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ABSTRACT

OPTIMIZATIONS OF ANTENNAS USING HEURISTIC ALGORITHMS
SUPPORTED BY THE MULTILEVEL FAST MULTIPOLE ALGORITHM

Önol, Can

M.S., Department of Electrical and Electronics Eng.

Supervisor : Asst. Prof. Dr. Özgür Ergül

September 2015, 76 pages

In this study, an optimization environment based on heuristic algorithms sup-

ported by the multilevel fast multipole algorithm (MLFMA) is presented for dif-

ferent antenna problems involving either excitation or geometry optimizations.

The heuristic algorithms are implemented in-house by aiming more e�ective in-

teractions between electromagnetic solvers and optimization algorithms, instead

of black-box interactions. Excitation optimizations of various array geometries

for desired radiation characteristics are investigated in numerical experiments in-

volving extremely large optimization spaces. Implemented heuristic algorithms

are improved via alternative mechanisms and compared to available toolbox

of MATLAB. In addition to excitation optimizations, we consider more chal-

lenging optimizations involving geometric modi�cations. In this context, two

di�erent types of pixel antennas are studied and optimized. Furthermore, the

designs obtained via optimizations are fabricated in low-cost setups based on

commercial inkjet printers. Measurements on fabricated samples demonstrate

the e�ectiveness of the optimizations, as well as the e�cacy of the low-cost
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production mechanism that fully bene�ts from the advantages of inkjet print-

ing. Finally, approximate forms of MLFMA are examined for dynamic accuracy

control during the optimizations. E�ects of using these approximate forms and

possible strategies for employing them in order to increase the speed of the

optimizations are discussed.

Keywords: Multilevel Fast Multipole Algorithm, Genetic Algorithms, Particle

Swarm Optimization, Antenna Optimizations, Array Optimizations
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ÖZ

ÇOK SEV�YEL� HIZLI ÇOKKUTUP YÖNTEM�YLE DESTEKLENEN
KE��FSEL METOTLAR �LE ANTEN OPT�M�ZASYONLARI

Önol, Can

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Asst. Prof. Dr. Özgür Ergül

Eylül 2015, 76 sayfa

Bu çal�³mada, kaynak veya geometri optimizasyonlar� içeren anten problemle-

rinin çözümleri için çok seviyeli h�zl� çokkutup yöntemi (ÇSHÇY) ile destekle-

nen ke³ifsel metotlardan kurulan bir optimizasyon ortam� sunulmu³tur. Elekt-

romanyetik çözücüler ve optimizasyon algoritmalar� aras�ndaki etkile³imi daha

etkin biçimde sa§layabilmek amac�yla, ke³ifsel metotlar s�f�rdan programlanm�³-

t�r. Çe³itli anten dizgelerinin istenilen �³�n�m örüntülerini sa§layabilmesi için

gerekli kaynak de§erleri, çok geni³ optimizasyon kümelerinin ele al�nd�§� say�sal

deneylerle incelenmi³tir. Geli³tirilen ke³ifsel metotlar alternatif mekanizmalarla

ile iyile³tirilmi³ ve MATLAB'�n haz�r ke³ifsel metotlar� ile kar³�la³t�r�lm�³t�r. An-

ten dizgelerinin kaynak de§eri optimizasyonlar�n�n yan�nda, daha zor problem-

ler olan antenlerin geometri optimizasyonlar� da ele al�nm�³t�r. Bu ba§lamda iki

farkl� piksel anten yap�s� çal�³�lm�³ ve optimize edilmi³tir. Ayr�ca, optimizasyon

sonucu elde edilen antenler, gümü³-bazl� mürekkeple foto§raf ka§�tlar�na bas�la-

rak ucuz yolla üretilmi³tir. Üretilen antenlerin ölçüm sonuçlar� optimizasyonlar�n
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yüksek kalitesini ve ucuz üretim yönteminin olumlu yanlar�n� göstermi³tir. Son

olarak, ÇSHÇY'nin yakla³�k formlar�, optimizasyonlar esnas�nda dinamik do§-

ruluk kontrolü sa§layabilmek amac�yla incelenmi³tir. Optimizasyonlar�n h�z�n�n

art�r�labilmesi için bu yakla³�k formlar�n kullan�mlar� ve farkl� stratejiler tart�-

³�lm�³t�r.

Anahtar Kelimeler: Çok Seviyeli H�zl� Çokkutup Yöntemi, Genetik Algoritmalar,

Parçac�k Sürü Optimizasyonu, Anten Optimizasyonlar�, Dizge Optimizasyonlar�
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CHAPTER 1

INTRODUCTION

Heuristic algorithms are widely used in electromagnetic optimization problems

due to their �exibility and ability to cover extremely large optimization spaces.

However, they may require thousands of trials for the optimizations to converge

satisfactory results. When direct solvers are employed by the heuristic algo-

rithms, the required processing time can be extremely long. In order to obtain

fast and accurate optimizations, the full-wave solutions can be performed by

accelerated algorithms. As a powerful method, the multilevel fast multipole al-

gorithm (MLFMA) allows for calculations of interactions with a memory and

time complexity of O(NlogN). Therefore, a combination of heuristic algorithms

and a full-wave MLFMA solver is proposed and examined in this study.

The main purpose of this thesis is to present an optimization environment based

on heuristic algorithms supported by MLFMA for di�erent antenna problems

involving either excitation or geometry optimizations. The proposed mechanism

is applied to the excitation-optimization problems involving three di�erent array

geometries, as well as to more challenging geometry optimizations involving two

di�erent types of pixel antennas. E�ectiveness of the optimizations is demon-

strated via numerical experiments. Furthermore, the optimized geometries of

the pixel antennas are fabricated via low-cost setups based on inkjet printers

and tested in a measurement setup. Finally, a dynamic accuracy control using

approximate forms of MLFMA is illustrated for further improvements on the

e�ciency of the optimizations. The contributions and proposed ideas in this

study can be listed as follows.
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• Genetic algorithms (GAs) and particle swarm optimization (PSO) methods

are implemented in-house to provide �exibility and more e�ective interac-

tions between electromagnetic solvers and optimization algorithms.

• Alternative techniques for GAs, such as success-based mutation operation,

family elitism, and one-by-one crossover, are introduced and utilized to

increase the performance of the optimizations.

• A superposition principle is used to reduce the number of full-wave solu-

tions to the number of array elements, while all mutual couplings between

the elements are taken into account.

• A lookup table concept, which enables the designer to have a dynamic

control ability over the optimization, is introduced.

• In geometry optimizations, the required portions are disconnected by re-

moving the related basis functions, which provides e�ective optimizations.

• Fabrications of low-cost inkjet antennas by using silver-based toners in

commercial printers, as well as the associated challenges, are presented.

• Dynamic accuracy control using approximate forms of MLFMA to increase

the e�ciency of the optimizations without sacri�cing the quality of the

results is proposed and investigated.

The organization of the thesis is as follows:

The tools used in the proposed optimization environment including MLFMA,

GA and PSO, as well as how we model the antennas are brie�y discussed in

Chapter 2. In Chapter 3, excitation optimizations of antenna arrays and strate-

gies for increasing the performance of these optimizations by utilizing alternative

techniques on the heuristic algorithms are explained. The performance compar-

ison of GA and PSO is also demonstrated on optimization problems involving

di�erent array geometries. Chapter 4 presents geometry optimizations of cage-

dipole and pixel-patch antennas and introduces the concept of lookup table. The

fabrication methods of the optimized antennas via inkjet printing and its chal-

lenges are explained. In Chapter 5, a dynamic accuracy control using approxi-

2



mate forms of MLFMA in order to increase the e�ciency of the optimizations

is discussed. The thesis is concluded with �nal notes in Chapter 6.
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CHAPTER 2

THE TOOLS USED IN THE OPTIMIZATIONS

2.1 Introduction

In this chapter, we present the tools used in the proposed optimization envi-

ronment, namely MLFMA, GAs, and PSOs, as well as how we model antennas.

First, our MLFMA program, which consists of two parts, namely, setup and

solution parts, is brie�y explained. Then, the main concepts of GAs and PSOs

are discussed with their literature review. Finally, the considerations regarding

how we model antennas in this study are explained.

2.2 Multilevel Fast Multipole Algorithm

When an electromagnetic problem involves complex geometries and material

types, it can be converted into an equivalent problem using the equivalence

theorem. Surface electric and magnetic currents are de�ned on the boundary

of the problem geometry and the original radiation or scattering problem is

de�ned using these equivalent currents. Then, using the Maxwell's equations

and the boundary conditions, the surface integral equations can be derived.

The unknowns in surface integral equations are the equivalent currents de�ned

via the equivalence theorem.

Surface integral equations are discretized and converted into matrix equations

to be solved numerically. The solution of a matrix equation can be obtained by

either direct solution methods or iterative methods. Due to the high computa-
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tional complexity of direct methods, iterative solutions are preferred. An iter-

ative solution requires a matrix-vector multiplication, which can be performed

directly or via an acceleration algorithm. In electromagnetics, a direct com-

putation of a matrix-vector multiplication corresponds to direct calculation of

electromagnetic interactions, which has a complexity of O(N2) for N unknowns.

For large problems, O(N2) complexity is expensive and a low complexity method

is required. As a powerful algorithm, MLFMA allows for calculation of interac-

tions with a memory and computation complexity of O(NlogN).

The e�ciency of MLFMA is based on the Gegenbauer's addition theorem [1].

The homogeneous-space Green's function is expressed in terms of in�nite sum-

mation of spherical harmonics, which is called factorization. Then diagonaliza-

tion, i.e., expansion of spherical harmonics in terms of plane waves, is applied.

Based on factorization and diagonalization, calculation of electromagnetic in-

teractions using MLFMA follows three steps; aggregation, translation, and dis-

aggregation. These steps are performed as follows: The radiation patterns of

sources (basis functions) are aggregated at radiation centers as outgoing plane

waves. These radiated �elds are translated into receiving centers and converted

into incoming plane waves. Incoming plane waves are disaggregated and re-

ceived by testing functions. Since the diagonalization brings distance restric-

tions, interactions in MLFMA are divided into two parts: Near-zone interac-

tions and far-zone interactions. Near-zone interactions are calculated directly

and stored in memory. Far-zone interactions are calculated on the �y e�ciently

using MLFMA, as described above.

In our MLFMA application, the program has two parts, namely, setup and so-

lution parts. The setup part is working as follows:

1. Read the problem geometry model.

2. Construct the multilevel tree structure.

3. Calculate the near-zone interactions.

4. Calculate the translation operators.

5. Construct the right-hand-side vector.

In the solution part, the near-zone interactions are used directly and far-zone

interactions are calculated via sequences of aggregation, translation, and disag-
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gregation. Each matrix-vector multiplication is performed as follows:

1. Use near-zone interactions for given current coe�cients.

2. Aggregate the radiation patterns of the basis functions to the box centers at

the lowest level of the tree structure.

3. Aggregate the radiation patterns of the boxes to higher levels using the La-

grange interpolation.

4. Translate the radiated �elds between far-�eld boxes at each level.

5. Disaggregate the translated waves to receiving centers of the boxes using

anterpolation.

6. Distribute the receiving patterns onto testing points in the lowest level boxes.

7. Perform angular integration to complete the matrix-vector multiplication.

2.3 Genetic Algorithms

GAs are well-known heuristic methods in the literature and used extensively in

electromagnetic problems due to their �exibility and ability to explore very large

optimization spaces [2]. Block diagram of a simple and standard GA is shown

in Figure 2.1.

First of all, a chromosome representation for the optimization parameters should

be de�ned for a GA optimization. Then, a population is initialized randomly and

individuals in this initial population are evaluated according to the optimization

criteria, where a �tness value is assigned to each individual. The �tness value is

used to select parents from the population and a crossover mechanism is applied

on successful parents to create new individuals. Following a crossover operation,

new individuals are mutated in order to increase the diversity of the population.

Crossover and mutation operations continue until a new population is formed.

GA continues to create new populations (generations) until an individual with

desired characteristics is found or prede�ned termination criteria are met. Each

subpart of GA and their e�ects on the performance are explained in the following

sections.
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Figure 2.1: Block diagram of a standard GA optimizer.

2.3.1 Chromosome Representation

GAs work on the coded versions of parameters to be optimized rather than di-

rectly the parameters themselves. A given parameter domain or space is mapped

to chromosomes using a coding technique, where binary coding is the most pop-

ular approach [3]. De�ning chromosome representation in a meaningful way to

the relevant problem is of great importance. Although, it may look like a very

simple task, it may profoundly a�ect the whole performance of the overall algo-

rithm. In general, it is important to de�ne chromosomes as short as possible to

reduce the optimization space.

2.3.2 Initialization of the First Population

Since the population size determines the amount of search space that will be

explored during one generation, it plays a crucial role in the performance of

the GA optimization and it should be arranged accordingly for each problem.

Speci�cally, choosing the population size requires a trade-o� between the con-

vergence speed and the diversity of the pool. It is shown that a small population
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size may provide fast improvements in the cost function but may lead to an early

convergence with a suboptimal solution [4]. This is due to the fact that a small

population size contains a small diversity in the gene pool which may cause GA

to explore only very limited regions of the optimization space. On the other

hand, using large population sizes provides diversity in the pool and often yields

stable responses that means GA does not provide signi�cantly di�erent results

in each run. However, there are serious issues that should be taken into account

when the population size is large. One superior individual, which is far more

�t than the rest of the individuals, may change the course of the optimization

even in very early generations. The superior individual may force the rest of

the population to use its genetic materials, and hence, optimization converges

into a region that is solely oriented by the superior individual. As a possible

consequence, this region may not contain a good solution and GA may only

�nd a suboptimal solution just like in the small population case but in a longer

time [5]. Generally, the optimal population size depends on the solution space

and the number of variables to be optimized in a problem [2]. It should be noted

that the choice of the population size directly a�ects the total run time of the

optimization when the number of generations is �xed. Therefore, using an op-

timal population size both improves the performance and reduces the required

computational time of GA optimizations.

2.3.3 Selection for Mating

During genetic optimizations, pairs of individuals are selected from the popu-

lation as parents according to their �tness values. The selection strategy has

a signi�cant impact on the overall performance of optimizations. Although the

selection strategy should give more chance to better individuals, it should not

be based on choosing only the best individuals that would prevent diversity in

the population. Thus, a good selection mechanism should also give chance to

relatively unsuccessful individuals, without omitting the importance of �t indi-

viduals. There are several selection strategies developed and utilized for GAs,

such as roulette wheel, linear transformation, tournament selection, and power-

law-based selection [6]. Most popular selection strategies in the literature are
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roulette wheel selection and tournament selection [2], which are discussed in this

study.

2.3.3.1 Roulette Wheel Method

The method may be explained using an analogy with roulette wheels [7]. Its

implementation is fairly simple where a random number between 0 and 1 is as-

signed, which corresponds to the instant when the roulette wheel is spun. Then,

an individual is selected at the end of the spin: Each individual has a proportion

in the roulette wheel according to its �tness value. Although this method may

generally choose the superior individuals, there is still a considerable probability

of selection of relatively un�t individuals. Nevertheless, it should be kept in

mind that this method is vulnerable for domination especially when there is a

signi�cant di�erence between the �tness value of the best individual and the

average �tness value of the population.

2.3.3.2 Tournament Selection

In this method, a subpopulation of n individuals is selected randomly and the

individual with the highest �tness value wins the tournament. It is possible

to adjust n such that the possibility of the domination e�ect is minimized [8].

Additionally, it is important to note that the tournament selection has a O(n)

complexity while the roulette wheel method has O(n2). This may be an im-

portant factor when GA is used, for problems involving very large number of

trials.

2.3.4 Crossover

When a pair of individuals is selected as parents, a pair of children from these

parents is created via a crossover operation. Crossover is applied with the prob-

ability of Pcrossover which is generally taken as 0.7-0.9 [2]. There are two types

of popular crossover mechanisms, i.e., single-point and double-point crossovers.
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2.3.4.1 Single-Point Crossover

The simplest and the most popular crossover technique is single-point crossover.

In this technique, a random location in the chromosome of a parent is selected

and the portion of the chromosome up to the selected location is copied to the

�rst child, while the rest of the portion is taken from the other parent, and vice

versa for the second child.

2.3.4.2 Double-Point Crossover

This technique has the same reasoning with single-point crossover, however in-

stead of a single point, two points are chosen to determine break points for

chromosomes. This provides a more controlled distribution of the characteris-

tics from parents to the children than the single-point crossover.

2.3.5 Mutation

After a crossover operation, new individuals are exposed to mutations with a

probability of Pmutation. In a standard mutation operation, each bit in a chromo-

some is changed with a probability of Pmutation, which is usually low and in the

range from 0.01 to 0.1. Although mutations may increase the diversity in the

population, hence they may prevent the domination of one superior individual,

strong mutations may also cause the elimination of good genetic materials from

the population.

2.3.6 Elitism

The elitism strategy in GAs is �rst introduced by De Jong [9] and utilized in

order to keep the best individual of a population and transfer it to the next

population. Since it is possible to lose the best individual during generations

due to the random nature of GAs, elitism provides a monotonic increase of the

best �tness in the population as a function of generations.
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2.4 Particle Swarm Optimization

PSO is a stochastic evolutionary optimization technique based on the movement

and intelligence of swarms inspired by the simpli�ed animal social behaviors.

PSO was �rstly developed by Kennedy and Eberhart in 1995 [10], and then

it has been used in various areas [11], including electromagnetics, due to its

relatively simple implementation and the obtained fast convergence rates to

acceptable solutions.

PSO algorithm is often explained using an analogy with the behavior of birds

searching a food source. At the beginning, a group or �swarm� of birds starts

to search food source in random directions [12]. Each individual in the swarm

remembers the path it traveled as well as the food in these locations. Moreover,

the birds communicate with each other regarding the food sources they found

during their travels. Therefore, each bird knows the best location that is found

by itself and is aware of the best position found by the swarm. Hence the birds go

into the regions where the food stocks are high according to both their personal

best location and the global best position.

Figure 2.2: Block diagram of a particle swarm optimizer
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A simpli�ed block diagram of a PSO is illustrated in Figure 2.2 . Initially,

the parameter space is de�ned according to the optimization problem. Then,

a swarm or population is initialized with random velocity and position vectors.

According to the optimization goal, each particle in the population is evaluated

via the �tness function. If the �tness value of a particle is better than the �tness

value of the globally best position found by the swarm or personally best position

found by the particle itself considering previous iterations, corresponding values

are simply replaced with the current position of the particle. Then, the velocity

and position vectors are updated as

vi+1 = wvi + c1r1(pbest − xi) + c2r2(gbest − xi) (2.1)

and

xi+1 = xi + vi+1t, (2.2)

respectively. In these equations, vi and xi represent velocity and position vectors

of the particles at the ith iteration, w is the inertia weight parameter indicating

the e�ect of a previous velocity vector on the new vector, c1 is the trust parameter

for the individual memory, and c2 is the trust parameter for the global memory.

These parameters have a major in�uence on the behavior of the optimizer as

they determine whether the particles will trust the memory of the swarm or

their own memory more [13]. In (2.1) and (2.2), pbest and gbest store the best

positions found by personally and globally in the �rst i iterations respectively.

In addition, r1 and r2 are random numbers between 0 and 1, introducing the

randomness in PSO. It should be noted that PSO is easier to implement as it

does not contain any operator, such as mutation, crossover or selection. The

behavior of swarm is directly determined by the velocity and position vectors as

governed by (2.1) and (2.2).

2.5 Antenna Modeling

Each antenna is modeled in three-dimensional space via Siemens-NX, which is

a powerful CAD tool. The mesh size (the size of the triangles) used in the mod-

eling should be smaller than λ/10, where λ is the wavelength. Antenna surfaces
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are modeled as perfectly conducting and discretized via small triangles on which

the RWG functions are utilized to expand the induced electric current density.

It should be noted that antenna feeds are modeled by either delta-gap excita-

tions or current injection, and the corresponding electromagnetic problems are

formulated with the electric-�eld integral equation (EFIE) in frequency domain.

The full-wave solutions are done either in free space or using a dielectric host

medium with an e�ective permittivity to include dielectric e�ects. Near-�eld in-

teractions, which are between nearby basis and testing functions, are performed

only once for a given discretization of the full problem and they can be used for

all optimizations of the related antenna geometry using MLFMA. Furthermore,

preconditioners, radiation/receiving patterns of basis/testing functions, transla-

tion operators and right-hand-side vectors are calculated and stored in order to

be used during optimizations many times.

2.6 Remarks

In this chapter, tools for electromagnetic optimizations are discussed. Main

points regarding this chapter can be listed as follows.

• Both the setup and solution parts of the MLFMA program is explained

step by step.

• The concepts of GAs and PSOs are explained with major operations and

formulas.

• Full-wave antenna modeling for optimizations is brie�y described.

In the next chapter, we consider excitation optimizations of antenna arrays and

demonstrate di�erent techniques to improve the performances of GAs and PSOs

for e�cient optimizations.
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CHAPTER 3

EXCITATION OPTIMIZATIONS OF ANTENNA

ARRAYS

3.1 Introduction

Antenna arrays can be optimized for desired radiation characteristics by �nding

appropriate geometrical placement of the elements (antennas) or the excitation

values of them [14]. In this study, arrays with a given geometry and �xed po-

sitions are optimized by determining a set of source or excitation values that

provide the desired radiation characteristics, such as reduction in side-lobe lev-

els, placing nulls in speci�c directions, and increasing the directive gain at a

speci�c direction [15], [16]. It is well known that the array-factor approach and

analytical techniques, such as Taylor and Chebyshev methods, provide rapid

designs of excitations of array elements [14]. Although these approaches may

be su�cient and convenient for the excitation optimizations of many types of

arrays, their accuracy and reliability may deteriorate signi�cantly when mutual

couplings between antennas have signi�cant e�ects on the overall radiation pat-

terns [17]. On the other hand, the interactions between the elements of an array

can be modeled very accurately via full-wave solvers based on error-controllable

applications of Maxwell's equations. However, in order to obtain an e�cient

optimization, the full-wave solver should be very e�cient.

In this work, we use MLFMA as the required full-wave solver for the optimiza-

tions of the antenna arrays [1]. Antenna arrays of �nite extent are formulated

with EFIE [18] in phasor domain and solved iteratively via MLFMA that pro-

15



vides accurate and fast matrix-vector multiplications required for iterative solu-

tions. Since the solutions do not have any assumptions or simpli�cations such

as periodicity, in�nity or similarity of the array elements, the proposed opti-

mization mechanism can be applied to any type of arrays such as arrays with

arbitrary geometrical positions or having di�erent types of elements.

It should be noted that gradient-based approaches could be employed instead of

heuristic algorithms for the optimizations. In fact, gradient-based approaches

may provide faster convergences than heuristic methods. However, a major dis-

advantages of them is the development cost since each di�erent optimization

goal can be achieved via complex modi�cations on the optimization code that

may be time consuming [19]. Multi-objective optimization problems, multidi-

mensional problems, or problems with multiple solutions may also be di�cult

for gradient-based methods since they depend on the error surface of the opti-

mization problem [20]. Moreover, gradient-based approaches generally require

good initial values for good performances, otherwise they may easily converge

to locally optimal solutions [21]. On the other hand, heuristic algorithms use

the �tness function of the optimization goal as a closed box. This makes it

quite easy to change the optimization goal or make multi-objective optimiza-

tions without requiring a change in the optimization code, except the �tness

function. In addition, heuristic problems do not depend on error surfaces hence

they may solve non-continuous and multidimensional problems. Finally, heuris-

tic algorithms do not necessarily require good initial values which make them

especially useful when there is a little information about the problem space.

Therefore, an e�cient and e�ective optimization mechanism involving heuristic

algorithms supported by MLFMA is proposed and examined in this work.

3.2 Optimization Mechanism

The proposed optimization mechanism mainly consists of heuristic algorithms

and the full-wave MLFMA solver. For a given array with �xed positions, heuris-

tic algorithms suggest trials and these trials are evaluated via full-wave solutions

by MLFMA according to the optimization criteria to determine the �tness value.
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The mechanism is summarized in Figure 3.1 and explained below step by step

on a reference problem, which is an optimization of the directive gain of a 5× 5

array (see Figure 3.2) in desired directions at 2.45 GHz.

Figure 3.1: Block diagram of the proposed optimization environment for excita-
tion optimizations.

Step 1: The antenna array is modeled in three-dimensional space via Siemens

NX, which is a powerful CAD tool. The mesh size (the size of the triangles)

used in the modeling should be smaller than λ/10, where λ is the wavelength.

Step 2: Each trial of a di�erent excitation set corresponds to a di�erent com-

putational problem where excitations of array elements are used to generate

the overall radiation pattern. When mutual couplings between array elements

are considered in the full-wave solutions, each solution creates a unique cur-

rent distribution on the antenna surfaces. Moreover, it is possible to reduce

the number of current density computations to the number of array elements

without neglecting mutual couplings by utilizing superposition principle. For

this purpose, each element in the array is excited with a unit source, while all

others are passive (they are fed with zero sources). Thus, only a total of M

full-wave solutions are required for an array of M-elements per frequency. Once

all these solutions are completed, obtained unique current distributions are used
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to determine complex far-�eld radiation patterns. These patterns are stored

in the memory to be used many times during optimizations. According to the

optimization purpose, these complex far-�eld radiation patterns may be used

directly or to calculate other radiation properties such as directive gains and

side-lobe levels. An overall radiation pattern corresponding to any excitation

set can be found as a combination of the stored complex far-�eld patterns.

The radiation problems are formulated by using EFIE, which is suitable for

open surfaces with zero thickness. After the triangulation of the surfaces, RWG

functions are employed to expand the electric current density. The resulting

dense matrix equations are solved iteratively, where MLFMA is used to acceler-

ate matrix-vector multiplications and to reduce the computational complexity

to a linearithmetic level.

The �rst two steps may be considered as the setup stage for the optimization

mechanism because they are performed only once for a given array structure at

a �xed operation frequency.

Step 3: When the setup stage of the optimization mechanism is completed,

the aim is to determine the excitation values for each element of the array

according to the optimization goal via heuristic algorithms. Speci�cally for

a given array of M elements, there are M complex excitation coe�cients and

an overall radiation pattern corresponding to any set of excitation coe�cients

may be found by superposing complex far-�elds obtained in Step 2. Each trial

suggested by heuristic algorithms which corresponds to an excitation set for the

array is evaluated according to the �tness function. In this work, GA and PSO

are used as heuristic algorithms due to their rising popularity in electromagnetics

society and their superior performances with both binary-coded parameters and

continuous parameters, respectively [22].

3.3 Optimizations of a 5 × 5 Planar Array

The proposed optimization environment is demonstrated by optimizing the di-

rective gain at the desired angles of a 5 × 5 array of metallic patch monopole
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antennas. Throughout this chapter, these antennas are mentioned as patch an-

tennas. It is important to note that these patch antennas do not have any

substrate or ground plane. GAs are used for the optimizations.

Figure 3.2: A 5×5 array involving a periodic arrangement of 3 cm × 3 cm patch
antennas. Each antenna is excited via current injection from a port located at
its bottom.

Figure 3.2 illustrates a 5 × 5 array of patch antennas that is used as a test prob-

lem for the optimization mechanism. The patch antennas of size 3 cm × 3 cm

are arranged periodically with 6 cm periods. The dimensions of each patch cor-

respond to λ0/4 × λ0/4 where λ0 is the free space wavelength at the operating

frequency. The optimization goal for this array is to maximize the directive gain

in various desired directions while the operation frequency is 2.45 GHz. First,

the geometry of the 5 × 5 array of patch antennas is modeled via Siemens-NX,

in which there are 6350 triangles after the triangulation of the surfaces. 8950

RWG functions are employed to model the entire array. Complex far-�elds that

are found by feeding each element with a unit current source at 2.45 GHz while

all others remain passive are shown in Figure 3.3.

Since the optimization goal is to maximize the directive gain at desired direc-

tions, the directive gain is used directly as the �tness function. For the optimiza-
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Figure 3.3: Far-zone electric �eld values, each corresponding to the unit exci-
tation of a single element while others are passive. All mutual couplings are
included in the computations. Far-zone electric �eld values are plotted in linear
scale in order to see the e�ects of mutual couplings in detail.

tions, �rst we use a standard GA. Excitation sets are coded as chromosomes,

where both amplitude and phase parts of the excitation of each element are

represented with 7 bits in binary coding. The domain for the phase and am-

plitude parts are restricted as [0, 2π] and [0, 1], respectively. This corresponds

to an optimization space with 2350 di�erent possibilities. A population size of

80 is chosen after some parametric trials. Moreover, the classical roulette wheel

method is used as the selection mechanism and the single-point crossover is

utilized along with a standard mutation with 0.05 rate. In addition, the best in-

dividual is preserved and transferred to the next population following an elitism

strategy. In these trials, 2000 generations are used for each optimization.

Figure 3.4 illustrates the cost functions with respect to the number of generations

when the standard GA described above is used for the 5 × 5 array to maximize

its directive gain at desired directions. Although the standard GA provides good

�tness values for smaller values of θ such as 0, 5, 10 degrees, it cannot improve

the �tness values for wide angles. As an example, the optimization at θ = 60
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Figure 3.4: Cost functions with respect to the number of generations when a
standard GA is used. Note that the directive gain values are given in linear
scale.
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degrees does little improvement on the best �tness value during 2000 generations.

When the populations at each generation of the unsuccessful optimizations are

examined, it is observed that the diversity diminishes very quickly. Especially,

when a population contains a successful individual and relatively unsuccessful

individuals, the successful one dominates the pool during the selection stages.

This prevents the formation of new individuals with di�erent characteristics

in the populations; hence the optimization spaces are not covered e�ciently.

Another important observation from these results is that, sudden increases in

the �tness values such as the jump for θ = 0, are usually due to the random

nature of GAs.

3.4 Improvements on GA Operations

In order to increase the performance of GAs, the optimization space should be

covered more e�ciently. This can be achieved by maintaining the gene diversity

in pools during the generations. For this purpose, di�erent mutation, crossover,

and elitism strategies are proposed and tested in this work.

3.4.1 Success-Based Mutation

Instead of a single mutation rate (that is �xed to 5% in the standard GA used

in the 5 × 5 array optimization problems), di�erent mutation rates in the same

pool are used to accelerate convergences by maintaining the diversity in pools.

Speci�cally, heavy, moderate, and light mutation rates are applied to individuals,

depending on their success rates. Individuals with low success rates are exposed

to heavy mutations with 25-30% rates, i.e., each chromosome bit is changed with

25-30% probability, while more successful individuals are mutated less (e.g.,

5% rates for the most successful individuals) to maintain the stability. For

moderately successful individuals, collective mutations schemes, e.g., changing

a portion of the chromosome rather than bit-by-bit mutations, are employed

so that badly arranged portions can be directly eliminated. These are simply

illustrated in Figure 3.5.

22



Figure 3.5: Description of success-based mutations used in the improved GA.

3.4.2 One-to-One Crossover Operations

Instead of a popular single-point or double-point crossover schemes, bit-by-bit

crossover operations between selected parents to generate children are utilized.

Speci�cally, after a crossover is decided with a rate of Pcrossover for a given pair

of individuals, all corresponding bits are exchanged with 50% probability as

illustrated in Figure 3.6. This way, the variety of individuals in the pool increases

signi�cantly, leading to more e�cient optimizations. Moreover, this crossover

mechanism provides a more stable and controlled exchange of characteristics

between parents and children.

Figure 3.6: Crossover operator used in the improved GA.
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3.4.3 Family Elitism

In addition to reserving the most successful individuals for the next generations,

proposed strategy, which we call family elitism, forces them to mate. Speci�cally,

for a given pool at a speci�c generation, this strategy allows two individuals

and their children to survive in the next generation as shown in Figure 3.7.

This approach guarantees the quality of the pool during the entire optimization

process and ensures a better increase in the average success of the population

as a function of generations.

Figure 3.7: Family elitism used in the improved GA.

3.4.4 Performance of the Improved GA on the 5 × 5 Array

After introducing new mutation, crossover, and elitism strategies, optimizations

at each angle are improved as shown in Figure 3.8. In these results, �tness values

grow progressively with respect to generations, indicating that more successful

individuals are formed almost in each generation. When the populations are

examined, it is seen that a domination does not occur thanks to the success-based

mutations and one-to-one crossovers. Hence, the diversity of the population

does not vanish, allowing the GA to cover the solution space more e�ciently.
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Another important performance criteria for GAs is the convergence behavior,

Figure 3.8: Cost functions with respect to the number of generations when the
improved GA is used. Note that the directive gain values are given in linear
scale.

which shows whether an optimization is stable or not. Due to its random nature,

it is possible for a GA to �nd a good solution even for a very challenging problem.

However, the desired performance for a well-designed GA is to �nd optimal

results that are close to each other for di�erent runs. Such a stability test for

the improved GA is shown in Figure 3.9. It can be observed that the improved

GA converges to a very limited range even for 50 di�erent optimizations, proving

the stability of the optimizations.

Since GAs are heuristic methods rather than deterministic, they do not guar-

antee that the optimized results are the best possible values. Therefore, it is

bene�cial to compare the optimized results with a large number of random tri-

als. For that purpose, the optimization of the directive gain at θ = 30 degrees

is chosen as a reference problem. In Figure 3.10, it is seen that the maximum
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Figure 3.9: Convergence behavior of the improved GA for the optimizations of
the 5 × 5 array. The directive gain of the array is maximized at θ = 30 degrees.
Note that the directive gain values are given in linear scale.

Figure 3.10: Comparison of the improved genetic algorithm and random trials
of constant amplitude excitations for the optimization of the directive gain of
the 5 × 5 array at θ = 30 degrees. Note that the directive gain values are given
in linear scale.

26



value among one million random trials is 13.94, while the average is 3.23. On the

other hand, the improved GA provides �tness values of 21.56, 24.91, and 29.64

in only 800, 1600, and 8000 trials, respectively. In these results, the average of

10 GA runs are used so that the performance measurement of the improved GA

is reliable. Moreover, we emphasize that the standard GA cannot �nd a better

value than 13.94, indicating the necessity of improvements.

Figure 3.11: Final optimization results for the 5 × 5 array. Note that the
directive gain values are given in linear scale.

In order to observe the e�ect of the size of the solution space, the improved GA

is further tested by optimizing the phases of the excitations when the amplitudes

are unity in the 5 × 5 array. This corresponds to a reduction of the optimization

space from 2350 to 2175. The results are improved, especially at some di�cult

angles, such as 20 degrees, as depicted in Figure 3.11. Finally, Figure 3.12 depicts

the radiation patterns obtained with the improved GA for constant-amplitude

optimizations.
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Figure 3.12: Optimized radiation patterns of the 5 × 5 array, where the nor-
malized electric �eld intensity in the far-zone is plotted on the z − x plane as
a function of the bistatic angle. The directive gain values are also indicated in
dBi.
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3.5 Monitoring Parameters and Improving the Performance of GAs

Since GA may not perform well for all problems, it is important to know how

to monitor its parameters and their e�ects on the optimizations. One of the

major problems encountered when using GAs is early convergence to subopti-

mal solutions. If a GA optimization gets an early convergence before �nding

an adequate solution, there may be a need to enlarge the explored regions in

the optimization space. In order to do this, pool sizes, mutation rates or repro-

duction mechanisms can be changed. Moreover, the diversity of a pool directly

a�ects the possible regions to be explored; hence it is desirable to maintain the

diversity during generations. As discussed before, the dominance of a superior

individual may diminish the diversity rapidly and this should be avoided as

much as possible. During the development studies, �tness values of the best

individuals and the average �tness values of the populations in each generation,

as well as the chromosomes of the individuals in the populations, are stored in

tables. Keeping the average �tness values of populations is very bene�cial to

observe the domination e�ect. When the average �tness value of a population is

relatively low in comparison to the best individual, there is a signi�cant chance

of the undesired domination e�ect. Since the chromosomes in each population

are stored, a diversity parameter can be de�ned in order to observe when the

diversity of the pool is reduced. Such a metric can be de�ned as the total num-

ber of bits of all individuals in the population that are di�erent from those of

the best individual [23].

In order to test GAs and the developed optimization mechanism for a more

challenging problem, where the solution space is extremely large, 10 × 10 array

is considered, where the operation frequency and the size of the patches are

same as those in the 5 × 5 array studies. Speci�cally, phase optimizations

are performed in order to increase the directive gain at (θ,φ) = (0, 0), which

corresponds to an optimization space with 2700 possibilities. Figure 3.13 depicts

the geometry of the array.

The total number of trials for each optimization is limited to 80,000 for a fair

comparison of the di�erent versions of GAs. Moreover, each optimization is
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Figure 3.13: A 10 × 10 array involving a periodic arrangement of 3 cm × 3 cm
patch antennas.

made 10 times and both the average and maximum results obtained by the op-

timizations are given. The results are listed in Table 3.1 and depicted in Figure

3.14. As shown in these results, GAs can be improved via a step-by-step devel-

opment process involving the change of crossover operations, mutation strate-

gies, selection schemes, and pool sizes. Table 3.1 shows that �nal GA version

provides directive gain values of 165 (22 dBi) which is the best possible value

according to Kraus' formula. We conclude that GA itself needs an optimization

of its parameters (as in evolutionary GA) and operations in order to be e�cient.

Convergence behavior of the �nal GA version is also shown in Figure 3.15.

3.6 PSO and Improving Its Performance

PSO is another popular approach that we use in our optimizations. As in all

heuristic algorithms, performances of PSOs as well as their stability can be

improved via proper selections of optimization parameters. Since the behavior of

a PSO is determined by the velocity and position vector equations, parameters of

these equations can be optimized for better performances. Some of the examined

versions of PSOs in this study are listed in Table 3.2 for the optimizations of
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Table3.1: Summary of the Examined GA Versions

GA
No

θ = 0
Max

θ = 0
Mean Size Crossover Mutation Selection

1 13.7 9.95 20 2 point Standard WhC
2 15.2 10.0 20 1 point Standard WhC
3 55.6 33.9 40 one-to-one Standard WhC
4 64.9 55.5 80 one-to-one Standard WhC
5 99.3 74.2 100 one-to-one Standard WhC
6 104 91.9 20 one-to-one Standard WhC
7 118 102 200 one-to-one Standard WhC
8 147 133 20 one-to-one Standard WhC
9 146 135 80 one-to-one Standard WhC
10 150 136 80 one-to-one Standard WhC
11 147 139 80 one-to-one Standard WhC
12 152 142 80 one-to-one Standard WhC
13 163 159 80 one-to-one Standard TOS 25%
14 163 159 80 one-to-one Standard TOS 10%
15 164 160 80 one-to-one Standard TOS 20%
16 165 163 80 one-to-one Standard TOS 20% and WhC

Figure 3.14: Performance summary of di�erent GA versions (see Table 3.1) for
the optimizations of the 10 × 10 array in Figure 3.13. Note that the directive
gain values are given in linear scale.

31



Figure 3.15: Convergence behavior when version 16 of GA is used to optimize
the directive gain of the 10 × 10 array in Figure 3.13 at (θ,φ) = (0, 0). A total
of 100 di�erent trials are shown, as well as the average performance (red). Note
that the directive gain values are given in linear scale.

the 10 × 10 array in Figure 3.13.

The number of particles in the swarm has a major in�uence on the performance

of PSO because the swarm makes its �rst movement into a direction based on

particles. In order to see this e�ect, di�erent numbers of particles as 200, 500,

1000, 2000, 2500, and 5000 are selected and the corresponding performances are

investigated in versions 1-6 in Table 3.2. It should be noted that all these trials

use the same standard PSO operations with the same parameters. Since version

4 that uses 2000 particles is promising in terms of the obtained maximum values

in both optimizations at θ = 0 and θ = 15 degrees, the number of particles

is chosen as 2000 for the other PSO versions. Di�erent techniques to apply

inertia weight parameter are examined in versions 7 to 11. Versions 7, 8 and

9 decreases w as the iterations progress in order to increase the convergence to

optimal regions by preventing over-�ights from promising areas of the problem

space. In these versions, di�erent intervals are chosen for w, i.e., version 7, 8, 9

use [0.7, 0.1], [1, 0.1] and [0.7, 0], respectively. Version 10 uses exactly opposite
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Table3.2: Summary of the Examined PSO Versions and Their Applications to
a 10 × 10 Array

PSO
Version w c1 c2 Population

θ = 0
Max

θ = 0
Mean

θ = 15
Max

θ = 15
Mean

1 0.4 2 2 200 126.4 86.83 49.89 34.05
2 0.4 2 2 500 142.0 107.3 53.84 46.47
3 0.4 2 2 1000 140.9 82.8 72.70 52.10
4 0.4 2 2 2000 138.5 88.73 77.02 56.12
5 0.4 2 2 2500 146.6 119.7 61.49 48.45
6 0.4 2 2 5000 138.1 91.92 52.16 43.90
7 0.1-0.7 2 2 2000 145.6 98.34 79.49 60.17
8 0.1-1 2 2 2000 145.6 97.94 70.00 59.12
9 0-0.7 2 2 2000 149.6 93.82 73.88 60.32
10 0.1-0.7 2 2 2000 81.62 58.17 78.90 46.83
11 0.4-0.7 2 2 2000 143.7 107.2 75.85 59.5
12 0.4 2 2 2000 155.0 119.3 78.70 67.16
13 0.4 (0,2) 2 2000 142.1 118.9 65.82 53.92
14 0.4 (0,2) 2 2000 117.8 73.60 73.90 51.52
15 0.4 (0.2) 2 2000 135.5 92.86 67.52 57.47
16 0.4 2 2 2000 52.77 24.18 29.57 20.12
17 0.4 2 2 2000 87.86 62.50 83.55 50.86
18 0.4 2 2 2000 63.26 41.89 60.11 42.18
19 0.4 2 2 2000 142.5 94.76 72.73 61.38
20 0.4 2 2 2000 81.76 67.51 76.76 64.45
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idea of version 7, i.e., w is linearly increased in the interval of [0.1, 0.7] rather than

decreasing. Unfortunately, this strategy does not work well. Moreover, version

11 chooses w randomly in the region [0.4, 0.7] in order to increase the randomness

in the optimization process. These versions (7-11) that select inertia parameter

with di�erent techniques indicate that decreasing the inertia weight parameter

as the iterations progress improves the performance. Version 12 utilizes the

idea of craziness factor. This idea was introduced in [10] and it operates very

similar to the mutation mechanism in GAs. Velocity and position vectors of

some particles are changed randomly. Similar to the mutation mechanism in

GAs, the craziness factor aims to increase the diversity of the explored regions

and to prevent early convergences to suboptimal solutions. Among all versions

in Table 3.2, version 12 provides the best results. Following this version, versions

13 to 17 focus on the trust and randomness parameters applied with di�erent

techniques. It is observed that even a slight change in a single parameter may

cause signi�cant reduction in the performance. This is expected because PSO

is known to be more sensitive to parameter changes than other evolutionary

algorithms [22]. Furthermore, Eberhart and Shi suggested and illustrated that

the best choice for trust parameters are constant and 2, and this has became

a standard in the PSO literature [12]. Therefore, most of the PSO versions in

this study use 2 as both trust parameters. To sum up, the sensitivity of PSO

to parameter changes is one of the major challenges to improve its performance.

Versions 18 to 20 show the hybrid versions of some promising versions, however

the results of the hybrid versions indicate that good approaches together may

not lead to better performances since their superior features may disappear when

they are hybridized.

3.7 Performance Comparison of GAs and PSOs

Both GAs and PSOs have been widely used in electromagnetic problems [24].

In Figure 3.16, PSO and GA results for directive gain optimizations of the 10 ×
10 array at (θ,φ) = (0, 0) are illustrated, as well as the results obtained by the

phase-taper method using the array-factor approach [25]. It can be observed
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that the GA implementation outperforms the PSO implementation in phase

optimizations, where the optimization space contains 2700 possibilities. On the

other hand, values of the obtained results in on-o� optimizations, where the

optimization space contains 2100 possibilities, are very similar for the GA and

PSO implementations. This indicates that PSO is a�ected negatively when the

problem space is enlarged. This is because higher dimensional problems with

large optimization spaces often have many identical values and convoluted spaces

so that particles can be trapped into local maxima points easily. This situation,

which is usually called as premature or early convergence, is one of the major

problems in evolutionary algorithms. GAs avoid this phenomenon by utilizing

di�erent mutation and selection operators. However, randomness is only added

via r1 and r2 and maybe via using the craziness factor in PSOs. Thus PSO

implementations seem to be more vulnerable for early convergence, as shown in

Figure 3.16.

Figure 3.16: Directive gain values obtained via GAs, PSOs, and the phase-taper
method. Note that the directive gain values are given in linear scale.

Another observation in Figure 3.16 is that, the phase-taper method provides

35



higher directive gain values than both GA and PSO implementations at θ= 0,

15, 30, 45 degrees. However, the GA implementation is more successful than

the phase-taper method at larger values of θ. This shows that the proposed

optimization mechanism may outperform analytical methods based on the array-

factor even for a relatively simple and uniform array.

Figure 3.17: Performance comparison of GA, MATLAB GA, and PSO imple-
mentations. Note that the directive gain values are given in linear scale.

Another important performance criteria for the optimization methods is the re-

quired time for optimizations. In order to observe the performance of the GA

and PSO implementations in terms of the processing time, they are compared

with the GA tool of MATLAB. For the 10 × 10 array, GA, MATLAB GA,

and PSO implementations complete the optimization in 1000, 5520, and 4982

seconds, respectively, when each algorithm uses a total of 80,000 trials. As de-

picted in Figure 3.17, the MATLAB GA implementation starts with an initial

population that has a very high �tness value, whereas other two in-house algo-

rithms have worse initial populations. In terms of the optimized directive gain

values by algorithms, MATLAB GA also yields the best results. However, our

GA implementation provides very close results despite it starts with a much
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poorer initial population and is almost �ve times faster than the MATLAB GA.

Another observation is that the PSO implementation is trapped to an early con-

vergence and leads to a signi�cantly worse optimization results than the other

two implementations.

Figure 3.18: Optimized directive gain values for the 10 × 10 array at 2.45 GHz
via di�erent methods.

Directive gain values at di�erent directions obtained by on-o� (0 or 1) and phase

optimizations using both GA and PSO implementations are illustrated in Figure

3.18. In the same �gure, results of full (both phase and on-o�) optimizations by

the GA implementation are also shown. It can be observed that phase optimiza-

tions by the GA implementation provide better results than full optimizations

by the same implementation. This may be due to the fact that simultaneous op-

timizations of amplitudes and phases increase the problem space and decrease

the performance of the GA implementation. Radiation patterns obtained via

on-o� optimizations and phase optimizations using GAs are further illustrated

in Figure 3.19 and Figure 3.20, respectively. Steering of the main beam is clearly

observed.
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Figure 3.19: Optimized radiation patterns obtained with on - o� optimizations
via the improved GA.

Figure 3.20: Optimized radiation patterns obtained with the phase optimization
via the improved GA.
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3.8 Multi-Objective Optimizations

One of the major advantages of the proposed optimization mechanism is its

convenience to allow for optimizations with di�erent cost functions without re-

quiring a signi�cant change in the optimization code. Only the �tness function

should be adjusted according to the optimization purpose. While the results up

to this section are related to the optimization of the directive gain, this section

presents examples to multi-objective optimizations of arrays. We mainly focus

on dual-band optimizations and shaping radiation patterns.

3.8.1 Dual-Band Optimizations

In this section, dual-band antenna arrays and their optimizations via heuristic

algorithms, particularly, GAs and PSO methods are considered. Figure 3.21

depicts a test array that consists of patch antennas of di�erent sizes depend-

ing on the target frequencies i.e., 2.45 GHz and 5.8 GHz. In many advanced

systems, such as radars, it is desirable for arrays to provide multi-band opera-

tions with reduced mass and size. The size reduction can be achieved by using

dual-frequency array antennas with shared apertures. Moreover, beam scanning

in desired directions can be achieved in these dual-band arrays via excitation

optimizations [26]. As an important advantage, the developed optimization en-

vironment in this study allows for multi-band optimizations, where radiation

characteristics at multiple frequencies are considered and optimized simultane-

ously for multi-band applications.

The optimization procedure is same as the one used for the previous optimization

problems, such as 5 × 5 and 10 × 10 arrays. The developed GA structure is used

for each optimization. Complex far-�eld patterns at both operation frequencies

are calculated and stored in the setup stage. The �tness function is adjusted by

considering both frequencies. For example, the �tness function can be taken as

the total of the directive gains at the desired direction at 2.45 GHz and 5.80 GHz.

In order to measure the performance of GAs for dual-band optimizations, we �rst

consider single-frequency optimizations at both 2.45 GHz and 5.80 GHz. Cost
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Figure 3.21: Geometry of a dual-frequency array operating at 2.45 GHz and
5.8 GHz.

function with respect to the number of generations can be seen in Figure 3.22

and Figure 3.23, respectively, for single-frequency optimizations at 2.45 GHz

and 5.80 GHz.

Figure 3.24 presents the directive gain values obtained when the optimizations

are performed at single frequencies (2.45 GHz and 5.80 GHz) and simultaneously

at both frequencies. In the single frequency optimizations, only the results ob-

tained for the considered frequency are depicted, as the values for the other

frequency are very low. Considering the dual-frequency optimizations, direc-

tive gain values naturally drop in comparison to single-frequency optimizations.

However, the dual-frequency optimizations maintain high directive gain values

simultaneously at both frequencies. Speci�cally, the dual-frequency optimiza-

tions improve the sum of the directive gain values at 2.45 GHz and 5.80 GHz,

in comparison to single-frequency optimizations that are improving the direc-

tive gain at a single frequency while completely neglecting the other frequency.

The results obtained via the phase-taper method are also illustrated in Figure
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Figure 3.22: Cost functions with respect to the number of generations when the
improved GA implementation is used to maximize the directive gain in various
directions at 2.45 GHz. Note that the directive gain values are given in linear
scale.

Figure 3.23: Cost functions with respect to the number of generations when the
improved GA implementation is used to maximize the directive gain in various
directions at 5.80 GHz. Note that the directive gain values are given in linear
scale.
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3.24. It can be seen that GA outperforms the optimal results of the phase-taper

method at each angle. This is a natural consequence of short distances between

array elements, leading to strong mutual couplings. Radiation patterns at 2.45

GHz and 5.80 GHz that are obtained by the dual-band optimizations with GAs

can be seen in Figure 3.25 and Figure 3.26, respectively.

Figure 3.24: Optimized directive gain values for the dual-frequency array in
Figure 3.21.

3.8.2 Shaping Radiation Patterns

Reduction of side-lobe levels is a popular application in array optimization prob-

lems [27], [28]. In order to show that the proposed mechanism can be used for

such optimizations, the 10 × 10 array is optimized for maximizing the directive

gain at two di�erent directions, i.e. θ = 0 and 30 degrees, while setting a sharp

threshold for the side lobes. The results obtained with GAs are depicted in Fig-

ure 3.27. It is seen that the optimization achieves high directive gain values at

the desired directions, while preventing side lobes from exceeding the threshold.
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Figure 3.25: Radiation patterns obtained by dual-frequency optimizations of the
array in Figure 3.21 at 2.45 GHz.

Figure 3.26: Radiation patterns obtained by dual-frequency optimizations of the
array in Figure 3.21 at 5.80 GHz.
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Figure 3.27: Normalized far-zone electric �eld obtained via the GA for maxi-
mizing the directive gain simultaneously at θ = 0 and 30 degrees while setting
a threshold for the side lobes.

3.9 Remarks

In this chapter, the excitation optimizations of three di�erent array geometries

are demonstrated. Some of the underlined points in this chapter can be listed

as follows.

• The superposition principle is utilized to reduce the number of current-

density computations to the number of array elements, without omitting

mutual couplings.

• Improvements on GA operations are achieved via alternative techniques

such as success-based mutation operation, family elitism, and one-by-one

crossover.

• Various versions of GAs and PSOs are examined and their performances

are discussed.

• Multi-objective optimizations of the arrays with di�erent cost functions

are shown.

In the next chapter, we consider geometry optimizations of pixel antennas.
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CHAPTER 4

GEOMETRY OPTIMIZATIONS OF PIXEL ANTENNAS

4.1 Introduction

Optimizations of antenna geometries, especially when they involve structural

changes, are challenging because each di�erent geometrical con�guration cor-

responds to a new electromagnetic problem that requires to be solved accu-

rately [29]. Moreover, optimization spaces for such problems can be extremely

large [30]. While gradient-based optimizers [31] may be preferred due to their

fast convergence characteristics, heuristic algorithms provide �exibility in design

and optimization procedures. Therefore, combining heuristic algorithms with

full-wave solvers for optimizations of antenna geometries are very popular in the

literature. For the geometry optimizations of antennas, GAs [32], PSOs [33]

and simulated annealing algorithms [34] with di�erent full-wave solvers, such as

the method of moments [35] and the �nite-di�erence time-domain method [36],

are examined in the literature. These studies point out the advantages of the

heuristic algorithms as well as their drawbacks. The main advantage of these

algorithms is their ability to cover extremely large optimization spaces with

�exible cost functions [37]. On the other hand, they may not guarantee a con-

vergence to acceptable results in constant or prede�ned response times. This

especially limits the usage of these algorithms in real-time applications.
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4.2 Optimization Mechanism

Similar to the excitation optimizations, our optimization mechanism is a com-

bination of GAs and MLFMA. Binary-coded parameters are very appropriate

to apply on geometry optimizations where each portion of an antenna can be

represented with a single bit. For a suggested antenna con�guration by the GA

optimizer, the required portions are disconnected by removing the related RWG

functions, while all other coe�cients are found by an iterative solution acceler-

ated with MLFMA. This mechanism allows for removing desired portions of the

geometry rapidly. Although the geometry optimizations of antennas by remov-

ing portions or shorting strips between antennas and ground planes are known

in the literature [38], this study is di�erent from port-based approaches where

antenna problems are solved and replaced via equivalent ports before optimiza-

tions [39]. It should be underlined that in our mechanism, each trial suggested

by GA is solved via a full-wave solver. Therefore, the proposed mechanism may

be used for di�erent structures including antennas with other parasitic objects.

4.2.1 Lookup-Table Concept

Since GAs may demand thousands of trials for optimizations, it is crucial to

increase their e�ciency by reducing the number of full-wave trials. When popu-

lations formed in each generation are examined, it can be seen that a GA often

requests the evaluation of the same con�gurations. It is obvious that storing the

evaluated con�guration and its corresponding �tness value in a table may save

signi�cant time by avoiding multiple evaluations. For that purpose, a lookup

table is utilized. Figure 4.1 illustrates the number of calls of a lookup table

during the optimization of the directive gain of a cage-dipole antenna at various

directions. In these optimizations, 20 individuals and 200 generations are used,

hence a total of 4000 trials are allowed per optimization process. It is seen that

almost a quarter of these trials are taken from the lookup table in these six

di�erent optimizations, proving that the lookup table saves signi�cant time.

A lookup table can be considered as the memory of an optimization because it
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Figure 4.1: Numbers of lookup table calls in GA optimizations of the directive
gain of a cage-dipole antenna at various directions.

stores all desired parameters as the optimization continues. This provides the

designer a dynamic control ability over the optimization. For example, mutation

rates and crossover operations can be changed dynamically when a superior

individual dominates the pool. Even though the dynamic control over GAs is

a promising concept [40], this study focuses on the dynamic control over the

full-wave solver part since it is the actual bottleneck in antenna optimizations.

4.3 Fabrication of Inkjet Antennas

Optimized antennas are printed on photograph papers using silver toner in stan-

dard commercial printers (Epson). Although inkjet printing via commercial

printers is inexpensive and enables printing tiny details, it involves some chal-

lenges, such as maintaining the conductivity uniform over the antenna surfaces.

Furthermore, the e�ects of the used photo papers and silver-based toners, as

well as the life time of printers should also be considered. As it is well known

in the literature [41], inkjet antennas need to be cured after printing, especially

when standard printers are used. Main reason is that inkjet printers are not de-

signed for consistency, i.e., uniformity of the ink, but designed only for printing

readable patterns. In order to maintain a uniform conductivity over antenna

surfaces, a simple oven is used to cure the printed antennas. It should be noted

that the curing temperature and duration are very critical for producing high-

quality printouts with high conductivity all through the antenna. Figure 4.2
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shows the results of some curing trials for a structure that is produced to ob-

serve the e�ects of curing on resistance. The average resistance values of the

samples are measured via a DC multimeter and plotted with respect to the cur-

ing duration. It is seen that temperatures over 100◦C lead to signi�cant drops

in the resistance while the duration becomes less e�ective when the temperature

is high. It should be noted that temperatures above 200◦C deforms the photo-

graph paper hence it is not shown in these trials. The e�ect of the temperature

on the prints is also visible in the zoomed photographs. According to these

observations, produced inkjet antennas are cured for one hour at 175◦C since

it provides good conductance in a relatively shorter time than other trials. It

may be bene�cial to underline the fact that curing must be applied immediately

after the inkjet printing.

Figure 4.2: Cured samples of inkjet prints and the dependency of the resistance
to the curing duration and temperature.

Another important issue regarding the production of inkjet antennas is the se-

lection of the paper type, which possesses a signi�cant role for the quality of

the antennas. Since heat-curing is crucial when standard printers are used to

produce the antennas, the paper substrates should be resistant to high tem-

48



peratures. Unfortunately, many photograph or transparent papers with high

plasticity tend to be bend or deformed above 100◦C hence damage the silver

print. On the other hand, papers with low plasticity can be very absorbent

which leads to defective prints with small cracks preventing the conductivity

over antenna surfaces. Therefore, there are only few commercial photograph

paper types that are appropriate for antenna printing. Based on numerous tri-

als of di�erent combinations, Canon GP-501 photograph paper and silver based

toner of Novacentrix JS-B25P are used in this study. Finally we note that, the

life time of the commercial printers are another issue for inkjet printing. Since

silver-based toners cause oxidization in the printer heads, the quality of the

produced antennas drop signi�cantly as the printers are used. Therefore, the

printers are replaced frequently to maintain high quality prints.

4.4 Optimizations of Cage-Dipole Antennas

In this section, full wave optimizations of an inkjet dipole antenna with cage

shape is presented. The overall size of the antenna geometry is 3.2 cm × 6.8

cm and it involves 80 gap locations as shown in Figure 4.3. It should be noted

the antenna is fed from its center. In order to achieve the desired input and

radiation characteristics, some of these gap locations are opened (disconnected)

as a result of the optimization. The proposed antenna geometry has a potential

to yield various types of antenna structures with the proper adjustment of these

connections. A total of 80 gap positions, which are on the two arms of the an-

tenna, are adjusted symmetrically which corresponds to an optimization space

with 240 ≈ 1012 unique con�gurations. Therefore, each individual in GA pop-

ulations has a chromosome of 40 bits where each bit represents two symmetric

gap locations. It is observed that GAs provide satisfactory optimizations in less

than 4000 trials, each of which corresponding to a full-wave solution.

Di�erent optimization goals are tried in order to see the capabilities of the pro-

posed antenna geometry as well as the optimization mechanism. Figure 4.4

depicts simulation results of optimized antenna con�gurations when the opti-

mization goal is to maximize the directive gain at di�erent directions at 5.80 GHz
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Figure 4.3: Geometry of the cage-dipole antenna and gap locations. An opti-
mized con�guration is shown, where green and red colors represent short circuit
(no gap) and open circuit (gap), respectively.

(in free space). It can be seen that the proposed geometry is capable of chang-

ing the maximum directive gain at di�erent angles via proper selections of its

connections.

Since the cage-dipole antenna has promising capabilities, two di�erent optimiza-

tion criteria are chosen where the purposes are to increase the directive gain at

(θ,φ) = (0, 0) and (θ,φ) = (90, 0), respectively, while matching the antenna input

impedance to 50Ω at 5.80 GHz. While the antennas are printed on photograph

papers, our initial experiments show that their exact modeling with very thin

and �nite dielectric layer is not essential. Therefore, in order to include the di-

electric e�ects of the photograph paper, a homogeneous medium with a relative

permittivity of approximately 4.5 is used. The cost function, which is the �tness

function of GAs, is de�ned as

CF (θ0, φ0) = (1− |Γ|)D(θ0, φ0) (4.1)

where D(θ0, φ0) is the directive gain in a given direction (θ0,φ0) and Γ is the

re�ection coe�cient de�ned as

Γ =
Zin − Zo
Zin + Zo

. (4.2)

In (4.2), Zin is the input impedance of the antenna, while Zo is the impedance
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Figure 4.4: Simulated current distributions and directive gain plots of optimized
cage-dipole antennas.
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of the port/device matching to the antenna. In this study, we choose Zo = 50Ω.

Each optimization is carried out ten times and the obtained results are listed in

Table 4.1 and Table 4.2.

Table4.1: Simulation Results of Optimized Antennas For (θ,φ) = (0, 0)

Optimization
No

Input
Impedance

Power
Re�ection
Coe�cient (dB)

Directive
Gain (0,0)

Cost
Value

1 50.66 - 0.623i -40.92 6.1 6.04
2 54.69 + 2.510i -25.88 5.35 5.08
3 43.68 + 12.32i -16.68 7.60 6.49
4 42.75 - 5.849i -19.98 6.91 6.22
5 49.91 - 0.820i -41.68 5.72 5.68
6 49.76 - 3.849i -28.26 7.24 6.96
7 55.57 + 4.784i -23.26 7.94 7.38
8 49.24 - 3.072i -29.92 4.90 4.74
9 48.60 + 11.16i -18.91 6.10 5.41
10 92.27 - 40.49i -8.05 6.91 4.17

The results in Table 4.1 and Table 4.2 indicate that there are various antenna

con�gurations that provide desired characteristics. The �rst optimization in

Table 4.1 and 6th in Table 4.2 are selected for further analysis. The con�gurations

of the selected antennas and their simulation results are shown in Figure 4.5.

Figure 4.6 illustrates the cost function and the number of usages of the lookup

table with respect to the generations of GAs for the �rst optimization in Table

4.1. It can be observed that GAs increase the cost function from a very low value

to satisfactory levels. Furthermore, the lookup table proves its importance to

minimize the required optimization time since GAs use it extensively. Another

important issue is the existence of naturally occurring parasitic parts that are

created during GA optimizations. The e�ects of these parasitic parts should

be calculated accurately because they have a signi�cant e�ect on the overall

radiation characteristics of the antennas. Figure 4.7 shows the power re�ection

coe�cient results for both an optimized con�guration and the one without the

parasitic parts.
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Table4.2: Simulation Results of Optimized Antennas For (θ,φ) = (90, 0)

Optimization
No

Input
Impedance

Power
Re�ection
Coe�cient (dB)

Directive
Gain (90,0)

Cost
Value

1 66.02 - 17.45i -13.90 11.56 9.23
2 49.63 + 6.957i -23.12 12.17 11.3
3 60.08 - 5.723i -19.56 8.73 7.82
4 59.05 + 9.230i -18.56 10.25 9.04
5 55.69 + 2.829i -24.42 9.52 8.95
6 51.37 + 1.596i -33.66 10.40 10.2
7 49.30 + 2.561i -31.46 10.19 9.91
8 46.96 + 9.022i -20.20 8.61 7.77
9 41.89 - 22.11i -12.07 11.14 8.37
10 54.03 - 5.061i -24.14 11.67 11.0

Figure 4.5: Two optimized antenna con�gurations. Induced currents on the
antennas as well as radiation patterns on the z − x plane are depicted.
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Figure 4.6: Optimization of the antenna structure depicted in Figure 4.3 to
maximize the cost function in Equation (4.1) for (θ,φ) = (0, 0). Both the cost
function value and the number of table usages are plotted with respect to gen-
erations.

Figure 4.7: Power re�ection coe�cient (dB) for both an optimized con�gura-
tion and the one without naturally occurring parasitic parts. Note that the
simulation results are obtained in free space at 5.8 GHz.
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After the optimizations, one of the antennas is printed using silver-based toners

in commercial printers and cured in order to maintain conductivity over the

antenna surface. Antenna is attached to a coaxial end using a conductive epoxy

and the power re�ection coe�cient is measured. A comparison of the measured

and simulated values can be seen in Figure 4.8. It should be noted that the

simulation result in Figure 4.8 is obtained by using a dielectric host medium

with εeff = 4.5 to account the e�ects of the paper substrate. It can be seen

that both simulation and measurement results agree on the frequency where the

minimum value of the power re�ection coe�cient is observed.

Figure 4.8: Measured and simulated power re�ection coe�cient values for the
optimized antenna.

Finally, in order to compare the simulation results with a commercial software,

an optimized antenna is implemented and simulated in HFSS. Figure 4.9 shows

the simulation results obtained via HFSS for the optimized antenna when the

permittivity of the substrate is given as 4.5. Although, there are some di�erences

between MLFMA and HFSS results, they both have low values for the power

re�ection coe�cient at around similar frequencies, i.e., 2.75 GHz and 2.5 GHz.
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In addition, both simulations illustrate that the antenna radiates toward (θ,φ)=

(0, 0) at the frequency of interest. (See Figure 4.5 for comparison.)

Figure 4.9: S11 and radiation plots obtained via HFSS.

4.5 Optimizations of Patch-Pixel Antennas

Figure 4.10 shows the geometry of a type of pixel antennas considered in this

work. The antenna consists of two metallic patches of size 4.14 cm × 5.68 cm

that are combined with 0.508 cm distance (the thickness of two photograph pa-

pers) between them. The main purpose of the optimization is to determine the

triangular pixels to be removed from the top layer in order to achieve desired

radiation and input characteristics at 3.2 GHz that corresponds to the frequency

band for WiMAX [42]. It should be noted the triangle pixels are exactly match-

ing to the triangles that are used in the discretization for numerical solutions

with MLFMA. Proposed antenna has many details which make its production

via inkjet printing advantageous since inkjet printing is appropriate to produce

tiny details even better than large areas.

There are 320 triangles on the top layer of the antenna and each triangle is

represented via single bit in the chromosome of the individuals in GAs. Total of

10,000 trials are used for the optimization process. Two di�erent optimizations

are carried out for this antenna where the main purpose is to maximize the
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Figure 4.10: Geometry of an optimized patch-pixel antenna.

antenna gain (cost function) at (θ,φ) = (0, 0) and (θ,φ) = (30, 0) at the desired

frequency. Various pool sizes are examined, and the cost functions with respect

to the number of generations are illustrated in Figure 4.11 and Figure 4.12. The

best results with the highest cost functions for these two optimization sets are

shown in Figure 4.13 and Figure 4.14. It can be observed that various con�gura-

tions of the proposed antenna geometry may provide the desired characteristics.

The optimizations for (θ,φ) = (30, 0) may be more challenging than the opti-

mizations for (θ,φ) = (0, 0), and this may be observed in Figure 4.11 and Figure

4.12. The optimized antennas for (θ,φ) = (30, 0) are examined in more detail,

fabricated and measured. Simulated radiation pattern of an optimized antenna

for (θ,φ) = (30, 0) is shown in Figure 4.15, where normalized far-zone electric

�eld intensity is plotted with respect to the bistatic angle on the z − x and

z− y cuts. The �gure also shows the geometry of the antenna as a result of the

optimization. While the optimization aims to provide maximum radiation in
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Figure 4.11: Cost functions with respect to the number of generations of the
optimizations for (θ,φ) = (0, 0).

Figure 4.12: Cost functions with respect to the number of generations of the
optimizations for (θ,φ) = (30, 0).
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Figure 4.13: Obtained antenna con�gurations of the optimizations for (θ,φ)=
(0, 0).

Figure 4.14: Obtained antenna con�gurations of the optimizations for (θ,φ)=
(30, 0).
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the (θ,φ) = (30, 0) direction, a maximum radiation occurs at 21 degrees, which

is acceptable.

Figure 4.15: Far-zone electric �eld radiated from the optimized antenna simu-
lated with MLFMA. The geometry of the antenna is also shown.

The optimized patch-pixel antenna is produced via inkjet printing and measured.

Figure 4.15 shows the measured input impedance of the antenna, as well as the

power re�ection coe�cient when the antenna is connected to 50Ω. It is observed

that the power re�ection coe�cient has a minimum with a value of -32.48 dB

at 3.196 GHz, which is very close to the desired operation frequency.

4.6 Remarks

In this chapter, the geometry optimizations of the cage-dipole and patch-pixel

antennas are discussed. Some of the underlined points in this chapter can be

listed as follows.
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• The lookup table concept, which provides the designer a dynamic control

ability over the optimization, is introduced and its e�ectiveness to reduce

optimization times is presented.

• Fabrication of inkjet antennas that are produced by using silver-based ton-

ers in commercial printers and associated challenges are brie�y explained.

• An e�cient way to disconnect required portions in the geometry optimiza-

tions by removing the related basis functions is illustrated.

• Numerical and measurement results of the optimized antennas are dis-

cussed.

In the next chapter, we consider dynamic accuracy control over optimizations

by employing approximate forms of MLFMA.

Figure 4.16: Measured input impedance of the patch-pixel antenna and the
power re�ection when it is connected to 50Ω.
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CHAPTER 5

ACCURACY CONTROL BY USING APPROXIMATE

FORMS OF MLFMA

5.1 Introduction

Although MLFMA performs matrix-vector multiplications very rapidly, an op-

timization mechanism utilizing heuristic algorithms may demand thousands of

trials. These huge number of trials required in the optimizations make the opti-

mization process overwhelming with excessive computational costs, which may

be alleviated by resorting to remodeling the systems under interest in more

suitable forms [35]. In this chapter, an alternative mechanism is presented,

where full-wave solutions are not reformulated but enhanced with a dynamic

and adjustable accuracy control to improve the e�ciency of optimizations with-

out sacri�cing the quality of results. As an advantage, MLFMA enables error

controllability for the solutions. The developed mechanism is based on the fact

that accuracy may not be critical for all optimization trials and it can be made

an optimization parameter rather than a �xed constraint. A penalty strategy

is utilized when solutions with lower accuracy are done in order to maintain a

quality threshold of the �nal results.

5.2 Approximate Forms of MLFMA

The idea behind employing approximate forms of MLFMA, which can be called

as approximate MLFMA (AMLFMA), in the optimizations is mainly based on
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two observations. Firstly, it is not necessary to solve each trial suggested by

heuristic algorithms with the same accuracy. It is known that heuristic algo-

rithms may demand the evaluation of a poor suggestion many times especially

at the beginning of the optimization. These less critical trials may be solved

with lower accuracy in order to accelerate the optimization. Secondly, MLFMA

allows for a dynamic accuracy control that can be used to facilitate accuracy

variation through an optimization.

In typical electromagnetic simulations, accuracy of MLFMA is controlled via the

excess bandwidth formula [43] that provides the required number of harmonics

for a given worst case error. Using a full MLFMA, the cost of an N × N

matrix-vector multiplication can be written as

C = c0Nnear +
L∑
l=1

clNl(τl + 1)2, (5.1)

where c0, c1, . . . , cL are constants, L = O(logN) is the number of active levels,

Nnear = O(N) is the number of near-zone interactions, Nl represents the number

of nonempty boxes, and τl is the truncation number at level l. In general,

N1 = O(N), Nl ≈ Nl−1/4 for l > 1, τL = O(
√
N), and τl−1 ≈ τl/2 for l < L.

Therefore, Nl(τl + 1)2 = O(N) and C = O(N logN). For approximate forms,

we simply reduce the truncation numbers as ταl ≈ ατl for α ∈ [0, 1), leading to

a reduced cost as

C ≈ c0Nnear + α2

L∑
l=1

clNl(τl + 1)2. (5.2)

It should be noted that near-zone interactions, which are computed once at

the beginning of the optimizations, are not modi�ed. The usage of near-zone

interactions is e�cient since c0 is small, while their accuracy is more critical

compared to far-zone interactions.

The approximation factor α in Equation 5.2 can be used as a parameter in the

optimizations in order to reduce the total optimization time. If α is chosen

properly for di�erent trials encountered in an optimization, it may decrease the

optimization time signi�cantly without decreasing the quality of the results.
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In an optimization, it may be tempting to choose α = 0, which corresponds to

a version with only near-zone interactions, to obtain very rapid optimizations.

However, this may lead to unreliable �nal results especially when the problem

geometry is electrically large. In order to prevent reduction in the quality of the

results when employing approximate forms of MLFMA, a penalty strategy for

each approximation factor may be employed. These penalties can be applied to

the solutions that are done with lower accuracy which ensures that �nal results

of the optimization should satisfy a speci�ed quality threshold. More detailed

explanation and proposed strategies will be demonstrated and discussed for the

optimization of the cage-dipole antenna.

5.3 Optimizations of the Cage-Dipole Antenna via AMLFMA

Optimization of the antenna in Figure 4.3 to maximize the transmitted power

when it is matched to 50Ω at 5.80 GHz in free space is selected as a reference

problem. First, in order to observe the e�ects of utilizing �xed approximation

factors in terms of e�ciency and accuracy, ten di�erent optimizations are carried

out for α = 0.0, 0.1, 0.2, 0.4 and 0.5, as well as with full MLFMA which actually

corresponds to the case of α = 1.0. The results are listed in Table 5.1, where

matrix-vector multiplication (MVM) times, normalized MVM times, normalized

optimization times, accelerations in the optimization times with respect to the

full MLFMA, and the corresponding approximate errors for di�erent values of α

are presented. The approximate error is determined by taking the full MLFMA

solution as reference. There is a trade-o� between the accuracy of the results

and the speed of the optimizations, as expected. The determined approximate

errors can be used as penalty factors, i.e., the �tness value that is obtained by

using α is reduced by the corresponding approximate error.

Di�erent strategies for the use of MLFMA and its approximate forms are pro-

posed and examined by considering both the advantages and disadvantages of

the corresponding option in terms of e�ciency and accuracy. In order to bene-

�t from the approximate forms of MLFMA to accelerate optimizations without

deteriorating the reliability of the �nal results, we employ a strategy where the
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Table5.1: Performance Summary When Fixed Approximation Factors Are Em-
ployed During Optimizations

AMLFMA
MLFMA

0.0 0.1 0.2 0.4 0.5
MVM Time
(seconds) 0.2039 0.4578 0.7344 1.0969 1.5788 4.530

Normalized
MVM Time 0.0450 0.1011 0.1621 0.2422 0.3486 1.000

Normalized
Opt. Time 0.5580 1.450 2.241 3.433 4.868 13.69

Acceleration
in Opt. Time ×24.5 ×9.44 ×6.11 ×3.99 ×2.81 ×1.00

Approximate
Error 13.5% 8.38% 4.26% 2.35% 0.35% 0.00%

approximation factor is an optimization parameter hence becomes a part of the

chromosomes of the individuals in GAs. Speci�cally, in addition to representing

a con�guration of the connections, each individual contains an information on

how accurate the con�guration should be analyzed. In order to re�ect the cost

of the approximations, the success rates of individuals are reduced by the cor-

responding unreliability factors which are listed in Table 5.1. Thus, individuals

with accurate solutions are promoted provided that they represent successful

con�gurations. At the same time, inaccurate solutions are also promoted if the

con�gurations provide very good transmission coe�cients.

Two dynamic strategies are proposed and examined in addition to �xed-error

optimizations. Strategy-1 allows the individuals in genetic algorithm to use α

= 0.0, 0.1, 0.2, 0.4, 0.5, or full MLFMA. An approximation factor is assigned

randomly to each individual in the initial population. As a part of the chromo-

some, the approximation factor is manipulated by genetic operations, such as

crossover, mutation, and elitism. This strategy leaves the approximation factor

as �exible as possible, and let the genetic algorithm select the best combinations

during the optimizations. The strategy provides very accurate and high quality

results at the end of the optimization with a 2.69 times speedup with respect to

full MLFMA as seen in Table 5.2. On the other hand, when the performance

of Strategy-1 is compared with the results obtained with �xed approximation

66



Table5.2: Di�erent Strategies For the Usage of MLFMA and Its Approximate
Forms on the Optimizations of the Antenna Depicted in Figure 4.3

Normalized
Opt. Time

Acceleration
in Opt. Time

Approximate
Error

AMLFMA(0.0) 0.5580 ×24.5 13.5%
AMLFMA(0.2) 2.241 ×6.11 4.26%
AMLFMA(0.4) 3.433 ×3.99 2.35%
AMLFMA(0.5) 4.868 ×2.81 0.35%
MLFMA 13.69 ×1.00 0.00%
Strategy-1 5.086 ×2.69 0.75%
Strategy-2 2.556 ×5.36 1.15%

factors, it is seen that using α = 0.5 provides more e�cient and rapid optimiza-

tions. When the generated populations during the optimizations via Strategy-1

are examined, it is observed that the individuals using full MLFMA dominates

the pool quickly due to their superior �tness values as their �tness values are

not punished with a penalty. Hence, using MLFMA in many trials increase the

total optimization time, making Strategy-1 ine�cient.

Strategy-2 is very similar to Strategy-1 except that it does not allow the in-

dividuals to use full MLFMA as an option. Main purpose behind this idea is

to increase the optimization speed. Strategy-2 increases the optimization speed

by 5.36 fold with an approximate error of 1.15%. Comparing the results, this

strategy is both faster and yield more accurate results than the strategy using

a �xed α = 0.4. Therefore, it is suggested that employing a dynamic accuracy

control over the optimization procedure may provide better performance instead

of using a �xed approximation factor.

The results above belong only to a speci�c geometry with a largest electrical

size of 1.3 λ. Hence, even α = 0.0 may seem an appropriate choice due to its

signi�cant speed and a reasonable error. However, its usage in larger problems

may yield very large errors in the �nal results. To make a more comprehensive

observation, Strategy-2 is further tested in the optimization of the same antenna

when it is mounted on a 4λ × 4λ platform.
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5.4 Optimization of the Cage-Dipole Antenna on a 4λ × 4λ Platform

via AMLFMA

The cage-dipole antenna when it is mounted on a large patch with an electrical

size of 4λ × 4λ is depicted in Figure 5.1. MLFMA uses 5 levels due to the

size of the problem and the problem geometry is discretized with 15015 RWG

functions to expand equivalent currents while the isolated antenna is discretized

only with 455 RWG functions. Therefore, the e�ects of the approximate forms

of MLFMA should be di�erent in terms of accuracy and speed of the solutions.

Average errors for di�erent approximation factors are found by solving ten dif-

ferent problems and taking the average of their errors. These errors and the

used harmonics for each approximation factor are shown in Table 5.3.

Figure 5.1: A cage-dipole antenna involving a total of 2 × 40 switches on
21 cm × 21 cm patch.
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Table5.3: Number of Harmonics Used for Di�erent Values of Approximation
Factor For a 5-Level MLFMA

AMLFMA Harmonics
Average Error
(Unreliability)

0.0 0,0,0 48.7%
0.1 2,1,1 44.8%
0.2 3,2,1 23.8%
0.3 5,3,2 22.3%
0.4 7,4,3 16.2%
0.5 9,5,3 9.82%
0.6 10,6,4 3.36%
0.7 12,7,5 1.14%
0.8 14,8,5 1.07%
0.9 16,10,6 0.07%
1.0 17,11,7 0.00%

Table5.4: Performance Summary of Di�erent Approximation Factors For the
Problem Depicted in Figure 5.1

AMLFMA
MLFMA

0.0 0.2 0.4 0.5 0.6 0.8
MVM Time
(seconds) 13.1 23.6 47.8 58.3 69.7 108 165

Normalized
MVM Time 0.079 0.143 0.289 0.352 0.422 0.656 1.000

Approximate
Error 48.7% 23.8% 16.2% 9.82% 3.36% 1.07% 0.00%

Strategy-2 is applied for this large geometry by allowing the individuals to use

α = 0.0, 0.2, 0.4, 0.5, 0.6 and 0.8. MVM times in seconds, normalized MVM

times, and approximate error values for these values of α are listed in Table 5.4.

The obtained results from the optimizations using AMLFMA(0.0), MLFMA,

and Strategy-2 are �nally listed in Table 5.5. The overall optimization with

Strategy-2 takes approximately 13 hours in the MATLAB environment on a

single processor. The same optimization can be done in more than two days if

full MLFMA is used, without a signi�cant improvement in the �nal result.
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Table5.5: Results With Di�erent Strategies For the Transmission Coe�cient
Optimization of the Geometry Shown in Figure 5.1

Optimization
Result

Con�rmed
Result

Total
Time (sec)

AMLFMA(0.0) 0.9945 0.7916 8966
MLFMA 0.9977 0.9977 178225
Strategy-2 0.8957 0.9439 47371

5.5 Remarks

In this chapter, dynamic accuracy control over the optimizations using AMLFMA

is presented. Some of the underlined points can be listed as follows.

• The results obtained via AMLFMA with di�erent approximation factors

are compared with the ones obtained via full MLFMA in terms of speed

and accuracy.

• A penalty strategy is utilized when solutions with lower accuracy are used

in optimizations in order to maintain the quality of the �nal results.

• Di�erent strategies employing AMLFMA for the optimizations are dis-

cussed.
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CHAPTER 6

CONCLUSION

An e�cient and accurate mechanism based on heuristic algorithms and full-wave

solutions via MLFMA for the optimizations of antenna excitations in array con-

�gurations and geometry optimizations of di�erent pixel antennas are presented.

Since heuristic algorithms are implemented in-house, the interactions between

the full-wave solver and the optimizer modules are established e�ciently instead

of a black-box interaction. Moreover, the development studies on heuristic algo-

rithms are presented with alternative methods. Excitation optimizations of the

antenna arrays are tested via numerical experiments and it is shown that the pro-

posed mechanism provides very good results even when the optimization space

is extremely large. For the geometry optimizations, two di�erent antennas are

optimized e�ciently by using the advantages of MLFMA. Since the setup stage

of MLFMA is done once for each antenna geometry and can be used many times

during the optimizations, required computational time is reduced signi�cantly.

The optimized pixel antennas are further produced via commercial printers by

using silver-based toners. Challenges regarding the inkjet antenna production

are brie�y discussed. Produced antennas are measured, and it is observed that

simulation and measurement results agree. Finally, the use of approximate forms

of MLFMA to increase the speed of the optimization mechanism is discussed. It

is shown that a dynamic control over the accuracy of the full-wave solutions can

be utilized such that optimization times may be reduced signi�cantly without

sacri�cing the quality of the �nal results.

The optimization environment is open to further developments since each part
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of the optimization environment, i.e., electromagnetic solver and heuristic algo-

rithms, are implemented in house. Some of the possible ways to improve the

optimization mechanism in the future works can be listed as follows.

• Dynamic control over the parameters of heuristic algorithms can be utilized

for more e�cient optimizations.

• More advanced and accurate models can be used for the feed ports of the

antennas to account for the e�ects of di�erent feeding methods.

• Dynamic accuracy control using AMLFMA can be analyzed in more de-

tail for di�erent antenna problems involving larger unknowns, and more

e�cient optimiation strategies employing AMLFMA can be developed.
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