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ABSTRACT

FACTORED REINFORCEMENT LEARNING USING EXTENDED
SEQUENCE TREES

Şahin, Coşkun

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

August 2015, 70 pages

Reinforcement Learning (RL) is an area concerned with learning how to act in

an environment to reach a final state while gaining maximum amount of re-

ward. Markov Decision Process (MDP) is the formal framework to define an

RL task. In addition to different techniques proposed to solve MDPs, there

are several studies to improve RL algorithms. Because these methods are often

inadequate for real-world problems. Classical approaches require enumeration

of all possible states to find a solution. But when states are described by a

number of features in the environment, state space grows exponentially, which

is known as curse of dimensionality [3]. It is possible to model environments

more compactly by taking advantage of new representation. Factored Markov

Decision Processes (FMDPs) are used for this purpose and on top of this struc-

ture, Factored Reinforcement Learning (FRL) methods are applied to utilize new

structured representation. Furthermore, this approach may not be sufficient for

large scale problems. Since there are a huge number of states and actions to
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consider, learning process requires more time and resources. In this thesis, we

propose a compact factored structure to solve this problem.

Automatic detection and use of temporal abstractions during learning is proven

to be an effective way to increase learning speed. Repeating patterns are found

in different parts of the problem and a common sub-policy is used for all of them

without exploring the solution again and again. Extended Sequence Tree (EST)

algorithm is an automatic temporal abstraction detection technique that uses

history of states and actions to store frequently used patterns in a structured

manner and offers alternative actions to the underlying RL algorithm. In this

work, we propose a factored automatic temporal abstraction method based on

extended sequence tree by taking care of state differences via state variable

changes in successive states. The aim is to store useful history portions more

compactly to avoid excessive memory usage. The proposed method has been

shown to provide significant memory gain on selected benchmark problems.

Keywords: Reinforcement Learning, Markov Decision Process, Factored Markov

Decision Process, Learning Abstractions, Extended Sequence Tree, Factored Ex-

tended Sequence Tree
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ÖZ

BÖLÜMLENMİŞ GENİŞLETİLMİŞ DİZİ AĞAÇLARIYLA TAKVİYELİ
ÖĞRENME

Şahin, Coşkun

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Ağustos 2015 , 70 sayfa

Takviyeli öğrenme, bir problem ortamında maksimum ödülü almaya çalışırken

bitiş durumuna ulaşmak için nasıl davranılması gerektiğini öğrenme ile ilgilenen

bir alandır. Takviyeli öğrenmede ortamı tanımlamak için en yaygın kullanılan

yapı Markov Karar Süreci’dir (MKS). MKS’leri çözmek için önerilen değişik

tekniklere ek olarak takviyeli öğrenme metotlarını farklı yönlerden geliştirmek

için birçok araştırma yapılmıştır. Çünkü bu teknikler çoğu zaman gerçek dünya

problemlerini çözmede yetersiz kalırlar. Klasik yaklaşımlar, bir çözüm üretebil-

mek için bütün olası durumların hesaplanmasını gerektirirler. Fakat durumlar,

ortamdaki özniteliklerin değerlerinin listesiyle ifade edilebildiğinde, durum uzayı

öznitelik sayısına bağlı olarak üstel olarak büyür. Buna çok boyutluluğun laneti

denir. Yeni ifade biçiminin avantajlarını kullanarak ortam durumunu daha kom-

pakt bir şekilde modellemek mümkündür. Bölümlenmiş Markov Karar Süreçleri

(BMKS) bu amaç için kullanılır ve bu yapıya Bölümlenmiş Takviyeli Öğrenme
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metotları uygulanarak yeni modelin faydalarından istifade edilir. Fakat bu yak-

laşım da büyük ölçekli problemler için yeterli olmayabilir. Değerlendirilmesi ge-

reken durum ve eylemlerin adedinin çok büyük olması nedeniyle öğrenme süreci

fazla zaman ve kaynak gerektirir. Bu çalışmada, bu sorunun çözümü için bölüm-

lenmiş kompakt bir yapı önerilmektedir.

Zamansal soyutlamaların otomatik olarak tespit edilip kullanılmasının öğrenme

hızını artırdığı ispatlanmıştır. Bu yolla, problemin farklı bölümlerinde tekrar

eden şablonlar bulunup hepsinde ortak bir hareket tarzı uygulanarak aynı çö-

zümü tekrar tekrar hesaplamanın önüne geçilmektedir. Genişletilmiş Dizi Ağaç-

ları algoritması, durum ve eylemlerin tarihçelerini, sıklıkla kullanılan şablonları

yapısal bir şekilde kaydedip alt katmanda çalışan takviyeli öğrenme algoritma-

sına alternatif eylemler öneren bir otomatik geçici soyutlama tespit tekniğidir.

Bu çalışmada, genişletilmiş dizi ağaçlarına dayanan, birbirlerini takip eden du-

rumlardaki değişken değerlerinin farklılıklarını kullanan, bölümlenmiş bir oto-

matik geçici soyutlama metodu önerilmektedir. Çalışmadaki amaç, durum ve

eylem tarihçelerini daha kompakt bir şekilde saklayıp büyük hafıza kullanımın-

dan kaçınmaktır. Metodun önemli ölçüde hafıza kazanımı sağladığı yaygın bir

şekilde kabul gören problemler üzerinde gösterilmiştir.

Anahtar Kelimeler: Takviyeli Öğrenme, Markov Karar Süreci, Bölümlenmiş Mar-

kov Karar Süreci, Soyutlamaları Öğrenme, Genişletilmiş Dizi Ağacı, Bölümlen-

miş Genişletilmiş Dizi Ağacı
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CHAPTER 1

INTRODUCTION

Learning is the ability to benefit from past experiences while performing new

actions. Many researches have been conducted on examining and adapting dif-

ferent learning models on agents so that they can make intelligent decisions.

Although definition of intelligence depends on the context, it can be generalized

as behaving in a reasonable way with limited time and resources, interpreting

and using feedbacks to build better plans, adapting them to new domains.

An agent can be anything that acts in an environment, such as a human, a robot,

a factory or a vending machine. Artificial Intelligence (AI) is an area concerned

with building intelligent agents. It is used in game playing, natural language

processing, planning, speech recognition and many other fields. AI problems are

defined by means of what to achieve, instead of the way of solving them. Degree

of intelligence can be measured considering accuracy of actions, learning speed,

resource usage efficiency and other aspects depending on the application. During

learning, the agent uses a set of data provided at the beginning or received

while execution continues. The data contain the characteristics of the system

and outcomes of the interactions with the environment. Unlike human beings,

a computer agent mostly requires a structured and organized representation

scheme for defining problems and finding solutions.

An action is reaction of the agent to its current perception of the environment.

Set of these perceptions is called a state. It is the snapshot of the environment

including information that the agent needs to know what to do next. Com-

munication between environment and agent is carried out through sensors and
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actuators (Figure 1.1). After executing an action, the agent receives immediate

reward (or punishment) signals indicating how good selecting that action was.

The main concern of the agent is to select reasonable actions in each state. The

meaning of reasonable action depends on the expectations of the agent. It may

prefer actions bringing high immediate rewards or the ones that seem bad in the

short term, but lead to better states in the future.

Figure 1.1: Interaction of agents with environments

Features of the environment are important while choosing an appropriate learn-

ing method. In deterministic environments, performing an action in a particular

state always returns the same feedbacks. In other words, next state is certain

given the current state and the action fired. Most of the time, this is not the case

in real-world problems. There are some factors changing the effects of an action

and making the environment non-deterministic. So, depending on a probability

distribution, the agent can perceive different states and rewards after an action

is applied in identical situations. If the probability distributions do not change

in time, the environment is said to be stationary. Content of the feedbacks also

varies among tasks. Through this thesis, we will assume that environments are

fully observable, meaning that the agent knows the exact state that it is located

in. In partially observable tasks, sensors cannot receive all state features because

of different reasons. For example there may be some noise or simply problem

definition relies on partial observability.

Machine Learning (ML) is an area under AI that aims to learn automatically
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using experiences. Based on when the data is provided, ML is divided into two

categories. In supervised learning, the agent is given a training data set at the

beginning that will be used to learn and find solutions to unseen cases. For

example, in a classical e-mail spam filtering task, e-mails that are known to be

spam are used to classify new e-mails. However, in unsupervised learning, the

agent is guided with rewards and punishments during the learning process. RL

is an online ML method, where the agent tries to learn what to do in an environ-

ment in order to reach some goal while maximizing the number of rewards[19].

RL methods are more appropriate than supervised learning in interactive envi-

ronments, where feedbacks are received after each action execution. An internal

structure is built with these feedbacks so that the agent can decide next actions

using past experiences.

RL tasks are usually defined via MDPs. MDP is a framework that is used to

model sequential decision problems with uncertainty. The goal of solving an

MDP is to find a policy for the agent to perform optimal actions in all states.

When state transitions and reward function are known, the agent can find an

optimal policy using dynamic programming (DP) approaches. Otherwise, online

methods are used to solve the problem. But in both cases, classical RL algo-

rithms are inefficient for problems with large state space. The internal structure

grows exponentially with increasing number of state variables which is known as

curse of dimensionality. In most of the learning problems, states can be defined

with a feature set of the environment. In large domains containing a huge num-

ber of features, using classical MDP model leads to excessive memory usage and

computation cost. FMDPs [5] take the advantage of new state representation

to define tasks in a more structured and compact way. In this approach, state

transition function is represented via Dynamic Bayesian Networks (DBNs) [7]

and reward function is a decision tree. The new model makes it possible to

define functions for a subset of states, instead of expressing them for all states

one by one. Factored counterparts of the methods built on MDPs can be con-

structed with the new representation, too. Similar to FMDPs, these methods

use decision trees while expressing other functions, such as policies and values

of states.
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Decision trees are generally used to test instances of a set of variables in order to

find the corresponding values in the leaf nodes. Given a list of variable instances,

starting from the root node, path to be followed is determined by the value of

variable located in the current node. In FMDPs, decision tree nodes store the

state variables while edges are labeled with values of corresponding variables.

Leaves show the actual data, such as probability distribution, reward values etc.,

which is assigned to all the states in the state set of the path. For example, in

an environment with 16 binary features (meaning that each of them takes true

or false values), there are 216 possible states. If a policy function that is found

by following a path from the root to one of the leaves contains 10 variables,

the action in the leaf node is independent of the remaining 6 variables. Thus,

it is defined for 26 = 64 states in the given policy. Grouping elements having

common features prevents generating all data during computation, resulting in

less computation time and memory usage. A DBN is a graphical representation

of conditional dependencies of a set of variables. In FMDPs, a new DBN is

constructed for each action. DBN of action a shows which variables affect the

next value of each variable when action a is performed. In the new model,

computations are based on the variables instead of states.

During the learning process, the agent may encounter some sub-tasks which are

similar or exactly the same. Each of them may repeat many times at different

regions of the solution space. Although all instances of these tasks have similar or

exactly the same solutions, the agent attempts to solve them separately without

any knowledge of previous achievements. This makes it difficult for the agent to

converge to an optimal policy in a reasonable time [12]. Temporal abstractions

are used to share solutions among similar sub-tasks and thus improve learning

performance. Options framework [20] is a widely accepted formalism aiming to

extend RL with temporal abstractions. Options can be provided in the problem

definition or found during learning. Specifying them in advance becomes hard

when state and action spaces are large. But discovering them automatically is

more challenging and interesting issue.

Extended Sequence Tree (EST) is one of the abstraction methods based on

options framework. It attempts to automatically detect and employ useful sub-
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policies during RL [12]. It is a tree-based approach that makes use of history

of states and actions. EST builds a suffix tree representing common useful

parts of state-action-reward sub-sequences in a unified and compact form and

eventually uses these abstract skills to speed up learning. Periodically, latest

history is provided to EST structure and after extracting possibly frequently

used sub-histories, they are added to the tree with some attributes to keep

eligibilities of corresponding states and actions. After getting the feedback from

the environment, an alternative action is provided to the learning algorithm

and one of the proper paths in EST is followed to detect successful past action

sequences. In order to decrease memory consumption, useless action sequences

are pruned and the structure is updated dynamically. EST is an effective solution

for classical MDP tasks. It can also be used in FMDPs without any modification,

but for large domains, the structure may use huge amount of memory.

There are some temporal abstraction techniques used in factored environments.

Some of them focuses on the model and try to decompose FMDP into smaller

sub-tasks that can be solved more easily. In this thesis we introduce an ex-

tended version of EST, Factored Extended Sequence Tree (Factored-EST), that

exploits the factored structure in a way that options are based on the state

variables instead of states [16]. The main objective of the approach is minimiz-

ing the memory usage of EST in factored models in order to solve the curse

of dimensionality problem in huge domains without affecting learning perfor-

mance. Factored-EST relies on the assumption that each action changes values

of only a small subset of variables. So, history of events can be represented more

compactly by considering just modified variables in successive steps instead of

storing all of them. New history encoding stores all variable values of initial

states, changing variables in each step and corresponding actions and immedi-

ate rewards. Internal EST node structure is modified so that set of initial states

are managed in a decision tree. Differences between subsequent states kept in

a directed acyclic graph with a pointer to the initial state of the history to cal-

culate values of all variables when necessary. We conducted experimental study

to show effectiveness of factored-EST compared to EST and HEXQ algorithms.

The rest of the thesis is organized as follows. Chapter 2 gives some background
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information about how to represent and solve learning problems. In addition,

some temporal abstraction methods on MDPs and FMDPs are discussed here.

After that we present our approach to build a memory efficient options dis-

covery framework for factored environments in Chapter 3. Chapter 4 contains

experimental study to justify our contribution. Conclusion and future research

directions are highlighted in Chapter 5.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Markov Decision Processes

MDP is a framework for decision-theoretic planning. It is used to model decision

making in environments withMarkov property, which means that next state only

depends on the current state and the action being performed. In other words,

state transitions are independent of the history of states that is observed until

reaching the current state. Markov property makes it easier to model and solve

learning problems. MDP is a tuple 〈S,A, T,R〉 where:

• S : A finite set of states,

• A : A finite set of actions,

• T : Transition function T : S × A× S → [0, 1],

• R : Reward function R : S × A→ <.

T defines the transition probabilities between states based on the selected ac-

tion. Having property ∀s ∈ S, ∀a ∈ A,
∑

s′∈S T (s, a, s′) = 1, T (s, a, s′) is the

probability of reaching to state s′ when action a is fired in state s. In episodic

tasks, there is a subset of S containing terminal (or goal) states, in which taking

an action will not change the state. In such tasks, learning starts from the be-

ginning when one of the goal states is reached. R(s, a) is the immediate reward

gained by the agent after taking action a in state s. Figure 2.1 shows a simple

MDP with 4 states and 4 actions. The arrows show transitions between states.
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If state s has an outgoing link to state s′ with an edge labeled with (a, p), then

the transition function gives T (s, a, s′) = p, where 0 ≤ p ≤ 1. For example, if

we choose action a2 in state s1, the agent will go to s2 with 0.1 probability, to

s4 with 0.6 probability and s3 with 0.3 probability. For the sake of simplicity,

transitions with 0 probability are not shown in the figure. There is only one

terminal state, which is s4, with no outgoing links. Note that, performing an

action does not have to change current state, which is the case in s1 for action

a1 with probability 0.6.

s1
a1
0.6

s2

a1
0.4

a2
0.1

s3

a2
0.3

s4

a2
0.6

a4
0.8

a4
0.2

a1
0.3

a1
0.7

a3
1.0

Figure 2.1: An example of Markov Decision Process

In learning tasks, agents can partially control the current state by taking actions.

After an action is performed, the agent observes the outcomes of the action

and receives some feedback from the environment. Assuming fully observability,

this feedback includes the next state and an immediate reward. In partially

observable MDPs, agent may not receive the exact effects of the action. In
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addition, some problems require infinitely many states or actions which are out

of scope of this thesis.

In MDP tasks, the goal is to find an optimal policy π∗, which maximizes the

total expected reward received by the agent. A policy π : S × A → [0, 1] is a

mapping that defines the probability of selecting an action in a particular state.

If ∀s∈S, ∃as∈A such that π(s, as) = 1 and ∀a∈A, where a 6=as, π(s, a) = 0, the

policy is called deterministic policy. In stationary policies, mappings between

states and actions are independent of the history of the agent and time. Thus,

stationary policies satisfy Markov property, too.

The value of a policy π, denoted as V π(s), gives the expected cumulative reward

that can be collected by the agent after following policy π in state s. π is said to

be better than policy π′ if ∀s∈S, V π(s) > V π′(s). Thus, optimal solutions can

be determined by comparing values of the policies. The simplest way of finding

the best policy in a deterministic world is trying all the possibilities, which is

an exponential operation with |S||A| possible policies. In most cases, it will

be impractical to consider all candidate policies. When reward and transition

functions are known, an optimal policy can be found using classical dynamic

programming techniques [19]. These techniques calculate value of each state for

a given policy with the formula:

V π(s) =
∑
a

π(s, a)
∑
s′

T (s, a, s′)[Ra
ss′ + γV π(s′)]. (2.1)

Equation 2.1, known as Bellman equation [2], defines the relationship between

value of current state and next states. Ra
ss′ is the immediate reward of taking

action a in state s and making transition to s′ and T (s, a, s′) gives the probability

of ending up in state s′ after applying the action. Value of a state depends on the

immediate reward and value of the next state discounted by a factor γ ∈ [0, 1].

Similarly, state-action value function (Q function) [22], denoted as Qπ(s, a),

estimates the value of taking action a in state s and following policy π till the

end. It can be expressed as:
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Qπ(s, a) =
∑
s′

T (s, a, s′)[Ra
ss′ + γV π(s′)] (2.2)

Assuming that Q∗(s, a) is the state-action value function in an optimal policy,

it is found by

Q∗(s, a) =
∑
s′

T (s, a, s′)[Ra
ss′ + γV ∗(s′)]. (2.3)

V ∗(s) is determined by finding the best expected value of states greedily as

V ∗(s) = maxaQ
∗(s, a), (2.4)

and thus the optimal policy π∗ is

π∗(s) = argmaxaQ
∗(s, a). (2.5)

The way of selecting a learning method for a given task is related with the

characteristics of the task, like in real-world problems. Learning a programming

language most probably requires different skills and road maps than learning

how to swim or play the piano. Thus, effectiveness of solution methods highly

depends on the application context. Problem definition, characteristics of feed-

backs received from the environment, existence of any noise and definition of

a successful solution should be taken into consideration while determining the

approach. One of the main steps of selecting an approach is deciding if learning

should be online or offline. In online methods, agent observes the outcomes af-

ter an action is fired. But in offline methods, it is assumed that transition and

reward functions are provided in the problem definition. So, agent knows the

possible outcomes before applying an action.
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2.1.1 Dynamic Programming for MDPs

There are two different approaches to solve an MDP when model of the envi-

ronment is provided to the agent, known as policy iteration and value iteration.

Policy iteration algorithm starts with an arbitrary policy and improves it iter-

atively. In each iteration, policy evaluation and policy improvement operations

are performed until the current policy becomes stable. The algorithm is pro-

vided in Algorithm 1. In policy evaluation part, value of each state is calculated

until it converges to some extent. The algorithm uses a threshold θ as a stop-

ping criteria of this stage. Policy improvement part tries to find an alternative

action for each state in the policy, such that it brings more expected cumulative

reward. Alternative actions are found with a greedy approach, using calculated

state values in policy evaluation.

Value iteration [2] starts with arbitrary initial values for all states and updates

them iteratively. Independent of the initial values, it converges to final values

after sufficient number of computations. Unlike policy iteration algorithm, a

deterministic policy is calculated after the convergence. Algorithm 2 shows

steps of value iteration. Value update part actually uses action-value function

Q(s, a) and follows greedy approach to calculate the value function V (s).

2.2 Reinforcement Learning

RL is an online learning method that learns to map situations to actions such

that long-term accumulated reward gained by the agent is maximized. A reward,

r ∈ <, is a signal received after each move, which guides the agent through the

achievement of goal. Thus, rewards are expected to be provided in a way that

they will not be misleading [19]. The agent uses trial-and-error method since

model of the environment is not provided. An action is chosen and performed,

as a result next state and immediate reward is observed. Use of feedbacks

depends on type of the RL method. Model of the environment is specified by

the transition and reward function. RL approaches can be categorized as model-

free and model-based algorithms based on the need of an environment model [14].
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Algorithm 1 Policy iteration algorithm
1: procedure POLICY-ITERATION(S,A,R, θ)

Require: S is the set of states
Require: A is the set of actions
Require: R is the reward function
Require: θ is a threshold to stop policy evaluation
2: Fill V (s) ∈ < and π(s) ∈ A(s) arbitrarily ∀s ∈ S . Initialization
3: stable← false

4: while stable is false do
5: stable← true

6: ∆← infinite

7: while ∆ > θ do . Policy evaluation
8: ∆← 0

9: for s ∈ S do
10: v ← V (s)

11: V (s)←
∑
s′
T (s, π(s), s′)[R

π(s)
ss′ + γV (s′)]

12: ∆← max(∆, |v − V (s)|)
13: end for
14: end while
15: for s ∈ S do . Policy improvement
16: a′ ← π(s)

17: π(s)← argmaxa
∑
s′
PT (s, a, s′)[Rass′ + γV (s′)]

18: if a′ 6= π(s) then
19: stable← false

20: end if
21: end for
22: end while
23: return π(s), V (s)

24: end procedure

In model-free algorithms, the agent is not concerned with the problem dynamics

and tries to find an optimal policy by using values of states. Observations

gathered after an action is fired are used to update value of the current state for

the corresponding action. After a number of incremental update operations, the

value function converges to an optimal solution. Temporal difference learning

[17] and adaptive heuristic critic [1] methods are examples of this approach.

But model-based algorithms first build a model for the environment from the

feedbacks. An optimal solution is computed using the resulting model. For

example, Dyna [18] uses one of the TD-learning methods after the model is

constructed. Model-based methods are preferable in domains where real world

interaction is expensive.

12



Algorithm 2 Value iteration algorithm
1: procedure VALUE-ITERATION(S,A,R, θ)

Require: S is the set of states
Require: A is the set of actions
Require: R is the reward function
Require: θ is a threshold to stop value evaluation
2: Fill V (s) ∈ < arbitrarily ∀s ∈ S . Initialization
3: ∆← infinite

4: while ∆ > θ do . Until values converges more than a threshold θ in each step
5: ∆← 0

6: for s ∈ S do
7: v ← V (s)

8: V (s)←
∑
s′
P
π(s)
ss′ [R

π(s)
ss′ + γV (s′)] . Update value of state s

9: ∆← max(∆, |v − V (s)|)
10: end for
11: end while
12: for s ∈ S do . Policy calculation
13: π(s)← argmaxa

∑
s′
P ass′ [R

a
ss′ + γV (s′)]

14: end for
15: return π(s), V (s)

16: end procedure

DP methods suffer from time and space requirements while storing and pro-

cessing transition matrices [6]. Unlike these methods, in RL, agent learns by

interacting with the environment, collects statistics about effects of acting and

uses them to improve the current policy. One of the key concepts in RL is to keep

a balance between exploitation and exploration. Exploitation is using past expe-

riences while deciding new actions to perform. Depending on the learning rate,

exploitation may result in successful and unsuccessful attempts. Exploration

is for searching unexplored features of the environment by choosing different

actions than the ones that seem to be optimal. This is commonly referred to ac-

tion selection in RL. Most popular of them are ε-greedy selection and Boltzman

selection. ε-greedy approach generates a random number r ∈ [0, 1] and next

action is selected randomly if r < ε, otherwise best action is chosen. In Boltz-

man selection mechanism, in state s, action a can be selected with probability

calculated by formula in Equation 2.6.

p(a) =
eQ(s,a)/τ∑
b

eQ(s,b)/τ
, (2.6)
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where τ is temperature and determines how randomly the actions are chosen.

When τ is very high, all actions have equal probabilities while small τ values

gives priority to actions with greater values.

2.2.1 Temporal Difference Learning

TD-learning methods approximate optimal policy and value functions without

requiring an environment model. After each step, value of the current state is

estimated based on the learned values. Assume that rewards that are collected

after k steps are {r1, r2, r3, , · · · , rk}. A good estimation of expected value, Vk,

is found by taking average of these results,

Vk = (r1 + r2 + r3 + · · ·+ rk)/k,

kVk = (r1 + r2 + r3 + · · ·+ rk−1) + rk.
(2.7)

Since the first expression on the right hand side can be rewritten using Vk−1, the

equation can be rewritten as

kVk = (k − 1)Vk−1 + rk. (2.8)

Dividing both sides by k gives

Vk = ((k − 1)/k)Vk−1 + rk/k,

= (1− (1/k))Vk−1 + rk/k.
(2.9)

If α is taken as 1/k, the equation becomes

Vk = (1− α)Vk−1 + rkα,

= Vk−1 + α(rk − Vk−1).
(2.10)
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It is very common to take α as independent of k. Because, when step number

increases, the effect of current observation decreases in equation 2.10. In order

to favor the latest data, it can be taken constant.

Equation 2.11 shows the update formula for value of state st in TD learning

after adding value of next state st+1.

V (st) = V (st) + α[rt+1 + γV (st+1)− V (st)], (2.11)

where α ∈ (0, 1) is learning rate and γ ∈ (0, 1) is discount factor. Since cur-

rent estimated value is used instead of the one in the current policy, like DP

approaches, TD-learning is a bootstrapping method. SARSA uses the current

policy that is being followed for updating the values while Q-learning [23] is

independent of the policy.

Q-learning algorithm is an off-policy, model-free method that updates state-

action value, Q(s, a), after performing action a in state s and receiving the

feedback. Learning process consists of a set of episodes and at each step in an

episode, action selection mechanism decides to the next move and Q-table is

updated afterwards. Basic Q-learning algorithm is given in Algorithm 3, where

α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the discount factor. When α

becomes close to 0, value of Q(s, a) is updated more slowly, while greater α

results in more exploration.

2.3 Temporal Abstraction in Reinforcement Learning

Temporal abstractions are used to increase the learning speed in RL by intro-

ducing new abstract actions into the system. These actions, lasting more than

one time step, are the solutions to some sub-MDPs of the main problem. Af-

ter finding sub-policies of the common tasks in a domain, the agent does not

have to solve them again. When an already-solved task is encountered, the ab-

stract actions containing the sequence of primitive actions in the corresponding

sub-policy is used and therefore learning rate is improved. The techniques in
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Algorithm 3 Q-learning algorithm
1: procedure Q-LEARNING(S,A, α, γ)

Require: S is the set of states
Require: A is the set of actions
Require: α is the learning rate
Require: γ is the discount factor
2: Initialize Q(s,a) for each s ∈ S and a ∈ A arbitrarily
3: for each episode do
4: s← initialstate

5: for each step do
6: Choose action to apply with an action selection mechanism
7: Observe next state s′ and reward r
8: Q(s, a) = (1− α)Q(s, a) + α(r + γmaxa′∈AQ(s′, a′)) . Q-table update
9: s← s′

10: end for
11: end for
12: end procedure

temporal abstraction are mainly different from each other by the way of intro-

ducing abstract actions. Sometimes, abstractions are provided in the problem

definition. This requires extensive understanding of the problem domain which

is not possible most of the time. Because, defining abstractions manually for

every task that is intended to be solved becomes tedious, especially in large

domains. This prevents us from developing a flexible algorithm for general use.

The alternative approach is to discover them automatically. At the beginning of

learning, MDP is divided into sub-MDPs and all of them are solved separately.

Then, the solutions are merged to find actual solutions to the task. HEXQ algo-

rithm [13] is an example of this idea. Some prefers learning abstractions during

learning by saving useful sub-policies and using them later when necessary, like

EST [12] which will be explained in the next section.

2.3.1 Extended Sequence Tree Algorithm

Extended Sequence Tree (EST) is a sequence-based automatic temporal ab-

straction method, which uses sequences of state-action-reward tuples to identify

sub-tasks that the agent tries to solve multiple times during learning. It stores

useful parts of the history in a tree structure and makes use of them to suggest

options to underlying RL algorithm using conditional branching. The tree is
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dynamically updated after receiving new set of histories. The algorithm tries to

use the similarities between the sequences to construct a compact structure and

favors the portions that are more common among them. In order to do that,

each state and action in the tree stores an attribute showing the usage frequency

of the element. The ones having values lower than a given threshold are pruned

in order to filter the uncommon parts and thus memory usage is decreased.

∅

s1, 1.8, 4.712
s2, 0.9, 2.780
s3, 1.1, 3.438

a1, 2.3

s3, 3.5, 5.520
s5, 2.2, 0.342
s7, 3.2, 4.918
s8, 1.1, 3.438

a3, 1.5

s1, 3.8, 6.400
s4, 4.5, 3.120
s5, 4.1, 8.000

a4, 1.2

s5, 0.6, 6.712
s7, 1.7, 2.780

a4, 1.7

s3, 1.2, 7.002

a7, 2.1

s4, 1.5, 4.968
s5, 1.2, 3.110
s6, 1.7, 0.800

a6, 1.2

s1, 1.6, 4.090
s3, 1.5, 3.668

a5, 0.6

s1, 3.6, 8.120
s2, 3.5, 4.951
s3, 0.5, 7.191

a1, 1.2

s3, 1.8, 6.048
s4, 0.9, 2.305

a3, 0.8

s5, 1.8, 9.488
s6, 0.9, 3.660
s7, 1.1, 5.112

a2, 1.4

s4, 1.2, 7.002

a2, 2.1

s1, 1.8, 4.968
s4, 1.8, 3.122

a5, 1.1

s2, 1.8, 0.498
s3, 1.2, 6.109
s5, 1.1, 1.827
s6, 1.1, 1.002

a4, 0.4

s6, 1.4, 3.668
s8, 1.4, 3.951
s3, 1.0, 3.116

a7, 0.3

s1, 1.8, 4.819
s7, 1.0, 2.782

a2, 0.3

Figure 2.2: An example Extended Sequence Tree structure

EST is a tuple 〈N,E〉 where N is the set of nodes and E is the set of edges.

Each node is a list of tuples 〈si, ξi, Ri〉, called continuation set, having a state

si, its expected cumulative reward Ri and eligibility value ξi. Edges are labeled

as 〈a, ψ〉, where a is the action that can be performed on the states included in

the child EST node. Each path connecting root node to one of the other nodes

represents a unique action sequence, in other words, an option. If the action

sequence of node q can be obtained by appending action a to action sequence

of node p, node p is connected to node q with an edge labeled as 〈a, ψ〉. ψ is

the eligibility value of the edge indicating how frequently action sequence of q
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is executed. Action a is allowed to be applied if the current state s is included

in the continuation set of node q. Eligibility value ξs of state s shows how

frequently the action a is selected in this state. Figure 2.2 is an example of

an EST constructed using a list of histories. The root node, denoted as ∅, is
the starting point of each option and has no elements in its continuation set.

Note that states and actions can appear multiple times in different parts of the

tree. The structure makes it possible to follow different options by comparing

the attribute values of the elements.

Algorithm 4 Reinforcement Learning with Extended Sequence Tree
Require: T is an EST with only root node
Require: A is the set of actions
1: repeat
2: Let current is active node of T
3: current = root . Initially current node is the root
4: Let s be the current state
5: h = s . History includes only initial state at the beginning
6: active = false . Initially EST is not active
7: repeat
8: anext = SELECT-ACTION . Select the next action
9: Take action anext and observe reward R and next state s′

10: Update state-action values using underlying RL algorithm
11: Append r, anext, s′ to h
12: s = s′

13: until s is a terminal state
14: UPDATE-TREE(T, h) . Update tree with the new history
15: until a termination condition is satisfied

Algorithm 4 shows the general usage of EST structure. Until learning rate

reaches to an acceptable level, multiple episodes are run on the problem. The

action selection mechanism of the underlying RL algorithm is modified, in a

way that it takes into consideration the actions that EST recommends. In each

episode, starting from the root node, the structure tries to find a meta-action

that is suitable for the current state of the agent. If RL algorithm uses the action

offered by EST, it becomes active and tries to follow a path in the tree using

expected cumulative values of states. The process terminates when a terminal

state is reached or EST cannot find an action for the current state. In the next

step, it start from the beginning. When EST is not active, RL algorithm uses

its own action selection method.
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In specified periods, history of state-action-reward tuples are collected and given

to the EST. The structure is dynamically updated after a set of sub-histories

are generated from the given history. Assuming h is the corresponding history

where

h = s1a1r2 · · · siairi+1si+1ai+1ri+2 · · · si+kai+kri+k+1si+k+1ai+k+1ri+k+2 · · · rtst,

the total discounted cumulative reward of h is r2 + γr3 + · · ·+ γt−2rt. For each

s appearing in h, we can find a path from s to the terminal state st, which

is possibly a sub-history of the optimal policy π∗. The idea is to explore the

starting points of frequently encountered sub-problems in the history. Some of

the states may be encountered multiple times, which gives multiple sub-histories

after the extraction. For example, if si = si+k, two alternative histories for si
are:

hi1 = siairi+1si+1ai+1ri+2 · · · si+kai+kri+k+1si+k+1ai+k+1ri+k+2 · · · rtst

hi2 = si+kai+kri+k+1si+k+1ai+k+1ri+k+2 · · · rtst.

In order to decide which one is better, discounted cumulative rewards of these

histories are compared, and the one with the greater value is selected, which is

called π∗-sub-history candidate. After all of them are found, they are inserted

into the tree. Beginning from the root node, at each step i, if active node has

an edge with label 〈ai, ψi〉,

• ψi is incremented to indicate that up to this step, action sequence is used

frequently.

• If the child node n where the edge is pointing to contains a tuple 〈si, ξi, Rsi〉,
ξi is incremented and Rsi is updated with α rate of Ri, which is the dis-

counted cumulative reward of si in the history . Otherwise a new tuple

〈si, 1, Ri〉 is added to n. Afterwards, n becomes the new active node.
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If active node has no edge for action ai, a new one labeled as 〈ai, 1〉 and a new

node n pointed by this edge is created. Tuple 〈si, 1, Ri〉 is inserted to the child

node n and it becomes the active node.

Following history addition operation, eligibility values in the whole structure

is decreased and the elements having values lower than the given threshold is

pruned in order to decrease memory consumption. Since the aim of EST is to

maintain only the common sub-problems in the task, rarely used ones can be

ignored. If an edge in the EST has lower eligibility value than ψthreshold, it is

deleted with its child EST node recursively. In an EST node n, if a tuple for

a state has lower eligibility than ξthreshold, it is deleted from the set of tuples,

and if the corresponding set becomes empty, n is deleted with its children and

parent edge from the tree. Sequence of steps followed while updating an EST is

provided in Algorithm 5.

Algorithm 5 Algorithm to update extended sequence tree T
1: procedure UPDATE-TREE(T, e)

Require: T is the EST
Require: e is the history of events
2: H = GENERATE-PROBABLE-HISTORIES(e)
3: for all h ∈ H do
4: ADD-HISTORY(h, T ) . Add the history to EST
5: end for
6: UPDATE-NODE(n) . Update root node of T
7: end procedure

2.4 Factored Reinforcement Learning

The methods proposed for solving MDPs in previous sections are not adaptable

to large scale domains. Because, they enumerate all states and actions while

modeling and solving the tasks. In a problem with a huge state and action space,

this approach is inadequate. Factored Markov Decision Processes (FMDPs)

[4] are used to handle this issue by defining the problems in a structured and

more compact way. Factored Reinforcement Learning (FRL) algorithms use

this framework and take the advantage of new representation. In this section,

FMDPs and some algorithms that are constructed on top of this model will be
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explained.

2.4.1 FMDPs

In most of the learning problems, in fact, states are combination of features

of the domain. So, it is possible to define states as a vector of these features.

However, state space grows exponentially by the number of features. FMDPs are

used to build more compact transition, policy and reward functions by exploiting

the new state representation. In factored model, a state is characterized using

variables x1, · · · , xn as s = 〈x1, x2, · · · , xn〉, where each variable xi can take

finite possible values from its domain Dom(xi). By this way, it is possible to use

similarities between states and group the ones having the same feature values

while defining and solving the problem.

Dynamic Bayesian Networks (DBNs) are used to model transition probabilities

and conditional dependencies between variables. A DBN for action a is a di-

rected acyclic graph showing the effects variables on other variables when a is

performed. Since all actions cause different changes, DBNs are action-specific.

In this work, we assume that, there are no synchronic arcs in DBNs. It means,

value of a variable at time t cannot affect another variable at time t. Only

pre-action and post-action nodes are connected. From a given DBN, for each

variable x, we can find the list of variables determining the next value of x. Then,

for each possible value combinations of the variable in the list, probability distri-

bution of x can be defined in a tabular form, called conditional probability table

(CPT). However, using such a structure can be disadvantageous since its size

grows exponentially in number of variables. A better and more compact way

is to use a tree structure that exploits common parts of different combinations

having the same probability distributions.

Figure 2.3 contains a transition probability function example for a specific action

in a domain with two binary variables, A and B. According to the DBN, current

values of both A and B are used to decide their next values. The CPT lists the

probabilities of A being true at time t + 1 based on the current situation. For

example, when A is 0 and B is 1, with 0.6 probability, A will be 1 after the
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Figure 2.3: Transition function example in factored form

action is applied. It also says that At+1 will be true with probability 1.0 in

states (At = 1, Bt = 1) and (At = 1, Bt = 0). So, we can determine the value

of At+1 without knowing anything about B. In a decision tree, these states

are merged such that probability distribution depends only on variable A as

shown in the figure. More formally, while constructing transition probability

tree for a variable x, if ∀yk ∈ Dom(y) these probabilities do not change, y can

be omitted from the tree. The effectiveness of this structure is more visible

in larger domains. Figure 2.4 shows examples of reward and policy functions

represented in the same tree structure. Policy tree requires 3 nodes instead of

4 entries in the tabular form. Similarly, immediate reward depends only on the

value of A, which is expressed in the tree form more compactly.
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Figure 2.4: Policy and reward function examples in factored form

2.4.2 Solving FMDPs

Similar to classical MDP counterparts, when transition and reward functions

are provided, Structured Dynamic Programming (SDP) approaches, such as

Structured Value Iteration (SVI) and Structured Policy Iteration (SPI) [5], can

be used to produce an optimal policy in a tree form. These methods use tree

manipulation techniques to append, merge and simplify decision trees during

computations. SDYNA [8] is a FRL method that can be applied when perfect

problem structure is not known. The algorithm consists of three phases: acting,

learning and planing. It iteratively constructs reward and transition functions

by modifying them after each feedback. Based on the new structure, policy and

value functions are updated and the next action is chosen accordingly. SPITI is

an instance of SDYNA that uses ε-greedy algorithm for action selection, Incre-

mental Tree Induction (ITI) [21] in learning phase and SVI as planning method.

In addition to SDP and FRL methods, there exist some techniques to define
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temporal abstractions in structured worlds. These methods use pre-solved sub-

policies in order to decrease time and space complexities in large domains.

HEXQ [13] and TeXDYNA [15] are examples of Hierarchical Reinforcement

Learning (HRL) algorithms [11] applied on such problems.

2.4.2.1 HEXQ

Hierarchical MDPs are constructed by dividing a given (factored) MDP into

smaller sub-tasks that can be solved more easily. This hierarchical structure

also makes it possible to reuse MDP solutions of lower levels in the higher levels

so that the agent does need to handle common parts of the problem separately in

different regions. HEXQ is one of the algorithms that decomposes a given FMDP

into sub-problems in a hierarchical way and solves each level independently. Un-

like MAXQ [9] algorithm, in which structure of the hierarchy is defined by the

user, HEXQ is an automatic decomposition technique. The algorithm is based

on the assumption that, in state transitions, value of each variable changes with

a different frequency. Without any prior knowledge about transition probabil-

ities, the algorithm performs random actions in the environment and observes

variable value changes in subsequent states. Variable with the highest frequency

is located in the lowest level of the hierarchy. Starting with this variable, value

changes of the variables are observed between subsequent states and a directed

graph (DG) is constructed using transitions between values. The nodes are con-

nected to each other with the action that causes value change. Then, set of

state-action pairs, called exits, are found to determine stopping criteria of levels

in the hierarchy. In an exit p = 〈si, ai〉, taking exit action ai in exit state si
means either the value of the next variable in the ordering changes or the task

terminates. For example, in a maze with multiple rooms, location of the agent

in a room changes more frequently than the room number. The exits in DG of

location variable is the set of cells connecting neighbor rooms and corresponding

actions.

After finding the relations between variable value changes and actions, MDPs

for the corresponding level is constructed. In order to determine MDP regions,
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DG of the variable is divided into blocks such that in each block, each exit state

can be reached using non-exit actions. As a result, we have a set of sub-MDPs

that contain exits, transitions and an entry point of the sub-task. The exits

are used as the termination conditions of the corresponding MDP. The same

decomposition procedure is applied to the value transition graph of variables in

each level. But primitive actions are only used in the lowest one, since variable

value transitions in the remaining levels are defined in terms of exits in the lower

level. For this reason, exits of a level becomes abstract actions of the next level in

the hierarchy. Applying an abstract action means solving related MDP in lower

level. For example, in the maze problem, reaching a cell in a different room first

requires finding an exit from the current room towards the destination point.

The agent chooses the abstract action that changes value of room number which

means finding the path to the exit state in the current room.

Algorithm 6 Algorithm to execute HEXQ after building hierarchical MDP
structure
1: procedure EXECUTE-HEXQ(e, s, a)

Require: e is the current level in the hierarchy
Require: s is the current state
Require: a is the selected action
2: if e = 0 then . a is an primitive action
3: Apply primitive action a and observe reward r and new state
4: return
5: end if
6: m← sub-MDP associated with action a
7: repeat . a is an abstract action
8: Choose an action a′ by using m and an action selection mechanism
9: lse ← abstraction of state s in level e
10: EXECUTE-HEXQ(e− 1, s, a′)
11: Update Em(lse, a′) by using immediate reward r and value coming from m

12: until p = 〈s, a〉 is an exit
13: end procedure

Algorithm 6 shows the execution of HEXQ after constructing hierarchical MDPs.

Starting from the highest level and initial state, it applies given action in a way

that depends on the location in the hierarchy. If the lowest level is reached,

which means one of the primitive actions is chosen, the agent interacts with

the environment and performs the action. Otherwise, action a is abstract and it

requires solving corresponding MDP in the lower level until finding an exit point.
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Afterwards, action-value function E is updated by using the feedbacks. Action

selection can be done in different ways. Constructing a reward function while

taking random actions at the beginning of the algorithm can make it possible to

apply DP methods to solve sub-MDPs. Alternatively, an online approach, like

Q-learning, can also be used.

2.4.2.2 TeXDYNA

TeXDYNA is a sub-task discovery method that manages incremental hierarchical

decomposition of the problem while learning the structure of it. It combines

HRL and FMDP methods to solve learning problems with unknown structure.

The algorithm extracts options from the global transition function and uses an

existing FRL method to learn by using the options. Since it is an online learning

algorithm, options are dynamically updated and improved. Algorithm 7 shows

execution of TeXDYNA.

Algorithm 7 TeXDYNA algorithm
1: procedure EXECUTE-TeXDYNA(F,O)

Require: F FMDP structure of the problem
Require: O Option hierarchy
2: F ← Update-FMDP(F) . Update global transition model
3: O ← Update-Options(O, F) . Update options using new FMDP model
4: Update-Policy(O, F) . Update hierarchical policy with option set O
5: Modified-SPITI(O, F) . Choose one of the options by using SPITI algorithm
6: end procedure

The algorithm consists of learning and planning phases. The first two lines of

Algorithm 7 correspond to the learning phase. Transition function which is rep-

resented by decision trees is updated and used to build options in a hierarchical

structure. Each option has its own model and local policy. An option o is a

tuple 〈I, π, e〉, where I is a subset of states in which option o can be initiated,

π is the local policy of o and e is the exit that is defined similar to the one in

HEXQ algorithm. Each exit consists of four items:

• v : variable whose value changes in the exit

• a : action that is executed in the exit
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• vch : a pair of values 〈vt : vt+1〉 where vt is the value of v before applying

a and vt+1 is the value after applying a

• c : a set of criteria that makes the exit available, containing variable label

- value pairs in the form of vx : value.

Each primitive action is also defined as an option with an empty initiation set

and exit so that SPITI can choose one of them in planning phase. In TeXDYNA,

SPITI is modified in a way that it chooses an option instead of a primitive action

in its planning phase.
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CHAPTER 3

FACTORED EXTENDED SEQUENCE TREE METHOD

FOR FACTORED REINFORCEMENT LEARNING

Extended Sequence Trees are proved to be an effective way of increasing learning

rate in MDPs. The same structure can be used in FMDPs by using set of

variables in state representations. By this way, it is possible to obtain solutions

in fewer number of steps compared to classical RL algorithms. But, the problem

is about the size of the domain. Without making any modifications on the

current structure, the algorithm will suffer from excessive memory usage. This

contradicts with the idea of factored model, which generalizes the structure of

problem definitions and solutions by using the similarities between the elements

in terms of variable values. In this way, we can build more compact models that

require less resources during computations. Similar to the new approaches in

FMDP and FRL, EST can be modified in a way that it takes the advantage

of factored model and uses a new representation for useful state-action sub-

sequences. The aim is to find optimal solutions more quickly for the tasks with

huge state and action spaces while minimizing memory requirements of EST

structure.

The idea of factored-EST is based on the assumption that each action affects

only a small subset of variables. Thus, after an action is performed, it is suf-

ficient to focus on the variables whose values changed with the corresponding

action. In other words, there is no need to maintain variables that have the same

value in successive steps. Depending on the number of affected variables, new

representation will consume less memory compared to its classical counterpart.
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The first step while building the new structure is to modify a given history of

events in accordance with this observation. Assuming that h is a history of an

agent where

h : s1 a1 r2 s2 a2 r3 · · · si−1 ai−1 ri si

for a classical MDP task, it can be represented in a factored form after trans-

forming state labels into vector of variables as

h′ :

(x11 , · · · , xk1) a1 r2 (x12 , · · · , xk2) a2 r3 · · · (x1i−1
, · · · , xki−1

) ai−1 ri (x1i , · · · , xki),

where si is the state at time i, xij is the value of ith variable at time j, ai is the

action performed at time i and ri+1 is the reward received after applying action

ai. Assuming that diff (t) function gives the difference of state variables between

st−1 and st, we can redefine the history as

h′′ : (x11 , · · · , xk1) a1 r2 (diff (2)) a2 r3 · · · (diff (i− 1)) ai−1 ri (diff (i)).

Note that diff (i) is the empty set when action ai−1 has no effect on the current

state si−1.

Algorithm 8 Algorithm to construct a factored history from a given history
1: procedure HISTORY-DIFF(H)

Require: H is the history of events in the form of
(x11 , · · · , xk1) a1 r2 · · · (x1i−1

, · · · , xki−1
) ai−1 ri (x1i , · · · , xki)

Ensure: F is the modified history
2: F = (x1 : x11 , · · · , xk : xk1) . Append the initial state to the new history form
3: for a = 2..i do . For all states except for the first one
4: Da = ∅ . Initialize difference set
5: for b = 1..k do . For all variables in the domain
6: if xba 6= xba−1 then
7: D = D ∪ {(xb : xba)} . Append the difference to D
8: end if
9: end for
10: F = F ∪ {(ai−1, ri, Da)} . Append the event tuple to new history form
11: end for
12: return F

13: end procedure
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Algorithm 8 gives the whole procedure of constructing a factored history of

events. The algorithm first appends the initial state of the history in the form

of variable-value tuples to a new list. Then, in each step, a list of modified

variables are constructed and added to the new history with action and reward

values. An example of factored representation of a state history is shown for

an agent in taxi domain in Figure 3.1. In this problem, the agent is in a 5 × 5

grid world with some obstacles preventing the taxi from moving. It tries to

pickup the passenger from a predefined location and deliver him to another one.

Successful delivery gives +20 reward while wrong pick up and put down actions

result in -10 reward.

Figure 3.1: Taxi domain

Variables used to define a state in taxi domain are listed below.

• Dest: Destination cell of the agent. Dom(Dest) = {R,G,B, Y }.

• Pass: Current passenger location. Dom(Pass) = {R,G,B, Y, T}.

• x: Current horizontal location of the agent. Dom(x) = {1, 2, 3, 4, 5}.

• y: Current vertical location of the agent. Dom(y) = {1, 2, 3, 4, 5}.

The value ”T” in Dom(Pass) indicates that the passenger is in the taxi. In

the examples through this thesis, we will express the states with these variables

in this order, i.e., 〈Dest, Pass, x, y〉. Assume that the bottom leftmost cell is

point (1, 1), the agent starts at (3, 4), the passenger is initially located at cell
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B and the final destination is G. Figure 3.2 shows performing a list of actions

successively and their effects on the state variables.

start−−→
(a) 〈B,B, 3, 4〉

east−−→
(b) 〈B,B, 4, 4〉

south−−−→
(c) 〈B,B, 4, 3〉

south−−−→
(d) 〈B,B, 4, 2〉

south−−−→
(e) 〈B,B, 4, 1〉

pickup−−−→
(f) 〈G,T, 4, 1〉

Figure 3.2: An example of taxi domain state history

In Figure 3.2, the agent first goes to east which changes only variable x. After

that, it applies south action three times and reaches to the passenger. These

moves affect only y coordinate of the taxi, while other variables stay unchanged.

Picking up the passenger in the next move updates passenger position and the

current destination of the agent. Note that the environment is deterministic in

this example. In classical notation, this sub-history can be shown as

〈B,B, 3, 4〉 east〈B,B, 4, 4〉 south 〈B,B, 4, 3〉south〈B,B, 4, 2〉south〈B,B, 4, 1〉pickup〈G,T, 3, 4〉,

which is transformed into

〈B,B, 3, 4〉 east〈x : 4〉 south 〈y : 3〉south〈y : 2〉south〈y : 1〉pickup〈Dest : G,Pass : T 〉

in the factored notation by Algorithm 8.

From the example, it can be concluded that, in a sub-history, if the initial state is

known, all successive states can also be determined from the state difference sets.

It means that, the same amount of information can be expressed with less data.

This new factored representation forms a basis to Factored Extended Sequence

Tree (Factored-EST) algorithm. The nodes of the classical EST algorithm are

modified in a way that they can be used to store initial states and state differ-

ences of a factored history model. The internal structure of tree nodes depends
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south, 1.9 pick up, 1.3 north, 1.3

south, 1.8

∅

east, 1.7 west, 1.1

Figure 3.3: An example factored-EST structure

on the type of the state that is being stored. We use decision trees to store initial

states and a graph structure for differences between successive states. Therefore,

any child of root node of an factored-EST contains a decision tree while all other

nodes have state difference graphs. Since action representation does not change

in the factored model, it is reasonable to use the original EST edge notation in

the new model. The structure of a factored-EST is shown in Figure 3.3.
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3.1 Decision Trees

In FMDPs, decision trees are used to define reward and value functions more

compactly, by taking advantage of the similarities between states. State variables

are kept in the nodes of the tree, while edges are the decision points showing

the paths to be followed depending on the value of the corresponding variable.

Starting from the root node, each path to one of the leaf nodes defines a set

of criteria and all the states satisfying every criteria in this set is said to be an

element of the path’s state set. Leaf nodes store the actual data which can be

used for each state in the state set of the path. The type of the data being

expressed depends on the context. For reward function, it is immediate rewards

of the states while in value function, it shows the expected state values. Policy

function can also be represented in a decision tree where leaf states give the

actions to be performed.

In a similar way, initial states of a set of factored histories can be maintained in

a decision tree in order to reuse the same variable instances in different states.

Therefore, it is more compact than listing all states as in classical EST structure.

Leaf nodes contain eligibility values and discounted cumulative rewards of the

states. Figure 3.4(a) shows a simple decision tree of initial states of a set of

histories for taxi problem.

From time to time, factored-EST is fed with a given history in order to keep

it up-to-date. The very first step of adding a new history to the factored-

EST structure is inserting the initial state s1 to one of the child nodes of the

root. Assuming a1 is the first action, the algorithm selects the node D which

is connected to the root by an edge labeled with 〈a1, ·〉. It is guaranteed that

at most one decision tree can meet this criteria. If there does not exist such a

tree, a new one is created which is initialized with state s1. But inserting s1 to

an existing decision tree requires tree traversal operation. Initially the root is

selected as the current node. At each step, the value of the current variable is

searched in the edges of the corresponding tree node. If such an edge e is found,

current node becomes the node that is pointed by e and process continues with

the next variable. Otherwise, a new node is created, which is selected as the
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Figure 3.4: Taxi domain decision trees (a) initial structure (b) after adding state
〈B,B, 3, 4〉

current node for next step. If the state has already been inserted to the tree,

its eligibility value is incremented to indicate that it can be a starting point of

a frequently used pattern. Additionally, existing reward value R is updated in

the same way provided in Algorithm 12.

Figure 3.4(b) visualizes the resulting decision tree after adding initial state s1 :

〈B,B, 3, 4〉 to the one on the left. The nodes show the variable labels and edges

indicates the variable values. Since current destination, passenger location and

x coordinate of the location of the taxi are already included in the existing tree,

only a leaf node for y variable is created with an edge showing that value of y is 4.

Discounted cumulative reward of s1 and initial eligibility value (1.0) are attached

to the new node. These leaf nodes are used to point to the corresponding

histories in state difference graphs. It is important to note that variable order

is the same in decision tree nodes and factored history representation.

While updating the entire factored-EST structure, all eligibility values are mul-

tiplied by a given factor and states having less eligibility values than a given

threshold are deleted from the decision tree. State deletion is handled by the
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classical tree node deletion algorithm. It starts from the leaf node of a given

state and deletes all the nodes until a parent node with more than one child is

encountered. Then it terminates. If it is the last state located in the decision

tree, the tree is also deleted with its child nodes and parent edge.

3.2 State Difference Graphs

In order to store variable value differences between successive steps, factored-

EST uses state difference graphs. It is a directed acyclic graph where some

of the nodes have termination conditions for related difference sets to indicate

that a given difference set is contained in the graph or not. A graph node g

is a tuple 〈xi, vi, Di〉. xi is the variable label, vi is its value and Di is a list

of tuples (lm, Rm, ξm) containing a link lm to the first state of corresponding

history, reward value Rm and eligibility value ξm for the state. If a graph node

ga has an outgoing edge to node gb, it is guaranteed that the variable label of ga,

which is xga , comes before the variable label of gb, which is xgb , in the variable

order of the problem definition. This property ensures that there are no cycles

in the graph.

Assume that a history h is given with an initial state sh and a link lh pointing to

the leaf node of sh in the decision tree. If diff(i) is {xi : vi, xk : vk}, existence
of diff(i) in the (i+ 1)th level node of a factored-EST is checked as follows:

• There should be nodes gi and gk in the difference graph with labels 〈xi, vi, Di〉
and 〈xk, vk, Dk〉

• gi must have an outgoing link to gk

• Dk must contain a tuple with values (lh, ·, ·).

Differently from the original EST node structure where each state has one re-

ward and eligibility value, each variable difference set has multiple reward and

eligibility values in factored-EST. This is the reason of having a list of tuples

in Di instead of storing a single tuple. Because, given two histories, if the
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initial states are different, diff (t) values may be the same for both of them al-

though si−1 and si values are different. For example the difference set of state

〈B,B, 3, 2〉 with respect to 〈B,B, 4, 3〉 has the same elements of the difference

set of state 〈G, T, 3, 2〉 with respect to 〈G, T, 5, 5〉, which is {x : 3, y : 2}. Most

probably, these sets will have different reward and eligibility values, although

both of them have identical graph paths. For this reason, the entries should be

separated from each other in the graph. In addition, there is a possibility that

the action performed does not have any effect on the current state. In this case,

state difference set is empty, which is handled by creating a node with empty

label.

(a) (b)

Figure 3.5: State difference graphs (a) initial form, (b) after adding set {x:4}
for link node4

Figure 3.5(a) shows an example of state difference graph. By looking at the node

counts, it can be concluded that at least three different histories are introduced

to the system. Also, graph labels show that the corresponding action has affected

only the variable x. In one of the histories, new value of x is 5, while in other two

it becomes 4. Similar to decision trees, adding a new difference set to a given

graph requires graph traversal operation. Entire process is given in Algorithm

9.

Given a graph node G, a difference set S in the form of {var1 : val1, var2 :

val2, · · · , vark : valk}, a link L to the leaf node of decision tree for the current

history and reward of the state R, at each step i the algorithm operates as

follows:

• If the graph has a node g labeled with (vari : vali) set it as the current

node
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Algorithm 9 State difference set addition to a given graph
1: procedure ADD-STATE-DIFF(G,S, L,R)

Ensure: G is the state difference graph where S will be added
Ensure: S is a set of variables whose values are changed after the action is executed in the

form of {var1 : val1, var2 : val2, · · · , vark : valk}
Require: L is a link to the decision tree leaf node storing the initial state of processed history
Require: R is discounted cumulative reward for the state
2: current← nil . current graph node
3: for i← 1..k do
4: if ∃ a node n with label vari : vali then
5: current← n

6: else
7: Add new node n(vari : vali) to G.
8: current← n

9: end if
10: if i < k − 1 and @ a neighbor of current with label vari+1 : vali+1 then
11: Add a neighbor with label vari+1 : vali+1 . Add the label of the next

difference to the neighbor set
12: end if
13: end for
14: if current is nil then . state difference set is ∅
15: Add new node n with label ∅ to G
16: current← n

17: end if
18: Add tuple 〈L,R, 1.0〉 to D of current
19: end procedure

• Otherwise, create a new one

• If this is not the last element of the difference set, add the label of the

next difference (vari+1, vali+1) to the neighbor list of g

• Otherwise, add tuple (L,R, 1.0) to Di

In Figure 3.5, the variable differences between initial state and the next state

given in Figure 3.2(a) and (b) are added to an existing state difference graph.

The initial state was inserted into a decision tree in Figure 3.4(b), whose leaf

node is marked as node4. Assuming that the graph a in figure 3.5(a) is connected

to the corresponding tree with an edge labeled with 〈west, ·〉, which is the first

action of the sub-history, the variable change {x : 4} should be added to a.

Note that connections between graph nodes indicate that an action affected all

variables in the path. Thus, it is reasonable to have no connections between the

nodes of this graph. Because there is no way of assigning multiple values to x
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at the same time. It is also possible to have the same state in subsequent steps,

which means that the applied action has no effect on the variables. In this case,

a graph node labeled with ∅ is used to store the values.

Pass:T

Dest:G

node2

9.7/1.6

(a)

Pass:T

Dest:G

node2 node4

9.7/1.6 10.4/1.0

(b)

Figure 3.6: Graphs with connections (a) initial form, (b) after adding set
{Pass:T, Dest:G} for link node4

Figure 3.6 shows the necessity of keeping attribute values separately for histories

with different initial states. In the example, the last difference set in Figure 3.2

is inserted into the graph. Note that, the graph already includes a node for both

difference tuples, but the attributes in the node labeled with Dest : G belong to

another history. In order not to overwrite existing values, a new set is created

for node4.

Each graph node of factored-EST is also updated like all the other elements in the

structure. Algorithm 10 gives the entire procedure. A list of links pointing to the

leaves of initial states that are marked to be deleted is provided to the algorithm.

Initially, the attributes related with these initial states are deleted from all graph

nodes. In addition, eligibility values of other attributes are decremented by a

given factor ξdecay ∈ (0, 1) and the ones having lower eligibility values than the

threshold are also eliminated. Then, the graph is traversed to find the isolated

nodes. A graph node is determined to be deleted if it satisfies three criteria

listed below:
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Algorithm 10 Algorithm for updating a factored-EST graph node
1: procedure UPDATE-GRAPH(LS)

Require: LS is set of decision tree nodes which will be deleted from the decision tree.
2: E ← ∅ . Set of graph nodes to be deleted
3: Let N be the graph to be updated
4: for all n = 〈x, v,D〉 ∈ G do
5: for all d = (l, R, ξ) ∈ D do
6: if d ∈ LS then
7: remove d from D

8: end if
9: ξ ← ξ × ξdecay . Update eligibility value
10: if ξ < ξthreshold then
11: remove d from D

12: end if
13: end for
14: Let H be the graph nodes pointed by n
15: if D = ∅ and H = ∅ then . If there is nothing pointed out by n
16: E = E ∪ {n}
17: end if
18: end for
19: while E is updated do
20: for all n = 〈x, v,D〉 ∈ G do
21: if n ∈ E or D 6= ∅ then . Node is already marked to be deleted or there are

leaf values in it
22: continue
23: end if
24: Let H be the graph nodes pointed by n
25: if H − E = ∅ then . All of the neighbor nodes will be deleted
26: E = E ∪ {n}
27: end if
28: end for
29: end while
30: for all n ∈ E do
31: remove n from N

32: end for
33: end procedure

• All eligibility values are below the predefined threshold value.

• All decision trees that are pointed by the node are marked to be deleted.

• There are no outgoing links to other nodes.

All isolated nodes are collected in a set E and the remaining nodes are checked

if there is at least one neighbor node which is not an element of E or eligibility

and reward values of some valid initial states are stored in the current node. If
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this is not the case, the current node is also added to E. This process continues

until E cannot be extended. Finally, all nodes in E are deleted. If the graph

becomes empty after this update operation, corresponding factored-EST node

is also removed with its parent edge and child nodes.

3.3 Factored Extended Sequence Tree

By combining the structures and algorithms explained in previous sections, Fac-

tored Extended Sequence Tree (Factored-EST) algorithm can be constructed.

A factored-EST is a tuple 〈D,N,E〉 where D is the set of decision trees, N is

the set of state difference graphs and E is the set of edges. Decision tree set D

includes the root node and its children while all the other nodes are managed

in the graph set N . Apart from the root node, the elements of D are used to

keep initial states of the histories. In addition, they provide links to the nodes

in N to be able to associate reward and eligibility values with the histories, as

pointed out in section 3.2. In order to analyze a history, the initial values of

each variable has to be known, so that, it will be possible to determine exact

states in any step by using the differences between states.

There are three types of edge connections in factored-EST:

• Root node to decision tree connection,

• Decision tree to state difference graph connection, and

• State difference graph to state difference graph connection.

Although each edge connects different types of nodes, they all have the same

information: candidate action and its eligibility value. Figure 3.3 contains ex-

amples of each edge type.
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Algorithm 11 Algorithm to generate probable π∗−histories from a given his-
tory h
1: procedure GENERATE-PROBABLE-HISTORIES(h)

Require: h is a history of events in the form of s1a1r2s2a2r3 · · · rtst
2: best[st−1] = st−1at−1rtst . best[s] stores the current π∗-history candidate of s
3: R[st−1] = rt . R[s] stores the cumulative discounted reward for state s
4: for i← (t− 2)..1 do
5: if R[si] is not set or ri+1 + γR[si+1] > R[si] then . If s is not encountered before

or can be improved
6: best[si] = siairi+1 + best[si+1] . Create or update probable π∗−history for si
7: R[si] = ri+1 + γR[si+1]

8: end if
9: end for
10: return best
11: end procedure

Periodically, history of events experienced by the agent are provided to factored-

EST to extract useful sub-histories. The method that is used to process this list

of events is the same as the one in the original EST algorithm. Algorithm 11

generates sub-histories that are probably sub-policies in an optimal solution.

For each state s in the history, a sequence of events connecting s to the terminal

state st is found. During this process, some of the states may be encountered

more than once. In this case, the algorithm updates the path if expected reward

in the new path is higher (line 5 in the algorithm).

After extracting a set of histories from the given history, each of them is inserted

into the factored-EST structure by using Algorithm 12. The algorithm starts by

transforming candidate histories into factored history of events representation.

Then, for each step of the histories, discounted cumulative rewards are calcu-

lated. Depending on the type of the current factored-EST node, the algorithm

calls corresponding state addition or update methods for the state currently be-

ing processed. If it is the initial state, decision tree state addition process is

applied while in other states, difference set is added to the current graph.
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Algorithm 12 Algorithm to add given probable π∗−history to factored-EST T
1: procedure Factored-EST-ADD-HISTORY(T,H)

Require: T is extended sequence tree
Require: H is a history of events in the form of

(x11 , · · · , xk1) a1 r2 · · · (x1i−1
, · · · , xki−1

) ai−1 ri (x1i , · · · , xki)
2: Let h = HISTORY-DIFF(H) . History is converted into factored form

(x11 , · · · , xk1) a1 r2 (diff (2)) a2 r3 · · · (diff (t− 1)) at−1 rt (diff (t))

3: R[t] = rt
4: for i = (t− 1) to 1 do
5: R[i] = γR[i+ 1] + ri
6: end for
7: current = root node of T . Active node is initially the root node
8: if ∃ a decision tree d in the children of current pointed by an edge 〈a1, ψ1〉 then
9: Increment ψ1

10: if d contains state (x11 , · · · , xk1) with leaf l then
11: Increment ξs1
12: Rs1 = Rs1 + α(R[1]−Rs1)

13: else
14: Add s1 to d with leaf node l = (R1, 1.0)

15: end if
16: else
17: Create an empty decision tree d
18: Add s1 to d with leaf node l = (R1, 1.0)

19: Connect d to current by an edge labeled with 〈a1, 1.0〉
20: end if
21: L = l . The link to the corresponding leaf node of decision tree d
22: current = d

23: for i = 2..t− 1 do
24: if ∃ a graph n in the children of current pointed by an edge 〈ai, ψi〉 then
25: Increment ψi
26: if n contains diff(i) and tuple l, ξsi , Rsi〉 in the leaf node then
27: Increment ξsi
28: Rsi = Rsi + α(R[i]−Rsi)
29: else
30: ADD-STATE-DIFF(n, diff(i), l, Rsi)
31: end if
32: else
33: Create a new state difference graph n
34: ADD-STATE-DIFF(n, diff(i), l, Rsi)
35: Connect current to n by an edge labeled with 〈ai, 1.0〉
36: end if
37: current = n . Child node becomes new active node.
38: end for
39: end procedure

The complete algorithm for running factored-EST with an underlying RL method
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in an episodic task is provided in Algorithm 13. Since no experience is available

at the beginning, factored-EST is passive. In each episode, starting with the

initial state, the algorithm selects an action, performs it, observes the outcomes

and updates state-action values based on these results. Each state-action-reward

tuple is stored in a history h, which is used to generate probable π∗-histories.

After each episode, these histories are forwarded to factored-EST to update the

structure.

In the action selection phase, there are two main methods to decide the action

to be performed:

• If factored-EST is active

– A set of factored-EST nodes containing the current state (or state

difference set) of the agent is found in the child nodes of current

factored-EST node.

– If there exist such nodes, the one having the maximum expected

reward for the current state, nmax, is chosen. Assuming that 〈ai, ·〉
be the label of the edge connecting the current factored-EST node

and nmax is returned.

– Otherwise, factored-EST becomes passive and the root is assigned to

be the current factored-EST node.

• If factored-EST is passive

– Action is determined by factored ε-greedy algorithm.

– If the meta-action of factored-EST is selected, it becomes active again.

Corresponding child node of the root is the current factored-EST

node.

Factored ε-greedy algorithm (Algorithm 14) enriches regular ε-greedy method

by using the meta-action provided by factored-EST while selecting the action.

The meta-action aM is the one connecting the root to a decision tree contain-

ing current state s in one of its paths with maximum value among other trees

containing s too. The chosen action is added to candidate actions list. Then,
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Algorithm 13 Reinforcement learning with factored-EST algorithm
Require: T is a factored-EST with only root node
Require: A is the set of actions
1: procedure SELECT-ACTION(S)

Require: S is the state difference set between current state and previous state . Empty if
factored-EST is passive

2: if active is true then
3: Let N = {n1, · · ·nk} be the set of child graphs of the current node containing state

difference set S.
4: if N 6= ∅ then . There are actions that can be offered by factored-EST
5: Select ni with maximum reward
6: Let 〈ai, ·〉 be the label of the edge connecting ni to the current node
7: current = ni
8: return ai
9: else
10: active = false

11: current = root

12: end if
13: end if
14: Let aM be the action connecting root node to the children and can be used in state s
15: Choose an action a based on the expected return values, using FACTORED-ε-

GREEDY algorithm.
16: if a = aM then
17: active = true

18: Let n be the child node of the root node connected with edge labeled with 〈aM , ·〉
19: current = n

20: return aM
21: else
22: return a
23: end if
24: end procedure
25: repeat
26: Let current is active node of T
27: current = root . Initially current node is the root
28: Let s be the current state
29: h = s . History includes only initial state at the beginning
30: active = false . Initially factored-EST is not active
31: repeat
32: Let anext =SELECT-ACTION . Select the next action
33: Take action anext and observe reward R and next state s′

34: Update state-action values using underlying RL algorithm
35: Append anext, R, s′ to h
36: s = s′

37: until s is a terminal state
38: UPDATE-TREE(T, h)
39: until a termination condition is satisfied
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with ε probability, next action is decided randomly while with 1− ε probability
the best action is selected (see Algorithm 14). In the worst case, RL algorithm

chooses an action based on the current state-action values, which is updated

after each observation.

Algorithm 14 Factored ε-Greedy algorithm to select an action to apply
1: procedure FACTORED-ε-GREEDY(s, T,Q, ε)

Require: s is a given state in the form of (x11 , · · · , xk1)

Require: T is the factored-EST
Require: Q is the estimated state-action value function
2: A′ = A . Set of states are copied into another list
3: for all a ∈ A do
4: value[a] = Q(s, a) . Value of performing each action is Q(s, a)

5: end for
6: Let N = {n1, · · · , nk} . N is the child decision trees of root containing s in their

continuation sets
7: if N 6= then
8: Select ni with maximum expected reward
9: Let 〈ani

, ·〉 be the label of the edge connecting root and ni
10: Let 〈s, ·, Rs,ni

be the corresponding tuple in ni
11: A′ = A′ ∪ {ani

}
12: value[ani

] = Rs,ni

13: end if
14: Pick a number p ∪ [0, 1) with uniform probability
15: if p < ε then
16: Return a randomly selected action from A′

17: else
18: Return action a with maximum value . If there are multiple actions with

maximum value select one of them randomly
19: end if
20: end procedure

The last step of updating an EST instance (Algorithm 4) is updating the root

node, which calls itself recursively for every child node. Our approach in factored-

EST model for this operation is given in Algorithm 15. After decrementing eli-

gibility values of the edges, the ones with low eligibility values are deleted from

the tree with their child nodes. The same procedure is applied to the remaining

child nodes. Then, the current node is updated depending on the type of the

structure. In case of state difference graphs, Algorithm 10 is called with given

to-be-deleted list of decision tree leaves, which is LS. If the current node is a

decision tree, it is traversed to decrement eligibility values and find the states

that should be deleted. If it is decided to do so, state leaf links are added to
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LS. In factored-EST, every state difference graph G has only one predecessor

tree node D whose type is decision tree. It is guaranteed that G cannot contain

decision tree node links except for the ones in D. Thus, it is sufficient for G to

know to-be-deleted decision tree nodes of D that are collected in LS. After all

of the children of D are updated using these marked leaf nodes, every leaf in LS

is deleted from D to preserve compactness.

Algorithm 15 Algorithm for updating a factored-EST node n
1: procedure UPDATE-NODE(n,LS)

Require: LS is set of decision tree nodes which will be deleted from the decision tree.
2: Let E be the set of outgoing edges of node n
3: for all e =

〈
n, n′,

〈
an′ , ψ

′
n,n′
〉〉
∈ E do

4: ψ′n,n′ = ψ′n,n′ ∗ ψdecay
5: if ψ′n,n′ < ψthreshold then
6: Remove e and sub-tree starting with n′

7: else
8: UPDATE-NODE(n′, LS)
9: if There are no states in n′ then
10: Remove e and sub-tree starting with n′

11: end if
12: end if
13: end for
14: if n is a graph then
15: UPDATE-GRAPH(LS)
16: else . Decision tree update
17: for all l = 〈ξi, Ri〉 ∈ L do . For all leaf nodes
18: ξi = ξi ∗ ξdecay
19: if ξi < ξthreshold then
20: Remove l from L

21: LS = LS ∪ {l} . Add leaf node to list to update graphs
22: end if
23: end for
24: end if
25: end procedure
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CHAPTER 4

EXPERIMENTAL RESULTS

We have experimented factored-EST on widely accepted benchmark problems.

The main goal of the experiments is to see the effectiveness of the method on

memory usage. Unlike its new structure, since the algorithm of using factored-

EST in learning is same as the one in the original EST, it is expected to see

no difference in learning rate. In order to compare the new structure with the

classical one, a plain EST implementation is used, which stores all variable val-

ues at each step. To show that factored-EST makes learning faster, we analyzed

the number of convergence steps in factored-EST, plain EST and a classical RL

algorithm that does not use EST at all. In addition, to compare different tem-

poral abstraction methods in terms of learning speeds, factored-EST, which is

a sequence-based method, is compared with hierarchical decomposition method

HEXQ.

4.1 Settings

In order to minimize the effects of external factors in the experiments, the same

underlying RL algorithm, Q-learning, is used in all tested method instances

(EST, factored-EST and HEXQ). Unless otherwise stated, all experiments are

conducted with the parameter values given in Table 4.1. For each benchmark

problem, 100 experiments are run with 50 episodes and the average of the results

are reported. For both EST versions, factored ε-Greedy method is used as action

selection mechanism with a constant ε value. Resulting plots are smoothed for

visual clarity. The results of different mechanisms are compared in terms of:
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• EST sizes: Memory consumption of EST and factored-EST structures

• EST update times: Speed of updating EST and factored-EST structures

• Number of steps to reach a goal: Number of steps it takes to finish a

task for EST, factored-EST and Q-learning algorithms

• Number of active steps of EST: Number of steps where EST and

factored-EST decided the next action

• EST execution times: Average time elapsed when EST and factored-

EST are active

• Reward per step: Average rewards gained per step for EST, factored-

EST and Q-learning algorithms.

Table4.1: Learning settings

Parameter Value
α 0.01
γ 0.9
λ 0.9
ε 0.1
ψdecay 0.95
ξdecay 0.99
ψthreshold 0.01
ξthreshold 0.01

4.1.1 Problems

Coffee-Robot Domain

In coffee-robot domain [5], a robot in the office tries to bring coffee from a coffee

shop to its owner who is located in the office. The weather can be rainy, in

this case, the robot should take an umbrella before leaving the office. Successful

delivery while staying dry results in 1.0 reward, but if the agent is wet, it gets

0.9 reward. There are four actions which can be performed:
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• Move: Go to the other location.

• GetUmbrella: Get the umbrella if you are at the office.

• DeliverCoffee: Deliver coffee to the owner if you are at the office.

• BuyCoffee: Buy coffee if you are at the coffee shop.

The environment is non-deterministic and delivering coffee is successful with

probability 0.8. State variables are HasOwnerCoffee (HOC), HasRobotCoffee

(HRC), HasRobotUmbrella (U), IsRobotWet (W), Location (L), IsItRaining (R).

Variable Location can take values in {office, shop}, while the other variables are

binary. Initially, IsItRaining variable can take both values while Location is

office and the domain for other variables is {true, false}. Reward tree for the

domain and DBN of DeliverCoffee action for HOC variable is shown in Figure

4.1.
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Figure 4.1: (a) Coffee domain - reward tree (b) DeliverCoffee DBN for HOC
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Room Domain

Room domain is a 9 × 9 grid world divided into two equal rooms vertically

with walls (Figure 4.2). There is only one cell that connects these rooms, which

defines the bottleneck of the problem. The agent starts from top leftmost cell

of the first room (S) and tries to reach to the bottom rightmost cell of the

second room (G). It can move to north, south, east and west. There are only

two state variables, x and y. They are used to describe coordinates on the grid

with domain {1, 2, 3, · · · , 9}. For example, in the problem S is (x = 1, y = 1)

and G is (x = 9, y = 9). The environment is non-deterministic like coffee-robot

problem. Attempting to move to a cell is successful with probability 0.8 and the

agent will go to one of the diagonal cells otherwise. Every move causes -0.01

reward (punishment due to action cost) except for reaching to G, which gives

1.0 reward.

Figure 4.2: Room domain

Taxi Domain

The last benchmark problem is factored version of the taxi domain [10] (Fig-

ure 3.1). It is a task where a taxi driver moves in 5 × 5 grid world in four

directions with some obstacles around to prevent him from moving. There are

four predefined locations which are R,G,B, and Y . The goal is to pick up a

passenger located in one of these four locations and deliver him to another one.
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Possible actions are north, south, east, west, pickup, putdown. Invalid pickup or

putdown action results in -10 reward. This contains cases like putting the pas-

senger down in wrong cell, choosing pickup action when there is no passenger in

the current location, choosing putdown action where there is no passenger in the

taxi. Successful delivery gives 20 reward and completes the task. Concerning

the state variables, x and y are used to specify coordinates (x, y) of the taxi,

passenger_location and destination variables are needed to represent passenger

location and current destination of the agent. The environment is deterministic

and apart from pickup and putdown actions, all actions can only affect either

x or y variables. Table 4.2 contains state variables, their domains and actions

that cause changes in their values.

Table4.2: Taxi state variable domain sets and affecting actions

Variable Domain Affecting Actions
x 1, 2, 3, 4, 5 north, south, east, west

y 1, 2, 3, 4, 5 north, south, east, west

passenger_location R,G,B, Y, T pickup, putdown

destination R,G,B, Y pickup

In our instance of the problem, the agent start at cell (1, 1) and picks up the

passenger at G. Passenger destination is location R.

4.2 Results

4.2.1 Number of Steps to Reach a Goal State

In order to see the effects of temporal abstraction in FMDPs, the algorithms

are tested in terms of speeds of convergence to an optimal policy. Figures 4.3,

4.4 and 4.5 show how many steps it takes to solve the tasks using Q-learning

algorithm. In all of the problem instances, using one of the EST versions on

top of the RL algorithm speeds up the learning rate. However, in coffee-robot

domain (Figure 4.3), Q-learning also performs as good as other cases by the 7th

step. Because there are small number of states and actions to consider in the

problem.

53



 0

 10

 20

 30

 40

 50

 60

 70

 0  5  10  15  20  25  30  35  40  45  50

st
e
p

episode

Without EST
Factored EST

Plain EST

Figure 4.3: Comparison of number of steps to reach a goal in coffee-robot domain
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Figure 4.4: Comparison of number of steps to reach a goal in taxi domain
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Figure 4.5: Comparison of number of steps to reach a goal in room domain

The results of taxi and room domains show the advantage of EST more clearly.

Unlike coffee-robot task, these tasks have a bigger state space, which makes it dif-

ficult to find a good solution in a reasonable number of steps with a classical RL

algorithm. It is important to point out that, determinism in taxi domain leads

to finding an optimal policy in a very short time with EST and factored-EST,

while Q-learning algorithm cannot achieve it even after 50th episode. Similarly,

the sharp changes in room domain is the result of non-determinism of transi-

tions. For Q-learning, the number of steps in the early episodes of these tasks

are huge compared to EST versions. Thus, in order to narrow down the scale of

the results, they are ignored in the plots.

4.2.2 Average Tree Sizes

The average memory consumptions of EST and factored-EST are shown in Fig-

ures 4.6, 4.7 and 4.8. In coffee-robot domain, which is a slightly smaller problem

compared to the others, factored-EST performs better than EST in all of the

episodes. But in other two domains, factored-EST uses more memory in the

early episodes. Because internal links of state difference graphs and decision
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trees decreases memory efficiency. After pruning starts, unnecessary parts are

deleted from the trees which causes a significant drop in both plots and factored-

EST outperforms EST in a short time.
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Figure 4.6: Comparison of factored-EST and EST sizes in coffee-robot domain
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Figure 4.7: Comparison of factored-EST and EST sizes in taxi domain

The amount of pruning is directly related with the eligibility threshold values.
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Higher values results in continuous pruning with small changes while for lower

values sharp changes in the plots become more visible. The results of taxi

domain show that, the structure of the factored-EST becomes stable before

the 5th episode. Since nearly optimal policies are found in the early stages of

learning in both EST versions, only reward and eligibility values are updated

in the structures, so, there are a small number of node/edge deletion/insertion

operations. Although both factored-EST and EST use nearly the same amount

of memory after 15th step, it takes more time for EST to prune the tree. Because

in factored-EST, if the initial state has been deleted, all the successor steps that

have no common parts with other histories are also deleted immediately.
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Figure 4.8: Comparison of factored-EST and EST sizes in room domain

4.2.3 Average CPU Times of Tree Updates

The gain in memory efficiency of factored-EST causes an overhead on tree update

operation. Figures 4.9, 4.10 and 4.11 compare EST and factored-EST in terms

of time consumed to add new histories and prune the parts with low eligibility

values in the structures. The graph and tree data structures in the nodes of

factored-EST requires additional search and comparison operations. In order

the find out the existence of a given variable instance, the algorithm traverses

57



a decision tree or a graph. Moreover, each history is processed to find value

differences between subsequent states. All these extra processes result in more

time consumption than classical EST algorithm.
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Figure 4.9: Comparison of factored-EST and EST structure update CPU times
in coffee-robot domain
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Figure 4.10: Comparison of factored-EST and EST structure update CPU times
in taxi domain
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Figure 4.11: Comparison of factored-EST and EST structure update CPU times
in room domain

As seen in the plots, time consumption is directly proportional to the size of the

tree. In addition, there are some peaks showing that there is a high amount of

pruning in that point. Especially in taxi and room domains, it is more obvious

when the first pruning operation starts before the 5th episode. Similar to the

other plots, in taxi domain, in a short time, results of both versions become very

similar.

4.2.4 Average Reward Per Step

Figures 4.12, 4.13 and 4.14 show the average amounts of rewards received by the

agent in all benchmark problems. In the room domain, the cumulative reward

is directly related with number of steps to reach the goal state. Because, each

extra move brings -0.01 reward. Thus, finding a shorter path increases average

rewards per step. In coffee-robot domain, Q-learning algorithm performs better

than EST versions. One of the possible reasons is that EST versions first find

a solution without taking the umbrella and the robot gets wet while delivering

the coffee. It seems that Q-learning finds the optimal policy resulting in gaining

more cumulative rewards. It is possible to get the same total reward with a
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sub-optimal behavior in taxi domain. But, since EST and factored-EST finish

the task in fewer number of steps, average reward per step results are better

than Q-learning algorithm.
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Figure 4.12: Comparison of average reward gained per step in coffee-robot do-
main
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Figure 4.13: Comparison of average reward gained per step in taxi domain
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Figure 4.14: Comparison of average reward gained per step in room domain
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Figure 4.15: Comparison of average active steps of factored-EST and EST in
coffee-robot domain

4.2.5 Other Experiments

In addition to the criteria given above, we have observed the number of steps

in which EST and factored-EST are active as shown in Figures 4.15, 4.16 and
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4.17. The results show how many actions are decided in an episode in average.

In all of the problems, both EST and factored-EST contribute to the solutions

in nearly the same number of steps. The comparison of the measurement of

average milliseconds that EST and factored-EST are active in an episode given

in Figures 4.18, 4.19 and 4.20 respectively.
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Figure 4.16: Comparison of average active steps of factored-EST and EST in
taxi domain
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Figure 4.17: Comparison of average active steps of factored-EST and EST in
room domain
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Figure 4.18: Comparison of average active milliseconds of factored-EST and
EST in coffee-robot domain
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Figure 4.19: Comparison of average active milliseconds of factored-EST and
EST in taxi domain
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Figure 4.20: Comparison of average active milliseconds of factored-EST and
EST in room domain

4.2.6 HEXQ/EST/Factored-EST Comparison

We have also done some experiments in order to compare the effects of tem-

poral abstractions in sub-goal based methods and sequence-based methods in

terms of learning rates. For this purpose, we selected HEXQ algorithm as an

automatic hierarchy decomposition technique. Because, as it requires an under-

lying RL algorithm like factored-EST, we are able to compare the effectiveness

of the structures constructed by both algorithms. Taxi domain (section 4.1.1)

is chosen with some modifications in state variables. Instead of using x and y

for expressing cell location, only one variable loc ∈ [0, .., 24] is used. Actions

are the same but, the transition function is changed according to the new state

representation. Initially located in cell 5, the agent picks the passenger up from

B and delivers it to Y . In HEXQ algorithm, after hierarchically decomposing

the problem, Q-learning is used in order to solve constructed sub-MDPs.
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Figure 4.21: Comparison of learning speeds of different temporal abstraction
techniques in taxi domain

Figure 4.21 shows the resulting learning speeds of EST, factored-EST and HEXQ

algorithms compared to Q-learning algorithm. Although HEXQ performs better

than Q-learning, since it still solves sub-MDPs in two levels, it takes approxi-

mately 10 episodes to approach optimal solution. However, EST and factored-

EST eliminate the unnecessary steps from the first history and finds the desired

solution in the first episode.

4.3 Discussion

In our experiments, firstly we have compared the proposed factored-EST model

with the original one in terms of memory usage of the structures and time

consumptions while updating the trees. The results show that, factored-EST

outperforms EST in memory usage. The drawback of the algorithm appears

in traversing decision trees and graphs which is done periodically during the

learning. These operations are relatively more time consuming than the methods

applied by EST algorithm. Additionally, we also observed number of steps to

reach a final state for factored-EST, plain EST and Q-learning without EST to

see that there is no negative effect of factored-EST implementation on learning
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rate. Note that the results of the first episodes are omitted from the plots, since

EST is not active until the first histories are generated and inserted into the

system.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis proposes factored-EST algorithm that constructs a compact tree

representation for maintaining useful experiences of a learning agent. EST aims

to detect and store useful sub-sequences of experiences frequently encountered

during the learning process and help the agent to use them later. It keeps some

statistics of the history of states and actions in a tree structure. Throughout

the learning process, these useful action sequences are fed to the underlying

reinforcement learning algorithm. In order to keep memory usage in a reasonable

level, the tree is updated dynamically during the learning process. It is an

effective way to increase learning speed for problems defined with classical MDP

framework.

In real-world problems, mostly, state and action spaces are huge and states

are represented by a set of variables. There are some approaches to take the

advantage of new state representation. These methods utilize the new structured

model to define and solve learning problems in a more compact way to increase

the learning rate and require less memory while finding a reasonable policy.

EST is proved to be an effective method for the first objective. Although it

is possible to use EST in this kind of tasks, learning mechanism suffers from

excessive memory usage.

We have attacked the problem by exploiting the factored structure. Our mod-

ification on EST assumes that each action affects a small subset of variables.

Thus, by only storing the differences between subsequent states in a history, we

can construct a more memory efficient tree structure for maintaining options.
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Before inserting into factored-EST structure, history of events containing state-

action-reward tuples are transformed into the factored form. Following the initial

state, at each step, applied action, variables that are affected by the action and

immediate reward values are appended to the new history structure. Factored-

EST model uses decision trees for representing initial states and directed acyclic

graphs for maintaining variable value differences of successive states. Each state

difference set contains a link to the corresponding initial state so that, complete

state information can be computed when necessary. Differently from classical

EST, factored-EST uses initial and previous states to find reward and eligibility

values of current states.

Factored-EST is tested on three benchmark problems, which are coffee-robot,

room and taxi domain. The results show that new algorithm requires less mem-

ory than the classical EST structure. The learning performance of both versions

are very similar. The disadvantage of factored-EST is brought by graph and tree

traversal methods for searching, updating and deleting the elements, which are

slightly inefficient. In addition, to compare sequence-based EST and factored-

EST algorithms with hierarchical abstraction approaches with respect to their

performance of converging to optimal solutions, some experiments are conducted

with HEXQ algorithm.

One of the most obvious future work is decreasing the complexity of update

operations in factored-EST nodes while preserving memory gain. Moreover, we

are planning to employ the factored-EST method for problems with partially

observability.

68



REFERENCES

[1] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive ele-
ments that can solve difficult learning control problems. IEEE Transactions
on Systems, Man, and Cybernetics, 13(5):835–846, September/October
1983.

[2] R. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, USA, 1 edition, 1957.

[3] R. E. Bellman. Adaptive control processes - A guided tour. Princeton Uni-
versity Press, Princeton, New Jersey, U.S.A., 1961.

[4] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in pol-
icy construction. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’95, pages 1104–1111, San Fran-
cisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[5] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic pro-
gramming with factored representations. Artificial Intelligence, 121(1–2):49
– 107, 2000.

[6] E. Çilden. Abstraction in Reinforcement Learning in Partially Observable
Environments. Ph.D. thesis, Middle East Technical University, 2014.

[7] T. Dean and K. Kanazawa. A model for reasoning about persistence and
causation. Computational Intelligence Journal, 5(3):142–150, 1989.

[8] T. Degris, O. Sigaud, and P.-H. Wuillemin. Learning the structure of fac-
tored markov decision processes in reinforcement learning problems. In Pro-
ceedings of the 23rd International Conference on Machine Learning, ICML
’06, pages 257–264, New York, NY, USA, 2006. ACM.

[9] T. G. Dietterich. The maxq method for hierarchical reinforcement learn-
ing. In Proceedings of the Fifteenth International Conference on Machine
Learning, pages 118–126. Morgan Kaufmann, 1998.

[10] T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227–
303, 2000.

[11] J.-P. Forestier and P. Varaiya. Multilayer control of large markov chains.
Automatic Control, IEEE Transactions on, 23(2):298–305, Apr 1978.

69



[12] S. Girgin, F. Polat, and R. Alhajj. Improving reinforcement learning by
using sequence trees. Machine Learning, 81(3):283–331, 2010.

[13] B. Hengst. Discovering hierarchy in reinforcement learning with HEXQ. In
Proceedings of the Nineteenth International Conference on Machine Learn-
ing, pages 243–250. Morgan Kaufmann Publishers Inc., 2002.

[14] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:
a survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[15] O. Kozlova, O. Sigaud, and C. Meyer. Texdyna: Hierarchical reinforcement
learning in factored mdps. In From Animals to Animats 11, 11th Interna-
tional Conference on Simulation of Adaptive Behavior, SAB 2010, Paris -
Clos Lucé, France, August 25-28, 2010. Proceedings, pages 489–500, 2010.

[16] C. Sahin, E. Cilden, and F. Polat. Memory efficient factored abstraction
for reinforcement learning. In Cybernetics (CYBCONF), 2015 IEEE 2nd
International Conference on, pages 18–23, June 2015.

[17] R. S. Sutton. Learning to predict by the methods of temporal differences.
In Machine Learning, pages 9–44. Kluwer Academic Publishers, 1988.

[18] R. S. Sutton. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the Sev-
enth International Conference on Machine Learning, pages 216–224. Mor-
gan Kaufmann, 1990.

[19] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[20] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs:
a framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112(1-2):181–211, 1999.

[21] P. E. Utgoff, N. C. Berkman, J. A. Clouse, and D. Fisher. Decision tree
induction based on efficient tree restructuring. In Machine Learning, pages
5–44, 1996.

[22] C. J. C. H. Watkins. Learning from Delayed Rewards. Ph.D. thesis, King’s
College, Cambridge, UK, May 1989.

[23] C. J. C. H. Watkins and P. Dayan. Technical note: q-learning. Machine
Learning, 8(3-4):279–292, May 1992.

70


	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	introduction
	background and related work
	Markov Decision Processes
	Dynamic Programming for MDPs

	Reinforcement Learning
	Temporal Difference Learning

	Temporal Abstraction in Reinforcement Learning
	Extended Sequence Tree Algorithm

	Factored Reinforcement Learning
	FMDPs
	Solving FMDPs
	HEXQ
	TeXDYNA



	factored extended sequence tree method for factored reinforcement learning
	Decision Trees
	State Difference Graphs
	Factored Extended Sequence Tree

	Experimental Results
	Settings
	Problems

	Results
	Number of Steps to Reach a Goal State
	Average Tree Sizes
	Average CPU Times of Tree Updates
	Average Reward Per Step
	Other Experiments
	HEXQ/EST/Factored-EST Comparison

	Discussion

	Conclusion and Future Work
	REFERENCES

