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ABSTRACT 

 

 

ON THE BALANCED K-CHINESE POSTMEN PROBLEMS 

 

 

Limon, Yasemin 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 

July 2015, 73 pages 

 

 

In this thesis, we consider a k-Chinese Postmen Problem with the objective of 

minimizing total squared workloads. Our aim is to balance the workloads of the 

postmen, while maintaining low total workload. 

We develop an efficient subtour elimination constraint and incorporate it to our 

integer program. We develop exact and approximate solution procedures that run in 

exponential and polynomial time respectively. 

The results of our computational experiment reveal the satisfactory behaviors of our 

algorithms in terms of solution speed and solution quality. 

 

Keywords: k-Chinese Postmen Problem, Subtour Elimination Constraints, Solution 

Algorithms 
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ÖZ 

 

 

K-ÇİNLİ POSTACI DENGELEME PROBLEMİ ÜZERİNE 

 

 

Limon, Yasemin 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu 

Temmuz 2015, 73 sayfa 

 

 

Bu tezde, toplam kareli işyükünü enazlayan k-Çinli Postacı Problemini ele aldık. 

Toplam iş yükünü düşük tutarken, postacılar arasındaki iş yükünü dengelemeyi 

hedefledik. 

Etkin bir alt tur eleme yöntemi geliştirip, modelimize dahil ettik. Kesin ve yaklaşık 

çözümler veren, sırasıyla, üstsel ve polinom zamanda çalışan çözüm yöntemleri 

geliştirdik. 

İşlemsel deneylerimizin sonuçları, algoritmalarımızın çözüm süresi ve çözüm kalitesi 

açısından başarılı olduğunu göstermektedir. 

 

Anahtar Kelimeler: k-Çinli Postacı Problemi, Alt Tur Eleme Kısıtları, Çözüm 

Yöntemleri 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Routing problems have been widely studied in the literature due to their wide range 

of applications in the distribution management and logistics areas. The problems are 

defined on directed, undirected or mixed graphs. Directed graphs are formed of arcs, 

whereas undirected ones include edges without direction. Mixed graph is a 

combination of arcs and edges.  

Routing problems can be divided into two main categories as node routing and arc 

routing. Node routing problems aim to optimize the routes to serve a set of customer 

nodes. Its most noteworthy applications are due to vehicle routing and traveling 

salesman problems that have attracted the attention of several researchers for many 

decades. 

Arc routing problems (ARP) aim to find the routes at minimum cost to serve a set of 

arcs. If all arcs/edges in a set must be visited, the associated problem is the Chinese 

Postman Problem (CPP). If a defined subset of arcs/edges is required to be traversed, 

the problem becomes the Rural Postman Problem (RPP).  

Both the CPP and the RPP have variants with different objectives and assumptions. 

For example, the Windy Postman Problem has different cost of visiting an edge in 

two directions. Considering possible precedence relations of visiting arcs, the 

Hierarchical CPP and RPP are proposed. The Maximum Benefit CPP gains benefit 
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each time an arc/edge is visited. The CPP with time window constraints has time 

limitation to service an arc/edge. Similar to the Maximum Benefit CPP, the 

Profitable RPP and the Prize-collecting RPP are introduced with the objective of 

maximizing the benefit gained from the service. Another prominent type of ARP is 

the Capacitated Arc Routing Problem in which there are capacitated vehicles to 

service a specified edge set. The variants of these problems have been arising in 

response to the need in the applications. Moreover, attributing to the practical 

importance for and theoretical challenge behind the ARPs, current research is 

growing enormously. 

The ARPs have their origin in Königsberg bridge problem given in Figure 1.1. 

 

Figure 1.1. Königsberg bridge problem 

 

 

Königsberg in Prussia (Kaliningrad in Russia now) has seven bridges on Pregel 

River. The Swiss mathematician Leonhard Euler (1736) solves the problem of 

determining a closed walk visiting each bridge exactly once, and presents necessary 

and sufficient conditions for such a walk to exist. For this reason, if a connected 

graph has a closed walk visiting each node at least once and each arc exactly once, 

that graph is named as Eulerian.   

More specifically, the history of the Chinese Postman Problems goes back to the 

Chinese Cultural Revolution. A Chinese mathematician Meigu Guan (1962) defines 
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the problem as follows: “A mailman has to cover his assigned segment before 

returning to the post office. The problem is to find the shortest walking distance for 

the mailman.” 

The first proposed version of the CPP considers a single postman and aims to 

minimize total cost. The objective of minimizing total cost is of consequence for the 

applications such as mail delivery, garbage collection, street cleaning, and snow 

removal. This objective is a summation type which is easier to solve than the other 

kinds of objectives, and there are polynomial time algorithms for some versions of 

the single CPP. 

More practical versions of the CPP have been introduced recently with the 

perspective that the single CPP is not realistic for many real life applications. There 

are usually more than one postman for a mail delivery, and similarly more than one 

vehicle are necessary for garbage collection. To incorporate multiple postmen to the 

CPP, the k-CPP is firstly presented with the aim of minimizing total cost. However, 

the cost minimization objective might not be adequate to represent the real life 

considering the time limitation for the applications. For example, total cost objective 

may produce different workloads for each snow removal vehicles. One of the snow 

removal vehicles may have to visit many streets; whereas, the other vehicles may 

have much less work. This allocation results in completing the most loaded work 

late; moreover, this completion may not be feasible according to working hours and 

weather conditions. For such cases, the k-CPPs with different objectives are proposed 

with the aim of workload balancing: 

 The Min-Max k-Chinese Postman Problem (MM k-CPP) 

 The Minimum Absolute Deviation k-Chinese Postman Problem (MAD k-

CPP) 

 The Minimum Square Deviation k-Chinese Postman Problem (MSD k-CPP) 

 The Minimum Overtime k-Chinese Postman Problem (MOT k-CPP) 
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The goal of the MM k-CPP is to minimize the length of the longest tour. Since it is 

interested in only one tour, workload balancing among other tours is not directly 

examined. The other three versions are proposed to form a better workload allocation 

among all tours. The MAD k-CPP minimizes the sum of all deviations from an 

allowed service time for each postman. The solution of the MAD k-CPP recommends 

close distribution of the workloads around the allowed time. To achieve such a 

distribution, more workloads than necessary may be assigned to some postmen. The 

MSD k-CPP minimizes the sum of squared deviations from an allowed time. The 

goal of the squared objective function is to penalize higher deviations, and the 

resulting solution has more evenly distribution compared to the MAD k-CPP. 

Assigning unnecessary work just for approaching to the allowed time is also possible 

for this type of objective. That is to say, the MAD k-CPP and the MSD k-CPP may 

directly contradict with minimizing total cost for some cases. The last version is the 

MOT k-CPP whose aim is to minimize total overtime. It is similar to the MM k-CPP 

because the workloads smaller than the allowed time are not penalized. The 

disadvantage of the MOT k-CPP is the need of determining allowed time accurately 

because the higher allowed times result in solutions that assign unnecessarily high 

workloads to some postmen.  

In order to handle the disadvantages of previously defined objectives on the 

workload balancing in the k-CPP, we study the directed k-CPP with a different 

objective function. Our objective is to minimize the sum of squared workloads over 

all postmen. This objective does not use any allowed service time, and it aims to 

minimize the deviations between the workloads of all postmen while keeping total 

workload at a reasonable level by focusing more on higher deviations. The 

nonlinearity of the objective function brings additional challenge to the k-CPP, and 

increases its complexity.  

Our main motivation is to develop an efficient mathematical model along with 

efficient approaches for its solution. We particularly develop an efficient subtour 

elimination constraint set that is applicable to all types of the k-CPPs. Our subtour 
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elimination constraint set does not require any additional decision variable or a big M 

value. 

As in all routing problems, the subtour elimination constraints need to be defined 

over all subsets of the node set, hence they are exponential in cardinality. Our 

solution approaches are based on efficient incorporation of a subset of subtour 

elimination constraints. 

Our procedures are of two types: exact algorithms and a heuristic procedure. The 

exact algorithms run in exponential time and may not return a solution at the end of a 

specified time. The heuristic procedure on the other hand delivers a feasible solution 

at its specified termination limit. 

The remainder of the thesis is organized as follows. The review of the related 

literature is given in Chapter 2. Chapter 3 defines our problem and Chapter 4 

explains the subtour elimination constraints. The solution algorithms are explained in 

Chapter 5, and the heuristic procedure is given in Chapter 6. The results of our 

computational runs are reported in Chapter 7. Lastly, Chapter 8 concludes our study 

with our main findings and suggestions for future work. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

The history of the Chinese Postman Problems (CPPs) goes back to the Chinese 

Cultural Revolution. The problem is first defined by a Chinese mathematician Meigu 

Guan (1962). 

The first studies related to the single CPP generally examine the problem on different 

graph types with the objective of minimizing total cost. Euler (1736) presents the 

basics of the undirected CPP with the conclusion that a connected undirected graph is 

Eulerian if and only if all vertices have even degree. For the directed graphs, if the 

number of arcs entering and leaving a node is equal, the graph is Eulerian (Ford and 

Fulkerson, 1962). Contrary to the undirected CPP, connectedness is not adequate for 

the existence of a solution of the directed CPP. For the directed case, there must be a 

path between every pair of nodes, and this property is referred as strongly 

connectedness (Edmonds and Johnson, 1973). One of the fundamental articles on the 

CPP is the study of Edmonds and Johnson (1973). They discuss the CPP on directed, 

undirected and mixed graphs using the matching theory and present algorithms to 

find Euler tours.  

Minieka (1979), Pearn and Liu (1995) and Pearn and Chou (1999) present solution 

techniques for the CPP on the mixed graphs. Corberan et al. (2002) apply a 

metaheuristic, GRASP, to the mixed CPP.  Lin and Zhao (1988) examine the 
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directed CPP and their proposed approach uses transportation problem. For the 

mixed CPP, Kappauf and Koehler (1979) and Ralphs (1993) give an Integer Linear 

Programming (ILP) formulation and analyze the polyhedron of its linear 

programming relaxation. Norbert and Picard (1996) present an ILP model together 

with valid cuts. 

Malandraki and Daskin (1993) introduce maximum benefit routing problems for the 

TSP and CPP. A benefit is gained by a traversing an arc or visiting node for the 

Maximum Benefit CPP and the Maximum Benefit TSP, respectively. They present 

ILP models for both problem types. Cabral et al. (2002) study the Hierarchical CPP 

as an RPP, and solve the problem optimally with a branch-and-cut procedure.  

More recently, the focus has changed from the network types to the different variants 

of the single CPP. The study of Korteweg and Volgenant (2006) solve the 

Hierarchical CPP with linear ordered classes by using a lexicographic objective. 

Aminu and Eglese (2006) give two formulations for the CPP with time windows. 

One exploits the transformation to a vehicle routing problem, and the other uses a 

constraint programming approach.  

Compared to the literature of the single CPP, there are a limited number of the k-CPP 

studies. The k-CPP models basically focus on the MM k-CPP. 

The MM k-CPP is shown to be strongly NP-hard by Frederickson et al. (1978). They 

prove the NP-hardness of the problem through a reduction from the k-partition 

problem. Frederickson et al. (1978) propose two lower bounds. The first bound uses 

shortest path lengths from the depot to the vertices whereas the second divides the 

length of the single postman route by the number of vehicles. They also develop a 

heuristic procedure and show that in the worst case the heuristic solution deviates 

from the optimal solution by a factor of (2 −
1

𝑘
). Ahr and Reinelt (2002) develop 

several heuristic procedures for the same problem. Their heuristics consider a 

construction step by using an Augment-Merge idea, Clustering, and two different 

improvement steps. The results of their computational study reveal the superiority of 
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their heuristics over those of Frederickson et al. (1978). Ahr (2004) develops 

improved versions of Frederickson et al. (1978) lower bounds and develop several 

heuristic procedures.  

Ahr (2004) gives an ILP formulation of the problem including subtour elimination 

constraints. He defines aggregated variables and develops parity constraints over the 

aggregated variables. He uses parity constraints as valid cuts in his branch and cut 

algorithm with gap 1% in a CPU limit of 1 hour, and compares the effect of 

branching strategies on the performance of the branch and cut algorithm.  

Ahr and Reinelt (2006) and Willemse and Joubert (2012) propose tabu search 

algorithms to find high quality approximate solutions in reasonable solution times. 

Ahr and Reinelt (2006) propose three different neighborhood structures with linear, 

quadratic, and cubic running time complexities. The results of their computational 

study reveal that the higher complexity structures lead to better quality solution 

however at an expense of higher solution times, and they find the best compromise is 

found at quadratic neighborhoods. They also show the superior performance of their 

tabu search algorithm over the existing algorithms.  

Willemse and Joubert (2012) show that the problem of designing patrol routes for 

security estates can be modeled as the MM k-CPP. They assess the quality of their 

procedure using the lower bounds by Ahr and Reinelt (2002). They propose a tabu 

search algorithm that is shown to be superior to the existing solutions and the one 

proposed by Ahr and Reinelt (2006). 

Different objectives for the k-CPP are presented in the study of Osterhues and 

Mariak (2005). They provide the k-CPP variants using three objective functions 

which are minimizing the sum of all deviations from an allowed service time (MAD 

k-CPP), minimizing the sum of squared deviations (MSD k-CPP), and minimizing 

the sum of overtime for each postman (MOT k-CPP). Similar to the MM k-CPP, 

these variants aim to balance postmen loads. They assign different costs to servicing 

an edge and traversing an edge without servicing. Afterwards they allocate service 
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edges to the postmen by using an RPP heuristic. They propose a branch and bound 

procedure, and find optimal and near-optimal solutions for instances with less than 

25 edges.  

Shafai and Haghani (2015) present a mathematical model for the maximum benefit 

k-CPP which considers some generalizations. The proposed model allows using 

different depots and destinations for each postman. Instead of visiting an arc at least 

once, multiple visits are aimed to increase security for patrolling and snow plowing 

operations. As the time spent by a vehicle is limited, excessive use of a specific arc is 

prevented in the model. Lastly, this model eliminates subtours by including 

constraints with a big M value and additional binary variables. For the computational 

study, they generate different scenarios and use a network with 12 nodes and 36 arcs. 

When the number of vehicles is two, they get satisfactory solution times which are 

less for the case of fixed depot and destination location than free locations.  

Multiple vehicles are introduced in the Windy RPP. Benavent et al. (2009) study the 

Min-Max k Vehicles Windy RPP (k-WRPP). They present an ILP model and some 

valid inequalities. They develop a branch and cut algorithm based on the polyhedral 

description of the problem. They find promising results for the small and medium 

sized problem instances with up to 50 nodes and 110 arcs. Benavent et al. (2010) 

give a metaheuristic approach to solve the ILP model given in Benavent et al. (2009). 

This approach combines a Multi-Start algorithm, a Variable Neighborhood Descent 

and Iterated Local Search.  

Benavent et al. (2011) present new valid inequalities for the polyhedron of the Min-

Max k-WRPP. Using these new inequalities for separation algorithms and upper 

bound given by the metaheuristic in Benavent et al. (2010), they improve the branch 

and cut algorithm proposed by Benavent et al. (2009). Their computational study 

shows the contribution of the findings to the previous branch and cut procedure.  
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Benavent et al. (2014) develop a branch-price-and-cut algorithm to solve the Min-

Max k-WRPP. They use exact and heuristic column generation techniques 

incorporated in their branch and bound algorithm and get satisfactory results. 

We, in this study, develop solution algorithms for the total squared workload 

problem. Our aim is to balance the workloads of the postmen while keeping the total 

load at a reasonable level. Our solution approaches are applicable to various types of 

k-CPP with balancing concerns. 
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CHAPTER 3 

 

 

PROBLEM DEFINITION AND THE COMPLEXITY 

 

 

 

Consider a directed graph 𝐺 = (𝑁, 𝐴) where 𝐴 is the set of arcs and 𝑁 is the set of 

nodes. Arc (𝑖, 𝑗) connects nodes i and j and is characterized by parameter 𝑐𝑖𝑗 which 

might represent the cost of connecting arc (𝑖, 𝑗), the distance between node i and 

node j, or the time of traversing arc (𝑖, 𝑗). There are K postmen each of which has to 

cover at least one arc and each arc should be covered by at least one postman.  

We assume that 𝐺 is strongly connected, i.e. there is a path between every pair of 

nodes i and j. We refer to node 1 as the depot. 

Each postman starts his/her route from the depot and completes the route at the 

depot. The route that each postman covers is a sequence of circuits. For example 

12131 is a route that might be followed by one postman and defined by two 

circuits. We call a circuit a subtour if it does not reside the depot. 

The main decision of our problem is defined as follows: 

𝑥𝑖𝑗𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎𝑟𝑐 (𝑖, 𝑗) 𝑖𝑠 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 𝑏𝑦 𝑝𝑜𝑠𝑡𝑚𝑎𝑛 𝑘   

∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, … , 𝐾 

 



14 
 

The constraints are as defined below: 

i. Each arc has to be visited at least once. 

                                      ∑ 𝑥𝑖𝑗𝑘  ≥ 1     ∀(𝑖, 𝑗) ∈ 𝐴

𝐾

𝑘=1

                                         (1) 

ii. The flow should be conserved at each node, i.e. the number of arcs 

entering to each node should be equal to the number of leaving arcs. 

                                ∑ 𝑥𝑖𝑗𝑘

𝑖∈𝑁

=  ∑ 𝑥𝑗𝑖𝑘      ∀𝑗 ∈ 𝑁, 𝑘 = 1, … , 𝐾    

𝑖∈𝑁

               (2) 

iii. Each postman should cover at least one arc. 

                                       ∑ 𝑥1𝑗𝑘  ≥ 1     𝑘 = 1, … , 𝐾                                     (3)

𝑗∈𝑁

 

The constraint is redundant if there are no less than K departing arcs from 

the depot or no less than K arriving arcs to the depot.  

iv. Each tour of a postman should depart from the depot and arrive to the 

depot, i.e. there should not be any subtour which is a circuit that does not 

reside depot. 

                   ∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆| ≤  ∑ 𝑥𝑖𝑗𝑘 − 1     ∀ 𝑆 ⊆ 𝑆𝑆, 𝑘 = 1, … , 𝐾      (4)
𝑖∈𝑆,
𝑗∉𝑆

 

where SS is the set of all subsets of N. 

v. The constraint set that supports (0) is as follows: 

                                  𝑤𝑘 = ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝐴

     𝑘

= 1, … , 𝐾                                  (5)  

vi. The nonnegativity and integrality of 𝑥𝑖𝑗𝑘 is stated below. 

                          𝑥𝑖𝑗𝑘 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, … , 𝐾           (6) 

 

Constraint set (4) will be discussed in Chapter 4. 
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Our objective function is to minimize the sum of the squared workloads and is 

expressed as  

𝑀𝑖𝑛 ∑ ( ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝐴

)

2
𝐾

𝑘=1

≡ 𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

               (7)  

Minimizing ∑ 𝑤𝑘
2𝐾

𝑘=1  aims to reduce the deviations between the workloads of the 

postmen. Through the following example, we show that minimizing total load, i.e. 

∑ 𝑤𝑘
𝐾
𝑘=1 , is not equivalent to minimizing total squared load. 

Consider the following two solutions, 𝑆1 and 𝑆2 

𝑆1: 𝑤1(𝑆1) = 1  𝑤2(𝑆1) = 9 

𝑆2: 𝑤1(𝑆2) = 6  𝑤2(𝑆2) = 6 

𝑆2 is more balanced and favored by our objective function as 

(𝑤1(𝑆1))
2

+ (𝑤2(𝑆1))
2

= 1 + 81 = 82 

(𝑤1(𝑆2))
2

+ (𝑤2(𝑆2))
2

= 36 + 36 = 72 

The total loads of the solutions are as follows: 

𝑤1(𝑆1) + 𝑤2(𝑆1) = 1 + 9 = 10 

𝑤1(𝑆2) + 𝑤2(𝑆2) = 6 + 6 = 12 

Note that 𝑆1 is favored for total load minimization, whereas 𝑆2 is favored for total 

squared load minimization. 

Moreover our objective favors smaller total load when compared to the total squared 

deviation objective. Consider the following two solutions, 𝑆2 and 𝑆3. 
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𝑆2:  𝑤1(𝑆2) = 6  𝑤2(𝑆2) = 6 

𝑆3: 𝑤1(𝑆3) = 3  𝑤2(𝑆3) = 6 

Assume the deviation is minimized around a service time 6 units. 

(𝑤1(𝑆2) − 6)2 + (𝑤2(𝑆2) − 6)2 = 0 + 0 = 0  

(𝑤1(𝑆3) − 6)2 + (𝑤2(𝑆3) − 6)2 = (3 − 6)2 + 0 = 9  

The squared workloads: 

(𝑤1(𝑆2))2 + (𝑤2(𝑆2))2 = 36 + 36 = 72  

(𝑤1(𝑆3))2 + (𝑤2(𝑆3))2 = 9 + 36 = 45 

Note that 𝑆2 is favored for total squared deviation, whereas 𝑆3 is favored for total 

squared workloads. 𝑆2 has higher total workload than 𝑆3. 

Our problem is minimizing (7) subject to the constraint sets (1) through (6). We 

hereafter refer to the problem as (𝑃), and the constraint sets (1), (2), (3), (5) and (6) 

as 𝑥 ∈ 𝑋. We restate (𝑃) in a compact form as follows: 

 

 

   (𝑃)   

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

                    subject to  

      𝑥 ∈ 𝑋 
        Subtour elimination constraints 

 

 

 

Consider the following graph 𝐺 when there are two postmen. 
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Figure 3.1. An example directed graph 𝑮 

 

 

The open form of the k-CPP model for this graph is as follows: 

           𝑀𝑖𝑛 ∑(𝑤𝑘)2

2

𝑘=1

 

subject to 

𝑤𝑘 = 𝑐12𝑥12𝑘 + 𝑐23𝑥23𝑘 + 𝑐31𝑥31𝑘 + 𝑐24𝑥24𝑘 + 𝑐46𝑥46𝑘 + 𝑐45𝑥45𝑘 + 𝑐54𝑥54𝑘

+ 𝑐65𝑥65𝑘 + 𝑐41𝑥41𝑘        𝑘 = 1,2 

∑ 𝑥12𝑘

2

𝑘=1

≥ 1, ∑ 𝑥23𝑘

2

𝑘=1

≥ 1, ∑ 𝑥31𝑘

2

𝑘=1

≥ 1, ∑ 𝑥24𝑘

2

𝑘=1

≥ 1 

∑ 𝑥46𝑘

2

𝑘=1

≥ 1, ∑ 𝑥45𝑘

2

𝑘=1

≥ 1, ∑ 𝑥54𝑘

2

𝑘=1

≥ 1, ∑ 𝑥65𝑘

2

𝑘=1

≥ 1, ∑ 𝑥41𝑘

2

𝑘=1

≥ 1 

𝑥12𝑘 = 𝑥24𝑘 + 𝑥23𝑘                                                    𝑘 = 1,2 

𝑥12𝑘 = 𝑥31𝑘                                                                   𝑘 = 1,2 

𝑥23𝑘 = 𝑥31𝑘                                                                  𝑘 = 1,2 

𝑥24𝑘 + 𝑥54𝑘 = 𝑥45𝑘 + 𝑥46𝑘                                        𝑘 = 1,2 

𝑥45𝑘 + 𝑥65𝑘 = 𝑥54𝑘                                                     𝑘 = 1,2 

𝑥46𝑘 = 𝑥65𝑘                                                                   𝑘 = 1,2 

𝑥45𝑘 + 𝑥54𝑘 + 𝑥46𝑘 + 𝑥65𝑘 − 4 ≤  𝑥24𝑘 − 1        𝑘 = 1,2           

𝑥𝑖𝑗𝑘 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                               ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1,2             
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Note that (𝑃) is a Pure Integer Model. Its complexity stems from the integrality 

requirements on the decision variables and subtour elimination constraints that are 

defined for each subtour alternative and postman. As there is exponential number of 

subtour alternatives, there is exponential number of subtour elimination constraints. 

The following theorem states the complexity of (𝑃). 

Theorem. (𝑃) is strongly NP-Hard. 

Proof. The k-CPP with total cost minimization is shown to be strongly NP-complete. 

(See Gutin et al. (2013)). This follows that the decision version of (𝑃) is strongly 

NP-complete as it resides the same constraint set with the total minimization 

problem. Therefore, (𝑃) is strongly NP-hard problem. 
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CHAPTER 4 

 

 

SUBTOUR ELIMINATION CONSTRAINTS 

 

 

 

In this chapter, we first review the subtour elimination constraints that are defined for 

the CPP and RPP in the literature. Then, we discuss our subtour elimination 

constraint, and present the algorithm that is used for detecting the subtours. Finally, 

we introduce an aggregated subtour constraint. 

 

4.1. REPORTED SUBTOUR ELIMINATION CONSTRAINTS 

 

In the literature, several subtour elimination constraints are proposed for different 

versions of the CPP and RPP. Those subtour elimination constraints either require a 

set of binary variables or a big M value on the collection of the flow variables. 

Golden and Wong (1981) define two types of subtour elimination constraints for the 

Capacitated Arc Routing Problem. The first type is applicable to the binary 

assignments for the flow problem, hence different from our problem environment.  

The second one is as stated below: 

∑ 𝑓𝑖𝑟𝑘 − ∑ 𝑓𝑟𝑖𝑘

𝑛

𝑟=1

= ∑ 𝑙𝑖𝑗𝑘     𝑖 = 2, … , 𝑛

𝑛

𝑗=1

𝑛

𝑟=1

;  𝑘 = 1, … , 𝐾 

𝑓𝑖𝑗𝑘 ≤ |𝑁|2𝑥𝑖𝑗𝑘      ∀(𝑖, 𝑗) ∈ 𝐴;  𝑘 = 1, … , 𝐾     ,     𝑓𝑖𝑗𝑘 ≥ 0    ∀(𝑖, 𝑗) ∈ 𝐴;  𝑘 = 1, … , 𝐾 
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where n is the number of nodes, K is the number of vehicles, 𝑥𝑖𝑗𝑘 and 𝑙𝑖𝑗𝑘 are binary 

variables indicating that arc (𝑖, 𝑗) is visited by postman k, 𝑓𝑖𝑗𝑘 is a flow variable 

which can take positive values if 𝑥𝑖𝑗𝑘 = 1. 

The relation between 𝑥𝑖𝑗𝑘 and 𝑙𝑖𝑗𝑘 is explained with the below constraints: 

𝑥𝑖𝑗𝑘 ≥ 𝑙𝑖𝑗𝑘     ∀(𝑖, 𝑗) ∈ 𝐴;  𝑘 = 1, … , 𝐾     , ∑ 𝑙𝑖𝑗𝑘 + 𝑙𝑗𝑖𝑘 = ⌈
𝑞𝑖𝑗

𝑊
⌉     ∀(𝑖, 𝑗) ∈ 𝐴

𝐾

𝑘=1

 

∑ ∑ 𝑙𝑖𝑗𝑘𝑞𝑖𝑗 ≤ 𝑊     𝑘 = 1, … , 𝐾

𝑛

𝑗=1

𝑛

𝑖=1

 

where 𝑞𝑖𝑗 is the demand of arc (𝑖, 𝑗) and  𝑊 is the vehicle capacity. 

Dror and Leung (1998) present a subtour elimination constraint set that does not use 

any binary variable for the Capacitated Rural Postmen Problem, however a big M 

value that is defined as an upper bound on the sum of the optimal values of the set of 

flow variables. Their set is as stated below:  

𝑀 ∑ 𝑥𝑖𝑗𝑘  ≥  ∑ 𝑥𝑗𝑙𝑘       ∀𝑆 ⊆ 𝑅, 1 ∉ 𝑁[𝑆] 

(𝑗,𝑙)∈𝑆𝑖 ∉ 𝑁[𝑆],𝑗∈ 𝑁[𝑆]

, 𝑘 = 1, … , 𝐾 

where 𝑅 is the required arc set, 𝑁[𝑆] is the set of nodes incident to the arc set 𝑆 ⊆ 𝑅, 

K is the upper bound on the number of vehicles.  

Dror and Leung (1998) also show a simpler version of subtour elimination constraint 

for the uncapacitated case: 

𝑅[𝑆] ∑ ∑ 𝑥𝑖𝑗𝑘  ≥ ∑ 𝑦𝑖𝑗𝑘   ∀𝑆 ⊆ 𝑁\{1};  𝑆 ≠ ∅;  𝑆 ∩ 𝑁[𝑅] ≠ ∅; 𝑘 = 1, … , 𝐾 
(𝑖,𝑗)∈𝑅[𝑆]𝑗∉𝑆𝑖∈𝑆

 

where 𝑁[𝑅] is the set of nodes incident to arcs in arc set 𝑅, 𝑅[𝑆] is the set of required 

arcs incident to or from a node in 𝑆, and 𝑦𝑖𝑗𝑘 is a binary variable.  
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Shafahi and Haghani (2015) define the following subtour elimination constraint sets 

∑ 𝑥𝑗𝑖𝑘 + ∑ 𝑥𝑖𝑗𝑘 ≤ 2𝑀𝑏𝑖𝑘     ∀𝑖 ∈ 𝑁, 𝑘 = 1, … , 𝐾

𝑗∈𝑁𝑗∈𝑁

 

∑ 𝑦𝑖𝑗𝑘 −  ∑ 𝑦𝑗𝑖𝑘 =  −1𝑏𝑖𝑘

𝑗∈𝑁𝑗∈𝑁

     ∀𝑖 ∈ (𝑁 − 𝑂𝑘), 𝑘 = 1, … , 𝐾 

𝑦𝑖𝑗𝑘  ≤ 𝑀𝑥𝑖𝑗𝑘     ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 = 1, … , 𝐾 

where 𝑥𝑖𝑗𝑘 represents flow, 𝑏𝑖𝑘 and 𝑦𝑖𝑗𝑘 are dummy decision variables to eliminate 

subtours, and 𝑂𝑘 is the origin of vehicle k. 𝑏𝑖𝑘 is binary to indicate whether node i 

visited by vehicle k, and 𝑦𝑖𝑗𝑘 is a continuous variable representing the artificial flow 

from node i to node j.  

Note that these constraints do not only require additional binary variables but also a 

big M value. Recognizing the difficulties in using the subtour elimination constraints 

in the literature, we develop a new subtour elimination constraint that requires 

neither any binary variable nor a big M value.   

 

4.2. PROPOSED SUBTOUR ELIMINATION CONSTRAINTS 

 

Subtour of postman k is defined as a circuit formed by postman k that is not 

connected to any other circuit formed by postman k, and that does not reside the 

depot node, i.e. node 1. 

Consider the following graph again. 
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Figure 4.1. An example directed graph 𝐺 

 

Let K=2 and consider the following postman assignments. 

             Postman 1                                                       Postman 2 

1 2 4

                  

1 2

3

5

6

4

 

𝑥121 = 𝑥241 = 𝑥411 = 1   𝑥122 = 𝑥232 = 𝑥312 = 1, 

 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑥𝑖𝑗1 = 0        𝑥542 = 2, 𝑥452 = 𝑥462 = 𝑥652 = 1  

      𝑎𝑛𝑑 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑥𝑖𝑗2 = 0 

Figure 4.2. A solution with a subtour to the example problem 

 

Note that circuit 1231 is not connected to the circuit 454654 that 

is covered by the same postman. They are not connected, therefore 

454654 is a subtour. Postman 1 has a single circuit 1241, hence 

the resulting circuit is a tour. 
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The solution satisfies all constraints of the k-CPP except that, postman 2 has 

subtours. To prevent such a case, we introduce a new subtour elimination constraint 

set that takes its spirit from the Traveling Salesman Problem (TSP) subtour 

elimination constraints. 

One of the subtour elimination constraints used by the TSP is as stated below: 

∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

≤  |𝑆| − 1     ∀ 𝑆 ⊆ 𝑁, 2 ≤ |𝑆| ≤ 𝑛 − 2, 𝑘 = 1, … , 𝐾  

This relation prevents any circuit, however the k-CPP allows connected circuits. That 

is a circuit is allowed provided that it has any outflow, thereby inflow. Accordingly 

for postman 2, 4654 should be avoided as it has no outflow. However, 

454 is allowed as there is an outflow via the arc (4, 6) and inflow via the arc    

(6, 5). 

In the k-CPP, the circuit 𝑆, i.e. ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑆 =  |𝑆|, is allowed, if there are outflows 

from (inflows to) 𝑆. The outflows from 𝑆 would be forced by ∑ 𝑥𝑖𝑗𝑘 ≥ 1𝑖∈𝑆,
𝑗∉𝑆

. It 

follows that we require ∑ 𝑥𝑖𝑗𝑘 ≥ 1𝑖∈𝑆,
𝑗∉𝑆

 only when ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑆 =  |𝑆|. Mathematically, 

we express this condition as: 

∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆| ≤  ∑ 𝑥𝑖𝑗𝑘 − 1     ∀ 𝑆 ⊆ 𝑆𝑆, 𝑘 = 1, … , 𝐾
𝑖∈𝑆,
𝑗∉𝑆

         (4) 

where SS is the set of all subsets of N. 

Note that if there is a circuit, i.e. ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑆 =  |𝑆| then there is an outflow from that 

circuit, i.e. ∑ 𝑥𝑖𝑗𝑘 ≥ 1𝑖∈𝑆,
𝑗∉𝑆

. If there is no circuit, ∑ 𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑆 <  |𝑆|,  ∑ 𝑥𝑖𝑗𝑘𝑖∈𝑆,
𝑗∉𝑆

 can 

take any nonnegative value. 

This follows that (4) is a valid subtour elimination constraint. 
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4.3. DETECTING SUBTOURS 

 

Consider an optimal solution to the following problem. 

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

                   subject to  

        𝑥 ∈ 𝑋 

                         Partial set of subtour elimination constraints 

 

The subtours that appear in the optimal solution can be detected by the subtour 

detection algorithms. One of those algorithms that is widely used in the literature is 

due to Hierholzer’s (1873). In our study, we use Hierholzer’s algorithm to detect the 

subtours of any graph. For the sake of completeness, we state the steps of the 

algorithm. 

 

Procedure to Detect Subtours 

 

Initialize  𝑖 = 1, 𝑠 = 0, 𝑆 =  ∅,  𝐶0 = ∅ 

Step 0. Starting with node 1, construct a circuit such that the end of an arc is the 

beginning of the following arc. The construction step always results in a closed trail. 

If 𝐶1 contains all arcs on 𝐺, stop. Otherwise, mark the arcs used in 𝐶1.  

𝑖 =  𝑖 + 1 

Step 1. Choose a node included in the unmarked arcs and construct a new circuit. 

Step 2. If there is a common node between the constructed circuit and 𝐶𝑖−1, insert the 

constructed circuit into 𝐶𝑖−1 by appending to that node. The resulting circuit is 𝐶𝑖. 
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Step 2.1. If  𝑆 ≠ ∅ and there is a common node between 𝑆 and 𝐶𝑖, insert as many as 

subtours as possible to the 𝐶𝑖 by appending it to that node. The resulting circuit is 𝐶𝑖. 

Remove the inserted subtours from the set 𝑆. 

Step 2.2. If there is no common node between 𝑆 and 𝐶𝑖, it means the previous 

subtours remain the same. 

Step 3. If there is no common node between the constructed circuit and 𝐶𝑖−1, it 

means there is a subtour.  

Step 3.1. If  𝑆 = ∅, add it to the set 𝑆. 

Step 3.2. If 𝑆 ≠ ∅, look for a common node in the previous subtours and the newly 

found subtour. If there exists such a node, insert it into the previous subtours and 

update the set 𝑆. If there is not, add the new tour to the set 𝑆.  

Step 4. If  𝐶𝑖 ∪ 𝑆 contains all arcs on 𝐺, stop, the Eulerian circuit and possible 

subtours are found. 

Step 5. If 𝐶𝑖 ∪ 𝑆 does not contain all arcs on 𝐺, mark the arcs used in 𝐶𝑖 ∪ 𝑆.  

𝑖 =  𝑖 + 1 

Go to Step 1. 

 

4.4. AGGREGATED SUBTOURS 

 

We call a subtour as aggregated if it resides a number of subtours in an added form. 

Assume R is the set of subtours that appear in any solution. In place of adding each 

subtour constraint separately, one may prefer the following aggregated constraint en 

route to obtaining a quicker solution however with no guarantee of individual 

subtour elimination. 
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An optimal solution to the 𝑀𝑖𝑛 ∑ 𝑤𝑘
2𝐾

𝑘=1  subject to 𝑥 ∈ 𝑋 problem, say LB, is a 

lower bound on (𝑃). If the resulting solution resides no subtour, it is optimal for (𝑃). 

If it resides, say R subtours, then an optimal solution to the following problem, say 

𝐿𝐵1, is another lower bound.  

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

                   subject to  

𝑥 ∈ 𝑋 

        ∑ ∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆|

𝑆∈𝑅

≤  ∑ ∑ 𝑥𝑖𝑗𝑘 − 1     𝑘 = 1, … , 𝐾
𝑖∈𝑆, 
𝑗∉𝑆

𝑆∈𝑅

 

Note that 𝐿𝐵1 ≥ 𝐿𝐵. A more powerful lower bound, 𝐿𝐵2, is available through the 

optimal solution of the below problem. 

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

                   subject to  

     𝑥 ∈ 𝑋 

     ∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆| ≤  ∑ 𝑥𝑖𝑗𝑘 − 1     ∀ 𝑆 ⊆ 𝑅, 𝑘 = 1, … , 𝐾
𝑖∈𝑆,
𝑗∉𝑆

 

 

Recall that compared to 𝐿𝐵1, 𝐿𝐵2 provides a better estimate on the optimal objective 

function value, i.e. 𝐿𝐵2 ≥ 𝐿𝐵1, however it is obtained at an expense of higher 

computational effort. 
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CHAPTER 5 

 

 

SOLUTION ALGORITHMS 

 

 

 

We propose three solution algorithms each of which is based on the optimal solutions 

of the integer models that consider a subset of subtour elimination constraints. Below 

is the detailed description of our algorithms. 

 

5.1. ALGORITHM I 

 

The algorithm first solves the integer model by relaxing all subtour elimination 

constraints. If the resulting solution resides no subtours for each postman then it is 

optimal. If there exists at least one subtour for any postman then the optimal solution 

of the relaxed model gives a lower bound. In such a case, the algorithm adds subtour 

elimination constraints for all produced subtours and resolves the integer model with 

added subtours for all postmen. If the resulting solution has no subtours then we stop, 

otherwise we add the new subtours while keeping all previously produced subtours. 

We continue in this manner until a solution with no subtour is reached. Addition of 

each subtour set improves the lower bound and the lower bound at the termination is 

the optimal objective function value. 

We now give the stepwise description of the algorithm. 
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Algorithm I 

Step 0. Solve (𝑃0)  

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

   subject to   𝑥 ∈ 𝑋 

 𝑡 = 0 

 

Step 1. Let 𝑆𝑡 be the set of subtours generated by the optimal solution of (𝑃𝑡) 

 If  𝑆𝑡 =  ∅ then the resulting solution is optimal 

 𝑡 = 𝑡 + 1 

 

Step 2. Solve (𝑃𝑡)  

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

   subject to  𝑥 ∈ 𝑋  

                 All subtours in ⋃ 𝑆𝑗

𝑡−1

𝑗=0

 

 Go to Step 1. 

 

The following example illustrates Algorithm 1. Assume that the k-CPP model 

without subtour elimination constraints produces three subtours for three postmen on 

the directed graph 𝐺 given in Figure 5.1. 
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Figure 5.1. An example directed graph for solution algorithms 

 

The subtours are given as follows. 

8
6

7

910

11

13

14

12 15

16

17

18

 

Figure 5.2. The subtours generated from the solution on the graph in Figure 5.1 

 

Algorithm I adds three subtour elimination constraints for each postman to prevent 

the generated subtours: 
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∑ 𝑥𝑖𝑗𝑘

(𝑖,𝑗)∈𝑆

− |𝑆| ≤  ∑ 𝑥𝑖𝑗𝑘 − 1     ∀ 𝑆 ⊆ 𝑆𝑆, 𝑘 = 1, . . . , 𝐾
𝑖∈𝑆,
𝑗∉𝑆

 

𝑥67𝑘 + 𝑥78𝑘 + 𝑥86𝑘 − 3 ≤  𝑥48𝑘 + 𝑥58𝑘 + 𝑥79𝑘 + 𝑥89𝑘 − 1          𝑘 = 1, . . . , 𝐾 

𝑥9,10𝑘 + 𝑥10,11𝑘 + 𝑥11,12𝑘 + 𝑥12,13𝑘 + 𝑥13,11𝑘 + 𝑥12,14𝑘 + 𝑥14,9𝑘 − 8 ≤  𝑥79𝑘 +

𝑥89𝑘 + 𝑥12,16𝑘 + 𝑥13,19𝑘 + 𝑥13,15𝑘 − 1          𝑘 = 1, . . . , 𝐾  

𝑥15,16𝑘 + 𝑥16,17𝑘 + 𝑥17,18𝑘 + 𝑥18,15𝑘 − 4

≤  𝑥12,16𝑘 + 𝑥13,15𝑘 + 𝑥18,1𝑘 − 1                       𝑘 = 1, . . . , 𝐾 

 

5.2. ALGORITHM II 

 

The algorithm also uses the idea of adding subtours to the integer model, however in 

a limited extent. It starts as in Algorithm I by ignoring all subtour elimination 

constraints, and treats the subtours in two ways: 

1. Selects one of the subtours generated and adds the selected subtour to each 

postman. 

2. Aggregates all other subtours, and adds the aggregated subtour constraint to 

each postman. 

Hence, it adds two types of subtour elimination constraints for each postman, one 

original constraint and one aggregated constraint. 

Each of the subtours generated by the model is added as an original constraint while 

the rest is treated as aggregated. In doing so, we obtain R solutions if R subtours are 

generated. We select the solution having the largest objective function value, thereby 

lower bound value, with the hope of reaching the optimal solution quicker. If the 

selected solution resides no subtours, we stop as the optimal solution is reached. If 

there is at least one subtour then we continue to add one original tour and one 
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aggregated tour and make the further selections according to the maximum lower 

bound rule.  

Below is the stepwise description of Algorithm II. 

Algorithm II 

Step 0. Solve (𝑃0)  

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

   subject to   𝑥 ∈ 𝑋 

 𝑡 = 0 

 𝐹 = ∅ 

 

Step 1. Let 𝑆𝑡 be the set of subtours generated by the optimal solution of 𝑃𝑡. 

 If  𝑆𝑡 =  ∅ then the resulting solution is optimal, stop. 

 𝑡 = 𝑡 + 1 

 Define 𝑃𝑡,𝑟 for each 𝑟 ∈ 𝑆𝑡 

 Solve (𝑃𝑡,𝑟)  

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

   subject to  𝑥 ∈ 𝑋  

     Subtours r 

     Aggregated subtour 𝑟̅ 

 

Step 2. Let 𝑧𝑡𝑟 be the optimal objective function value. 

 Select subtour f such that  

  𝑧𝑡𝑓 = max𝑟{ 𝑧𝑡𝑟} 

  𝐹 = 𝐹 ∪ {𝑓} 

 Let 𝑆𝑡𝑓 be the set of subtours by the optimal solution of 𝑃𝑡,𝑓 

 If  𝑆𝑡𝑓 = ∅ then the resulting solution is optimal, stop. 
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 For each 𝑟 ∈ 𝑆𝑡𝑓 define 

 (𝑃𝑡,𝑟)  

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

   subject to  𝑥 ∈ 𝑋  

     Subtours r and set F 

     Aggregated subtour 𝑆𝑡𝑓/{𝑟} 

 Go to Step 2. 

 

5.3. ALGORITHM III 

 

The algorithm proceeds as in Algorithm II except that the subtour is selected 

randomly. In such a case, one spends relatively low computation time, however at an 

expense of evaluating more problems with different sets of subtour elimination 

constraints. Below is the stepwise description of Algorithm III. 

Algorithm III 

Step 0. Solve (𝑃0)  

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

   subject to  𝑥 ∈ 𝑋 

 𝑡 = 0 

 𝐹 = ∅ 

 

Step 1. Let 𝑆𝑡 be the set of subtours generated by 𝑃𝑡. 

 If  𝑆𝑡 =  ∅ then stop. 

 Select a subtour in 𝑆𝑡 randomly. Let f  be the selected subtour. 

 𝑡 = 𝑡 + 1 



33 
 

 𝐹 = 𝐹 ∪ {𝑓} 

 Solve (𝑃𝑡) 

𝑀𝑖𝑛 ∑ 𝑤𝑘
2

𝐾

𝑘=1

 

   subject to  𝑥 ∈ 𝑋  

     Subtour r ∈ F 

     Aggregated subtour 𝑆𝑡𝑓/{𝑟} 

 Go to Step 1. 

 

We now illustrate the execution of Algorithm II and Algorithm III. The subtours 

given in Algorithm I can be selected and added by following the procedure of 

Algorithm II or Algorithm III. 

If the first subtour given in Figure 5.3 is added as an original subtour, the 

corresponding constraints added to the model are stated as follows: 

8
6

7

 

Figure 5.3. The first subtour as the original subtour 

 

𝑥67𝑘 + 𝑥78𝑘 + 𝑥86𝑘 − 3 ≤  𝑥48𝑘 + 𝑥58𝑘 + 𝑥79𝑘 + 𝑥89𝑘 − 1          𝑘 = 1, … , 𝐾 

𝑥9,10𝑘 + 𝑥10,11𝑘 + 𝑥11,12𝑘 + 𝑥12,13𝑘 + 𝑥13,11𝑘 + 𝑥12,14𝑘 + 𝑥14,9𝑘 + 𝑥15,16𝑘 +

𝑥16,17𝑘 + 𝑥17,18𝑘 + 𝑥18,15𝑘 − 12 ≤  𝑥79𝑘 + 𝑥89𝑘 + 𝑥12,16𝑘 + 𝑥13,19𝑘 + 𝑥13,15𝑘 +

𝑥18,1𝑘 − 2          𝑘 = 1, … , 𝐾  
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If the second subtour given in Figure 5.4 is added, the following constraints are 

included in the model: 

910

11

13

14

12

 

Figure 5.4. The second subtour as the original subtour 

 

𝑥9,10𝑘 + 𝑥10,11𝑘 + 𝑥11,12𝑘 + 𝑥12,13𝑘 + 𝑥13,11𝑘 + 𝑥12,14𝑘 + 𝑥14,9𝑘 − 8 ≤  𝑥79𝑘 +

𝑥89𝑘 + 𝑥12,16𝑘 + 𝑥13,19𝑘 + 𝑥13,15𝑘 − 1          𝑘 = 1, … , 𝐾  

𝑥15,16𝑘 + 𝑥16,17𝑘 + 𝑥17,18𝑘 + 𝑥18,15𝑘 + 𝑥67𝑘 + 𝑥78𝑘 + 𝑥86𝑘 − 7 ≤  𝑥12,16𝑘 +

𝑥13,15𝑘 + 𝑥18,1𝑘 + 𝑥48𝑘 + 𝑥58𝑘 + 𝑥79𝑘 + 𝑥89𝑘 − 2          𝑘 = 1, … , 𝐾  

 

If the third subtour given in Figure 5.5 is added, the following constraints are 

included in the model: 

15

16

17

18

  

Figure 5.5. The third subtour as the original subtour 
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𝑥15,16𝑘 + 𝑥16,17𝑘 + 𝑥17,18𝑘 + 𝑥18,15𝑘 − 4

≤         𝑥12,16𝑘 + 𝑥13,15𝑘 + 𝑥18,1𝑘 − 1          𝑘 = 1, … , 𝐾 

𝑥67𝑘 + 𝑥78𝑘 + 𝑥86𝑘 + 𝑥9,10𝑘 + 𝑥10,11𝑘 + 𝑥11,12𝑘 + 𝑥12,13𝑘 + 𝑥13,11𝑘 + 𝑥12,14𝑘 +

𝑥14,9𝑘 − 11 ≤ 𝑥48𝑘 + 𝑥58𝑘 + 𝑥79𝑘 + 𝑥89𝑘 + 𝑥12,16𝑘 + 𝑥13,19𝑘 + 𝑥13,15𝑘 −

2         𝑘 = 1, … , 𝐾  



36 
 



37 
 

 

CHAPTER 6 

 

 

HEURISTIC PROCEDURE 

 

 

 

In this section, we propose a heuristic procedure that runs in polynomial time. Our 

aim is to obtain a high quality solution where the optimization algorithms fail to 

return an optimal solution. 

Our heuristic procedure proceeds in two phases. Phase I is the construction phase 

where the initial solution is constructed. Phase II improves the initial solution of 

Phase I by interchanges between the arc assignments. 

 

6.1. PHASE I: CONSTRUCTION 

 

In the construction step, we solve the single CPP with the objective of minimizing 

total cost and take its solution to form a feasible solution for the k-CPP. 

Our construction heuristic enumerates all circuits that reside the depot, and allocates 

the circuits to the postmen in a balanced way, each the most loaded circuit to the 

least loaded postman. 

Below is the stepwise description of the construction heuristic. 
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Step 1. Solve the following single CPP. 

𝑀𝑖𝑛 ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

  

subject to 

                                   𝑥𝑖𝑗 ≥ 1                          ∀ (𝑖, 𝑗) 

                                  ∑ 𝑥𝑖𝑗 =  ∑ 𝑥𝑗𝑖

𝑖

          ∀ 𝑗

𝑖

 

                                     𝑥𝑖𝑗  ≥ 0                          ∀ (𝑖, 𝑗)  

 

The single CPP with total cost minimization does not require any subtour elimination 

constraint. 

Step 2. Using the solution of the single CPP, determine all tours beginning with and 

ending at node 1. Let 𝑅 be the number of such circuits. 

Step 3. Order the circuits in nondecreasing total costs, i.e. obtain a Longest 

Processing Time (LPT) order. 

Step 4. Starting with the first circuit, assign each circuit of the order to the least 

loaded postman. If there are 𝑅 <  𝑘  circuits, repeat the last circuit of the order, 

(𝑘 − 𝑅) times. 

The heuristic guarantees a feasible solution with an arc assignment to each postman. 

 

6.2. PHASE II: IMPROVEMENT 

 

In the improvement step, we reduce the objective function value by defining 

interchanges between the assignments of two postmen. In doing so, we select the 

postmen having the longest and shortest tours, and allow insertion of an arc from a 

long tour to a short tour. If any improvement cannot be realized for a defined number 

of iterations, then we proceed to the second longest and/or second shortest tours. 
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We terminate whenever our time limit of 1800 seconds is reached. For K=2, we put 

the number of nonimproving solutions as a termination limit. 

We use two models in our improvement phase. The first model is called balancing 

model. The model aims to construct a feasible solution for a single postman. The 

model is as stated below. 

𝑀𝑖𝑛 ∑ 𝑠𝑝𝑖𝑗𝑡𝑖𝑗

(𝑖,𝑗)

 

subject to 

∑ 𝑡𝑖𝑗 =  𝑑𝑖      ∀𝑖

𝑗

 

∑ 𝑡𝑖𝑗 =  𝑠𝑗       ∀𝑗

𝑖

 

       𝑡𝑖𝑗  ≥ 0              ∀(𝑖, 𝑗) 

 

where 𝑠𝑝𝑖𝑗 : the cost of the shortest path between node i and node j 

 𝑡𝑖𝑗  : the number of connections formed between node i and node j. 

              𝑑𝑖   : the demand of node i. 

              𝑠𝑗    : the supply of node j. 

The second model is called subtour elimination model. The model aims to prevent 

the subtours of a postman. The model is as follows: 

𝑀𝑖𝑛 ∑ (𝑠𝑝𝑖𝑗𝑧𝑖𝑗 + 𝑠𝑝𝑗𝑖𝑧𝑗𝑖)

𝑖 ∈𝑇,𝑗∈𝑆

 

subject to 

                  ∑ 𝑧𝑖𝑗 =  1      

𝑖 ∈𝑇,𝑗∈𝑆

 

                  ∑ 𝑧𝑗𝑖 =  1

𝑖 ∈𝑇,𝑗∈𝑆

 

        𝑧𝑖𝑗  ≥ 0              ∀(𝑖, 𝑗) 
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where  T : the set of nodes in a circuit that resides depot. 

 S : the set of nodes that does not reside depot.  

              𝑠𝑝𝑖𝑗 and 𝑠𝑝𝑗𝑖: the cost of the shortest path between node i and node j, and 

node j and node i, respectively. 

 𝑧𝑖𝑗 and 𝑧𝑗𝑖 : the variable indicating which nodes are connected on the circuit 

and the subtour. 

 

Below is the stepwise description of the improvement step. 

Step 1: Find the most costly tour (long tour) and the least costly tour (short tour). 

Step 2: If an arc is traversed by only postman i, the arc is called a required arc of that 

postman. For the long tour and short tour, determine the required and non-required 

arcs. Additionally, identify the arcs used on all other tours. Our aim is to identify the 

arcs included on both long tour and short tour, but not contained on any other tours. 

The presence of such arcs requires additional operation in Step 4a. 

Step 3: If the long tour does not contain any required arcs, change it to the short tour, 

and select the second most costly tour as the long tour. If the second most costly tour 

also includes only non-required arcs, take the third most costly tour as the long tour. 

This step is repeated until a tour with at least one required arc is reached. 

Step 4: Remove each required arc on the long tour and insert it into the short tour. 

Report the final long tour, short tour and update their total squared costs. The process 

is as follows: 

Step 4a: For the long tour, remove the selected required arc and other non-required 

arcs. (If an arc is non-required for both long tour and short tour, but it is not used on 

any other tours, remove it from the long tour.) Using remaining arcs, calculate the 

demand and supply amounts for each node to form a balanced network. 

For the short tour, remove all non-required arcs. If an arc is non-required for both 

long tour and short tour, but it is not used on any other tours, keep it on the short 
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tour. Combining the arc with the selected required arc of the long tour and the 

required arcs of the short tour, calculate the necessary demand and supply amounts 

for each node to form a balanced network. 

For both tours, if depot has no demand and no supply, indicate it as a transshipment 

node with unit demand and unit supply. Construct a feasible tour including the depot. 

Step 4b: Balance the nodes on the long tour and the short tour solving the balancing 

model.  

While finding the shortest path between node i and node j, the cost of the removed 

arc from the long tour is assigned an artificially large number so as to obtain a 

different path between those nodes, if there exists any. Otherwise, the removed arc is 

used again and the objective function value is calculated with its artificial cost. For 

comparison, its actual cost is used at the end of all removal and insertion trials. 

Step 4c: Using the remaining arcs in Step 4a and the necessary arcs on the shortest 

paths according to the results of the model in Step 4b, determine the final traversal. If 

the model gives the solution with at least one subtour, prevent them starting with the 

first subtour. Use all arcs on the circuit including depot and the subtour. Solve the 

subtour elimination model.  

While finding the shortest path, the removed arc is avoided by assigning a large cost 

for the long tour similar to Step 4b.  

The shortest paths between the connection points found with the model determine the 

necessary arcs to combine the circuit and the subtour.  

If there are more than one subtour at the beginning of this step, try to insert other 

subtours on the final circuit obtained with above operations. If there are no common 

arcs, repeat this step.  
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Step 4d: Save the results of the removal and insertion step of each arc. Final long 

tour, final short tour, and their total squared costs after removal and insertion are 

necessary for the comparison. 

Step 5: Select the arc which results in a maximum reduction in total squared cost, 

and continue with the corresponding long and short tour. Repeat Step 4 maximum 

number of iterations. If the final long tour and short tour are the same as the tours of 

any previous iteration, select the next least costly tours which are not found before 

with the removal and insertion of a required arc on the long tour at the end of Step 4. 

 

If no improvement of the best solution is achieved during maxNonimprovingMove, 

different tours other than the shortest and the longest ones can be selected in Step 1. 

For K > 2, the selection procedure is updated as follows: 

 Set #MoveWithoutImprovement to 0 at the beginning of the algorithm. 

Step a. While #MoveWithoutImprovement < maxNonimprovingMove, continue 

with the longest and shortest tour in Step 1. 

Step b. If #MoveWithoutImprovement = maxNonimprovingMove, take the second 

shortest tour as the short tour. Set #MoveWithoutImprovement to 0. While 

#MoveWithoutImprovement < maxNonimprovingMove, continue with the longest 

and second shortest tour until the shortest or the longest tour changes in Step 1.  

Step c. If #MoveWithoutImprovement < maxNonimprovingMove, and the shortest 

or the longest tour changes, set #MoveWithoutImprovement to 0, and go to Step 

a.  

Step d. If #MoveWithoutImprovement = maxNonimprovingMove and both tours 

are same as the previous ones, take the second longest tour as the long tour. Set 

#MoveWithoutImprovement to 0. While #MoveWithoutImprovement < 
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maxNonimprovingMove, continue with the second longest tour and the shortest 

tour until the shortest or the longest tour changes in Step 1. 

Step e. If #MoveWithoutImprovement < maxNonimprovingMove, and the shortest 

or the longest tour changes, set #MoveWithoutImprovement to 0, and go to Step 

a.  

Step f. If #MoveWithoutImprovement = maxNonimprovingMove and both tours 

are the same, take the second longest tour as the long tour and the second shortest 

tour as the short tour. Set #MoveWithoutImprovement to 0. While 

#MoveWithoutImprovement < maxNonimprovingMove, continue with the second 

longest tour and the second shortest tour until the shortest or the longest tour 

changes in Step 1. 

Step g. If #MoveWithoutImprovement < maxNonimprovingMove, and the shortest 

or the longest tour changes, set #MoveWithoutImprovement to 0, and go to Step 

a.  

Step h. If #MoveWithoutImprovement = maxNonimprovingMove and both tours 

are same as the previous ones, the algorithm terminates. 

 

For K = 2, the algorithm terminates when #MoveWithoutImprovement is equal to 

maxNonimprovingMove. maxNonimprovingMove is selected as 50 for K = 2, and 10 

for the higher K values. This selection will be explained in Chapter 7. 
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6.3. AN EXAMPLE 

 

Consider the following graph. 

1

2 3

4

5 6

7

8

 

Figure 6.1. An example directed graph for the heuristic procedure 

 

Using the single CPP solution and LPT rule, assume the following three circuits are 

found: 

1

7

8

4

1

2 3

4

6

1

3

4

5 6

7

 

Figure 6.2. Three circuits found by the construction phase 
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Step 1: Consider a simple 3-postmen case. For this case, each circuit is assigned to 

one postman. The traversals of each postman are as follows: 

Postman 1:  18471 

Postman 2:  123461 

Postman 3: 1567563471 

Take the tour of postman 1 as the shortest tour, and the tour of postman 3 as the 

longest tour.  

Step 2: The arcs (1, 8) and (8, 4) are required arcs for postman 1.  

The arcs (1, 5), (5, 6), (6, 7), (7, 5) and (6, 3) are required arcs for postman 3. 

Note that (4, 7) and (7, 1) are traversed by both postman 1 and postman 3, but 

not traversed by postman 2. 

Step 3: Since long tour has required arcs, the selection of tours in Step 1 is valid. 

Step 4a: Remove each required arc on the long tour, and insert it into the short tour. 

For example, remove the arc (5, 6), and all non-required arcs from the long tour. The 

remaining arcs of postman 3 are shown as below: 

1

3

4

5 6

7

 

Figure 6.3. The remaining arcs of the long tour 

 



46 
 

To form a connected network, balance the nodes on the long tour using the remaining 

arcs in Step 4a. 

Table 6.1. Supply and demand information of the nodes in the long tour 

Node Demand Supply 

1 1 - 

2 - - 

3 - 1 

4 - - 

5 - 2 

6 2 - 

7 - - 

8 - - 

 

Remove all non-required arcs from the short tour and add the arc (5, 6). Also, (4, 7) 

and (7, 1) should be also regarded as a required arc because it is removed from the 

long tour, and it should be visited by at least one postman. The arcs which have to be 

included in the short tour are as follows: 

1

5 6

7

8

4

 

Figure 6.4. The remaining arcs of the short tour 
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Find the necessary supply and demand amounts for the nodes on the short tour.  

Table 6.2. Supply and demand information of the nodes in the short tour 

Node Demand Supply 

1 - - 

2 - - 

3 - - 

4 - - 

5 1 - 

6 - 1 

7 - - 

8 - - 

 

Step 4b: Solve the balance model given in Step 4b for the short tour without any cost 

modification. By assigning a large cost to the arc (5, 6), solve the same model for the 

long tour.  

Step 4c: The predetermined arcs for each tour and the arcs on the shortest paths 

found in Step 4b form the connected network for the postmen. If the final traversal 

has subtours, they should be eliminated with the subtour elimination model given in 

Step 4c. 
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CHAPTER 7 

 

 

COMPUTATIONAL STUDY 

 

 

 

In this chapter, we first discuss our data generation process. Then we give the results 

of our preliminary experiment. Finally, the results of our extensive computational 

study are discussed. 

 

7.1. DATA GENERATION 

 

We use eight precedence networks taken from the literature. The sizes of the 

networks that we use are as tabulated below: 

Table 7.1. The sizes of networks 

|N| |A| 

16 36 

31 56 

36 75 

50 109 

64 137 

50 168 

100 186 

100 216 
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|N| indicates the number of nodes and |A| is for the number of arcs of the network. 

They are referred as n and m, respectively throughout the discussion in the report. 

We take the original networks from Archetti et al. (2014). To form the connected 

structure, we use the command of “graphconncomp” in MATLAB. The command 

finds the strongly connected parts on a graph and we add arcs between strongly 

connected parts to form a strongly connected graph containing all arcs.  

For each network, we try four values for the number of postmen, K. We set K = 2, 3, 

4, 5. Hence, we have 32 combinations and for each combination we generate 10 

problem instances. As a total, we use 320 problem instances. 

We generate the arc costs from discrete uniform distribution between 1 and 100. 

For the exact algorithms, we use a gap value of 0.01% and put a termination limit of 

1 hour, and for heuristic algorithms our termination limit is 1/2 hour. 

We code the algorithm in C# and the models are solved with ILOG CPLEX 12.6. We 

run the algorithms on a computer with Intel(R) Core(TM) i7-4790 CPU@ 3.60 GHz, 

8 GB RAM, Windows 7 and 64-bit operating system. 

 

7.2. PRELIMINARY EXPERIMENT FOR EXACT ALGORITHMS 

 

The aim of preliminary experiment is to set the gap value to be used in our 

mathematical models and the effect of incorporating the aggregated tours. 

To see the effect of the gap, i.e. 𝛼 values, we try three values: 1%, 0.1%, and 0.01%. 

With more precise, i.e. small 𝛼 values, the quality of the solutions are better, 

however at an expense of higher computational effort.  Table 7.2 reports the effect of 

CPU times on the performance of Algorithm I. 
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Table 7.2. The effect of 𝛼 on Algorithm I 

n m K  α value 

   

0.01% 0.1% 1% 

   

Avg 

CPU 

Max 

CPU 

Avg 

CPU 

Max 

CPU 

Avg 

CPU 

Max 

CPU 

36 75 3 2.40 3.88 1.51 2.28 1.49 2.96 

  

5 13.79 27.41 6.66 15.02 3.70 10.55 

64 137 3 2.36 4.38 2.40 9.08 1.41 2.87 

  

5 22.14 34.34 15.65 46.83 9.04 22.64 

 

Note from the Table 7.2 that, the CPU times are the smallest when 𝛼 = 1%. When 𝛼 

= 0.1% and  𝛼 = 0.01% are compared, no significant effect of 𝛼 is observed on the 

CPU times. Note that when K = 3, n = 64 and m = 137, both 𝛼 values perform 

similarly in terms of the average solution times. Although there are instances in 

which the solution times of 𝛼 = 0.1% are less than the ones with 𝛼 = 0.01%, the 

difference is not as significant. En route to obtaining higher quality solutions in 

reasonable times, we select 𝛼 = 0.01% value in our main experiment. This implies 

that the model solution deviates from the exact solution by at most 0.01%, i.e. the 

gap is negligible, hence we call the results as exact. 

We next investigate the effects of the aggregated subtour constraints on the 

performance of Algorithm II and Algorithm III. Incorporating the aggregated 

subtours reduces the number of iterations, however, at an expense of increased 

solution times. To see this effect, we run the algorithms with and without aggregated 

subtours. We report the associated results in Tables 7.3 and 7.4, for Algorithms II 

and III, respectively.  

The results reveal that the aggregated tours improve the performance significantly for 

the majority of the selected problem combinations.  
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Table 7.3. The effect of aggregated subtours on Algorithm II, 𝛼 = 0.01% 

n m K Without Aggregated With Aggregated 

   

Avg CPU Max CPU Avg CPU Max CPU 

64 119 4 351.47 1137.95 149.59 1155.73 

36 66 5 463.08 2118.18 181.88 880.59 

36 81 5 46.06 97.83 41.09 83.10 

 

Table 7.4. The effect of aggregated subtours on Algorithm III, 𝛼 = 0.01% 

n m K Without Aggregated With Aggregated 

   

Avg CPU Max CPU Avg CPU Max CPU 

64 119 4 143.36 1173.24 84.21 630.01 

36 66 5 254.78 1056.10 181.85 863.14 

36 81 5 19.62 51.18 19.06 40.06 

 

Note from Table 7.3 that, when m = 66 and there are 5 postmen, the average CPU 

times of Algorithm I are reduced from 463.08 to 181.88 seconds, with aggregated 

tour. The associated maximum CPU times are reduced from 2118.18 to 880.59 

seconds.  

Table 7.4 reveals that, the aggregated tours also help to improve the performance of 

Algorithm III. For example when m = 119, incorporating aggregated tours decreases 

the average CPU from 143.36 to 84.21, and the maximum CPU times from 1173.24 

to 630.01 seconds. 

The results of both algorithms for all instances are similar, i.e. using aggregated tours 

decreases both the average CPU times and the maximum CPU times. The only 

exception is that the maximum CPU time increases from 1137.95 to 1155.73 seconds 

with the aggregated tour in Algorithm I for m = 119, this exception can be attributed 

to the random effect. 

At the end of preliminary experiments, we have decided to use 𝛼 = 0.01% in our 

mathematical models and aggregated tours in Algorithms II and III.  
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7.3. MAIN EXPERIMENT FOR EXACT ALGORITHMS 

 

In the main experiment, we evaluate the effects of some parameters on the difficulty 

of the solutions. We also compare the behaviors of our optimization and heuristic 

algorithms. 

Table 7.5 and Table 7.6 report the CPU times and the average number of iterations 

for each optimization algorithm. Table 7.6 also includes the average number of 

subtours included in the models solved by the algorithms.  
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Table 7.5. Solution times of the algorithms (CPU seconds) 

n m K Algorithm I Algorithm II Algorithm III 

   

Avg Max Avg Max Avg Max 

16 36 2 1.46 2.06 1.46 2.06 1.46 2.06 

  

3 1.62 2.17 2.72 3.27 3.82 4.37 

  

4 2.12 3.59 2.12 3.59 2.12 3.59 

  

5 372.11 3600(1) 373.20 3600(1) 373.39 3600(1) 

31 56 2 1.93 2.38 1.93 2.38 1.93 2.38 

  

3 2.70 6.15 2.70 6.15 2.70 6.15 

  

4 5.32 14.01 6.00 17.28 5.25 14.26 

  

5 19.93 30.22 35.18 78.62 30.89 84.30 

36 75 2 1.27 1.50 1.27 1.50 1.27 1.50 

  

3 2.59 4.46 2.59 4.46 2.59 4.46 

  

4 4.19 9.17 5.07 12.78 4.15 7.80 

  

5 13.13 28.00 150.34 1333.73 12.59 19.73 

50 109 2 1.31 1.67 1.31 1.67 1.31 1.67 

  

3 2.55 5.83 2.55 5.83 2.55 5.83 

  

4 7.66 14.79 19.39 78.73 9.39 25.19 

  

5 28.79 120.11 191.44 1602.71 23.84 53.62 

64 137 2 1.68 2.65 1.68 2.65 1.68 2.65 

  

3 2.37 4.38 2.37 4.38 2.37 4.38 

  

4 5.23 11.82 16.99 63.48 7.87 15.51 

  

5 22.14 35.71 44.64 74.54 35.14 72.12 

50 168 2 2.24 5.60 2.69 8.44 2.42 6.05 

  

3 13.81 27.80 314.97 1577.42 72.65 293.36 

  

4 2764.41 3600(7) - - 2920.90 3600(8) 

  

5 - - - - - - 

100 186 2 1.76 2.31 1.76 2.31 1.76 2.31 

  

3 2.98 6.26 2.98 6.26 2.98 6.26 

  

4 12.85 27.18 12.85 27.18 12.85 27.18 

  

5 58.19 215.94 79.99 380.92 59.27 212.63 

100 216 2 2.17 3.12 2.44 4.84 1.88 3.12 

  

3 9.55 16.35 17.25 42.49 8.53 22.62 

  

4 251.30 847.30 1140.70 3600(2) 113.55 453.71 

  

5 2472.78 3600(6) - - - - 
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Table 7.6. Average number of iterations and subtours 

n m K Algorithm I Algorithm II Algorithm III 

   

Subtour Iteration Subtour Iteration Subtour Iteration 

16 36 2 0.20 1.20 0.20 1.20 0.20 1.20 

  

3 0.90 1.90 0.90 1.90 0.90 1.90 

  

4 2.40 3.40 2.40 3.40 2.40 3.40 

  

5 12.78 13.78 11.67 12.67 11.67 12.67 

31 56 2 1.00 2.00 1.00 2.00 1.00 2.00 

  

3 3.30 4.30 2.40 3.40 2.40 3.40 

  

4 18.40 19.40 12.80 13.80 13.20 14.20 

  

5 62.00 63.00 45.50 46.50 48.00 49.00 

36 75 2 0.00 1.00 0.00 1.00 0.00 1.00 

  

3 3.60 4.60 3.60 4.60 3.60 4.60 

  

4 14.40 15.40 11.60 12.60 13.20 14.20 

  

5 38.89 39.89 24.00 25.00 25.00 26.00 

50 109 2 0.20 1.20 0.20 1.20 0.20 1.20 

  

3 3.90 4.90 3.90 4.90 3.90 4.90 

  

4 20.00 21.00 18.40 19.40 18.40 19.40 

  

5 50.00 51.00 26.50 27.50 31.00 32.00 

64 137 2 2.40 3.40 2.40 3.40 2.40 3.40 

  

3 2.70 3.70 2.70 3.70 2.70 3.70 

  

4 19.20 20.20 20.00 21.00 19.20 20.20 

  

5 48.89 49.89 31.00 32.00 48.50 49.50 

50 168 2 5.60 6.60 3.80 4.80 3.40 4.40 

  

3 68.10 69.10 108.90 109.90 130.50 131.50 

  

4 513.33 514.33 - - 196.00 197.00 

  

5 - - - - - - 

100 186 2 0.00 1.00 0.00 1.00 0.00 1.00 

  

3 1.50 2.50 1.50 2.50 1.50 2.50 

  

4 2.40 3.40 2.40 3.40 2.40 3.40 

  

5 7.78 8.78 5.50 6.50 4.50 5.50 

100 216 2 5.60 6.60 4.44 5.44 3.20 4.20 

  

3 31.50 32.50 21.30 22.30 17.40 18.40 

  

4 146.00 147.00 57.50 58.50 82.80 83.80 

  

5 220.00 221.00 - - - - 
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Table 7.7. Frequency of best solution times 

n m K Algorithm I Ties Algorithm II Ties 

Algorithm III 

Ties 

   

With Without With Without With Without 

16 36 2 10 - 10 - 10 - 

  

3 10 - 10 - 10 - 

  

4 10 - 10 - 10 - 

  

5 8 1 7 - 7 - 

31 56 2 10 - 10 - 10 - 

  

3 10 - 10 - 10 - 

  

4 9 2 7 - 8 1 

  

5 5 4 2 1 5 4 

36 75 2 10 - 10 - 10 - 

  

3 10 - 10 - 10 - 

  

4 9 2 7 - 8 1 

  

5 5 2 6 3 5 2 

50 109 2 10 - 10 - 10 - 

  

3 10 - 10 - 10 - 

  

4 8 3 6 1 6 1 

  

5 7 4 4 1 5 2 

64 137 2 10 - 10 - 10 - 

  

3 10 - 10 - 10 - 

  

4 9 6 3 - 4 1 

  

5 7 7 2 2 1 1 

50 168 2 9 1 8 - 9 1 

  

3 6 6 1 1 3 3 

  

4 2 2 - - 2 2 

  

5 - - - - - - 

100 186 2 10 - 10 - 10 - 

  

3 10 - 10 - 10 - 

  

4 10 - 10 - 10 - 

  

5 8 - 8   10 2 

100 216 2 7 - 7 - 10 3 

  

3 3 1 4 2 7 5 

  

4 3 3 2 2 5 5 

  

5 4 4 - - - - 
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We observe from the tables that the number of postmen, K, plays a dominant role on 

the performance of the algorithms. As K increases the effort spent to solve the model 

increases considerably. This result holds for all problem sizes and the effect becomes 

more significant as the number of arcs, m, increases. Note from Table 7.5 that when 

m = 56 as K increases from 2 to 5, the average CPU times for Algorithms I, II and III 

increase from 1.93 to 19.93 and from 1.93 to 35.18, and from 1.93 to 30.89 seconds 

respectively. When m = 168, the effect of K is more apparent for all algorithms. For 

Algorithms I and III, there are a few instances that can be solved within the CPU 

limit of 1 hour when K = 4, whereas none of them can be solved with Algorithm II. 

When K = 5, all algorithms fail to find the optimal solution within 1 hour.  

Since our decision variables are defined on the arcs, the number of arcs is also 

effective on the algorithm performance. In each iteration, the IP models are solved 

with additional subtour elimination constraints. The more integer variables, the 

harder to solve the associated IP models.  When n = 50, m = 109 and K = 2, all 

algorithms perform identical steps and the CPU time is 1.31 seconds. On the other 

hand, when n = 50, m = 168 and K = 2, the CPU times are 2.24, 2.69 and 2.42 

seconds for Algorithms I, II and III, respectively. The increase of solution times is 

significant when K = 4. When n = 50, m = 109 and K = 4, the solution times are 7.66, 

19.39, and 9.39 seconds for Algorithms I, II and III, respectively. If we increase m to 

168, most of the instances cannot be solved within the time limit.  In addition to the 

high number of decision variables, this effect can also be explained with the network 

structure. In other words, if the number of arcs coming to and leaving from the nodes 

increase, more subtours are generated. To illustrate, Figures 7.2 and 7.3 show the 

networks created by adding arcs to the network in Figure 7.1. 
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Figure 7.1. The initial network with 7 arcs 

 

There are 7 arcs in the network in Figure 7.1. The only possible subtour is 

3453. 

1

2 3

4

56

 

Figure 7.2. The new network with the addition of the arc (5, 2) to the network in 

Figure 7.1 

 

If the arc (5, 2) is added to the network 1, two possible subtours are 3453 and 

23452 on the network 2. 
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Figure 7.3. The new network with the addition of the arcs (6, 2) and (3, 6) to the 

network in Figure 7.2. 

If the arcs (6, 2) and (3, 6) are added to network 2, the possible subtours are 

2363, 234562, 3453 and 23452. 

The above example illustrates the generation of subtours with additional arcs. The 

number of subtours generated in each iteration may change the progress of the 

algorithm. Table 7.5 and Table 7.6 show that adding a large number of subtours in 

any iteration makes all the k-CPP models difficult to solve. A notable example is that 

when m = 216, K = 3, all algorithms run in reasonable times (9.55, 17.25 and 8.53 

seconds for Algorithms I, II and III, respectively.) Through K = 5, the solution times 

increase drastically even Algorithms II and III cannot return optimal solutions in 1 

hour. Algorithm I solves 4 out of 10 instances and the average CPU time is 2472.78 

seconds by adding 220 subtours on average. Note that adding more subtours in one 

iteration makes the problem much more difficult. We have explained the reason 

behind the difficulty with m = 168 considering its network structure. Along with its 

network structure and the possibility of generating many subtours, the difficulty of 

the problem stems from the large number of subtours in each iteration. When m = 

168 and K = 4, the average number of subtours is 513.13 and the average number of 

iterations is 514.33, and these numbers are the maximum ones of their categories 

seen on Table 7.6. 

Based on the discussion on the number of subtours, there is also a connection 

between the effect of increasing K on the solution times and the number of subtours 

generated in each iteration. Table 7.6 shows that the average number of subtours 
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generally increases as K increases. For example, all instances have a smaller number 

of subtours when there are 2 postmen, and the associated solution times are relatively 

short compared to the cases with more postmen. Note that for the same example of  

m = 168, the average number of subtour is 5.6 for Algorithm I, 3.8 for Algorithm II, 

and 3.4 for Algorithm III. As K increases, more subtours are generated in each 

iteration and the problem is more difficult while adding these subtours. For example, 

on average when K = 4, 513.33 subtours are added to (𝑃) for Algorithm I, whereas 

196 subtours are necessary for Algorithm III. For this case, all subtour and 

aggregated tour alternatives require much more time compared to Algorithms I and 

III, and so Algorithm II fails to solve the model starting from K = 4.  

The number of arcs may not directly affect the solution times. The instances of m = 

186 and m = 216 exemplify a contradictory case. Although those instances have 

more arcs, they are easier to solve compared to the instances with m = 168. The 

reduced times are due to the ratio of the number of arcs to the number of nodes. For  

n = 50 and m = 168, the networks are more complex because of a large number of 

arcs coming to and leaving from a node compared to n = 100, m = 186, and n = 100,       

m = 216. This effect supports the results in Figure 7.1, 7.2 and 7.3, that means the 

instances of m = 186 and m = 216 are easier to solve due to a few number of subtours 

generated.  

The tables reveal the superiority of Algorithm I in terms of both average and 

maximum CPU times. Table 7.5 shows that the minimum CPU times of 5 out of 10 

combinations are due to Algorithm I for all K values. This is due to the fact that 

considering all subtours simultaneously reduces the number of iterations, which in 

turn reduces the solution times. Though evaluating all tours might be increasing the 

solution time of one problem as a total, and it leads fewer iterations. For example, 

when m = 56 and K = 5, Algorithm I makes 63 iterations; whereas, 46.5 and 49 

iterations are necessary for Algorithms II and III, respectively. Only one 

contradictory case appears when m = 168 and K = 3, that is Algorithm I iterates 68.1 

times which is the lowest number of iterations among three algorithms. 
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Algorithm II considers two subtours at a time: one for original subtour, one for 

aggregated tour, and evaluates each subtour as an original subtour. Hence the 

algorithm makes precise evaluation of all subtours, thereby leading to less number of 

iterations when compared to Algorithm III. The higher CPU times of Algorithm II 

are due to fact that in each iteration, subtour selection is done via integer program, 

whereas random selection is used for Algorithm III. Algorithm II iterates less 

however at an expense of higher solution times. Note from Table 7.5 and Table 7.6 

that Algorithm II selects 31 subtour in 32 iterations; and Algorithm III adds 48.5 

subtours in 49.5 iterations for m = 137 and K = 5. Despite making more iterations, 

the average CPU time of Algorithm III is 35.14 seconds that is less than 44.64 

seconds for Algorithm II. 

Table 7.7 reports on the frequency that each algorithm produces the fastest solution. 

The table gives the frequencies including and excluding ties. Note that in many 

combinations all algorithms produce the same solution, i.e. rising a tie all together. In 

14 out of 32 problems all algorithms give the same CPU times. Those instances 

correspond to the ones that give at most two subtours in each iteration. In general, 

when there are 2 or 3 postmen, the model generates at most 2 subtours in each 

iteration, therefore it results in the same solutions for all algorithms.  

We observe from Table 7.7 that no algorithm dominates, i.e. there exist instances for 

which each specific algorithm produces the fastest solution. For example, Algorithm 

III is the best for n = 100, m = 216 except for K = 5, Algorithm II is preferred for n = 

36, m = 75 and K = 5, and Algorithm I is the best for n = 64, m = 137 for all K’s.  

 

7.4. PRELIMINARY EXPERIMENT FOR HEURISTIC PROCEDURE 

Recall that we solve the models of the optimization algorithms with 0.01% gap.  We 

now refer to those solutions as 0.01% solutions. We measure the performance of the 

heuristic algorithm by the number of times the solutions are no worse than those of 

the 0.01% solutions. For the instances that our heuristic algorithm produces worse 
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solutions than 0.01% solutions, we give the deviations relative to the 0.01% solution. 

We take the solution having the best 0.01% solution among the three optimization 

approaches, hence we compare the heuristic results with the best available solution. 

The deviations are calculated as 

𝐷𝐸𝑉 =
𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 0.01% 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

0.01% 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
∗ 100 

 

The stopping condition of our heuristic procedure is one of the design parameters of 

our heuristic algorithm. We set the termination limit to half an hour. For K = 2, we 

set another termination limit and stop when a prespecified number of nonimproving 

moves is reached.  We set the number of nonimproving moves to 20, 30 and 50 and 

report the results in Table 7.8. 

 

Table 7.8. The effect of nonimproving moves (NIM), K =2 

n m   NIM=20 NIM=30 NIM=50 

           Avg     Max    Avg     Max     Avg      Max 

16 36 DEV 0.00 0.02 0.00 0.02 0.00 0.02 

  
CPU 5.95 9.3 12.9 15.24 21.56 24.69 

31 56 DEV 0.00 0.02 0.00 0.00 0.00 0.00 

    CPU 31.78 40.23 75.29 95.99 110.82 169.71 

 

As can be observed from Table 7.8, when m = 56, the best performance is observed 

for higher number of nonimproving moves. If 50 nonimproving moves are set as the 

termination limit, the heuristic procedure can find the same solution with the exact 

solution, and then all deviations are zero. The deviations are close to zero, when 20 

or 30 nonimproving moves are used. When m = 36, all settings of nonimproving 

moves find the same solution, hence their deviations from the 0.01% solutions are 

the same. Since the increase in the solution times is acceptable as the number of 

nonimproving moves increase, higher nonimproving moves can be used to increase 

the possibility of better solutions. 
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We perform a similar experiment for higher values of K and observe that the number 

of nonimproving limit would be outweighed by our CPU limit of 1800 seconds. The 

reason is that we redefine long tour and short tour if no improvement occurs during 

the limit of nonimproving moves. Afterwards, if either the long tour or short tour 

changes, we keep iterating by initializing the number of nonimproving moves as 0. 

We perform another experiment to see the effect of the arc selection strategy on the 

performance of the heuristic algorithm. We compare two arc selection strategies: 

random arc and best arc. Random arc selection corresponds to the case where an arc 

is randomly selected from the long tour and added to the short tour. Best arc 

selection corresponds to the case where all arcs are considered and the one leading to 

the maximum improvement is selected. We report the results in Table 7.9. 

 

Table 7.9. The effect of arc selection strategy on the deviations  

n m K Random Arc Best Arc 

      Avg Max Avg Max 

36 75 3 0.00 0.01 0 0 

  

 

4 1.13 4.45 0 0 

100 216 3 0.80 2.66 37.92 43.85 

    4 3.70 8.68 76.89 95.36 

 

The best arc selection strategy makes precise computations and each selection 

requires considerable time. On the other hand, the random arc selection strategy 

makes rough computations, however can make many arc changes in a specified time 

period. 

Note from Table 7.9 that, when m is small we prefer the best arc selection strategy, 

as each selection can be done quicker, hence many exchanges can be realized. When 

m = 75, the heuristic procedure with best arc strategy gives better solutions than the 

0.01% solution. When m = 216 and K = 4, the average and maximum deviations are 

76.89% and 95.36%, respectively for best arc selection strategy, and the respective 
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average and maximum deviations are 3.70% and 8.68% for random arc selection 

strategy. 

 

7.5. MAIN EXPERIMENT FOR HEURISTIC PROCEDURE 

Based on the results of our computational experiments we use the best arc selection 

strategy for smaller sized instances (for the instances with m ≤ 150) and use the 

random arc selection strategy for larger sized instances with m > 150. 

We set the maximum number of nonimproving moves to 50 for K = 2.  For higher 

values of K, the maximum number of nonimproving moves is 10, but it is used as an 

indicator for redefining short and long tours rather than a stopping condition. 

Our termination limit for the heuristic procedure is 1/2 hour. The maximum number 

of iterations is another stopping condition and it is determined as 300.  

The results of our heuristic procedure for all problem sizes are given in Table 7.10. 

The deviations from the 0.01% solutions are calculated for the solutions that are 

worse than 0.01% solutions, and the number of no worse (better or same) solutions is 

also reported.  

 

 

 

 

 

 

 



65 
 

Table 7.10. The performance of the heuristic procedure  

n m K # better Deviation CPU 

      or same    Avg    Max        Avg       Max 

16 36 2 6 0.00  0.02  21.56 24.69 

  

 

3 3 0.01  0.04  64.74 70.47 

  

 

4 4 0.01  0.03  48.02 49.92 

    5 1 0.07  0.30  39.47 45.37 

31 56 2 10 0 0 110.82 169.71 

  

 

3 9 0.00  0.00  290.57 301.30 

  

 

4 8 0.00  0.00  229.02 248.63 

    5 6 0.00  0.02  199.51 218.56 

36 75 2 9 0.00  0.00  185.00 232.85 

  

 

3 10 0 0 626.90 666.06 

  

 

4 10 0 0 492.94 519.78 

    5 6 0.00  0.02  418.40 466.30 

50 109 2 10 0 0 1495.13 1800.00 

  

 

3 10 0 0 1800.00 1800.00 

  

 

4 9 0.00  0.00  1800.00 1800.00 

    5 2 0.64  2.81  1800.00 1800.00 

64 137 2 10 0 0 1800.00 1800.00 

  

 

3 10 0 0 1800.00 1800.00 

  

 

4 10 0 0 1800.00 1800.00 

    5 8 0.02  0.17  1800.00 1800.00 

50 168 2 3 0.17  0.84  60.91 111.21 

  

 

3 - 0.38  1.07  183.18 222.86 

  

 

4 6 1.88  3.45  239.14 284.42 

    5 - - - - - 

100 186 2 4 0.02  0.11  431.93 942.48 

  

 

3 1 0.07  0.30  1800.00 1800.00 

  

 

4 - 0.38  1.65  1800.00 1800.00 

    5 - 0.75  1.99  1800.00 1800.00 

100 216 2 3 0.29  1.44  498.521 805.46 

  

 

3 2 0.80  2.66  1800.00 1800.00 

  

 

4 - 3.70  8.68  1800.00 1800.00 

    5 - 6.13  10.44  1800.00 1800.00 
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The results reported in Table 7.10 indicate that the performance of our heuristic is 

very satisfactory, in terms of solution quality.  When m ≤ 200, all deviations are less 

than 2%. We observe that the performances deteriorate as n or m increases. 

Accordingly, the worst deviations are observed when n = 100 and m = 216. Even for 

those instances, all deviations, with one exception, are below 10%. 

From Table 7.5 and Table 7.10, we see that the mathematical models are solved 

extremely faster than the heuristic for the instances that could be solved within the 

time limit. Note that the time limit of 1800 seconds is usually spent by the heuristic 

algorithm for K > 2 and the instances with more than 109 arcs. The only exception is 

for m = 168 because the random arc strategy results in quick completion of the 

algorithm for that size of instances.  

The deviations of the heuristic procedure from the exact solutions indicate that our 

heuristic can be used for the instances that cannot be solved with the mathematical 

model.  Note that when m = 168 and K = 5, no instance could be solved with our 

exact approaches, and heuristic returns a solution, probably a satisfactory one, in 

1800 seconds. 

 

7.6. TRIALS FOR DIFFERENT OBJECTIVES 

Our models and procedures can be modified to handle all types of the k-CPP. Our 

objective function of minimizing total squared load does not unnecessarily increase 

the total load of any postman. However the other balancing objectives are defined 

around an allowed service time and might increase the loads of some postmen by 

bringing the loads closer to the allowed time. Two such objectives are defined below: 

1. Total absolute deviation is defined as ∑ |𝑤𝑘 − 𝑆𝑇|𝐾
𝑘=1  where ST is allowed 

service time. Note that ST is the target load of each postman. The 

corresponding problem is the minimum absolute deviation (MAD) problem. 

2. Total squared deviation is defined as ∑ (𝑤𝑘 − 𝑆𝑇)2𝐾
𝑘=1 . The corresponding 

problem is the minimum squared deviation (MSD) problem. 
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The minimum absolute deviation problem can be modeled as a mixed integer linear 

model as follows: 

MAD  

𝑀𝑖𝑛 ∑ 𝑧𝑘
+ + 𝑧𝑘

−

𝐾

𝑘=1

 

   subject to   

𝑤𝑘
2 − 𝑆𝑇 = 𝑧𝑘

+ + 𝑧𝑘
− 

     𝑥 ∈ 𝑋 

        Subtour elimination constraints 

     𝑧𝑘
+ ≥ 0 

     𝑧𝑘
− ≥ 0 

 

On the other hand, the minimum squared deviation problem is modeled via a pure 

integer nonlinear model as follows: 

MSD 

𝑀𝑖𝑛 ∑(𝑤𝑘 − 𝑆𝑇)2

𝐾

𝑘=1

 

   subject to   

     𝑥 ∈ 𝑋 

        Subtour elimination constraints 

 

Recall that our algorithms introduce subtour elimination constraints successively, 

where the introduced subtours are the solutions of the mathematical models, hence 

they can be adapted to the MAD and MSD problems. 
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We adapt Algorithm I to the MAD and MSD problems and report the results in Table 

7.11. Table 7.11 tabulates the average and maximum CPU times for the MAD, MSD 

and our problem. 

 

Table 7.11. Solution times of the MAD, MSD and our problem (CPU seconds) 

n m K MAD MSD Our Problem 

      

Avg 

CPU 

Max 

CPU 

Avg 

CPU 

Max 

CPU 

Avg 

CPU 

Max 

CPU 

36 75 3 0.697 2.3 1.714 4.62 2.4 3.88 

    5 2.298 3.87 20.338 41.52 13.79 27.41 

64 137 3 2.114 7.44 2.784 5.1 2.36 4.38 

    5 4.721 10.09 761.543 3599.86 22.14 34.34 

 

Table 7.11 shows that the easiest problem is the MAD problem. This is due to the 

ease of solving linear programs, in particular when compared to the nonlinear ones. 

Note that average solution times of the MAD problem are the smallest when K = 3 

and K = 5 for both instances. 

Compared to the MSD problem, our problem is easier to solve. The MSD problem 

minimizes around the service time, whereas our problem minimizes around zero. 

Note that when K = 5 for both instances, average solution times of the MSD problem 

are much higher than the solution times of our problem. 
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CHAPTER 8 

 

CONCLUSION 

 

 

In this thesis, we consider a Chinese Postman Problem with K postmen, i.e. k-CPP.  

We assume that each postman starts and ends its tour at the depot and each postman 

should serve to at least one arc.  Our problem is to define the tour of each postman so 

as to keep their workloads as close as possible. En route to balancing the workloads 

we try to minimize the sum of the squared workloads over all postmen.  

We first propose an integer programming formulation of the problem. We develop an 

efficient way of explaining the subtour elimination constraints. Our subtour 

elimination constraints require neither an extra decision variable nor a big M value. 

We propose exact algorithms and one heuristic solution approach that run in 

exponential and polynomial times, respectively. The exact approaches use efficient 

incorporation of the subtour elimination constraints.  The heuristic procedure starts 

with an optimal solution of the single postman total cost minimization problem and 

improves this solution by changing arc assignments.  

The results of our extensive computational study reveal that the exact procedures 

return solutions for large sized instances with up to about 200 arcs in one hour when 

a gap value of 0.01% is used for the integer models.  Moreover we see that no exact 

procedure dominates the other.   
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We observe that our heuristic procedure that runs in polynomial time delivers high 

quality solutions at the termination limit of half an hour. In small sized problems, the 

heuristic delivers solutions that are even better than 0.01% solutions. 

To the best of our knowledge, our study is the first attempt to solve the k-Chinese 

Postmen Problem of minimizing total squared workloads. We hope our study helps 

to open new research avenues in the arc routing problems area. Our subtour 

elimination constraints are directly applicable to other k postmen problems, like k-

Rural Postmen Problem, k-Windy Postmen Problem and Capacitated k-Chinese 

Postmen Problem. One may extend our approaches to rural and windy postman 

problems and to their capacitated versions.  

Moreover, defining and tackling with different objectives that well represent our 

balancing concerns may be an interesting future research topic. In the thesis, we have 

conducted a limited study to show the applicability of our procedure to the minimum 

absolute deviation and minimum squared deviation problems. 

Future research may also investigate some special cases of the total squared loads 

problem, like unit costs and balanced networks.  
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