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ABSTRACT

A SURVEY OF COMPETING RISK ANALYSIS:
A MEDICAL APPLICATION

Talu, Ceylan
Ms., Department of Statistics

Supervisor: Prof. Dr. Fetih Yildirim

September 1999, 154 pages

The theory of competing risks deals with a situation where an organism or a
system is exposed to two or more causes of failure or death but its eventual failure
is obtained from only one of these causes of failure. In physical sciences the
competing risks data can be obtained in life testing or reliability analysis when
there is more than one possible cause or mode of failure. Competing causes of
failure must be taken into account in the study of how risk factors affect a specific
cause of failure. In the analysis of failure times with competing causes of failure
problems include the estimation of treatment effects on specific failure types, the
study of interrelations among failure modes and the estimation of failure rates for
some causes when certain other failure types are removed. Since this is the first
study about competing risks in Turkey, it includes most of the methods used in
statistics to analyze competing risks data. Cause-specific hazard functions are
shown to be used as basic estimable quantities for analyzing such data. Some
computer programs are developed to apply the methods and important factors are

specified for acute leukemia in the presence of competing risks.
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YARISAN RiSK ANALIZINE GENEL BAKIS:
BiR TIBBI UYGULAMA

Talu, Ceylan
Yiiksek Lisans, Istatistik Boliimii

Tez Danigmani: Prof. Dr. Fetih Yildirim

Eyliil 1999, 154 sayfa

Yanigan riskler teorisi, bir sistemin ya da bir organizmanin iki ve daha fazla
sebepten basarisizliga veya Olime maruz kaldigi fakat basansiziin bu
sebeplerden sadece biri tarafindan meydana geldigi durumlarla ilgilenir. Fiziki
bilimlerde, birden fazla basarisizhik nedeni varsa yarigan riskler verisi yasam
testlerinden ya da giivenilirlik analizlerinden elde edilir. Eger risk faktorlerinin
belirli bir bagarisizlik nedenini nasil etkiledigi arastiriliyorsa yarigan riskler goz
Oniine alinmaldir.Yarigan bagarisizhik sebepleri ile bagarisizlik zamam
analizindeki problemler, tizerinde ¢alisilan gruplarin belirli bir bagarisizlik tipine
etkisinin tahminini, basarisizlik modlarn arasindaki iligkinin tespitini ve belirli bir
bagarisizlik tipinin yok edilmesi durumunda diger nedenlerin basarisizlik
oranlarimn  belirlenmesini igerir. Bu ¢aligma.. Tirkiye’de yarisan riskler
konusundaki ilk ¢aligma oldugu igin, yansén riskler Vérisinin analizindeki bir ¢ok
istatistiki yontem ele alinmugtir. Bu tip veri igin elde edilmesi. gereken temel
birimlerin sebebe baglh bagarisizlik fonksiyonlar1 oldugu gosterilmistir, Kullanilan
metodlarin analizi i¢in baz1 bilgisayar ‘Iﬂ)rograrlnlan gelistirilmis ve yarisan 'riskler

mevcutken akut 16semideki 6nemli faktorler belirlenmigtir.

Anahtar Sozciikler: Yarngan riskler, sebebe bagli beié‘ansmhk fonksiyonu, ham, net
ve kismi ham olasiliklar, yasam olasiliklan1 ve olay ihtimalleri, Cox regresyon
modeli.
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CHAPTER 1

INTRODUCTION

The theory of competing risks is concerned with the assessment of a
specific risk in the presence of other risks acting on the population to fail a system
or an organism. In clinical trials, the principle endpoint for each study subject may
be a complex phenomenon involving type of outcome and time to its occurrence.
For instance, in a cancer treatment study the endpoint might be cause of death and
survival time, or an indicator for disease remission or progression plus time to
failure. Many units, systems, subsystems, or components have more than one
cause of failure. For example, a capacitor can fail open or as a short, any of many
solder joints in a circuit board can fail, A semiconductor device can fail at a
junction or at a lead, and a device can fail because a manufacturing defect or
because of mechanical wearout. Competing risk models are used to describe and

analyze such data.

The problem presents itself in different terms since the aim is not to
measure overall mortality but to establish the impact of a specific cause of death.
Suppose that, for individuals in a particular population, there are k, (k > 1)
possible causes of failure. Then, each member of the population is regarded as
subject to k risks competing for his life. Which one of these risks wins is the cause

of death for that patient.

Competing risks literature deals with observable and non-observable
probabilities. The formers are quantities expressed as a function of the cause-

specific hazard rate; corresponding the original observations with all causes of




risks acting. Non-observable probabilities are needed when an epidemiologist, for
example, is interested in predicting what would happen if one or more causes of
death were removed. Computations of non-observable probabilities are strictly
dependent on the distributional models of failure times. The concept of latent
failure time for each cause has been found mathematically convenient for the

theoretical modelling of competing risks.

Available data on each study subject include t > 0, time to failure;
Ce{l,...k}, the type of failure and a regression vector, Z may record the treatment
assignment as well as other disease, personal or demographic characteristics of the
patient. T may describe time from entry into the study to death. Two approaches
have been followed for analyzing cause-specific survival data. First one simply
involves fitting models separately for each cause in turn, treating other failure
types as censored data. Second involves fitting more complex models in
corporating the different failure types. A difficulty with this alternative is that the

standard software is not available.

Three distinct problems arise in the analysis of failure times with
competing risks. These are 1) inference on the effects of treatment, exposure or
other regression variables on specific type of failure, 2) the study of the
interrelations among failure types under specific study conditions, and 3) the
estimation of failure rates for some causes given the removal of some or all other
causes. Due to heterogeneity of patient population, a major concern in the analysis
of competing risks data is the relationship of covariates such as sex, age and

disease-severity with the type of outcome and its timing.

Since the theory of competing risks is concerned for the first time in
Turkey, it is decided that this thesis must contain lots of statistical methods used
to analyze the competing risk data. The aim of this thesis is to outline the existing

theory and to do an application of competing risk data set obtained in Turkey. It



can be applied in various areas. That is why demographers, vital statisticians and

actuaries have long been concerned with the theory.

In this study, the acute leukemia data are used to analyze competing risks
models. From 1%.August.1987 to 5™ March.1999 randomly selected 84 patients
are taken from the Marmara Medical School Hospital in Istanbul. There are two
competing risks as relapse/progression type risk and refractor/wrong medical
treament related risk of deaths for acute leukemia patients. Data set also contains
six prognostic factors for the acute leukemia patients. These are type of leukemia,
age, existence of other illnesses besides acute leukemia, the amount of normal
white blood cells, platelets and red blood cells in the patient’s blood. Parametric,
non-parametric and semi-parametric models are used in the data analysis.
Parametric models contain determination of the appropriate theoretical
distribution for each cause, estimation of the parameters of the underlying
distribution and calculation of the crude, net and partial crude probabilities. For
parameter estimation, Newton-Raphson iteration method is used. Kaplan-Meier
survival probabilities and crude cumulative incidence probabilities are discussed
in the non-parametric analysis. To determine the effects of covariates into survival
probabilities in the presence of competing risks, semi-parametric Cox regression
model is proposed. For all these analysis, the two competing risks factors are

assumed to be independent.

Previous studies about competing risks analysis are examined in Chapter
2. Chapter 3 contains parametric methods with independent and dependent
competing risks, estimation of cause-specific hazard functions, follow-up studies
in the presence of competing risks, methods for construction of life tables, non-
parametric tests and models used in competing risks analysis. Chapter 4 is
devoted to the application of competing risks theory. Because of the nature and
structure of the data and other restrictions, in the application part of this thesis
only certain methods are considered. And finally the conclusion, discussion and

suggestions for some possible future studies are given.
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CHAPTER 2

LITERATURE SURVEY

The theory of competing risks was first introduced by Daniel Bernoulli in
1760. His basic question of interest at time is “ if in a given population the
smallpox could be eradicated, what would be the effect on the population
mortality structure at different ages? “. This Bernoulli’s question is still with us
today if for smallpox, some form of cancer, heart disease, etc. are substituted. A
natural extension is to ask for the effect of changing the importance of one or
more causes of death. D’Alembert (1761) derived a method to determine the
change in population composition that would take place if smallpox were

climinated as a cause of death.

Makeham (1874) introduced the first formulation of a theory of
decremental forces and usage in practical application. An interesting account of
the development is found by Todhunter (1949). Greville (1948) discussed
deterministically multiple decrement tables. Fix and Neyman (1951) studied the
problem of competing risks for cancer patients and Chiang (1961) approached the
problem from stochastic viewpoint. Chiang, in his paper he gave the follow-up

studies in competing risks.

Samford (1952) who discusses an accidental death model in connection
with the estimation of response time distributions and Berkson and Elveback
(1960) dealing with the problem of competing exponential risks give two special
cases of the general method. Boardman and Kendell (1970) consider the case of
underlying exponentially distributed lifetimes.

4



The basic reference regarding the development of competing risks theory
is given by Chiang (1968) who defines the particular probabilities of interest like
crude, net and partial crude probabilities and obtains such probabilities from the
basic parameters of k underlying life distributions. In theory, this approach is
general and applicable to any set of lifetimes arising from continuous
distributions, provided the causes of failure act independently. Chiang obtains the
relation between the crude, net and partial crude probabilities and from this
relation he uses the estimates of the crude probability to estimate net and partial
crude probabilities. Although this method is free from any underlying distribution,
the assumption of constant relative forces of mortality holds only for certain
classes of continuous distributions of interest. David (1970) has shown that the
assumption will be satisfied whenever the underlying distributions of life have
one of the three possible forms of the extreme-value distribution of the minimum,
and hence in particular for exponential or Weibull distributions with equal shape
parameters. A simple general method, based on the grouped observations, has
been put forward by Kimball (1957). Moeschberger and David (1971) pointed out
that Chiang’s and Kimball’s crude and net probabilities depend on how the time
intervals are chosen. However, they showed that the parametric method tends to
smooth out these probabilities over the life span of the individual. Kanie and
Nonaka (1985) give the estimation technique of Weibull shape parameters for two
independent competing risks. They use the relations among cumulative hazard

functions of the system at virtual observation limit for estimation.

Hoel (1972) considers the mortality data in competing risks framework.
He represents cohort mortality data by a probabilistic combination of competing
risks and describes each risk by an age-at-death distribution and net probability of
occurrence. This representation is illustrated by a set of pathology data from a
well-controlled laboratory animal experiment. These data are used in many

applications in competing risk analysis.



Gail (1975) has treated the actuarial model of competing risks in detail,
comparing it with other models and giving useful variance formula both for the

case when times of death are available and for the case when they are not.

Seal (1977) reviewed the history of actuarial and the concepts in the
relevant literature. She considers the problem started with Bernoulli’s smallpox

mathematics and gives all proper techniques developed during the nineteenth

century.

David and Moeschberger (1978) prepared a monograph for the theory of
competing risks. They considered the concept in large prospect. They gave the
parametric approach under both independent and dependent risks. Moreover, they
gave graphical methods and use of concomitant information in competing risks

analysis.

Sinha (1986) explains competing risks model with the exponentially
distributed components and exponential failure time distribution. He develops a

maximum likelihood estimators of parameters.

Thompson (1988) takes the competing risk model as a Markov chain
model. In competing risks theory, individual is alive initially, denoted by state 0
and at death, the individual makes a transition to being dead because of some
cause Rs, 8=1,...,k. Also, he represents the reactor safety studies under competing

risks framework and points out the delayed fatalies.

In 1978, Prentice, Kalbfleisch, Peterson, Flourney, Farewell and Breslow
analyzed the failure times in the presence of competing risks. They showed that
cause-specific hazard functions were the basic estimable quantities in competing
risk analysis. A method, involving the estimation of parameters that relate time-
dependent risk indicators for some causes to cause-specific hazard functions for

other causes was proposed for the study of interrelations among failure types. In

6



addition, it was argued that the problem of estimation of failure rates under the
removal of certain causes was not well posed until a mechanism for cause
removal was specified clearly. They used a well-known clinical trial in competing

risk analysis in bone marrow transplantation for leukemia.

Kay (1986) analyzes data from a randomized clinical trial comparing
treatment for patients with prostate cancer in the presence of competing risks.
Like Kalbfleish and Prentice (1980), fit models separately for each type of failure
in turn, treating other failure types as censored data. Lunn and McNeil (1995)
apply Cox regression to competing risks with proportional hazard regression
model with censored data. They give two methods for the joint estimation of
parameters in models for competing risks in survival analysis. In both cases Cox’s

proportional hazard regression model is fitted using the data duplication method.

The hazard function representation of failure time is generalized in
competing risks theory by Kalbfleisch and Prentice (1980). They propose methods
to study the relationship between covariates and certain cause-specific hazard
functions. The use of time dependent covariates gives a promising approach to

other competing risks problem.

Larson (1984) proposed a log-linear model for analysing competing risks
data with discrete covariates. He approximates the cause-specific hazard rates by
step functions. His work shows how to summarize competing risks data in

contingency table and how to analyze these data by log-linear techniques.

Another alternative approach for analysing cause-specific survival data in
competing risks theory is used by Larson and Dinse (1985) and Kuk (1992). They
fit more complex models incorporating the different failure types. Larson and
Dinse (1985) use a mixture model for the regression analysis of competing risks
data. They use an EM algorithm to obtain maximum likelihood analysis and Kuk

(1992) needed to use Monte Carlo simulation to accommodate two failure types in

7



a survival analysis model. A difficulty of these models is that standard software is

not available.

Distribution free test for the equality of failure rates due to two competing
risks is considered by Bagai (1986) and Bagai, Deshpande and Kochar (1989).
They found distribution free tests which are proposed for testing the equality of
the two failure distributions against location, scale and general stochastic
ordering alternatives. After deriving locally most powerful rank test, they propose
a generalization of the Wilcoxon test under independent competing risks
assumption. In 1992, Yip and Lam derived a class of non-parametric tests by
martingale theory to test equality of failure rates in a competing risks model, when
data are the cause of failure and the observed time to failure. Aly, Kochar and
McKeague (1984) propose some tests whether two risks are equal or whether one
is more serious than the other. They compare the cumulative incidence functions
and cause-specific hazard rates without making any assumption on the nature of
dependence between two risks. Sun and Tiwari (1995) consider the same case
with censored data. They develop on asymptotic normal distributions of the test
statistic by expressing the statistic in terms of counting process and using
martingale central theory. They use a set of mortality data given by Hoel (1972).
Kochar (1995) gives a review of some distribution free tests for the equality of
cause specific hazard rates. Recently, Sun and Tiwari (1997) determine a simple
non-parametric test for comparing the cumulative incidence functions of a
competing risks model when two causes of failure are possibly statistically
dependent. The test statistic is the weighted sum of the differences of two
cumulative incidence functions at system failure times. The test is based on an
asymptotic normal distribution. The latest work on the equality of cause-specific
hazard rates in a competing risk model is introduced by Lam (1998). He proposes
a class of asymptotically distribution free tests for the equality of the k risks and
tests are derived by martingale theory or by a marginal likelihood approach.



Estimation of occurrence/exposure rate in competing risk models is
introduced by Babu, Rao and Rao (1992). Under mixed censoring procedure they
develop a non-parametric estimator of specific occurrence/exposure rate. Huang
and Wang (1995) show that there is a one-to-one correspondence between the
crude hazard functions and occurrence probabilities. To estimate occurrence rate
they use different sampling procedures. The maximum likelihood property and

asymptotic behaviour of estimation procedure are studied.

In competing risks framework, the observed data are time to failure,
T=min(X, Y) where X is the time to failure of the cause of death and Y is the time
point of the occurrence of other competing event, and type of failure 6 = I (X<Y).
Basu and Klein (1982) pointed out that the pair (T, I) provides insufficient
information to determine the joint distribution of X and Y. There may be both an
independent and one or more dependent models for X and Y producing the same
joint distribution for (T, I). However, these joint distributions may have different
marginal distributions. This problem is known as the identifiability problem. In
the light of this untestable independence assumption some bounds on the marginal
survival are found by Peterson (1976). In 1983, Slud and Rubinstein developed
much tighter bounds than those of Peterson. Slud and Byar (1988) show by using
the results of Slud and Rubinstein (1983), that competing latent failure times t and
C and a two level covariate V, that is, V = 0 or 1, assuming T and C are
independent for each V level, can lead the wrong conclusion about the ordering of
Pr(T2>t | v= and Pr (T =t | V = 0) for every t. To estimate the marginal
survival function of X in using the product-limit estimator, Klein and
Moeschberger (1988) propose bounds on this function based on the observable

random variables (T, I) and some assumptions on the joint behaviour of X and Y.

David and Moeschberger (1978) propose the parametric models when the
competing events are dependent. In 1984 and 1987, Moeschberger and Klein
investigated the consequences of departures from independence when the

component lifetimes in a series system are exponentially distributed. They

9



considered first in theoretical modelling of series system when the distribution of
the component lifetimes is assumed. Second, they discussed errors in parametric
and non-parametric estimation of component reliability and component mean life

when the independence assumption is made erroneously.

To test the independency between failure times in a competing risks
framework Carling (1996) examines the performance of the conventional
likelihood ratio test. He points out that the dependence between failure times
arises stochastically related unobserved components that are estimated non-
parametrically. He uses a dependent competing risks model of the mixed

proportional hazard type.

Lanberg, Proshan and Quinzi (1978) show that under certain conditions it
is possible to establish a particular equivalence between system of dependent
components and a system of independent components. In 1981, they developed
methods that could be used to unify and simplify the non-parametric approach
toward estimation of dependent life lengths in competing risks model using their
1978 work. Also, they obtained an elementary proof of the strong consistency of
the Kaplan-Meier estimator.
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CHAPTER 3

THE THEORY OF COMPETING RISKS

3.1. Basic Definitions

The theory of competing risks is concerned with the assessment of a

specific risk in the complicating presence of other risks.

A useful analogy can be drawn between an individual subject to a number
of components. System break dawn due to failure of a particular component then

corresponds to death due to a particular risk.

Assessment of a new treatment for a particular form of cancer where
inferences must often be made on the basis of a limited number of cases. The
experiment consists of an operation of other treatment followed by a period of
observation. This form of life testing has come to be known as survival analysis
when human subjects are involved. If the patient dies during the course of the
study, the cause of death and time to death are noted. For the survivors at the end
of the experiment the length of time in the experiment is recorded; these values
are said to be censored since observation was stopped prior to death. Such
censoring, of frequent occurrence in practice, may be regarded as effectively as a
competing risks, since censoring at a certain time x prevents an individual from

dying from a particular cause during the experiment just as surely as does death at

11



time x from some other cause. Thus, competing risks are in the ordinary sense, but

only a single risk with censoring,

Death is not a repetitive event and it is usually attributed to a single cause;
however, various risks competing for the life of an individual must be considered
in the cause-specific studies. In such kind of studies it is considered that there are
k components arranged in series, failure of one or more components leading to
failure of the system of individual. To be more familiar with the methodology
understanding the following three types of probability of death from a specific

cause is required.

1. The crude probability: The probability of death from a specific cause

in the presence of all other risks acting in a population, or

Qis = Pr {an individual alive at time x; will die in the interval (x;, Xi+1)
from cause R;s in the presence of all other risks in the

population}.

2. The net probability: The probability of death if a specific risk is the

only risk in effect in the population or, conversely, the probability of death if a

specific risk is eliminated from the population.

Qis = Pr {an individual alive at x; will die in the interval (x;,xi+1) if Rg is

the only risk acting on the population.};

dis = Pr {an individual alive at x; will die in the interval (x;,x;+1) if Rs is

eliminated as a risk of death.}

3. The partial crude probability: The probability of death from a specific

cause when another risk ( or risks) is eliminated from the population.

12



Qis.1 = Pr {an individual alive at x; will die in the interval (x;,X;+;) from

Rs if R; is eliminated as a risk of death};

Qis.12 = Pr {an individual alive at x; will die in the interval (x;,Xj+1) from

R; if Ry and R; are eliminated as a risk of death};

When the cause of death is not specified, then the probabilities are

pi =Pr {an individual alive at x; will survive in the interval (x;,X;+1) }
and
qi = Pr {an individual alive at x; will die in the interval (xi,Xi+1)}

Withpj +qi= 1.

The use of the term risk and cause needs clarification. Both terms may
refer to same condition, but are distinguished by their position in time relative to
the occurrence of death. Prior to death the condition referred to is a risk; after

death the same condition is the cause.

The distinctive feature of data admitting a competing risk analysis is that,
for each individual, both causes of death and time to death (exactly or in interval)

must be available.

3.2. Basic Formulation

Let R, (p=1,...,k) denote the k competing risks that are causes of failure
and the theoretical random variable Y; (i=1,...,k) represent an individual’s length
of life if the particular risk R; are the only risk present in the population. Then the
cumulative distribution function (d.f.) of Y; is Pi(x) = Pr {Y; < x} and the
corresponding probability density function is, usually assumed to exist, denoted by

13



pi(x). Apart from the cause of failure only the minimum Z of the k theoretical

lifetimes is obtained. So, Z can be shown as

Z=min (Y1, Ya,...,Yi) = min Y,
P

Now, if Z exceeds x, each Y; must also exceed x and it is obtained that
Pr{Z>x}=Pr{Y,>x,....,Yxk>x} 3.1

Pr {Z > x } can be written as F;(x)=1-F;(x), F (rather than P) being
used for the d.f. of z to emphasize that Z is observable, unlike the Y;. The bar
denotes complementation and F(x) is called the survival (or survivor) function

of Z. Further, let
Az (%) =1£, () / F,(x) (3.2)

be the conditional failure rate function for Z. Reflecting its areas of application in
actuarial work, demography, vital statistics, renewal theory, and reliability, Az (x)
is variously known as the force of decrement, force of mortality, age-specific

death (failure) rate, intensity function, and hazard function.

Let gi(x)dx (i=1,...,k) denote the probability of failure from R; in
(x,x+dx), in the presence of all k risks, of an individual alive at time x. It is
assumed that the probability of more than on failure in (x, x+dx) is negligible (of
order (dx)z). Then since Az (x)dx is the probability of failure in (x, x+dx) from any

cause, given survival to time x, it is obtained that

k
Az (x) = ggi(x), (3.3)
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showing that the (total) force of mortality is the sum of the component forces.

It is to be noted that it is not required so far the risks R; to act
independently. If this assumption is made, it can be more formally expressed as
the mutual independence of the Yj, (3.1) becomes

Pr{Z>x}=Pr {Y:>x}... Pr {Yi>x}

or
F, (x) = IT7, (x). (3.4)

In this case it is also obtained that

2:(6)=pi (x) ﬁl By (x) / F () = pi (x)/ By x)

#i

LS S

The last ratio, which is the failure rate function for Y;, may be denoted by A;(x)

and termed a cause-specific failure rate or marginal intensity function. Hence for

independent risks it can be shown that
gi(x) = Ai(x), i=1,..k (3.5)

which says that the probability of failure from R; in (x, x+dx), given survival to
time X, is the same whether R; is one of k risks or the only risk present. From (3.3)

and (3.5) it is seen that

Kz(x)= i}"i(x)s (3.6)

i=1

15
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a result which follows also directly from (3.4) in conjunction with

kz(x)=—%lnfz(x), xi(x)=_%1nﬁ(x). 3.7

The net, crude, and partial crude probabilities mentioned in Section 3.1
may be expressed in terms of the Ai(x), Az(x), and gi(x) functions. For a time

interval (a, b), it is obtained that

2(x)dx =—In[ B, (6)/B(a) ],

a

or

ex - I ()| - P62

= Probability of surviving R; in (a, b)
after surviving R; to a

= l'qi(aa b)a

where q;(a, b) is the net probability of death from R; in (a, b). Thus

qi(a,b)=l—exp[—?li(x)dx]. (3.8)

a
Also since

exp[— f?»z (t) dt] = Probability of surviving all risks in (a, x),
a
having survived to a,
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it is seen that the crude probability, Qi(a, b), of death from R; in (a, b) is obtained
by multiplying this expression by g;(x) and then integrating out over this interval.
Thus

Qi(a,b)= [, (x) exp[-’f ?»z(t)dt] dx. (3.9)

The corresponding partial crude probability with R; eliminated is formally given
by

b : X .

Q;;(a,b)=[g(x)exp [- 1 269(1) dt] dx (3.10)
a a

where gg"j) (x)dx and ?»(Zj)(t) are respectively the probability of failure on

(x,x+dx) from R;, and the hazard rate after elimination of R;. Note that the

probabilities g, Q;, and Q;; are all conditional on survival to time a. In fact, (3.9)

can also be written as

Qi(a,b)=ﬁ)—tfgi(x)?z(x)dx (3.92)

z\a) a

When the risks are independent, gg‘j) x) = gkx) = Ai(x) and

AGD (£) =Az(t)=A(t). So that (3.10) reduces to

Qi‘j(a,b)= ihi(x)exp {—z [Xz(t)—%j(t) ]dt }dx (3.10a)
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3.3. Parametric Approach, Independent Risks

3.3.1. Introduction:

The distinguishing feature of parametric approaches to competing risks
theory is assuming the functional form of underlying life (failure time)
distributions to be known apart from unknown parameter estimated by maximum
likelihood methods and hence, the maximum likelihood estimates of the crude, net
and partial crude probabilities may be obtained. In this section it is assumed that

the risks to which each individual is exposed act independently.

The particular functional form of the theoretical life distributions used to
make inferences depends upon one’s understanding of the failure mechanism.
Several specific families of life distributions have been advocated, namely,
exponential, Weibull, normal (or lognormal), gamma, and Makeham-Gompertz.
Perhaps the most important characterization of such life distributions, which have
been used as a criterion for selection, is the conditional failure rate (hazard rate).
Before considering specific life distributions, it is more convenient to introduce
general likelihood functions appropriate to various frequently arising experimental

situations.
3.3.2. All Lifetimes and Associated Causes of Failure are Known Case:

Let the nonnegative random variable Y; denote the theoretical lifetime of
an individual when R; is the only cause of failure (i = 1,...,k). In the simultaneous
presence of all k causes R, (p = 1,...,k) only the smallest of the Y, namely

Z=min Yp , is in fact observable, together with the actual cause of failure, say R;.
p

18



There are several choices of notational devices. First, one might write the

observed lifetime, conditional on knowing the cause of failure to be R;, as X,

where

Xi=Yi | Yi= minY,. (3.11)
P

A second notational device would be to write the observed lifetime and cause of

failure as a random vector, namely (8, Z), where &=i denotes failure due to R;. In

this section the first notation is employed.

Let the probability of failure due to cause R; be

(3.12)

i=1

k
ni=Pr{Yi=mian}, >0, >m =1,
p

where without essential loss of generality one can omit causes of failure associated

with zero probability. Then, from (3.11) and the independence of the Yj, the p.d.f.

fi(x) of X is given, ignoring terms of lower order, by

k
fi(x)= LPr{x ~dx < Y; <x} HPr{Yj > x}

i j=1
j#i

that is, by

()= —-pi(x) I Fj(x). 6.13)
i i
J

k

1=1
#i
This basic result may equivalently be expressed as
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k __
£ = i) TTF ) (3.132)
i )=
= L E ). (3.13b)

In this section the form in (3.13) is used.

If N; individuals fail from cause R;, and Xjj denotes the lifetime of the j-th
individual failing from cause R; (j=1,...,n; ; i=1,...,k), then the joint p.d.f. of the

Xjj may be written as

i=1 n?i j=1

f(xlls--'axlnl presas ,Xkl,...,xknk )= ﬁ ! o pi(xij) ]l(-[ Fp (Xij) (3.14)
p=
p#

It must be noted that this pdf is conditional on N; = n; (i=1,...,k). The Nj’s are

random variables with the multinomial probability function;

! k . k
£(y,esny ) = T n% where n=Y.n;. (3.15)

Hn' p i=1 i=1
it
i=1

Hence, the likelihood function of interest is

n! ko k _
L= 111 i) HIPp(Xij) (3.16)
1=l = =
i_]_:Ilni! g g;ti

Note that the terms of L may be rearranged so that
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L=-""TIL;, 3.17)
Hni!‘"l
i=1
where
nj k nj__
Li{_ pi(xij)} I TP (y) | (3.18)
i=1 p=1 j=I
p¢1

If each theoretical life distributions have a different set of parameters then the
estimation can be performed individually for each cause by maximizing L; with
respect to the parameters associated with the p.d.f. pi(y). An important
consequence is that the numerical estimates of the parameters associated with pi(y)
may be obtained individually even though the functional form of the densities may
be different (Weibull, normal). It should be noted, however, that although the
point estimates of the parameters of pij(y) may be obtained without any further
knowledge of py(y) , p#i, the distribution of such estimators will depend upon the

distributional form of the py(y), p=i.

Alternatively, one might estimate the parameters associated with cause R;
by regarding each of the lifetimes whose failure was due to some cause other than
R; as being censored. In other words, lifetimes whose failure was due to R, (p#i)
may be regarded as censored, in the sense that those individuals had not yet
reached their theoretical time to failure from R;. Thus, this procedure essentially
treats a competing risk problem as one in which there is only a single mode of
failure with censoring. In the context of competing risk theory, this method leads

to k different analyses on the same set of data.
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3.3.3.The Case of Censored Lifetimes:

Consider the situation in which an individual’s failure is observed only if
it occurs within some specified time period. The length of such periods may vary

from individual to individual.

This form of censoring, commonly termed (generalized) Type I
censoring, is applicable to medical follow-up studies in which patient usually
enter the study (that is; receive some treatment or have an operation performed) at
different times but the terminal point of the study is frequently the same for all
patients; this may be either because he has a time schedule to meet. Also, if
contact with some patients is lost this type of censoring again becomes applicable.
In such medical follow-up studies it is convenient, but not necessary, to assume

that the period for which as under observation begins at time zero.

Suppose that, for n (fixed) individuals, each individual is under
observation until censoring time y; (t=1,...,n); that is, the lifetime V; of the t-th
individual (t=1,...,n) will be known iff V; < y;. If V; > v, then the t-th individual,
will be considered as survivor. Let M and S denote the total number of failures

and survivors, respectively, so that n = S+M. Suppose M; individuals have failed

k
from cause R, i.e.,M =X M, , and let Xj; denote the time to failure of the j-th

i=1

individual whose failure was due to cause R; (i=1,...,; j=1,...,m;).

Then the likelihood function for Type I censoring is given by

k mj k _ s k_
Le ]I nlpi(xij) 1 Py xy % T TTBilvqw)) i< (3.19)
i=1j= p=
p#i
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where v;j denotes the censoring time of the j-th individual failing from cause R;,

and 7y, denotes the censoring times of the s survivors (u=1,...,s). Note that if all

X7 ¥ij for some i, then m;=0 and ﬁl in (3.19) may be defined as 1. It is possible
J=

to write
k
L, <JIL;, (3.20)
=1

where

A separate maximization of Ly may be accomplished provided each pi(y) has a

different set of parameters.

When the lifetimes of s individuals are known only to be confined in the

s intervals (ay, by), u=1,..,s, then the counterpart of (3.21) is

Sometimes individuals may enter a study in some manner, that is, the
censoring times will be random. It may be noted that (3.21) and (3.22) are
conditional on the censoring times being fixed. However, it is clear that if the
distribution of censoring times contains no common parameters with pi(y), the

numerical value of the maximum likelihood estimators of the parameters in pi(y)
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may still be obtained from (3.21) and (3.22). Yet, the distribution of such

estimators may be influenced by the distribution of the random censoring times.

Alternatively, it may be desirable to observe only the failure of the first m
individuals, where m is some predetermined integer (m<n). This kind of censoring
is known as Type II censoring. Here it is assumed that all individuals are under
observation for the same length of time. Suppose that M; and s denote the same

quantities as in Type I censoring. Then, Mj,...,Mx are random variables, but

k
m = Y M, and s are known.
i=l

Let X denote the time of the individual with the j-th longest lifetime
among those individuals whose failure is attributed to cause R;. It will be useful to
let V() be the time to failure of the individual with the t-th longest lifetime,
irrespective of the cause of failure. Thus, the sample consists of the observations

Xig (=1,... k; j=1,...,m;) or, alternatively, V (t=1,...,m).

Note that Vm=max Xi(mi) denotes the m-th individual to fail and, hence,
1

V(m) will be common censoring time for all individuals.

The likelihood function for Type II censoring is given by
k
Ly ]Il , (3.23)
=1

where

p=1 j=1
p=i

mj k my__ -
L =Ll;llpi(xij)] IT HlPi(xp(j)) -[Pi(v(m))]s, Xj(1) < - < Xi(m;) (3.24)
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From (3.21) with yy) = v for all u and (3.24) it is noted that the
maximization of the two likelihood functions L; and Ly yields the same estimators

if one takes y = v(m).
3.3.4. The Case of Grouped Lifetimes

Suppose that the range of variation (go, gn+1) of the lifetimes is partitioned
into h+1 intervals Iy = (g, gu+1) such that 0<go<g<...<gp+1<o. Let Njq

(a=0,1,...,h) denote the number of individuals failing from cause R; in I,. Then

h k
N; = Y N,, individuals have failed from cause R; and N, =3 N,, individuals
Q,:O i=1

k h
have failed in L. The total sample sizeis n=) YN, .
i=la=0

The distinguishing feature of such grouped data is that the Nj, and g,
contain all the information in the sample. Clearly, the observed number of deaths
classified in a two-way table according to cause of death and time interval of death

follow a multinomial distribution, i.e., the likelihood function of the Nj, is

n! k h -
Lo =411 [Im,*, (3.25)
H Hniq! i=l a=0
i=1 =0
where 7, = Pr {individual fails from R; in I, }. But
T = T [ Fi (8e+1) - Fi(ga) 1, (3.26)

where 7; = Pr {failure due to R; } and F; is the d.f. of X; whose p.d.f. is given in
(3.13).
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3.3.5. The Case of Possible Immunity for Some Individuals

If the net probability of failure from cause R; over the entire life span,
denoted by q;, is some fraction less than unity then the previous formulae in
Sections 3.3.2-3.3.4 need to be altered by replacing pi(y) and Pi(y) by qipi(y) and
qiPi(y), respectively.

Note that one q;, say qx, may always be taken to be unity by letting Ry

represent failure due to all causes other than Ry,...,Ry.1.

From (3.13) it is seen that the probability of fair due to R; in the presence

of all other risks is

oo k
T = jqipi(x) Hl [l—qup (x) ]dx. (3.27)
0 p=I
p#i

Thus, (3.27) implies that q; > m;, which merely states the intuitively obvious fact
that as one introduces risks, other than R;, into the life pattern of an individual the

probability of failing from R; decreases (i.e., is nonincreasing).

The d.f. of X; and the mean time to failure from cause R;, from (3.13), is

X k
F(x)=—faip; () TT [1-q,Po (@) it (3.28)
Tio p=1
p#i
and
© k
ey = B3)= 2 faimi(0) T1 [1-a,Ro () b 629)
10 p=

p#i
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3.3.6. Combination of Cases Already Considered:

Suppose M individual lifetimes are observed exactly within some
specified time interval (8;, 8;) with M; individuals failing from cause R;. Further
assume that Nj, individuals have failed from R; in the a-~th interval, (g4, gq+1) ( the
intervals being such that there is no overlap with (8;, §;) and such that they may be

adjacent to one another but need not be) and that

k k h
S=n-3M,; -3 XN,
i=1

i=la=0
individuals are known only to be confined in the S intervals (a,, b,), v=1,...,s,

where (ay, by) do not intersect (8;, 82) or (8o, a+1)-

Then the general likelihood function is

. )”i(xij)ﬁﬁi(xpj).ﬁ Ihlﬂ?oi"‘ IEI ﬁ[Pi(bu)—Pi(au)]

1 i=1 a=0 u=1i=l
i

(3.30)

where x;; is the lifetime of the j-th individual from R; in the specified time period
(81, 82) and mq is as in (3.16). If q;, the net probability of death due to cause R;
over the entire life span, is not unity for all i, then pi(x;) and Pi(x;) need to be

replaced by q;pi(x;) and qiPi(xy), respectively.

If there are no observations failing into the categories of being exactly
known, grouped, and/or confined, then the first, second, and/or third terms
respectively of (3.30) are each taken to be unity, thus, when the causes of failure

act independently, most special cases of interest may be deduced from (3.30).

27



3.4. Relations between Crude, Net, and Partial Crude
Probabilities

In the human population the net and partial crude probabilities cannot be

estimated directly, but only through their relations with the crude probabilities.

Suppose that k risks of death are acting simultaneously on each
individual in the population, and let these risks be denoted by Ry,...,Rk. For each
risk, Rs, there is a corresponding hazard rate ( or intensity function) A(t;3) such
that

A(t;0)A + o(A) = Pr {an individual alive at time t will die in the interval

(t,t+A) from cause Rs}, 6=1,...,k (3.31)

and the sum

AE D+, AFER)=A) (3.32)

is the total intensity. Even though for each risk Rs the intensity A(t;8) is a function

of time t, it is assumed that within the time interval (x;, X;+|) the ratio

(3.33)

is independent of time t, but is a function of the interval (x;, xj+1) and risk Rs. The
above assumption permits the risk specific intensity A(t;8) to vary in absolute
- magnitude, but requires that it remain a constant proportion of the total intensity in

an interval.

If the cause of death is unspecified, the probability that an individual alive
at x; will survive the interval (x;, Xj+1) 18
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Xit+l
D; =exp{— | A(t)dt }, i=0,1,... (3.34)

X
and the probability of dying in this interval for this personis q;=1 - p;.

Consider a point t within the interval (x;, Xj+1). The probability that an

individual alive at x; will die from R in interval (t, t+dt) is

exp{ - } AMr)dr }?»(t; d) dt (3.35)

Xj

The first part of this probability gives the probability of surviving from x; to t
when all risks are acting on the population and the second part is the instantaneous
death probability from cause R; in the time interval (t, t+dt). The crude probability

is obtained by summing (3.35) over all possible values of t for x; <t < xj11.

Qs= T exp{ - [ M) de }x (t,5) dt (3.36)

Xj Xi

By using the assumption (3.33) of a constant intensity (3.36) may be rewritten as

. Xj t
Qi8=%(;3(=t)ﬂ ){il exp{- ;([i x(r)dr}x(t)dt (3.37)
Integration gives
B CLON PR - - MEO)
Q=75 {1 exp{ j AE) dt H G (3.38)
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S0

M8) _Qis LX; <t<Xpq;8=1,..k (3.39)

MY g

This equality is valid if the ratio of the risk-specific intensity to the total intensity
is constant in the interval, and this constant also equal to the ratio of the
corresponding probabilities of dying over the entire interval. A trivial equality is

obtained, by using (3.32) and (3.39), as
Qs +--+Qy =q;, i=0,1,... (3.40)
3.4.1. Relations between Crude and Net Probabilities

The net probability of death in the interval (x;, X;+1) when R is the only

operating risk is

qis =1—exp {- XiJﬂk(‘[; d)dt } (3.41)

Xi

Again considering (3.33), (3.41) can be rewritten as

by t,8 Xj+1 .
qis =1—exp {_i(?)—) [ A) dt} =1-p}EAO (3.42)
Xj

With equation (3.39), (3.42) gives the relation between the net and the crude

probabilities,

dis =1—p.Qi8/qi 6=1,....,k (3.43)

1 2

The net probability of death when risk Rs is eliminated can be expressed as
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Xi+l

dis =1-expy - [ [A(®)-At8) Jat
Xj

=1- pi(Qi“QiS)/qi (3.44)

The net probability is always greater than the corresponding crude probability due

to the absence of other competing risks.
dis > Qjs (3.45)
Moreover, if two risks Rs and R, are such that

Qis > Qe
then

Qis > Qie and gis<(ie (3.46)
3.4.2. Relations between Crude and Partial Crude Probabilities

If the risk R; is eliminated from the population, in the presence of all other
risks, Qjs.1 is the partial crude probability that an individual alive at time x; will die
in the interval (x;, X;+1) from cause Rs, 6 = 2,3,....k. Q5.1 can be expressed in terms
of the probabilities p; and q; and the crude probabilities Q;; and Q;5. Using the

multiplication and addition theorems as in (3.36), it is obtained that

Qi1 = Xij“ exp { - } [A(7) dr ] } At 8) dt (3.47)

Xj

To be able to obtain a simple form of (3.47), it is used from (3.39) that the ratio
A8/ [A(t)-A(t;1)]isequalto Qis/ (qi- Qi1 ) and is independent of time t.
Then the partial crude probability can be rewritten as
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Qis.1 = | exp

AMt8)  Xirl
AW -MED

- } [A(v)-A(z1) ]}[x(t)-x(t;l) Jdt

Xi

-_-qu—_izi—l-l:l-exp{ -Xifrl[%(t)‘k(t;l) ]}}

Xj

Qs
= i1 (3.48)
q; -Qy

Substituting (3.44) for 6 =1 in (3.48) gives the final form

Ql&l = Q18 [l_pi(qi_Qil)/qi ] , 8____2,"“’1(. (349)
q; ~Qj

The sum of Q;js; for & =2,...,k is equal to the net probability of death when

risk R, is eliminated from the population, and it is obtained that

k k .
cn(): / . =) / g
Y Qi = Z_QL[l_pgql Qin)/q; ]=1_p§q. Qi1)/qj =qi1 (3.50)
i=2 i=2q; —Qj

For these three types of probability, p; and g; must be between 0 and 1

(with no equality). If q; is zero (p;= 1), then the crude probability of risk Rs, Qjs is

also zero for & = 1,...,)k. Thus, all the formulas related with this becomes

meaningless. In other words, if an individual’s survival is certain in an interval, it

is meaningless to speak of his chance of dying from a specific risk. On the other

hand, if p; is zero (qi = 1), the integral Xijﬂ?u(t) dt in formula (3.34) approaches
X

infinity which is very unrealistic.
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3.4.3. Joint Probability Distribution of the Numbers of Death and the

Numbers of Survivors

In a given population, deaths are classified according to cause and the
number of deaths from each specific cause is the basic random variable for
estimating the corresponding probability for the competing risk studies. It is
assumed that 1o denotes the initial population size at age x¢ and l; represents the
number of survivors at the beginning of the interval (xi, Xj+;). The number of
deaths, d; in each time interval is composed with the deaths from risks, djs's ,
6=1,...,k so that

di =dj+...+di (3.51)
and
Ii=di+.. +dyctlin,1=0,1,...k (3.52)

Given an individual alive at x;, the probability Qjs of his dying in (x;, Xi+;) from
Rs, &= 1,....k, and his probability of surviving, p; in the interval satisfy the

condition
1= Qil+---+Qik+Pi (3.53)

Hence, given /; individuals alive at X, the conditional distribution of d;5 and J;+; is

multinomial with probability distribution

;! k dis _lin
_k'—_—HQiB Py (3.54)

TTd;s! ! o

and the corresponding probability generating function, p.g.f., is
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1.
1 k !
Edi, list| (Sig-8is1) = E (H s lfl1 |1i] =( zsz—:1Qi8 Sis T Pi Si+1) ’ (3.55)

where lsiglsland lsilsl.

From (3.54) and (3.55), for any positive integer u the joint probability

distribution of all the random variables d;j, ..., di, /i+1 for i=0,1,...,uis

Qfit. Qfikpji+! (3.56)

L
=

dig!lis!

o=1

with d;s and [+, satisfying (3.52). Then, the corresponding p.g.f. is defined as
G =E = djy dnk i+1] ] 3.57
dip Jiza] lo (5i82Si1) = iI_% sit S siit | 1o (3.57)

Direct computation gives

lg
u k u
G 5. 11| 1 isSia1) = ZQos Sos + Z H Pisisl || X Qjs8j5 |+ I1D; Sis
i8> li+1| 10 8=l i=0

(3.58)

(3.58) holds true for u=0. In this case (3.58) becomes

k lo
(SZIQOS Sgs + Po Slj (3.59)
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which is identical to (3.55) for i=0. Suppose that (3.58) is true for u=1; then it will
be proved that (3.58) is true also for u. By this inductive assumption, it is obtained

that

Iy
ul kg st K u-1
E IT s st | 1o Z Qos Sos + Z H Pi Siat || 2Qjs 855 |+ IIPi Sia
i=0 51 j=1 \i=0 g1 ° i=0
(3.60)

Then the p.g.f. (3.57) can be rewritten as

oL k
O(H % Si'ﬁl)} E{ s sL“:l‘}l 10] (361)

Since the distribution of dyy,...,dy and /441 is dependent only on the number of

c:

i

Gdi8,1i+l| lo (Si5>Si41) = El: {

survivors ( /, ) at the beginning of the interval (x, , Xu+1). Then, the above
conditional expectation is the p.g.f. of the conditional probability distribution of

du1s. . .,duk and Jy+. Thus, (3.55) can be substituted in (3.61) to give

u-l ( k d 1
Gajs, L] 1o SidSiv1) =EH O(H Sig? xlfllj} E{ IT Qus Sus +Pu s u+1}| 10}
At

=E{ {r[z(rk[ 543 s{l;ll)} { I soul ) }| 10] (3.62)
i=0 \ 8= o=l

k
Zy =Sy {82—:1 Qus Sus + Py Su+l} (3.63)

where

is less than unity in absolute value. Due to (3.60), the formula (3.62) becomes

AR
35 Fan J_({‘.l)‘.



k il k u-2 lo
G gis, 111] 10 Gis>Sivt) = ; Qo5 Sos + Z [ Il pis 1+1) ( E Qjs 85 ) ( 1:{) p; 5i+1]Pu-1Zu
(3.64)
Using (3.63), the last term inside the brackets can be rewritten as
u-2 u-2 k
r{)P, i+1 {Pu1Zy = le i+l |Pu-1 Su 821 Qus Sus +Pu Su+1)
1= =
- u
=(HP1 Si+1) (Z Qus SuS) + I1pj siv1 (3.65)
i=0 8=1 i=0

When (3.65) is substituted in (3.64), the resulting expression becomes identical to
(3.58) and the proof is complete.

The generating function (3.58) assumes a value of unity at the point

(Sil,---,Sik,SiH) = (1,...,1,1) fori= 0,1,...,11,

u [ jl k 0 lo
Gdi8s1i+l| 10(1;1)=[ Z Q05 +Z ( i_,[ pl) (EIQJS]-I-];([) pl]

=1\ i=0

I
=(qo +PoQs +-+PoP1--Pu1du +PoP1--Py)° =1 (3.66)

Hence, the sum of the probabilities in (3.66) over all possible values of the

random variables is one.

By using the p.g.f. in (3.58), the moments of the random variables d;s and /;

can be calculated easily. Then, the expectations are

E (dis |10)=1opoi Qis , 5=1,....k, (3.67)
and

E(L [10)=1opsi , i=0,1,..., (3.68)
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where poi = po p1 --. Pi-1 i the probability that an individual alive at age xo will
survive to x;, and po;i Qjs is the probability that an individual will die in the interval

(Xi, Xj+1) from cause Rs;.

Moreover, the variances and the covariances are
G‘Ziiallo =1op0iQis (- PoiQis)> (3.69)

and

Gdisgdjsllo =-10p0iQi5p0jQi€’ hES €, 8,8 = ].,,k, 1,_] = 0,1,... (370)

The covariance between the number dying and the number surviving can be

obtained in a similar way as

Gc21i5,1j|lo =-1p0iQis Poj» (3.71)
and

o-li’djﬁllo = 10(1 —Poi )p()ijs, o= 1,..,1(; i< _], l,] = 0,1,..., (372)

The positive covariance in (3.72) indicates that the larger the number of survivors
at age X;, the greater the probability that a larger number of deaths from Rs will

occur in a subsequent interval (x;, xj+1). The covariance between |; and ]; for1 <j
St = Lo (1-poi ) Po; (3.73)

As a conclusion of all the above work it can be said that, for each u, the random

variables d;s and 1 for i = 0,1,...,u; & = 1,....,k form a chain of multinomial

distributions with the probability distribution and the p.g.f. in (3.56) and (3.58),

respectively.
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3.4.4. Estimation of the Crude, Net and Partial Crude Probabilities

By using the relations among crude, net and partial crude probabilities and
the joint probability distribution of djs and /;, first the crude probabilities and then

net and partial crude probabilities are estimated.

The estimators of the crude probabilities Qis and p; can be found from the

joint probability function

ﬁ __I_L_lel inikp!i+1 (3.74)
imody !l dy 1, o ek '

by using the maximum likelihood principle. In addition, the Neyman’s reduced %

method [ Neyman, (1949)] can be used to estimate crude probabilities.

According to Neyman’s theory, the best estimators of Qjs minimize the

reduced form of the y:

_ -
k
L ~Lopss [ 1-3 Q ]}
u K . O. 2 { i+l 0 01( ~ id
X% =33 (d16 10p01Q|8) + 8=l . (3.75)
i=0 | 8=l dis Lig
The substitution of

pi=1-3Q; (3.76)

8=1
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in (3.75) makes it necessary to derive only the minimizing value éis- The

complement of the sum of Qia is the estimator p,. Taking derivatives of ¢ with

respect to Qjs and setting the derivatives equal to zero gives the equations

For each i, sum of (3.77) is taken over & and obtains

k ~ A~
. 4+ D
k 1 *
L 3 dis +lyy
i

A _li+l

pPi= L
and

n d,

QiS =k

(3.77)

(3.78)

(3.79)

(3.80)

It is understand from reduced > in (3.75) that if for some age xy all the 1,

individuals alive at x,, die during the interval (X , Xw+1), the dis = 0 and ]; = 0 for

all i > w, so that there is no contribution to the reduced y> beyond the w-th term.

The estimators in (3.79) and (3.80) are recognized as maximizing values of the

joint probability (3.56). Hence, Neyman’s reduced xz methods yields the same

estimators found by the maximum likelihood principle. These estimators are

unique, unbiased and efficient estimators of the corresponding probabilities.
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Variances and covariances of the estimators in (3.79) and (3.80) can be

obtained by direct computation.,

var Q| 10)=E(%JQR~, (1-Qs)s

VS

1

2 2

Gﬁi|lo—0-é]illo_E r)piqi’
i

1 s

COV(Qis,ng|10)= 'E(L‘]Qia Qie> J=1

0, J#i
Cov(ﬁi:ﬁjllo)=C0V(€1i,flj|lo)=0’ j#i

and

1
- E[ = |p Qs j=i
COV(Pi,Qial 10)= ( Il )p, U,
0, ES!

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

When the original cohort 1y is large, the expectation of the reciprocal of I; may be

approximated by the reciprocal of the expectation E (1;).

Using the relation with the crude probabilities can derive formulas for the

estimators of the net and partial crude probabilities. Substituting (3.79) and (3.80)

in the formulas (3.43), (3.44) and (3.49) gives the following estimators;
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L (di-dig)/d;
fli_s=1-(iij 8=1,...k;

1

(dj—dj1)/dj
n dys 1.
o =0 | 1| ZtL ,0=2,...k;

1.

(3.86)

(3.87)

(3.88)

R d. L (dj-dj1-di2)/d;
Qprp=""12— 1-(Llj ,0=3,...,k;i=0,1,...,u

di - dil —di2

For each i, the sum of the estimators Qm over & is equal to q;,:

(dj—di1)/dj
K . k . .
ZQia.l-‘-‘Zia—[l-(l’i) J

d=1 d=1 di —du 11
L (dj—dj1)/d
=1 '(—llﬂ] =q;1-
1

(3.89)

(3.90)

The variances and covariances of the net and the partial crude probabilities

were found by Chiang, 1968.

3.5. Identifiability

Let X be an observable random variable with distribution function Fg and

let Fo g 3={Fq: 0 € Q}, a family of distributions indexed by a parameter 6, where 0

could be a scalar or vector valued. 0 is said to be nonidentifiable by X if there is at
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least one pair (0,0”), 60°, where 0 and 0’ are both in Q, such that Fo(x)=Fg:(x) for
all x. In the contrary case, 0 is said to be identifiable.

In many cases, where 0 is not identifiable, there exists a nonconstant
function y(0) which is identifiable. That is, for any 6,0’ € Q, Fo(x)=Fp-(x) for all x
implies y(0)=y(0’). In this case 0 is said to be partially identifiable.

In case 6 is not identifiable by X, it may be possible to introduce an
additional random variable A so that 6 is identifiable by the augmented random

variable (X,A). In this case the original identifiability problem is called rectifiable.

Suppose the nonnegative random variable Y; represents the theoretical
lifetime of an individual when R; is the only cause of failure (i=1,...,k). In the
presence of all k causes R, (p=1,...,k), only the smallest of the Y, can be observed
with the actual cause of failure, say R;. Hence, observed values can be expressed

as X;=min Yp conditional on knowing the cause of failure to be R;. Then, the
P

probability of failure due to cause R; is m=Pr(Yi=min Yp ). If the Y, have an
P

absolutely continuous joint distribution with pdf p(yj,...,yx), then the pdf of the

observed lifetime X; (i=1,...,k) of an individual dying from R; can be written as

1 o k
f (x) :ﬁ‘I---IP(Yla---,Yi—l’XaYi+1a---aYk) IT dyp
Ix x p=l
pzi
1 © © k
=H—Pi(x) [ [P 153 Yio15 Vi1 Y| Yi = %) T1 dyp (3.91)
i X X p=1

p=i

It is seen that the distribution of X; (i=l,...,k) is determined by the joint
distribution of Y, (p=1,...,k). The reverse is not true. This means that, the
distributions of X;’s do not identify the joint distribution of Y;’s.
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The question of identifiability has arisen when there is a departure from

the assumption of independence among competing risks.

It can be shown that the pdf of fi(x) in (3.91) can always be represented in

the form

k _
i) =) TP () 6.92)
i p=1
p#i

where pi(x) is the pdf of Y; and Fp (x) =Pr(Y, >x), by suitable choice of

independent varieties Y; having pdf p;’(y) (i=1,...,k). Hence, the dependent risk
model with pdf p(yi,...,yx) is distinguishable from the independent risk model

ko
with pdf [1p; (¥:).

A result of independent interest linking the densities of Z=min Y, and of
k
the X; is stated as f,(x)=>Ymf;(x) . This follows that Z equals X; with
i=1
probability 7; (i=1,..,k). Applied to Y in fi(x) = —l—ki(x) F,(x) where A(x) is
TT:

1

the hazard function and F, (x) is the survival function of Z, it is seen that
m; £ (x) = 43 (%) Fz (x) (3.93)
Then, fz(x)=Az (x) E, (x)=f; (x). Correspondingly F, (x)=F, (x), so that

N (x) = 2k %) (3.94)

?z (%)
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This leads to

*ooN et ()
P (x)= exp[ ({ —Fz(t) dtJ (3.95)

by specifying the independent risk model. If the risks are in fact independent, then

k
Pi(x) I Pp(x)
p=l

p#i

Ap(x) = =2i(x) (3.96)
Bi(x)
i=1

=

If the joint pdf of Yi,...,Yx is specified as the known distribution
functions, then there will be no difficulty in identifying the model fully. Since the
unknown parameters can be estimated from the likelihood function. With respect

to such a model the independence assumption can be tested.

3.6. Specific Distributions - Independent Risks

3.6.1. Exponential Life Distributions

The exponential distribution has an important position in describing the
time to failure of items in reliability studies, in describing human and animal
lifetimes. The fundamental reasons for the exponential distribution’s popularity
are due to its ability to provide a reasonable fit to some life data, its simple
mathematical form so that inferential statements can be made with more
tractability, and its association with the theory of Poisson processes. It holds the
unique position of being the only continuous distribution with a constant hazard
rate and lack of memory property. Because an understanding of the exponential
distribution is helpful in studying the more general distributions, it will be

introduced first.
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3.6.1.1. All Lifetimes and Associated Causes of Failure Known

The exponential p.d.f. of a random variable with mean 6; is
Pi(y) = (1/8)) exp(-y/8y) , 620, y>0,i=1,....k (3.97)

It will often be convenient to use the hazard rate A; = 1/0;. From (3.18), the

likelihood estimates (MLE’s) are
6, =t/n;, i=1,.k, (3.98)

k nj
where t= ¥ 3 x;; .
i=lj=1

k
It follows from the likelihood function L = TJL; , that (T, Ny, ..., Ni.j) is

i=1
a sufficient statistics for (0y,...,0x) and so (él,...,ék) is sufficient for (0y,...,6x);

completeness may also be established. It seen from (3.13) and the readily obtained

result

m=Ai/A (3.99)
and

£(x) = A exp(-Ax), x>0 (3.100)

k k
where A = Y A; = 3 (1/6;).

i=1 i=1

Hence, the observed lifetimes are identically distributed irrespective of

the cause of failure. Also the density of Z = minY, is identically equal to those
p

of the Xj in (3.100). This property holds for a much larger class of distributions.
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Since the Xj’s are independent and identical exponential variates, the

density of T is
ft) = " /()] exp(-t) , 0. (3.101)
This density is conditional on N; = n; (i = 1,...,k) but it is clearly identical to the

unconditional density. Hence T is independent of N;. The asymptotic variance to

order 1/n is
Varlp; )=263 /n ,i=1,...k (3.102)

which may be determined from the information matrix or directly from (3.98)

employing the independence of T and N;.

For finite samples, it is tempted to use
E(67)=E(T")E( 1I/N} ) (3.103)

but E( 1/N7 ), where r is a positive integer, is infinite since a finite probability is
associated with the event N; = 0. Thus a slight modification of the estimator is
needed if one is to examine finite sample properties. Consider the estimator éf ,

where éf is éi conditional on N>0. The p.d.f. of this conditional estimator

ér =T/ N? , Where N’; is a binomial (n, ;) variate truncated at 0, is obtained to be

) nli(l—mn; )"l exp[— And; ]} ,67>0.

) r(n)[l_(l_ni)n 1[(2

(3.104)
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The moments of é’: can be evaluated directly from (3.104) or taken

advantage of the independence of T and N}k . It is found that

E(6;)=[n E(1/N})]/ (3.105)
and
Var (6;)=n{ @+1) E(1/N; ) -n [ E( /N> } /22 (3.106)
Also, from (3.104), by making the transformation —;—x = Xnié’; it is
obtained that

n n
Pr{é’ik 290}——(1—_ﬂ— i (n )( T J f 1 x0le=%/2 4y

T 1=(1-m;) mm\ni ) {1=75 ) sanee Tn)2"

(3.107)

which is just a weighted sum of chi-squared integrals.

It is of interest to note that, for discrete time models with a single cause

of failure, estimators of conception rate (a type of hazard rate) are of the same
form as ii = l/éi , which from (3.98) and the invariance property of MLE’s is

Ay=ni/t, i=1,..k (3.108)

namely, the number of conceptions divided by the number of months of exposure.

These estimators are sufficient, as below (3.98).

Since from (3.101) it is observed that
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E(1/T)=A/(@-1), E(UT*)=2?/(n-1)(@®-2),

it follows that

2 n-1 Ni
A= (TJ(TJ (3.109)

it is the best unbiased estimate of A; and that for n>2

var ( &) =[@1) A A+ A2]/n (n-2) (3.110)
cov (A, ;) =% & /n (0-2),1#]. (3.111)

Therefore unbiased, consistent estimators of the hazard rate, A;, whose variances

and covariances are relatively simple quantities are obtained.
3.6.1.2. Censored Observations
Employing the notation for Type I censoring of Section 3.3.3., the MLE

of 6; from (3.21) can be obtained as

0, =(t+ iy(u)J/mi (3.112)
u=l
The asymptotic variances to order 1/n are given by (3.102).

For Type II censoring, the MLE of 6;, similar to (3.112), can be written as

B; = (t+5v(m) )/ m;. (3.113)
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Like (3.112), this has the familiar interpretation total time on test/number of failed
items. Asymptotic variances may be obtained from the information matrix, using

lower moments of order statistics from an exponential variate, as

var ( 6; )=2 63/m. (3.114)

3.6.1.3. Grouped Observations

To avoid duplication of methods, the details for exponential will be given

as a special case of the Weibull distribution with c¢=1 in section 3.6.2.3.
3.6.1.4. Crude, Net, and Partial Crude Probabilities

[nvoking the invariance property of MLE’s, the MLE of crude, net, and
partial crude probabilities of failure from R; (as defined in Section 3.2) within the

interval (a,b) can be written as

Qi(a, b)= ii {l —expl—- i(b - a)J}/ A, (3.115)
8; =1—exp|-4;(b-a)| (3.116)

and
Qi5(a,b) =i fl—expl- (R4, ) b-a)J/h-4;), i=i, (.117)

A~ k. n A
where A =Y A; andA; =1/6;. Berkson and Elveback (1960) arrive (3.115) and

i=1
(3.116) in their discussion of competing exponential risks in the reference to

smoking and lung cancer.
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All the formulas used in the above section are referenced to David and

Moeschberger (1978).

3.6.2. Weibull Lifetime Distribution

As early as 1939, Weibull proposed a distribution, to which his name has
later become affixed, to describe the life length of materials. Although the Weibull

distribution whose p.d.f. may be written as
pi(y) = ey —w; )i 10, Jexpl- (v w; ) /6, | yowi, 00, c0  3.118)

has been discussed in the literature under various topics, for example; extreme
value theory and reliability theory, it has only recently been advanced as also a
very desirable family of distributions for describing human or animal survival.
The Weibull distribution has a finite starting point and is thus logical choice
within the framework of survival studies. Furthermore, within the class of
distributions possessing proportional failure rates the Weibull appears to be the

most appropriate choice in describing lifetimes.

Efforts to determine the Weibull distribution’s ability to describe survival
data adequately include studies involving time to occurrence of skin tumors or
cancer in experimental mice that were painted with various carcinogenic agents
and many types of human cancers. Each of above studies concluded that Weibull

model did quite well in fitting the data.
Moreover, the Weibull distribution possesses the interesting property of

allowing its hazard rate to be increasing (ci>1), constant (ci=1), or decreasing

(ci<l). This degree of flexibility would appear to be desirable.
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In the remainder of this discussion the lower limit of the lifetimes will be

taken as zero, that is, w;=0 in (3.118), so that the working p.d.f. will be

pi(y) = [Ci()’)ci—l /6; JeXPl' (y)/ eiJ , ¥>0,6>0, ¢>0 (3.119)
3.6.2.1. Type I Censoring with Equal Shape Constants

If there exists different censoring times for each individual, the forms in

(3.19) and (3.119) becomes

k k mj k m; ]
InL; =const.+mlinc->m; In6; +(c—1)ZZlnxij —K(Z XX+ nyu)),
i=1

i=1j=1 i=1 j=1 u=1

(3.120)
k
where A = 3(1/6;).
i=1
Thus the likelihood equations are
A a S A
0; =[tc+ nyu))/mi,i=1,...,k (3.121)
u=l

and

m k m; n S & k m; s S, &
(—;—+ >2hn xij)(tc + Z_:ly(u))/m = ZZ(XU In xij)+ Z_:ly(u) In) G.122)

C i=lj=l i=1 j=1

where t, = ZZX%. Clearly, once ¢ is obtained by iterative techniques from
ij

(3.122), the éi will be trivially determined.

From (3.120), the second derivatives are found to be
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6lnLI m; 2[

692 92 93 t +ZY(U)] 1,---,1( (3123)

u_

azhlLI azlnLI kmj s
i Inxg )+ X v(y)! 0%,  (3.124
08;0c Bcdo); Eljz_l(x” nx‘J) Ely(u) DY) |/ ( )

and

2 mj
Ol __m_ [im(lnxu)“iwu v ))2} 6.129)

ac? c i=1j=1

as in the exponential case, it will often be notationally convenient to set A; = 1/6;

(David and Moeschberger, 1978).

If there are no censored observations, then the density of observed time to
failure from cause R; is found from (3.13), upon noting that mt;= A; / A as in (3.99),
to be

£, (x) = Ax* expl-ax°), x>0, (3.126)

Thus the observed lifetimes are again identically distributed irrespective

of the cause of failure. Also, as for the exponential case, the density of Z=min Yp
p

is identically equal to those of the X; in (3.126).

In the light of (3.126) it will be useful to return to the notation introduced
in Section 3.3.3. Let Vy,...,V, be the lifetimes of the n sampled individuals,
irrespective of cause of death, with corresponding censoring times y1i,...,Yn. Now,
(3.126) gives the common density of the V; (t=1,...,n) and hence, for the censoring

situation of primary interest in this section, one has
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£(ve| Ve <7¢)=cAvi expl-ave i - expl-24¢ ), (3.127)

where Pr{V, <y,}=1- exp(— Mf).

It may be shown that

E(—62mLI/ae%)={il[l-exp(—xyf)]}/xe§ (3.128)
z

E[az InLy J = -—i{[l —exp(— Mf)]E(Vtc InVy| V, < 'Yt)""Y: Iny, exp(— 7‘75)}/6?

0.0 | &
(3.129)
2
E[—————a ;:2['1):(%2% [l—exp(— Mf)]+
+7»§1 {[l—exp(- Mf)]E[Vtc(ln Vt)2| V, <yt]+
+y2(iny, Pexp(- 29 )). (3.130)

The expression Ethc (n v, )i IVt <ytl, i=1,2, are cumbersome but may

be evaluated by a numerical integration if all the censoring times v; (t=1,...,n) are
known. If all the censoring times are not known, then expressions (3.128), (3.129),
and (3.130) may be approximated by the negatives of (3.123), (3.124) and (3.125),
respectively. The inverse of the information matrix can be formed in the usual

way.
If all the censoring times are equal, the estimators and the quantities

leading to the information matrix may be obtained by setting y; = yo (t=1,...,n) in
(3.121), (3.122) and (3.128), (3.129), (3.130), respectively.
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Furthermore, if yo = oo, that is, no observations are censored, then the

MLE’s are
éi = %c /ni s
and

1 1 kn ~ k nj(
(T+—ZzlnxijJtc= ZZ(XﬁlnXij),

C MNi=lj=1 i=lj=1

A k ni A .
where t, =Y > xﬁ The inverse of the information matrix is

i=1j=1

-1
AB/a .. 0 .. A3A
Ve =07 0 . B/ .. 22A
MA .. MMA .. D

where

A=—fcax*'Inx exp(— 7\,x°)dx
0
and

2

D=1 Tc A2 x%1 (Inx)? exp(— Ax° )dx :
Cc o
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(3.132)



Employing the first two moments of the extreme-value distribution and following

a matrix inversion given in Rao (1973, p.33), (3.132) becomes

41Okx  Fea
Visgjrt =07 F, H (3.133)
where
03 0
2
Gy =2 (S Ind) g (3.134)
Y
0 0;
Foi=[6c(l-y-In))-7*]0,
H: 6 02 / 1{2, 9’=(61,...,ek),
and

y=0.5772157... (Euler’s constant).
3.6.2.2. Type II Censoring with Equal Shape Constants

Invoking the notation for Type II censoring from Section 3.3.3, one have
from (3.121) and (3.122) upon replacing x; (i = 1,....k; j = 1,...,m;) and yw)
(u=1,..,8) by v( (t = 1,...,m) and v(m), respectively, the following MLE’s

8; =t +svfm))/mi, i=1,..k (3.135)

and

(-11—1+ iln V(t)] (fc +sv?m))= m[%(v?t) In v(t))+ svfm) In v(m)il, (3.136)

C t=1 t=1
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~ n A
where t, = szt)’
t=1

From (3.120), the second derivatives of In L used for Type II censoring

may be determined as

6% InLy /007 =m; /67 ~2ft, +svE )63, (3.137)
82 InLy /098¢ = [ :zlvgt) In v(t)+ SV{y) In V(m))/eiz, (3.138)

and

n

vat)(ln V(t))z + svfm)(ln v(m))? } . (3.139)

t=1

52 1nLH/ac2 =-m/c? -7{

Now,

¢ s 1
E(Mi)=é%, E(V@)):[Em_jn% (3.140)

since if a statistic X has a p.d.f. given by (3.126), which is how the unordered V;
(t=1,...,n) are distributed, then X° is distributed as an exponential variate, and the
lower moments of order statistics from an underlying exponential population are

well known.

Using (3.140) it can be found that the expected values of terms in
(3.137), (3.138), and (3.139). Hence

Bl-6%InLy /602 )=m/6%., (3.141)
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E(-0° InLy /80,0c) = _{mz'l E[v(i) In V(t)]+ (s+1) E[V(cm) In v(m)]} /67
t=1
(3.142)

and
E(-02InLy /80> )=m/c?+ x{“jil E[V(i) (n v P ]+ (s+1) E[V(‘;‘n) (in v, )2}}
t=1
(3.143)
where

n! -1 t—1
f(vy) = m(ck)v‘(’t) [1 - exp(— kvft) )] exp[— Mo —t+ l)vft)l 0<vg <o
(3.144)

3.6.2.3. Grouped Observations for Equal Shape Constants

Employing the notation of Section 3.3.4 it is obtained from (3.25) that

Tig =ki[exp(—?»g;)—exp(—xggﬂ) J/K,i= l,...k;a=0,1,...,h (3.145)

For notational convenience let a, = exp (-A gg ). Then, from (3.25),

k . h
Lg o{ m?‘l [ 11 (2a —aaﬂ)“ﬂ}/ﬂ‘, (3.146)
il a=0

k
where A;=1/6;and A= Y ;.

i=1

Therefore, the MLE’s of 0; are
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a=0 Ay —8g41

) h ¢a. —g° 3
ei{?f ) na(g“ a Byl a“*‘”/ni,,iﬂ,...,k (3.147)

and

3 n =0, (3.147)

a=0

A é jad e
h |:aa+1 o+l Ingys —8¢ 8q Ingg }
o

aa_éowl
~ k a
where a, =expl-Ag$ JandA =3 |1/6;).
o a 0 1

The obvious simplifications go= 0, gn+1 = 0, ag = 1, ap+1 = 0 can be made
at one’s convenience. From the k equations in (3.146) the following relationship

can be obtained.

a=0 Ag —Ag+l

h A & A ¢
5 n.a{aa o — A+l ga+1jl=0 . (3148)

Also (3.147) and (3.148) can be rewritten as

htn gt  Ing..;—gIn h :
3 o (gOH:lA eg(x+l cga_ ga)_ Y0, géng, =0 (3.149)
Ay >

and

bl r}a(geﬂ _gg) B h s
“EOCXP[-i(gE-l—gi = Znage =0. (3.150)

Solving (3.147) and (3.148) or, alternatively, (3.149) and (3.150) by some
iterative technique will give A and & . Then, substituting (3.148) into (3.149) yields
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6;=n/An,,i=1,...k (3.151)

Thus the 8, are trivially determined after A and & have been obtained.

The information matrix may be found directly using the facts that

E(N;)=n/8i. and E(N.o)=n(aq-aq+1)-

For the exponential case, ¢ = 1, the likelihood equations are given by

(3.150), where ¢ is replaced by 1, and by (3.151).

Moreover, for the important case of equidistant group limits gy = 0,

go=ag;, for a =0,1,...,h, (h is finite) the likelihood equations are

§; = L8l : (3.152)
h
n; In {1 + (n -ny )/ Zom'a}

a=1

Furthermore, the asymptotic covariance matrix of 0, the vector of the 6;,is

A3 +yef 108, . . . 70,0
7'019,
V(8) = % (3.153)
: V'0x-10k
RN L Y08 A8) +y'07

where

. [exp (3 81)- 11

“A%glexp(hg;) [1-exp(-Ahg)]
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3.6.2.4. Type I Censoring with Unequal Shape Constants

Since Type I censoring is the case of the most practical interest, only this

part is considered for Weibull distributions with unequal shape constants.

Assuming underlying Weibull populations as in (3.119) it is obtained

from (3.21) that the likelihood equations are

CD)

1 k Mp Y
> Zx 1+ Z y(u) (3.154)
p=1j=l

and

k Mp
{25 B[ £33 18
TR j=1 p=1j=1

g EJZ]" g+ 3y My, i=lok

(3.155)

From (3.13) the density of an observed failure from cause R;, assuming

no censoring, is

i M=

x% Lexp (-
1

xP /Gp]
fix)=
0 -1
[z exp (-
0

(3.156)

lz°p /Gp}dz

o
M= |2

that is, the observed lifetimes are no longer identically distributed.

The following relationships can be obtained
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n Y . -
E(ZZXCiJ= ) § {C—"J fz"‘*"P lexp[- § z'P /GdeZ, (3.157)
E(i yflil)J= ﬁy‘t’i exp(- ilyfp /0 j (3.158)

and
z'P /epjdz, (3.159)

which in turn may be used to find

2 n P
E(_a lnLIJ={_2_]|:Z i (;_pJYJ_t ,Citep 1exp(- § 4P /Gp]dz+
0 =1

007 07 )| t=1pl=1 | Op

n .. k ¢
+ ny‘ exp{- > ytp /BPJ-

t=1 p=1
. n Yt . k
| 2 T i exp| - X 2P /0, |dz | (3.160)
Oi t=1 0 p=
2 ) n ok (e, )7t _
E (97Inbyp|_ % Y S| =R 1exp - z P /0, |dz+
n .. ([ k c
+ 2y¢! (Iny)exp|- X y¢P 165 | | > (3.161)
t=1 p=1

and
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2 n k
E _9 lnzLI 1 3 j' z° exp AL /6p |dz+
aci 0ici t=1 0 p=1

t=1p=1{ Op ) 0

C Yt . _ k
ell: 3 Z ( P J | Z517p 1(lnz)2 exp(- z°P /Gp]dz+
p=1

noo. kK ¢
+ Zl ve [y P eXP[- Zlvtp /Gpj } (3.162)
t= p:

For underlying Weibull populations with unequal shape constants, the

crude, net, and partial crude probabilities are

b k c c
Q;(a,b)=ciA; | £¢i~1 exp{- > [?\,p (t P_a p)}}d’c, (3.163)

p=1

qi(a,b)=1-exp l—li(bci —afi )_l , (3.164)
and
b ci-1 k c g
Qi j(a,b)=ciA; [t expi- X [?up (t P _an)] dt, i#]j. (3.165)
a p=1
p#j

When c;=c, (3.163) and (3.165) reduce to

Qi(a,b)=1; {1-exp -2 (b° —a®) |}/ (3.166)

Qij(a,b) =A; { 1-exp [ (-Ay) (0%a%) 1}/ (A-A)) ,1#] (3.167)

TC. pullitasiti et U KARPLY

Uw_\~‘u]’&<)l CEE __‘d
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3.6.3. Normal Life Distributions

Generally, the normal distribution has not found great deal of acceptance
in describing the distribution of observed times to failure in biological life testing
problems. However, since the logarithm of observed data is often considered to be

approximately normal, this case continues to draw attention.

3.6.3.1. Case of Unequal Means and Unequal Variances

Suppose Yi~N (i, 67),i=1,....k. Let ¢, @, and @ be the p.d.f, c.d.L,

and survival function of N ( 0, 1 ) random variables, respectively. Here
uncensored case is considered but censoring may be readily handled in the usual

manner. Employing the notation of Section 3.2, it is obtained from (3.18) that

nj , k% _
InL; =const.-n; Inc; —— X ujj + > lnCD(upj,l),
j=1 p=1 j=
p#i
(3.168)

where ujj = (Xj; - Wi ) / 6i and upj; = (Xpj - Wi ) / Oi.

Then the likelihood equations, which are k sets of two equations in two

unknowns, can be written as

nj k p
Ujj + > Apj,i =0 (3.169)
j=1 p=1 j=1
p#i

and
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n
P A
Y UpiiApii. i=1..k, (3.170)

nl 2
' 1 j=1
i

=l

goRye]
W+ 1 M=

where Ayi = ¢ (upi) / ®(wy) and Gy,05;and Ay are the functions

corresponding to u;j, uy;i and Ay;; when [i; and 6; replace p; and o;, respectively.

For the case of k=2, it is obtained from (3.13) that the p.d.f. of observed

lifetimes where failure is due to R; and R, respectively, is

N D(uss
By = ¢(111])_(u1],2)
o1 ©(&)
_ (3.171)
£ (xo:) = d(uz;j) D(uy;,1)
Y TG
where & = (u) —py)/ 0'12 + c% . Moreover, is easily verified that
m=1-®¢) and mm = (€) (3.172)

Upon transforming the variables in (3.171), it is obtained that the p.d.f. of
Ujj and Uy;; (i # p). These densities can be used to evaluate the expected values of
the negative second derivatives of the log likelihood function (3.168). Then the
following quantities are obtained by David nad Moeschberger (1978) as

1.2
2 eXP(--i ) 2
E[-———a lnLlJ:—n B(E)+ 2 [ cis _, oD ] (3.173)

012 +0'% Go2T
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2
o 2, 2

D, = [ r(z)exp -(612+62) [z+( 501 } dz,
-0 o

2 2 2)1/2
G { +05

E(_ 5> lnLIJ=nexp (-1/2g2){ D, 1 (G%+012§2)}

R T

(3.174)

where

2
2, 2
© o] +0 o
D, = [r(z)zexp1- L > 2 z+—2—§—;2/—2 dz,
-® 20, (ol +62y

and

o2 for | o?

2
Gy + 03 (012+c§)2

E[- 8% In LIJz_n_ 2B(E)+ exp (—1/2&2){ 612§ N (0'1252 +3(5%)§ 0'12 N

©o1D3 3.175
+czm]} (3.175)

where

2 2
2

2
2,2
© o] +0C Ec
D, = [ 1(z) z* exp{- 12 > 2 z+——’—”—2— dz,
- c (Gl +0'2)

where 1(z) = ¢/ ©(z).
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2 2 2
E(_ﬂ;&j, E[-a 1rlL2],and E(-a lanj may be obtained

u3 du do, do3

from (3.173), (3.174) and (3.175), respectively, by symmetry, on replacing p; by
M2 and o by o3.

3.6.3.2. Case of Unequal Means and Equal Variances
When the theoretical life distributions have one or more parameters, the
maximization of the likelihood function is usually complicated. It is assumed that

Yi ~ N(ui, 02). In this section there are k+1 unknowns that are desired to solve in
k+1 equations. When k = 2 the likelihood equations are

YA, (3.176)

n= (6 jl:z:(xl_] p’l) +Z(x2_| H'Z) ]+Zu A +ZV B

1 =l

where
qu/nl, i=1,2,
i
A;=0(u)/3(w), B; =0 (v)) (V).
u) = (xy;— 1)/ o, V) =Xy - M)/ 0,
and 4, ¥}, A B are the functions corresponding to ujj, v, A;, B; with

[i; and 6 replacing p; and o, respectively (i = 1,2).
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The p.d.f. of X; has the same basic structure as (3.171). The p.d.f. of
observed lifetimes where failures are from cause 1 and 2 for the case of unequal

means and equal variances is

¢ (v;) D))
c @)

¢ (u;) D(u))

— 3.177
o () G470

f,(xy;) = » Dh(xy) =

where

u; =u'j‘\/5§=(xlj—ul)/0a Vj =V’j+«/§§=(x2j—uz)/07
and

&= —1y)/20.

Note that 7; are also as in (3.172) with & defined above.

To be able to find the variance-covariance matrix, the elements of the information

matrix are found as

&InL)|_n |= exp(-1/2§2)[§ Dl(g)] o
E[ " }_cz{cp(gn T = (3.178)

E[ 5? lnL} =12{ Be)+ (-128%) [%+ D, (-%) } } (3.179)

where

2
Dl(a>=_{°r(z)exp{-(z+%) }dz,

_621nL _nexp(-128?) Dz(@)_(3+§2) 3.180
E( acap-lj_ o’ 2+/n Jn 2 [ R
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9*InL)_nexp(-1R2E&%)| Dy(-8) (3+&%)
E[ 666“2)_ ode [ o > , (3.181)

where

© 2
D, =] r(z)zexp[-(z+%) :ldz,

oc? 26

E( & 1nLJ= n { 4+eXP('TI‘/2§2)[D3(§)+D3(—€)]}, (3.182)

where

" 2
D, () = [ r(z) z* exp[-(z+%) ]dz.

3.7. Estimation of the Cause-Specific Hazard Function

Competing risks data includes an underlying failure time T of each study
subject, a covariate vector Z where Z={ z(u) ;u20 } and J € { 1,....k }, failure
type. Suppose that failure time is continuous and the covariate Z = { z(u) ; u>0}

is fixed. The overall failure rate or hazard rate with covariate is defined as

_ Pr{t<T<t+At|T2t27}
A (6 Z)= lim . (3.183)
At—0 At

The cause-specific hazard function is found similarly as

(3.184)

_ Pr{t<T<t+at, J=j|T2tZ]
A (t;Z)=lim
At—0 At
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forj = 1,... k. A; (t; Z) is the instantaneous rate for failure type j at time t given Z
in the presence of all other failure types acting on the population. Assuming that

failure type j must be a unique element of { 1,....k } gives
k
AMGZ2)=% A 2Z). (3.185)
j=1
By using cause-specific hazard function the survivor function given Z is written as
t
S(t; Z)=exp -j’?»(u;Z)du:'. (3.186)
0
The failure time density function for failure type j, given Z is

Pr{it<T<t+At; J=j|Z
£,(t Z)= lim { iz}
At—0 At

=A(t; Z) S(t;Z),j=1,.k

(3.187)
The overall hazard function and the failure time density function of cause j, given
Z are identifiable, that is, they can be estimated from data of type ( t, j; Z ) without

any further assumption.

If there are n subjects in the study, the data contains (t;, d;, ji ; Zi), i=1,...,n
where t; is the observed survival time, §; is the censoring indicator, j; is the cause
of death and Z; is the covariates of the i-th individual. Under an independent non-

informative censoring mechanism the likelihood function is proportional to

: i1

i=1 i=

ﬁ {()\-ji(tji;zi) )51 S(t35Z;) }'—‘IEI1 {(?»ji(tji;Zi ) )81 rm[ exp[ -ti xj(u;Zi)du}}

(3.188)
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This likelihood function is obtained by regarding all failure types other than j-th

cause of failure as censored at the individual’s failure time.

It is convenient to denote
t
S; (t; Z)=exp[-f xj(u;Z)du] ,j=1,...,k (3.189)
0

which has no survival function interpretation, for k > 1.

Consider first no covariates competing risks data. Two useful graphical
estimators of the distribution of ( T, J ) are the cumulative incidence plots and the
cumulative hazard plots. Cumulative hazard plots provide estimators of —log Sj(t)

with S; as defined in (3.189). Cumulative incidence function is defined as
1
L(t) = Pr{T<t, J=j }=j fi(w)du,j=1,..k (3.190)
0

The non-parametric estimation technique of Kaplan-Meier is generalized in

competing-risks data as follows. Let tj; <tp <...<'t i denote the k; failure times

for failures of type j, j = 1,...,k. Suppose that failure type j occurs at d;; times at t;;.
The likelihood function can be expressed as

dji
k | K k Cji
L=T11| II [Sj(tji)-S(tji+0)] IT Spti)t  II Sj(tjiqeo)| (3.191)
j=l i=1 p=1 q=1
p#i
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where tjig,...,t §iCji denote the C;; censored times from t; to the next failure time.

The likelihood (3.189) factors into a component for each failure type. It follows

that the non-parametric maximum likelihood estimator of S; is

S, ={'|Ht} (3.192)
i|tji<

where n; is the number of individuals at risk prior to time ;. Since there are no
ties with different cause of failures, the overall Kaplan-Meier survival function is

estimated by

S(t) = ﬁéj(t) (3.193)
j=1

The corresponding estimators of the cause-specific hazard function A; (t) has value
dji / n; at 5, i = 1,...,k; and value O elsewhere. By using these estimators, the

cumulative incidence function in (3.190) is estimated non-parametrically by

L= % d;n}S¢t;),j=1,...k (3.194)

{iltji<t}

When there is a single mode of failure, (3.194) reduces to 1-S(1). A plot of I i®

versus t gives estimates of the probability that failure type j will occur before time

t within the range of observations. The plot of cumulative hazard, -log S (t) versus
t, provides a visual impression by means of its slope over specific time intervals of

the rate of occurrence of failures of type j.

To find the relation between cause-specific hazard functions and regression

vector Z, the Cox regression model is used. Assuming proportional hazard model,
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the cause-specific hazard function at time t depends on Z in terms of observed z(t)

values is written as
A(8) =gy exp| () B;] 5= 1,...k (3.195)

Here, both the shape function Aq and the regression coefficients B; have been

permitted to vary arbitrarily over the k failure types.

The k; failure types, j = 1,...,k are shown as t;; < ...< tjkj and B;; is the

regression function for the individuals failing at t;;. To estimate the covariates the
maximum likelihood estimators from the partial likelihood is found. The method

of partial likelihood gives

k ki exp (zi (t;i) B;)
L(By,... By ) =
Bo i )= S e (i) B)

1eR(t53)

(3.196)

where R(t;}) is the number of individuals under risk of failure from cause j at time
ti. The By’s are estimated separately for each cause with deaths from remaining
causes treated as censored observations. The maximum likelihood estimators of
Bi’s are found from (3.196) and standard errors of parameter estimates are
obtained through estimated second derivatives of the log partial likelihood and
significance tests are based on comparing parameter estimates with standard
errors. Also, Wald statistic can be used to test the B; values with null hypothesis

Hy: Bje= 0 for each cause of failure. It is based on the maximum likelihood

estimator B ig - The test statistic is

Qw :(ﬁjg ~Bjgo )'[Ij—gIng (ﬁjg’ﬁjr) ]_l(ﬁjg ~Bjgo) (3.197)
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The test imposes jg restrictions on the parameters to be estimated for cause j. The
notation B;; indicates the set of the remaining jr = k;+1-jg parameters which are
left unspecified by the hypothesis tested. Under Hy, Qw is asymptotically
distributed as %> with jg degrees freedom. If Hy imposes one restriction only, jg=1,
on the parameter Bjx, Ho: Bj=Bjo then (3.197) reduces to the square of the

Gaussian standardized deviate

(f”jk—Bjko)z

Qy = i
Y VarBy)

(3.198)

The cause-specific hazard function for cause j is estimated as
Aj(t2) = hoj(t) exp(z(t)Bj) =Aoj(t) exp (@1 () Bj1 +.. + 2, (D Bjp)  (3.199)

where there are p prognostic factors for covariate ;. The estimated underlying

hazard for cause j, ioj (t), is obtained parametrically as

1 , for the exponential

Roj(®=18;t"1™", for the Weibulland ¢; > 0

. &t
¢ e 37, for the extreme value and c i >0

where c; is the shape parameter from cause;.

This value is estimated non-parametrically by assuming it to be zero except

at times at which a death from cause j occurs, in which case
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~ 1
Aoj(t) =m; [ 5 o“1P) ] (3.200)
leR(1)

where R(t) is the collection of individuals alive and in the study just prior to time t
and mj is the number of cause j deaths at t. This value is the generalization of the
single cause procedure given in Kalbfleish and Prentice (1980, pp. 85-86) for

estimating Ao(t). Then, the overall hazard function for survival is

A k ~
Mt Z)=Y Kj(t;Z) (3.201)
j=1
with survival function
~ t ~
S(t;Z)=Pro (T2t;Z) =exp l:- | AMu;Z)du jl (3.202)
0

The corresponding estimators of the cumulative incidence is estimated by

A t A A
I;(t:2) =Pre (T<t,J=j;Z)=] kj(u; Z)S(u;Z)du,j=1,..k. (3.203)
0

3.8. Graphical Methods in Competing Risks

By graphical analysis, a preliminary information about the data can be
obtained. This may be helpful in fitting the particular family distributions to a set
of data visually. Also, settled upon the family distributions, graphical methods
may be useful in finding the starting points for parameters to be estimated by some

iterative procedures.
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3.8.1. Distribution Function Technique

If there is a single cause of failure or the failure type is unspecified, there
are lots of methods of probability plotting. One approach is plotting the ordered
observations against the corresponding suitably standardized quantiles of the
assumed underlying distribution. That is, xg, i=1,...,n against P*'l(pi) where
pi=(i-1/2)/n and P is the assumed standardized distribution function. Plotting on
the suitable probability paper corresponding to P, an approximate straight line

indicates the correct distributional assumption.

In the competing risk analysis, the ordered failure times for a particular
cause of failure, say C;, against the appropriate quantiles of the corresponding
distribution  function is plotted. @ The plotting positions are
pi=(n-1j)/(n-ry+1),i=1,....,r and j=1,...,n;, where p; is the surviving probability of
cause C;. Here, the time scaling is divided into ntl intervals as

[O,Xi(l)),[xi(l),xi(z)),...,[Xi(ni),OO) and the ranks of Xi(l),Xi(z),...,Xi(ni) among all n
ordered lifetimes are TitsLi2ye e o5 Bip, 5 respectively. An approximate straight line in

this plot indicates the appropriate family distribution associated with cause C; and

this plotting must be done for each cause of failure.

3.8.2. Cumulative Hazard Function Technique

Hazard plotting is similar to probability plotting but ordered lifetimes are
plotted against the estimated cumulative hazard functions. In competing risks

analysis, hazard plotting is easier than probability plotting.

The cumulative hazard function associated with cause C; is

y -
Ri(y)= [;(t)dt = -In[F;(y)] (3.204)

—o0
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where Ai(t)=pi(t)/ P.t).

Hazard plotting papers for five theoretical distributions can be obtained
by the work of Nelson (1970, 1972).

In the case of Weibull distribution:

Let the cause C; have the pdf

pi(y) = (ciY"* N Bi)e‘yci ®,y>0,6,>0,¢;>0 (3.205)
Then, corresponding cumulative hazard function can be obtained as
R;(y) =y“i/% (3.206)

which can be rewritten as

logy = ilog R,(y)+ llog 0, (3.207)
C: C:

1 1

The Weibull hazard paper is ordinary log-log graph paper with the slope 1/c; and

the time point yo, corresponding to Ri(yo)=1. Then, 6, = y;i.

When there are k competing risks (k>2), the theoretical lifetimes, y will

not be known. Instead, the ordered failure times, Xi(1)s-++» Xi(n;) are available for

each cause C;, i=1,..,k. Also, the ranks Til,..., Ty, corresponding observed ordered

failure times can be available.
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Weibull hazard plotting in competing risks analysis suggests plotting log
Xig)> J=1,...,n; against the logarithm of an estimated R;(y) which takes the ranks
ril,...,r‘mi .

3.8.3. General Method:

Let si=n-rjj+-1 be the number of survivors prior to time xij. Then, the
cumulative hazard function may be estimated by summing the hazard functions as

in the following table.
These hazard values are the number of failures at vy from cause C;
divided by the number of survivors prior to time v(). The estimated cumulative

hazard function at time x is

0 , x<xj

Ri(x)=1 i (3.208)
Z /Sl Xig) < X< Xi(ju)
In present notation,
] (3.209)

which will be close to R;(x).

The estimation of cumulative hazard function of ordered lifetimes is

given in Table 3.1.

o

T.C. YOYSEKOGRETIM KURULU
DCUTMANTASYUN MERKPS!
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Table 3.1. Estimation of the Cumulative Hazard Function (c.h.f.) Ordered

Lifetimes
Ordered lifetimes and Hazard Values Estimated chf
censoring times
va) 0 0
V(n-$;) 0 0
Vn-8; +1)=Xi(1) /s 1/s1
Vn-8;+2) 0 1/s1
V@-S,) 0 1/s
Vn-S, +1)7Xi2) /sy 1/s;+1/s;
V(@-S, +2) 0 1/s1+1/s;
-1
ve-s)) 0 1/ 5,
=1
V(n-sj+1)=xi(j) l/sj il/s
a
V(-8+2) 0 i‘,l/sl
1=1
v(n—Sni) O niz_ll/sl
1=1
v = Xin. 1/sn. nj
(n—sni +1) i(nj) n; Zl/Sl

If more than one failure is obtained at the same time point, the hazard

value and estimated cumulative hazard function must be changed accordingly. For

instance, if ¢ failures due to cause C; occur after (j-1)-th failure, then the hazard

value at point xj) would be ¢/s;.
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In the Weibull case, the hazard plot corresponding to cause C; requires
plotting log x;g;) against log Ri(xi(j)) or plotting x;;) against ﬁi(xi(j)) on log-log

paper. For all causes of failures, separate plots must be made.

3.9. Nonparametric Test for Comparing Failure Rates of

Competing Risks

In competing risks model, there is a system, which is exposed to more than
one cause of failure, but its actual failure is from one of these causes of failure.
Each cause of death has its own latent or conceptual failure time , Xj, j = 1,..k. In
the presence of all causes of failures, only the smallest of X is observable with the
actual cause of failure. Hence, the basic available information in the competing
risks model is the time to failure of the system, T = min X; and the corresponding

cause of failure, 6.

The marginal distributions or the joint distribution of the latent failure
times are generally not independent but they are assumed to be independent
(Kalbfleish and Prentice, 1980). Otherwise, to estimate the joint distribution a
parametric model is used (Moeschberger, 1974). On the contrary, in many
practical situations, the causes of failure are dependent, that is, the latent failure
time of an individual failing from one cause of failure might be correlated with the
latent failure time of an individual failing from different cause of failure.
Moreover, the selection of the parametric family can be difficult and misleading.
It is easier to model the hazard function or the cumulative incidence function for

the failure from cause j.

Consider that there are two risks acting in the population and their
lifetimes are X and Y, respectively. The actual observations are T = min (X, Y),
the time that the system is failed and 8 =1 ( X > Y ), the failure type. It is assumed

that X and Y are independent and absolutely continuous random variables with
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distribution functions F and G such that F(0) = G(0) = 0. Since there is
nonidentifiability problems in the bases of the competing risk set up the
assumption of independence can not be tested. Let F and G be the survival

functions, f and g be the p.d.fsand A =f/F and A; = g/G, the failure rates of

the two risks X and Y, respectively. Let X,...X,; and Yi,...,Y, be two
independent random samples from F and G denoting the hypothetical times to
failure of the n individuals in the sample under the two risks. On the basis of the
observed information Ti = min (X, Yi) and & =1 ( X; > Y; ), of two hazard
functions is tested by the null hypothesis

Hp : Ap = Ag, for every x, that is,
F(x) = G(x), for every x

Against the alternative

Ha : Ar < Ag, for every x, and with a inequality over a set of nonzero

probabilities.

The equality of the two competing risks is tested in industrial reliability
when it is important to determine which of the two components in series is more
reliable than the other. Reliable component has the smaller failure rate. If the
dominance of the one survival function is interested, the graphical methods based
on the sample survival functions obtained from the competing risks data are used.
These are the product-limit estimators or the Kaplan-Meier estimators obtained
from the two samples assuming one type of the risk factor is censored. Since the
graphical methods are not associate with any error rates and may be misleading,
the nonparametric tests are appropriate for the problem of testing the equality of

the two competing risks.
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Under the alternative Hy the failure rate due to the first risk is required to
be uniformly smaller than the failure rate due to the second risk. So, it is expected
that the failure due to second risk is at earlier stage than the first one. Hence, if
(X1, Y1) and (X3, Y2) are the hypothetical lifetimes of the two individuals due to
two risks, respectively, then arrangements of the type Y’s preceding X’s (YYXX)
and Y’s being centred between X’s (XYYX) tend to favour the alternative Ha,
whereas arrangements of the type (XXYY) and (YXXY) would tend to favour a
smaller failure rate due to second risk (Kochar, 1979). For testing Hy against Hy

the following function is described;

AF, G) =P (YYXX) + PXYYX) - PXXYY) - P(YXXY) (3.209)
where
POYYXX)=P{(Y1<Y,<X;<X)U(Y <Y 1<Xi<X)U(Y <Y <X <X DU(Y <Y <X <X3) }.

X1, X3, Y and Y, are independent observations with the first two from F and
following two from G. Under Hy, A(F, G) = 0 and under Ha, A(F, G) > 0. A test is

based on U-statistic estimator of A(F, G) with the complete samples.

Let (X, Yi) and (Xj, Y;) be two independent pairs from which the available
information is (T;, &;) and (Tj, §;). All mutually exclusive and exhaustive
arrangements of the pairs (Tj, 8;) and (Tj, ;) are described in the Table (3.2).

Using these arrangements the following Kernel is considered by Kochar
(1979)

0" {(T,,8,),(T;,8;) }={ ord;=1andT, <T; (3.210)

-1, otherwise
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Table 3.2. Information Regarding (X, Y;) and (X, Y;) Available in (T;, 6;) and

(Tj, 8y)-
51=1,8j=1 5i=1,8j=0 5i=0,8j=l 8i=0,5j=0
Ti>Tj Yj<Yi<Xi Xj<Yi<Xi Yj<Xi<Yi Xj<Xi<Yi
Yj <Xj Xj<Yi Yj<Xj Xj<Yj
Ti<Tj Yi<Yj<Xj Yi<Xi<Yj Xi<Yi<Xj Xi<Xj<Yi
Y; <X Y; <X X;i<Y; Xi<Y;
Let U* be the corresponding U-statistic defined by
-1
" n %
U =[( )] > ¢ {(Ti,f’i ),(T,-,Sj)} (3.211)
2 [<i<j<n

Kochar (1979) proposed this U-statistic for testing Hy against Ha.

On the other hand, Bagai, Deshpande and Kochar (1989) derived an

equivalent statistic

4
n
U=M ” > of{(T.8).(T;,5,)} (3212)
2 I<i<j<n
where
o{(T.8,),(T;.8;) }=1 ord;=1andT, <T, (3.213)

0, otherwise

Large values of U are significant for testing Hy against the one sided alternative
Ha. IfRy, ..., Ry are the ranks of Ty, ..., Ty, then U can also be defined as
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[“ju=i (R;-1)8; = TR, - 25, (3.214)
i=1 i

2 i=1 i=1

n n
where 3.9, is the sign statistic and Y’ R;d; is the Wilcoxon signed rank statistic.
i=1

i=1

The asymptotic distribution of n'? (U - E (U) ) as n - o is normal with

mean zero and variance 4¢; where

¢1=E [y X1, Y1) 1-E* (U) (3.215)
V(xLy)=E[®( X7y X Y2)] (3.216)

For the proof one can see Puri and Sen (1971). Under Hy, E(U )=1/2 and

lim n 62 =1/3.The test based on rejecting Hy for large values of U is consistent
n—>oo

and unbiased for testing against H (Bagai, 1986).

3.10. Construction of the Life Table in the Presence of Competing
Risks Data

In mortality studies with competing risks data, the estimators of the
probabilities are different from the estimators, which are found before. For the
time interval (X;, X;+1), the length of the interval is n; = X+ — x;. P; is the midyear
population and D; is the number of deaths occurring during the calender year. The
average fraction of the interval lived by each of the D; individuals is a; and Nj is

the number of people alive at x; among whom D; deaths occur.

The age-specific death rate is

M, = —i (3.217)



This rate is generally a poor measure of mortality since it does not take age
structure into account. In many developing countries this rate is lower than those
of in highly developed countries because the former have a much younger age

structure.

One important use of the age-specific death rate is to calculate crude rate
of the natural increase, the difference between the age-specific birth rate and the
age-specific death rate, in the population. It measures the current rate of

population growth.

The probability of dying in the interval (x;, X+ ) is estimated from

§; =—L. (3.218)

When N; is expressed in terms of P; and D;, that is,
Ni=[Pi+(1-2;)nD;]/n, (3.219)
Then, equation (3.218) becomes

§ = n; M;
Yl+e(1-a)n M,

(3.220)
and its complement, the probability of surviving in the interval (x;, xi+1) is given
by

Col+(l-a)m M

(3.221)

The D; deaths contains k different death types. So, D; is defined as
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D;=Dj+...+Di (3.222)
So that

M =—2, 8=1,..k, (3.223)

are the age-cause-specific death rates.

The crude probability of dying from cause R; in the presence of all causes
acting on the population is estimated by
Djs

Qs = N, (3.224)

1

Substituting (3.219) in (3.224) gives

n; M
1+(1-a)n M,

Qs = 5§=1,...ki=0,1,... (3.225)

By using the relation between the crude and net, and the relation between

crude and partial crude probabilities these probabilities are obtained as

Gip =1-p78 P, (3.226)
61i.5 =1 _ﬁgDi_DiS)/Di s o= 19-"k (3.227)
A D A (D; —D; )/ Dj
Qis.1 =—+5~[1-p§ il '] ,8=2,...k (3.228)
D, -D;
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A Di8

=8 | p®i-Du-Di2)/Dif §=3 ¥ j=0.1,... 3.229
Quar =55 [1-8 ] (3229)

The ratio Djs / D; represents the proportionate mortality.

By substitution of 1y pg; = N, the approximate formulas for the sample
variances and covariances can be found where l; is the initial population size at

age Xo,

L & (3.230)
lopey P +(1-a;)n;D;

The sample variance of the net probability of dying in interval (x;, X;+1) when R is

eliminated as a risk of death, q;; is

e N : vl A P st v
o = (e | B 0800 log (1-8;5)+ (& - Q[ |:5=1,...k;

i=0,1,.. (3231
To construct a current life tables for a population with respect to a

particular cause of death, for example, the case where risk R; is eliminated from

the population is assumed. The basic quantity is the estimator q;sof the net
probability of dying in (xi, Xi+;) when R; is eliminated. The proportion of

individuals alive at age x, who will survive to age x; is calculated as
~ j-1 ~
Pojs = I1(1-q;5) (3.232)
1=
with the sample variance
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2 2

IR - R -
Spaj.s = Paj.s E;(l'ch.s) zsgia a<j;oj=0,1,.. (3.233)

When a = 0 the quantity in formula (3.232) is equivalent to 1; / l,.

The difference §; —q; 5 is the reduction in the probability of dying in age
interval (X;, X;+1) if cause 8 were eliminated as a risk of death or, alternatively, the

excess probability of dying due to the presence of cause 8.

When risk R is eliminated, the observed expectation of life at age X, is

éa_s =aa na + Z Cj f)aj.s 5 (3234)
2o

where ¢j = ( 1- aj.; ) nj.; + a; n; and the sample variance is

Fos = 2 8255 s+ (1-ap)n f st 0=0,1,.... (3.235)
j2a

Since q;; is less than g, the probability of surviving at age x, who will alive at
age Xi when the risk Rs is eliminated, p,;; in (3.232) is greater than the
corresponding proportion P, ; of survivors when Rs is operating in the population;
and €, in (3.234) is greater than the corresponding observed expectation of life
e,, when all risks are acting, or
€u5—64>0. (3.236)

a. a

The difference between €, 5 and €, in (3.236) is the additional years of

life at an individual of age x, could expect to live if risk R were eliminated, or

the years of life lost to an individual of age x, due to the presence of risk Rs.
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3.11. Medical Follow-Up Studies in Competing Risks

In the medical follow-up and life testing the main objective of statistical
studies is the estimation of life expectancy and survival rates for a defined
population at risk. These studies must usually be applied before all survival

information is complete and hence the study is said to be truncated.

In a typical follow-up study, a group of individuals with some common
morbidity experience is followed from a well defined zero point, such as date of
hospital admission. The purpose of the study might be to evaluate a certain
therapeutic measure by comparing the expectation of life and survival rates of
treated patients with those of untreated patients, or by comparing the expectation
of life of treated and presumably cured patients with that of the general
population. When the period of observation ends, there will usually remain a
number of individuals for whom the mortality data is incomplete. Of first
importance among these are the patients still alive at the end of the study. Second,
some patients will have died from causes other than that under study, so that the
chance of dying from the specific cause can not be determined directly. Finally,
some patients will be lost to the study because of follow-up failure. These three
sources of incomplete information have lots of statistical problem in the

estimation of the expectation of life and survival rates.

Most follow-up studies are conducted to determine the survival rates of
patients affected with a specific disease. These patients are also exposed to other
risks of death from which some of them may eventually die. In such cases, the
theory of competing risks is indispensable, and the crude, net and partial crude

probabilities play important roles.

[t is assumed that k risks, denoted by R;, R,,..,Rk, are acting
simultaneously on each patient in the study. For risk R; there is a corresponding
intensity function A(t,1), i=1,2,...,k, and the sum
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AT, 1)+ AA(TK)=A(D) (3.237)

is the total intensity function. Within the time interval (x, x+1) it is assumed that a
constant force of mortality for each risk, A(1,i) = A(x,i), which depends only on

the interval (X, x+1) and the risk R;; for all risks, A(t) = A(x) for x <1 < x+1.

If a subinterval (x, x+1) is considered and Qy; (t) is the crude probability

that an individual alive at time x will die prior to x+t, 0< t < 1, from R; in the
presence of all other risks in the population, then the crude probability can be

written as
x+1
Q= | expf- (1~ x) M)A ) dr (3.238)

Integrating (3.238) gives

Q (1) =1("—i)[1—e“’"<") ]=3‘,%2[1—px(t)] (3.239)

3@ )

where 0<t<1, i =1,...,.k and px(t) denotes the probability that a patient alive at time

x will survive the interval (x, x+t).

It can be easily seen that, the sum of the crude probabilities in (3.239) is

equal to the complement of px(t) as
Q () +..+Qy +p,(1)=10<t<1 (3.240)
This implies that

X X

Qu U+pY*) ™ +..4+Q, (1 +py?) " +pY* =1, wherex =0,1,..,y -1. (3.241)
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when t=2.

The assumption of a constant relative risk required for the relations

between the crude, net and partial crude probabilities derived respectively as

qxi =1_pSXi/qx » X = 0315-"’}"1

Qy, =1-pex '™ i1,k

Qy,, =—&—[l— pﬁ(‘*"‘Q“”“*li =2,k (3.242)
) qdx _Qxl

and

Qx ~Q - :
a —p @) | here =3,k

o - f
Xi.12 q, _Qxl _sz X

The main problem here is to estimate QXi , px and gx.

3.11.1. Basic Random Variables and Likelihood Function

For each interval (x, x+1) let Ny denote the number of patients alive at
the beginning of the interval. That is, Ny represents the number of survivors of the
patients entered in the study at least x years before the end of the study or date of
last reporting for patients. The number Ny decreases as x increases due to

termination of the study.

The Ny survivors beginning the interval (x,x+1) can be divided into two
mutually exclusive groups according to their date of entrance into the study at
time x. A group of my patients who entered the study more than x+1 years before
the closing date will be observed for the entire interval. A second group of ny
patients who entered the study less than x+1 years before its termination is due to
withdraw in the interval. Out of my patients, dx will die in the interval and s, will

survive to begin the next interval of the ny patients dy’ will die before the closing
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date and wy will survive to the closing date of the study. The sum dy+ds’=Dx is the
total number of deaths in the interval. The my patients to be observed for the entire
interval (x,x+1) will be divided into k+1 mutually exclusive groups with s
surviving the interval and d,. dying from cause R; in the interval, i=1,...,k. Hence
sx, dx, Wx and dy’, the basic random variables, will be used to estimate the
probability px that a patient alive at x will survive the interval (x, x+1) and its
complement qx. In Table 3.3. the distribution of Ny patients according to
withdrawal status, survival status and cause of death in the interval (x,x+1) is

given.

Since the sum corresponding probabilities equal to unity, the random

variables sy, dy ,...,d,, have the joint probability distribution

X"

X] 2"

£ (5,d:pQu)=| . sc x| %k 3.243
X1 (Sxa xi»Px: xi) d d px Qxl o Nxk ( 0 )
Xk

where my=s,+d, +...+d,, . Then their expectations are

E[s«jm,]=mypx and E|d, |m, |=m,Q,, (3.244)

respectively.

In the group of ny patients due to withdraw in interval (x, x+1), wy will
be alive at the closing date of the study and d'xi will die from R; before the closing
date. The distribution of the random variables in the group of ny patients depends
on the time of withdrawal. It is assumed that the withdrawals take place at random

during the interval (x, x+1). Under this assumption the probability that a patient

will survive to the closing date is

91



Table 3.3. The Distribution of Ny Patients According to Withdrawal Status,

Survival Status and Cause of Death in the Interval (x,x+1).

Withdrawal Status in the Interval
Total Number to be Number due to

number of  observed forthe  withdraw during

patients entire interval the interval
Total Ny my Ny
Survivors Sx Wy Sx Wy
Deaths(all causes) Dy dx dy
Deaths due to cause
Ri D, d,, dyy,
Ry Dy, dy, d'Xk
x+1 1-
[exp[-(t - x)A(x)]dz = ——Px (3.245)
x log p,

which is approximately equal to pY’? (Chiang, 1961) or

1-
_ 27 Px =pl/2,
log p,

Since the probability px of surviving the interval is almost always large. So, each

of the ny individuals has the survival probability p;/ 2 and the probability of dying

from risk R; before the closing date
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Qy, (1) =Q f1+p2)" Ji=1,.k (3.246)

Since p1/2 and Qx1 (—;—J,...,QXk (%) add to unity, the random variables wy,

d d have the joint probability distribution

X]2°°

1

fxz(sx,d;i;px,Qxi){d. o 4 } “’Z)WXH[Q (l+p22)" T' (3.247)

X120t Xy

where wy+t d;‘1 +...+ d;(k =ny. The expectations are

E[wynyJ=ny py > and E[d,, InJ=ny Q,, (1 +p} )™ (3.248)

respectively. Because of independence of the two patient groups, observed and

withdraw, the likelihood function of all the random variables can be written as

L, = fxl (Sx’dxi ;pX’Qxi )fxz (Wx’d'xi ;px’Q"i )

' 3.249)
s k _d,. -1 dxl (
_cpxx+(l/2)Wx1:[Qx:(l I:Qxi (1+p;/2) ]
h ( my J( Dy ]
where c= o o
dy seees gy Ay sees Ay
This likelihood function can be simplified as
Lk
L, =cpyr P14 p)/2)"*T1Q,, (3.250)
i=1
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3.11.2. Estimation of Crude , Net and Partial Crude Probabilities

To obtain the estimators of probabilities px, Qy;,---,Qy, > the maximum

likelihood principle is used. The logarithm of the likelihood function (3.250) is
1 ' 1), &
logL, =logc+ s, + wa logp, —d, log (1 + Py )+ 2.D,, logQ,. (3.251)
i=1

which is to be maximized subject to the condition
Px +Qy +..+Q, =1.

Using the LaGrange method it is maximized that

O, = logc+(sx +%wx)log Py —dy 108(1+P§</2)
(3.252)

k k
+ %Dxi log Qxi —}"(px + Zlei _l)
1= 1=

Differentiating @, with respect to py, Qs Qy and setting derivatives equal to

zero yield equations

1 1,
5 Sy +—w, de
D, =—— —t—E = —A=0 (3.253)
op, B, (l+p;/2)p;/2
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and

D,
0 _x -A=0,i=1,..,k (3.254)
ani Qxi

Since (3.254) holds true for each i, it is obtained that

k
,\ .Z Dxi ~ D
A= 1? or A=—%X with §, =1-p, (3.255)
) Qxi Ax
i=1
and hence
D,
x _ Dy (3.256)
Qxi qx

Using the second equation in (3.255), the quadratic equation can be found from

(3.256)

1 N 1, . 1
(Nx _Enx)px +§dxp§</2 _(Sx +'2_Wx) =0 (3'257)

Hence, the estimators
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—ld'x + l(dx)2 +4(Nx —lnx).(sx +lwx)
2 4 2 2
,wherex =0,1,...,y -1

o
>
Il
[\=)
N
Z,
>
|
|
=
>
N—

(3.258)
with the complement ¢, =1-p,,x=0,1,..,y-1. Substituting (3.258) in (3.256)

yields the estimators of the crude probabilities,

n D,
Qy = D"' 4,,i=1,..k, x=0,1,..,y-1. (3.259)
X
Thus, the net and partial crude probabilities can be estimated as
QXi =1 —f)lx)"i /Dx ,x=0,1,.,y-1
gy, == P =1,k
Q — Dxi [1 _ A(Dx‘Dxl)/Dx ]l =2 k (3 260)
Xi.l Dx _Dxl X
and
D,.
A ~ (Dx—-Dx;-Dx,)/Dx | .
Xj N x~Vx;~Vxa xll=3,...,k

. !
Qx|.12 Dx _Dx1 _Dx2

3.12. Dependent Competing Risks

In biological and medical studies, estimation of the marginal survival
function of the time T, from some specified starting point, until some event of
interest occurs, such as the occurrence of a particular disease, remission, relapse,

death due to some specific disease or simply death, is a common problem.
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Sometimes it is impossible to measure T due to the occurrence of some other
competing event at time C ( <T). This competing event may be the withdrawal of
the subject from the study, death from some cause other than the death from the
main event of interest or any event precluding the occurrence of the main event of
interest. In such cases, the actual time until the main event of interest occurs can
be regarded as censored. With such a competing risks framework, right-censored
survival data are analyzed as though the latent random time T is independent of
the latent time C. However, many biomedical experiments put forward to the

inplausibleness of the assumption of the independence of T and C.

In the competing risks framework, data consists of the failure time of
death or censoring, X=minimum(T, C) and A = I( T < C ) where I(.) denotes the

indicator function.

Since the papers of Tsiatis (1975) and Peterson (1976), it has been well
understood that the survival function St(t) = Pr( T; = t ) cannot be identified from
data of the form {Xj, A}, i=1,2,...,n. Because there exists both an independent
and one or more dependent models for (X, Y) that produce the same joint
distribution for (X, A). However, these equivalent independent and dependent
joint distributions may have quite different marginal distributions. In order to
analyze such data one must make an unverifiable assumption. Under the
assumption of independent T; and C;, methods of analysis based on Kaplan and
Meier (1958) consistent estimator §T (t) of S1(t) are available. If the joint density
of T; and C; is assumed to have a known parametric form f{t, c; 0), then the
estimators for 6 based on the likelihood function of {(Xi, A;)} allow consistent

estimation of St(t).

In the light of the consequences of the untestable independence
assumption in using the product-limit estimator to estimate the marginal survival

function of T, it is important to have bounds on this function based on the
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observable random variables (X, A) and some assumptions on the joint behaviour

of T and C.

In the case of dependent competing risks Peterson (1976) has obtained
bounds on the unobservable marginal survival probabilities Si(.), in terms of
observable crude survival probabilities Si (.), in the case of k = 2. He also obtains
a bound on the joint survival function S(x1,X2) = P(T > X1, C > X,) in the following

theorem:

Theorem 1. (Peterson (1976))
Let Si(x) = P(T > x) and Sx(x) = P(C>x), S{*(x)=P(T>x, min (T, C)),
Sz*(x)=P(C>x, min (T, C)), pi=P(T<C) and p;=P(T>C) then

S(t,c)=S1"()+Ss (c)-P(<T<C<c) ift<c

=S, ()+S, (c)-P(c<C<T<t) ift>c (3.261)
Also
S:*[max(t,c)]+S2 [max(t,c)] <S(t,c)< Si (®)+S2 () (3.262)
and
S1"(+S2" (1) < Si(t) < S ®)+p2 (3.263)
S1"(0)+S2°(c) < Sa(c) < S2°(c)+pz - (3.264)

These bounds allow for any possible dependence structure and can be

very wide.

Alternatively, Slud and Rubinstein (1983) give a simple and completely
general, although strictly hypothetical, quantification of the degree of dependence

between latent failure time random variables T and C by defining the ratio p(t)
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(the rho-function) of the conditional hazard function for T at t given C<t to the
conditional hazard function for T at t given C>t.

Formally, the rho-function is given by

()= hr(tjC<t) . Prit<T<t+e|T2t,C<tf (3.265
P | czt) &30 Prit<T<t+e|T2t,C2t] 26%)

which measures the relative risk that would be felt at time t on test for the failure
time T among previously censored individuals as compared with individuals not

yet censored.

Assuming p(t) is known, they produce a consistent estimator §p(t) of

St(t) analogous to Kaplan-Meier estimator, and note that if reasonable bounds

p1(.) and py(.) can be postulated from the unknown p(.), then the marginal survival
function St(.) is correctly estimated to line between §pl (t) and §p2 (t) for all t as

the following:

When p(.) is assumed known, there is a simple consistent estimator of the
marginal survival curve S(.) which immediately generalizes the Kaplan-Meier
(1958) estimator. Suppose that in the sample {X;,A;:1<i< N}, the ordered times of
X for A=1 are Xy<...< X(g) and the number of X; with A=0 between X; and
X+1) is ¢j, with ¢g censored before X(;). Let n; be the number of i with X; > X;.
Then the empirical odds of an uncensored surviving individual's dying at X is 1:
(nj-1), and the empirical odds of a previously censored surviving individual's
dying at X is p(Xg): (nj-1). The product-limit estimator of the probability of

being censored before X is therefore

N ch I fi-p(Kg) b -1+0(Xg)}] (3.266)

k=0 i=k+l
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while the probability of not being censored before X;) is empirically estimated by
(n-1)/N. Altogether this product-limit estimator for S(.) based on {(Xi, A))} is

d)-1 d(t) L
11 -i—l—} (3.1267)

ép(t)=N"{n(t)+ > ¢,

k=0 i=k+1 n; +p; —1

where
n(t) = ZIX > 1), dt) = Z I(AF1, Xe<t), pr= p(X)

After some algebra with the identities cy=ng+ny+1-1, where ng=N+1, it can be

found that
(px 1) [I——— (3.268)

It is clear from (3.267) that §p (t) is a decreasing function of p for fixed t.

If p(t) is defined as (3.265), then in sufficiently large sample
S,, (1) <8, () < S, (1) (3.269)

if p1()<p()<p2(.). When p;(.)=0 and py(.)=cc, one can obtain the Peterson's (1976)

general bound.

It can be seen easily that, when T and C are independent, p(t) =1 for all t
and the Kaplan-Meier estimator for St(t) is consistent. Values of p(t)>1 for all t
may be interpreted to mean that among those who are censored before t,
individuals with smaller T; will be overrepresented as compared with the whole
population under study, and thus if independence of T and C is assumed, the

survival curve will be overestimated. On the other hand, if p(t)<l for all t,
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individuals with large T; will be overrepresented, and the independence

assumption will lead to underestimation of the survival curve.

Alternative bounds on the marginal survival function utilizing different
additional information are produced by Klein and Moeschberger (1988). They
assume that the joint distribution of the time until death and censoring, (T, C),
belongs to a family of distributions indexed by a dependence measure 6 with
arbitrary marginal. For this family, knowledge of 6, along with the observable
information, (X, A), is sufficient to determine uniquely the marginal distributions
of T and C. The resulting estimator §e (x) is a decreasing function of 0 so that
bounds on S(x) for the family of the joint distributions is obtained by specifying a
range of possible values for 6=(1+t)/(1-t) where 1 is the coefficient of

concordance.
Hence the bounds on marginal survival functions are obtained as follows:
Let S(t)=P(T = t) be the univariate survival function of death and

R(c)=P(C = c) be the probability of not being censored before time c. Also
suppose that T and C have the bivariate joint distribution defined as

01 o-1 —1/(8-1)
1 1
F(t,c)=P(T>t, C>c)={ [ © } +[ 2 } -1 } (3.270)

where 6 2 1 and X=min(T, C); then the survival function of X is

L T LT -1/6-1)
F(x)= {[-S@jl +[ ) } —1} (3.271)

and the crude density function associated with T,
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ql(x)=§t— P(X<x,T<C)= ;;(’2) [Fx) P (3.272)

where s(x)=-dS(x)/d(x).
Considering the differential equation
s(x)/S°(x)=q:(x)/[F(t)]® (3.273)

and suppose 0 is known, it can be obtained by

e

. ~1/(8-1)
[1+(6-1)j~%du} if0>1
Se(x) = o [Fw] (3.274)
{exp{ | cg((u)) du] if6=1
The functions F(.) and q;(.) are directly estimable from the data as
B = 212 and §, 0 = SHER S D (3.275)
Then if 0 is known, an estimator of Se(x) is
( ~1/(8-1)
{1+(e 1) de (u)} if0>1
8y (%) =1 o [ (3.276)
_del(u) =1
\eXp [ g F(u) ] 1

For the computation purposes

I oDy
[ ﬂ P\;F[
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1 -1/(6-1)

1+@©-n®*' 3 —%—e ifo>1
X(i)sx (n—-1+1)
A=

Sg(x) = (3.277)

exp|— X —1— ifo=1
X(i)<x (n-i+1)
Aj)=1

L

For 0 known and if the true underlying joint distribution of (T,C) is of the form

(3.270), then ée (x) is a consistent estimator of S(x).

To obtain bounds on the net survival function based on data from a
competing risks experiment, first note that Se(x) is a decreasing function of 0 for

fixed x. Also, as 6—1", it is obtained that
X
Se(x) T exp[— [F(u)dQ, (u)] (3.278)
0

which provides an upper bound on S(x). This upper bound corresponds to an
assumption of independence. As 60—, it can be shown that Sg(x)VF(x), which

corresponds to Peterson’s(1976) lower bound.

Tighter bounds, in the spirit of Slud and Rubinstein (1983) may be

obtained if an investigator can specify a range of possible values for 0, (0,, 6;). If
the sample size is sufficiently large and 6,< 6 <0, then éel (x)=8(x) 2 éez (x).
Two approaches to specifying O, and 0O, appropriate. Note that
O=hr(t | C=c)/h(t | C>c) for all t, ¢ so that O; and 6, are reflections of the
investigator's belief in how the hazard rate of T would be affected by knowledge

of the occurrence of censoring at time ¢. Second, specifying 01,0, is equivalent to
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specifying a range of values for the coefficient of concordance, 1, between failure

time T and censoring time C, since 8=(1+t)/(1-1).

Dependence between two causes of death can arise whenever a shared risk
factor is ignored or unknown. The dependence will be positive when the ignored
risk factor increases risk for both causes, and negative when its effects on the two
causes are opposite. For example, smoking is a risk factor for both coronary heart
disease and some forms of cancer, but other evidence suggests that alcohol may
increase risk for some cancers but decrease risk for coronary heart disease.
Different ignored risk factors could be important for patients with high or low

levels of the risk factor under study.

3.12.1. Dependent Competing Risks with Bivariate Normal Distribution

Let the non-negative random variable Y; represent the theoretical lifetime
of an individual when R; is the only cause of failure (i=1,...,k). In the presence of
all k causes R, (p=1....k) only the smallest of the Yj, is observable, together
within the actual cause of failure , say R;. Then the observed lifetime can be
written, conditional on knowing the cause of failure to be R;, as Xj, where

X=Y; | Yi=min Y. Also, let the probability of failure due to cause R; be

k
IT, =Pr{Yi =mian}, II; >0, 31I; =1 (3.279)
p i=1

If the Y, (p=1.....k) have an absolutely continuous joint distribution with
probability density function (pdf) p(y1,y2,----yx), then the pdf of the observed

lifetime X; (i=1,...,k) of an individual dying from cause R; is
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8

1 e o}
fl(x)=ﬁ_j Ip(YI’ 7y1 15X Yit1se- ’yk)H dyp (3280)
ix x p=l
p#i
1 ® o
= 'ﬁ_pi(X)J.“'j.p(YI""’Yi—l’yi+1"“’yk|Yi = x) X
i X X
gl ¥ (3.2802)
p=1
p#i

With the help of the result of (3.280), it is easy to write down the likelihood

function. In the case of Type I censoring, likelihood function can be written as

Han(xu)XHI Ip(yl, ,yk)de,, Xij <Y (3.281)

i=1j=1 u=ly(u) Y(U)

where y; is the censoring time, m; is the individuals have failed from cause R, s is

the number of survivors and yw) denotes the censoring times of the s survivors

(u=1,...,8).

Suppose that k=2. Then (3.280a) can be written as
l L3
fi(x)= 1—_I—P1 (x)] P(Y2|Y1 =x)dy, (3.282)
1 X

with the corresponding expression for f5(x). When Y; and Y, are bivariate normal,

BVN(p1,M2, 0'12 , G% ,p), the probability of failure due to cause R; becomes

1=Pr{Y,Y>0}=10(E)= (&) (3.283)

where
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£ = Hi—Ho
(o} —2p0;6, +03)

1/2°

Since Yz | Yi=x~N( pa+poa(x-p1)/or, 65(1-p?)), it is found that

! ¢(x—u1 JE(X_,“ J if po, # 0,
0 O O]

Lq{x_—&J if po, = o,
O o J

£,(x) = (3.284)

1/2

where ' =oup, +(1—0), 0) = a,0,(1—p%) ,oc1=|l—p<52/o'1_1 with f5(x)

similarly expressed, the likelihood function is readily written down.

From (3.281), E(X)) can be obtained and compared with E(Y;). Such a
comparison is of particular interest when one wishes to estimate the expected
lifetime under some prime cause of failure which suffers interference from
nuisance cause R;. When Y, and Y, are bivariate normal from (3.283), on setting

u=(x-;)/o]

E(X)=— | Gu+p)o@  [o(y)dydu
Ty ~o (opu+pi-pi)/of

This, on reversing the order of integration, reduces to

1 (ug-p)?
- 5 2 512+c’12
E(Xp) = py ~—==x 1
N (612 +c/2)” (3]
=y -0y [o1 =5 < 2E) (3.285)

7%
(012 —2pc04 + c%)l )

106



3.12.2. The Dependent Competing Risks with Bivariate Exponential

Distribution

3.12.2.1. Marshall and Olkin’s Bivariate Exponential Model

In this model, a bivariate exponential distribution has two exponential
marginal distributions and the lack of memory property. The model can be written

as
F(}’1,)’2) = Pr(Yl >y, Y, > Y) =¢eXp {‘ Ay1 =2y, — Ay max [Y1aYz]} (3.286)
where y;>0 and y,>0.

This model assumes that three independent Poisson processes Zi(t;A1),
Z5(t;12) and Zj,(t;A12) describe the occurrence of failures. Here, Z(t;A) denotes the
number of fatal shocks in time t for a Poisson process with parameter A, Z; refers
to shocks fatal to component 1, Z, refers to shocks fatal to component 2 and Z;; to

both components simultaneously.

The probability that component 1 and 2 are still functioning at time y,;

and y, respectively, is given by
Ii()’l: ¥2) = PT{Zl (Y15M)=0,Z,(y2:A,) =0, Z), (max(y,, ¥,);App) = 0} (3.287)

Let U;, U, and U be exponentially distributed times to first occurrence
of events in the corresponding Poisson processes, then Y;=min(U;,U;2) and

Y,=min(U,,U). By using this representation, it can be obtained that

)"12

—_ s (3.288)
A +Ay + A,

Pr(Y; =Y,)= Pf{Ulz = min(UlaUzsUlz)} =
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In the competing risk theory, Marshall-Olkin model can be used, if the
two components were arranged in series. So that failure of any component fails
the whole system. When the system fails, the identified minimum of U;,U; and
Uy, is obtained. The U’s correspond to an individual’s time to death from cause 1,

cause 2 or from both causes, respectively.
3.12.2.2. Gumbel Bivariate Exponential Model

Consider a two component series system with component life lengths X,

Xs. Suppose that X; has an exponential survival function
E(t) =Pr(X; > t) = exp(—A;t), 0, A0, i=1,2. (3.289)

It is assumed that the value of A; is known. If X, X; are independent , the time to
system failure has an exponential distribution with failure rate A;+A2, and the

system reliability is
F (t) = Prjmin(X,,X,) > t]=e™ (3.290)

Suppose that the actual joint distribution of (X;,X3), has the form proposed by
Gumbel (1960)

P(X1>x,Xp>x)=[exp(-A1x1-Ax2)][ 1 +a(1-exp(-Ai1x1))(1-exp(-A2x2)]  (3.291)
where x;,X2,A1,A2>0, -1< a0 <1 and the joint density function of (X;,X5) is
f(x1,x2)=MAz2[exp(-A1x1-Aax2)][1-a(2exp(-A1x1)-1)(2exp(-Ax2)-1)  (3.292)

where Xxj,X2,A1,A2>0, -1< o <1. This distribution has marginal survival functions

equivalent to those for the independent model.
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The correlation between X;, X; is p=a/4 and o=0 represents the
independence between X;, X, for p>0 (<0) the components are positively
(negatively) quadrant-dependent. Moreover, the conditional expectation of X;

given X,=X; is

1
E[X,[X, =x,]= x—[l +2p — dpexp(—A,X,)] (3.293)
1

If (X1,X3) have the joint distribution f(x;,X2), then the true system reliability is

Fp (1) = Plmin(X;,X,) > t] = exp(-A)[1 + 4p(1 - exp(-A,1)(1 - exp(—A,1)].
(3.294)

Then, the error in modelling system reliability dependent or independent is

A() =T ) - F (1) = 4pl —e M [i—e?2t e ®1+222 | (3.205)
For fixed A1, A2 and t, |A(t)] increases as |p| increases. When A 1=A,=0, A(t) is
maximized at t=[In2}/@ (fixing p and &). The value of |A(t)| at this point is |p|/4

which is at most 1/16.

The mean time to failure assuming independence is

ur=1/(A+Az) (3.296)
and assuming dependence
1 3 1 1
- +4 - - 3.297
o = T4, p{z(xlmz) 20 + 1) (x1+2xz)} (3.297)
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Then the error in modelling system mean lifetime is

6pMA, 6pA AL

= 3.298
(A #2020 + 2, 0 +20,) (24 +2, )&, +20,) ( )

Hp —Hy =

where its absolute value increases as |p| increases. If A1=A,, this error reduces to

2pu/3 which has a maximum absolute value of py/6.
3.12.2.3. Oakes Bivariate Exponential Model
For this model, the joint survival probability is given by

P(X1>x1, Xo>x2)=[exp(M(0-1)x1)+exp(Aa(0-1)x7)-11 1D (3.299)

where A1,A2>0; 0 2 1; x1,x,20 and 9=%i‘£ where 1 is the Kendall’s coefficient of
-1

concordance, 0<t<1. When 6=1, X, X, are independent.

This model has the following interpretation: If r(x;|X;=x,) and
1(x1|X2>x,) are the conditional failure rates of X; given X;=x, and X;>x,,

respectively,

(x| Xo=%x2)=0 r(x;|X>>x5). (3.300)

110



CHAPTER 4

APPLICATION OF COMPETING RISKS DATA

Leukemia is a cancer of the blood-forming cells. It occurs when immature
or mature cells multiply in an uncontrolled manner in the bone marrow. It is
classified as lymphocytic or myeloid, according to the type of cell multiplying
abnormally, and either acute, signifying rapidly progressing disease with a
predominance of highly immature (blastic) cells, or chronic, which denotes slowly

progressing disease with greater numbers of more mature cells.

In this study, randomly selected 84 patients suffering from acute leukemia
between 1% August 1987 and 5™ March 1999 are obtained from the Marmara
Medical School Hospital. The time from diagnosis until death is considered as the
survival time of the patient. Two of the types of acute leukemia are Acute
Lymphocytic Leukemia (ALL) and Acute Myeloid Leukemia (AML). These are,
in general, classified into certain categories referred to as French-American-
British classification. According to this classification, Acute Lymphocytic
Leukemia is sub-classified as:

L1 The lymphoblasts tend to be small, with little cytoplasm and regularly

shaped nuclei; they are maturer in appearance than other subtypes.

L2 The lymphoblasts appear more immature, varying in size and nuclear

shape.

L3 The lymphoblasts tend to be large, with abundant cytoplasm and

similarly shaped nuclei.
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Acute Myeloid Leukemia is sub-classified as:
MO Undifferentiated leukemia
M1 Acute myeloblastic leukemia with immature cells
M2 Acute myeloblastic leukemia with some mature cells
M3 Acute promyelocytic leukemia
M4 Acute myelomonocytic leukemia
M5 Acute monocytic leukemia

M6 Erythroleukemia (immature red and white blood cells)

Types of leukemia are classified as AML, AML-M3 and ALL in this work,
since, usually risk of death from AML-M3 is the lowest among the other types. In
contrast, ALL type may have higher survival probability in early phases of the

illness.

When leukemia develops, the body produces large numbers of abnormal
blood cells. In most types of leukemia, the abnormal cells are white blood cells
and all the normal blood forming elements are affected. So the white cells,
infection fighters, platelets, clot forming cells, and red blood cells, oxygen
carrying cells, are all eventually depleted. The lower number of normal white
blood cells makes leukemic patients more vulnerable to infection. The depletion
of normal platelets interferes with the patients clotting ability and makes the
patient more susceptible to abnormal bleeding and bruising. Anemia is caused by
the decreased production of normal red blood cells. By using all these information
the amount of white blood cells (WBL), platelets (thrombocytes) (PLT) and red
blood cells (haemoglobin) (HB) are taken as the prognostic factors. Another
important prognostic factor is the existence of haematological or systemic illness
besides acute leukemia. The six covariates of interest considered are:

L. Type of leukemia 1-AML
2 - AML-M3
3-ALL

112



II. Age (in years) 1 - >55 years of age
2 - 3555 years of age
3- 35> years of age

III. Existence of another 0 — no illness
illnesses beside 1 — haematological illness
acute leukemia 2 — systemic illness
IVv. WBL 1- <1000
2 —1000-4000

3 —4000 — 10000

4 — 10000 - 30000
5-30000 - 100000
6 — 100000 <

V. PLT 1- <10000
2 -10000 - 30000
3 —30000 - 50000
4 —50000 - 100000
5-100000 <

V. HB 1-<8
2—8-12
3-12<

Of 84 acute leukemia patients 35 deaths are from relapse or progression,

27 are from refractor or wrong medical treatment related and 22 are alive. The

data set is shown in Table 4.1. In this table, survival times are recorded in days.
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Table 4.1. Survival Times and Covariates of Acute Leukemia Patients

0* | I | II (III|IV ] V | VI |Diagnosis Date | Closing Date | Survival
2 (31112521 03.01.95 03.02.95 1
2 11|11 ]2]2]2 10.28.93 11.02.93 5
11112411416 |5]2 10.06.94 10.14.94 8
1{1 1] 1]|5]|5]2 09.22.92 09.30.92 8
211|102} 1]2 09.23.94 10.03.94 10
2111210531 06.12.95 06.23.95 11
21112101421 11.01.95 11.15.95 14
211 ]1]0]|6]|5]2 06.15.96 06.30.96 15
2111312 14|2]1 07.24.93 08.11.93 18
2131204121 05.02.93 05.21.93 19
2111213115 ([1]1 11.28.94 12.19.94 21
2|11 ]13]0[3]3}1 03.18.92 04.13.92 26
21111121621 04.09.93 05.08.93 29
211 (31012 |2}|2 10.01.91 11.02.91 32
21112121411 08.11.95 09.14.95 34
1133214 ]1]1 09.02.94 10.12.94 40
11 (1] 1]|5]41}1 05.29.90 07.11.90 43
2112|1531 06.01.96 07.19.96 48
211 (3]0 2]|2]1 01.09.97 03.01.97 51
2|11 1312 (3]3]3 06.01.98 08.22.98 82
21341241013 ]12]1 04.26.94 07.18.94 83
1111211 ]5]5]1 11.05.97 02.01.98 88
11313102 ]2]1 02.01.95 05.01.95 89
21113102 ]4]1 09.01.95 12.01.95 91
2 111310222 09.08.95 12.10.95 93
1131301 ]13]}1 02.05.97 05.11.97 95
2 1313|114 )3]3 09.01.95 12.21.95 111
111 (210} 5|3]2 01.01.96 05.25.96 145
1114110122 }1 03.01.90 08.01.90 153
113131011 [2]1 06.14.93 11.26.93 165
2|11 13]0[2]3]1 08.24.93 02.21.94 181
1|1 |11 [2]4]1 06.01.91 12.01.91 183
11111212 ]4]1 03.01.98 10.01.98 214
1 {1 ]2]1061]3 |1 11.05.90 06.12.91 219
1{1 13|01 1]2]2 06.25.92 02.01.93 221
21 3[3]0]5)1}1 06.20.97 02.05.98 230
2111312 |5]2 04.01.97 11.20.97 233
113131012 ]|1j)1 05.16.97 01.05.98 234
113 ]13]0([5]2]3 12.25.94 09.01.95 250
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Table 4.1, (Continued)

0| I | II [III|IV ]| V | VI Diagnosis Date|Closing Date | Survival
1 {1 ]|13]0}|5]|21}2 09.01.93 06.01.94 273
2131312 |1]2]|1 05.01.90 02.04.91 279
2123|011 12]1 01.01.93 11.01.93 304
1122 (2]2]2 09.01.91 07.07.92 310
2 (113 ]0f(1]2]1 08.20.91 06.26.92 311
1111312 ]12]|2}2 07.01.91 05.21.92 325
1 {1 }13]0(41}111]1 02.17.95 01.27.96 344
1 {1 (3125|111 07.07.94 09.01.95 421
1 {3 (3 ]0)j2]2]|1 11.24.96 02.03.98 436
rjy1r|11701t27]3]})2 10.01.97 01.01.99 457
11313013 ]151]3 02.01.97 06.15.98 499
1 ({1 ]|3]0(2]4]2 06.14.90 11.07.91 511
1 {1304 ]3]1 05.20.96 02.04.98 625
1 ({31301 ]1][1 05.31.93 04.01.95 670
1 1{1]0}2]|1]1 05.01.92 03.28.94 696
212 (30| 1}1]|1 04.15.91 05.26.93 772
1 {31305 ]|4]|2 02.28.92 05.03.94 795
113|305 [2]1 02.01.93 05.02.95 820
1{2 1171 ]12}3]2 08.01.87 11.01.89 823
31 313(01]47]4]2 07.26.96 03.05.99 952
311 (3102 ]2]1 06.24.96 03.05.99 984
1 11310127111 08.01.93 07.01.96 1065
311 13(012)3]1 03.28.96 03.05.99 1072
1131302 ]2]1 08.01.90 10.11.93 1167
313 (13([0]15([4]2 06.25.95 03.05.99 1349
31213013512 06.09.95 03.05.99 1365
311 (305 1]2]1 06.01.95 03.05.99 1373
3111310141412 03.16.95 03.05.99 1450
312131014} 1]1 02.26.94 03.05.99 1833
31113103471 12.07.93 03.05.99 1914
312 13([0]13]4]2 08.17.93 03.05.99 2026
1 {3 |13]0]|S5)]4]|2 06.25.92 03.01.98 2075
3131305 ]21}1 03.12.93 03.05.99 2184
312 13(013 11412 10.27.92 03.05.99 2320
113 (3[0]12]4]1 08.01.90 02.01.97 2376
3131303 ]3]|2 05.08.92 03.05.99 2492
311 13(0]13]2]2 08.03.91 03.05.99 2771
31113013412 07.15.91 03.05.99 2790
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Table 4.1. (Continued)

0* | I | II [III| IV | V | VI |Diagnosis Date | Closing Date | Survival
3111305 ]1]1 07.01.91 03.05.99 2804
31313013211 06.17.91 03.05.99 2818
311 13[0512]2 02.10.91 03.05.99 2945
311 13(10]14]4]1 01.30.91 03.05.99 2956
3 (11303 ]3¢{2 08.01.90 03.05.99 3138
31313053711 05.19.90 03.05.99 3212
3 (1|1 3[0(4]4]|2 12.20.89 03.05.99 3362

* Failure types: 1-Death from relapse or progression, 2-Death from refractor or

wrong medical treatment and 3- Alive.

The treatment of leukemia continues to progress. Clear understanding of
the basic disease process as well as better drugs and supportive care are leading to
more cures and remissions. The treatment is divided into three categories;

1. Supportive care

2. Chemotherapy treatment with chemical drugs

3. Radiation therapy and/or bone marrow transplantation (BMT)
Supportive care refers to treatment which helps the patient to feel the pain less,
but does not attempt to fight the leukemia. This includes blood transfusion, to
relieve the anemia, platelets transfusion, to help prevent bleeding, and antibiotics,

to control various infections.

4.1, Data Analysis

In the data analysis, only the parametric modelling of the survival data,
construction of the Kaplan-Meier survival curves and crude cumulative incidence
curves, and proportional Cox regression model were applied. Other methods given

in the Chapter 3 are not appropriate to apply.
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4.1.1. Parametric Approach:

By using cumulative hazard plotting technique, as seen in Figures 4.1 and
4.2, Weibull distribution fits each failure distribution slightly better than the other
possible distributions such as exponential, extreme value, normal and lognormal
distributions. In these figures the slopes are nearly equal to each other and the
graphical estimates of the shape parameters (c;, i=1,2) are ¢; = 1.02 and ¢,=0.93.

These graphical estimates are used as the starting points of the Newton-Raphson

iteration procedure.
10 1
8 -
>\
6 -
)
0 4 -
=
= 5 ]
0 T L —
0 2 4 6

100 * ( Estimated c.h.f. )

Figure 4.1. Weibull Hazard Plot for Relapse or Progression Type Deaths.
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Figure 4.2, Weibull Hazard Plot for Refractor or Wrong medical treatment
Related Deaths.

The data are analyzed under the more general assumption that the two
types of failure do not depend on each other. The failure distributions associated
with those patients, who died from relapse or progression and those who died
from refractor or wrong medical treatment, respectively, follow Weibull
distributions with unequal shape parameters. Moreover, since the individual’s
failure is observed within some specified time period, then Type I censoring is
applied. The estimates of the scale parameter, 6; obtained from Figures 4.1 and 4.2
will only be approximate values. To obtain the maximum likelihood estimators
(MLE) of shape and scale parameters from (3.154) and (3.155) the FORTRAN
program, given in Appendix A, has been written and Newton-Raphson iteration

method is applied. The MLE’s are found as

&, =0.674226 ; 6; =184.35
&, =0.369492; 6, =29.7435

In order to estimate the asymptotic variances of the maximum likelihood
estimators, using equations (3.160), (3.161) and (3.162), as elements of the

information matrix, it is required to know the different censoring times for each
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individual. Such detailed information is not available in this study; the negatives
of the second partial derivatives of the log likelihood function are used to
approximate the elements of the information matrix. Such an approximation

yields the following estimated standard deviations;

5d.(&) = 0.01541844 ; s.d.(B,) = 20.754270
sd.(6,) = 0.01209473; 5.d.(,) = 2.608132

Then, the crude, net and partial crude probabilities are obtained from the

following formulas:

Crude Probability:
b k
Qi(a,b) =c; & [ 17! exp{ -3 (% ~a®) }dt @.1)
a 1=1
Net Probability:
q; =1—exp {—hi (b —a®l) } 4.2)
Partial Crude Probability:
b ci—1 k c] c|
Qi‘j(a,b) =Ci }\’i I t €Xp -lzl (}"l(t —a ) dt (43)
a =
I#j

where A;=1/6;, 0;, i=1,2 is the scale parameter and c; is the shape parameter of the

Weibull distribution.

The calculated values of the crude, net and partial crude probabilities for
certain time intervals for the two causes of death are given in Table 4.2.
According to this table, the probability of death from relapse or progression

between first and second month after diagnosis is slightly less than the probability
I
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of death from refractor or wrong medical treatment. On the other hand, as time
passes the estimated crude probability of death from relapse or progression is
greater than that of death from refractor or wrong medical treatment. The same
thing can also be shown in estimated values of net and partial crude probabilities.
This means that refractor or wrong medical treatment related deaths for acute
leukemia patients appear in shorter time periods after diagnosis. Consideration of
other risk factors reduces the probability of death. When crude and net
probabilities are compared, this fact can be seen easily. The partial crude
probabilities are same as the net probabilities, because there are only two causes.
Elimination of one cause means the existence of only one cause acting on the

population.

Table 4.2. The Crude, Net and Partial Crude Probabilities for the Two
Competing Risks

Crude Net Probabilities*
Probabilities

A A N ~

Time Q Q, 4 ds
Intervals

(30, 60) 0.0306 | 0.0332 | 0.0315 | 0.0339
(60, 90) 0.0263 | 0.0239 | 0.0266 | 0.0244
(30,90) 0.0555 | 0.0355 | 0.0573 | 0.0574
(90, 120) 0.0236 | 0.0193 | 0.0238 | 0.0197
(100,500) | 0.2271 | 0.1254 | 0.2111 | 0.1391
(1000, 1500) | 0.1589 | 0.0619 | 0.1645 | 0.0674
(1,1000) 0.3420 | 0.2838 | 0.4324 | 0.3340

* Net probabilities = Partial crude probabilities

In Figures 4.3 and 4.4, the crude survival probabilities and crude

cumulative incidence curves, respectively based on the underlying distribution can
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be seen. In terms of the clinical decision on optimal treatment, crossing survival
curves require some subjective judgement to choose an appropriate treatment
regime for that patient. However, since this study is not made with the
cooperation of any hospital and not a part of any planning project, there is not any

treatment factor.

1,00 ~
0,80
0,60 -
0,40 J

0,20 A

Probability of Survival

0,00 T —T T T T —
0 500 1000 1500 2000 2500 3000

Time (Days)

Figure 4.3: The crude survival probabilities of relapse or progression type
deaths ( ) and refractor or wrong medical treatment related deaths ( ----- )

using the underlying distribution.

Up to 400 days probability of survival for relapse or progression type
failure is higher than that for refractor or wrong medical treatment related failure.
However, after 400 days from diagnosis, probability of dying from relapse or
progression type deaths is higher than that for the other cause of death for acute

leukemia.
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Figure 4.4. The crude cumulative incidence curves of relapse or progression type
deaths ( ) and refractor or wrong medical treatment related deaths ( ----- )

using the underlying distribution.
4.1.2. Nonparametric Approach:

The Kaplan-Meier survival and crude cumulative incidence curves are
constructed for each cause as in Tables 4.3 and 4.4. These curves can be seen in
Figures 4.5 and 4.6. The cause-specific curves do not have a true survivorship
interpretation, but represent exp(-H;), where H; is the cumulative cause-specific

hazard function to time t, for each failure type.

In trying to describe the pattern of occurrence of event 1, one can think of
regarding event 2 as censored at the subject’s failure time and for the pattern of
event 2, event 1 is considered as censored. Again, it is assumed that the two

failure types are independent of each other.
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Figure 4.5. The Kaplan-Meier Survival Curves for relapse or progression type

deaths ( ) and refractor or wrong medical treatment related deaths ( ---- ).
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Figure 4.6. Crude Cumulative Incidence Curves for relapse or progression type

deaths ( ) and refractor or wrong medical treatment related deaths ( ...... ).

These curves give the same pattern with the curves for underlying
distribution (Figures 4.3 and 4.4). It clearly appears that the two curves are
notably divergent. It is seen that the crude survival and crude cumulative
incidence curves are crossing. Crossing survival curves requires more attention in

deciding the proper treatment. In the long run, probability of survival for refractor
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or wrong medical treatment related failures is higher. To summarize, refractor or
wrong medical treatment related deaths appear in early phase of the acute

leukemia after diagnosis.
4.1.3. Semi-parametric Approach:

In this part, failure types by covariate interaction in a Weibull regression
model for survival times, which is proposed by Cox (1972), is identified.
Proportional hazard model is assumed. The model for cause i, i = 1,2 is described

as
A (%) =20 (1) exp(x;B;) (4.4)

where x = (X1,...,X¢) is explanatory variables vector. For Weibull regression model

¢-1 , ¢i > 0, where c; is the shape parameter of

underlying hazard is Ag;(t) =c; t
the Weibull distribution which is estimated in section 4.1. The quantity Ai(t; X) is
the instantaneous risk of death from cause i at time t. Here, underlying hazard and
the coefficients of the explanatory variables are specific to cause. As it is given in

section 3.7

A(t; x) = Ai(t; X) + Aa(t; X) (4.5)

For parameter estimation, FORTRAN program, given in Appendix B, was
prepared. This gives the maximum likelihood estimators of covariates by using
Newton-Raphson iteration for simultaneously solved non-linear equations. Then

the estimated cause-specific hazard function is written as

R (%) = (& t57) exp (x;B;) (4.6)
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Standard errors are obtained through estimated second derivatives of the log
partial likelihood and significance tests are based on Wald statistic. As each of the
Wald statistics has one degree of freedom, the critical value at o = 0.05 is 3.84. In
Table 4.5, the results of the Cox regression analysis can be seen. By using 95%
significance, only the age and the existence of other illness besides acute leukemia
are significant prognostic factors for each of the two causes of failure. If risk
ratios are considered, for age and the amount of normal red blood cells in the
patient’s blood have lower significance in relapse or progression type deaths.
Type of leukemia and existence of other illness do better with regard to refractor
or wrong medical treatment related deaths, yet worse as regards relapse or
progression type deaths. Risk ratios are used only to show the comparison
between the risk ratios of competing risk factors. The major point here is the
determination of which covariates are important with regard to death from the
various causes. The competing risks analysis give more direct answers to this

aspect.

Negative signs of the regression coefficients suggest decreased risk of
developing for that cause of death. For example, as age increases from 1 to 3, that
is, age greater than 55 to age less than 35, risk of death from progression or
relapse reduces. The same thing can be seen in the other type of death. Moreover,
if the type of leukemia is increased from 1 to 3, that is, AML to ALL, risk of
death from refractor or wrong medical treatment decreased. However, in

progression or relapse type death this can not be seen.

Then, the survival function is estimated as
,‘ t .
S(t;x) = expy - | Mu;x)du }. 4.7
0

If only the type of leukemia is considered, taking other covariates as constant,

ALL patients has more chance to survive up to 500 days after diagnosis.
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However, after this time survival chance of AML-M3 patients are greater than
others are. The worse group is the AML patients according to our data. In real life,
it is expected that the ALL patients have lower probability of surviving in long

time.

As it is expected, younger patients have more chance to survive
(Figures 4.7, 4.8 and 4.9). Patients greater than 55 years of age have the worst

survival probability among the other age groups.

1,00 -
S 0,80 |
[
3
£ 0,60 —'-\ 55< years of age
; " 35-55 years of age
= 0404y e 35> years of age
£ 020 4\

0,00 k\\1\ ; ...... T 3 =

0 200 400 600 800 1000
Time (Days)

Figure 4.7. Estimated Survival Curves for a Patient with 1,4,5,6=1; 3=0 and
2=1,2,3.
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Figure 4.8. Estimated Survival Curves for a Patient with 1,4,5,6=1; 3=1 and
2=1,2,3.
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Figure 4.9. Estimated Survival Curves for a Patient with 1,4,5,6=1; 3=2 and
2=1,2,3.
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When the Figures 4.7, 4.8 and 4.9 are compared, it is seen that survival
probabilities decreases from existence of no other illness to existence of systemic

illness besides acute leukemia when age groups are changed.

If the existence of other illness besides acute leukemia is our interest, from
Figure 4.10 it can be seen that the probability of death with systemic illness, not
related with blood, is lower than that of haematological illness. If a patient has no

other illness besides acute leukemia, he has better chance to survive.

1,00 -
g 0,80 -
qV_i: 060 | no illness
5 ; .
'S ey J 2 hematologic
3 0.40 - ~ = = systemic
g
£ 0,20
0,00 T 4

0 10 20 30 40 50 60 70
Time (Days)

Figure 4.10. Estimated Survival Curves for a Patient with 1,2,4,5,6=1 and 3=0,1,2.

Comparing figures 4.10, 4.11 and 4.12 gives the basic phenomenon that
existence of no other illness besides acute leukemia with age less than 35 has the

best chance of survival if the amount of normal white and red blood cells and

platelets have the minimum values.

133



1,00

<
g 0,80 -
c.v_)‘ 0,60 N O no illness
g. : hematologic
= 0,40 T systemic
£ !
S 0,20 4&
Q—! ‘\\
0,00 .‘;.----%.--"-f" T 1
0 100 200 300 400 500
Time (Days)

Figure 4.11. Estimated Survival Curves for a Patient with 1,4,5,6=1 ; 2=2 and

3=0,1,2.
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Figure 4.12. Estimated Survival Curves for a Patient with 1,4,5,6=1; 2=3 and

3=0,1,2.

As it is seen from figure 4.13, the maximum probability of survival is

obtained when the combination of ALL type leukemia, age less than 35, no other
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illness besides acute leukemia and the amount of normal white, red blood cells

and platelets at the highest level in the blood.
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Figure 4.13. Estimated Survival Curve for a Patient with 1=3 ; 2=3 ; 3=0; 4=6 ;
5=5 and 6=3.
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CHAPTER 5

CONCLUSION AND REMARKS

In this study, an attempt has been made to show how important the notion
of competing risks is in investigations of the reliability of individuals and systems.
In contrast to the usual reliability analysis, competing risk theory requires and
takes advantage of data containing not only the time to failure of the system but
also the cause of failure. In practice, there may be various complications due to
censoring of the observation. Regarding censoring as a form of competing risk

these complications may not be faced.

Competing risk analysis has been considered under the independence of
component lifetimes and of the competing causes of failure assumptions. Under
parametric, non-parametric and semi-parametric conditions some possible
determinations of the properties of the system are examined. The parametric
methods may be numerically difficult depending on the complexity of the
assumed model. Necessities of some additional measurements have been shown to
determine the effects of the prognostic factors on the types of failures and
treatments. Graphical methods, particularly hazard plotting, provide simple means
of checking on the distributional assumptions in the case of independent risks. In
the last part of the study, some dependent models are discussed. However, more

work is needed for dependent risk models.

The acute leukemia data have been used to show how competing risk

analyses are performed. By using the types of failure and time to failures, the
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Weibull distribution under Type I censoring has been proposed by the cumulative
hazard plotting. The shape and scale parameters have been determined by
Newton-Raphson iteration. The estimated shape parameters for both causes are
less than one. By using the estimated parameters, the crude, net and partial crude
probabilities have been found. It has been shown that in the early phases of the
illness, the probability of dying from relapse or progression type risk of deaths are
higher than that from refractor of wrong medical treatment related risk of deaths.
In the presence of competing risks the survival probabilities are greater. Since
there are two causes, the partial crude probabilities give the same values with the
net probabilities. Because, removal of one cause means the existence of only one
risk acting on the population. Up to 400 days after diagnosis, refractor or wrong
medical treatment related deaths appear frequently. This means that treatment
regimes must be made very seriously in the early phases for acute leukemia
patients. Parametric and non-parametric analysis gave approximately the same

results.

To determine the effect of the covariates on the failure types, Cox’s
proportional hazard model has been proposed under Weibull underlying hazard.
To estimate parameters of covariates Newton-Raphson iteration for
simultaneously solved non-linear equations is used. For two competing risks, age
and the existence of other illnesses besides acute leukemia are the significant
factors. Older patients with systemic illness besides acute leukemia and minimum
amount of normal white blood cells, platelets and red blood cells have the lowest
chance of survival. Also, risks of age group and amount of haemoglobin in the
blood of patient are greater in refractor or wrong medical treatment related risk of
deaths. If a patient with Acute Lymphocytic Leukemia, age less than 35, no other
illness besides acute leukemia and amount of normal white, red blood cells and
platelets at maximum levels is observed, this patient has the highest chance of
survival. For future studies, it is proposed to compare the methods used in the
application part for competing risks and the methods used for the single cause

models. By using this, dominance of competing risk analysis will be pointed out.
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Further studies must be dealt with the dependency structure of the
competing risks. If, in a specific application, the assumption of independent risks
has to be abandoned, how does one go about constructing a suitable model of
dependency? How does one test the assumption of the independence when he is in
doubt? The answers of these questions must be determined. Problems of
identifiability are in general avoided if a parametric alternative to independence is
assumed. Under such a model independence can be tested from the ratio of the
likelihood functions under independence and under dependence. The practicability
and effectiveness of such a test need to be examined. In this study, only the series
system is considered. Many important systems are more complex. Simple
examples such as two component parallel system of eyes, ears, kidneys or lungs
have been studied by Freund (1961) and Gross (1973). For more general systems
it is likely that fault tree analysis can be usefully combined with competing risk
considerations. Incorporation of different failure types in more complex models
like mixture models will be considered. Since, in this study a certain failure type
is considered separately, treating others as censored, more complex models may
give more efficient results by considering all causes together. Moreover,
robustness analysis must be taken into consideration in future studies. For the
application of competing risk analysis, accurate studies must be developed with
hospitals or medicine companies to show, for instance, the effect of new drug on
patients under different competing risks or the effect of new treatment when there
are competing causes of failure. Investigators must become aware of the
importance of this concept in Turkey and use it in their applications to get better

and more explanatory results.

138



REFERENCES

Aly, E. A. A, Kochar S. C. and McKeague W. (1994). Some tests for
comparing cumulative incidence functions and cause-specific hazard rate, J.
Amer. Statis. Assoc. 89, 994-999,

Babu, G. J., Rao, C. R. and Rao, M. B. (1992). Nonparametric estimation of
the specific occurrence/exposure rate in risk and survival analysis, J. Amer.
Statis. Assoc. 87, 84-89.

Bagai, 1. (1986). Tests for some statistical hypotheses under the competing
risks model. Ph. D. Thesis, Panjab University.

Bagai, I., Deshpande, J. V. and Kochar, S. C. (1989). A distribution-free test
for the equality of failure rates due to two competing risks, Commun. Statis.-
Theory Meth. 18, 97-120.

Bagai, I. , Deshpande, J. V. and Kochar, S. C. (1989). Distribution free tests
for stochastic ordering in the competing risks model, Biometrika 76, 775-781.

Basu, A. P. and Klein, J. P. (1982). Some recent results in competing risks
theory. In Survival Analysis, J. Crowley and R. A. Johnson (eds.), 216-229.
Hayward, California: Institute of Mathematical Statistics.

Berkson, J. and Elveback, L. (1960). Competing exponential risks, with
particular reference to the study of smoking and lung cancer, J. Amer. Statis.

Assoc. 55, 415-428.

139



Bernoulli, D. (1760, 1765). Essai d’une nouvelle analyse de la mortalite
causee par la petite Verole, et des avantages de 1’Inoculation pour la prevenir,

Mem. De I’Academie Royale de Science, 1760, 1-45.

Boardman, T. J. and Kendell, P. J. (1970). Estimation in compound

exponential failure models, Technometrics 12, 891-900.

Carling, K. (1996). Testing for independence in a competing risks model,

Computational Statis. & Data Analysis 22, 527-535.

Chiang, C. L. (1961). A Stochastic Study of the Life Table and its
Applications: III. The Follow-Up Study with the Consideration of Competing
Risks, Biometrics 17, 57-78.

Chiang, C. L. (1968). Introduction to Stochastic Process in Biostatistics.
Wiley, NewYork.

Chiang, C. L. (1970). Competing Risks and Conditional Probabilities,
Biometrics 2, 77-717.

Cox, D. R. (1972). Regression models and life tables (with discussion), J. R.
Statis. Soc. B 34, 187-220.

David, H. A. (1970). On Chiang’s proportionality assumption in the theory of
competing risks, Biometrics 26, 336-339.

David, H. A. and Moeschberger, M. L. (1978). Theory of Competing Risks,
London: Griffin.

D’Alembert, J. (1761). Sur D’application du Calcul des Probabilities a

I’inoculation de la petite Verole. Opuscules II 2-95.
140



Fix, E and Neyman, J. (1951). A Simple Stochastic Model of Recovery,
Relapse, Death and Loss of Patients. Human Biol. 23,205-21.

Freund, J. F. (1961). A Bivariate Extension of the Exponential Distribution, J.
Amer. Statis. Assoc. 56,971-977.

Gail, M. (1975). A review and critique of some models used in competing risk

analysis, Biometrics 31, 209-222.

Greville, T. N. E. (1948). Mortality tables analyzed by cause of death, Record,
Amer. Inst. Actuaries 37, 283-294.,

Gross, A. J. (1973). A Competing Risk Model: A One Organ Subsystem Plus
a Two Organ Subsystem, /EEE Trans. Reliability 22, 24-27.

Gumbel, E. J. (1960). Bivariate exponential distribution, J. Amer. Statis.
Assoc. 55, 698-707.

Hoel, D. G. (1972). A representation of mortality data by competing risks,
Biometrics 28, 475-488.

Huang, Y. and Wang, M. (1995). Estimating the occurrence rate for prevalent
survival data in competing risks models, J. Amer. Statis. Assoc. 90, 1406-
1415.

Kalbleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure
Time Data. Wiley, New York.

Kanie, H. and Nonaka, Y. (1985). Estimation of Weibull shape-parameters fro
two independent competing risks, JEEE Trans. On Reliability 34, 53-56.

141 m}m’“' R

WMifigrrry g
- RN SRR ,

Ly

q

B

Feii



Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from
incomplete samples, J. Amer. Statis. Assoc. 53, 457-481.

Kay, R. (1986). Treatment effects in competing-risks analysis of prostate
cancer data, Biometrics 42, 203-211.

Kimball, A. W. (1957). Models for the estimation of competing risks from
grouped data, Biometrics 25, 329-337.

Klein, J. P. and Basu, A. P. (1981). Weibull accelerated life tests when there
are competing causes of failure, Commun. Statist.-Theory Meth. A 10(20),
2073-2100.

Klein, J. P. and Moeschberger, M. L. (1987). Independent or dependent
competing risks: Does it make a difference?, Commun. Statis.-Simula. 16,

507-533.

Klein, J. P. and Moeschberger, M. L. (1988). Bounds on net survival
probabilities for dependent competing risks, Biometrics 44, 529-538.

Kochar, S. C. (1979). Distribution-free comparison of two probability
distributions with reference to their hazard rates, Biometrika 66, 437-441.

Kochar S. C. (1995). A review of some distribution-free tests for the equality
of cause specific hazard rates, Analysis of Censored Data, IMS Lecture Notes-

Monograph Series 27, 147-162.

Kuk, A. Y. C. (1992). A semiparametric mixture model for the analysis of
competing risks data, Australian Journal of Statistics 34, 169-180.

142



Lam K. F. (1998). A class of tests for the equality of k cause-specific hazard
rates in a competing risks model, Biometrika 85, 179-188.

Lanberg, N., Proschan, F. and Quinzi A. J. (1978). Converting dependent
models into independent ones, preserving essential features, The Annals of
Probability 6, 174-181.

Lanberg, N., Proschan, F. and Quinzi A. J. (1981). Estimating dependent life
lengths, with applications to the theory of competing risks, The Annals of
Statitics 9, 157-167.

Larson, M. G. (1984). Covariate analysis of competing-risks data with log-
linear models, Biometrics 40, 459-469.

Larson, M. G. and Dinse, G. E. (1985). A mixture model for the regression
analysis of competing risks data, Appl. Statis. 34,201-211.

Lunn, M. and McNeil, D. (1995). Applying Cox regression to competing
risks, Biometrics 51, 524-532.

Makeham, W. M. (1874). On the application of the theory of composition of
decremental forces, J. Inst. Actuaries 18, 317-322.

Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution,
J. Amer Statis. Assoc. 62, 3-44.,

Moeschberger, M. L. (1974). Life tests under dependent competing causes of
failure, Technometrics 16, 39-47.

Moeschberger, M. L. and Klein, J. P. (1971). Life tests under competing

causes of failure and the theory of competing risks, Biometrics 27, 909-933.
143



Moeschberger, M. L. and Klein, J. P. (1984). Consequences of departures

from independence in exponential series system, Technometrics 26, 277-284.

Nelson,W. (1970). Hazard plotting methods for analysis of data with different
failure models, J. Qual. Tech. 2, 126-149.

Nelson, W. (1972). Theory and applications of hazard plotting for censored
failure data, Technometrics 14, 945-966.

Peterson, A. V. (1978). Bounds for a joint distribution with fixed
subdistribution functions: Applications to competing risks, Proc. Nat. Acad.
Sci. USA 73, 11-13.

Prentice, R. L., Kalbleisch, J. D., Peterson, A. V., Flourney, N., Farewell, V.
T. and Breslow, N. E. (1978). The analysis of failure times in the presence of
competing risks, Biometrics 34, 541-554.

Puri, M. L. and Sen, P. K. (1971). Nonparametric Methods in Multivariate
Analysis. Wiley, New York.

Rao, C. R. (1973). Linear Statistical Inference and its Application. 2. Edn.
Wiley, New York.

Samford, M. R. (1952). The estimation of response-time distributions. II.
Multi-stimulus distributions, Biometrics 8, 307-39.

Seal H. L. (1977). Studies in the history of probability and statistics. XXXV:
Multiple decrements or competing risks, Biometrika 64, 429-439.

Sinha, S. K. (1986). Reliability and Safety. New Delhi, Wiley Eastern.
144



Slud, E. V. and Byar, D. (1988). How dependent causes of death can make
risk factors appear protective, Biometrics 44, 265-269.

Slud, E. V. and Rubinstein, L. V. (1983). Dependent competing risks and
summary survival curves, Biometrika 70, 643-649.

Sun, Y. and Tiwari, R. C. (1995). Comparing cause-specific hazard rates of a
competing risks model with censored data, Analysis of Censored Data, IMS
Lecture Notes-Monograph Series 27, 255-270.

Sun, Y. and Tiwari, R. C. (1997). Comparing cause-specific incidence
functions of a competing risks model, IEEE Transactions on Reliability 48,
247-253.

Thompson W. A. (1988). Point Process Models with Applications to Safety
and Reliability. Chapman and Hall, New York.

Todhunter, 1. (1949). A History of the Mathematical Theory of Probability.
Chelsea, New York.

Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing
risks, Proc. of the Nat. Acad. of Sci. USA 72, 20-22.

Yip, P. and Lam, K. F. (1992). A class of non-parametric tests for the equality

of failure rates in a competing risks model, Commun. Statis.-Theory Meth. 21,
2541-2556.

145



APPENDIX A

FORTRAN Program for Finding the Maximum Likelihood Estimators
of Weibull Distribution with Type I Censoring Unequal Shape Parameters in
the Consideration of Competing Risks.

INTEGER N,S,LITER
REAL
AB,DM,Y,Z,W,Q,C,TC,YC,F,FC,CNEW,E,G,MO,MOR,DC,DT,DCT,VARC,V
ART,COVCT
REAL X(100,100),U(100),V(200),SVARC,SVART,DET
OPEN (5,FILE='C:\MSDEV\PROJECTS\BETA.DAT',STATUS='0OLD")
WRITE(*,*) "WRITE THE TOTAL NUMBER OF
FAILURE,DEATHS FROM THIS CAUSE AND CENSORING"
READ(*,*) N,M,S
WRITE(*,*) "WRITE THE CAUSE OF DEATH"
READ(*,*)J
DO 2 I=1,N+S
READ(5,*) V(I)
2 CONTINUE
DO 51=1N
XI,H=V({)
5 CONTINUE
DO 7J=1,8
K=N+J
U@I)=V(K)
7 CONTINUE
WRITE(*,*) "WRITE THE STARTING POINT FOR C"
READ(*,*) C
A=0.0
B=0.0
=0.0
G=0.0
MO=0.0
MOR=0.0
ITER=1
1T=0.0
Y=0.0
7=0.0
W=0.0
Q=0.0
TC=0.0
YC=0.0
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Appendix A (Continued)

DO 10 I=1,M
J=1
T=T+LOG(X(L]J))
10 CONTINUE
DO 20 I=1,N
Y=Y+X(1,J)**C
20 CONTINUE
DO 30 K=1,S
Z=7+U(K)**C
30 CONTINUE
DO 40 I=1,N
W=W+X(LJ)**C)*(LOGX(L)))
40 CONTINUE
DO 50 K=1,8
Q=Q+U(K)**C)*LOG(U(K))
50 CONTINUE
F=(1/M)*(M/C+T)*(Y+Z)-W-Q
DO 60 I=1,N
TC=TC+X(LI)**C)*(LOGX(LI)))**2)
60 CONTINUE
DO 70 K=1,S
YC=YCHUK)**CYy*((LOG(U(K)))**2)
70 CONTINUE
FC=((1/M* (-M/C**2)* (Y+Z))+(1/MY*(M/C)+T)*(W+Q))-TC-YC
CNEW=C-F/FC
IF (ABS(C-CNEW).LT.(1.0E-6)) GOTO 80
IF (ITER .GT.15) GOTO 90
C=CNEW
ITER=ITER+1
GOTO 1
80 WRITE(*,85) CNEW
85 FORMAT (1X,2E15.6)
WRITE(*,*) "ITERATION=",ITER
102 DO 110 I=1,N
A=A+X(LJ)**CNEW
110 CONTINUE
DO 120 K=1,S
B=B+U(K)**CNEW
120 CONTINUE
D=1/M*(A+B)
WRITE(*,130) D
130 FORMAT (1X, 2E15.6)
DO 140 I=1,N
E=E+X(I,))**CNEW*LOG(X(LJ))**2
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Appendix A (Continued)

140 CONTINUE
DO 150 K=1,S
G=G+U(K)**CNEW*LOG(U(K))**2
150 CONTINUE
DO 160 I=1,N
MO=MO+X(I,])**CNEW*LOG(X(L]))
160 CONTINUE
DO 170 K=1,8
MOR=MOR+U(K)**CNEW*LOG(U(K))
170 CONTINUE
WRITE(*,*) D
DC=-1*(-M/(CNEW**2)-(1/D)*(E+G))
DT=-1*(M/(D**2)-(2/D**3)*(A+B))
DCT=-1%(1/D**2)*(MO+MOR)
DET= DT*DC-DCT**2
VARC=(1/M)*(DT/DET)
SVARC=SQRT(VARC)
VART=(1/My*(DC/DET)
SVART=SQRT(VART)
COVCT=(-1/M)*(DCT/DET)
WRITE(*,*) "SVARC=",SVARC,"SVART=",SVART
GOTO 101
90 WRITE(*,100)
100 FORMAT (1X," THE PROCESS DID NOT CONVERGE IN 15
ITERATIONS')
101 CLOSE(5)
STOP
END
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APPENDIX B

FORTRAN Program to Find the Maximum Likelihood Estimators of Six
Covariates and Their Standard Deviations.

DIMENSION X(100,100), X1.(100,100), A(10,10), ADJ(10,10), AT(100)
REAL TOTX(10), D(100), TC(100), T(100), FB(10), BNEW(10), DER(100),
D1(100), B(10), CEY(1000)
REAL PAY(10), PAYDA(10), PP(10), E, G, C, F, N, M, DETF, ITER, GT,
INFO(10), V, D2(100)

INTEGERR, Z,U
PARAMETER (U=4)
OPEN (U, FILE='C:\MSDEV\PROJECTS\BETA1.DAT',STATUS='OLD")
WRITE(*,*) "ENTER THE CODE OF THE CAUSE OF FAILURE"
READ *,R
WRITE(*,*) "WRITE THE NUMBER OF OBSERVETIONS IN THE STUDY"
READ *,N
WRITE(*,*) "WRITE THE NUMBER OF DEATHS FROM CAUSE",R
READ *, M
WRITE(*,*) "WRITE THE NUMBER OF COVARIATES"
READ *,Z
DO 4 1=1,833

READ(U,*) CEY())
4 CONTINUE
DO 10 =1.M

TC(I)=CEY())
10 CONTINUE
DO 20 J=1,N

T@=CEY(M+J)
20 CONTINUE
DO 30 I=1,M

DO 40L=1,Z

K=N+M+(Z*(1I-1))+L
XL(I,L)y=CEY(K)

40 CONTINUE
30 CONTINUE
DO 60 I=1,N

DO 70 J=1,Z

K=(N+M+Z*M)+Z*(I-1)+]
XILH=CEY(K)

70 CONTINUE
60 CONTINUE
DO 90I=1,Z

B(1)=0.0
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Appendix B (Continued)

90 CONTINUE
ITER=0.0
1 DO 110J=1,Z
TOTX(J)=0.0
110 CONTINUE
DO 120 J=1,Z
DO 130 K=1,Z
GT=0.0
DO 140 I=1M
D(D)=0.0
DO 150 II=1,62
IF (TC(D).GE.T(ID)) D()=D()+1
150 CONTINUE
G=0.0
C=0.0
E=0.0
F=0.0
DO 160 L=D()+1,N
E=BE+EXP(X(L,1)*B(1)+X(L.2)*B(2)+X(L,3)*B(3)+X(L,4)*B(4)+X(L,5)
*B(5)+X(L,6)*B(6))
G=G+X(L,J)*X(L.K)*EXP(X(L,1)*B(1)+X(L,2)*B(2)+X(L,3)*B(3)+X(L
AYB4)+X(L,5)*B(5)+X(L,6)*B(6))
C=C+X(L,J)*EXP(X(L,1)*B(1)+X(L,2)*BQ2)+X(L,3)*B(3)+X(L.4)*B(4)
+X(L,5)*B(5)+X(L,6)*B(6))
F=F+X(L,K)*EXP(X(L,1)*B(1)}+X(L,2)*B(2)+X(L,3)*B3)+X(L,4)*B(4)
+X(L,5)*B(5)+X(L.6)*B(6))
160 CONTINUE
GT=GT+(G*E-C*F)/(E**2))
140 CONTINUE
A(J,K)=-GT
130 CONTINUE
120 CONTINUE
DO 170 J=1,Z
DO 180 I=1,M
TOTX(J)=TOTX(I)+XL(LJ)
180 CONTINUE
170 CONTINUE
DO 190 J=1,Z
PP(J)=0.0
DO 200 I=1,M
DI1(1)=0.0
DO 210 K=1,62
IF (TC(I).GE.T(K)) D1(1)=D1(I)+1
210 CONTINUE
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Appendix B (Continued)

PAY(J)=0.0
PAYDA(J)=0.0
DO 220 L=D1(D)+1,N
PAY(T)=PAY(J)+X(L,)*EXP(X(L,1)*B(1)+X(L.2)*B2)+X(L,3)*B(3)+
X(L,4)*B(4)+X(L,5)*B(5)+X(L,6)*B(6))
PAYDA(J)=PAYDA()+EXP(X(L,1)*B(1)+X(L.2)*B(2)+X(L,3)*B(3)+X
(L,4)*B(4)+X(L,5)*B(5)+X(L,6)*B(6))
220 CONTINUE
PP(J)=PP(J)}+PAY(J)/PAYDA(J)
200 CONTINUE
190 CONTINUE
DO 230 I=1,Z
FB(I)=TOTX(I)-PP(l)
230 CONTINUE
ADI(1,1)=A(2,2) * A3,3) * A(4.4) * A(5,5) * A(6,6) - A(2,6) * A(3,5) * A(4,4) *
A(5,3) * A(6,2)
ADJ(1,2)=- (A(2,1) * A(3,3) * A(4,4) * A(5,5) * A(6,6) - A(2,6) * A(3,5) *
A(4,4) * A(5,3) * A(6,1))
ADI(1,3)=A(2,1) * A3,2) * A(4,4) * A(5,5) * A(6,6) -A(2,6) * A(3,5) * A(4,4) *
A(5,2) * A6,1)
ADI(1,4)=- (A(2,1) * A(3,2) * A(4,3) * A(5,5) * A(6,6) - A(2,6) * A(3,5) *
A(4,3) * A(5.2) * A(6,1))
ADI(1,5)=A(2,1) * A3.2) * A(4,3) * A(5.,4) * A(6,6) - A(2,6) * A(3,4) * A(4,3) *
A(5,2) * A(6,1)
ADI(1,6)=- (A(2,1) * A(3,2) * A(4,3) * A(5,4) * A(6,5) - A(2,5) * A(3,4) *
A(4,3) * A(5,2) * A(6,1))
ADI2,1)=- (A(1,2) * A(3,3) * A(4,4) * A(5,5) * A(6,6) - A(1,6) * A(3,5) *
A(4,4) * A(5,3) * A(6,2))
ADJ(2,2)=A(1,1) * AB3,3) * A(4,4) * A(5,5) * A(6.6) - A(1,6) * A(3,5) * A(4,4) *
A(5,3) * A(6,1)
ADI2,3)=- (A(1,1) * AB,2) * A(4,4) * A(5,5) * A(6,6) -A(1,6) * A(3,5) *
A(4,4)* A(5.2) * A(6,1))
ADJI2,4)=A(1,1) * A3,2) * A(4,3) * A(5,5) * A(6,6) -A(1,6) * A(3,5) * A(4,3) *
A(5,2) * A(6,1)
ADJ(2,5)=- (A(1,1) * A(3,2) * A(4,3) * A(5,4) * A(6,6) - A(1,6) * A(3,4) *
A(4,3) * A(5.2) * A6,1))
ADJ2,6)=A(1,1) * A(3,2) * A(4,3) * A(5,4) * A(6,5) - A(1,5) * A(3.,4) * A(4,3) *
A(5,2) * A(6,1)
ADIG,1)=A(1,2) * A(2,3) * A(4,4) * A(5,5) * A(6,6) - A(1,6) * A(2,5) * A(4,4) *
A(5,3) * A6,2)
ADI(3,2)= - (A(1,1) * A(2,3) * A(4,4) * A(5,5) * A(6,6) -A(1,6) * A(2,5) *
A@A) * A(5,3) * A(6,1)
ADI(,3)=A(1,1) * A(2,2) * A(4,4) * A(5,5) * A(6,6) - A(1,6) * A(2,5) * A(4,4) *
A(5,2) * A(6,1)
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Appendix B (Continued)

ADI(3,4)=- (A(L,1) * AQ2,2) * A(4,3) * A(5,5) * A(6,6) - A(1,6) * A(2,5) *
A(4,3) * A(5,2) * A(6,1))

ADI(3,5)=A(1,1) * A(2,2) * A(4,3) * A(5,4) * A(6,6) - A(L,6) * AQ2,4) * A(4,3) *
A(5,2) * A(6,1)

ADI(3,6)= - (A(L,1) * A(2,2) * A(4,3) * A(5,4) * A(6,5) - A(1,5) * AQ2,4) *
A(4,3)* A(5.2) * A(6,1))

ADJ(4,1)=- (A(1,2) * AQ2,3) * AB,4) * A(5,5) * A(6,6) - A(1,6) * A(2,5) *
AG.4) * A(5,3) * A(6,2))

ADJ(4,2)=A(1,1) * A(2,3) * A(3.4) * A(5,5) * A(6,6) - A(1,6) * A(2,5) * A(3,4) *
A(5,3) * A(6,1)

ADI(4,3)= - (A(L,1) * A(2,2) * A34) * A(5,5) * A(6,6) — A(L,6) * A(2,5) *
AB.4) * A(5,2) * A(6,1))

ADI(4,4)=A(1,1) * A(2,2) * A(3,3) * A(5,5) * A(6,6) - A(L,6) * A(2,5) * A(3,3) *
A(5.2) * A6,1) -

ADI(4,5)= - (A(L1) * A(2,2) * A(3,3) * A(5,4) * A(6,6) - A(1,6) * AQ2,4) *
AB3)* A(5.2) * A(6,1))

ADJ(4,6)=A(1,1) * A2,2) * A(3,3) * A(5,4) * A(6,5) -A(1,5) * A(2,4) * A(3,3) *
A(5,2) * A6,1)

ADI(5,1)=A(1,2) * A2,3) * A(3,4) * A(4,5) * A(6,6) —A(L,6) * A(2,5) * A(3.4) *
A(4,3) * A(6,2)

ADI(5,2)= - (A(1,1) * A(2,3) * AB,4) * A(4,5) * A(6,6) - A(L,6) * A(2,5) *
AGA) * A(4,3) * A(6,1))

ADJI(5,3)=A(1,1) * A(2,2) * A(3,4) * A(4,5) * A(6,6) - A(1,6) *A (2,5) * A(3,4) *
A(42) * A(6,1)

ADI(G4)= - (A(LD) * AQ2,2) * AB,3) * A(4,5) * A(6,6) - A(L,6) * A(2,5) *
AGB3) * A(4.2) * A(6,1))

ADI(5,5=A(1,1) * A2,2) * A(3,3) * A(4,4) * A(6,6) - A(1,6) * A(2,4) * A(3,3) *
A(4,2) * A(6,1)

ADI(5,6)= - (A(1,1) * A(2,2) * A(3,3) * A4,4) * A(6,5) - A(L,5) * AQ2,4) *
AG,3) * A(4,2) * A(6,1))

ADJ(6,1)=- (A(1,2) * A(2,3) * A(3,4) * A(4,5) * A(5,6) - A(L,6) * A(2,5) *
AGA) * A(4,3) * A(5,2))

ADI(6,2)=A(1,1) * A(2,3) * A3,4) * A(4,5) * A(5,6) - A(1,6) * A(2,5) * A(3,4) *
A(4,3) * A(5,1)

ADJ(6,3)= - (A(1,1) * A(2,2) * AB34) * A4,5) * A(5,6) - A(L,6) * A(2,5) *
AGA) * A(4.2) *A(5,1))

ADI(6,4)=A(1,1) * AQ2,2) * AB3,3) * A(4,5) * A(5,6) - A(L6) * A(2,5) * A(3,3) *
A@4.2) * A(5,1)

ADJ(6,5)= - (A(L,1) * A(2,2) * A(3,3) * A(4,4) * A(5,6) -A(1,6) * A(2,4) *
AGB3) * A(4.2) * A(5,1))

ADI(6,6)=A(1,1) * A(2,2) * A(3,3) * A(4,4) * A(5,5) - A(1,5) * A2,4) * A(3,3) *
A@42) * A(5,1)
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DETF=A(1,1) * (AQ2:2) * A3,3) * A4,4) * A(5,5) * A(6,6) - AQ2,6) * AB3,5) *
A44) * AG53)* AG.2))+A(1,2) * (AQR3) * AB,4) * A4,5) * A5,6) * A1)
CAQRD) * AGLE) * A4.5) * AGA) * A6,3)) +A(L3) * (AQA) * ABS)
AG6) * AG.D) * A(6:2) - AR.2) * AB,1) * A(46) * A(5,5) * A(6:4)) + AL4) *
(AR.5) * AG6) * A4,1) * A3,2) * A(6,3) - A23) * AB,2) * A1) * AGS.6) *
AG.5)) +A(LS) * (AZ,6) * AG,D * A@42) * A5.3) * A(64) - ARA) * AB3.3)
% (42)* A1) * A(6,6)) + A(L6) * (A1) * AB.2) * A43) * A(S:4) * A(6,)
-AR5) * AG4) * A@d,3) * AG52) * AG,1))
DER(1)=(1/DETF)*(ADJ(1,1*FB(1)+ADJ(1,2)*FB(2)+ADI(1,3)*FB(3)+ADI(1,
4)*FB(4)+ADI(1,5)*FB(5)+ADI(1,6)*FB(6))
DER(2)=(1/DETF)*(ADJ(2,1)*FB(1+ADJ(2,2)*FB(2)+ADJ(2,3)*FB(3)+ADJ(2,
4)*FB(4)+ADJ(2,5)*FB(5)+ADJ(2,6)*FB(6))
DER(3)=(1/DETF)*(ADJ(3,1)*FB(1)+ADJ(3,2)*FB(2)+ADJ(3,3)*FB(3)+ADIG3,
4)*FB(4)+ADI(3,5)*FB(5)+ADJ(3,6)*FB(6))
DER(4)=(1/DETF)*(ADJ(4,1)*FB(1)+ADJ(4,2)*FB(2)+ADJ(4,3)*FB(3)+ADI(4,
4)*FB(4)+ADI(4,5)*FB(5)+ADI(4,6)*FB(6))
DER(5)=(1/DETF)*(ADJ(5,1*FB(1)+ADJ(5,2)*FB(2)+ADJ(5,3)*FB(3)+ADI(5,
4)*FB(4)+ADI(5,5)*FB(5)+ADJ(5,6)*FB(6))
DER(6)=(1/DETF)*(ADJ(6,1)*FB(1)+ADI(6,2)*FB(2)+ADJ(6,3)*FB(3)+ADI(6,
4)*FB(4)+ADI(6,5)*FB(5)+ADI(6,6)*FB(6))
DO 240 I=1,Z

BNEW(I)=B(I)-DER())
240 CONTINUE
IF ((ABS(BNEW(1)-B(1)).LE.1.0E-6). AND.(ABS(BNEW(2)-B(2)).LE.1.0E-
6).AND.(ABS(BNEW(3)-B(3)).LE.1.0E-6). AND.(ABS(BNEW(4)-
B(4)).LE.1.0E-6). AND.(ABS(BNEW(5)-B(5)).LE.1.0E-
6).AND.(ABS(BNEW(6)-B(6)).LE.1.0E-6)) GOTO 1000
ITER=ITER+1
IF (ITER.GT.20) GOTO 270
DO 250 I=1,Z

B(D=BNEW())
250 CONTINUE
GOTO 1
1000 DO 260 I=1,Z

WRITE(*,*) "The MLE of Covariate", I,"is:",BNEW(I)

260 CONTINUE
DO 265 I=1,Z
INFO(I)=SQRT((-ADJ(LLYDETF)/M)
265 CONTINUE
DO 266 I=1,Z
WRITE(*,*) INFO(I)
266 CONTINUE
WRITE(*,*) "ITERATION=",ITER
GOTO 290

153



Appendix B (Continued)

270 WRITE(*,280)

280 FORMAT(1X,"PROCESS DID NOT CONVERGE IN 20 ITERATIONS")
290 CLOSE (U)

STOP

END
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