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ABSTRACT 

 

 

SUPER SYMMETRIC QUANTUM MECHANICS APPLICATIONS ON 

SOME DIATOMIC POTENTIALS 

 

 

 

Kaya, Murat 

M.S., Department of Physics 

Supervisor     : Prof. Dr. Ramazan Sever 

 

May 2015, 59 pages 

 

 

 

 

One dimensional molecular potentials are studied by solving the Schrödinger 

Equation for some well known potentials, such as the deformed Morse, Eckart and 

the Hua potentials. Parametric generalization of Hamiltonian Hierarchy is 

introduced. Nikiforov-Uvarov method and SUSYQM with Hamiltonian Hierarchy 

method is used in the calculations to get energy eigenvalues and the corresponding 

wave functions exactly.  

 

 

 

 

Keywords: Nikiforov-Uvarov Method, Supersymmetric Quantum Mechanics, Morse 

Potential, Eckart Potential, Hua Potential. 
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ÖZ 

 

 

BAZI ÇİFT ATOMLU POTANSİYELLER ÜZERİNE SÜPER SİMETRİK 

QUANTUM MEKANİĞİ UYGULAMALARI 

 

 

 

Kaya, Murat 

Yüksek Lisans, Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. Ramazan Sever 

 

Mayıs, 2015, 59 sayfa 

 

 

 

 

Tek boyutlu moleküler potansiyeller deforme Morse, Eckart, Hua gibi bilinen bazı 

potansiyeller için Schrödinger denklemi çözülerek çalışıldı. Hamilton Hiyerarşi’nin 

parametrik genellemesi gösterildi. Enerji özdeğerleri ve ilgili dalga fonksiyonlarının 

tam çözümlerinin hesaplamalarında Nikiforov-Uvarov metodu ve süper simetrik 

kuantum mekaniği Hamilton Hiyerarşi ile beraber kullanıldı. 

 

 

 

 

Anahtar Kelimeler: Nikiforov-Uvarov Metodu, Süper Simetrik Kuantum Mekaniği, 

Morse Potansiyeli, Eckart Potansiyeli, Hua Potansiyeli. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

For the last twenty years, the need for the solution of the Schrodinger equation (SE) 

occurred in many fields of physics and chemistry [1–7]. Unfortunately it is not 

generally possible to obtain analytical solutions of the SE because of the potential 

term except some potentials such as harmonic oscillator potential [8], Kratzer 

potential [9], etc. The most well known method for solving such an equation is to 

expand the solution in a power series and then find the expansion coefficients with 

help of the recursion relationships. In mathematical physics many other analytical 

techniques have been developped some of which are group theory [10], 

supersymmetry [11-19], point canonical transformation [20], shifted 1/N expansion 

[21], asymptotic iteration method [22], quantization rules [23, 24], wave function 

ansatz method [25, 26], variational, Nikiforov-Uvarov method [27-29], hypervirial 

perturbation [30], perturbative formalism [31], path integral approach [32] and 

polynomial solution [33], etc. 

 

Nikiforov-Uvarov method (NUM) and Supersymmetry (SUSY) are the methods 

which are studied and used to solve some potentials in this thesis. Since a few 

decades,  there has been a significant increase in the number of studies in which 

Nikiforov-Uvarov (NU) method is used for solving quantum mechanical problems. 

This method is improved to solve certain kind of second-order linear differential 

equations. The NU method is one of the easiest, most systematic and direct methods 

which are used to solve SE for some potentials [28]. 
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On the other side, supersymmetry is a symmetry which is used to understand all 

particle interactions in nature by the relations between fermions and bosons [13]. 

SUSY connects every fermion and boson with each other one by one in particle 

physics.  In this context, supersymmetric quantum mechanics (SUSYQM) was 

introduced as a method for testing the breaking of supersymmetry [14-15]. As the 

SUSY work progressed, it was understood that this method offers much more than a 

simple model testing of field theory methods. As a simple statement, for a given 

potential 𝑉− a partner potential 𝑉+ is created with a new Hamiltonian 𝐻2 by using 

SUSY. These potentials have identical energy eigenvalue spectrum except for the 

ground state. This method uses factorization of Hamiltonian. When this method is 

applied together with the Hamilton Hierarchy [15] method and shape invariance [13, 

16-19] concept, it becomes a very powerful tool to find the energy spectrum and 

wave functions of some Hamiltonians. 

 

In this thesis, the parametric generalization of NU method [29, 34-35] is applied to 

the solution of the SE by using SUSY quantum mechanics. Firstly, ground state wave 

function is obtained. Then superpotential and partner potentials are calculated. We 

found energy eigenvalus with the help of shape invariance. Eigenfunctions and 

related energy eigenvalues are calculated for the some potentials exactly. These 

potentials are Morse, [36] Eckart [37], and Hua [38] potentials. 

 

The organization of the thesis is as follows: In Chapter II, firstly the NU method is 

explained. Then, parametric generalization of this method is presented. In Chapter 

III, respectively SUSYQM, Hamiltonian Hierarchy Method, Shape Invariance 

reviewed and parametric generalization of Hamiltonian Hierarchy [35] is described 

with shape invariance condition. In Chapter IV, dynamics of diatomic molecules 

explanied and some of one dimensional molecular potentials are introduced. In 

Chapter V, we present the solutions of the SE for some potentials. In the last chapter, 

conclusions are given. 
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CHAPTER II 

 

 

THE NİKİFOROV-UVAROV METHOD 

 

 

 

2.1 General 

 

A very systematic method to solve the non-relativistic SE analytically for some kind 

of potentials is to use the Nikiforov-Uvarov method. In this method, one dimensional 

SE is transformed to a hypergeometric-type equation with coordinate transformation 

x = x(s). Then NU method is used to find exact solutions of the SE in terms of 

special orthogonal functions [21]. 

 

The equation which NU method is based on is [28]; 

 

 d²Ψ(s)

ds²
+

τ̃(s)

σ(s)

dΨ(s)

ds
+

σ̃(s)

σ2(s)
Ψ(s) = 0 (2.1) 

 

Where and σ̃ are at most second degree polynomials, and τ̃ is a first-degree 

polynomial. Ψ(s) is a hypergeometric-type function. The transformation Ψ(s) =

ϕ(s)y(s) with an appropriate function ϕ(s) can be used to transform the Equation 

(2.1) into more easily solvable form, 

 

 
y′′(s) + (2

ϕ′(s)

ϕ(s)
+

τ̃(s)

σ(s)
) y′(s) + (

ϕ′′(s)

ϕ(s)
+

ϕ′(s)

ϕ(s)

τ̃(s)

σ(s)
+

σ̃(s)

σ2(s)
) y(s) = 0 (2.2) 

 

Now let us define first degree polynomial τ(s) with the following equation by using 

coefficient of the second term of the equation (2.2). 



4 

 

 
 2

ϕ′(s)

ϕ(s)
+

τ̃(s)

σ(s)
=

τ(s)

σ(s)
, (2.3) 

 

and define π(s) as follows, 

 

 
 
ϕ′(s)

ϕ(s)
=

π(s)

σ(s)
 , (2.4) 

 

Solving the equation (2.4) for π(s) with the help of equation (2.3), one can get  

 

 
π(s) =

1

2
[τ(s) − τ̃(s)] , (2.5) 

 

Since the polynomials τ(s) and τ̃(s) are first degree, π(s) must be a first degree 

polynomial. The coefficient of y(s) in Eq.(2.2), can be rewritten as follows by using 

derivation identity and Eq.(2.4); 

 

 ϕ′′(s)

ϕ(s)
= (

ϕ′(s)

ϕ(s)
)

′

+ (
ϕ′(s)

ϕ(s)
)

2

= (
π(s)

σ(s)
)

′

+ (
π(s)

σ(s)
)

2

. (2.6) 

 

By using the equality Eq. (2.4), we can deal with the third coefficient in Eq. (2.2) 

more easily; 

 

 ϕ′′(s)

ϕ(s)
+

ϕ′(s)

ϕ(s)

τ̃(s)

σ(s)
+

σ̃(s)

σ2(s)
=

Λ(s)

σ2(s)
 (2.7) 

 

(
π(s)

σ(s)
)

′

+ (
π(s)

σ(s)
)

2

+
π(s)

σ(s)

τ̃(s)

σ(s)
+

σ̃(s)

σ2(s)
=

Λ(s)

σ2(s)
 

 

π′(s)σ(s) − σ′(s)π(s)

σ2(s)
+

π2(s)

σ2(s)
+

π(s)τ̃(s)

σ2(s)
+

σ̃(s)

σ2(s)
=

Λ(s)

σ2(s)
 

⇒  
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 Λ(s) = σ̃(s) + π2(s) + π(s)[τ̃(s) − σ′(s)] + π′(s)σ(s) (2.8) 

 

If we substitute Eq.(2.3) and Eq.(2.7) into Eq.(2.2), we will get the following 

equation, 

 

 
y′′(s) +

τ(s)

σ(s)
y′(s) +

Λ(s)

σ2(s)
y(s) = 0 (2.9) 

 

If  Λ(s) = λσ(s) with constant λ Eq.(2.9) takes the following form, 

 

 σ(s)y′′(s) + τ(s)y′(s) + λy(s) = 0, (2.10) 

 

Defining k as follows; 

 

 k = λ − π′(s) (2.11) 

 

we can write the Eq.(2.8) in a quadratic equation form for π(s), 

 

 π2(s) + π(s)[τ̃(s) − σ′(s)] + σ̃(s) − kσ(s) = 0 , (2.12) 

 

We can solve this quadratic equation by using well known discriminant formula; 

 

 

π(s) =
σ′(s) − τ̃(s)

2
± √(

σ′(s) − τ̃(s)

2
)

2

− σ̃(s) + kσ(s) (2.13) 

 

Since π(s), σ′(s) and τ̃(s) are first degree polynomials, the term with square root 

must be a polynomial of degree one. So the expression in the square root sign must 

be exact square of a first degree polynomial. As a result of this information we can 

write a discriminant equation for constant k. Since the expression in the square root 

sign is an exact square, its discriminant must be equal to zero.  
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As we know the polynomials σ(s), σ̃(s) and τ̃(s) by definition with the help of Eq. 

(2.1), we can calculate the only unknown “k” using discriminant formula. As soon as 

we determine k, polynomials π(s), τ(s) and λ are calculated from Eq.(2.5), Eq.(2.11) 

and Eq.(2.13).  

 

 
λn = −nτ′(s) −

n(n − 1)

2
σ′′(s), (n = 0,1,2, … ) (2.14) 

 

We can also write from equation (2.11) as follows; 

 

 λ = k + π′(s) (2.15) 

 

Energy eigenvalues can be obtained by equating λ and λn through the equations 

(2.14) and (2.15). Polynomial hypergeometric-type functions yn(s) are solved by the 

Rodrigues relation; 

 

 
yn(s) =

Bn

ρ(s)

dn

dsn
[σn(s)ρ(s)] (2.16) 

 

With normalization constant Bn and weight function ρ(s) which is calculated through 

the condition; 

 (σ(s)ρ(s))
′

= τ(s)ρ(s) (2.17) 

 

Using Eq. (2.4) ϕ(s) is determined and general solution set becomes 

 

 
Ψ(s) = ϕ(s)

Bn

ρ(s)

dn

dsn
[σn(s)ρ(s)] (2.18) 
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2.2 Parametric Generalization Of The Nikiforov-Uvarov Method 

 

Now let us introduce the parametric generalization of the NUM [29, 34-35].The 

general form of the SE can be written as follows with a suitable coordinate 

transformation for any potential; 

 

 
[

d2

ds2
+

α1 − α2s

s(1 − α3s)

d

ds
+

−ξ1s2 + ξ2s − ξ3

[s(1 − α3s)]2
] Ψ = 0 (2.19) 

 

Since the Eq. (2.19) must be equal to Eq. (2.1);  

 

 τ̃(s) = α1 − α2s (2.20) 

 

 σ(s) = s(1 − α3s) (2.21) 

 

 σ̃(s) = −ξ1s2 + ξ2s − ξ3 (2.22) 

 

Rewriting Eq. (2.13) to calculate π(s); 

 

 

 π(s)    = α4 + α5s ± √(α6 − kα3)s2 + (α7 + k)s + α8 (2.23) 

 

Where 

 
α4 =

1 − α1

2
           (2.24) 

 

 
α5 =

(α2 − 2α3)

2
 (2.25) 

 

 α6 = α5
2 + ξ1       (2.26) 
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 α7 = 2α4α5 − ξ2 (2.27) 

  

α8 = α4
2 + ξ3        

 

(2.28) 

 

We know that the expression in the square root sign in Eq. (2.23) must be square of a 

first degree polynomial from the previous section. So the discriminant of the the 

expression in the square root sign must be zero; 

 

 k2 + 2(α7 + 2α3α8)k + α7
2 − 4α8α6 = 0 (2.29) 

 

So we can solve for k; 

 

 k∓ = −(α7 + 2α3α8) ∓ −2√α8α9 (2.30) 

 

Where 

 

 α9 = α3α7 + α3
2α8 + α6       (2.31) 

 

For k −; 

 

 π(s)    = α4 + α5s − [(√α9 + α3√α8)s − √α8] (2.32) 

 

 π′(s)    = α5 − (√α9 + α3√α8) (2.33) 

 

Using Eq. (2.5) with Eq. (2.32) we get; 

 

 τ(s)    = α1 + 2α4 − (α2 − 2α5)s − 2[(√α9 + α3√α8)s − √α8] (2.34) 

 

 τ′(s)    = −(α2 − 2α5) − 2[(√α9 + α3√α8)] (2.35) 
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Remembering the Eq. (2.21); 

 

 σ′(s) = −2α3s + 1 (2.36) 

 

 σ′′(s) = −2α3 (2.37) 

 

Now we will insert the Eqs. (2.35 and 2.37) into Eq. (2.14) and insert the Eq. 

(2.30) of k- and (2.33) into Eq. (2.15) and equate λn and λ; 

 

 α2n − 2α5n + 2(√α9 + α3√α8)n + n(n − 1)α3

= −α7 − 2α3α8 − 2√α8α9 + α5 − √α9 − α3√α8 
 

⟹ 

 α2n − (2n + 1)α5 + (2n + 1)(√α9 + α3√α8) + n(n − 1)α3 + α7

+ 2α3α8 + 2√α8α9 = 0 
(2.38) 

 

Remembering Eq. (2.17); 

 

(σ(s)ρ(s))
′

= τ(s)ρ(s) 

σ′(s)ρ(s) + σ(s)ρ′(s) = τ(s)ρ(s) 

σ′(s) +
σ(s)ρ′(s)

ρ(s)
= τ(s) 

⟹ 

 
 
ρ′(s)

ρ(s)
=

τ(s) − σ′(s)

σ(s)
 , (2.39) 

 

 
d(ln ρ(s))

ds
 =

τ(s) − σ′(s)

σ(s)
  

 

 

Eqs. (2.21, 2.34 and 2.36) are inserted to get; 
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d(ln ρ(s))

=  
α1 + 2α4 − (α2 − 2α5)s − 2[(√α9 + α3√α8)s − √α8] + 2α3s − 1

s(1 − α3s)
ds 

 

 

Using Eq. (2.25); 

 

d(ln ρ(s))  =
α1 + 2α4 − 2[(√α9 + α3√α8)s − √α8] − 1

s(1 − α3s)
ds  

 

 

d(ln ρ(s))  =
−α11s +  2α3s + α10 − 1 

s(1 − α3s)
ds 

 

Where  

 α10 = α1 + 2α4 + 2√α8       (2.40) 

 

 α11 = α2 − 2α5 + 2(√α9 + α3√α8)       (2.41) 

 

Solving for ρ(s); 

 

 
ρ(s) = s(α10−1)(1 − α3s)

α11
α3

−α10−1
 (2.42) 

 

Now the solution of the Eq. (2.16) by using Eq. (2.42) becomes, 

 

 
yn(s) = 𝑃𝑛

(α10−1,
α11
α3

−α10−1)
(1 − 2α3s) (2.43) 

   

where 𝑃𝑛
(α,β)

 are Jacobi polynomials. When we put Eq. (2.32) into Eq. (2.4) we solve,  

 

 
ϕ(s) = sα12(1 − α3s)

−α12−
α13
α3

−
 (2.44) 
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With, 

 α12 = α4 + √α8       (2.45) 

 

 
α13 = α5 − (√α9 + α3√α8)       (2.46) 

 

And, 

Ψ(s) = ϕ(s)y(s) 

 

 
Ψ(s) = sα12(1 − α3s)

−α12−
α13
α3 Pn

(α10−1,
α11
α3

−α10−1)
(1 − 2α3s) (2.47) 

 

Now we will examine the case where α3 = 0. Firstly let’s consider second factor in 

the right hand side of Eq. (2.47);  

 

C =
lim

α3  → 0
 [(1 − α3s)

−α12−
α13
α3 ] 

 

 
ln C =

lim

α3  → 0
 ln [(1 − α3s)

−α12−
α13
α3 ]  

 

 
= −

lim

α3  → 0

(α12α3 + α13) ln[1 − α3s]

α3
 

 

 

Applying L’Hopital Rule; 

 

 
ln C = −

lim

α3  → 0
[α12 ln(1 − α3s) − (α12α3 + α13)s]  

 

 = α13s  

 

So; 
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C =

lim

α3  → 0
 [(1 − α3s)

−α12−
α13
α3 ] = eα13s (2.48) 

 

Now we will examine the third factor on the right hand side of Eq. (2.47).  If we 

write definition of Jacobi Polynomials by the Rodriguez formula; 

 

 
Pn

(a,b)(x) = [
(−1)n

2n n! (1 − x)a(1 + x)b
] .

dn

dxn
[(1 − x)n+a(1 + x)n+b] (2.49) 

then; 

 

Pn

(α10−1,
α11
α3

−α10−1)
(1 − 2α3s) = [

(−1)n

2n n! (2α3s)α10−1(2 − 2α3s)
α11
α3

−α10−1
]. 

dn

d(1 − 2α3s)n
[(2α3s)n+α10−1(2 − 2α3s)

n+
α11
α3

−α10−1
] 

 

 

 

(2.50) 

 

Using Leibniz formula [39]; 

 

 dn

dxn
[A(x)B(x)] = ∑

n!

k! (n − k)!

n

k=0

(
dn−kA

dxn−k
) (

dkB

dxk
) (2.51) 

and using 

 

 dn

d(1 − 2α3s)n
=

(−1)n

2nα3
n

dn

dsn
 (2.52) 

in Eq. (2.50) lead us;   

 

Pn

(α10−1,
α11
α3

−α10−1)
(1 − 2α3s) = [

(−1)n

2n n! (2α3s)α10−1(2 − 2α3s)
α11
α3

−α10−1
]. 

(−1)n

(2α3)n
∑ [(

n!

k! (n − k)!

(n + α10 − 1)!

(k + α10 − 1)!
(2α3)n−k(2α3s)k+α10−1)

n

k=0

. 

(n +
α11

α3
− α10 − 1) !

(n +
α11

α3
− α10 − 1 − k) !

(−2α3)k(2 − 2α3s)
n+

α11
α3

−α10−1−k
] 
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⇒ 

 
Pn

(α10−1,
α11
α3

−α10−1)
(1 − 2α3s) = 

1

2
2n+

α11
α3

−2
 α3

n+α10−1
sα10−1(1 − α3s)

α11
α3

−α10−1
 

∑
(−1)k

k! (n − k)!

(n + α10 − 1)!

(k + α10 − 1)!

(n +
α11

α3
− α10 − 1) !

(n +
α11

α3
− α10 − 1 − k) !

n

k=0

 

 2
2n+

α11
α3

−2
α3

n+k+α10−1
sk+α10−1(1 − α3s)

n+
α11
α3

−α10−1−k
 

 

 

 

 

 

 

 

⇒ 

 
Pn

(α10−1,
α11
α3

−α10−1)
(1 − 2α3s) = 

∑
(−1)𝑘

k! (n − k)!

(n + α10 − 1)!

(k + α10 − 1)!

(n +
α11
α3

− α10 − 1) !

(n +
α11
α3

− α10 − 1 − k) !

n

k=0

α3
ksk(1 − α3s)n−k 

 

 

(2.53) 

 

 

If we use 

 
(n +

α11

α3
− α10 − 1) !

(n +
α11

α3
− α10 − 1 − k) !

=
(

α11 + α3(n − α10 − 1)
α3

) !

(
α11 + α3(n − α10 − 1 − k)

α3
) !

= 

[α11 + α3(n − α10 − 1)][α11 + α3(n − α10 − 2)] … [α11 + α3(n − α10 − k)]

α3
k

 

 

 

 

 

 

in Eq (2.53) then; 

 
Pn

(α10−1,
α11
α3

−α10−1)
(1 − 2α3s) = 

∑
(−1)𝑘

k! (n − k)!

(n + α10 − 1)!

(k + α10 − 1)!
sk(1 − α3s)n−k

n

k=0

 

[α11 + α3(n − α10 − 1)] … [α11 + α3(n − α10 − k)] 

 

 

 

 

(2.54) 
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If α3 = 0 in a problem, Eq (2.54) becomes; 

 

 
Pn

(α10−1,
α11
α3

−α10−1)
(1 − 2α3s) = ∑

(−1)k

k! (n − k)!

(n + α10 − 1)!

(k + α10 − 1)!
skα11

k

n

k=0

 (2.55) 

 

This is in the form of associated Laguerre polynomials [39]: 

 

 
Ln

a (x) = ∑ (−1)k
(n + a)! xk

(n − k)! (k + a)! k!

n

k=0

 (2.56) 

 

 So for α3 = 0; 

  

Pn

(α10−1,
α11
α3

−α10−1)
(1 − 2α3s) = Ln

(α10−1)
(α11s) 

(2.57) 

 

Finally we can write the complete wave function for α3 = 0 using Eqs.(2.48 and 

2.57); 

 

 Ψ(s) = sα12eα13sLn
(α10−1)

(α11s) (2.58) 
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CHAPTER III 

 

 

SUSYQM 

 

 

 

3.1 General 

 

Supersymmetry is a symmetry which is used to understand all particle interactions in 

nature by the relations between fermions and bosons These particles are called 

superpartners of each other.  If SUSY really exists in nature, then every superpartners 

should have equal mass and quantum numbers except spin numbers. Since SUSY 

forsees that every elementary particle has a superpartner, the scope of the standard 

model raises the double in the framework of a unified theory explaining the 

fundamental interactions in nature [13]. 

  

As the SUSY work progressed, it was understood that this method offers much more 

than a simple model testing of field theory methods. Super-symmetric quantum 

mechanics has helped a better understanding of the non-relativistic quantum 

mechanics. It explains why only certain potentials have analytical solutions and 

furthermore discovered potentials with analytical solutions. It also uses the 

factorization method, and when used in conjunction with the shape invariant 

condition, has led to the identification of a potential class which can be solved 

analytically [19]. 

 

Firstly, factorisation process should be illustrated. Consider the one dimensional 

quantum mechanical Hamiltonian for the ground state wavefunction Ψ0(x);   
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H1Ψ0(x) = [−

ħ2

2m

d2

dx2
+ V1(x)] Ψ0(x) (3.1) 

 

Instead of solving a particular potential, we will develop an approach that enables us 

to solve varying potentials and thus also general Hamiltonians. In this approach we 

define the ground state wave function as nodeless, and we will assume that it takes a 

value of zero in both infinities in order to be normalized. In addition, we will make 

the ground state energy equal to zero. This does not affect the energy spectrum 

except for a constant shift. Thus, SE for the ground-state is 

 

 
V1(x) =

ħ2

2m

Ψ0
′′(x)

Ψ0(x)
 (3.2) 

 

Thus, if we know the ground-state wave function, we can calculate the V1(x) except 

the constant term. To apply the super-symmetric quantum mechanics we need to 

factorise Hamiltonian. 

 

 H1 = A†A (3.3) 

 

Where the operators A and A† are defined as follows; 

 

 
A = W(x) +

ħ

√2m
 

d

dx
, A† = W(x) −

ħ

√2m
 

d

dx
, (3.4) 

 

W(x) term is called super potential. Using equations (3.3) and (3.4)  we can write the 

V1(x) potential as follows; 

 

 
V1(x) − W2(x) +

ħ

√2m
W′(x) = 0 (3.5) 
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Equation (3.5) is called the Riccati equation [40]. Equation (3.2) is still valid, and 

provides additional information about the potential V1(x). If AΨ0(x) value is zero, 

then it is clear that  A†AΨ0(x) = H1Ψ0(x) is to be zero. In this case, W (x) values 

can be written in terms of the known ground state function. This also means that A 

operator is an annihilation operator. We find a general solution of the ground-state 

wave function in terms of W(x) with the help of A operator. Since it destroys the 

ground-state wave function, we arrive at the following solution. 

 

 
AΨ0(x) =

ħ

√2m

d

dx
Ψ0(x) + W(x)Ψ0(x) = 0 (3.6) 

 

 
⇒ W(x) = −

ħ

√2m
(

Ψ0
′

Ψ0
) = −

ħ

√2m

d

dx
ln[Ψ0(x)] (3.7) 

 

 
⇒ Ψ0(x) = N exp [−

√2m

ħ
 ∫ W(k)dk

x

 

] (3.8) 

 

So it is seen that if we know the super potential, we can turn the second-order 

differential equation to first order differential equation. Hereby SUSY provides a 

great advantage over the standard quantum mechanics. Now we need to define a new 

Hamilton (H2) by reversing the order of factorization to create the SUSY theory. H1 

and H2 are partner Hamiltonians of each other. Now we will repeat the calculations 

to get V2 as we did to get V1. 

 

 
H2 = AA† = [−

ħ2

2m

d2

dx2
+ V2(x)] (3.9) 

 

and this yields 

 

 
V2(x) = W2(x) +

ħ

√2m
W′(x) (3.10) 
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The potentials V1(x) and V2(x) are called supersymmetric partner potentials. We will 

see that the partner Hamiltonians H1 and H2, their energy eigenvalues and wave 

functions are related through SUSY.  

 

Let Ψn
(1)

 and  Ψn
(2)

 be the eigenfunctions and En
(1)

 and En
(2)

 the energy eigenvalues of 

Hamiltonians H1 and H2 where “n” is the the number of nodes starting from 0. Now 

we will see that bound states of potentials V1(x) and V2(x) completely the same 

except for the ground state energy E0
(1)

= 0. 

 

H1Ψn
(1)(x) = A†AΨn

(1)(x) 

 = En
(1)

Ψn
(1)

(x) (3.11) 

 

Using this, 

H2[AΨn
(1)(x)] = (AA†)[AΨn

(1)(x)] 

= A[A†AΨn
(1)(x)] 

= A[H1Ψn
(1)(x)] 

⇒ 

 H2[AΨn
(1)(x)] =  En

(1)
AΨn

(1)(x) (3.12) 

 

Here we are convinced that if  Ψn
(1)(x) is eigenfunction of H1 then AΨn

(1)
 is an 

eigenfunction of H2 with the same eigenvalue En
(1)

. Now let us repeat the same 

calculations by switching H1 and H2,  

 

H2Ψm
(2)(x) = AA†Ψm

(2)(x) 

 = Em
(2)

Ψm
(2)(x) (3.13) 

 

Using this, 
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H1[A†Ψm
(2)(x)] = (A†A)[A†Ψm

(2)(x)] 

= A†[AA†Ψm
(2)(x)] 

= A†[H2Ψm
(2)(x)] 

⇒ 

 = Em
(2)

 A†Ψm
(2)(x) (3.14) 

 

So similarly we see that if  Ψm
(2)

(x) is an eigenfunction of H2 then A†Ψm
(2)

(x) is an 

eigenfunction of H1 with the same eigenvalue Em
(2)

. With the help of last calculations 

it is inevitable that  

 

 Em
(2)

= En
(1)

 (3.15) 

 

If we assume that the eigenfunctions of H1 is normalised then we can calculate the 

normalized eigenfunctions Ψm
(2)(x) of H2 as follows;   

 

 
1 = ∫ ZΨ∗

m
(2)

ZΨm
(2)

 (3.16) 

= Z2 ∫ Ψn
(1)

A†AΨn
(1)

 

= Z2 ∫ Ψn
(1)

 H1Ψn
(1)

 

= Z2En
(1)

 

⇒ 

 
Z = [En

(1)
]−

1
2 (3.17) 

 

In Eq. (3.18) “Z” is not the normalization constant. Normalization constant “N” is 

embedded in the right hand side of the Eq. (3.18). Now we can write normalized 

eigenfunctions of H2; 

 
Ψm

(2)
= [En

(1)
]−

1
2AΨn

(1)
 (3.18) 
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We also can calculate Ψn
(1)

 starting from Ψm
(2)

; 

 

 
A†Ψm

(2)
= [En

(1)
]−

1
2A†AΨn

(1)
 (3.19) 

= [En
(1)

]−
1
2H1Ψn

(1)
 

= [En
(1)

]−
1
2En

(1)
Ψn

(1)
 

⇒ 

 
Ψn

(1)
= [Em

(2)
]−

1
2A†Ψm

(2)
 (3.20) 

 

 Since AΨ0(x) = 0 by definition H2 does not have any eigenfunction with zero 

energy ground state. Now we can define m = n − 1 through equations (3.11)-(3.17) 

and so we can conclude the relations between eigenstates and eigen values of H1 and 

H2 as follows; 

 

 
Ψn

(2)
= [En+1

(1)
]−

1
2AΨn+1

(1)
 (3.21) 

 

 
Ψn+1

(1)
= [En

(2)
]−

1
2A†Ψn

(2)
 (3.22) 

 

 En
(2)

= En+1
(1)

 (3.23) 

 

for n = 0,1,2… and En
(1)

= 0. If the eigenfunctions Ψn+1
(1)

 normalizable, then the 

eigenfunctions Ψn
(2)

 are also normalizable. In additon, the operator A turns 

eigenfunctions of H1 to eigenfunctions of H2 and the operator A† turns 

eigenfunctions of H2 to eigenfunctions of H1 with the same energy eigenvalues. 

Furthermore A annihilates and A† creates a node in the related eigenfunctions. As a 

result, we can say that if we know the all eigenfunctions and eigenvalues of H1 we 

can determine the solution of H2 and if we know the all eigenfunctions and 

eigenvalues of H2 we can determine the solution of H1 by using A and A†operators. 
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3.2 Hierarchy of Hamiltonians 

 

In the previous section, we observed that the energy of the ground state must be zero 

in order to factorise the Hamiltonian. This is accomplished by shifting the ground 

state energy up to a constant. With the aid of the factorisation of Hamiltonian we 

have constructed a partner Hamiltonian with the same energy spectrum except for the 

ground state. The number of bound states of the second Hamiltonian should be one 

less than the number of bound states of the second Hamiltonian. If we apply the same 

idea to H2 as we did to H1, we can achieve a new Hamiltonian H3 that is partner to 

H2. It will also be partner Hamiltonian of H1. To do so, we should equate ground 

state energy of  H2 to zero by shifting. After that, we can create the partner 

Hamiltonian H3 by using the principles developed in the previous section. We can 

find a set Hamiltonians by applying this process again and again. Each new Hamilton 

will have one missing bound state from the previous one. This iteration can be 

applied as many times as the number of bound states of H1. Therefore, we can obtain 

all of the energy eigenvalues and eigenfunctions of a set of partner Hamiltonians if 

we have a Hamiltonian H1 with an analytically solvable potential. Similarly, we 

know all of the ground states of set of partner Hamiltonians, we can create solutions 

to actual problem. This is a very powerful tool when it is used together with shape 

invariance described in the next section. 

 

Let Ψ0
(1)

and E0
(1)

 be the ground state eigenfunction and ground state energy of H1 

respectively. Then from Eq. (3.3),  

 

 
H1(x)Ψn

1(x) = [A1
†A1

 
+ E0

(1)
]Ψn

1(x) = [−
ħ2

2m

d2

dx2
+ V1(x)] Ψn

1(x) (3.24) 

 

where a zero energy ground state of the H1 is obtained by shifting. Then following 

Eq. (3.5), V1(x) is rewritten as 
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V1(x) = W1

2(x) −
ħ

√2m
W1

′(x) + E0
(1)

 (3.25) 

where  

 

 
A1 =

ħ

√2m

d

dx
+ W1(x), A1

† = −
ħ

√2m

d

dx
+ W1(x), (3.26) 

 

 
W1(x) =

ħ

√2m

Ψ0
(1)′

(x)

Ψ0
(1)

(x)
= −

ħ

√2m

dlnΨ0
(1)

dx
 (3.27) 

 

following from Eqs. (3.4) and (3.7). Since we have to consider many super partners, 

it is very important to use indices carefully. As we continue, 

 

 
H2(x)Ψn

2(x) = [A1A1
† 

+ E0
(1)

]Ψn
2(x) = [−

ħ2

2m

d2

dx2
+ V2(x)] Ψn

2(x) (3.28) 

 

with 

V2(x) = W1
2(x) +

ħ

√2m
W1

′(x) + E0
(1)

= V1(x) + 2
ħ

√2m
W1

′ 

 
= V1(x) − 2

ħ

√2m

d2

dx2
lnΨ0

(1)
 (3.29) 

 

gives 

En
(2)

= En+1
(1)

 

 
Ψn

(2)
= (En+1

(1)
−E0

(1)
)−

1
2A1Ψn+1

(1)
 (3.30) 

 

What we do here is actually the same as what we did in the previous section. Based 

on the fact that E0
(2)

, the ground state energy of H2, is equal to E1
(1)

 Hamiltonian H3 

can be constructed. But firstly H2 should be written as follows; 
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 H2Ψn
2(x) = [A1A1

† 
+ E0

(1)
]Ψn

2(x) = [A2
†  

A2 + E0
(2)

]Ψn
2(x)

= [A2
†  

A2 + E1
(1)

]Ψn
2(x) 

(3.31) 

 

with 

 

 
A2 =

ħ

√2m

d

dx
+ W2(x), A2

† = −
ħ

√2m

d

dx
+ W2(x), (3.32) 

 

 
 W2(x) = −

ħ

√2m

dlnΨ0
(2)

dx
. (3.33) 

 

Then H3 is obtained by the same method we did to obtain H2 but this time we will 

use A2 instead of A1. 

 

 
H3Ψn

3(x) = [A2A2
†  

+ E1
(1)

]Ψn
3(x) = [−

ħ2

2m

d2

dx2
+ V3(x)] Ψn

3(x), (3.34) 

 

Then the related potential becomes; 

 

V3(x) = W2
2(x) +

ħ

√2m
W2

′(x) + E1
(1)

= V2(x) + 2
ħ

√2m
W2

′ 

 
= V2(x) − 2

ħ

√2m

d2

dx2
lnΨ0

(2)
 (3.35) 

 

So, by using the expression for V2(x) which was obtained earlier, 

 

V3(x) = V1(x) − 2
ħ

√2m

d2

dx2
lnΨ0

(1)
− 2

ħ

√2m

d2

dx2
lnΨ0

(2)
 

 
= V1(x) − 2

ħ

√2m

d2

dx2
ln(Ψ0

(1)
Ψ0

(2)
) (3.36) 
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Again, now some relations can be written for H3; 

 

 En
3 = En+1

(2)
= En+2

(1)
 (3.37) 

 

Ψn
(3)

= (En+1
(2)

−E0
(2)

)−
1
2A2Ψn+1

(2)
 

 
= (En+2

(1)
−E1

(1)
)−

1
2(En+2

(1)
−E0

(1)
)−

1
2A2A1Ψn+2

(1)
 (3.38) 

 

where Eq. (3.30) was used for  Ψn+1
(2)

. This means that the solutions of H3 completely 

can be written in terms of the solutions of H1 . It is also possible for all partner 

Hamiltonians in this hierarchy. So it can be seen that  H1, which has k ≥ 1 bound 

states having eigenfunctions  Ψn
(1)

 and energy eigenvalues En
(1)

 with 0≤ n ≤ k, lets 

us to always construct a hierarchy of k - 1 Hamiltonians. Those Hamiltonians’ 

eigenvalues are related with their order in the hierarchy. In other words, the lth 

Hamiltonian has identical energy spectrum with the first Hamiltonian H1, except the 

(0,..,l-1) states. Hence, knowing that H1 has k bound states, we can always write (for 

l = 2,3,...,k) 

 

 
HlΨn

l (x) = [AlAl
† 

+ El−1
(1)

]Ψn
l (x) = [−

ħ2

2m

d2

dx2
+ Vl(x)] Ψn

l (x), (3.39) 

 

with 

 

 
Al =

ħ

√2m

d

dx
+ Wl(x), Al

† = −
ħ

√2m

d

dx
+ Wl(x), (3.40) 

 
 Wl(x) = −

ħ

√2m

dlnΨ0
(l)

dx
 (3.41) 

 

And thereby the previously derived relations; 

 



25 

 

 En
3 = En+1

(2)
= En+2

(1)
 (3.42) 

 

 
Ψn

(l) = (En+l−1
(1)

−El−2
(1)

)−
1
2 … (En+l−1

(1)
−E0

(1)
)−

1
2Al−1 … A1Ψn+l−1

(1)
 (3.43) 

 

 
Vl(x) = V1(x) − 2

d2

dx2
ln(Ψ0

(1)
… Ψ0

(l−1)
). (3.44) 

 

Thus, we can find all the energy eigenvalues and eigenfunctions of Hamiltonians in 

this hierarchy. In this way, we can get the solutions of all Hamiltonians immediately 

if we know the solutions of a Hamiltonian which is related to them all super 

symmetrically. Lastly, to get the exact energy eigenvalues the constant value by 

which ground state energy of H1 was shifted should be added back. 

 

 

3.3 Shape Invariance 

 

We can not say that there are too many potentials which can be analytically solvable 

in quantum mechanics. The condition that decides which potentials are analytically 

solvable was not known until the shape invariant condition discovered. Many of the 

exactly solvable potentials are shape invariant and some of them [19]  are Morse, 

Eckart, Coulomb and Pöschl-Teller [41-43] potenials. Now we will explain what a 

shape invariant potential (SIP) means and show how we can employ shape invariant 

condition together with Hamilton Hierarchy to solve SE for some potentials. 

 

Let us start with considering potentials V1 and V2 which are partner potentials by 

SUSY. If  V1 and V2 have similar shapes but their parameters are different then they 

are said to be shape invariant. This is expressed mathematically as follows; 

 

 V2(x; a1) = V1(x; a2) + R(a1) (3.45) 
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Here a1 and  a2 are two groups of parameters where a2 = f(a1) which means a2 is a 

function of a1. The terms which are independent of x are expressed as R(a1). If the 

SUSY is not broken the eigenfunctions and energy eigenvalues of any SIP can be 

determined easily by using equation (3.21) and the Hamiltonian hierarchy illustrated 

in the previous chapter.  

 

Let us consider two partner Hamiltonians connected through unbroken SUSY. Then 

from section 2.1 we know that 

 E0
(1)(a0) = 0 (3.46) 

 

 
Ψ0

(1)(x; a0) = N. exp (−
√2m

ħ
∫ W1(k;

x

a0)dk) (3.47) 

 

By using the hierarchy of Hamiltonians and Eq. (3.45), we can write Hamiltonian H1 

and H2; 

 

 
H1 = −

ħ2

2m

d2

dx2
+ V1(x; a1) 

 

(3.48) 

and 

 

H2 = −
ħ2

2m

d2

dx2
+ V2(x; a1) 

 
= −

ħ2

2m

d2

dx2
+ V1(x; a2) + R(a1) (3.49) 

 

where Eq. (3.45) was used. Now we will repeat the same procedure for H2. First of 

all we must make H2 proper for the factorisation. So H2 has to be shifted by the 

amount of R(a1) in order to create a zero energy ground state. Then shape invariance 

condition is implemented to construct H3; 
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H3 = −
ħ2

2m

d2

dx2
+ V2(x; a2) 

 
= −

ħ2

2m

d2

dx2
+ V1(x; a3) + R(a2) (3.50) 

 

By the help of Eq. (3.45) and a3 = f(a2) = f(f(a1)). Remembering that we have 

shifted H2 by R(a1) to get this result, we have to shift H3 back by R(a1), leading to 

following results, 

 

𝐻1 = −
ħ2

2m

d2

dx2
+ V1(x; a1) 

𝐻2 = −
ħ2

2m

d2

dx2
+ V1(x; a2) + R(a1) 

 
𝐻3 = −

ħ2

2m

d2

dx2
+ V1(x; a3) + R(a2) + R(a1) (3.51) 

 

The rule that is governing the shape invariant Hamiltonians  can be realised easily by 

a careful observation. Now we can generalise this rule for any partner Hamiltonian in 

this ranking; 

 

 

𝐻𝑘 = −
ħ2

2m

d2

dx2
+ V1(x; a𝑘) + ∑ R(ai)

k−1

i=1

 (3.52) 

 

Thus we can use the obtained Hamiltonians to determine all energy eigenvalues of 

𝐻1 or in other words of all partner Hamiltonians. Let us apply the SE to H2  

 

𝐻2Ψ0
(1)(x; a2) = [−

ħ2

2m

d2

dx2
+ V1(x; a2)] Ψ0

(1)(x; a2) + R(a1)Ψ0
(1)(x; a2) 

 

 = R(a1)Ψ0
(1)(x; a2) (3.53) 
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By using 

 

 
[−

ħ2

2m

d2

dx2
+ V1(x; a2)] Ψ0

(1)(x; a2) = 𝐻1Ψ0
(1)(x; a2) = 0 (3.54) 

 

since SUSY is unbroken, 𝐸0
(1)

 is zero. Thus Eq. (3.53) yields; 

 

 E0
(2)

= R(a1) (3.55) 

 

So we can see that one can simply write the ground state energy 𝐸0
(2)

 of 𝐻2 by just 

calculating the remainder R(a1). As we know it is also the first excited state of 𝐻1. 

This method enable us find out the ground energy of potentials by just comparing the 

shapes of the partner potentials. We can generalise the expression to find the ground 

energy of 𝑘𝑡ℎ Hamiltonian Hk; 

 

HkΨ0
(1)(x; a𝑘) = [−

ħ2

2m

d2

dx2
+ V1(x; ak)] Ψ0

(1)(x; ak) + ∑ R(ai)Ψ0
(1)(x; ak)

k−1

i=1

 

 

= ∑ R(ai)Ψ0
(1)(x; ak)

k−1

i=1

 (3.56) 

 

 

→ E0
(k)

= ∑ R(ai)

k−1

i=1

 (3.57) 

 

Eq. (3.57) allows us to determine the first energy eigenvalue of the 𝑘𝑡ℎ Hamiltonian 

Hk. Since the ground state energy of the 𝐻𝑘 is equal to (k - 1)'th energy eigenvalue of 

the 𝐻1, we can determine the whole energy eigenvalue spectrum of 𝐻1 and of all 

partner Hamiltonians except first k - 1 energy levels. General formula is written as; 
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Ek
(1)

= ∑ R(ai)

k

i=1

, E0
(1)

= 0 (3.58) 

 

So we can say that it is possible to determine the eigenstates Ψn
(1)(x; a1) of shape 

invariant potentials from the ground state wave function Ψ0
(1)(x; a1). Ψ0

(1)(x; a1) can 

be found through Eq. (3.8) with help of super potential. Operators A and 𝐴† are used 

to do this since these operators convert the wave functions of any super symmetric 

Hamiltonian to a wave function of its partner Hamiltonian with the same energy 

level. We can write the ground state wave function of 𝐻𝑠 as Ψ0
(1)(x; as) by using Eq. 

(3.56). Now with help of the equation (3.22) we can reach s’th eigenfunction of 𝐻1, 

Ψs
(1)(x; a1), by using operators [ 𝐴†(x; as−1), 𝐴†(x; as−2)... 𝐴†(x; a1)] one by one 

on Ψ0
(1)(x; as); 

 

 Ψn
(1)(x;  a1) ∝ 𝐴†(x; a1)𝐴†(x; a2) … 𝐴†(x; an)Ψ0

(1)(x; an+1) (3.59) 

 

but it is not normalised. Hence, the energy eigenvalues and energy eigenfunctions of 

any shape invariant potential can be determined by knowing the super potential, the 

remainder and f(a1). The main importance of shape invariant condition comes from 

the fact that many of the potentials which we come across through atomic 

investigations have shape invariance condition.  

 

More useful explicit expressions can be defined for the wave functions with 

normalised relation as follows, 

 

 
Ψn

(1)(x; a1) = (𝐸𝑛−1
(1)

)
(−

1
2

)

𝐴†(x; a1)Ψn−1
(1) (x; a2) (3.60) 
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3.4 Parametric Generalization Of The Hamiltonian Hierarchy Method 

 

In this section, very newly generated Parametric Generalization of the Hamiltonian 

Hierarchy Method [35] will be explained. Ground state wave function for an 

arbitrary potential can be determined by using Eq. (2.44);  

 

 
Ψ0(s) = sα12(1 − α3s)

−α12−
α13
α3  (3.61) 

 

In additon we can define the super potential W(r) by rewriting Eq. (3.27);   

 

 
W(r) =

d

dr
ln Ψ0(r) (3.62) 

 

To make calculations easier let us define; 

 

 𝑎 = α12α3 + α13 (3.63) 

So we get; 

 
W(r) =

ds

dr

d

ds
ln [sα12(1 − α3s)

−
a

α3] 

 

 
=

1

𝑠

ds

dr
[α12 − a

s

α3s − 1
] (3.64) 

 

If we factorise 

 s

α3s − 1
= [1 +

1

α3s − 1
]

1

α3
  

 

Then, 

 
W(r) =

1

𝑠

ds

dr
[α12 − a (1 +

1

α3s − 1
)

1

α3
]  
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W(r) =

1

𝑠

ds

dr
(

α3α12 − a

α3
−

a

α3(α
3

s − 1)
) (3.65) 

 

As we remember from section 3.1 the partner potentials are written as follows; 

 

 
V∓ = W2 ∓

dW

dr
 (3.66) 

We need to calculate  

 dW(r)

dr
=

d2s

dr2

1

𝑠
[
α3α12 − a

α3
−

a

α3(α
3

s − 1)
]

+ (
ds

dr
)

2

[−
1

𝑠2
(

α3α12 − a

α3
−

a

α3(α
3

s − 1)
)

+
1

𝑠
(−

a

α3

−α3

(α
3

s − 1)2
)] 

 

 

 

 

(3.67) 

 
A =

1

𝑠2
(

ds

dr
)

2

 (3.68) 

 

 
B =

1

𝑠

d2s

dr2
 (3.69) 

 

Then Eq. (3.68) and (3.69) are inserted  into Eq. (3.67), 

 

 dW(r)

dr
= B [

α3α12 − a

α3
−

a

α3(α
3

s − 1)
]

+ A [− (
α3α12 − a

α3
−

a

α3(α
3

s − 1)
) + (a

s

(α
3

s − 1)2
)] 

 

 

 = B
α3α12 − a

α3
− B

a

α3(α
3

s − 1)
− A

α3α12 − a

α3
+ A

a

α3(α
3

s − 1)

+ A
a

α3(α
3

s − 1)
(1 +

1

(α
3

s − 1)
) 
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= (B − A)

α3α12 − a

α3
+ [−

a

α3

(B − A) + A
a

α3
]

1

(α
3

s − 1)
+

a

α3

A

(α
3

s − 1)2
 (3.70) 

 

Now we can put Eq. (3.70) into Eq. (3.66); 

 
V∓ = A [

α3α12 − a

α3
−

a

α3(α
3

s − 1)
]

2

∓ (B − A)
α3α12 − a

α3

∓ [−
a

α3

(B − A) + A
a

α3
]

1

(α
3

s − 1)
∓

a

α3

A

(α
3

s − 1)2
 

 

 

 

 

 

 
     = A (

α3α12 − a

α3
)

2

− A
2a

α3
2

α3α12 − a

α3s − 1
+ A

a2

α3
2(α

3
s − 1)2

∓ (B − A)
α3α12 − a

α3
∓ [−

a

α3

(B − A) + A
a

α3
]

1

α3s − 1

∓
a

α3

A

(α
3

s − 1)2
 

 

 

 

 

 
 =

α3α12 − a

α3
[
α3α12 − a

α3
A ∓ (B − A)]                     

+ [∓
a

α3

(A − B) ∓
a

α3
A −

2a(α3α12 − a)

α3
2 A]

1

α3s − 1

+
a2 ∓ aα3

α3
2(α

3
s − 1)2

A 

     

 

 

 

(3.71) 

 

If we put Eq. 3.(64) into Eq. (3.71); 

 

 
V∓ = (

−α13

α3
) [

−α13

α3
A ∓ (B − A)] +

a

α3
[∓(A − B) ∓ A +

2

α3
α13A]

1

α3s − 1

+
a(a ∓ α3)

α3
2(α

3
s − 1)2

A                                                                          
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=

α13
2

α3
2 A ∓

α13

α3

(A − B) + [
2α13 ∓ α3

α3
A ∓ (A − B)]

a

α3

1

α3s − 1
         

+
a(a ∓ α3)

α3
2

1

(α
3

s − 1)2
A 

 

 

(3.72) 

 

For  the shape invariance to be valid A=B=constant, then; 

 

 
V− =

α13
2

α3
2 A + [

2α13 − α3

α3
] A

a

α3

1

α3s − 1
+

a(a − α3)

α3
2

1

(α
3

s − 1)2
A (3.74) 

 

 
V+ = [α13

2 +
(2α13 + α3)a

α3s − 1
+

a(a + α3)

(α
3

s − 1)2
]

A

α3
2 A (3.75) 

 
V− = [α13

2 +
(2α13 − α3)a

α3s − 1
+

a(a − α3)

(α
3

s − 1)2
]

A

α3
2 (3.76) 

Since  

                         (2α13 ∓ α3)a = 2α13
2 + 2α13α3α12 ∓ α3a     

                                                = α13
2 − α12

2 α3
2 + α13

2 + α12
2 α3

2 + 2α13α3α12 ∓ α3a 

                                                = α13
2 − α12

2 α3
2 + a2 ∓ α3a  

                                                = α13
2 − α12

2 α3
2 + a(a ∓ α3) 

 

Then we rewrite Eq. (3.75) and (3.76); 

 
V+ = [(𝑎 − α12α3)2 +

α13
2 − α12

2 α3
2 + a(a + α3)

α3s − 1
+

a(a + α3)

(α
3

s − 1)2
]

A

α3
2 (3.77) 

 
V− = [(𝑎 − α12α3)2 +

α13
2 − α12

2 α3
2 + a(a − α3)

α3s − 1
+

a(a − α3)

(α
3

s − 1)2
]

A

α3
2 (3.78) 

 

Since 

 
V+ =

α13
2

α3
2 A + [

2α13 + α3

α3
] A

a

α3

1

α3s − 1
+

a(a + α3)

α3
2

1

(α
3

s − 1)2
A (3.73) 
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                           = [
−α12

2 α3
2 + α13

2

2a
+

a

2
]

2

 

 

So finally; 

 

 

With the help of Eq. (3.45) we can write 

 

R(a1) = V+(a0) − V−(a1) (3.81) 

 

a1 = a0 + α3 (3.82) 

 

a0 = ξ (3.83) 

so 

R(a1) = V+(a0) − V−(a0 + α3) (3.84) 

 

   (𝑎 − α12α3)2 = (
𝑎 − 2α12α3

2
+

𝑎

2
)

2

 

                                = (
−α12α3 + α13

2
+

𝑎

2
)

2

 

                                   = [
(−α12α3 + α13)a

2a
+

a

2
]

2

 

 
V+ = [(

−α12
2 α3

2 + α13
2

2a
+

a

2
)

2

+
α13

2 − α12
2 α3

2 + a(a + α3)

α3s − 1

+
a(a + α3)

(α
3

s − 1)2
]

A

α3
2 

(3.79) 

 
V− = [(

−α12
2 α3

2 + α13
2

2a
+

a

2
)

2

+
α13

2 − α12
2 α3

2 + a(a − α3)

α3s − 1

+
a(a − α3)

(α
3

s − 1)2
]

A

α3
2 

(3.80) 
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R(a1) = [(
−α12

2 α3
2 + α13

2

2ξ
+

ξ

2
)

2

− (
−α12

2 α3
2 + α13

2

2(ξ + α3)
+

(ξ + α3)

2
)

2

]
A

α3
2 (3.85) 

 

We can generalise the above expressions as follows; 

 

an = ξ + nα3 (3.86) 

 

R(an) = V+(an−1) − V−(an) (3.87) 

 

R(an) = [(
−α12

2 α3
2 + α13

2

2{ξ + (n − 1)α3}
+

ξ + (n − 1)α3

2
)

2

− (
−α12

2 α3
2 + α13

2

2(ξ + nα3)
+

ξ + nα3

2
)

2

]
A

α3
2 (3.88) 

 

And remebering the Eq. (3.58); 

 

En
− = ∑ R(an)

n

i=0

,    E0
− = 0 (3.89) 

 

At last, 

En
− = [(

−α12
2 α3

2 + α13
2

2ξ
+

ξ

2
)

2

− (
−α12

2 α3
2 + α13

2

2(ξ + nα3)
+

(ξ + nα3)

2
)

2

]
A

α3
2 (3.90) 

 

En = En
− + E0 (3.91) 

 

 

 

 

 

 

 

 



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



37 

 

CHAPTER IV 

 

 

DIATOMIC MOLECULES 

 

 

 

4.1 Structure of Diatomic Molecules 

 

Now the structure of diatomic molecules will be examined. Molecules are made up 

from atoms that are using valence electrons commonly. Basically there is no 

significant difference between the definition of the states and transitions of the 

molecules and atoms since both of them are studied with the same principles of 

quantum mechanics. However, molecules have extra types of motion that atoms do 

not have. Experimental results show that the internal energy of the molecule consists 

of three different components whose energy scales are largely different from each 

other [44]. In order to understand the spectrum characteristics of these molecules, the 

wave functions must be found by solving Schrödinger equation. But these solutions 

are very difficult even for the simplest molecule. Therefore, describing a molecule by 

quantum mechanical principles can only be achieved with some approximations. The 

overall motion of the molecule can be divided into several components.  

 

Like many quantum mechanical system the Hamiltonian for any molecule is 

composed of kinetic (T) and potential (V) energies.  The overall internal kinetic 

energy of the molecule is the sum of kinetic energies of the electrons (Te) and kinetic 

energies of the nuclei (Te).  On the other hand, the potential energy has three 

components which are due to electric attraction force between electrons and nuclei 

(Ven),  repulsion forces between electrons (Vee) and between nuclei (Vnn). In 

addition, if the distance between atoms is very long, then potential energy is equal to 

the sum of the individual energies of both atoms.  
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As the atoms get closer to each other, an attraction force rises. On the other side, if 

the separation distance goes to zero, a high repulsive force occurs. For stable 

molecules these forces are in equilibrium. 

 

Electrons and nuclei in the molecular system is exposed to similar forces. However, 

the mass of the electron is thousands of times smaller than the mass of the nucleus. 

As a result, electrons are accelerated faster than the nuclei and move much faster. 

Therefore, the movement of electrons and nuclei can be considered largely 

independently of each other. So, when the motions of electrons are defined quantum 

mechanically, position of the nuclei can be assumed constant. This appoximation is 

called Born-Oppenheimer approximation [45]. Based on this fact, the time scales of 

motion of electrons and nuclei can be assumed separable. Because of the separebility 

of time scales of nuclear and electronic we can assume a separable wave function 

form: 

 

Ψ(r⃗, R⃗⃗⃗) = ΨEl,n(r⃗, R⃗⃗⃗)ΨN(R⃗⃗⃗) (4.1) 

 

In Eq. (4.1) wave function ΨEl,n(r⃗, R⃗⃗⃗) is named as electronic wave function. The 

subscript “n” is the electronic quantum number which specifies the electronic state. 

Furthermore, each electronic wave function has electronic variables r⃗ and nuclear 

variable R⃗⃗⃗. By using the fixed nuclei assumption mentioned above ΨEl,n(r⃗, R⃗⃗⃗) wave 

functions can be calculated by solving SE for electrons. The electronic energy 

eigenvalues are parametrically dependent on the nuclear positions. So, for each value 

of R an eigenvalue spectrum EEl,n(R) and eigenfunctions ΨEl,n(r⃗, R⃗⃗⃗)  are found by 

solving SE. These wave equations are the same wave equations of valence electrons.  

 

In Eq. (4.1) wave function ΨN(R⃗⃗⃗) is named as nuclear wave function and solved 

innuclear variables R. Eigenvalue solutions of the nuclear wave function give the 

rotational and vibrational energy levels. Since the rotational and translational 
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variables of the Hamiltonian in the SE for the nuclear wave function are independent, 

the wave equation is solved by separation of variables. 

 

Firstly, the wave equation which we obtain for the motions of nuclei has two 

components. These are tanslational motion of center of mass of nuclei and motions 

of nuclei relative to each other. Translational motion of the center of mass of nuclei, 

actually, is the translational motion of the molecule. Since this motion is not related 

with moleculer structure, it is ignored.  

 

The other wave equation, which is about the motions of nuclei relative to each other,  

is solved by separating it into two wave functions with the help of separation of 

variables. Unfortunately, another approximation method is needed here: The 

potential energy due to the nuclei and electronic states is represented by approximate 

functions, e.g. Morse Potential [36].  The solution of the wave function with angular 

variables gives the eigenstates and eigenvalues of the rotational motion of the nuclei. 

On the other side, the solution of the wave function with radial variable gives the 

vibrational eigenstates and eigenvalues of the nuclei. To sum up, there are four 

motions of a molecule which are motion of electrons, vibration of nuclei, rotation of 

nuclei and translational motion of molecule. So, if we ignore the translational motion 

of the molecule, the internal complete wave function of the diatomic molecules 

becomes; 

 

Ψ = Ψel(r, R) Ψvib(R) Ψrot(θ, ϕ) (4.2) 

 

And energy eigenvalues are; 

 

E = EEl + Evib + Erot (4.3) 

 

This means the internal excitations in diatomic molecules are rotational, vibrational, 

and electronic.  
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The energy levels with the largest energy scale corresponds to the electronic states.  

Energy level of an electronic state also has diffrent energy groups due to diffrent 

vibrational states of the nuclei. Vibrational energy levels are also divided into 

different energy levels with narrower gaps because of the rotational states. The 

difference between the rotational energy levels grows proportionally with increasing 

energy. 

 

EEl ≫ Evib ≫ Erot 

 
(4.4) 

Absorbtion and emission of radiation of molecules are directly connected to changes 

of their electronic, rotational and vibrational energies. When a molecule makes a 

transition between electronic states, the related radiation energy is so high that it 

appears in ultraviolet or visible region. Diatomic molecules can have many different 

electronic states. The energy eigenvalues of these states are determined by measuring 

the changes during electronic transitions. While the spectra for vibrational transitions 

of molecules is in the infrared region, the spectra for rotational transitions is in the 

microwave region [44]. 

 

 

4.2 Molecular Potentials 

 

Since the intermoleculer forces are encountered in many fields of physics, biology 

and chemistry (the properties of crystals, phonon spectra, stability of compounds like 

DNA and RNA, in the formation of chemical complexes etc.[46]), it is an important 

research field. Instead of direct measurement of intermoleculer forces 

experimentally, researchers determine them by measuring some other characteristics 

depending on these forces. 

 

To solve an intermoleculer interaction problem, firstly necessary data gathered by 

experiments.  Then some potential models fitting to these data are used.  
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Model potential is choosen accoding to the studied problem. One variabled function 

fitting to potential describes the interaction between two molecules. The potential V 

(R) is called the intermolecular potential and it is a function of the distance (R) 

between the centers of molecules. Depending on the distance between the atoms, 

interatomic potential is classified in three types. 

 

I. In short distance range atoms repulse each other and atomic interaction is 

dominated by exchanging of electrons. 

II. In medium distance range there is a balance between repulsive and attractive 

forces. 

III. In long distance range exchanging of electrons are ineffective and atomic 

interaction is dominated by attractive force. 

 

Only a theory based on quantum mechanics can be consistent in understanding of 

intermolecular forces. Since the electrons and nuclei have motions in quantum scale, 

one must solve SE to find the solution to the interacting atoms. Analytical solution to 

the studied problem can be found solving SE for a appropriate potential. There are 

many model potentials which are used in molecular and condensed matter physics 

(e.g. Morse, Eckart and Pöschl-Teller potentials)[46].  
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CHAPTER V 

 

 

CALCULATIONS 

 

 

 

5.1 Solution Of The Generalized Morse Potential 

 

The Morse potential is one of the most well known potentials is used to describe the 

potential energy in diatomic molecules. Van der Waals complexes between 

molecules or vibrational motion of covalent diatomic molecules can be defined by 

The Morse potential [44 and 47]. Generalized Morse Potential [36] is defined as 

 

V(r) = V1e−2αr − V2e−αr (5.1) 

 

Figure 1: Morse Potential 
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If we define a new parameter s = √V1e−αr and let 2𝑚 = ħ = 1, SE transforms to 

 

d2Ψ

ds2
+

1

s

dΨ

ds
−

1

s2
(

s2

α2
−

1

α2

V2

√V1

s + 4ɛ2) Ψ = 0 (5.2) 

where  

4ɛ2 = −
E

4α2
 (5.3) 

Meanwhile; 

ds

dr
= −αs,

d2s

dr2
= α2s (5.4) 

 

⇒ A =
1

s2
(

ds

dr
)

2

= B =
1

s

d2s

dr2
= α2 (5.5) 

 

making the shape variance condition satisfied. Using eqs. (2.19), (2.24-2.28), (2.30), 

(2.37 and 2.38), (2.40 and 2.42); 

 

𝛼1 = 1, 𝛼2 = 0, 𝛼3 = 0, 𝛼4 = 0   

𝛼5 = 0, 𝛼6 = 𝜉1, 𝛼7 = −𝜉2, 𝛼8 = 𝜉3 

𝛼9 = 𝜉1, 𝛼10 = 1 + 2√𝜉3, 𝛼11 = 2√𝜉1,     

𝛼12 = √𝜉3, 𝛼13 = −√𝜉1,    

 

and 

(5.6) 

𝜉1 =
1

α2
, 𝜉2 =

1

α2

V2

√V1

 ,      𝜉3 = 4ɛ2 (5.7) 

 

Using Eq. (2.38); 

−α5 + √α9 + α7 + 2√α8α9 = 0 (5.8) 

 

From the Eqs. (5.6) and (5.7); 
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√ξ1 − ξ2 + 2√ξ3ξ1 = 0 (5.9) 

 

√
1

α2
−

1

α2

V2

√V1

+ 2√4ɛ0
2

1

α2
= 0 (5.10) 

 

⇒ ɛ0 = −
1

4
[1 −

1

α

V2

√V1

] (5.11) 

 

From the Eq. (5.3) and (5.11) we can find ground state energy eigenvalue; 

E0 = −
1

4
α2 [1 −

1

α

V2

√V1

]

2

 (5.12) 

 

Furthermore we can use the Eq. (3.90) for calculating the all shifted energy 

eigenvalues; 

 

En
− = [(

−α12
2 α3

2 + α13
2

2ξ
+

ξ

2
)

2

− (
−α12

2 α3
2 + α13

2

2(ξ + nα3)
+

(ξ + nα3)

2
)

2

]
A

α3
2                       

 

= [
−α12

2 α3
2 + α13

2

2ξ
+

ξ

2
+

−α12
2 α3

2 + α13
2

2(ξ + nα3)
+

(ξ + nα3)

2
].                                   

         [
−α12

2 α3
2 + α13

2

2ξ
+

ξ

2
−

−α12
2 α3

2 + α13
2

2(ξ + nα3)
−

(ξ + nα3)

2
]

A

α3
2                                    

 

          = [
(−α12

2 α3
2 + α13

2 )(2ξ + nα3)

2ξ(ξ + nα3)
+ ξ +

nα3

2
] [

(−α12
2 α3

2 + α13
2 )(nα3)

2ξ(ξ + nα3)
−

nα3

2
]

A

α3
2 

   

= [
(−α12

2 α3
2 + α13

2 )(2ξ + nα3)

2ξ(ξ + nα3)
+ ξ +

nα3

2
] [

(−α12
2 α3

2 + α13
2 )

2ξ(ξ + nα3)
−

1

2
]

n

α3
A (5.13) 

 

using Eq. (3.63) we can simplify the second term in the above expression as follows; 
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(−α12
2 α3

2 + α13
2 )

2ξ(ξ + nα3)
−

1

2
=

−α12
2 α3

2 + α13
2 − ξ2 − ξnα3

2ξ(ξ + nα3)
 

                                             =
−2α12

2 α3
2 − 2𝛼12𝛼13𝛼3 − ξnα3

2ξ(ξ + nα3)
 

                         =
−2𝛼12𝛼13ξ − ξnα3

2ξ(ξ + nα3)
 

                   =
−2𝛼12𝛼3 − nα3

2(ξ + nα3)
 

Then 

En
− = [

(−α12
2 α3

2 + α13
2 )(2ξ + nα3)

2ξ(ξ + nα3)
+ ξ +

nα3

2
] [−

2𝛼12𝛼3 + nα3

2(ξ + nα3)
]

n

α3
A 

= [
(−α12

2 α3
2 + α13

2 )(2ξ + nα3)

2ξ(ξ + nα3)
+ ξ +

nα3

2
] [−

2𝛼12 + n

2(ξ + nα3)
] nA 

(5.14) 

 

Using α3 = 0 ⇒  ξ = 𝛼13 we reach a simple general expression for the    shifted 

energy eigenvalues; 

 

En
− = [

α13
2 (2𝛼13)

2α13
2 + 𝛼13] [−

2𝛼12 + n

2𝛼13
] nA 

 

= −(2𝛼12 + n)nA                 (5.15) 

 

From the eqs. (5.5), (5.6) and (5.7); 

 

En
− = −(4ɛ0 + n)nα2                 (5.16) 

 

Now we can write the energy eigenvalues by back shifting with help of Eq. (3.91); 

 

En = −(4ɛ0 + n)nα2 − 4α2ɛ0
2 

En = −
1

4
[4ɛ0 + 2n]2α2 (5.17) 
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Finally by inserting Eq. (5.11) into Eq. (5.17); 

 

En = −
1

4
[1 −

1

α

V2

√V1

+ 2n]

2

α2                 (5.18) 

 

And the wave function is; 

 

Ψn = Bns2ɛe−
s
αLn

4ε (
2s

α
)                 (5.19) 

 

 

Table 1: The energy eigenvalues of the Morse potential in atomic units (2m = μ = 1). 

For H2; 2V1 = V2 = 9,4892, α = 0,1440558. For NaCl; 2V1 = V2 = 5,030574 and  

α = 0,11998912. 

 

 H2 LiH 

n Our work     Nasser [48] Our work Nasser [48] 

0 -4,436 -4,4360 -2,32859 -2,3286 

1 -3,84994 -3,8499 -1,97679 -1,9768 

2 -3,30538 -3,3054 -1,65378 -1,6538 

3 -2,80233 -2,8023 -1,35956 -1,3596 

4 -2,34078 -2,3408 -1,09415 -1,0941 

5 -1,92073 -1,9207 -0,85752 -0,8575 

6 -1,54219 -1,5422 -0,64969 -0,6497 

7 -1,20515 -1,2051 -0,47066 -0,4707 

8 -0,90961 -0,9096 -0,32042 -0,3204 

9 -0,65558 -0,6556 -0,19898 -0,1990 

10 -0,44306 -0,4431 -0,10633 -0,1063 
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5.2 Solution Of The Eckart Potential 

 

The Eckart potential [37] is an exponential-type potential and  one of the most 

widely used potentials in physics[13] and chemistry [7]. The conventional Eckart 

potential is; 

 

VA,B(r) = γ(γ − 1)cosech2(r) − 2βcoth(r),     0 < r < ∞ (5.20) 

 

where γ, β >0 

 

 

Figure 2: Eckart Potential 

 

Rewriting the equation; 

 

Vγ,β(r) = γ(γ − 1)
4e−2r

(1 − e−2r)2
− 2β

1 + e−2r

1 − e−2r
  

 

(5.21) 

If we define a new parameter s = e−2r and let 2m = ħ = 1, SE transforms to; 
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d2Ψ

ds2
+

1

s

dΨ

ds
+

1

4s2
(−

γ(γ − 1)4s

(1 − s)2
+ 2β

(1 + s)

(1 − s)
+ E) Ψ = 0 (5.22) 

 

Meanwhile, 

ds

dr
= −2s,

d2s

dr2
= 4s (5.23) 

 

⇒
1

s2
(

𝑑𝑠

𝑑𝑟
)

2

=
1

s

d2s

dr2
= 4 (5.24) 

 

making the shape variance condition satisfied. Using eqs. (2.19), (2.24-2.28), (2.30), 

(2.37 and 2.38), (2.40 and 2.42), 

 

α1 = 1, α2 = 1, α3 = 1, α4 = 0   

α5 = −
1

2
, α6 =

1

4
+ ξ1, α7 = −ξ2, α8 = ξ3 

α9 = ξ1 − ξ2 + ξ3 +
1

4
, α10 = 1 + 2√ξ3,      

α11 = 2 + 2 (√ξ1 − ξ2 + ξ3 + 1 4⁄ + √ξ3), 

α12 = √ξ3, α13 = −
1

2
− √ξ1 − ξ2 + ξ3 + 1 4⁄ − √ξ3,    

 

and 

(5.25) 

ξ1 =
2β − E

4
, ξ2 = −

+2E + 4γ(γ − 1)

4
 ,      ξ3 = −

E + 2β

4
= ε2 (5.26) 

 

Using Eq. (2.38) for n=0; 

 

−α5 + √α9 + α3√α8 + α7 + 2α3α8 + 2√α8α9 = 0 (5.27) 

 

Rewriting the Eq. (5.27); 
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1

2
+ √ξ1 − ξ2 + ξ3 + 1 4⁄ + √ξ3 − ξ2 + 2ξ3 + 2√(ξ1 − ξ2 + ξ3 + 1 4⁄ )ξ3

= 0 

(5.28) 

⇒ 

(√ξ1 − ξ2 + ξ3 + 1 4⁄ + √ξ3 + 1) (√ξ1 − ξ2 + ξ3 + 1 4⁄ + √ξ3) − ξ1 +
1

4

= 0 

(5.29) 

ξ1 − ξ2 + ξ3 + 1 4⁄ = (
2γ − 1

2
)

2

 (5.30) 

 

So we rewrite Eq. (5.29); 

 

(γ −
1

2
+  ε0 + 1) (γ −

1

2
+  ε0) −

2β − E0 + 1

4
= 0 (5.31) 

 

solving Eq. (5.31) for ε0 by inserting ε0
2 from Eq. (5.26); 

 

ε0 =
𝛽 − 𝛾2

2𝛾
 (5.32) 

⇒ 

E0 = −
𝛽2

𝛾2
− 𝛾2 (5.33) 

 

Furthermore we can use the Eq. (3.90) for calculating the all shifted energy 

eigenvalues; 

 

En
− = 4 [(

(α13 + α12)(α13 − α12)

2(α13 + α12)
+

α13 + α12

2
)

2

− (
(α13 + α12)(α13 − α12)

2(α13 + α12 − 𝑛)
+

α13 + α12 − 𝑛

2
)

2

] 

(5.34) 

Using 
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α12 = ε0 =
β − γ2

2γ
,        α13 = −

β + γ2

2γ
 (5.35) 

 

Inserting eq. (5.34) 

 

 

En
− = [

β2

γ2
+ γ2 −

β2

(γ + n)2
− (γ + n)2] (5.36) 

 

And 

 

 

 En = En
− + E0 = [−

β2

(γ + n)2
− (γ + n)2]                 (5.37) 

 

Ψn = Bns
√−E−2β

2 (1 − 𝑠)γPn

(√−E−2β,2γ−1)
(1 − 2s)                 (5.38) 

 

 

Table 2: Comparison of the calculated energy eigenvalues of the Eckart potential 

with Taskin [52] in atomic units (2m = μ = 1), γ = 1,8 and  β = 100. 

 

n Our work Taskin [49] 

0 -3089,66 -3089,66 

1 -1283,35 -1283,35 

2 -706,961 -706,961 

3 -457,068 -457,068 

4 -330,905 -330,905 

5 -262,503 -262,503 

6 -225,206 -225,206 

7 -206,572 -206,572 

8 -200,163 -200,163 
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5.3 Solution Of The Hua Wei Potential 

 

Wei Hua anharmonic oscillator is used for diatomic molecules to describe their 

bond-stretching vibrations [50]. It is widely used in moleculer physics and chemistry 

[51]. Hua  Potential is defined as [38]; 

 

V(r) = V (
1 − e−br

1 − ce−br
)

2

 (5.39) 

  

Figure 3: Hua Potential 

 

If we define a new parameter s = ce−br and let 2m = ħ = 1, SE transforms to 

 

d2Ψ

ds2
+

(1 − s)

s(1 − s)

dΨ

ds
+ [

(Ec2 − V)s2 + 2(Vc − Ec2)s + c2(E − V)

b2c2s2(1 − s2)
] Ψ = 0 (5.40) 

 

meanwhile 

ds

dr
= −bs,

d2s

dr2
= b2s (5.41) 
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⇒
1

s2
(

ds

dr
)

2

=
1

s

d2s

dr2
= b2 (5.42) 

 

making the shape variance condition satisfied. Using eqs. (2.19), (2.24-2.28), (2.30), 

(2.37 and 2.38), (2.40 and 2.42), 

 

α1 = 1, α2 = 1, α3 = 1, α4 = 0   

α5 = −
1

2
, α6 =

1

4
+ ξ1, α7 = −ξ2, α8 = ξ3 

α9 = ξ1 − ξ2 + ξ3 +
1

4
, α10 = 1 + 2√ξ3,      

α11 = 2 + (2√ξ1 − ξ2 + ξ3 + 1 4⁄ + √ξ3), 

α12 = √ξ3, α13 = −
1

2
− √ξ1 − ξ2 + ξ3 + 1 4⁄ − √ξ3,    

 

and 

(5.43) 

ξ1 =
V − Ec2

b2c2
, ξ2 =

2(Vc − Ec2)

b2c2
 ,      ξ3 =

V − E

b2
= ε2 (5.44) 

 

Using Eq. (2.38) for n=0; 

 

−𝛼5 + √𝛼9 + 𝛼3√𝛼8 + 𝛼7 + 2𝛼3𝛼8 + 2√𝛼8𝛼9 = 0 (5.45) 

 

From the Eq. (5.45); 

 

(√ξ1 − ξ2 + ξ3 + 1 4⁄ + ε0 + 1) (√ξ1 − ξ2 + ξ3 + 1 4⁄ + ε0) − ξ1 +
1

4
= 0 (5.46) 

 

ξ1 − ξ2 + ξ3 + 1 4⁄ =
V(c − 1)2

b2c2
+

1

4
= β2 (5.47) 

 

Solving Eq. (5.46) for ε0 by inserting ε0
2 from Eq. (5.44); 
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ε0 =
V(1 − c2)

b2c2(2β + 1)
−

2β + 1

4
 (5.48) 

⇒ 

E0 = V − b2𝜀0
2 (5.49) 

 

Furthermore we can use the Eq. (3.90) for calculating the all shifted energy 

eigenvalues with using Eqs. (5.47) and (5.48); 

 

En
− = −b2 (

(n − 2β − 1)(n − 2β − 1 − 2ε0)(n + 2ε0)

(2n − 2β − 1)2
) 𝑛 (5.50) 

And 

 
 

 En = V − b2 [𝜀0
2 + (

(n − 2β − 1)(n − 2β − 1 − 2ε0)(n + 2ε0)

(2n − 2β − 1)2
) 𝑛]                 (5.51) 

 

This eigenvalue equation is consistent with the formula which is given for Hua 

Potential in Hassanabadi [51]. 

 

Ψn = Bns
√V−E

b (1 − s)
2β+1

2 Pn

(
2√V−E

b
 ,2β)

(1 − 2s)                 
(5.52) 
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CHAPTER VI 

 

 

CONCLUSION 

 

 

 

We explained Nikiforov-Uvarov Method which is one of the most systematic and 

direct methods being used for solving potentials in moleculer phsics. We briefly 

desribed newly developed parametric generalization of the Nikiforov-Uvarov 

method. Then Supersymmetric Quantum Mechanics was studied in detail. Hamilton 

Hierarchy Method and Shape Invariance concepts and how these methods are 

implemented together were explained. It was pointed out that how SUSYQM is a 

very powerful method for solving some potentials when it is used together with 

Hierarchy of Hamiltonians and Shape Invariance. Furthermore it was specified that 

many of the well known exactly solvable potentials have shape invariance property. 

In addition, very newly generated parametric generalization of the Hamilton 

Hieararchy Method was introduced in detail. Since all these mathematical tools have 

been developped and studied to find out the correct mathematical descriptions of 

characteristics of diatatomic molecules, we explanied dynamics and spectral 

properties of diatomic molecules in Chapter IV. Molecular potentials and motions of 

diatomic molecules with the consequences of these dynamics on the spectroscopy of 

diatomic molecules were examined in the frame of quantum mechanical principles.  

 

Finally in chapter V, we implemented all these mathematical tools to solve three of 

the very famous diatomic potentials, Morse, Eckart and Hua Wei. Firstly we used 

parametric generalizaton of Nikiforov-Uvarov method to define the parameters of 

related Schrödinger Equation of each potential. Secondly, we calculated the ground 

 state energy eigenvalue of the Hamiltonians. Thirdly, shifted energy eigenvalue 

spectrum of the Hamiltonians are calculated by using parametric generalization of 

the Hamilton Hierarchy Method.   
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Then ground state energy added onto these shifted energy eigenvalues and true 

energy eigenvalue spectrum was obtained. Wave functions were written with 

applying energy eigenvalues with Nikiforov-Uvarov method.  

 

The numerical values of the energy eigenvalues for H2 and LiH diatomic molecules 

were computed and presented for the Morse potential. These eigenvalues were 

compared with the findings of the Nasser [48]. Since our calculations are made using 

atomic units (2m = μ = 1), the energy eigenvalues presented in Nasser [48] were recalculated 

in atomic units by using the formulas given in Nasser [48] for the energy eigenvalues. It is 

seen that these adjusted eigenvalues are very consistent with our results. For angular 

quantum number l = 0, Morse potential has exact solution. But for l ≠ 0, some 

approximations must be made  to find analytical solutions. SE is solved for l = 0 in 

this thesis. The numerical values of the energy eigenvalues for the conventional 

Eckart Potential are also determined by choosing some arbitrary parameters. These 

calculated eigenvalues were compared with the results presented in Taskin [49]. The 

calculations in Taskin [49] were adjusted according to the our chosen parameters and were 

also consistent with our results. The eigenvalue solution of the Hua Potential was also 

obtained. This equation is also consistent with the expression which is given in Hassanabadi 

[51] with different form. Furthermore, it is observed that values of the calculated energy 

eigenvalues of the bound states of these potentials starts to decrease beyond certain “n” 

number. This means that these proposed potentials are only working for values of n<k. 

  

So it is seen that applying parametric generalization of Hamilton Hierarchy Method 

with parametric generalization of Nikiforov-Uvarov Method to the potentials which 

have required shape invariance conditions (especially exponential type potentials) 

lets simple and direct solutions.  
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