PLOS rating pairs are prepared for HCM versus GM, HCM versus TQ, and GM versus TQ comparisons. As an example, frequency of PLOS rating combinations by HCM versus GM is shown in Table 3.5, where " $f_{X, Y}$ " denotes the number of locations at which HCM produced a rating of "X" while GM produced a rating of "Y". Such frequencies can also be visually depicted in a graph shown in Figure 3.2. In this pairwise evaluation, higher frequencies on the diagonals of the tables such as $f_{A,A}$, $f_{B,B}$, etc. show higher consistency between the two rating methods. This interpretation of consistency can be extended by accepting "close ratings" consistent; for example pairwise ratings of (C,C), (C,B),(C,D),(B,C),(D,C) can be interpreted as consistent. However, observance of cases with extreme combinations, such as (A,D), (F,B), (C,F), etc. is an indicator of inconsistency of the two model results. While one suggests very good operating conditions, the other indicates failing conditions.

Table 3.5 An example frequency table for pairwise evaluation of HCM and Gainesville PLOS ratings

Freq	luency	Gainesville PLOS					
of locations		A B C D E F				F	
	Α		f _{A,B}	f _{A,C}	f _{A,C}		
	В				$f_{B,D}$		f _{B,F}
Ő	С			f _{C,C}			
[b]	D						
CN	Ε						
H	F				$f_{F,D}$		

Figure 3.2 An example frequency graph for pairwise evaluation of HCM and Gainesville PLOS ratings

CHAPTER 4

CASE STUDY: METU CAMPUS PLOS AND WALKABILITY EVALUATIONS

METU campus was originally designed as "pedestrian friendly". However, change in the campus layout, the mode choice of the campus users as a function of change in the city it is located, it is necessary how it is perceived now. Thus, as a start point, in Section 4.1, we would like to give a picture of current state of walkability in the campus from a user perspective, which was evaluated as a subsection in a "METU Campus and Transportation Survey- Student Perspective". In this section, after a brief summary of the participant profile, walking choice of students in their in-campus accessibility and their perception on walkability will be presented.

In Section 4.2, the data collection for three PLOS methods is discussed in detail from points of pedestrian data, vehicular flow data and infrastructure data. After presentation of the PLOS evaluations by individual methods, comparative analyses of the rating are presented according to the methodology discussed in the previous chapter.

4.1 Walking and Walkability at METU Campus

"METU Campus and Transportation Survey- Student Perspective" was conducted in autumn (12 Nov.-1 Dec. 2014) with a five-pollster-group to 307 students. Within the scope of the survey, basically, all transportation habits while arriving to campus and also all the mode choices within the campus data, sustainability concept, all the possible modes' satisfaction level/ possible improvements, and pedestrians' walking routes was investigated for students. But, for the evaluation of walking and walkability on campus, results of the relevant parts (presented in Appendix A) are used in this study.

Sampling was done according to departmental populations, which were grouped into 25 sub regions based on proximity. Also, proportionality between the students residing in the dormitories and in the city is maintained according to the campus shares (approximately 1/3 of the total population lives in the campus). The participant profile is summarized in Table 4.1.

 Table 4.1 Participant Profile for METU Campus and Transportation Survey- Student

 Perspective

	F	(%)
Gender (N=307)		
Male	153	49.8
Female	154	50.2
Ages (N=297)		
16-25	276	89.9
26-35	21	6.8
Marital Status (N=297)		
Married	1	.3
Unmarried	296	96.4
Class (N=307)		
Prep School	18	5.9
1.Class	45	14.7
2. Class	79	25.7
3. Class	70	22.8
4. Class	73	23.8
Master	20	6.5
Income (TL) (N=301)		
000-500TL	72	23.5
500-1000	156	51.8
1000-2000	50	16.6
2000-3500	18	6.0
3500-5000	5	1.7
Housing Location (N=306)		
METU Campus	115	37.5
City Center	191	62.4

4.1.1 In-Campus Mode Choice for METU Campus

One of the most important result from the survey is the high walking preference within campus transportation (Table 4.2). 68 % of the students prefer walking as a first alternative while going somewhere in the campus. This shows us there is a

high demand to walking in the campus movements and there should be more effort on walking, walkway infrastructure and etc.

	First Ch	oice	Second C	Choice	Third Choice	
Mode	Frequency	%	Frequency	%	Frequency	%
Walking	209	68,1	67	21,8	11	3,6
Bicycle	-	-	3	1,0	3	1,0
METU In-campus Shuttle	43	14,0	86	28,0	32	10,4
Dolmus	3	1,0	13	4,2	11	3,6
Hitchhiking	17	5,5	65	21,2	52	16,9
Private Car	28	9,1	27	8,8	4	1,3
Taxi	5	1,6	4	1,3	2	0,7
EGO In-Campus Shuttle	-	-	1	0,3	1	0,3

Table 4.2 In-Campus Student Mode Choice Results (N= 307 Students)

4.1.2 Students' Perception of Walkability in METU Campus

METU Campus and Transportation Survey includes some questions to get a rough idea on the perceptions' on walking, quality of walking area and safety described in detailed. As a beginning the respondents were evaluated the sufficiency of infrastructure characteristics in a general perspective for whole campus. With the data from evaluations analyzed with a basic descriptive statistics revealed in Table 4.3. Results revealed that the walking infrastructure was mostly sufficient, but lightning, safety precautions, and arrangement for disabled users were very problematic. Also there were a considerable amount of users who evaluate the characteristics; pavement quality, width, and shading; as insufficient.

 Table 4.3 Evaluation of METU Campus walking areas according to selected design, network and infrastructure parameters by students

Is the walking area (walkways, sidewalks,	Sufficient	Insufficient
crosswalks) sufficient in	(%)	(%)
a) Pavement Quality (N= 302)	58.0	40.4
b) Continuity (N=302)	66.1	32.2
c) Width (N=305)	58.6	40.7
d) Shortcuts (N=305)	67.1	32.2
e) Shading (N=300)	51.5	46.3
f) Safe Lightning (N=303)	34.5	64.2
g) Planned according to disabled person (N=301)	9.4	88.6
h) Other safety precautions (stragglers, vehicle	18.6	79.8
conflicts, etc.) (N=302)		
i)Marked crosswalks (N=295)	61.9	34.2

Attendees evaluated the features in "not important" to "extremely important" scale on walking preferences (Table 4.4). The statistics revealed a parallel interactions with walking as expected. Walkway capacity, continuity and width identified as a partially important feature, while the precautions against to weather conditions, shortcuts, arrangement for disabled users, infrastructure, and lightning were highly important. Existing of sidewalk on both sides of the road and the width of the sidewalks were extremely important, as in the literature. The decrease in obstacles as plague and mast was partially important; however decrease in trees was not important. 50% of the attendees determine the planning the network according to disabled persons as extremely important. Also the prevention of vehiclepedestrian conflicts with barriers define as highly important. As safety precautions, crosswalks, presence of a median and traffic lights seem important. In-campus speed limit should importantly decrease in spite of current low speed limits.

		Not Important	Slightly Important	Moderately Important	Extremely Important
		(%)	(%)	(%)	(%)
a)	Walkway,				
	a1) should increase (N=297)	14.7	29.0	36.5	16.6
	a2) should be continuous	10.7	24.4	44.6	18.6
	(N=302)	1.5.0			10.5
	a3) should enlarge (N=304)	16.0	27.0	36.5	19.5
	a4) should be sheltered against	7.2	12.1	40.7	39.1
	bad weather conditions				
	(IN=304)	10.7	22.8	24.2	20.6
	as) should be shellered against sup effects $(N-302)$	10.7	22.8	54.2	50.0
	a6) should have shortcuts	33	16.0	38.1	42.0
	(N-305)	5.5	10.0	50.1	42.0
	a7) planned according to disabled	85	8.8	32.6	47.9
	person (N=300)	0.5	0.0	52.0	-115
	a8) infrastructure should improve	7.5	20.5	39.4	31.9
	(smooth service, durable design,				
	etc.) (N=305)				
	a9) should be better lighten	6.2	18.6	36.2	35.8
	(N=297)				
b)	Sidewalks,				
	b1) should be at both sides of the	5.9	9.4	42.7	41.0
	road (N=304)				
	b2) should enlarge (N=305)	8.1	21.8	37.1	32.2
	b3)number of obstacles	17.3	32.2	30.0	19.5
	(plaque/mast) should be decrease				
	(N=304)	50.1	20.2	16.0	11.0
	b4) number of impediment trees	52.1	20.2	16.0	11.0
	should be decrease (N=305)	75	65	22.0	50.2
	(N-208)	7.5	0.5	52.9	50.2
	b6) possible vehicle-pedestrian	10.4	19.5	32.0	35.8
	conflicts should be decrease by a	10.4	17.5	52.9	55.0
	buffer (shrubbery, concrete				
	barriers, etc.) (N=303)				
c)	Marked Crosswalks;				
Í	c1) should be increase (N=305)	7.8	22.1	42.3	27.0
	c2) should design with a median	12.7	28.7	37.5	18.6
	in the middle (N=299)				
	c3) equipped with traffic lights	15.3	29.0	36.5	16.9
	(N=300)				
d)	In-campus speed limit should	13.7	22.8	33.6	28.7
	decrease (N=303)				
e)	Parking which affecting the	7.5	15.6	32.6	42.7
	pedestrian flow should avoid				
	(N=302)				

Table 4.4 Evaluation of sidewalk design and possible improvements for METU Campus walking areas by students

After all the research on METU campus walkability and walking analysis, there are a lot of different results and comments for same region. Three different PLOS methods include mostly different features and also the pedestrian perceptions vary. Neither of the results can be the case for a region but to evaluate METU campus walkability, one should gather the necessary piece of each result into a new point of view. Because of the deficiency of location based perception data, the evaluation for campus will be concluded as one whole system with a conversion of location based PLOS results into a general result. Besides the PLOS determination, walkability in METU campus evaluated as sufficient according to pedestrian perception. With this summary situation assessment, it can be concluded that METU is a walkable campus but not at highest level of confidence because of infrastructure deficiencies.

4.2 Campus Walking and PLOS Data Collection

For walkability and PLOS evaluations there are lots of different points of views as mention in the Chapters 2 and 3. For each perspective there is a need for different types of data, and data collection becomes complicated. In this part of the study collected necessary data for 3 PLOS methods were explained under three subtitles; i) pedestrian counts, ii) infrastructure data, and iii) vehicular traffic data.

4.2.1 Pedestrian Counts

METU Campus has a big pedestrian activity which differs according to time of day, day of week and also seasonal. To determine the walkability and PLOS in the campus, the demand and flow characteristics should be analyzed, firstly. At the beginning, a comprehensive pedestrian count in the campus was planned in detailed to catch the whole day mobility spatially and temporarily. The campus was divided into 11 main regions, from Zone A to Zone Z as shown in Figure 4.1.a. To study many locations where pedestrian flows intersect (such as a main roundabout in Zone E shown in Figure 4.1b) or volumes changed drastically (such as bus stops). A total of 102 count points (see Figure 4.1a) included six points on the pedestrian alley, a few more on the stairways leading to the sidewalks, and

many locations either at the crosswalks or along the campus roads, with observation points on both sides of the roads, regardless of existence of sidewalks. To increase data quality, every walking direction at each location is coded in the counting sheets as shown in Figure 4.1c, and also every count points are shown in Appendix B.

Figure 4.1 Count Locations of (a) All Campus and (b) Pedestrian Zone E, and (c) with Direction Instructions for Zone E

The survey was conducted on October 11, 2011 with 10 observers (Zone G was excluded due to personnel problem) at 6 different time periods (8:15-9:00, 9:15-10:00, 12:15-13:00, 13:15-14:00, 16:00-16:45, 17:00-17:45) to capture the mobility in the morning, during noon and in the evening. All observers have the data collection sheet shown in Figure B.1 to define a common procedure within all regions. To cover a zone with one observer during the allocated 45-minute

period, each location was observed for 3 minutes only. Though, this is rather short period, it was chosen for the sake completeness of the survey, but, there are also some example pedestrian studies with this short observation time in the literature (Parma et al, 2013; Maddock et al, 2012). Pedestrian movements and directions are recorded by gender, as well, to investigate the difference.

No strong walking pattern based on gender was observed for METU campus. However very strong directionality pattern was observed. The 3-minute counts differed greatly by time interval, direction and location, as expected. As an example, at the point of F10 there were 400 pedestrians in 3-minutes going southbound, at 09:15 to 10:00 interval (Table D.1). Besides, there were 92 pedestrians in the opposite direction (northbound) at 17:00- 17:45 interval (Table D.3). Likewise at point B6 there were 231 pedestrians in 3-minute counts to southbound at 12:15 to 13:00; however there were 4 pedestrians at 09:15 to 10:00 interval (Table D.2). The whole count results for every count points were demonstrated in the Appendix D, and hourly total values were calculated by summation of 3-minute counts for 2 directions and multiplied by 20 to achieve 60 minutes values.

To indicate the directionality with count location data and the interpretation of it became very complicated and meaningful. By a notation in GIS environment data was investigated and converted to maps using PTV VISUM software with directionality and gender based pedestrian count data. To represent the time-dependent nature of the pedestrian flows multiple GIS maps was prepared as shown in Figure 4.2 a-b. In order to reveal the time-dependent difference, a morning and an evening time interval was chosen in the representation. Comparative analysis of the different time period maps showed the change of directionality and volumes of pedestrian activity in METU campus.

The figure indicates that there was a great number of pedestrian movement from the gates to the academic buildings at the morning, and the reverse of it at the evening, as expected. While there was more pedestrian activity originating from the dormitories in the morning, there was more activity on the alley and the recreational areas in the evening. Also, on the walkway leading to the north campus entrance, there is a sign of strong "entrance" flow, where more people walked south towards the campus in the morning, and vice versa in the evening.

Figure 4.2 Mapping of Volumes and Directions of Pedestrian Flows for a) Morning (08:15-09:00) and b) Evening (16:15-17:00) Hours

For noon times, which create a mobility for lunch break, pedestrians were mostly in tendency to go cafeteria for lunch. In Figure 4.3, the noon time pedestrian flow was on the road to cafeteria can be seen obviously.

Figure 4.3 A Photo Shows Noon-time Pedestrian Flow on Alley

This analysis revealed the following challenges of pedestrian mobility on the representations on GIS mapping:

- The display of both walking directions at each count location can be challenging, especially at short walkway segments. This requires definition of directional pedestrian links at each count location regardless of existence of a walkway or not; which in return, requires a much more complex network definition.
- Display of directionality in such a dense pedestrian network poses a challenge; it was overcome in our study by color coding the mobility into two main directions "north-or-west" and "east-or-south" as shown in Figure 4.2. Using the line thickness feature, it was possible to display the pedestrian volumes in

the same map. But, this may be further improved by employing advanced GIS techniques, such as 3D mapping.

• Interpretation of the validity of the point based pedestrian volumes over the links is another challenge; although a link in a vehicular traffic network has a much more definite and concrete meaning, it is a more vague concept in case of pedestrian networks. In our analysis, we had to make judgment on the length of the segment for which the counts would be representative. For some corridors along which we had no pedestrian attraction/production points, we were able to extend the counts over a long distance; but, some observations were at critical locations serving many nearby nodes, and thus, were valid for very short distances.

4.2.2 Infrastructure Data

The infrastructure data on walkways, sidewalks and crosswalk have an approved impact on walking choice as mentioned in the literature. Nearly all the methods which determine PLOS or walkability in a region, contained one or more physical and design characteristics. Within the part of the thesis the infrastructure data was collected for the three PLOS determination methods for each count point at three stages. The first stage was the collection of accurate features such as width of sidewalk/ walkway, presence of trees, buffer, median, etc. Second and third stages were the collection of relative features by two raters at different dates. The relative features were identified according to Trip Quality Method as explained in the Section 3.2.1 and coded with numbers (Table 3.3)

To show evaluation of infrastructure characteristics for different methods, data reports were prepared for every study location. Examples of such reports are given in Tables 4.5 through 4.7. For example, Point A3 has a good physical separation, trees, between vehicular traffic. The location also has well designed against to sun, but the lightning is insufficient (see Table 4.5). For both locations, there is no bus stop or any other connection to public transportation. For location B9, there are major and frequent problems; trees interrupt the flow frequently

Table 4.5 The Infrastructure Data of Count Points A3 and B9

Point A3	(Width=1.9 m)	Point B9	(Width=2.0 m)		
✓ Continuous on both	n sides	\checkmark Continuous on one side	e		
✓ Medians		\checkmark Off street parallel alternative route			
\checkmark Buffer not less than	1 m	✓ Medians			
✓ Shade trees		✓ Lightning			
✓ Vehicular LOS=A,	B(off-peak)	✓ Shade trees			
✓ Vehicular LOS=F (morning-peak)	✓ All campus vehicular I	LOS=A, B or C		
✓ No maintenance pro	oblems				
 No-off street paralle 	el alternative route	* No-off street parallel a	lternative route		
* No lightning		× No Buffer			
★ NoTDM support		* NoTDM support			
		 Major or frequent prob 	olems		
 Enclosure 	=Very Poor	 Enclosure 	=Very Poor		
 Network Complexit 	ty =Very Poor	Network Complexity	=Poor		
 Building Articulation 	on =Very Poor	 Building Articulation 	=Very Poor		
 Complexity of space 	es =Poor	• Complexity of spaces	=Very Poor		
 Transparency 	=Very Poor	 Transparency 	=Very Poor		
• Buffer	=Good	• Buffer	=Very Poor		
 Shade trees 	= Excellent	 Shade trees 	= Excellent		
 Awnings 	= Very Poor	 Awnings 	= Very Poor		
Physical componen	t/ condition= Good	Physical component/ condition= Average			

Table 4.6 The Infrastructure Data of Count Points D8 and E8

	Points D8 (Width=2.0 m)	Point E8	(Widt	h=24.77 m)
✓	Continuous on both sides		✓ Continuous	s on both sides	
`	Off street parallel alternative	e route	✓ Buffer not	less than 1 m	
×	Medians		✓ Lightning		
×	Lightning		✓ Shade trees		DC
×	Shade trees	4 D	✓ All campus	s vehicular $LOS = A$	A, B or C
×	All campus venicular LOS=	А, В	 No mainten 	ance problems	
v	No maintenance problems		w Na affatua	- 4	
Ç	NoTDM support		× No-off sue	et parallel alternat	Ive foute
^	No i Divi support		× NoTDM st	5 Innort	
	Fnclosure	- A verage	Fnclosure	ippon	-Poor
	Network Complexity	-Good	Network Co	omplexity	- Average
	Building Articulation	=Very Poor	Building A	rticulation	=Very poor
	Complexity of spaces	-Poor	Complexity	of spaces	$-\Delta$ verage
	Transparency	=Very Poor	 Transnaren 	ev	=Very poor
	Ruffer	=Very Poor	Buffer	<i>c</i> ,	= Facellent
	Shade trees	= Excellent	 Shade trees 		=Average
	Awnings	= Very Poor	 Awnings 		=Very poor
•	Physical component/ conditi	on= Good	 Physical co 	mponent/ conditio	n= Excellent

Table 4.7 The Infrastructure Data of Count Points F3 and F10

Points F3	(Width=1.57 m)	Point F10	(Width=12.8 m)		
\checkmark Continuous on both sides		\checkmark Continuous on both side	es		
✓ Shade trees		✓ Off street parallel alternative route			
✓ All campus vehicular LOS	=А, В	✓ Medians present			
 Minor or infrequent problem 	ms	✓ Buffer not less than 1 m	1		
		✓ Lightning			
		 Snade trees All compute vobicular L 	OS = A P or C		
		 All campus venicular D Minor or infrequent pro 	blems		
× No-off street parallel altern	ative route	 Nmof of infrequence pro No-off street parallel alt 	ternative route		
 No lightning 		 No medians 	ternutive foute		
No buffer		 NoTDM support 			
✗ NoTDM support		11			
Enclosure	=Very poor	Enclosure	=Good		
Network Complexity	=Very poor	Network Complexity	=Good		
Building Articulation	=Very poor	 Building Articulation 	=Excellent		
• Complexity of spaces	=Average	 Complexity of spaces 	=Very Poor		
• Transparency	=Very poor	 Transparency 	=Good		
• Buffer	=Very Poor	• Buffer	=Excellent		
• Shade trees	= Good	Shade trees	=Excellent		
Awnings	= Very poor	 Awnings 	=Very poor		
Physical component/ condi	tion= Average	 Physical component/	ndition =Good		

and effective width decreases. Lightning is better than location at A3. At both points there are not any buildings or awnings. Physical condition at A3 is better than B9. This regions are both out of the academic departments and the network and spaces are not complex. As another case, infrastructure at Points D8 and E8 are summarized in Table 4.6. Point D8 has a very good physical separation between vehicular traffic, and is designed as a small alley. Both D8 and E2 have lightning and shade trees, but there is no bus stop or any other connection to public transportation. Physical condition is good at Point D8 and excellent at Point E8;

also there is no maintenance problems. There is no building, awnings and transparency effect. For location F3 (in Table 4.7) sidewalk width is minimum and there is a minor maintenance problem; so physical condition become average and reflects lower condition. However, Point F10 is on the main alley, and gets the higher grades from most of the aspects. For whole campus there is no awning contribution.

4.2.3 Vehicular Traffic Data

A thesis on sustainable transportation in METU campus assessed some scenarios to reduce in-campus private car emissions with the encouragement of non-motorized modes (Altintasi, 2013). In the concept of the study the vehicular mobility in the campus was quantified comprehensively; campus origin-destination matrix was determined, in-campus vehicle-km was calculated, and carbon emissions were detected. For these quantifications campus RFID system was used with parking lot surveys. In the study the campus speed profiles, volumes and capacity were defined for morning peak, evening peak and off-peak hours, respectively. The vehicular LOS for METU campus was investigated for each time period with available data, and represented in PTV VISSUM maps shown in Appendix C (see figures C.1, C.2, and C3). According to results, nearly most of the locations in the campus determined as LOS A, B, and C, which are counted as free flow or under-capacity conditions and represented with green. For morning peak hours only two corridors got congested and determined as LOS F, while only one corridor became congested for evening peak.

4.3 PLOS Analyses

METU campus PLOS were determined by 3 methods described previously in Chapter 3 with all the collected data. In this section, the results of the determination methods are examined with each methods' campus results map. The data and calculation tables were investigated by a classification of walkway type within the results section. Walkways, which have no interaction between vehicular traffic, such as alley, were represented respectively from walkways which have interaction between vehicular traffic in this section.

4.3.1 HCM Method Results

For HCM method, the effective walkway width, the obstacle (trees, benches, signs, etc.) widths are measured at the pedestrian count locations. 3-minute pedestrian flow values from pedestrian survey were converted to 15-minute values, by simple proportionality. However, more research on the validity of this assumption has to be made by taking longer observations at different locations, which probably must be done by continuous data collection techniques. Any overestimation due to the use of short observation time was welcomed in our study, as we aimed to get the PLOS for the worst demand conditions, and arranged the 45-minute periods to capture the class change times (8:40, 9:40, etc.) as much as possible.

Assuming no platooning on the campus walkways and with no pedestrian speed data, PLOS values were determined according to flow rate (p/min/ft.) values as presented. Since we had 6 different flow values observed, PLOS maps were created for each observation time period separately (takes place in Appendix D). This method resulted in PLOS A levels at almost every location and time period, except for some critical cases as shown in the noon-time (during 12:15-13:00) PLOS map in Figure 4.2. In this time period (12:15-13.00), PLOS at the sidewalks (see Figure 4.4) between the core loop and the new academic unit had experienced the lowest PLOS values of F; because,

• The Foreign Languages School, located at the northern part of the campus, serve close to 2000 students who are taught in two sessions; the morning one ends around 12:30 and the afternoon one starts around 13:30, and approximately 2/3 of these students live in the dormitories, which creates an enormous number of pedestrian activity between this region, cafeteria and the dormitories.

Figure 4.4 Pedestrian PLOS results with HCM Method for 12.15- 13.00

• Also, the lack of sidewalk on one side of the road connecting the prep school to the new academic units does not stop pedestrians from walking, as it is a part of the shortcut walking route.

Within the scope of the calculation part, the locations which have no walkway infrastructure were rated PLOS F without any calculation.

4.3.2 Gainesville Method Results

Gainesville method evaluated the PLOS with available walking infrastructure capacity as mentioned previously. For determination necessary data was collected for each count location by in point observations. Data was analyzed according to methodology, and resulted in a great variety in PLOS B to F for off-peak hours in the campus (see Figure 4.5). Additionally the location based categorical grading tables were represented for walkways had interaction between vehicular traffic and no interaction between vehicular traffic, respectively (Tables E.1, E.2, and E.3).

In the categories there is not any variables depend on the pedestrian usage or flow aspects, and also method do not focus on the design characteristics of the walking area. Within the concept of the study, the best walking area, alley, has the PLOS B; because the location could not get any point from Conflicts category. The locations were rated as PLOS F get the lowest grades, where there is no sidewalk but pedestrian activity. The other sides of the PLOS F regions lost grade because of the inadequacy of the other sidewalk. In the campus most of the regions are weak because of Conflict category as in the alley. Also, another problematic category is maintenance, and most of the campus walkways have minor or major problems.

Figure 4.5 Pedestrian PLOS results with Gainesville Method

For the vehicular LOS, all locations got the same and highest grade for off-peak hours and did not represent any difference. However for morning- peak hours, at 5 pedestrian count locations (A3, A8, E3, K2 and K3), vehicular LOS were determined as PLOS F, and each of them lost 2 grades from total Gainesville Score (Tables 4.8 and 4.9). However only two of the locations decreased one level of PLOS (A3 and E3 got PLOS C instead of B). Likewise, 3 locations (J8, K1 and K4) were determined as LOS F for vehicular traffic, and two of the three locations decreased one level of PLOS (K1 and K4 got PLOS D instead of C).

Point	PFP	Conf	Amen	VLOS	Maint	TDM	* Score	PLOS _{GM}
At A3								
Morning peak	9			0	2	0	13	C
(VLOS F)		0.5	15	0			15	C
Off-peak		0.5	1.5	2	2	U	15	В
(VLOS A)				-			15	D
At A8			r	1				
Morning peak				0		0	8	D
(VLOS F)	8	0	1	0	-1		0	D
Off-peak	0	U	1	2	1		10	D
(VLOS A)				-			10	Ľ
At E3								
Morning peak	8	1	1	0	2	1	13	C
(VLOS F)				0			15	C
Off-peak				2			15	B
(VLOS A)				2			15	D
At K2								
Morning peak				0			0	р
(VLOS F)	7	1	1	0	0	0	,	D
Off-peak	/	1		2			11	р
(VLOS A)				2			11	D
At K3								
Morning peak				0			0	D
(VLOS F)	7	1	1	0	0	0	9	D
Off-peak	/	1		2			11	n
(VLOS A)				2			11	U U

Table 4.8 Changes in Gainesville Method PLOS Results for Morning and Off-Peak Hours

Т

Г

Τ

Point	PFP	Conf	Amen	VLOS	Maint	TDM	* Score	PLOS _{GM}		
At J8	At J8									
Off-peak (VLOS A)	7	1	1	2	0	0	11	D		
Evening peak (VLOS F)	/		1	0	0	0	9	D		
At K1	At K1									
Off-peak (VLOS A)	0	1	1	2	0	0	12	С		
Evening peak (VLOS F)	8	1		0			10	D		
At K4	At K4									
Off-peak (VLOS A)	7	1	1	2	0	1	12	С		
Evening peak (VLOS F)	7	/	/	1	1	0	0	1	10	D

Table 4.9 Changes in Gainesville Method PLOS Results for Evening and Off-Peak Hours

4.3.3 Trip Quality Method Results

Trip Quality method requires relative data and critical assessment; therefore two rater were employed to determine the walking area. For each location, raters decided the sufficiency of measures. After the determination, the PLOS calculated for each location and each rater separately. The methodology for Trip Quality method is mostly applicable for city center streets and design. Raters were trained according to evaluate the campus as a city center street, not as a campus standard. The campus may be in a good design and building articulation as a campus but according to manual it could get low grade.

The similarity between two raters' PLOS results is 69.8 %, which is the lower acceptable limit as mentioned in the literature. Secondly, an inter rater reliability analysis using the Kappa statistic was performed to determine consistency among raters. The inter rater reliability for the raters was found to be Kappa = 0.57 (p <.0.001). As a rule of thumb values of Kappa from 0.41 to 0.60 are considered moderate (Viera et. Al, 2005; Landis & Koch, 1977; Altman, 1991). According to Fleiss (1981) the results reflect the intermediate to good gap.

Figure 4.6 Pedestrian PLOS results with Trip Quality Method

Acceptable agreement between raters extinguished the re-evaluation process and to finalize the process, average of the ratings were calculated. According to average determination, the PLOS values were defined for each count location (Figure 4.6). Additionally, the location based measure classification was tabulated for each rater and also each walkway type, respectively (Appendix F). It can be seen from the Figure 4.6 that, this method reflects a great variety from PLOS A to F. The highest PLOS values can be seen on the alley, where building articulation and transparency got the highest grades. METU campus designed in a pedestrian friendly layout and the major walking areas were surrounded by academic unit and it became a boundary. Alongside the vehicular roads, all the locations lost grades because of transparency, building articulation and complexity of spaces at most.

4.4 Comparisons of PLOS Rating for METU Campus

Campus PLOS ratings were determined using the three methods which have different perspectives. To see the differences among methods and consistency of the ratings, the ratings are cross-tabulated for each location as shown in Tables 4.10, 4.11 and 4.12. According to the HCM method, which depends on mostly pedestrian flow rates, campus PLOS ratings look very high, despite the varying ratings by the other two methods. 87 % of the locations were rated as PLOS A (Tables 4.10, 4.11 and 4.12). In Gainesville Method, most of the locations (52 %) received PLOS D rating, while almost half of the locations (48 %) received PLOS D in Trip Quality method. Despite the insensitivity of HCM to infrastructural differences, Gainesville and Trip Quality methods produced higher PLOS ratings for the walkways that have no interaction with vehicular traffic (in Table 4.12) than locations that have interaction (in Tables 4.10 and 4.11). The overall evaluation of different ratings are summarized in the frequency tables for pairwise analysis of the methods presented in Tables 4.13 through 4.15.

Table 4.10 Comparison of PLOS Values for METU Campus for Walkways Having
Interaction with Vehicular Traffic (Locations A through E)

nt		PLOS HCM									
oir	08:15-	09:15-	12:15-	13:15-	16:00-	17:00-	PLOS GM	PLOSTQ			
F	09:00	10:00	13:00	14:00	16:45	17:45					
Sidewalks Alongside the Roads											
A1	Α	А	А	А	А	А	С	D			
A3	Α	А	А	А	А	А	В	С			
A4	-	А	А	А	А	А	D	E			
A8	Α	Α	Α	Α	А	А	D	D			
A9	F	F	F	F	F	F	D	D			
B1	А	А	А	А	А	А	D	D			
B2	Α	А	А	А	А	А	D	E			
B4	В	А	В	А	А	А	D	D			
B8	Α	Α	Α	Α	А	А	F	C			
B9	Α	А	А	А	А	А	D	D			
C1	Α	А	А	А	А	А	F	С			
C3	А	А	А	А	А	А	E	С			
C4	А	А	А	А	А	А	D	D			
C8	Α	Α	Α	Α	Α	А	D	D			
D2	А	-	А	А	А	А	D	D			
D5	А	А	А	А	А	А	E	С			
D8	Α	А	А	А	А	А	С	С			
D9	Α	А	А	А	А	А	С	С			
E2	А	А	А	А	А	А	С	D			
E3	Α	Α	А	А	А	А	В	С			
E4	Α	А	А	А	А	А	В	D			
E6	Α	Α	Α	Α	А	А	D	D			
E7	Α	А	А	А	А	А	С	D			
Side	walks a	t Parkin	g Lots								
B5	Α	А	А	А	А	А	D	С			
B7	Α	А	А	А	А	А	D	D			
C5	-	-	-	-	-	-	D	D			
C9	-	-	F	-	-	F	F	Е			
Ped	estrian A	Activity	Location	ns with I	No Sidev	walk Caj	pacity				
A2	F	-	-	F	-	-	F	E			
B3	F	F	F	F	F	F	F	E			
C2	-	F	-	-	-	F	D	D			
C7	F	F	F	F	F	F	D	D			
D6	F	-	F	F	F	F	D	D			
Table 4.11 Comparison of PLOS Values for METU Campus for	Walkways Having										
--	-----------------										
Interaction with Vehicular Traffic (Locations F through L)											

nt	PLOS _{HCM}							
oir	08:15-	09:15-	12:15-	13:15-	16:00-	17:00-	PLOS _{GM}	PLOSTQ
Р	09:00	10:00	13:00	14:00	16:45	17:45		
Side	ewalks A	longsid	e Roads					
F2	Α	А	А	А	А	А	D	D
F3	Α	А	А	А	А	В	D	D
F6	А	А	А	А	А	А	D	С
F7	Α	А	-	А	А	А	D	D
H1	-	-	-	-	-	-	F	F
H4	Α	А	А	А	А	А	С	D
H5	Α	А	А	А	-	А	D	Е
H6	Α	А	А	-	А	А	D	D
H7	А	А	А	-	А	А	D	Е
H8	Α	А	А	А	А	А	D	D
H9	Α	А	А	А	А	А	В	В
J1	А	А	А	А	А	А	D	С
J2	Α	А	А	А	А	Α	D	D
J5	Α	А	Α	А	А	Α	D	С
J6	Α	Α	В	Α	Α	Α	F	D
J7	Α	А	А	А	А	Α	D	D
J8	A	А	А	А	А	А	D	D
K1	Α	А	А	А	А	А	С	D
K2	Α	А	А	А	А	А	D	D
K3	Α	А	А	Α	Α	А	D	E
K4	A	А	А	А	А	А	C	D
K5	A	А	А	А	А	А	В	В
K6	A	А	А	А	А	А	C	C
K7	A	А	А	А	А	Α	C	C
K8	A	A	A	A	A	A	D	C
L1	-	А	А	А	А	А	D	C
L3	A	A	А	A	A	-	D	C
L4	A	A	A	A	-	A	D	C
L6	-	A	A	-	-	A	D	D
L7	A	-	A	A	A	A	D	D
L8	-	A	-	A	-	A	D	F
L9	A	A	A	A	A	A	D	C
Side	ewalks a	t Parkin	g Lots					
F1	A	A	A	A	A	B	D	D
F4	A	A	A	A	A	A	D	E
F5	A	A	A	A	A	A	E	D
L2	A	А	А	А	-	А	D	D

nt		PLOS HCM						
Poir	08:15- 09:00	09:15- 10:00	12:15- 13:00	13:15- 14:00	16:00- 16:45	17:00- 17:45	GM	PLOS _{TQ}
Walk	ways	-	•	-	-		•	
A5	Α	А	А	А	А	А	В	D
A6	Α	А	А	А	А	А	В	C
B6	Α	А	С	А	А	А	С	С
C6	Α	А	-	А	-	А	В	А
D1	Α	А	А	А	А	А	В	В
D3	Α	А	А	А	А	А	В	А
D4	Α	А	А	А	А	А	В	А
E5	Α	А	А	А	А	А	С	D
E8	Α	А	А	А	А	А	С	C
F8	Α	А	А	А	А	А	В	В
F9	Α	А	А	А	А	А	В	А
F10	-	А	А	А	А	А	В	А
H2	Α	А	А	А	А	А	В	D
H3	A	А	А	А	А	A	С	D
K9	A	A	A	A	A	A	D	В

 Table 4.12 Comparison of PLOS Values for METU Campus for Walkways with Nointeraction with Vehicular Traffic

To investigate reasons behind different rating by the selected methods, we have look into PLOS ratings of the locations individually. For example, at Location A3 (a sidewalk near the prep school) for which the infrastructure data was given in Table 4.5, HCM resulted in PLOS A rating while Gainesville and Trip Quality methods resulted in PLOS B and PLOS C, respectively (see Table 4.10). Because, despite the narrow sidewalk design at this point, low pedestrian flow values suggested a high PLOS rating in HCM. However, nonexistence of off-street parallel alternative, lightning and public transportation support, the location got a lower PLOS rating according to Gainesville method. Rating exacerbated even worse according to the Trip Quality method, as the segment has not got any impressive design aspects, such as well-articulated building, enclosure, awnings, etc. More drastic contradictory results were observed at locations B2, B8, H5, J6, L8, etc. where HCM reported PLOS A but the other two failing ratings of PLOS D, E or PLOS F. Such significantly different PLOS evaluation results for METU campus can be explained by the existence of "low pedestrian volumes on the

walkways and sidewalks, even when their capacities are low". But, it is imperative to analyze whether such low sidewalk capacity is responsible for the low pedestrian volumes. The main reason behind such contradiction is the difference in the evaluation philosophy. While HCM method focuses on the flow rates (thus, congestion levels inherently) it does not consider the infrastructure condition, design aspects and safety issues, which are factors affecting pedestrians' perception and mode choice.

The results of the three selected methods at the 84 study locations are summarized in the frequency tables prepared in a pairwise fashion as suggested in Section 3.3 (see Tables 4.13 to 4.15). The same information is also depicted visually in Figures 4.7 and 4.8, where the size of the circle at any PLOS pair represent the frequency of the combination observed among the study locations. As can be seen clearly in Figure 4.7, there is a big clustering on the left side of the graph, where HCM ratings are PLOS A and other method results varied from A to F. On the other hand, the pairwise comparisons between Gainesville and Trip Quality method in Figure 4.8 has more scatteredness in the middle of the graph around PLOS levels of B to D (at 27 locations, they both reported PLOS D).

HCM ratings greatly differ from the other two methods, which suggest no consistency or correlation with the other two methods. On the other hand, checking all the consistent results of Gainesville and Trip Quality methods, such as (A, A), (B, B), etc., we see that at 39 locations, almost half of the analysis points, both methods produced the same ratings. If we accept a level difference close to consistent, such as (B, C), (B, A), (A, B) or (C, B), the consistency of the two methods increased to 88 % of the points. There are only 3 locations where Gainesville method produced a good level of PLOS B, but Trip Quality suggested a low rating of PLOS D. Vice versa, Trip Quality method produced a good level of PLOS D at one location.

Frequenc	y of	Gainesville PLOS					
locations		Α	B	С	D	Е	F
	Α		15	13	37	3	3
OS	В				3		1
ЪГ	С			1			
M	D						
нс	Ε						
	F				3	1	2

Table 4.13 Frequency Table of Sample Locations for PLOS Result Comparison

Table 4.14 Frequency Table of Sample Locations for PLOS Result Comparison

Frequenc	y of	Trip Quality PLOS					
locations		Α	B	С	D	Е	F
	Α	5	5	21	32	7	1
SO	В				4		
Id	С			1			
М	D						
HC	E						
	F				3	3	

Table 4.15 Frequency Table of Sample Locations for PLOS Result Comparison

Frequenc	y of	Trip Quality PLOS					
locations	Α	B	С	D	Е	F	
	Α						
lle	В	5	4	3	3		
isvi OS	С			6	8		
PL	D		1	9	27	6	1
Ğ	Ε			2	1	1	
	F			2	1	3	1

Figure 4.7 Pairwise Analysis between HCM Method Results versus Trip Quality and Gainesville Method Results

Figure 4.8 Pairwise Analysis between Trip Quality Method Results versus Gainesville Method Results

CHAPTER 5

CONCLUSIONS AND FURTHER RECOMMENDATIONS

This study showed the need to further investigation of the concept of pedestrian level of service (PLOS) and calculation methodologies over a case study of evaluation of PLOS ratings at 84 locations at METU Campus. The main findings and future research recommendations are summarized as follows.

5.1 Walkability and PLOS Ratings

In the literature, though defined and studied separately, both walkability and pedestrian level of service have similar dimensions of

- i) user characteristics,
- ii) traffic characteristics,
- iii) land use characteristics,
- iv) infrastructure characteristics and
- v) safety/ comfort characteristics.

However, none of the existing PLOS methods includes measures covering all these dimension, thus, produce partial information about walkability at a point. Another result of this situation is the lack of consensus on a methodology for evaluation of walkability or PLOS at a point. This problem can be seen clearly in the comparison of the three selected PLOS methods in this study: HCM method, which consider only width of walkway and pedestrian flow, can capture changes in pedestrian flow levels in a time-dependent way and compared to infrastructure capacity. It can give fast and easy ratings, because of less data requirements, but this result could not reflect the real condition without infrastructure, perception, and land use

and safety characteristics. On the other hand, both Gainesville and Trip Quality methods do not take into account the pedestrian flow characteristics, focus on design aspects; but they do not incorporate any information about the usage of a location which can change drastically over time, as well. However, infrastructure properties, such as continuity, lightening, etc., are repeatedly mentioned in the walkability assessments and thus, should be considered in the revised PLOS evaluations, as in the case of Gainesville and Trip Quality method. Even if the infrastructures are designed adequately and similarly, utility of walking may vary greatly between cultures and locations. PLOS, either from planning or capacity perspective, is a step that evaluates only current available conditions (capacity or volumes). Contrary to HCM, Gainesville Method evaluates the locations for existing of sidewalk alongside the vehicular roads as a couple and assign higher PLOS score. Because of this deficiency, HCM Method reflects the condition into a worse case. HCM should include the effect of existing of sidewalk on the other side of the vehicular traffic. Trip Quality Method unnecessarily focuses on building articulation and architecture for campuses.

As a starting step towards an improved PLOS evaluation, it is helpful to keep track of both PLOS ratings from two methods with different focuses jointly as a pair (such as HCM vs Gainesville or HCM vs Trip Quality) for each location, and display them in a 2-D graph. A more comprehensive PLOS definition is needed to show both design and flow based attributes. The revised PLOS ratings should be time-dependent as pedestrian mobility is dynamic, like HCM model, and should be GIS-based as much as possible. The improved PLOS method must be accompanied with other elements of walkability assessment (such as connectivity and proximity) like in the Trip Quality method. This may even yield to determination of network-level PLOS concept, which would be beyond the current point- or corridor-based perspectives. PLOS evaluation should be flexible for customized ratings for specific regions, such as campuses, city centers, shopping areas, suburban regions, etc., because user needs and perceptions may change based on the trip purpose and location. For example, it is not very meaningful to use Trip Quality method directly for a campus area, which has a totally different design aspects disregarding the building articulation emphasized in a city street.

Through the evaluation of METU Campus pedestrian activity and PLOS ratings, it is concluded that,

- while pedestrian flows had time-dependent and directional characters as vehicular traffic, it was more challenging to detect due to the lack of strict definition of a walkway and traveler path choices.
- The definitions of "walking" network (walkways, path choices, utility of walking, etc.) have to be reconsidered carefully.
- GIS enables strength in the display of pedestrian mobility, and contributes greatly to understanding of walking pattern.
- Even short-term manual counting of pedestrian activity over a campus requires much manpower, mainly because the concept of "walkway" and "path choice" for walking is very flexible.
- Pedestrian perception on walkability and walking should be determined by respondents for each count location respectively to include the perception into a new model.
- The current available PLOS methods are totally different from each other because of their perspectives and may result in very different and even contradicting ratings.
- At these contradicting rating points, it is important to conduct further survey with the pedestrians to decide which method captures the reality more. Such survey has to be designed very carefully to include main parameters used in PLOS evaluations by the selected methods.

5.2 Data Requirements for Evaluation of Walkability and Walking

As, sustainable transportation goal needs a modal shift towards walking; it is important to change individual travel behaviors, thus, it is important to understand individual perceptions of walking, which can be observed with surveys. Pedestrian surveys and walking network data must eventually lead to flexible and disaggregate mathematical models of walking choices that will in turn provide information on the parameters that would encourage or discourage walkability. Considering the quality problems of manual counting, it is necessary to develop cheap but precise technologies and tools to monitor pedestrian volumes and directions. The data requirement of a comprehensive walkability evaluation should merge

a) network data (capacity, land-use and control measures),

b) traffic data (pedestrian, bicycle and vehicle traffic volumes and their spatio-temporal distribution; number and type of conflicts between pedestrian flows and other flows) and

c) traveler based characteristics (gender, age, profession, auto ownership, commuter behavior, public transit usage, income, etc.).

It should be noted that network capacity should include data about

- walkway/shoulder width,
- fixed object and obstacle widths and locations,
- walkway pavement types,
- parking capacities and their usage,
- presence of alternative path choices,

while land-use must be evaluated by

- landscape and roadside development
- land use pattern (existence of shopping, residential, mixed, rural/forestry areas)
- roadside development
- geometry of vehicular road (such as number of driving lanes).

Also, network control measures that affect walkability are listed as,

- existence of refuge or medians
- signalization
- lightening levels
- Crosswalks or pedestrian markings.

5.3 Recommendations to Improve Walking and PLOS Ratings at METU Campus Walkways

HCM results showed that despite high pedestrian volumes at some of the walkways, the high capacity along the alley and width of the sidewalks portray good conditions in terms of PLOS; however, existence of pedestrian activity on road with no sidewalks (or in the directions with no sidewalks) result alarming levels of PLOS F at these locations. These locations are potential problems in terms of pedestrian safety. Such usage of vehicular road capacity or forested regions must be taken into consideration while reconfiguring the walking network in the campus.

Analyzing the alley at METU campus has to be done with caution. In the HCM evaluation, PLOS A, which is mostly the observed rating at the locations along the alley, means low pedestrian volume compared to capacity. However, this is a rather misleading result, obtained when very large width of the alley is interpreted as the walkway width in the HCM formulation. In reality, the capacity of the alley is not utilized only for walking, it is also used as gathering and waiting location. The real capacity used for walking should be measured, if possible.

The lower PLOS rankings from the Gainesville method are mostly due to conflicts with vehicular traffic and obstructions along the sidewalks, such as trees, etc. However, the locations with PLOS levels of C or D should be accepted as optimally used ones. For locations with PLOS E and F, improvements should be made. Considering the high level of positive perception of trees on METU sidewalks by the students, sidewalks should be redesigned and have higher capacities and continuity without compromising the trees.

REFERENCES

- Altintasi O. (2013) Assessment of Scenarios for Sustainable Transportation at METU campus. MSc.Thesis. Submitted to the Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara.
- Altman D. (1991) Practical Statistics for Medical Research. London: Chapman & Hall.
- Asadi-Shekari, Z., Moeinaddini, M., & Shah, M. Z. (2014) A Pedestrian Level of Service Method for Evaluating and Promoting Walking Facilities on Campus Streets, *Land Use Policy*, *38*, pp. 175-193.
- Babalık-Sutcliffe, E. (2005). Kent Merkezi Ulaşım Planlama İlkeleri
 Çerçevesinde Ankara Kent Merkezi: 1985 Kentsel Ulaşım Çalışmasından
 Bugüne, *Cumhuriyet'in Ankara'sı*, ODTU Geliştirme Vakfı Yayıncılık,
 Ankara, pp. 287–308
- Babalik-Sutcliffe, E. (2013) Urban Form and Transport: Lessons from the Ankara Case. *International Journal of Sustainable Transportation*, 7:416-430.
- Balsas, C.J.L (2003) Sustainable transportation planning on college campuses. *Transport Policy* Vol. 10, pp. 35–49.
- Baltes, M.R., & Chu, X. (2002) Pedestrian Level of Service for Midblock Street Crossings, *Transportation Research Record: Journal of the Transportation Research Board*, 1818, Transportation Research Board of the National Academies, Washington D.C., Paper no 02-2301.
- Bauer, D., Ray, M., & Seer, S. (2011) Simple Sensors Used for Measuring Service Times and Counting Pedestrians Strengths and Weaknesses.*Transportation Research Record: Journal of the Transportation Research*

Board, 2214(-1), Transportation Research Board of the National Academies, Washington D.C., pp. 77–84. doi:10.3141/2214-10

- Bian, Y., Ma, J., Rong, J., Wang, W. & Lu, J. (2009) Pedestrians' Level of Service at Signalized Intersections in China, *Transportation Research Record: Journal of the Transportation Research Board*, 2114, Transportation Research Board of the National Academies, Washington D.C., pp. 83-89.
- Bias, T. K., Leyden, K. M., Abildso, C. G., Reger-Nash, B., & Bauman, A. (2010) The importance of being parsimonious: reliability of a brief community walkability assessment instrument. *Health & Place*, *16*(4), pp.755–758. doi:10.1016/j.healthplace.2010.01.008
- Black, W. (1997) North American transportation: perspectives on research needs and sustainable transportation. *Journal of Transport Geography*, Vol. 5(1), pp. 12-19.
- Black, W. R. (2010). Sustainable Transportation -Problems and Solutions, The Guilford Press, New York, Retrieved from https://books.google.com.tr/books?id=ijc9SlvmZDUC&pg=PA3&lpg=PA3& dq=one+that+satisfies+current+transport+and+mobility+needs+without+com promising+the+ability+of+future+generations+to+meet+their+own&source= bl&ots=OHnZX8dblB&sig=zqP78cJThXTdsBD_KHjXTZk73pk&hl=tr&sa= X&ved=0CBsQ6AEwAGoVChMIt8PXtMiPxgIViN4sCh2o4wEE#v=onepag e&q&f=false Last accessed on May 9, 2015.
- Bolbol, A., & Cheng, T. (2010) GPS Data Collection Setting For Pedestrian Activity Modelling, In GISRUK 2010; Proceedings of Geographical Information Science Research UK Conference 2010, UCL, London, 1–8. <u>http://eprints.ucl.ac.uk/19284/</u>Last accessed on May 9, 2015.
- Borgers, A., & Timmermans, H. (1986) A model for Pedestrian Route Choice and Demand for Retail Facilities within Inner-City Shopping Areas, *Geographical Analysis*, Vol. 18, No. 2, Ohio State University Press Retrieved

from http://onlinelibrary.wiley.com/doi/10.1111/j.1538-4632.1986.tb00086.x/epdf Last accessed on May 9, 2015.

- Brown, B. B., Yamada, I., Smith, K. R., Zick, C. D., Kowaleski-Jones, L., & Fan, J. X. (2009) Mixed land use and walkability: Variations in land use measures and relationships with BMI, overweight, and obesity. *Health & Place*, 15(4), pp. 1130–41. doi:10.1016/j.healthplace.2009.06.008
- Cottrell, W. D., & Pal, D. (2001) Evaluation of Pedestrian Data Needs and Collection Efforts. *Transportation Research Record No. 1828* (03), Transportation Research Board of the National Academies, Washington D.C., pp. 12–19.
- Christopoulou, P., & Pitsiava- Latinopoulou, M. (2012) Development of a model for the Estimation of Pedestrian Level of Service in Greek Urban Areas, *Procedia- Social and Behavioral Sciences* 48, pp. 1691-1701.
- Diogenes, M. C., Greene-roesel, R., Arnold, L. S., & Ragland, D. R. (2007)
 Pedestrian Counting Methods at Intersections : a Comparative Study. *TRB* 2007 Annual Meeting, 9922, Transportation Research Board of the National Academies, Washington D.C., pp.1–11.
- Dixon, L. B. (1996) Bicycle and Pedestrian Level-of-Service Performance Measures and Standards for Congestion Management Systems. In *Transportation Research Record: Journal of the Transportation Research Board*, No. 1538, Transportation Research Board of the National Academies, Washington D.C., 1996, pp.1–9Ferguson, P., Friedrich, E., & Karimi, K. (2012) Origin-Destination Weighting in Agent Modelling for Pedestrian Movement Forecasting. *Eight International Space Syntax Symposium*, 8153, Retrieved From <u>http://www.sss8.cl/media/upload/paginas/seccion/8153_1.pdf</u> Last accessed on May 9, 2015.
- Fleiss, J.L. (1981) Statistical Methods for Rates and Proportions, 2nd. Edition. New York: Wiley.

- Gallimore, J. M., Brown, B. B., & Werner, C. M. (2011) Walking routes to school in new urban and suburban neighborhoods: An environmental walkability analysis of blocks and routes. *Journal of Environmental Psychology*, 31(2), pp. 184–191. doi:10.1016/j.jenvp.2011.01.001
- Gori, S., Nigro, M., & Petrelli, M. (2014) Walkability Indicators for Pedestrian Friendly Design., *Transportation Research Board 93rd Annual*, Transportation Research Board of the National Academies, Washington D.C., January, 1–11.
- Guo, Z. (2009) Does the pedestrian environment affect the utility of walking? A case of path choice in downtown Boston. *Transportation Research Part D: Transport and Environment*, 14(5), pp.343–352.
 doi:10.1016/j.trd.2009.03.007
- Gwet, K.L. (2102). Handbook of Inter-Rater Reliability. [online] http://www.agreestat.com/book3/bookexcerpts/chapter6.pdf Last accessed on 5 May 2015.
- Hanseler, F. S., Molyneaux, N. A., & Bierlaire, M. (2015) Schedule-Based Estimation of Pedestrian Origin-Destination Demand in Railway Stations, *Report TRANSP-OR 150108*, Transport and Mobility Laboratory. Retrieved From <u>http://transp-</u> <u>or.epfl.ch/documents/technicalReports/HaMoBi_PedDemEst2015.pdf</u> Last accessed on May 9, 2015.
- Hajna, S., Dasgupta, K., Halparin, M., & Ross, N. A. (2013) Neighborhood walkability: field validation of geographic information system measures. *American Journal of Preventive Medicine*, 44(6), pp. 51–59. doi:10.1016/j.amepre.2013.01.033
- Highway Capacity Manual (HCM) (2000) National Research Council,Transportation Research Board (Vol. 1, pp. 782–793), Washington D.C.

Highway Capacity Manual (HCM) (2010) National Research Council, Transportation Research Board (Vol. 1, pp. 782–793), Washington D.C.

- Hoogendoorn, S.P., and Bovy, P. H. L. (2004) Pedestrian Route Choice and Activity Scheduling Theory and Models, *Transportation Research Part B 38*, pp. 169-190. Retrieved from <u>http://ac.els-cdn.com/S0191261503000079/1-</u> <u>s2.0-S0191261503000079-main.pdf?_tid=3beef45a-12c9-11e5-8d09-</u> <u>00000aab0f6b&acdnat=1434309301_d180ddf16b4a21ac2b54790a4782b0aa</u> Last accessed on May 9, 2015.
- Jaskiewicz, F. (1999) Pedestrian Level of Service Based on Trip Quality, *TRB Circular EC019: Urban Street Symposium*.
- Jensen, S. U. (2007) Pedestrian and Bicycle Level of Service on Roadway Segments, *TRB 2007 Annual Meeting*, Transportation Research Board of the National Academies, Washington D.C.
- Kaiser, E.J., Lawrence D.F., Peter O.E., and Thomas L.S. (1995). Health and Community Design, University of Illinois Press, Urbana, Illinois.
- Landis, J. R., & Koch, G. G. (1977) The Measurement of Observer Agreement for Categorical Data, *International Biometric Society*, 33 (1), pp. 159-174.
- Landis, B. W., Vattikuti, V. R., Ottenberg, R. M., McLeod, D. S., & Guttenplan, M. (2001) Modeling the Roadside Walking Environment- Pedestrian Level of Service, *Transportation Research Record No. 1773*, Transportation Research Board of the National Academies, Washington D.C., Paper No. 01-1511.
- Leduc, G. (2008) Road traffic data: Collection methods and applications. Working Papers on Energy, Transport and Climate, Retrieved from http://ftp.jrc.es/EURdoc/EURdoc/JRC47967.TN.pdf on July 25, 2014.
- Leslie, E., Coffee, N., Frank, L., Owen, N., Bauman, A., & Hugo, G. (2007) Walkability of local communities: using geographic information systems to

objectively assess relevant environmental attributes. *Health & Place*, *13*(1), pp. 111–122. doi:10.1016/j.healthplace.2005.11.001

- Li, S., Sayed, T., Zaki, M. H., Mori, G., Stefanus, F., Khanloo, B., & Saunier, N. (2012) Automated Collection of Pedestrian Data Through Computer Vision Techniques. *Transportation Research Record: Journal of the Transportation Research Board*, 2299(-1), Transportation Research Board of the National Academies, Washington D.C., pp. 121–127. doi:10.3141/2299-13
- Literature Rewiev of Interrater Reliability [online] <u>http://conqir-idr.org/literature/LR_InterraterReliability_JT.pdf</u> Last accessed on 5 May 2015.
- Lovas, D., Nabors, D., Goughnour, E., & Rabito, L. (2015) Massachusetts
 Department of Transportation Complete Streets Pedestrian and Bicycle Level
 of Service Study, *Transportation Research Board 2015 Annual Meeting*,
 Transportation Research Board of the National Academies, Washington D.C.
- Maddock, J. E., Ramirez, V., Heinrich, K. M., Zhang, M., & Brunner, M. A Statewide Observational Assessment of the Pedestrian and Bicycling Environment in Hawaii, 2010. *CDC- Preventing Chronic Disease Control* and Prevention, 2012, 9(1), 1–9.
- Millington, C., Ward Thompson, C., Rowe, D., Aspinall, P., Fitzsimons, C., Nelson, N., & Mutrie, N. (2009) Development of the Scottish Walkability Assessment Tool (SWAT). *Health & Place*, 15(2), pp.474–81. doi:10.1016/j.healthplace.2008.09.007
- Miralles-Guasch, C., and E. Domene. (2010) Sustainable transport challenges in a suburban university: The case of the Autonomous University of Barcelona. Transport policy, Vol. 17, pp. 454-463.
- Muraleetharan, T., Adachi, T., Uchida, K., Hagiwara, T., Kayaga, S., (2003) A Study on Evaluation of Pedestrian Level of Service along Sidewalks and at Intersections Using Conjoint Analysis, Annual Meeting of Japanese Society

of Civil Engineers (JSCE) Infrastructure Planning, Toyohashi, Japan. Retrieved from <u>https://www.jsce.or.jp/library/open/proc/maglist2/00039/200311_no28/pdf/29</u> 0.pdf Last accessed on July 25, 2014.

- Muraleetharan, T., Adachi, T., Hagiwara, T., & Kayaga, S. (2005) Method to Determine Pedestrian Level of Service for Crosswalks at Urban Intersections, *Journal of Eastern Asia Society for Transportation Studies*, 6, pp. 127-136.
- Muraleetharan, T., &, Hagiwara, T. (2007) Overall Level-of-Service of the Urban Walking Environment and Its Influence on Pedestrian Route Choice Behavior: Analysis of Pedestrian Travel in Sapporo, Japan, *TRB 2007 Annual Meeting*, Transportation Research Board of the National Academies, Washington D.C.
- Mori, M., & Tsukaguchi, H. (1986) A New Method for Evaluation of Level of Service in Pedestrian Facilities, *Transpn. Res. –A, 21A (3),* pp. 223-234.
- Ozbay, K., Bartin, B., Yang, H., Walla, R., & Williams, R.(2010) *Automatic Pedestrian Counter*. Publication FHWA-NJ-2010-001. FHWA, New Jersey Department of Transportation.
- Papadimitriou, E., Yannis, G., & Golias, J. (2009) A critical assessment of pedestrian behaviour models. *Transportation Research Part F: Traffic Psychology and Behaviour*, 12(3), 242–255. doi:10.1016/j.trf.2008.12.004
- Parma, K. D., Koprowski, Y., & Zhang, W. Origin-Destination and Travel Time Measurement Using Bluetooth Technology : Results and Lessons Learned. *Conference Institute of Transportation Engineers*, 2013, (Fm). Retrieved from <u>http://www.ite.org/library/conference/compendium13/</u> Last accessed on June 21, 2014.
- Petritsch, T. A., Landis, B. W., McLeod, P. S., Huang, H. F., Challa, S., &
 Guttenplan, M. (2005) Level-of-Service Model for Pedestrians at Signalized
 Intersections, *Transportation Research Record: Journal of the Transportation*

Research Board, *1939*, Transportation Research Board of the National Academies, Washington D.C., pp. 55-62.

- Petritsch, T. A., Landis, B. W., McLeod, P. S., Huang, H. F., Challa, S., Skaggs, C. L., Guttenplan, M., & Vattikuti, V. (2006) Pedestrian Level-of-Service Model for Urban Arterial Facilities with Sidewalks, *Transportation Research Record: Journal of the Transportation Research Board*, 1982, Transportation Research Board of the National Academies, Washington D.C., pp. 84-89.
- Petritsch, T. A., Landis, B. W., Huang, H. F., & Dowling, R. (2008) Pedestrian Level of Service Model for Arterials, *Transportation Research Record: Journal of the Transportation Research Board*, 2073, Transportation Research Board of the National Academies, Washington D.C., pp. 58-68.
- Polus, A., Schofer, J. L., & Ushpiz, A. (1983) Pedestrian Flow and Level of Service, J. Transp. Eng., 109, pp. 46-56.
- Richardson, B. (1999) Towards a policy on a sustainable transportation system. *Transportation Research Record*, No. 1670, pp.27-34.
- Rodriguez, D.A., Joo, J. (2004). The relationship between non-motorized mode choice and the local physical environment. *Transportation Research Part D 9* pp. 151-173.
- Rodrigue, J. P., Comtois, C., and Slack, B. (2006). The Geography of Transport Systems, Taylor & Francis e-Library, 2006, Routledge, New York
- Rosenberg, D., Ding, D., Sallis, J. F., Kerr, J., Norman, G. J., Durant, N.,
 Saelens, B. E. (2009) Neighborhood Environment Walkability Scale for
 Youth (NEWS-Y): reliability and relationship with physical activity. *Preventive Medicine*, 49(2-3), pp. 213–218. doi:10.1016/j.ypmed.2009.07.011
- Schneider, R. J., Arnold, L. S., & Ragland, D. R. (2009) Methodology for
 Counting Pedestrians at Intersections. *Transportation Research Record: Journal of the Transportation Research Board*, 2140(-1), Transportation

Research Board of the National Academies, Washington D.C , pp.1–12. doi:10.3141/2140-01

- Singh, K., & Jain, P. K. (2011) Methods of Assessing Pedestrian Level of Service, *Journal of Engineering Research and Studies*, II (I), pp. 116-124.
- Sisiopiku, V. P., Byrd, J., & Chittoor, A. (2007) Application of Level of Service Methods for the Evaluation of Operations at Pedestrian Facilities, *TRB 2007 Annual Meeting*, Transportation Research Board of the National Academies, Washington D.C., Paper no 07-3150.
- Tan, D., Wang, W., Lu, J., & Bian, Y. (2007) Research on Methods of Assessing Pedestrian Level of Service for Sidewalk. *Journal of Transportation Systems Engineering and Information Technology*, 7(5), pp.74–79. doi:10.1016/S1570-6672(07)60041-5
- Van Dyck, D., Cardon, G., Deforche, B., Owen, N., & De Bourdeaudhuij, I.
 (2011) Relationships between neighborhood walkability and adults' physical activity: How important is residential self-selection? *Health & Place*, *17*(4), pp. 1011–1014. doi:10.1016/j.healthplace.2011.05.005
- Vegadiri, P., & Nagraj, R. (2013) Modeling Pedestrian Delay and Level-of-Service at Signalized Intersection Crosswalks Under Mixed Traffic Condition. *TRB 2013 Annual Meeting*, Transportation Research Board of the National Academies, Washington D.C.
- Viera AJ, Garrett JM. (2005): Understanding Interobserver Agreement: The Kappa Statistic. *Family Medicine* 37, pp. 360- 363.
- Yazıcıoğlu Halu, Z., Yürekli, F. (2011) Yürünebilirlik Kavramı ve Kentsel Mekanlarda Yürüme, İTÜ Dergisi/ A Mimarlık, 10: 2, 29-38.

Yukubousky, R. (1994). Level of Service Standards (Vol. 7926). Washington.

APPENDIX A

THE METU CAMPUS AND TRANSPORTATION SURVEY

(Related Parts)

ODTÜ YERLEŞKE VE ULAŞIM ANKETİ

Anket No:

Yer/Tarih:

Anketör:

A. KATILIMCI BİLGİLERİ

A1. Cinsiye	etiniz:	() Kadın	() Erkek				
A2. ODTÜ'de kayıtlı olduğunuz Bölüm:							
A3. Smif: () Hazırlık () 1. Smif () 2. Smif () 3. Smif () 4. Smif							
A4. Yaşınız: () 16-25 () 26-35 () 36-50 () 51-60 () 61-64 ()							
A5. Meden	Durumunuz: () Evli () Bekar				
A6. Aylık (Ortalama Geliriniz: () <500 TL) 2000-3500 TL	 () 500-1000 TL () 3500-5000 TL 	() 1000-200 ()>5000 TL	0 TL		
D1. (Anket tercihinize,	D1. (Anketör Eşliğinde Doldurunuz) <u>Kampüs içi erişimde</u> kullandığınız ulaşım türlerini kullanım tercihinize, sıklığına ve bölgesine göre belirtiniz.						
Tercih	Tür	Kullan	m Bölümünüz	zden hangi			
Sırası		Sıklığı	bölgelere e	rişirken			
			kullanıyors	sunuz?			
	Yürüme						
	Bisiklet						
	Ring						
	Dolmuş						
	Otostop						
	Özel Araç						

D11. ODTÜ Kampüsündeki yürüme alanlarının (yaya yolları	, kaldırımlar ve yay	a geçitleri)
yürünebilirlik açısından SİZCE yeterliliğini değerlendiriniz.	-	
Yürüme alanlarının,	Yeterli	Yetersiz
a) kaplama kalitesi		
b) sürekliliği		
c) genişlikleri		
d) kestirme güzergahları içermesi		
e) gölgelendirilmesi		
f) güvenli şekilde aydınlatılması		
g) engelli erişimine uygun düzenlenmesi		
h) diğer güvenlik önlemleriyle desteklenmesi		
(başıboş hayvanlar, araç-yaya etkileşimi, vb)		
 işaretlenmiş yaya geçidi içermesi 		

D12. Kampüs içi erişimde sizin **YÜRÜME**'yi daha fazla tercih etmeniz için aşağıdakiler ne derece <u>önemlidir?</u>

	Hiç önemli değil	Biraz	Oldukça önemli	Çok önemli
a) Vürüme vollarının	uegn	onenni	onenin	onenni
a1) arttirilmasi				
a2) kesintisiz olması				
a3) genisliklerinin artırılması				
a4) kötü hava koşullarına karşı korunaklı				
olması				
a5) güneşli hava koşulları karşı korunaklı				
olması				
a6) kestirme güzergahlarda tasarlanması				
a7) engelli erişimine uygun olarak				
düzenlenmesi				
a8) kaplamalarının iyeleştirilmesi				
(düzgün yüzey, dayanaklı tasarım, vb				
şekilde)				
a9) daha iyi aydınlatılması				
b) Kaldırımların,				
b1) Yolun her iki tafinda da kaldırımın				
bulunması				
b2) genışlıklerinin arttırılması				
b3) üzerindeki levha/direklerin azaltılması				
b4) üzerinde engel yaratan ağaçların azaltılması				
b5) engelli erişimine uygun düzenlenmesi				
b6) olası yaya-araç etkileşimin azaltacak				
şekilde tasarlanması (çalılık, beton				
mantarlar, vb ile)				
c) Işaretlenmiş yaya geçitlerinin;				
c1) Sayısının artırtılması				
c2) tasarımında yol ortasında refüj				
bulundurulması				
C3) trafik işiklarıyla donatilması				
a) Kampus yollarında araç nizlarının				
azaiuimasi				
e) i aya akişini engelieyen araç				
parkianmasinin onienmesi				

APPENDIX B

DATA COUNTS INFORMATION SHEETS

			08:15 - 9:00
			09:15 - 10:00
			12:15 - 13:00
			13:15 - 14:00
			16.00 16.15
7	Trime Internet		16:00 - 16:45
Zaman aran	gi(11me Interval):		17:00 - 17:45
A1	Yön1: A1 kapısı veya Eskişehir Yoluna doğru	Yön2: Kampüs içi, st	adyuma doğru
	(Direction 1: Through A1 Gate& Eskişehir Highway)	(Direction 2: Throug	h in-campus &stadium)
Bayan için K ; (K for Female) Erkek için E (E for Male)			

A2	Yön1: A1 kapısı veya Eskişehir Yoluna doğru (Direction 1:Through A1 Gate& Eskişehir Highway)	Yön2: Kampüs içi, stadyuma doğru (Direction 2: Through in-campus &stadium)
Bayan için K ; (K for Female) Erkek için E (E for Male)		

A3	Yön1: A1 kapısı veya Eskişehir Yoluna doğru (Direction 1:Through A1 Gate& Eskişehir Highway)	Yön2: Kampüs içi, stadyuma doğru (Direction 2: Through in-campus &stadium)
Bayan için K ; (K for Female) Erkek için E (E for Male)		

A4	Yön1: A1 kapısı veya Eskişehir Yoluna doğru (Direction 1:Through A1 Gate& Eskişehir Highway)	Yön2: Kampüs içi, stadyuma doğru (Direction 2: Through in-campus &stadium)
Bayan için K; (K for Female) Erkek için E (E for Male)		

Figure B.1 A Screenshot of Data Count Sheet for Location A

Figure B.2 Data Collection Points and Direction Map for location A

Figure B.3 Data Collection Points and Direction Map for location B

Figure B.4 Data Collection Points and Direction Map for location C

Figure B.5 Data Collection Points and Direction Map for location D

Figure B.6 Data Collection Points and Direction Map for location E

Figure B.7 Data Collection Points and Direction Map for location F

Figure B.8 Data Collection Points and Direction Map for location G

Figure B.9 Data Collection Points and Direction Map for location H

Figure B.10 Data Collection Points and Direction Map for location J

Figure B.11 Data Collection Points and Direction Map for location K

Figure B.12 Data Collection Points and Direction Map for location L

APPENDIX C

METU CAMPUS VEHICULAR LEVEL OF SERVICE

Figure C.1 HCM Vehicular LOS for Morning Peak Hours

Figure C.2 HCM Vehicular LOS for Evening Peak Hours

Figure C.3 HCM Vehicular LOS for Off- Peak Hours
APPENDIX D

HCM PLOS RESULTS

Table D.1 HCM 2010 Pedestrian LOS Model Results for Walkways for 08:15-09:00 and09:15-10:00 intervals

					8:1	5-09:0	0				09:1	5-10:0	0	
Ħ	ive (m	ion	3	8 mir	IS		ice (W		3 mii	ns	~	l)	W
Poir	Effect Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{HC}	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{H0}
Walk	ways (No-L	ntera	oction	n wit	h Ve	hicular	Traffi	c)						
A5	2.43	1 2	5	3 0	8 1	180	1260	A	2	4	6 5	220	1031	А
A6	4.80	1 2	03	0 6	0 9	180	564	A	0	2	2 0	40	2539	А
B6	4.80	1 2	2 28	6 23	8 51	1740	130	A	22	26	4 8	240	945	A
C6	6.75	1 2	3	3	6 11	340	903	Α	1 3	1	2 9	220	1396	A
D1	6.75	1 2	03	0 2	5	100	3189	A	0 0	0	0	20	15945	A
D3	10.00	1 2	5 3	4	9 7	320	1476	A	0 4	4 10	4 14	360	1312	А
D4	11.30	1 2	03	03	0 6	120	4449	A	3 4	2 5	5 9	280	1907	Α
E5	1.93	1 2	0	0	0	20	4559	A	0	1	1 2	60	1520	A
E8	24.77	1	1	4	5 39	880	1330	A	0	2	2	380	3080	A
F8	6.20	1 2	4	5	9 31	800	93	A	9 2	22 5	31 7	760	98	A
F9	8.40	1 2	11 3	13 3	24 6	600	488	A	10 5	10 4	20 9	580	505	A
F10	12.80	1 2				Coun	it not ta	ken	7 20	6 20	13 400	1060	374	A
H2	1.76	1 2	4	6 0	10 0	200	416	A	8 0	9 2	17 2	380	219	A
Н3	2.08	1 2	6 0	8 0	14 0	280	351	A	7 1	12 2	19 3	440	223	A
К9	2.25	1 2	14 1	13 1	27 2	580	183	A	5 2	5 3	10 5	300	354	Α

	(12:1	5-13:0	0				13:1	15-14:0	0	
Ħ	ive (m	ion	3	<u>8 min</u>	s	~	l)	W		3 mii	ns		l)	W
Poin	Effect Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{HC}	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{HC}
Walk	ways (No-I	ntera	action	with	Vehi	icular 🛛	(Fraffic)						
4.5	2 42	1	3	7	10	290	507		3	2	5	140	1620	
AS	2.45	2	3	6	9	380	397	A	0	2	2	140	1620	A
46	4 80	1	1	4	5	100	1016	Δ	2	4	6	380	267	Δ
AU	4.00	2	0	0	0	100	1010	Π	9	4	13	500	207	л
B6	4.80	1	109	122	231	8100	28	С	38	40	78	2140	106	Α
20		2	26	39	65			Ũ	12	17	29			
C6	6.75	1	42	61	103	2520	122	Α	40	61	101	2500	123	Α
		2	12	11	23				12	12	24			
D1	6.75	1	0	0	_	100	3189	Α	0	0	0	20	15945	Α
		2	3	2	5				0	1	1			
D3	D3 10.00	1	5	4	9	320	1476	Α	0	4	4	360	1312	Α
		 1	0	4	/				4	2	14 5			
D4	11.30	2	3	3	6	120	4449	Α	4	5	9	280	1907	Α
		1	2	3	5				2	1	3			
E5	1.93	2	3	0	3	160	570	Α	2	2	4	140	651	Α
		1	11	26	37				5	15	20			
E8	24.77	2	0	5	5	870	1345	Α	19	14	33	1060	1104	Α
		1	9	36	45				15	14	29			
F8	6.20	2	5	10	15	1200	62	Α	9	8	17	920	81	Α
FO	<u> </u>	1	6	9	15	020	210		6	5	11	640	150	
r9	8.40	2	14	17	31	920	518	А	11	10	21	040	438	А
F10	12.80	1	17	22	39	1600	248	Δ	17	18	35	1440	276	Δ
110	12.00	2	20	21	41	1000	240	Π	14	23	37	1440	270	л
Н2	1.76	1	1	3	4	100	831	А	1	3	4	140	594	Α
		2	1	0	1	100	001	**	1	2	3	1.0	07.	
Н3	2.08	1	1	3	4	100	983	Α	3	5	8	200	491	Α
		2	0	1	1				1	1	2			
К9	2.25	1	10	23	33	720	148	Α	9	12	21	640	166	Α
		2		2	3				2	9	11			

Table D.2 HCM 2010 Pedestrian LOS Model Results for Walkways for 12:15-13:00 and13:15-14:00 intervals

					16:	00-16:4	15				17:(0-17:4	5	
It	ive (m)	ion	3	3 mir	is) ce	W		3 mii	ns	~	()	W.
Poin	Effect Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{HC}	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{HC}
Walk	ways (No-L	ntera	actio	n wit	th Ve	hicular	[.] Traffi	c)						
A5	2.43	1 2	2 6	0 11	2 17	380	597	A	1 5	1 3	2 8	200	1134	A
A6	4.80	1 2	0 15	1 12	1 27	560	181	A	04	1 3	1 7	160	635	A
B6	4.80	1 2	6 4	6 2	12 6	360	630	A	35	11 4	14 9	460	493	A
C6	6.75	1 2	13 5	9 10	22 15	740	415	A	17 1	19 6	36 7	860	357	A
D1	6.75	1 2	0	1	1 2	60	5315	A	0	9 3	9 3	240	1329	A
D3	10.00	1 2	8 3	6 2	14 5	380	1243	A	10 6	3 6	13 12	500	945	А
D4	11.30	1 2	9 2	15 2	24 4	560	953	A	33 1	24 1	57 2	1180	452	А
E5	1.93	1 2	0	1 0	1	40	2280	A	25	3	5 8	260	351	А
E8	24.77	1 2	3	5 3	8 5	260	4501	A	11 10	13 8	24 18	840	1393	A
F8	6.20	1 2	0 10	1 7	1 17	360	206	Α	13 6	12 6	25 12	740	100	A
F9	8.40	1 2	12 9	15 7	27 16	860	341	A	9 7	12 12	21 19	800	366	A
F10	12.80	1 2	13 12	13 13	26 25	1020	389	A	42 7	50 7	92 14	2120	187	A
H2	1.76	1 2	1 1	1 4	2 5	140	594	A	1 0	2	3 1	80	1039	A
Н3	2.08	1 2	0	0 2	0 3	60	1638	A	03	7 3	7 6	260	378	A
К9	2.25	1 2	9 4	2	11 4	300	354	A	4	5 6	9 18	540	197	A

Table D.3 HCM 2010 Pedestrian LOS Model Results for Walkways for 16:00-16:45 and17:00-17:45 intervals

					8:1	15-09:0	0				09	:15-10	:00	
ıt	ive (m)	ion		3 mir	ns		.ce	M	3	min	s	7	ce)	M:
Poin	Effect Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{HC}	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	bFOS HC
Side	walks Along	gside	the	Road	ls									
A1	1.90	1 2	12 1	4	16 2	360	249	A	02	3 4	3 6	180	499	А
A3	1.89	1 2	3 0	3 0	6 0	120	555	A	0	1	1 2	60	1110	А
A4	1.41	1 2	0 0	0 0	0	No activit	pedestria ty observ	an ved ²	0 4	0 5	0 9	180	638	А
A8	2.15	1 2	6 0	1 0	7 0	140	726	A	03	0 2	0 5	100	1016	A
A9	1.97	1 2	1 0	1	2 0	40	2303	A	0	1 0	1 0	20	4606	Α
B1	2.15	1 2	03	0 5	0 8	160	635	A	0 4	0 4	0 8	160	635	А
B2	0.90	1 2	1 0	0	1 0	20	2126	A	1 0	0	1 0	20	2126	А
B4	1.97	1 2	0 58	0 43	0 101	2020	46	В	1 3	0 7	1 10	220	423	А
B8	1.95	1 2	1	0 0	1	40	2303	A	0 5	0 2	0 7	140	658	А
B9	1.15	1 2	1	0 4	1 5	120	453	A	2 0	4	6 3	180	302	А
Side	walks at Pa	rking	g Lot	ts			•							
B5	2.14	1 2	0 13	0 8	0 21	420	241	A	2	0 7	2 11	260	389	А
B7	2.43	1	0 14	0 16	0 30	600	191	А	0	1	1	60	1913	A
Pede	strian Activ	vity I	Locat	tions	with	No Sid	lewalk (Capao	city			<u> </u>		
	0.00	1	0	1	1			T ¹	0	0	0	No	pedestri	ian
A2	0.00	2	0	0	0	20		F ¹	0	0	0	activ	ity obser	ved ²
B3	0.00	1 2	02	0	03	60		\mathbf{F}^1	2	0	2	120		\mathbf{F}^1

Table D.4 HCM 2010 Pedestrian LOS Model Results for Location A and B for 08:15-09:00and 09:15-10:00 intervals

¹ These locations have pedestrian flows but not formal pedestrian infrastructure capacity as a walkway

					12:1	5-13:0	0				13	:15-14:	00	
tt	ive (m)	ion	3	3 min	s	y	ıce I)	CM	3	min	S	y	I)	CM
Poin	Effect Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H
Sidev	walks Along	gside	the F	Roads	5									
4.1	1.00	1	6	6	12	(90)	120	•	6	4	10	240	264	
AI	1.90	2	14	8	22	080	132	А	2	5	7	340	204	А
13	1 89	1	0	0	0	160	416	٨	2	1	3	100	666	٨
AJ	1.07	2	2	6	8	100	410	А	1	1	2	100	000	A
A4	1.41	1	1	1	2	100	1148	Α	0	0	0	140	820	Α
		2	3	0	3				2	5	7			
A8	2.15	$\frac{1}{2}$	3	 1	2 4	120	846	Α	1	2	2	100	1016	Α
		1	3	1	4				1	1	2			
A9	1.97	2	4	3	7	220	419	Α	1	2	3	100	921	Α
D1	2.15	1	1	2	3	80	1070	•	1	0	1	90	1270	
BI	2.15	2	0	1	1	80	1270	А	2	1	3	80	1270	Α
B2	0.90	1	0	1	1	40	1063	Δ	1	0	1	100	425	Δ
02	0.70	2	0	1	1	10	1005	11	4	0	4	100	125	1
B4	1.97	1	0	0	0	1540	60	В	5	2	7	260	358	Α
		2	33	11	44				4	2	6			
B8	1.95	$\frac{1}{2}$	2 - 4	2	4	180	512	Α	2	1	6 1	200	461	Α
		1	1	0	1				6	5	+ 11			
B9	1.15	2	2	2	4	100	543	Α	1	3	4	300	181	Α
Sidev	walks at Pa	- rking	z Lots	3					1	5				
	2.1.1	1	4	8	12		10.4		5	1	6	1000	101	
B2	2.14	2	5	5	10	520	194	Α	23	11	44	1000	101	Α
D7	2.42	1	4	7	11	220	250	•	4	1	5	100	(20)	
В/	2.43	2	4	1	5	320	339	А	4	0	4	180	638	А
Pede	strian Activ	vity I	locat	ions v	with P	No Side	ewalk (Capac	ity					
42	0.00		No	pedestr	ian	1	20	-	20		\mathbf{F}^{1}			
A4	0.00	2	0	0	0	activit	y obse	rved ²	0	0	0	20		г
B3	0.00	1	1	0	1	40		\mathbf{F}^1	0	2	2	80		\mathbf{F}^1
		2	0	1	1				2	0	2			

Table D.5 HCM 2010 Pedestrian LOS Model Results for Location A and B for 12:15-13:00 and 13:15-14:00 intervals

¹ These locations have pedestrian flows but not formal pedestrian infrastructure capacity as a walkway ² For locations with pedestrian inftrastructure capacity and flow, no PLOS evaluation is provided

	we (m				16	:00-16:	45				17	:00-17	:45	
It	ive (m)	ion	3	min	s	•	l)	CM	3	min	S	•	lce I)	CM
Poin	Effect Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H
Side	walks Along	gside	the	Road	ls									
A 1	1.00	1	7	13	20	440	204		0	0	0	100	000	
AI	1.90	2	1	1	2	440	204	А	2	3	5	100	090	A
43	1 89	1	2	11	13	260	256	۸	1	1	2	120	555	Δ
A 3	1.07	2	0	0	0	200	230	л	3	1	4	120	555	Π
A4	1.41	1	1	6	7	140	820	Α	1	0	1	100	1148	Α
		2	0	0	0				3	1	4			
A8	2.15	1	0	0	0	20	5079	Α	0	3	5	160	635	Α
		2 1	1	0	1				1	2	3			
A9	1.97	2	0	0	0	20	4606	Α	0	3	3	120	768	Α
D1	2.15	1	1	3	4	140	726	٨	2	3	5	190	561	٨
DI	2.15	2	0	3	3	140	720	А	0	4	4	160	304	A
B2	0.90	1	1	0	1	20	2126	Α	5	1	6	120	354	Α
		2	0	0	0				0	0	0			
B4	1.97	1	1	1	2	80	1163	Α	0	2	2	60	1551	Α
		 1	2	1	2				1	1	1			
B8	1.95	2	1	1	2	60	1535	А	1	2	3	80	1152	Α
		1	2	1	3				4	3	7			
B9	1.15	2	2	5	7	200	272	Α	4	9	13	400	136	Α
Side	walks at Pa	rking	g Lot	S								1		
D.5	2.14	1	4	5	9	190	5(2)	•	2	3	5	120	042	
В2	2.14	2	0	0	0	180	562	А	1	0	1	120	843	Α
D7	2.42	1	0	0	0	No	pedestr	ian	1	0	1	20	5740	٨
D/	2.43	2	0	0	0	activi	ty obser	rved ²	0	0	0	20	5740	A
Pede	strian Activ	vity I	Loca	tions	with	n No Si	dewalk	Capa	city					
A2	0.00	1	0	0	0	No	pedestr	ian	0	0	0	No	pedestr	ian
	0.00	2	0	0	0	activi	ty obsei	rved ²	0	0	0	activ	ity obse	rved ²
B3	0.00	1	1	0	1	20		\mathbf{F}^1	5	0	5	100		\mathbf{F}^1
1		2	0	0	0				0	0	0	1		

Table D.6 HCM 2010 Pedestrian LOS Model Results for Location A and B for 16:00-16:45and 17:00-17:45 intervals

¹ These locations have pedestrian flows but not formal pedestrian infrastructure capacity as a walkway

Table D.7 HCM 2010 Pedestrian LOS Model Results for Location C and D for 08:15-09:0
and 09:15-10:00 intervals

					8:	15-09:	00				- 09):15-1():00	
t	(m)	on	3	6 min	S		ce (M	3	i min	S		ce	W
Poin	Effecti Width	Directi	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped)	PLOS _{HC}	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped)	PLOS _{HC}
Side	walks Alon	igsid	e the	e Roa	ıds									
01	1 1 5	1	1	0	1	120	452		0	0	0	40	1250	
CI	1.15	2	1	4	5	120	435	А	0	2	2	40	1558	A
C2	2.42	1	0	0	0	100	661		0	0	0	60	1102	
CS	2.45	2	1	4	5	100	001	A	2	1	3	00	1102	А
C4	6 50	1	1	1	2	40	1358	٨	1	2	3	80	670	٨
64	0.50	2	0	0	0	40	1556	A	0	1	1	80	079	A
C8	1 97	1	0	0	0	20	4654	Δ	0	0	0	N	o pedestri	an
Co	1.97	2	0	1	1	20	+05+	А	0	0	0	activ	vity obsei	rved ²
D2	1 07	1	1	0	1	40	2327	٨	0	0	0	N	o pedestri	an
02	1.97	2	0	1	1	40	2321	А	0	0	0	activ	vity obser	rved ²
D5	3.81	1	0	1	1	80	2250	٨	2	2	4	80	2250	٨
03	5.01	2	2	1	3	00	2230	А	0	0	0	00	2250	А
D 8	2.00	1	0	1	1	280	337	٨	0	4	4	400	236	٨
100	2.00	2	8	5	13	200	557	А	5	11	16	+00	230	A
Ъ	4.00	1	0	1	1	20	9449	٨	1	2	3	60	3150	٨
D 7	4.00	2	0	0	0	20	7447	А	0	0	0	00	5150	A
Side	walks at Pa	arkir	ng Lo	ots	-	-				-				
C5	1 97	1	0	0	0	No	pedestr	ian	0	0	0	N	o pedestri	an
05	1.97	2	0	0	0	activi	ity obse	rved ²	0	0	0	activ	vity obsei	ved ²
CQ	0.00	1	0	0	0	No	pedestr	ian	0	0	0	N	o pedestri	an
0)	0.00	2	0	0	0	activi	ity obse	rved ²	0	0	0	activ	vity obsei	ved ²
Ped	estrian Acti	ivity	Loca	ation	s wit	th No S	Sidewal	k Cap	acity	7				
C2	0.00	1	0	0	0	No	pedestr	ian	0	20	0	20		\mathbf{F}^1
C2	0.00	2	0	0	0	activi	ity obse	rved ²	0	1	1	20		г
C7	0.00	1	0	0 0 40	40		F 1	0	0	0	20		\mathbf{F}^1	
C/	0.00	2	1	1	2	40			1	0	1	20		T.
D6	0.00	1	0	1	1	20		\mathbf{F}^{1}	0	0	0	N	o pedestri	an
00	D6 0.00	2	0	0	0	20		1 '	0	0	0	activ	vity obser	ved ²

¹ These locations have pedestrian flows but not formal pedestrian infrastructure capacity as a walkway ² For locations with pedestrian inftrastructure capacity and flow, no PLOS evaluation is provided

					12:	15-13:)0				13:	:15-14:	00	
t	ive (m)	ion	(°,	3 mir	IS	1	ice)	CM		8 min	IS	1	ice)	CM
Poin	Effect Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{He}	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H
Side	walks Alor	ngsid	e the	e Roa	ds									
C1	1 15	1	1	1	2	100	512	•	1	2	3	100	512	•
CI	1.15	2	1	2	3	100	343	А	1	1	2	100	545	А
C 2	2 42	1	2	0	2	60	1102		2	2	4	80	827	•
C3	2.45	2	0	1	1	00	1102	А	1	1	2	80	027	A
C4	6 50	1	2	2	4	200	272	۸	2	1	3	60	906	۸
C 7	0.50	2	1	5	6	200	212	А	0	0	0	00	700	А
C 8	1.97	1	1	3	4	120	776	А	1	3	4	80	1163	Α
00		2	2	0	2				0	0	0	00	1100	
D2	1.97	1	4	1	5	160	582	Α	4	0	4	320	291	Α
		2	1	2	3				2	6	8			
D5	3.81	1	5	1	6	220	818	Α	1	0	1	60	3000	Α
		2	4	1	5				1	1	2			
D8	2.00	1	1	10	8	740	128	A	1	11	18	580	163	Α
		2	19	10	29				4	/	11			
D9	4.00	1	9) 1	14	360	525	Α	11	2	21	480	394	Α
Side	wellta of D) (1)		4				0	3	3			
5106	ewalks at Pa			ois O	0	N.	. 1	•	0	0	0	N.	1	•
C5	1.97	1	0	0	0	NO activi	pedestr	ian wed ²	0	0	0	NO activi	pedestr	ian rved ²
		1	0	1	1	activi	ly 00301	veu	0	0	0	No	nedestr	ian
C9	0.00	2	0	0	0	20		\mathbf{F}^1	0	0	0	activi	tv obsei	rved ²
Ped	estrian Act	- ivitv	Loc	ation	s wit	h No Si	dewalk	Capa	acity	Ŭ	0		- j	
		1	0	0	0	No	pedestr	ian	0	0	0	No	pedestr	ian
C2	0.00	2	0	0	0	activi	ty obser	rved ²	0	0	0	activi	ty obset	rved ²
07	0.00	1	0	0	0	No	pedestr	ian	0	0	0	20		TE I
C/	0.00	2	0	0	0	activi	ty obser	rved ²	1	0	1	20		Ľ,
De	0.00	1	0	4	4	80		\mathbf{F}^1	1	0	1	20		\mathbf{F}^1
00	0.00	2	0	0	0	00		Ľ	0	0	0	20		ľ

Table D.8 HCM 2010 Pedestrian LOS Model Results for Location C and D for 12:15-13:00 and 13:15-14:00 intervals

¹ These locations have pedestrian flows but not formal pedestrian infrastructure capacity as a walkway

Table D.9 HCM 2010 Pedestrian LO	S Model Results for	r Location C ar	nd D for 16:00	-16:45
and 17:00-17:45 intervals				

					16	:00-16:	45				17	/:00-17:	:45	
It	ive (m)	ion	3	min	S	4	lce l)	CM	3	min	s	V	lce l)	CM
Poin	ffect idth	irect	ıale	ale	tal	ourly	. Spa ²/pec	NS H	ıale	ale	tal	ourly	. Spa ²/ped	H SC
	E	D	Fen	M,	$\mathbf{T_0}$	H	Ped. (ft ³	PL(Fen	M;	To	H	Ped. (ft ²	PL(
Side	walks Alor	ngsid	e the	e Roa	ads				0					
	1.15	1	0	1	1	140	200		2	3	5	200	070	
CI	1.15	2	1	5	6	140	388	А	2	3	5	200	212	Α
C 2	2 4 2	1	0	0	0	20	2207	٨	7	3	10	240	276	
C3	2.45	2	0	1	1	20	5507	A	2	0	2	240	270	A
C4	6 50	1	1	0	1	60	906	Δ	1	3	4	200	272	۸
U 7	0.50	2	1	1	2	00	700	Π	2	4	6	200	212	Π
C8	1.97	1	0	1	1	20	4654	Α	1	0	1	20	4654	Α
		2	0	0	0				0	0	0			
D2	1.97	1	0	0	0	40	2327	Α	0	6	6	140	665	Α
		2	0	2	2				1	$\frac{0}{2}$	1			
D5	3.81	1	1	3	4	200	900	А	5	3 7	3 12	300	600	Α
		 1	2 7	4	10				17	/	12 28			
D8	2.00	2	8	5	13	640	148	Α	9	23	34	1200	79	Α
		1	0	8	8				4	4	8			
D9	4.00	2	0	1	1	180	1050	A	4	2	6	280	675	Α
Side	ewalks at Pa	arkir	ng Lo	ots					11					
C5	1.07	1	0	0	0	No	pedestr	ian	0	0	0	No	pedestr	ian
05	1.97	2	0	0	0	activi	ty obsei	rved ²	0	0	0	activi	ty obser	rved ²
CQ	0.00	1	0	0	0	No	pedestr	ian	0	0	0	40		\mathbf{F}^{1}
0)	0.00	2	0	0	0	activi	ty obsei	rved ²	1	1	2	40		
Ped	estrian Act	ivity	Loc	atior	ıs wi	th No S	Sidewal	k Cap	acity	7				
C2	0.00	1	0	0	0	No	pedestr	ian	0	0	0	20		\mathbf{F}^{1}
	0.00	2	0	0	0	activi	ty obsei	rved ²	0	1	1			-
C7	0.00	1	0	0	0	0 No pedestrian	0	2	2	40		\mathbf{F}^1		
		2	0	0	0	activi	ty obsei	ved ²	0	0	0	-		
D6	0.00	1	0	1	1	40		\mathbf{F}^1	0	0	0	20		\mathbf{F}^1
1		2	U	1	1					0	1			

¹ These locations have pedestrian flows but not formal pedestrian infrastructure capacity as a walkway ² For locations with pedestrian inftrastructure capacity and flow, no PLOS evaluation is provided

					8:	15-09:0)0				09	:15-10:	00	
ţ	ive (m)	ion	3	min	S) ce	M:	3	3 mir	IS		ce)	M:
Poin	Effecti Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{HC}	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	DFOS ^{HC}
Side	walks Alon	gside	e the	Roa	d									
F2	2.00	1	0	3	3	140	675	۸	0	0	0	180	525	۸
122	2.00	2	1	3	4	140	075	п	3	6	9	100	525	п
F3	2.00	1	1	0	1	500	189	Δ	1	0	1	80	1181	Δ
115	2.00	2	11	13	24	500	107	п	2	1	3	00	1101	п
E4	2.07	1	0	1	1	260	376	А	0	1	1	200	489	А
	2.07	2	5	7	12	200	570		4	5	9	200	102	
E6	1.97	1	1	2	3	520	179	Α	0	1	1	200	465	Α
		2	7	16	23				5	4	9			
E7	2.00	$\frac{1}{2}$	$\frac{0}{2}$	0	0	120	787	Α	0	0	0	140	675	Α
		1	2	7	6				5	ب 8	13			
F2	2.00	2	5	5	10	320	1890	А	<i>J</i>	5	9	440	1374	Α
		1	10	14	24				14	14	28			
F3	1.57	2	15	14	29	1060	89	А	4	3	7	700	135	Α
		1	10	20	30				3	10	13			
F6	1.36	2	4	6	10	800	80	A	1	3	4	340	189	Α
		1	1	3	4				1	3	4	100		
F7	1.57	2	0	1	1	100	643	Α	0	1	1	100	643	Α
Side	walks at Pa	rkin	g Lo	ts										
F 1	1.00	1	23	27	50	1120	80	•	13	10	23	640	140	•
r I	1.90	2	3	3	6	1120	80	А	4	5	9	040	140	A
F4	1 10	1	3	4	7	640	116	Δ	9	9	18	460	161	Δ
1.4	1.10	2	11	14	25	070	110	л	3	2	5	-00	101	А
F5	1.36	1	8	11	19	580	90	А	5	5	10	260	200	А
15	1.50	2	5	5	10	500	20	11	1	2	3	200	200	11

Table D.10 HCM 2010 Pedestrian LOS Model Results for Location E and F for 08:15-09:00 and 09:15-10:00 intervals

					12	:15-13:	00				13	:15-14:	00	
ţ	ive (m)	ion	3	min	IS	~	ice ()	CM	3	min	S	7	ice ()	CM
Poin	Effect	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H
Side	walks Alon	gside	e											
E	2.00	1	2	4	6	200	470		4	5	9	240	204	
EZ	2.00	2	2	2	4	200	472	А	1	2	3	240	394	А
F3	2.00	1	0	2	2	60	1575	٨	5	1	6	340	278	٨
ES	2.00	2	0	1	1	00	1373	A	4	7	11	540	270	A
F4	2.07	1	0	0	0	260	376	А	1	4	5	280	349	А
	,	2	10	3	13	-00	010		4	5	9	-00	0.,	
E6	1.97	1	5	13	18	500	186	Α	8	3	11	400	233	Α
		2	4	3	7				3	6	9			
E7	2.00	1	23 1	35 10	58 14	1440	66	Α	6 1	10 9	10	580	163	Α
		1	15	8	23				10	9	19			
F2	2.00	2	15	1	2.5	500	1209	Α	2	3	5	480	1260	Α
		1	2	6	8				5	3	8			
F3	1.57	2	19	45	64	1440	66	Α	19	16	35	860	110	Α
T.	1.0.0	1	0	5	5	200	220		1	5	6	240	0.00	
F6	1.36	2	0	9	9	280	229	Α	0	6	6	240	268	Α
T7	1.57	1	0	0	0	No	pedestr	ian	0	0	0	20	2212	
F/	1.57	2	0	0	0	activi	ty obser	rved ¹	0	1	1	20	3213	А
Side	walks at Pa	rkin	g Lo	ts										
F1	1.90	1	15	14	29	800	112	٨	11	11	22	620	145	٨
T I	1.70	2	4	7	11	000	112	А	4	5	9	020	145	А
F4	1.10	1	4	10	14	300	247	Α	5	5	10	240	309	Α
		2	0	1	1				1	1	2			
F5	1.36	1	4	18	22	580	90	Α	10	10	20	520	100	Α
		2	0	1	1				1	5	6			

Table D.11 HCM 2010 Pedestrian LOS Model Results for Location E and F for 12:15-13:00 and 13:15-14:00 intervals

					16	:00-16:4	45				17	:00-17:	45	
t	ive (m)	ion	3	min	S	1	lce l)	CM	3	min	S	7	lce)	CM
Poin	Effect Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS H
Side	walk Along	side	the l	Road										
E	2.00	1	7	1	8	220	420	•	4	10	14	200	262	•
E2	2.00	2	2	1	3	220	429	A	1	3	4	300	202	A
F3	2.00	1	1	4	5	200	172	٨	4	0	4	180	525	٨
ES	2.00	2	0	5	5	200	472	A	3	2	5	100	525	A
F4	2.07	1	3	3	6	160	611	А	7	9	16	360	272	А
	,	2	1	1	2	100	011		2	0	2	200		
E6	1.97	1	7	1	8	280	332	Α	7	7	14	400	233	Α
		2) 10	1	0 10				3	3	6			
E7	2.00	$\frac{1}{2}$	0	9	19	400	236	А	25 4	3	47	1080	87	Α
		-	7	6	13				10	13	23			
F2	2.00	2	3	2	5	360	1680	Α	4	3	7	600	1008	Α
	1.57	1	8	7	15	700	101		7	6	13	1000	50	D
F3	1.57	2	10	14	24	/80	121	Α	35	43	78	1820	52	В
E	1.26	1	2	2	4	140	450		3	4	7	620	104	•
ro	1.50	2	1	2	3	140	439	А	9	15	24	620	104	A
F7	1.57	1	0	2	2	80	803	٨	1	2	3	220	202	٨
Г	1.57	2	0	2	2	80	805	A	1	7	8	220	292	A
Side	walks at Pa	rkin	g Lo	ts										
F1	1.90	1	6	7	13	940	95	Δ	9	9	18	1920	47	B
	1.50	2	14	20	34	740	,,,	1	36	42	78	1720	77	D
F4	1.10	1	9	7	16	480	155	Α	4	3	7	300	247	Α
		2	4	4	8				5	3	8			
F5	F5 1.36	1	3	2	5	200	260	Α	4	4	8	320	162	A
		2	2	3	5				4	4	ð			

Table D.12 HCM 2010 Pedestrian LOS Model Results for Location E and F for 16:00-16:45 and 17:00-17:45 intervals

 Table D.13 HCM 2010 Pedestrian LOS Model Results for Location H and J for 08:15-09:00

 and 09:15-10:00 intervals

e ce	W
Ped. Spa (ft ² /ped)	PLOS _{HC}
lo pedestri	an
ivity observ	ved ¹
211	۸
211	11
614	Α
856	Α
709	Α
546	Α
2.42	
343	Α
0.5	
95	Α
150	
130	Α
) 71	Δ
, , ,	11
83	Α
126	Α
175	Α
$ e_{f}v _{1} = v _{1} v _{1} v _{1} v _{1} v _{1} v _{1} v $	ave ave fped/share No pedestri 10 1 211 0 0 211 0 0 614 0 0 709 0 0 546 0 0 95 0 0 150 60 0 71 0 0 83 0 0 126 0 0 175 175

					12	:15-13:	:00				13	:15-14:	00	
t	ive (m)	ion	3	min	S	~	l)	CM	3	min	IS	~	l)	CM
Poin	Effecti Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H
Side	walks Alor	ngsid	e the	e Roa	ads									
TT1	1 45	1	0	0	0	No	pedestr	ian	0	0	0	No	pedestr	ian
пі	1.43	2	0	0	0	activi	ty obse	rved ¹	0	0	0	activi	ty obse	rved ¹
Н4	1 52	1	1	1	2	240	299	Δ	1	6	7	500	144	Δ
114	1.52	2	6	4	10	240	277	А	2	16	18	500	177	Π
Н5	1.30	1	3	4	$\begin{array}{c cccc} 4 & 7 \\ \hline 4 & 7 \\ \hline 4 & 7 \\ \hline 280 \\ 2 \\ \hline 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$		219	Α	1	0	1	80	768	Α
		2	3	4	1				0	3	3	NI.		•
H6	1.45	$\frac{1}{2}$	1	4	4	120	571	Α	0	0	0	NO activi	pedestr	ian rved ¹
		1	1	0	1				0	0	0	No	pedestr	ian
H7	1.80	2	0	0	0	20	4252	Α	0	0	0	activi	ty obser	rved ¹
це	1.85	1	1	1	2	60	1457	•	0	1	1	20	4370	٨
110	1.05	2	1	0	1	00	1437	A	0	0	0	20	4370	A
Н9	1.45	1	1	5	6	240	285	Α	0	2	2	60	1142	Α
		2	1	5	6				1	0	1			
J 1	1.33	1	22	14	36	940	67	Α	6	11	17	840	75	Α
_		2	6	5	11				14	11	25			
J2	1.33	1	3	7	10	480	131	Α	11	6	17	880	71	Α
		2 1	2	3 1	14				12	15	27			
J5	1.60	2	6	5	11	280	270	Α	9	5	14	480	157	Α
	1.00	1	8	12	20	0.40			4	6	10	100		
J6	1.20	2	15	12	27	940	60	В	6	4	10	400	142	Α
17	1.60	1	5	11	16	680	111	۸	8	10	18	880	86	Δ
J /	1.00	2	12	6	18	000	111	А	13	13	26	000	00	А
J8	2.00	1	9	7	16	640	148	Α	15	13	28	1080	87	Α
		2	5	11	16				14	12	26			

Table D.14 HCM 2010 Pedestrian LOS Model Results for Location H and J for 12:15-13:00 and 13:15-14:00 intervals

Table D.15 HCM 2010 Pedestrian LOS Model Results for Location H and J for 16:00-16:45 and 17:00-17:45 intervals

					16	:00-16:	45				17	:00-17:	:45	
t	ive (m)	ion	3	min	S	1	ice)	CM	3	i min	S	1	lce ()	CM
Poin	Effect Width	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _H
Side	ewalks Alon	ıgsid	e the	e Roa	nds									
TT1	1.45	1	0	0	0	No	pedestr	ian	0	0	0	No	pedestr	ian
ш	1.45	2	0	0	0	activi	ty obset	rved ¹	0	0	0	activi	ty obser	rved ¹
н4	1.52	1	2	3	5	120	598	٨	0	4	4	160	119	٨
114	1.52	2	0	1	1	120	570	А	0	4	4	100	777	A
H5	1.30	1	0	0	0	No	pedestr	ian	1	1	2	40	1535	А
		2	0	0	0	activi	ty obsei	rved ¹	0	0	0			
H6	1.45	1	4	1	5	100	685	Α	0	2	2	60	1142	Α
		2	0	0	0				0	1	1			
H7	1.80	$\frac{1}{2}$	1	0	1	20	4252	Α	1	1	2	40	2126	Α
		1	1	3	4				3	0	3			
H8	1.85	2	0	1	1	100	874	Α	2	1	3	120	728	Α
	1.45	1	3	4	7	1.00	400		4	2	6	1.00	400	
НУ	1.45	2	0	1	1	160	428	А	0	2	2	160	428	Α
	1.00	1	10	15	25	(20)	101		3	2	5	2.10	105	
JI	1.33	2	4	2	6	620	101	Α	3	9	12	340	185	Α
12	1 2 2	1	4	13	17	590	109		6	6	12	400	157	٨
J2	1.55	2	7	5	12	380	108	A	4	4	8	400	137	A
.15	1.60	1	4	4	8	440	172	Δ	6	10	16	620	122	Δ
	1.00	2	9	5	14	110	172	**	7	8	15	020	122	
J6	1.20	1	4	4	8	180	315	Α	4	5	9	400	142	Α
		2	0	1	12				6	5	10			
J 7	1.60	1	4	9	13	380	199	Α	15	0	19	400	189	Α
		 1	4	$\frac{2}{10}$	21				18	21	39			
J8	2.00	2	2	2	4	500	189	Α	7	9	16	1040	91	Α

Table D.16 HCM 2010 Pedestrian LOS Model Results for Location K and L for 08:15-09:00 and 09:15-10:00 intervals

	_				8:	15-09:	00				09	:15-10	:00	
t	ive (m)	ion	3	min	S		e e	W	3	min	S) ce	M
Poin	Effect	Direct	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{HC}	Female	Male	Total	Hourly Total	Ped. Spa (ft²/ped	PLOS _{HC}
Side	walks Alon	gsid	e the	Roa	ıds									
V1	2.00	1	0	3	3	160	205		0	0	0	160	501	
KI	2.00	2	8	12	20	400	203	A	5	3	8	100	391	А
K)	1 47	1	2	1	3	640	100	٨	0	0	0	140	406	•
K2	1.47	2	10	19	29	040	109	A	6	1	7	140	490	A
K3	1 47	1	0	1	1	720	06	٨	0	0	0	280	248	٨
KJ	1.47	2	11	24	35	720	90	A	9	5	14	280	240	A
кл	1 53	1	1	2	3	660	110	٨	0	0	0	240	301	٨
174	1.55	2	13	17	30	000	110	А	6	6	12	240	501	А
К5	1 64	1	3	2	5	380	204	Δ	0	0	0	100	775	Δ
K.	1.04	2	5	9	14	500	204	п	2	3	5	100	115	Л
K6	1.66	1	6	10	16	520	151	Δ	2	7	9	220	356	Δ
no	1.00	2	5	5	10	520	101		1	1	2	220	550	
К7	2.02	1	11	20	31	820	116	Α	5	16	21	480	199	А
		2	7	3	10	0_0			0	3	3			
К8	1.57	1	9	19	28	580	128	Α	2	15	17	400	185	А
		2	0	1	1				0	3	3			
Т1	1.46	1	0	0	0	No	pedestr	ian	2	1	3	80	862	٨
1/1	1.40	2	0	0	0	activi	ity obser	rved ¹	1	0	1	80	802	А
T 2	2.00	1	2	0	2	220	200	٨	0	0	0	20	4027	•
LJ	2.09	2	7	7	14	520	309	A	1	0	1	20	4937	A
т 4	1 / 8	1	1	1	2	460	152	٨	0	0	0	60	1165	٨
LH	1.40	2	4	17	21	400	132	A	1	2	3	00	1105	A
16	2.07	1	0	0	0	No	pedestr	ian	0	0	0	20	4890	Δ
LU	2.07	2	0	0	0	activi	ity obser	rved ¹	0	1	1	20	4070	Л
1.7	2.03	1	0	0	0	20	4795	Δ	0	0	0	No	pedestr	ian
L/	2.05	2	1	0	1	20	1755	11	0	0	0	activ	ity obsei	ved
1.8	2.07	1	0	0	0	No	pedestr	ian	0	1	1	40	2445	А
10	2.07	2	0	0	0	activi	ity obser	rved ¹	0	1	1	10	2115	
L9	1.96	1	2	2	4	120	772	Α	6	7	13	300	309	А
		2	2	0	2				1	1	2	2.50		
Side	ewalks at Pa	arkir	ng Lo	ots										
T.2	2 1.50	1	1	0	1	60	1181	Δ	1	0	1	20	3543	Δ
		2	1	1	2	00	1101	11	0	0	0	20	5575	11

Table D.17 HCM 2010 Pedestrian LOS Model Results for Location K and L for 12:15-13:00 and 13:15-14:00 intervals

	_				12	:15-13:	:00				13	:15-14	:00	
It	ive (m)	ion	3	min	S	7	ice I)	CM	3	min	S	ŗ	ice I)	CM
Poin	fect dth	rect	ale	le	al	urly otal	Spa /ped	S He	ale	le	al	urly otal	Spa /ped	S H
	Ef Wi	Di	Fem	Ma	Tot	Ho T	ed. (ft²	oTo	Fem	Ma	Tot	\mathbf{H}_{0}	ed. (ft²	olo
Side	walks Alor	osid	e the	Ros	nds		H	_						
Dia		1	0	1	1				1	2	3			
K1	2.00	2	0	1	1	40	2362	Α	2	3	5	160	591	Α
	=	1	4	2	6				3	1	4	100		
K2	1.47	2	4	2	6	240	289	Α	0	5	5	180	386	Α
V2	1 47	1	1	0	1	40	1726		3	1	4	260	102	•
КЭ	1.47	2	1	0	1	40	1/30	А	3	11	14	300	195	A
К4	1 53	1	0	1	1	80	904	А	0	4	4	220	329	А
	1.55	2	1	2	3	00	201		1	6	7		527	
K5	1.64	1	0	2	2	120	646	Α	1	2	3	80	969	Α
		2	1	5	4				$\frac{0}{2}$	1	1			
K6	1.66	$\frac{1}{2}$	2 1	3 1	2	180	436	А	2	2	5	200	392	Α
		1	3	10	13				3	14	17			
K7	2.02	2	3	8	11	480	199	Α	12	3	15	640	149	Α
170	1.57	1	0	5	5	4.40	1.0		1	11	12	240	010	
Кð	1.57	2	1	16	17	440	169	А	1	4	5	340	218	Α
T 1	1.40	1	1	8	9	1.00	202		0	0	0	240	207	
LI	1.46	2	0	0	0	180	383	А	2	10	12	240	287	Α
т 2	2.00	1	0	0	0	80	1224		2	5	7	190	540	
LJ	2.09	2	1	3	4	80	1234	A	0	2	2	160	549	A
L4	1.48	1	1	2	3	80	874	Α	0	1	1	60	1165	А
		2	1	0	1		07.		2	0	2	00	1100	
L6	2.07	1	0	2	2	40	2445	Α	0	0	0	No	pedestr	ian
		2	0	0	0				0	0	0	activ	ity obse	rveu
L7	2.03	2	0	2	2	60	1598	А	1	1	1	40	2398	Α
		1	0	0	0	No	nedestr	ian	0	2	2			
L8	2.07	2	0	0	0	activi	ty obse	rved ¹	0	0	0	40	2445	Α
TO	1.00	1	0	1	1	40	0215		2	3	5	1.0	570	*
L9	1.96	2	1	0	1	40	2515	Α	2	1	3	160	5/9	A
Side	ewalks at Pa	arkir	ng Lo	ots										
12	2 1 50	1	1	2	3	100	700	٨	2	2	4	120	501	•
	1.50	2	1	1	2	100	107	A	1	1	2	120	591	A

					16	:00-16:	45				17	:00-17	:45	
t	ive (m)	ion	3	min	S	1	ice)	CM	3	min	S	7	ice)	CM
Poin	ifect	rect	ale	ıle	tal	otal	Spa /ped	S He	ıale	ıle	tal	otal	Spa /ped	S He
	Ei Wi	Di	Fem	Ma	Tot	HC	Ped. (ft²	PLC	Fem	Ma	Tot	Hc	Ped. (ft²	PLC
Side	walks Alon	gsid	e the	e Roa	nds		_						_	
		1	9	8	17				4	10	14			
K1	2.00	2	1	1	2	380	249	Α	4	11	15	580	163	Α
TZA	1.47	1	11	9	20	520	124		7	7	14	490	145	•
K2	1.4/	2	1	5	6	520	134	Α	3	7	10	480	145	Α
K3	1 47	1	3	4	7	180	386	٨	4	7	11	320	217	٨
КJ	1.47	2	2	0	2	100	100 500		3	2	5	520	217	A
К4	1.53	1	2	5	7	140	516	Α	2	3	5	180	402	А
		2	0	0	0	- 140 516			2	2	4	100	=	
K5	1.64	1	0	2	2	140	553	Α	2	2	4	160	484	Α
		2	1	4	5				1	3	4			
K6	1.66	1	9	6	15	500	500 157 A		5	8	13	420	187	Α
		2 1	0	2 2	2				4	4	0 22			
K7	2.02	2	2	2	5	140	682	Α	4	8	12	680	140	Α
		1	0	2	2				2	0	2			
K8	1.57	2	3	2	5	140	530	Α	1	10	11	260	285	Α
		1	0	1	1				0	1	1			
L1	1.46	2	1	0	1	40	1724	Α	0	1	1	40	1724	Α
	2.00	1	1	0	1	20	1007		0	0	0	No	pedestr	ian
L3	2.09	2	0	0	0	20	4937	Α	0	0	0	activ	ity obse	rved ¹
т 4	1 49	1	0	0	0	No	pedestri	ian	2	1	3	100	600	٨
L4	1.40	2	0	0	0	activi	ty obsei	ved ¹	0	2	2	100	099	A
1.6	2.07	1	0	0	0	No	pedestr	ian	0	1	1	20	4890	А
10	2.07	2	0	0	0	activi	ty obsei	ved ¹	0	0	0	20	1070	
L7	2.03	1	0	1	1	20	4795	Α	2	0	2	40	2398	Α
		2	0	0	0	Ŋ	1		0	0	0			
L8	2.07	1	0	0	0) No pedestrian		1	0	1	20	4890	Α	
		2 1	3	1	<u> </u>) activity observed ¹		0	0	0				
L9	1.96	2	0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				5	6	11	220	421	Α	
Side	walks at Pa	<u> </u>	ng L <i>u</i>	<u> </u>	-	I			5	5		I		
Siut	uns ut I t	1	0	0	0	No	nedestr	an	2	5	7			
L2	1.50	2	0	0	0	activi	ty obser	ved ¹	0	0	0	140	506	Α

Table D.18 HCM 2010 Pedestrian LOS Model Results for Location K and L for 16:00-16:45 and 17:00-17:45 intervals

 1
 2
 0
 0
 0
 activity observed¹
 0
 0
 0
 0

 1
 For locations with pedestrian inftrastructure capacity and flow, no PLOS evaluation is provided

Figure D.1 HCM PLOS for 08:15- 09:00

Figure D.2 HCM PLOS for 09:15- 10:00

Figure D.3 HCM PLOS for 13:15- 14:00

Figure D.4 HCM PLOS for 16:00- 16:45

Figure D.5 HCM PLOS for 17:00- 17:45

APPENDIX E

GAINESVILLE METHOD MANUAL AND PLOS RESULTS

Pedestrian LOS Performance Measures for Gainessville PLOS Method

1- Pedestrian Facility Provided (PFP)

Dominant Facility Type What are the characteristics of the pedestrian facility provided in the corridor? The dominant facility can be either noncontinuous or nonexistent, continuous on one side, or continuous on both sides.

Minimum 1.53 m (5 ft) Wide and Barrier Free The sidewalk must be at least 1.53 m (5 ft) wide for its entire length. The 1.53 m clearance must be maintained around all utility poles, traffic signal poles, cafe railings, benches, newspaper boxes, and other fixtures that may encroach on the sidewalk space.

Sidewalk Width Greater than 1.53 m When the sidewalk provided is greater than 1.53 m wide the corridor segment will score points in this category. When the sidewalk is greater than 1.53 m but has significant barriers that decrease the useable, clear space to less than 1.53 m, the segment will still score points, but will not score for the criterion of a minimum 1.53 m wide and barrier-free facility.

Off-Street Parallel Alternative Facility This facility must be located within 0.4 km of the roadway segment and provide access to the same primary destination points served by the roadway network. This facility is typically located on a separate right of way instead of within the roadway right of way.

2- Conflicts (Conf)

To what degree are conflicts created or alleviated for the pedestrian because of visibility, motorvehicle turning movements, pedestrian exposure times, and pedestrian convenience, which increases risktaking behavior?

Less Than 22 Driveways and Sidestreets per 1.61 km Driveway and sidestreet access points create conflicts for pedestrians. Statistics reveal a high proportion of crashes caused by this type of conflict. At each access point a bicyclist and pedestrians must scan for hazards and be prepared to execute an evasive maneuver.

Pedestrian Signal Delay of 40 Sec or Less The pedestrian signal delay is calculated for sidestreet crossings along the corridor segment, but not for movements across the major corridor being evaluated.

Reduced Turn-Conflict Implementations Intersection designs must provide properly located crosswalks and sight distances to maximize visibility for pedestrians.

Crossing Widths 18.3 m (60 ft) or Less The pedestrian crossing widths are measured for sidestreet crossings along the corridor, but not for movements across the corridor being evaluated. Crosscorridor widths could be used, but would require more extensive data collection. Generally, the through-crossing distance and other.

Posted Speed 56 kph or Less High-speed traffic greatly decreases the comfort of pedestrians and can be a major deterrent to pedestrian trips.

Medians Present Points will be received for this criterion when medians are a dominant characteristic within the corridor or when they are present at locations with frequent motor-vehicle turning movements or frequent pedestrian midblock crossing movements.

3- Amenities in Right-of-Way (Amen)

Does the segment provide features that increase comfort and convenience for pedestrians using the facility? These features must be located primarily within the roadway right of way.

Buffer not Less Than 1 m (3.3 ft) The buffer is the space between the existing sidewalk and the curb or roadway edge.

Benches or Pedestrian-Scale Lighting Benches or pedestrianscale lighting must be a dominant feature of the segment or at

least be provided in locations along the segment adjacent to highpedestrian-traffic generators, such as activity centers, office complexes, retirement communities, schools, transit transfer stations, and so forth.

Shade Trees Shade trees must be a dominant feature of the segment or at least be provided in locations along the segment adjacent to high-pedestrian-traffic generators.

4- Motor Vehicle LOS (VLOS)

To what degree do motor vehicle volume and congestion affect the comfort and safety level of pedestrians in the segment?

5- Maintenance (Maint)

Does the corridor suffer from maintenance deficiencies, including cracking, patching, buckling, weathering, holes, tree root intrusion, vegetative encroachment, rough railroad crossing, standing water, and so forth?

6- TDM and Multimodal Support (TDM)

Does the corridor have the available support of TMO services or intermodal links to transit that assist in overcoming nonroadway barriers and affect the decision to walk?

Point	Effective Width	PFP	Conf	Amen	VLOS	Maint	TDM	* Score	PLOS _{GM}
A5	2.43	10	0	1.5	2	2	0	15.5	В
A6	4.8	10	0	2	2	2	0	16	В
B6	4.8	8	0	2	2	0	0	12	С
C6	2.43	10	0	2	2	2	0	16	В
D1	6.75	9	0	2	2	2	0	15	В
D3	10	10	0	2	2	2	0	16	В
D4	11.3	10	0	2	2	2	0	16	В
E5	1.93	8	1	1	2	0	0	12	С
E8	24.77	9	0	1	2	2	0	14	С
F8	6.2	10	0	2	2	2	0	16	В
F9	8.4	10	0	2	2	2	0	16	В
F10	12.8	10	0	2	2	2	0	16	В
H2	1.76	9	0	2	2	2	0	15	В
H3	2.08	9	0	1	2	2	0	14	С
K9	2.25	8	0	2	2	-1	0	11	D

 Table E.1 Gainesville Method PLOS Results and Raodway Characteristics for Walkway

 (No-interaction with Vehicular Traffic) Locations

Doint	Effective	DFD	Conf	Amon	VLOS	Maint	трм	* Seoro	DI OS aut
Sidewa	lks Alongs	ide the	Roads	Amen	VL05	Wallit		Score	I LOSGM
	19	7	0	2	2	2	0	13	С
	1.9	9	0.5	15	2	2	0	15	R
A4	1.05	6	0.5	1.5	2	-1	0	8	D
A8	2.15	8	0	1	2	-1	0	10	D
A9	1.97	8	0	1	2	-1	0	10	D
 B1	2.15	8	1	1	2	-1	0	11	D
B2	0.9	6	1	1	2	-1	0	9	D
B4	1.97	6	0	1	2	-1	0	8	D
B8	1.95	6	1	1	2	-1	0	3	F
B9	1.15	5	1	1	2	-1	0	8	D
C1	1.15	6	1	1	2	-1	0	9	F
C3	1.4	6	1	1	2	-1	1	13	Е
C4	1.15	5	1	1	2	-1	0	8	D
C8	1.97	8	0	1	2	-1	1	11	D
D2	1.97	6	0	1	2	-1	0	8	D
D5	3.81	6	1	1	2	-1	1	12	Е
D8	2	8	1	1	2	2	0	14	С
D9	4	8	1	1	2	2	0	14	С
E2	2	8	1	1	2	0	0	12	С
E3	2	8	1	1	2	2	1	15	В
E4	2.07	8	1	1	2	2	1	15	В
E6	1.97	8	0.5	0.5	2	0	0	11	D
E7	2	8	0.5	1	2	0	0	11.5	С
Sidewa	lks at Park	ing Lot	ts						
B5	2.14	8	0	1	2	0	0	11	D
B7	2.43	9	0	1	2	2	0	10	D
C5	1,97	9	0	1	2	2	0	13	D
С9	0	0	0	0.5	2	-1	0	1.5	F
Pedestr	ian Activit	y Loca	tions wi	th No Sid	lewalk Ca	apacity			
A2	0	1	0	0	2	-1	0	2	F
B3	0	0	0	0	2	-1	0	1	F
C2	0	5	1	1	2	-1	0	8	D
C7	0	5	0	0.5	2	0	0	7.5	D
D6	0	5	1	1	2	-1	0	8	D

Table E.2 Gainesville Method PLOS Results and Raodway Characteristics for Region A, B, C, D and E

	Effective					_		*	
Point	Width	PFP	Conf	Amen	VLOS	Maint	TDM	Score	PLOS _{GM}
Sidewa	lks Alongs	ide the	Roads						
F2	2	8	0	1	2	0	0	11	D
F3	1.57	7	0	0.5	2	0	0	9.5	D
F6	1.36	7	0	1	2	0	0	10	D
F7	1.57	7	0	0.5	2	-1	0	8.5	D
H1	1.45	0	0	0	2	-1	0	1	F
H4	1.52	7	1	0.5	2	0	1	11.5	С
Н5	1.3	7	0	0	2	0	1	10	D
H6	1.45	6	0	0.5	2	0	1	9.5	D
H7	1.8	7	0.5	1	2	0	0	10.5	D
H8	1.85	7	0	0.5	2	0	0	9.5	D
H9	1.45	8	0.5	2	2	2	0	14.5	В
J1	1.33	7	0	0.5	2	0	1	10.5	D
J2	1.33	7	0	1	2	0	0	10	D
J5	1.6	6	0	1	2	0	0	9	D
J6	1.2	0	0	1	2	-1	1	3	F
J7	1.6	8	1	1	2	-1	0	11	D
J8	2	7	1	1	2	0	0	11	D
K1	2	8	1	1	2	0	0	12	С
K2	1.47	7	1	1	2	0	0	11	D
K3	1.47	7	1	1	2	0	0	11	D
K4	1.53	7	1	1	2	0	1	12	С
K5	1.64	8	2	2	2	0	1	15	В
K6	1.66	8	1	1	2	0	0	12	С
K7	2.02	8	0.5	1	2	2	0	13.5	С
K8	1.57	5	0	1	2	0	0	8	D
L1	1.46	6	0	1	2	0	0	9	D
L3	2.09	7	0	1	2	-1	1	10	D
L4	1.48	6	0	1	2	0	0	9	D
L6	2.07	7	0	0.5	2	0	0	9.5	D
L7	2.03	8	0	1	2	-1	0	10	D
L8	2.07	7	0	0	2	-1	0	8	D
L9	1.96	5	0	1	2	0	0	8	D
Sidewa	lks at Park	ting Lo	ts						
F1	1.9	6	0	1	2	0	1	10	D
F4	1.1	7	0	0.5	2	-1	0	8.5	D
F5	1.36	5	0	1	2	-1	0	7	Е
L2	1.5	5	0	1	2	0	0	8	D

Table E.3 Gainesville Method PLOS Results and Raodway Characteristics for Region F, H, J, K and L

APPENDIX F

TRIP QUALITY METHOD MANUAL AND PLOS RESULTS

Nine Pedestrian Evaluation Measures for Trip Quality Method

1- Enclosure (Enc): The principle of enclosure measures the degree to which the edges of the street are defined. Good enclosure dictates that the pedestrian's eyes are focused *along the street* rather than among the blank spaces between, behind, or in front of buildings.

Commercial streets best demonstrate enclosure when buildings are constructed side-by-side along the sidewalk, minimizing the volume of empty space between and in front of buildings. Figure 1 shows, in plan view, the difference between a well-enclosed commercial street and a poorly enclosed one

2- Complexity of Path Network (CPN): A complete/complex path network furnishes pedestrians with numerous route choices between origins and destinations. In other words, a complex path network ensures a high degree of connectivity between activity centers and residential units. Without a complex path network, pedestrians are often held hostage to the same route day after day, making even the most pleasant of paths very tiresome. Figure 2 illustrates a poor, incomplete path network in comparison to a complete, complex network, the former of which is all too commonly found in contemporary suburban areas.

FIGURE 2 Complexity of path network.

3- Building Articulation (BA): Storefronts and houses add interest to the pedestrian experience through the varied application of materials, design, color, and décor. The best examples are found in historic town centers and close-in neighborhoods where structures were originally designed to appeal to slow-moving pedestrians rather than to high-speed automobile traffic, since

walking was for a very long time the dominant form of transportation between homes and businesses.

Highly Articulated Buildings

Poorly Articulated Buildings FIGURE 3 Building articulation.

4- Shade Trees (ST): The presence of shade trees improves the comfort level of pedestrians on hot summer days. Shade trees are effective at keeping pedestrians cool as well as blocking the sun from their eyes. Additionally, shade trees add a nice aesthetic element to the street and contribute to definition and buffer. In some cases, street trees also provide shelter from rain (but not during lightning storms, of course).

5- Transparency (**Tr**): *Transparency* addresses the transition between the public space and private space. In business areas, transparency is created through the use of windows, outdoor displays, and sidewalk cafes. In residential areas, front porches facilitate a smooth interface between the public street and private house.

6- Overhangs/Awnings/Varied Roof Lines (Awn): The degree to which items *above* street level contribute to the experience *at* street level, in terms of both aesthetics *and* functionality, is a very important aspect of pedestrian planning.

In terms of appearance, the presence of overhangs, awnings, and varied roof lines enhances the pedestrian experience in the same manner as does the articulation of buildings through diverse materials and décor, contributing variation and aesthetic quality. From a functional perspective, overhangs and awnings contribute to pedestrian comfort by providing shade from sunlight and shelter from rainfall.

7- Complexity of Spaces (CS): Frequent variation in the orientation and character of public spaces adds to the general level of interest of commercial districts and residential neighborhoods. Such spaces include courtyards, plazas, parks, and playgrounds. Natural elements, such as water features and indigenous trees, can be celebrated within these public spaces to help draw attention to the unique physical qualities of a particular area. The geometrics of public spaces should be such that interesting and rapidly changing views are facilitated.

The presence and variation of public spaces along pedestrian routes ensure that long walks are broken up with occasional sectors of heightened interest. Figure 4 illustrates in plan view the manner in which public spaces might be distributed throughout a town center district.

FIGURE 4 Complex spaces.

8- Buffer (Bf)

The presence of a "buffer zone" between pedestrians and moving vehicles greatly enhances pedestrian safety and comfort. Buffer improves *actual* safety through the placement of solid objects between moving vehicles and people, reducing the likelihood that a collision involving a pedestrian will occur. *Perceived* safety, which is roughly synonymous with pedestrian comfort, is likewise increased as the buffer zone is enlarged and solidified because pedestrians along the improved corridor would *feel* as if their chances of becoming involved in a collision have been lowered. Figure 5 contains a pair of diagrams depicting a well-buffered street in comparison to a poorly buffered street. The former contains a "buffer lane" between the sidewalk and travel lanes consisting of extensive landscaping or parallel parking, or some intermittent combination of both.

FIGURE 5 Buffer.

9- Physical Components/Condition (PC): This category of evaluation addresses the specific physical qualities of the sidewalk and its surroundings that are not explicitly covered by any of the other eight evaluation measures. As described below, *physical components/condition* addresses both the structural integrity and functionality of the sidewalk and the overall contribution (positive or negative) of other physical elements in the corridor, such as the street itself.

Sidewalk Configuration and Condition (SC)

For obvious reasons, the overall physical condition of sidewalks and streets profoundly impacts the quality of the pedestrian environment. Areas containing no sidewalks at all typically receive the lowest possible ratings in this category, except in the rare cases where streets themselves are designed to serve as safe, shared travelways. Low ratings are also assigned to areas with broken or cracked sidewalks, disproportionately narrow sidewalks, sidewalks having trees or poles obstructing the walking path, or sidewalks that collect and retain unreasonably high volumes of standing water during rainstorms.

Vehicular Speed (VS)

As previously mentioned, vehicular speed greatly affects the actual and perceived safety of pedestrians along a roadway. Speed is influenced by many factors, the least of which is probably the posted speed limit. Although *enclosure*, as facilitated by buildings and street trees, has a great deal of influence over driver speed, so does the physical design of the roadway itself.

Lighting (L)

The level of lighting along the street also has considerable implications for pedestrian safety—in terms of both *criminal activity* and *protection from vehicles*.

]	Rate	r 1					
Point	Б	CDN	D 4	CC		De	CTT.	T		PC		Δνσ	PLOS
	Enc	CPN	ВА	CS	Awn	BI	51	Tr	SC	VS	L	Score	TQ
A5	1	1	1	1	1	5	5	1	5	5	1	2.5	D
A6	2	2	1	2	1	5	5	1	5	5	5	3.1	С
B6	3	3	3	4	1	4	5	3	2	5	4	3.4	В
C6	4	5	5	5	1	5	4	4	4	5	4	4.2	Α
D1	3	2	3	4	1	5	4	2	4	5	5	3.5	В
D3	4	5	5	5	1	5	4	4	4	5	4	4.2	Α
D4	4	4	5	4	1	5	5	4	4	5	4	4.1	Α
E5	3	3	1	2	1	1	5	1	2	5	5	2.6	D
E8	2	3	1	3	1	5	3	1	5	5	5	3.1	С
F8	3	5	3	4	1	5	5	3	5	5	4	3.9	В
F9	4	5	4	5	1	5	5	4	4	5	4	4.2	Α
F10	4	4	5	5	1	5	5	4	4	5	4	4.2	Α
H2	1	1	1	2	1	5	3	1	4	5	4	2.5	D
H3	2	1	1	2	1	5	2	1	4	5	1	2.3	D
K9	3	4	1	5	1	5	5	5	4	5	4	3.8	В

 Table F.1 Trip Quality Method PLOS Results by Rater 1 for Walkway (No-interaction with Vehicular Traffic) Locations

 Table F.2 Trip Quality Method PLOS Results by Rater 2 for Walkway (No-interaction with Vehicular Traffic) Locations

	Rater 1												
Point	Enc	CPN	BA	CS	Awn	Bf	ST	Tr	РС			Δνσ	PLOS
									SC	VS	L	Score	TQ
A5	1	1	1	1	1	5	5	1	5	5	1	2.5	D
A6	2	2	1	2	1	5	5	1	5	5	5	3.1	С
B6	3	3	3	2	1	5	4	3	3	5	4	3.3	С
C6	5	5	4	5	1	5	4	5	4	5	4	4.3	А
D1	4	1	2	4	1	5	3	3	4	5	5	3.4	В
D3	5	5	4	5	1	5	4	5	4	5	4	4.3	Α
D4	4	5	4	5	1	5	3	5	5	5	5	4.3	Α
E5	2	3	1	1	1	1	4	2	3	5	2	2.3	D
E8	2	4	1	1	1	5	3	4	5	5	4	3.2	С
F8	3	5	3	3	1	5	4	3	4	5	4	3.6	В
F9	3	5	3	3	1	5	4	4	4	5	4	3.7	В
F10	4	5	3	5	1	5	5	3	4	5	4	4.0	Α
H2	1	1	1	2	1	5	3	1	4	5	5	2.6	D
H3	1	1	1	2	1	5	2	1	4	5	1	2.2	D
K9	4	5	1	5	1	5	5	5	3	5	4	3.9	В

	Rater 1												
Point	T	CDM		00		De	ст	T	PC			Avg	PLOS
	Enc	CPN	ВА	CS	Awn	BI	51	Ir	SC	VS	L	Score	TQ
Sidew	Sidewalks Alongside the Roads												
A1	1	1	1	2	1	4	5	1	4	3	4	2.5	D
A3	1	1	1	2	1	4	5	1	4	5	3	2.5	D
A4	1	1	1	1	1	1	5	1	2	5	3	2.0	Е
A8	1	2	2	2	1	1	5	1	2	5	3	2.3	D
A9	1	2	1	2	1	1	4	1	3	5	4	2.3	D
B1	1	1	1	2	1	5	5	1	3	5	3	2.5	D
B2	1	1	2	2	1	3	2	1	2	5	3	2.1	Е
B4	1	2	1	2	1	3	3	1	3	4	4	2.3	D
B8	1	2	1	1	1	5	5	1	5	5	4	2.8	С
B9	1	2	1	1	1	5	5	1	2	4	4	2.5	D
B10	1	1	1	1	1	2	2	1	1	2	4	1.5	Ε
C1	1	2	1	1	1	5	5	1	5	5	4	2.8	С
C3	1	2	1	1	1	5	5	1	5	5	4	2.8	С
C4	1	2	1	1	1	5	5	1	2	4	4	2.5	D
C8	3	2	3	3	1	1	3	3	2	4	4	2.6	D
D2	2	3	2	3	1	1	5	1	3	4	5	2.7	D
D5	1	2	1	1	1	5	5	1	5	5	4	2.8	С
D8	3	4	1	2	1	1	5	1	2	5	5	2.7	D
D9	2	5	1	3	1	1	5	2	4	5	4	3.0	С
E2	3	4	1	2	1	1	5	1	2	5	4	2.6	D
E3	2	5	1	3	1	1	5	2	4	5	5	3.1	С
E4	2	3	2	4	1	1	5	3	3	5	3	2.9	С
E6	3	3	1	2	1	1	5	1	2	5	3	2.5	D
E7	3	3	1	2	1	1	5	1	2	5	4	2.5	D
Sidew	alks at	: Parki	ng Lo	ots									
B5	2	1	2	2	1	5	5	2	3	5	3	2.8	С
B7	1	1	1	1	1	5	5	1	5	5	1	2.5	D
C5	1	1	1	1	1	5	5	1	5	5	1	2.5	D
C9	1	1	2	1	1	1	2	2	1	3	1	1.5	F
Pedestrian Activity Locations with No Sidewalk Capacity													
A2	1	2	1	1	1	1	2	1	1	4	3	1.6	E
B3	1	2	1	2	1	3	3	1	1	2	1	1.6	E
C2	1	2	1	1	1	5	5	1	2	4	4	2.5	D
C7	2	1	3	2	1	1	3	2	3	4	2	2.2	D
D6	1	2	1	1	1	5	5	1	2	4	4	2.5	D

Table F.3 Trip Quality Method PLOS Results by Rater 1 for Region A, B, C, D and E

	Rater 1												
Point	-	CDN		GG		De	C T	T	PC			Avg	PLOS
	Enc	CPN	ВА	CS	Awn	BI	51	Ir	SC	vs	L	Score	TQ
Sidewa	alks A	longsid	le the	Road	ls								
F2	1	1	1	2	1	1	5	1	4	5	4	2.4	D
F3	1	1	1	3	1	1	4	1	4	4	4	2.3	D
F6	2	3	3	3	1	1	4	2	4	5	5	3.0	С
F7	3	1	1	1	1	1	5	0	2	5	4	2.2	D
H1	1	1	1	1	1	1	1	1	1	2	1	1.1	F
H4	1	2	3	3	1	1	3	2	3	5	5	2.6	D
H5	1	2	3	2	1	1	1	2	3	5	2	2.1	Е
H6	1	2	2	2	1	1	3	2	2	5	3	2.2	D
H7	1	2	2	1	1	1	3	1	3	5	3	2.1	Е
H8	1	2	2	2	1	4	3	1	4	5	3	2.5	D
H9	3	2	3	3	1	4	5	4	4	5	5	3.5	В
J1	2	4	2	3	1	1	5	3	4	5	2	2.9	С
J2	1	3	1	3	1	1	4	1	2	5	4	2.4	D
J5	2	4	3	4	1	1	5	3	2	5	4	3.1	С
J6	3	2	1	3	1	1	4	1	1	5	4	2.4	D
J7	2	4	1	3	1	1	4	2	1	5	3	2.5	D
J8	2	3	1	2	1	1	5	2	3	5	4	2.6	D
K1	3	2	1	1	1	1	2	5	2	5	3	2.4	D
K2	3	2	3	1	1	1	4	1	2	5	2	2.3	D
K3	3	1	1	1	1	1	2	1	2	5	1	1.7	Е
K4	3	1	1	1	1	1	4	5	2	5	5	2.6	D
K5	4	3	2	4	1	4	2	5	2	5	4	3.3	С
K6	3	3	3	2	1	4	3	3	1	5	4	2.9	С
K7	4	4	3	4	1	1	3	4	4	5	3	3.3	С
K8	1	4	1	4	1	1	2	5	3	5	4	2.8	С
L1	3	3	4	4	1	2	5	2	3	5	4	3.3	С
L3	4	2	3	3	1	1	5	2	2	5	5	3.0	С
L4	3	2	4	3	1	1	5	4	3	5	4	3.2	С
L6	2	1	1	2	1	1	5	1	3	5	4	2.4	D
L7	2	2	1	3	1	1	5	1	2	5	5	2.5	D
L8	1	1	1	1	1	1	1	1	1	1	1	1.0	F
L9	3	1	4	3	1	1	5	4	4	5	5	3.3	C
Sidewalks at Parking Lots													
F1	2	1	1	2	2	1	2	2	2	5	4	2.2	D
F4	2	3	1	3	1	1	2	1	1	5	3	2.1	E
F5	1	2	2	2	1	1	5	2	2	5	3	2.4	D
L2	1	3	2	2	1	1	5	1	2	5	4	2.5	D

Table F.4 Trip Quality Method PLOS Results by Rater 1 for Region F, H, J, K and L
	Rater 2												
Point	Enc	CPN	BA	CS	Awn	Bf	ST	Tr	РС			Δνσ	PLOS
									SC	VS	L	Score	TQ
Sidew	alks A	longsid	e the F	Roads									
A1	1	2	1	2	1	5	5	1	5	4	5	2.9	С
A3	1	2	1	2	1	5	5	1	5	5	5	3.0	С
A4	1	2	1	1	1	1	4	1	3	5	3	2.1	Е
A8	2	2	2	2	1	1	4	1	2	5	4	2.4	D
A9	1	2	1	1	1	1	4	1	3	5	5	2.3	D
B1	2	1	2	2	1	1	4	2	2	4	4	2.3	D
B2	1	1	2	2	1	1	4	2	2	3	4	2.1	Е
B4	1	2	1	1	1	2	3	1	2	5	5	2.2	Е
B8	1	1	1	1	1	4	5	4	4	5	4	2.8	С
B9	1	1	1	1	1	1	5	2	2	4	4	2.1	Ε
B10	1	1	1	1	1	1	3	1	1	4	4	1.7	Ε
C1	1	1	1	1	1	4	5	4	4	5	4	2.8	С
C3	1	1	1	1	1	4	5	4	4	5	4	2.8	С
C4	1	1	1	1	1	1	5	2	2	4	4	2.1	Е
C8	3	3	3	4	1	1	3	3	2	5	3	2.8	С
D2	2	3	2	2	1	1	5	1	3	5	5	2.7	D
D5	1	1	1	1	1	4	5	4	4	5	4	2.8	С
D8	1	4	1	1	1	1	5	5	3	5	4	2.8	С
D9	2	5	2	3	1	1	3	4	4	5	5	3.2	С
E2	1	4	1	1	1	1	5	3	3	5	4	2.6	D
E3	2	5	2	3	1	1	5	4	5	5	5	3.5	В
E4	2	3	1	1	1	1	4	2	3	5	2	2.3	D
E6	2	3	1	1	1	1	4	2	3	5	3	2.4	D
E7	2	3	1	1	1	1	4	2	4	5	3	2.5	D
Sidewalks at Parking Lots													
B5	2	2	2	2	1	2	4	3	3	5	5	2.8	С
B7	1	1	1	1	1	5	5	5	5	5	1	2.8	С
C5	1	1	1	1	1	5	5	5	5	5	1	2.8	С
C9	1	1	2	1	1	1	3	2	1	5	1	1.7	Ε
Pedestrian Activity Locations with No Sidewalk Capacity													
A2	1	1	1	1	1	1	3	1	1	4	4	1.7	Е
B3	1	1	1	1	1	1	3	1	1	5	3	1.7	Ε
C2	1	1	1	1	1	1	5	2	2	4	4	2.1	E
C7	3	2	3	2	1	1	3	2	2	5	2	2.4	D
D6	1	1	1	1	1	1	5	2	2	4	4	2.1	Ε

Table F.5 Trip Quality Method PLOS Results by Rater 2 for Region A, B, C, D and E

	Rater 2												
Point	D er e	CPN	BA	CS	Awn	Bf	ST	Tr	РС			Avg	PLOS
	Enc								SC	VS	L	Score	TQ
Sidew	alks A	longside	e the R	Roads									
F2	1	2	1	2	1	1	3	2	3	5	3	2.2	D
F3	1	3	1	2	1	1	3	2	3	5	2	2.2	D
F6	2	4	3	2	1	1	4	4	3	5	5	3.1	С
F7	2	2	1	2	1	1	5	2	2	5	2	2.3	D
H1	1	1	1	1	1	1	1	1	1	2	1	1.1	F
H4	1	2	2	3	1	1	2	2	3	5	4	2.4	D
H5	1	1	3	3	1	1	1	2	2	5	2	2.0	Е
H6	1	1	3	2	1	1	3	2	2	5	3	2.2	D
H7	1	1	3	2	1	1	3	1	3	5	3	2.2	D
H8	1	2	2	2	1	1	5	1	2	5	2	2.2	D
H9	3	2	3	3	1	4	5	4	4	5	5	3.5	В
J1	2	3	1	2	1	2	5	4	3	5	4	2.9	С
J2	1	4	1	1	1	1	5	4	3	5	5	2.8	С
J5	3	4	3	3	1	1	5	5	2	5	5	3.4	В
J6	1	2	1	1	1	1	4	1	1	5	5	2.1	Ε
J7	2	4	1	3	1	1	5	3	3	5	4	2.9	С
J8	3	4	1	3	1	1	5	2	4	5	4	3.0	С
K1	4	2	3	2	1	1	3	4	3	5	4	2.9	С
K2	4	2	3	2	1	1	4	3	3	5	2	2.7	D
K3	4	1	1	1	1	1	3	1	3	5	2	2.1	Е
K4	4	1	1	1	1	1	4	1	3	5	4	2.4	D
K5	3	4	3	5	1	4	2	4	3	5	5	3.5	В
K6	4	4	3	4	1	4	4	4	3	5	4	3.6	В
K7	5	3	3	3	1	1	4	4	4	5	3	3.3	С
K8	1	4	1	4	1	1	3	5	3	5	4	2.9	С
L1	3	2	3	4	1	1	5	1	2	5	3	2.7	D
L3	3	3	3	3	1	1	5	2	2	5	3	2.8	С
L4	2	2	3	3	1	1	5	4	2	5	2	2.7	D
L6	3	2	1	3	1	1	5	1	3	5	3	2.5	D
L7	3	2	1	3	1	1	5	1	2	5	4	2.5	D
L8	1	1	1	1	1	1	1	1	1	5	1	1.4	F
L9	3	2	3	3	1	1	5	3	3	5	4	3.0	C
Sidew	alks at	Parkin	g Lots	5	1	1	1			1		· · · · · · · · · · · · · · · · · · ·	
F1	1	2	1	2	3	1	2	2	2	5	3	2.2	D
F4	1	2	1	1	1	1	2	2	1	5	3	1.8	E
F5	2	4	3	3	1	1	3	3	1	5	3	2.6	D
L2	1	3	2	2	1	1	5	2	2	5	3	2.5	D

Table F.6 Trip Quality Method PLOS Results by Rater 2 for Region F, H, J, K and L