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ABSTRACT

COLLECTIVE CLASSIFICATION OF USER EMOTIONS IN TWITTER

Ileri, Ibrahim
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Pınar Karagöz

August 2015, 75 pages

The recent explosion of social networks has generated a big amount of data including
user opinions about varied subjects. For classifying the sentiment of user postings,
many text-based techniques have been proposed in the literature. As a continuation of
sentiment analysis, there are also studies on the emotion analysis. Because of the fact
that many different emotions are needed to be dealt with at this point, the problem
becomes much more complicated. In this thesis, a different user-centric approach is
considered that connected users may be more likely to hold similar emotions; there-
fore, leveraging relationship information can complement user-level sentiment infer-
ence task in social networks. Employing Twitter as a source for experimental data and
working with a proposed collective classification algorithm, users whose emotions are
not known on subject, are predicted in an effective and collaborative setting.

Keywords: Social Networks, Sentiment Analysis, Collective Classification
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ÖZ

TWİTTER’DA KULLANICI DUYGULARININ KOLLEKTİF SINIFLANDIRIMI

Ileri, Ibrahim
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pınar Karagöz

Ağustos 2015 , 75 sayfa

Sosyal ağların son zamanlardaki hızlı yükselişi, çeşitli konular hakkında kullanıcı
fikirlerini içeren büyük bir miktarda veri üretmiştir. Kullanıcı gönderilerinin görüş-
lerini sınıflandırmak adına, birçok metin tabanlı teknikler literatürde yerini almıştır.
Görüş analizinin devamı olarak, duygu analizi üzerinde de çalışmalar bulunmaktadır.
Çok sayıda farklı duyguların bu noktada ele alınması gerektiğinden dolayı, problem
çok daha karmaşık bir hale gelmektedir. Bu tez çalışmasında, birbirlerine bağlı kul-
lanıcıların benzer duygular barındırmalarına daha meyilli olması üzerine kullanıcı
odaklı farklı bir yaklaşım kabul edilir; bundan dolayı, ilişki bilgisinden yararlanıl-
ması, sosyal ağlarda kullanıcı düzeyinde görüş çıkarım işini tamamlayabilmektedir.
Deneysel bir veri kaynağı olarak Twitter ele alınarak ve önerilen kolektif sınıflan-
dırma algoritmasıyla çalışılarak, kullanıcıların konu üzerinde bilinmeyen duyguları
etkin ve işbirlikçi bir ortamda tahmin edilmektedir.

Anahtar Kelimeler: Sosyal Ağlar, Görüş Analizi, Kollektif Sınıflandırma
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CHAPTER 1

INTRODUCTION

World Wide Web (WWW) is a huge data warehouse with its wide range of appli-

cations. Users have great opportunities to introduce their opinions on products and

discuss specific topics with their friends. Therefore, web sites such as Facebook,

Twitter or Epinions are turned into attractive platforms not only for end-users but also

for researchers. Obviously, this situation introduces new dimensions and research

problems for the feature engineering field.

Recent advances in social networks increase the ways of explaining ideas on diverse

subjects. However, users can share their opinions with their online friends in a col-

laborative manner. On the other hand, connected users may also write about quality

of their favorite products to rank them. All that rich information sources make the

social networks a suitable working base for researchers. New problems are waited

to be solved and new applications are needed to be developed by them to help the

corporations future orientations.

Effective methodologies and techniques are required to extract various kinds of infor-

mation from social networks automatically. One of them which is identifying users’

sentiments on a product or service has turned into a valid indicator of marketing suc-

cess. This area could be seen as Sentiment Analysis on Social Networks. Apart

from the classical sentiment analysis algorithms, networked data include valuable re-

lationship information that can contribute to this analysis process beside texts that are

produced by the users.

From the social networks view, users and their friendships are represented as nodes
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and tied edges in order. By analyzing the interactions between users and finding the

opinion orientation for partial of them, it is possible to infer the other remaining users

opinions which are previously unknown. This process is named as networked data

labeling problem and explained in Section 1.2.

1.1 Social Network Analysis and User Relationships

Online social networks are often called as social network sites where users can create

their profile pages and send messages or share their opinions with their other con-

nected social relationships. In other words, they are user generated content networks

that allow users to express their sentiments and communicate each other.

Social network analysis includes theories, tools and methodologies for understand-

ing the network structure and underlying relationships. Generally, social network

researchers collect the networked data, analyze the data with some special tools and

aim to find important patterns from related instances of the network. In terms of ma-

chine learning, patterns are learned by considering dependencies between entities in

a supervised or unsupervised way. At this point, effective methodologies are needed

to be designed unlike simple traditional learning algorithms.

Social networks are divided into three types by their connection characteristics [15]

such as:

• Ego-Centric Networks: are those networks that are connected with a single

node or individual. E.g. my good friends (on Twitter).

• Socio-Centric Networks: are networks in a “box”. E.g. connections between

children in a classroom.

• Open-System Networks: are networks in which the boundaries are not clear.

E.g. the elite of the United States

However, from the point of sociological view, there are some social situations that

invoke a relationship between one node to another. Each of them [15] could be defined

as:
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• Propinquity: At all levels of social analysis, entities are more likely to be con-

nected with one another, other conditions being equal, if they are geographi-

cally near to one another. More broadly, it could be defined as being in the

same place at the same time. Two people tend to become friends it they are

geographically close.

• Individual-level Homophily: Homophily (From the Greek, “love of the same”),

is the sociological term which is generally known as analogical statement:

"birds of a feather flock together." At the individual level, people are more

likely to be friends if they share common characteristics. In brief, there are

four processes [15] to invoke friendship between people such that:

1. The same kinds of people come together;

2. People influence one another and in the process become alike;

3. People can end up in the same place;

4. Once they are in the same place, the very place influences them to become

alike.

On the other hand, there are some useful social theories in micro-blogging to facilitate

social network analysis. Sentiment Consistency suggests that the sentiments of two

messages posted by the same user are more likely to be similar than those of two

randomly selected messages. Emotional Contagion reveals that the sentiments of two

messages posted by friends are more likely to be similar than those of two randomly

selected messages. Frequency of communication reflects accurately on the emotional

content, and amount of influence in a relationship.

A social network is formally represented by a graph, where nodes are users and edges

are relationship links between them that can be either directed or not due to the dif-

ferent interpretations of relations. Users connect to each other in an unidirectional

(e.g. following relationship on Twitter) or bidirectional (e.g. friendship relationship

on Facebook) ways. Also, messages are the main features of the nodes. Users send

messages to rank products, discuss political views, express their emotions etc. A

message can be defined by a text which targets specific people.

3



1.2 Networked Data Labeling Problem

As mentioned in Section 1.1, social networks are represented as graphs. Finding/learn-

ing the class labels for some nodes, need special treatments. There are two major

approaches for networked (linked) data classification as follows:

Local approaches (iterative classification) include these steps:

• Training a model locally using only labeled data

• Applying the learned model iteratively to classify unlabeled data

Global approaches (collective classification) include these steps:

• Using unlabeled or partially labeled data and link information for learning

• Approximately inferring the unknown labels by using specific feasible

methodologies

More technically, networked data labeling problem could be seen on related Figure

1.1 and stated as follows:

Given: An undirected graph (V, E), where E is the set of edges and each node in

V corresponds to a vector of features A1,..., An, C, where C denotes the class

attribute; the values for the Ai are known for all v ∈ V , but class labels for C are

only known for a proper subset T of V. A node is also called as a data instance.

Find: The class labels for U := V – T.

Figure 1.1: A Partially Labeled Sample Graph for Networked Data Labeling Problem

As seen on Figure 1.1, there is a sample partially labeled graph which contain six

nodes and ten edges between them totally. It follows the above notations for the

4



definitions such as proper subset T and unknown labeled nodes set U. Two nodes (V3

and V6) do not contain class attributes for this graph. For the node V6, its table of

attribute list which is indicated by a near arrow (↗), shows the presence of attributes

with cross (7) and check signs (3).

1.3 Contribution and Organization of Thesis

In this thesis, collective classification algorithms which constitute a sub-field of link

mining field, are applied on the context of emotion analysis. Twitter users are nodes

and their relationships are edges which are extracted from Turkish retweets or includ-

ing user mentions (@) Turkish tweets. Giving graph structure as an input to collective

classification framework, unknown emotion labels for users are predicted by utilizing

their labeled neighbors relationship information.

Proposed relational classifiers are also experimented with different configurations.

SVM is used as a baseline methodology for comparison purposes. Since Turkish

tweets are already raw texts, some special text mining techniques are applied to turn

them into meaningful entities by targeting feature vector construction. However, apart

from this, all of the remaining methods are equally applicable to the texts in other

languages as well. With the aim of applying collective classification techniques on

the context of emotion analysis in social networks, to the best of our knowledge, this

is the first work in the literature.

The contribution of the thesis can be summarized as follows:

• As the first work in the literature, collective classification algorithms are applied

on the context of emotion analysis in social networks.

• Different Twitter datasets are gathered with their generated relationship infor-

mation.

• Some language-specific text mining techniques are applied for Turkish tweets

processing.

• SVM is used as a baseline methodology for the comparison purpose.
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The thesis is organized as follows: Section 2 presents a survey of the related stud-

ies in literature which include classical text based and link-based sentiment analysis

methodologies. Section 3 describes Twitter world, employed classification methods,

feature vector construction and the tools that are used for processing and develop-

ment. Section 4 presents mainly proposed methodologies for data gathering, prepro-

cessing, relationship generations and collective classification task. Section 5 shows

the related experiments and their results. Lastly, Section 6 concludes some useful

remarks about this study and gives future directions.
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CHAPTER 2

LITERATURE SURVEY

Categorizing sentiments gathered from online data sources has greatly increased in

the academic world in recent years. All of these methods of the literature use the

intractable text segments such as words, sentences, etc. for the task of inference.

Some of these are mentioned in Section 2.1.

Emerging rise of micro-blogging on social networks, people have chance to express

their emotions on such platforms easily. Analyzing user’s tweets or classifying user’s

emotions on social networks are the subject of many studies in the literature. So,

emotion analysis has been the distinct focus of researcher’s work and some of these

are summarized in Section 2.2.

In this thesis, the proposed approach aims to improve the accuracy of the model by

employing relationship information between users. It also broadens the classification

task’s horizons due to the fact that it could be applied on users whose sentiments are

not known before. Since, there is only one work [29] which uses link information in

the context of sentiment analysis in literature, some similar link-based classification

approaches are explained in Section 2.3.

2.1 Classical Sentiment Analysis

Classical sentiment classification could be thought as a text classification problem.

Traditional text classification categorizes documents into different subjects by us-

ing subject-related words as the key features. However, in sentiment classification,
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sentiment words such as good, bad, amazing, etc. that indicate positive or negative

opinions are much more valuable.

By looking from the text classification’s point of view, any supervised learning method

can be applied on sentiment classification. As an example, [26] is the first study to

categorize movie reviews into two binary classes as positive or negative. A bag of

words (unigrams) approach is employed as features combined with supervised clas-

sification methods that are naive bayes or SVM. Also, other feature options are tried

by the authors and has led great results.

In later works, many more features and learning methodologies have been studied by

a large number of researchers. Similar to other supervised machine learning tasks, the

key point for the sentiment classification is the mining of valuable feature sets. Some

of them are exemplified as follows:

• Terms and their frequencies: Individual words and their related counts as fea-

tures.

• Part of speech: For example, adjectives are specially treated as more important

features due to its strong indication of opinions.

• Sentiment words and phrases: Good, wonderful, etc. are positive sentiment

words and bad, poor, etc. are negative sentiment words. They are weighted

differently for related classes.

After these feature identifications, classification step is mainly based on lexicons.

By using valuable words and phrases, sentence opinion orientations are tried to be

inferred. On the other hand, special treatments such as negation handling or opposi-

tional clauses are considered occasionally. For example, in [10], sentimental words

and phrases were identified and sentences were scored due to the previously con-

structed lexicon firstly. Then, negations are handled to tune the sentiment scores.

Oppositional clauses are used to find the missing scores of some sentences which can

not be determined on previous steps. Finally, individual scores are summed up and

sentences are classified into their sentiments.
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2.2 Emotion Analysis

Since the user’s emotional states are subjective, they can reflect people’s attitudes

towards different domains including news, tweets, blog contents. Generally, there are

two main approaches in the literature for emotion detection on texts. The first one is

the text classification based methods which build classifiers from labeled text data as

in traditional supervised learning. The second method detecting the emotional states

especially in tweets is the lexicon-based approach. The emotion lexicon is created for

this approach.

Regarding the field of psychology, Ekman [11] defined 7 emotions which are cate-

gorized by observable human facial expressions. Kozareva et al. [18] classified news

headlines using these identified emotion classes. They averaged different web search

engines hit counts on the emotional classes and news headlines as query words. In

order to measure the co-occurrence of the query words of the headline and emotion

class labels, they employed a method, which is called PMI (pointwise mutual infor-

mation).

Aman and Szpakowicz [4] combined unigrams with emotion lexicons and a thesaurus

as features to classify blog sentences into 6 emotion categories.

Alm et al. [3] presented empirical results of applying supervised machine learning

techniques to categorize English fairy tale sentences into different emotions. The

different emotion classes used in this study were angry, disgusted, fearful, happy,

sad, positively surprised, negatively surprised. They proposed their own text-based

classifier algorithm (SNoW) and it achieved higher accuracy results than Naive Bayes

classifier or bag of words approach.

Go et al. [12] applied supervised learning methods to classify crawled Twitter data

into binary sentiments as positive or negative. Following that, emoticons are treated

as noises and removed from each tweet. Then, features are constructed with different

n-grams and part of speech methodology. Lastly, Naive Bayes, Maximum Entropy

and SVM classifiers are experimented. SVM classifier behaved best all in all. It

achieved 80% accuracy when trained with emoticon data.
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2.2.1 Emotion Analysis on Turkish Texts

Torunoğlu et al. [33] analyze pre-processing effect on the classification of Turkish

texts. They crawled their data sets from Turkish newspapers. By applying pre-

processing methods including stemming, stopword filtering and word weighting, their

experiment results showed significant improvement on classification accuracies.

Boynukalın [5] worked on two data sets. One of them is the Turkish translation of

ISEAR 1 data and the other is the manually labeled Turkish fairy tales. Emotion

levels are predicted using different n-gram feature constructions and weighted log

likelihood algorithm [24] is utilized to determine most significant features.

Akba et al. [1] investigated the feature selection methods on Turkish movie reviews.

They selected these reviews due to their huge amount of possible emotional informa-

tion. They labeled their corpus by dividing emotions into three categories as positive,

negative and neutral. In their experiments, support vector machine (SVM) and Naive

bayes had been employed for classification and F1 score was used for performance

evaluation. Different SVM performance results were obtained depending on the clas-

sification of movie reviews into two or three categories. Binary classification achieved

the best result as 83.9%.

Toçoğlu et al. [32] proposed an emotion extraction system from Turkish texts which

is based on text classification approach. They gathered data set due to survey answers

of 500 university students. In this questionnaire, students are asked to describe their

most intense moments for 7 emotion categories which are happy, shame, guiltiness,

disgust, sadness, angry and fear. Then, texts are pre-processed and modeled with Vec-

tor Space Model with tf-idf weighting scheme. Finally, applied Naive Bayes classifier

in Weka achieved around 86% promising accuracy result.

Demirci [9] classified Turkish tweets into six emotion categories (anger, surprised,

fear, sadness, joy and disgust) with supervised learning. Raw tweets are collected

according to emotional hash tag lists and automatically labeled. Then, some prepro-

cessing are done to get clean texts. Also, beside the special treatments mentioned

above, some morphological analysis are performed because of the sarcastic nature

1 http://www.affective-sciences.org/researchmaterial
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of Turkish language. Features are constructed based on vectors with different com-

binations of n-grams. Large feature vectors are minimized using feature selection

methods. Finally, some supervised methods such as naive bayes, k-nn and SVM are

compared with the baseline algorithm of Boynukalın [5]. SVM achieved approxi-

mately 69% accuracy result at best.

2.3 Link-Based Classification

Relationships between objects are common in socially networked data on the web.

Those links represent valuable information on the objects explicitly or implicitly. For

example, user’s followers list on Twitter is considered as explicit relationships. On

the other hand, statements such as "if many followers of a user hold similar senti-

ments on a subject, the user may hold the same sentiment too.", expresses an implicit

relationship.

Generally, data mining algorithms try to find ideal patterns from each of the indepen-

dent instances. When all of these instances are modeled as a graph, the task turns

into learning only the node attributes except from relations between them. Neverthe-

less, leveraging relationship information contributes the quality of building models

or algorithms positively. World’s most used web search engine Google has taken its

roots behind their designed PageRank [6] algorithm. However, many link mining

approaches need to deal with heterogeneous data which include different types of

instances and relations.

Since link mining leads on a wide scope, a subfield of it, called collective classifi-

cation, is used in this study. Briefly, it aims to predict the labels of objects with the

relationships among them. The main challenge is to design an algorithm for collec-

tive classification that uses associations between object classes and jointly infer their

labels in the graph.

Chakrabarti et al. [7] consider categorizing related news objects in the Reuters dataset.

They are the first to leverage class labels of related instances and also their attributes.

Nevertheless using class labels improves classification accuracy, the same thing does

not apply for considering attributes. Also, they use previously proposed relaxation
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labeling inference algorithm [30].

Neville and Jensen [23] propose simple link based classification methodology which

classifies corporate datasets that represent heterogeneous graphs with many different

set of features.

Lu and Getoor [19] aims to enhance traditional machine learning algorithm by intro-

ducing new features which are built out of correlations between objects. As a result, a

new link based classification algorithm which uses probability terms such as Markov

blanket of related class labels of classifying objects, has come into existence.

Pang and Lee [25] seeks to determine sentiment polarities of movie reviews by ex-

tracting subjective portions of the sentences. For this purpose, they use a graph-based

technique that finds the minimum cuts. It deals with psychical proximity between

related sentences by using the idea that "texts which are near each other may share

the same subjectivity labels". They formulate such correlations with calculated scores

and estimate objective functions with Naive Bayes and SVM methods. By this way,

contextual information is added in polarity classification process and lead to signifi-

cant improvement for accuracy.

Shivashankar and Ravindran [31] analyze multi grain sentiments on review articles

that are gathered from websites like CNET, Epinions and Edmunds. They propose a

multi grain collective classification algorithm for the partially labeled data at different

levels. Document, sentence and tuple levels are represented as graphs with their inter

or intra relations between them. Unknown sentiments of documents are inferred from

partially labeled nodes by employing iterative collective classification algorithm. It is

already a binary sentiments. As a baseline, lexicon based classifiers for two different

levels are evaluated. Proposed algorithm improves the accuracy results around 30%

in terms of information retrieval metrics.

There is not much work in the literature with exactly the same purpose in this study.

There is only one work that is Juliano et al. [29] proposed a user centric approach

on the context of sentiment analysis. They have classified Twitter user’s political

opinions into two binary classes by using collective classification. Their algorithm

takes a partially labeled graph, applies a graph pruning process and runs the collec-
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tive classification. Preliminary experiments on data crawled from Twitter have shown

promising results. Their results show that, when the labels of 10% of the most con-

nected nodes are known, their model is able to classify the remaining unknown nodes

with almost 80% of accuracy.
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CHAPTER 3

BACKGROUND

3.1 Twitter

Twitter is a popular social microblogging service with millions of registered users

who share their sentiments on any topic. Twitter users post short text messages, or

tweets which are limited up to 140 characters long. Users follow others or they are to

be followed. In terms of social connections, following relationships do not need to be

bidirectional. In other words, the user who is being followed, not necessarily follow

back. Followers can see all the messages from those the user follows.

There is a special mark-up vocabulary for answering the tweets. RT stands for

retweet, @ is followed by a user identifier indicates the user, and # is followed by

a word represents a hashtag. By the retweet mechanism, users can have facilities to

spread their ideas in a quick and efficient manner.

Twitter users can reference other user via using the mentioning/replying mechanism

that includes @username phrase in tweets. In this way, a link is created between the

message in the users profile page. Mentioned tweets are seen on the referenced user’s

account and this results detecting the tweets mentioning them.

Also, due to privacy reasons, some Twitter users can restrict their posted messages to

only their followers. In this study, publicly available user’s profiles and (re)tweets are

crawled. Besides, the posted messages are already available to anyone by default.
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3.1.1 Emotions and Networks on Twitter

Social sharing of emotions is one of the main purposes for using blogging services

such as Twitter. Twitter users can interact with other users by using following ways:

• Forwarding (retweet) messages from other users

• Reply to or mention other users in their messages

In this way, it is expected to find a correlation between emotion contagion and net-

work’s properties. In [17], due to different types of interactions, two research ques-

tions are investigated statistically such that:

1. What is the correlation between user’s inclination towards sharing emotions in

their posts (retweets or mentions) and their number of followers?

2. What is the correlation between user’s inclination towards sharing emotions

in their posts (retweets or mentions) and their network characteristics such as

density?

Although there are not strictly definitive results, it is showed that expression of emo-

tions are associated with more followers (friends) and sparser (highly cluster-able)

networks on Twitter. In other words, there is not an exact rule such as sharing emo-

tions need much followers or vice versa. Possibly, because of the social constraints,

users may hesitate to share emotional experiences with dense contacts. Also, interac-

tion networks are needed to be more concentrated for future works.

3.2 Classification Methods

3.2.1 Support Vector Machines

Support Vector Machines (SVM) [14] aim to find some boundary points, called as

support vectors from each class in feature space and construct a linear function which

separates them into wide area. By including extra non-linear terms, (kernel) functions
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cover high-dimensional data and form quadratic, cubic, and higher-order decision

boundaries (hyperplanes).

In other words, SVM (methods) map the data into a new feature space that contains

nonlinear hyperplanes via supervised learning of linear models. It is focused to find

the maximum-margin hyperplane (or linear model) which has the closest distance to

each support vectors.

For high-dimensional spaces following finding maximum-margin hyperlane Equation

3.1’s parameters are needed to be learned by SVM:

max_margin_hyperplane = β +
∑
i∈S

αi × ci × (s(i) · s)n, (3.1)

where S is the set of support vectors, c(i) is the class value of ith support vector, n

is the dimension (factor) count, α and β are the kernel parameters, (s(i) · s)n is the

dot product of ith support vector (training instance) and the test instance. Such dot

product of these vectors corresponds to polynomial kernel function. As a special case,

if n = 1, it is called as linear kernel function.

According to the computational complexity problem, if the mapped space is a high-

dimensional one, kernel functions, that are based on the dot product of feature vectors,

are needed to calculated before mapping is done. If the number of features is too large,

there is no need to map data into a higher dimensional space. linear kernel function

serves the purpose sufficiently.

For optimal learning, different value combinations of kernel parameters (α and β in

Equation 3.1) should be tried with grid search and k-fold cross validation techniques.

In k-fold cross-validation, training data is divided into into k parts of equal size. Then,

one part is tested using the classifier trained on the remaining k-1 parts sequentially.

Finally, each instance of the whole training data is predicted once so final accuracy

is the percentage of data which are correctly classified. Grid search tries different

combinations of parameters using cross-validation.
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3.2.2 Collective Classification

Networked data has many different scenarios. It is an important issue to investigate

how objects influence each other in network. For example, how user’s emotions are

affected by his/her relationships in Twitter. On the other hand, product’s attributes are

tried to be improved by examining the ranking results of different networked users.

All of these intersect at one common point which is finding the labels of all entities

in the network.

There could be three different types of relations in a networked data which can be

used to label network objects:

1. Relations only between object’s own labels and (local) attributes

2. Relations between object’s own labels and its adjacent neighbors known at-

tributes (also, known labels)

3. Relations between object’s own labels and its adjacent neighbors unknown la-

bels (also, known attributes according to the approach)

Collective classification utilizes all kind of relations that are listed above to find the

labels of all network objects. By the way, relational classification field uses only

the first and second. Main difference between two fields is that in partially labeled

networks, unknown labels of all objects are needed to be simultaneously inferred.

This can only be achieved by using collective classification techniques.

Working principle of the collective classification is shown on Figure 3.1. Given net-

worked data, local classifier produces prior class membership estimations for un-

known labeled (test) nodes. Relational classifier is the core component which in-

cludes different options such as summarizing test node’s neighborhood information

or integrating with external Weka classifiers. Consequently, inference method is fed

with local and relational classifier’s trained models that are used for simultaneously

estimating class label values for test node instances.
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Figure 3.1: Working Principle of the Collective Classification

3.2.2.1 Univariate Collective Inferencing

Here, univariate collective inferencing or within-network classification, a special case

of collective classification, is described. Univariate means that inferencing task is

applied by considering only the class labels of neighboring nodes, not using local

attributes of them. More precisely, marginal probabilities of class membership of

a particular node are calculated based on the class memberships of other connected
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nodes in the network.

Formally, univariate collective inferencing could be defined with the similar notations

seen in Chapter 1, Section 1.2 as follows:

Given: Graph G = (V, E, C) where Ci is the (single) attribute of node vi ∈ V, and

given known values ci of Ci for some proper subset of nodes T,

Task (Univariate collective inferencing): Simultaneously inferring the labels ci of

Ci for the remaining vertices, U := V – T, or a probability distribution over

those labels.

While doing collective inferencing task, some assumptions are needed for the prob-

ability calculations. First of these stands for the relational learning and a first-order

Markov assumption as given in Equation 3.2:

P (ci|G) = P (ci|Ni), (3.2)

where Ni is the immediate neighbors of node vi. Local neighborhood is considered

to be independent from all other remaining nodes in the network (V – Ni) by the

relational learning algorithms.

Secondly, it is assumed that learning a part of the whole network (a particuar node

and its neighborhood), reflect the probability dependencies which are also valid for

the general.

3.2.2.2 Aggregation as Feature Construction

Collective classification can use constructed relational features for the inference task.

However, most of the local classifiers use only fixed-size feature vectors, neighbor

counts are varied greatly in networked data. For instance, a Twitter user can have

many followers. Although it is not a preferred method, by considering limited (equal)

number of connections for each user, fixed-size feature vectors could be constructed.

A desirable solution is to apply aggregation techniques to summarize the node’s

neighborhood information. For example, the number of neighbors which have dif-

ferent class labels could be counted and added as a new feature to node. Class labels
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may be replaced or supported with local attributes. For numerical attributes, it is also

possible to use statistical methods such as minimum, maximum, median, mode, ratio.

On the other hand, for each pair of neighboring nodes, similarities of their local at-

tributes can be considered exactly. In this study, a similar method is discussed but not

only implemented as an aggregation method but also used as a weight in relational

probability calculations. Perlich and Provost [27] have worked on aggregation-based

feature construction as the relational concept in detail.

3.2.2.3 Collective Classification Algorithms

Collective classification can be seen as a relational optimization task for networked

data. According to algorithm’s nature, different relational objective functions are

optimized within collective inference techniques.

It is better to divide collective classification into three models for two reasons [20].

Firstly, differences among them are seen clearly. Secondly, different models can be

combined or mixed to propose alternative systems.

These models are described as follows:

1. Local (non-relational) model: This model is learned for target (class) variable

by using the local attributes of the nodes in the network. Alternatively, classical

machine learning methods can be employed. Generated initial class priors stand

for other two components subsequent use.

2. Relational model: Relational features and links among entities come into

prominence for this component. It builds different objective functions which

are ready for estimate node’s target attribute probabilities with its neighbor-

hood. It is also possible to benefit from local attributes of the neighboring

nodes.

3. Collective inference: Created relational objective functions are generally the

joint probability distributions which are based on Markov Random Fields. For

example computing Equation 3.2 needs collective inference methods. As a
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result, it is tried to be learned how a node’s classification is influenced from its

neighbors classification in a collaborative setting.

In the next subsections, according to above components, local, relational classifiers

and collective inference algorithms (which are also implemented in Netkit-SRL, Sec-

tion 3.4.3), are introduced appropriately.

3.2.2.3.1 Local Classifiers

Concisely, local classifiers generate initial prior class membership estimations from

the networked data. These priors can be Bayesian or directly computed from local

attributes of the node instances independently.

Formally, given nodes with known class labels as training data, local classifiers learns

a model that represents given node’s probability distribution for class memberships.

Each node is treated as independent from other nodes (like in traditional machine

learning) and local attributes are considered.

3.2.2.3.2 Relational Classifiers

Similar to the link-based classification field (Chapter 2, Section 2.3), relational clas-

sifiers learn a relational model via producing joint probability distribution over the

nodes neighborhoods on given networked data.

On the other hand, aggregation techniques could be utilized to help to summarize

neighborhood information for each node. By this way, neighbor’s features gain more

importance for learned model. E.g. for a particular training node, local attributes and

class labels of neighbor nodes could be combined with naive bayes model [7].

Here are the relational classifiers that are already implemented in Netkit-SRL and

used in this thesis experiments:

Weighted-Vote Relational Neighbour Classifier (wvrn): Weighted-vote relational

neighbour classifier produces a weighted mean of class membership probabil-

ity estimations from node’s neighbors. Also, homophily principle (Chapter 1,
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Section 1.1) are assumed. Instead of training a separate relational model, it

estimates the probabilities at the inference time simultaneously.

By following the notation in Chapter 1, Section 1.2, objective function is de-

fined as:

P (ci = c|Ni) =
1

Z

∑
vj∈Ni

weighti,j × P (cj = c|Nj), (3.3)

where Z is standard normalization variable which smooth the summed values

on the range 0 and 1. weighti,j represents the edge weight between node i and

node j (simply equals to 1 for this study).

Probabilistic Relational Neighbour Classifier (prn): This is a special case classi-

fier for the weighted-vote relational neighbour classifier and uses naive Bayesian

combination of neighbors edges. Simply, while estimating a particular node’s

class label probability, it multiples each neighboring node’s class prior proba-

bility values.

Class-Distribution Relational Neighbour Classifier (cdrn-norm-cos): The class

distribution relational neighbor classifier creates an average class vector for

each class of node and then estimates a label for a new node by calculating how

near that new node is to each of these class reference vectors.

Class vectors are calculated by the summation of weights that are linked to

each neighbor’s (known) class. E.g. if there are six neighbors and two classes

in networked data, there are twelve elements in this node’s class vectors. Also,

average is obtained by dividing the vector elements with the number of times

that class was found.

Class reference vectors are the average of the class vectors for nodes known to

be of class c based on normalized vector summation.

Finally, ready for estimation objective function is defined as:

P (ci = c|Ni) = similarity(classvector(vi), refvector(c)), (3.4)

where cosine similarity with standard normalization is used by default in Netkit-

SRL.
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Network-Only Bayes Relational Classifier (no-bayes): Network-only Bayes clas-

sifier is based on the algorithm from Chakrabarti et al. [7]. It uses multinomial

naive Bayesian objective function which includes vi’s neighbors as:

P (ci = c|Ni) =
P (Ni|c)× P (c)

P (Ni)
, (3.5)

and

P (Ni|c) =
1

Z

∏
vj∈Ni

P (cj = c
′

j|ci = c)weighti,j , (3.6)

where Z is standard normalization variable and c
′
j is the class label observed at

node j. Denominator of Equation 3.5 is ignored due to normalization across the

classes.

Actually, in Netkit-SRL, there are some differences from the original algorithm.

For example, Chakrabarti et al. used local attributes of neigbor nodes. How-

ever, Netkit-SRL approaches the algorithm in univariate environment and does

not use local attributes for initial priors.

Due to the collective inference algorithm choice, class priors or null values are

employed for neighbor nodes. For possible zeros in probability estimations,

Laplace smoothing is applied. Also, it is assumed that all neighbor nodes have

known (or estimated) class labels for future steps of inferencing.

Briefly, Network-only Bayes classifier counts the class labels of node vi’s each

neighbors. Then, product it with prior class distributions. Estimation needs

product of each neighbors observed class value probabilities conditioned on

given nodes class values and getting powered with edges weights.

Network-Only Link-Based Relational Classifier (nolb-lr-distrib): Network-only

link-based classification is based on the algorithm from Lu et al. [19]. Firstly,

it creates normalized feature vector of the training node via aggregating its

neighbor’s attributes (only class attribute for Netkit-SRL). Then, it uses logis-

tic regression (wrapped from Weka for Netkit-SRL) for relational modeling.

Learned model is employed for the estimation of P(ci = c|Ni) in collective in-

ferencing step.

Even though there are several aggregation methods in Netkit-SRL, feature vec-

tors consist normalized count of neighbor class attributes by ratio aggregator.
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Wrapped Relational Classifiers from Weka: Netkit-SRL has proposed a wrapper

class for using Weka’s local classifiers as relational classifers. These are logistic

regression, multinomial naive bayes (naivebayes) and decision trees (j48).

By using aggregation techniques, networked data is turned into Weka’s desired

classification features and then related algorithms is used for predictions. With

this technique, ideal attributes for each node instance gain more importance

while learning relational model and doing inference in collective classification

step. The more useful local features for a node, classification results are the

better. In this study, it is supported by the experiments results (Section 5.3.2)

which show best accuracies for the thesis emotion data.

Decision tree (j48) is the implementation of Iterative Dichotomiser-3 algorithm

(ID3) developed by the Weka [28]. It is based on the information gain idea that

iteratively builds a tree (model) according to determined splitting criteria as the

attribute which has highest information gain score. Then, classifies unknown

labeled object by adding it as a leaf into the true place on tree. That true place is

found by following splitting criteria node values compared with local attribute

values of processed node.

3.2.2.3.3 Inference Algorithms

The main goal of collective inference is to infer the unknown class labels of nodes

by maximizing the marginal probability distribution which is represented by learned

objective functions from relational classifiers. Also, if there is need for estimation of

interested node’s class membership, they return a prior estimations from local classi-

fiers.

In this section, two collective inference methods that are already implemented in

Netkit-SRL and used in this thesis experiments, are described as following:

Iterative Classification: Concisely, iterative classification classifies the node’s un-

known class labels by updating current state of the graph in each iteration until

every node’s label is stabilized or maximum iteration count is reached. In other

words, it applies a local classification to every node, conditioned on the cur-
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rent probability estimations of its neighbors and iterates until local objective

function estimations converge to a stable solution.

It is based on the methodology of Lu et al. [19]. Pseudo-code for Netkit-SRL

implemented iterative classification is seen on Algorithm 1.

Algorithm 1 Pseudo-code of (Netkit-SRL) Iterative Classification
for all vi ∈ U do

init_prob_vec ← local classifier estimations which are null values for each

neighbor node’s labels

end for

Randomize each vi ∈ U as R

repeat

for all vi ∈ R do

init_prob_vec ← relational classifier estimations which are non-null values

for each neighbor node’s labels

Assign the class value which has the maximum probability value in

init_prob_vec to vi

end for

until Iteration count is reached to 1000

Relaxation Labeling: Relaxation labeling is based on the method of Chakrabarti et

al. [7]. Pseudo-code for Netkit-SRL implemented relaxation labeling is shown

on Algorithm 2.

Unlike iterative classification, relaxation labeling uses direct class estimations

from learned models rather than constant labeling (e.g. as null). By this way,

it does not miss the previously estimated probabilities in each step of the infer-

ence. However, this forces the chosen relational classifier to get all (unknown

labeled) node’s (vi ∈ U) probability class distributions initially.

As seen from Algorithm 2, relaxation labeling does not follow the routine that

estimates a single node at a time and updates the graph state instantly. It stands,

holds the estimations from previous iteration then use these values on the next

iteration. As a result, inference is carried out simultaneously.

By the way, Netkit-SRL uses simulated annealing as taking precautions for
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Algorithm 2 Pseudo-code of (Netkit-SRL) Relaxation Labeling
for all vi ∈ U do

init_prob_vec ← local classifier estimations which are unconditional marginal

class distribution via using known labeled nodes

end for

repeat

for all vi ∈ U do

init_prob_vecitercount+1 ← relational classifier estimations for P(ci = c|Ni)

from previous itercount

Assign the class value which has the maximum probability value in last

itercount of init_prob_vec to vi

end for

until Iteration count is reached to 99

algorithm’s not converging possibilities. By tuning some parameters, node’s

self estimations become more important rather than its adjacent neighbors.

3.3 Feature Vector Construction and Feature Selection

Features correspond to the raw texts (tweets) for gathered data in this study. Text-

based data mining is a challenging process due to its unstructured and compelling

nature. Some special techniques are needed to be applied for extracting meaningful

entities from texts.

Representing text objects in a common pot, vector-based approaches are preferable.

Each text feature is characterized by their words. Then, all of these words are hold

in a pool for latter use (bag of words). For each instance, presence of the words from

that dictionary pool are weighted with their occurrence counts. As a result, texts are

turned into common feature vectors which include their word counts.

Of course some words are not useful for the classification task. Such words are called

as stop-words and should be eliminated before feature selection. Remaining words

can construct a vast amount of feature space and need a mechanism to reduce this

redundancy.
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3.3.1 Word UniGrams

N-grams of texts are widely used in text mining or natural language processing (NLP)

applications. They can be defined as ordered set of words list that form the text. Main

difference from bag of words approach is to keep ordering of words in each text

feature. Unigrams are words, bigrams are the two word phrases, trigrams are three

word phrases and so on.

However, big n numbers are not leaded better results in text mining literature. Also in

study [9], unigrams are leaded best accuracy result for the SVM classification method

and so that it is chosen as baseline method for this study.

If n = 1, it is called as unigrams and as an example, sentence "Tea plant grows in

wetlands." is divided its five unigrams as follows: {Tea}, {plant}, {grows}, {in},
{wetlands}.

At next step, features (unigrams) are weighted with their occurrence counts in the

sentence and builds a common vector form for all instances. However for our above

example, since each word occur only at once, its feature vector is simply represented

as: <...1, 1, 1, 1, 1...>.

3.3.2 Information Gain for Feature Selection

Information gain [16] is a feature selection mechanism that is used for finding the

useful features which have significant effect on classification process. Other features

are seen as redundant and must be eliminated to reduce dimensional feature space.

The goal of feature subset selection is to find a minimum set of features such that

the resulting probability distribution of the data classes is as close as possible to the

original distribution obtained using all attributes.

It is based on the idea of measuring the amount of information about class predictions,

namely only available information is the presence of feature and its class distribution.

The features which have great information gain score, are seen as significant. In other

words, these scores say how much part of the information available in that feature
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contribute towards classification or not.

3.4 Tools

In this section, tools that are used in this thesis are described.

3.4.1 Zemberek

Zemberek [2] is an open source natural language processing (NLP) framework for

agglutinative Turkic languages. It is coded in Java and has special libraries to process

the words in Turkic languages.

Zemberek allows the following operations on Turkic words such as spell check-

ing, stemming, misspelled word correction, word suggestion. With its pre-defined

language-specific alphabets, letters, roots and suffixes files, Zemberek morphological

parser analyze input words.

Spell checking is available only for one letter correction. When it is queried for a

word, it returns a list of possible suggestions of the queried word. First item is used

as best result.

A sample query for a misspelled word ("mrhabalar") can print corrected suggestions

with the following Java code via Zemberek:

Zemberek zem = new Zemberek ( new T u r k i y e T u r k c e s i ( ) ) ;

S t r i n g w = " m r h a b a l a r " ;

f o r ( S t r i n g s t r : zem . one r (w) )

{

System . o u t . p r i n t l n ( s t r ) ;

}

3.4.2 LibSVM and InfoGainAttributeEval on WEKA

Weka [13] is a popular data mining tool which has many different traditional machine

learning and attribute processing methodologies.
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LibSVM [8] is a integrated wrapper for support vector classification on Weka. Its .jar

file must be included in the class path of Weka library for the Java virtual machine.

It provides several types of support vector machines for multi-class classification, re-

gression, and one-class problems, and gives a choice of different kernel functions such

as linear and polynomial (explained in Section 3.2.1). Cross-validation is employed

for the parameter selection.

InfoGainAttributeEval is a Weka’s attibute selection mechanism which evaluates at-

tributes by measuring their information gain with respect to the class. It uses the

Ranker search method and ranks the attributes due to their information gains. Also,

it discretizes numeric attributes via using the MDL-based discretization method or

binarizes them. Required top-ranked n-attributes can be gathered by changing the

optional parameter.

3.4.3 NETKIT-SRL

Netkit-SRL (or Netkit), is an open source Network Learning Toolkit for Statistical

Relational Learning. It is coded in Java and integrates with the Weka [13] data mining

with machine learning tool. It allows to combine different type of components for

relational classification on networked data. It instantiates five modules that are also

mentioned in Section 3.2.2.3 as:

1. Input Module: Reads the given data into memory as a graph structure.

2. Local Classifier (LC) Module: Returns local classifier’s prior class estima-

tions for given unknown labeled node by using only its own attributes.

3. Relational Classifier (RC) Module: Returns relational classifier’s class esti-

mations for given unknown labeled node by using its own and also it’s neigh-

bor’s attributes.

4. Collective Inference (CI) Module: Returns class estimations for given un-

known labeled node by applying collective inferencing that uses relational and

local classifiers bringing together.
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5. Weka Wrapper Module: This module wraps the different Weka machine

learning algorithms (e.g. multinomial naive bayes, decision trees, logistic re-

gression) by turning given networked data instances into Weka recognizable

entities. As a result, Weka’s algorithms can be used either as a relational clas-

sifier or a local classifier.

All of above Netkit modules can be seen at top-level as different interfaces which are

needed to be implemented for the different type of classifiers. They are described

in Section 3.2.2.3 in detail and used in this study. Also, Netkit allows to design

new classifier components and use them with different configurations. Core working

principle of Netkit framework follows the steps on Table 3.1.

Table 3.1: Core working principle of Netkit framework
Given: Graph G with T (known labeled node set), vi ∈ U, kind of LC, RC and CI

Train local classifier LC’s model via G with T
Train relational classifier RC’s model via G with T

Apply collective inference CI on vi ∈ U via RC’s learned model
Return:: Estimated class label value for vi ∈ U

Relational classifier (RC) is the main component of collective classification proce-

dure. Specifically, since RC requires aggregation (Section 3.2.2.2) on neighbor nodes,

Netkit includes four options for the aggregation as:

• None: Do not use any attributes for aggregation (classical machine learning)

• ClassOnly: Use only class attribute for aggregation

• ExcludeClass: Use attributes except from class attributes for aggregation (clas-

sical relational learning)

• All: Use all attributes for aggregation

However, not all of above aggregation techniques are implemented for Netkit rela-

tional classifiers. This case is open to development and the point is caught in this

thesis. And also seven aggregation methods are also included in Netkit as: count,

exist, max, mean, min, mode and ratio.

A sample Netkit collective classification configuration can be run from terminal with

the following command:
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CHAPTER 4

PROPOSED METHOD

4.1 Overview

This chapter presents the methodology proposed in this thesis work. Main objective

is to collectively classify users’ unknown emotions reflected in the social network

postings with the help of their relationship information. On the other hand, by the

proposed relational classifier, their text features are also taken into consideration.

The first step is data gathering. Within this study, we used two data sets, where one of

them is publicly available and the other one is from the literature. Beside these data

sets, we gathered a new set of data from Twitter. After collection of data, since mining

Turkish texts is a challenging issue, retweets are turned into effective feature vectors.

In addition, aiming to create social network, synthetic and realistic relationship data

are generated respectively. Finally, SVM and collective classification algorithms are

applied to each dataset.

Mainly, there are five phases:

1. Data Gathering

2. Data Preprocessing

3. Feature Vector Construction and Feature Selection

4. Relationships Generation

5. Classification
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Detailed overview of the proposed method is shown in Figure 4.1.
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Figure 4.1: Overview of the Thesis Proposed Method

4.2 Data Gathering

Sentiment140 dataset is collected from Twitter API 1 and described in study [12].

They approach data collection issue as querying tweets due to constructed emoti-

con lists. For instance, while searching ":)" returns positive tweets, querying ":("

returns negative tweets. Final training data has equal class-distribution which con-

1 https://dev.twitter.com/overview/api
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tains 800.000 positive and 800.000 negative tweets. They also collect test data that

consists of 177 negative and 182 positive manually marked tweets. However, since

cross-validation evaluation method is used in this thesis work, test data is stayed out

of need for the experiments.

Demirci [9] collects its data by querying each element of expanded emotion-related

hashtag lists. For six emotions, there are six emotional hashtag words list is con-

structed with word’s synonyms and adjective forms. Totally obtained 6000 Turkish

tweets are equally distributed according to their class labels.

Similar to the work in [22], for gathering thesis emotion data labeled instances, dif-

ferent emotion related hashtags are monitored by using Twitter API. These are Turk-

ish keywords such that "sinir" ("anger"), "korku" ("fear"), "mutluluk" ("happiness"),

"üzüntü" ("sadness"), "iğrenç" ("disgusting"), "şaşkınlık" ("surprise"). If the word

does not return enough results, its derived versions are employed. API restrictions

are overcome by waiting for time intervals. As a result, 1200 labeled retweets are

collected for each emotion category. Then, all of six categories retweets are merged

together and there are 7200 instances in total.

4.3 Data Preprocessing

For the upcoming related Netkit experiments, Sentiment140 data preprocessing steps

are:

• Unnecessary first, second and third fields are removed.

• Whole dataset is divided into two parts and each of them contains 400.000

positive, 400.000 negative instances. In this study, one of them are employed

(800.000 instances)

• Since the study is a user-centric approach, duplicate user names are eliminated.

Also, to be valid for all of the datasets that are used in this study, duplicate

elimination follows a simple majority vote counting. With this method, there

remains user instances whose class label has the largest majority.
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• Along with unique users updated dataset contains 659.773 instances and all of

them are shuffled.

After these steps, dataset is named as SentDS and final short view of the SentDS can

be seen in Table 4.1.

Table 4.1: Short View of SentDS
Username Tweet Sentiment
alyssaavant @ExtraordMommy my internet is down 0

itsnix9
@so_we_beat_on it makes me the winner and you the
loser

4

Andi_Skene All by myself... I like to be ALL BY MYSELF 4

neim81094
Dammit! Im forced to study! Why cant i just go 2
bed?!

0

Demirci’s emotion dataset is also preprocessed in its original so that the hashtags that

are used for classification purpose are stripped off from the tweets. It is named as

EmoDS-1 and sample data instances are shown on Table 4.2.

Table 4.2: Short View of EmoDS-1
User ID Tweet Emotion

30
Sapsal olmayan bileti satıyor allahtan sağduyulu tiya-
tro personeli var da oturacak yer bulabildik..

anger

906
Topuklu ayakkabi giyip ayaklarini suruyerek dolasan-
lardan !

disgust

1625 Korkularının üzerine gidecen hacıı fear
2553 Azicik gulelim ya.. joy

3242
sevgilim yok diyen hayatına bakıp şükür etsin tweeti
atarken kullandığı ellerinden biri olmasaydı asıl mut-
suzluğu o zman tadacaktı

sadness

4074
Patrona sorarak belirliyorlarmis bu asgari ucreti.
dehsete kapildim

surprise

Besides all this, thesis collected emotion dataset’s text features are needed to have

detailed pre-processing for the latter feature vector construction steps. Such tech-

niques are employed for turning each instance’s raw text attributes (retweets) into

noise-pruned forms.

Applied steps are shown in order as following:
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1. Firstly, these are the noises that are cleaned from each retweet instance respec-

tively:

• New line, tab indicators

• URL links, (@) usernames, RT flags

2. Then, emotional expressions, hashtags (inside tweets) and punctuation are ex-

tracted (hold for later use, if necessary) separately and removed. Especially,

hashtags inside tweets are removed for preventing possible bias in future clas-

sifications.

3. Finally, all non-word characters are removed for other possible noises.

4.4 Feature Vector Construction and Feature Selection

After preprocessing steps of thesis emotion data, text-based attributes are represented

as constructed feature vectors. Therefore, text-based mining techniques, which are

described in Section 3.3, are applied.

For this purpose, each text feature is characterized by its extracted unigrams. Texts

are divided into their tokens which are the root form of the words with Zemberek

(Section 3.4.1) tool (also known as stemming).

Each individual token is also inspected for language and spell checking. Tokens that

are not in Turkish are removed. If the word is misspelled, first corrected suggestion

of Zemberek is founded for this word and returned this new suggested word’s root as

the stem.

All reliable tokens are added into a common pool (bag of words). The ones that are

not seen as effective for the classification (stop-words) are eliminated from this pool.

Elimination of these stop-words are done according to a Turkish stopwords list 2,

retrieved from a free-to-use project which has collection of stop words in 29 different

languages.

This final token pool (dictionary) constitutes feature space for the data. Features are
2 https://code.google.com/p/stop-words/
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weighted by their term counts directly. In other words, by finding out the count of

each stem from the pool for each retweet, these counts were turned into separate

feature vectors which contain 1862 features in total.

In order to select significant features, information gain method (described in Section

3.3.2) on Weka is applied and the large feature space is reduced into 800 features

(number of best features is obtained as 800 as it is shown to provide best accuracy

in [9]). Finally, the dataset is named as EmoDS-2. As an example, a sample EmoDS-2

including 4 instances is shown in Table 4.3.

Table 4.3: Short View of EmoDS-2
Usernames Feature Vector Values Labels

@gioselyn_4 <1, 1, 1, 1, 1, 0, 0, 1, 1, . . . > sadness
@Ersiyn <0, 0, 0, 1, 0, 0, 1, 1, 0, . . . > surprised

@Mukremin1973 <0, 0, 0, 0, 1, 0, 0, 2, 0, . . . > fear
@Feneristcom <0, 0, 0, 0, 0, 0, 0, 1, 0, . . . > joy

4.5 Relationships Generation

4.5.1 Synthetic Relationships Generation

For the only positive sentiment users, a relationship data (244.104 instances) is gen-

erated for the SentDS dataset experiments. In this type of relationship, nothing but

each positive sentiment user is matched with another positive sentiment user.

For generating all users relationships, "similar users hold similar sentiments" (ho-

mophily principle (Chapter 1, Section 1.1)) is assumed initially. Each user name with

positive sentiment is randomly matched with each other and the same process is ap-

plied for the users with negative sentiment. Finally, under this setting, each user has

at least one similar sentiment friend (neighbour). Also, each relationship is assumed

as equal and their weights are set as 1.

Aiming to use in the collective classification experiments on EmoDS-1 dataset, four

types of synthetic relationships are generated. Each of them is described as:

Relationship Generation 1 (One-to-one Homophily Relations): For generating user
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relationships, "similar users hold similar emotions" (homophily principle) are

assumed initially. Each user with anger feeling is randomly matched with the

other users having the same feeling and the same process is applied for the users

with each of the other five feelings. Then, all matching users are joined together.

Finally, in this setting, each user has at exactly one similar emotional friend

(neighbour). Namely, all users who share the same feeling are not friends.

Each relationship is assumed as equal and their weights are set as 1.

For the experiments, whole relationship data are divided into four parts that

include 25% (1400 instances), 50% (2800 instances), 75% (4200 instances),

100% (5600 instances) relationship information in order.

Relationship Generation 2 (Simple Anger-Joy Interaction): For simplicity, randomly

chosen 1 anger labeled user is matched with 14 users whose emotions are

spread such as: 2 anger, 2 disgust, 2 fear, 2 sadness, 2 surprise and 4 joy.

In that way, it can be asked how an angry user could be affected by his/her

intensive joy friends. Training data is also reduced into 15 instances (1 user +

14 friends, their tweets and emotions). Each relationship is assumed as equal

and their weights are set as 1.

Relationship Generation 3 (Anger-Joy and Sadness-Joy Interaction): Similar to the

second case of relationship generation, each of the angry users (800 in total) is

matched with 14 friends who with the same emotion distribution (2 anger, 2

disgust, 2 fear, 2 sadness, 2 surprise and 4 joy). 11.158 user relationships are

created in total.

For the crosscheck of experiment results, again each of the sad (800 in total)

users are matched with 14 friends whose emotions are spread such as: 2 anger, 2

disgust, 2 fear, 2 sadness, 2 surprise and 4 joy. Due to the equal label separation,

it is expected that experiment results remain same with the former.

Relationship Generation 4 (More Realistic Random Relations): In the last phase of

relationship generation, more realistic relations are created between users as:

Each user can have 30 friends at maximum and they are randomly matched

with their friends (i.e. followers) regardless of their emotional labels. Thus,

each user could have different number of relationships with different emotions.
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It is named as more realistic relationships-1. Then, the same process is repeated

provided that each user can have 120 friends at maximum. This second version

of network is named as more realistic relationships-2 in related experiment

results.

4.5.2 Realistic Relationships Generation

In order to construct a network for EmoDS-2, by following interaction ways that are

described in Section 3.1.1, all realistic friendship relations are extracted from the each

retweet which contains RT flags and @ mentions. Self-edges caused by self-retweets

and relations that are not unique (i.e. either one of the related usernames are not

located as an instance in EmoDS-2) are discarded. At the end, 606 relationships are

generated and they are visualized using open graph visualization platform, Gephi 3.

Generated relationships are presented in Figure 4.2.

Figure 4.2: Visualisation of All Relationships Graph

3 http://gephi.github.io
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In addition, as a snapshot of a partial graph, 30 user nodes, their relationships and

labels are illustrated on Figure 4.3. As shown, a sparse graph is formed.

Figure 4.3: 30 Users with Relationships and Labels Graph

4.6 Classification

SentDS and EmoDS-1 datasets are used for collective classification only to see the

preliminary behavior on synthetically constructed networks. Collective classification

algorithms available in Netkit are applied on these data directly.

Classification is done on two categories on EmoDS-2 dataset. First one is the SVM

classification as a baseline algorithm for comparison purpose. Latter is the collective

classification with realistically generated relationship information. Since, neighbor

features are under evaluation for the related experiments, user retweets are prepro-

cessed for possible noise eliminations and represented as feature vectors. Large fea-

ture space is also reduced with information gain method. Then, Netkit’s own collec-
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tive algorithms, also expanded with proposed relational classifier (Section 4.6.1.1),

are applied on EmoDS-2 precisely.

4.6.1 Collective Classification

Collective classification algorithms are applied with Netkit-SRL tool (Section 3.4.3).

Different combinations of relational classifiers and inference methods are employed.

Also, relational classifier’s aggregation options are changed for some cases to under-

stand Netkit’s readily available relational classifier’s behavior.

4.6.1.1 Proposed Network-Only Bayes Relational Classifiers

McDowell and Aha [21] investigate the neighboring attributes’ contribution while

building relational models and estimating it with collective inferencing on partially

labeled networks. They propose a probabilistic relational model for bringing neighbor

attributes and labels together. Results show that using both neighbor attributes and

labels on building relational model, often produces the best accuracy.

However, this study is tested under some small sparsely-labeled networked datasets.

Moving beyond this approach to fully-labeled sentimental social networks, it can be

asked whether the obtained results are consistent or not for this supervised setting.

Inspired from this idea, Netkit’s network only bayes relational classifier (nobayes,

Section 3.2.2.3.2) is expanded with adding neighbor features information into process

and implemented in Netkit environment.

The proposed algorithm is started with a simple probabilistic assumption that each

neighbor’s features are conditionally independent. Because attributes are represented

as feature vectors, their cosine similarities between its neighbors are computed for

prior probability calculations, rather than simply counting. Then, these scores are

used in the objective function given in Equation 4.1 as a new variable.

P (Ni|c) =
1

Z

∏
vj∈Ni

P (cj = c
′

j|ci = c)weighti,j × P (simscorej|ci = c)weighti,j (4.1)
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In Equation 4.1, Z is standard normalization variable and simscorej is the cosine

similarity score observed at node j.

Relational classification based on Equation 4.1 is called as Network-Only Bayes-

VectorSimilarity classifier, nobayes-vecsim for short. Pseudo-code for Netkit-SRL

implemented proposed nobayes-vecsim relational classifier is shown on Algorithm 3.

Hence, while estimating the proposed objective function with collective inferencing

method, neighbor’s features also become valuable. On the other hand, if neighbor

feature vectors are disparate with unknown labeled user’s feature vector, it is expected

not too much increase on classification accuracies.

Since this thesis approach is user-centric, emotion data EmoDS-2 have unique user

instances where each of them has only one unique retweet. Consecutively, each neigh-

bor node has only one useable feature vector for the proposed relational classifier

nobayes-vecsim.

Another version of this relational classifier is also implemented as nobayes-avgsim.

It takes account of the case that a user can have different number of retweets under

different emotion classes. However, Netkit is only configured to use unique user

instances and does not allow to use the same username (seen as key attribute) under

different classes.

For this case, a different implement strategy is employed as follows: cosine simi-

larities between each neighbor user’s feature vectors are calculated and the average

is taken at the end. Then, averaged similarity score for each node is fed into rela-

tional classifier’s Equation 4.1 externally. Pseudo-code for Netkit-SRL implemented

proposed nobayes-avgsim relational classifier is shown on Algorithm 4.

From the point of EmoDS-2 data view, not only class labels of their friends but also

their attributes are taken into consideration to understand whether the expression of

emotions are consistent with their friends or not. In other words, it is expected to

see the effect on collective classification of user emotions when utilizing their friends

label and local attribute information together.
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Algorithm 3 Pseudo-code of Proposed Nobayes-Vecsim Relational Classifier
function InduceRelationalModel

for all vi ∈ T do

c_prior_prob_vec← vi’s class value counts // find P (c)

for all vj ∈ Ni do

c_nbor_prob_vec← vj’s class value counts powered with edge weights // find

P (cj = c
′
j|ci = c)weighti,j

simscore_nbor_prob_vec← vj’s cosine similarity scores powered with edge

weights // find P (simscorej|ci = c)weighti,j

end for

end for

Normalize each vector

end function

function ApplyEstimation // for the inference phase, estimate Equation 4.1

estimation_prob_vec := {}
for all vi ∈ U do

known_prob_vec← c_prior_prob_vec

for all vj ∈ Ni do

known_prob_vec ∗= c_nbor_prob_vec ∗ simscore_nbor_prob_vec
end for

end for

estimation_prob_vec← known_prob_vec

return estimation_prob_vec as vi’s class estimations

end function
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Algorithm 4 Pseudo-code of Proposed Nobayes-Avgsim Relational Classifier
for all vi ∈ G do

featvec_vi ← vi’s features

for all vj ∈ Ni do

featvec_vj ← vj’s features

Find cosine similarity scores between featvec_vi and for each featvec_vj

Take the average as avg_simscore_values

end for

end for

return avg_simscore_values for all vi ∈ G

function InduceRelationalModel

for all vi ∈ T do

c_prior_prob_vec← vi’s class value counts // find P (c)

for all vj ∈ Ni do

c_nbor_prob_vec← vj’s class value counts powered with edge weights // find

P (cj = c
′
j|ci = c)weighti,j

simscore_nbor_prob_vec ← vj’s cosine similarity scores from

avg_simscore_values powered with edge weights // find

P (simscorej|ci = c)weighti,j

end for

end for

Normalize each vector

end function

function ApplyEstimation // for the inference phase, estimate Equation 4.1

estimation_prob_vec := {}
for all vi ∈ U do

known_prob_vec← c_prior_prob_vec

for all vj ∈ Ni do

known_prob_vec ∗= c_nbor_prob_vec ∗ simscore_nbor_prob_vec
end for

end for

estimation_prob_vec← known_prob_vec

return estimation_prob_vec as vi’s class estimations

end function
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CHAPTER 5

EXPERIMENTS

In this section, conducted experimental analysis and the obtained results are pre-

sented. Each of the three Twitter data sets is tested under collective classification

framework, Netkit, with its generated synthetic or realistic relationships. While pro-

cessing, important relational classifier-inference method combinations are analyzed

closely.

Experiments are evaluated with 10-fold cross validation. It splits the nodes into 10

equal-sized sets and performs 10 evaluations runs where it holds out one of the sets

(test set) and trains on the rest. It then predicts the test set and finally gives averaged

accuracy performance.

In some experiments, relational classifiers are configured with -All aggregation op-

tion to see the algorithm’s consideration on neighbor’s all features. However, this

option is dependent only to Netkit’s own implementations and it could only be set

as -ClassOnly for most of the relational classifiers. In addition, proposed relational

classifier algorithms (Section 4.6.1.1) are experimented on EmoDS-2 dataset with

realistic relationships.

5.1 Dataset Descriptions

5.1.1 Sentiment140 Twitter Dataset (SentDS)

Original SentDS dataset contains 1.600.000 instances which has been processed so

that the emoticons are extracted. Also, it’s in a regular CSV format and includes 6
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fields as follows:

1. the polarity of the tweet (0 = negative, 4 = positive)

2. the id of the tweet

3. the date of the tweet

4. the query. If there is no query, then this value is NO_QUERY.

5. the user that tweeted

6. the text of the tweet in English language

5.1.2 Emotional Twitter Datasets

There are two emotional datasets which have used in this thesis. They are described

under the following subsections respectively.

5.1.2.1 Demirci’s Emotion Dataset (EmoDS-1)

Original emotion training dataset contains 4800 instances. Also, it’s in a regular CSV

format and includes 3 fields as follows:

1. the id of the user (there are 4800 unique users so index is from 1 to 4800)

2. the text of the tweet in Turkish language

3. the emotion label of the tweet

All training data are split into equal class labeled tweets and indexed as seen on Table
5.1.

Table 5.1: EmoDS-1 Class Label Distribution due to User ID Ranges
User ID Ranges Class Labels

0-799 anger
800-1599 disgust

1600-2399 fear
2400-3199 joy
3200-3999 sadness
4000-4799 surprise
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5.1.2.2 Emotion Dataset Collected within This Study (EmoDS-2)

However, since this work’s approach is user-centric, duplicate usernames are elimi-

nated from the whole data. Finally, there are 6841 instances (unique usernames are

regarded as key field) which each contains three fields named as Usernames, (Re)

Tweets, Labels. Class distributions could be seen on Table 5.2.

Table 5.2: EmoDS-2 Class Label Distribution due to Instance Counts
Class Labels Instance Counts

anger 1118
disgust 1140

fear 1145
joy 1191

sadness 1121
surprise 1126

5.2 Experimental Analysis on Collective Classification for Sentiment Analysis

5.2.1 Collective Classification and Dataset Size Performance Results

In order to analyze the collective classification performance under different data sizes

for a simpler task of binary classification, i.e. sentiment analysis, all SentDS data is

divided into 10 parts which contains increasing amounts of instance as 10% (65.977

instances), 20% (131.955 instances), 30% (197.933 instances), 40% (263.911 in-

stances), 50% (329.889 instances), 60% (395.867 instances), 70% (461.845 instances),

80% (527.823 instances), 90% (593.801 instances),100% (659.773 instances) in or-

der.

Then, each part is experimented on Netkit with 21 different collective classification

configurations. Each of these configuration’s components are explained in detail in

Section 3.2.2.3. They are included in Table 5.3, Table 5.4 and Table 5.5 together with

their descriptions. By the way, in all cases mentioned in Table 5.3, the local classifier

is applied, and then the relational classifier is applied only once.
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Obtained accuracy and time performances can be seen in Figure 5.1 and Figure 5.2.

Weighted-vote relational neighbour classifer and probabilistic relational neighbour

classifer are almost achieved 30% less accuracy performance than the others. Since

these algorithms are not designed to build a relational model before the inference

phase, it does not matter how big the training data is. Also for them, iterative classifi-

cation is not a good choice for dealing with uncertainties of neighbor’s labels due to

its running time performances.

As seen in Figure 5.1 and Figure 5.2, all of the collective classification configurations

with link-based relational classifiers reach almost the same accuracy results around

60%. Especially, Network-Only Bayes relational classifier with iterative classifica-

tion inference method combination behaves generally well according to its time per-

formances.

NoBayes-Iterative classification results can be examined in closer in Figure 5.3 and

Figure 5.4. While running on whole data instances, it achieves the same best accu-

racy result with other configurations in about ~17 seconds. It rapidly converges the

stable class membership estimations for the unknown labeled nodes during iterative

inferencing. Since, there is no relationship information, NoBayes relational classi-

fier induces its model directly from local classifier’s prior class distributions at the

training phase.

Instance Percentages

A
cc
ur
ac
y

%10 %20 %30 %40 %50 %60 %70 %80 %90 %100

0.6280

0.6285

0.6290

0.6295

0.6300

Figure 5.3: NoBayes-Iterative Classification Accuracy vs. Dataset Size Results of
SentDS Dataset
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Figure 5.4: NoBayes-Iterative Classification Running Time vs. Dataset Size Results
of SentDS Dataset

5.2.2 Collective Classification with Synthetic Relationships Results

Each collective inferencing method-relational classifier configuration are run on same

training data with generated two different types of synthetic relationship information.

In the first phase, for understanding how useful relationship information contributes to

collective classification task, only positive sentiment users relationship data are added

to the process. Link-based relational classifiers (nobayes, cdrn-norm-cos, nolb-lr-

distrib) combined with iterative inferencing has leaded great accuracies in short time.

Results can be seen in Table 5.6 and Table 5.7.

Table 5.6: Collective Classification with Only Positive Sentiment User Relationships
Accuracy Results

wvrn prn cdrn-
norm-cos

nobayes nolb-lr-
distrib

Null Inference 0.5255 0.5258 0.9999 0.9999 0.9999
Iterative Classification 0.5272 0.5263 0.9999 0.9999 0.9999
Relaxation Labeling 0.5271 0.5276 0.9999 0.9999 0.9999
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Table 5.7: Collective Classification with Only Positive Sentiment User Relationships
Running Time (sec) Results

wvrn prn cdrn-norm-
cos

nobayes nolb-lr-
distrib

Null Inference 21 23 24 19 183
Iterative Classification 552 2249 33 23 194
Relaxation Labeling 64 231 302 59 298

In the second phase, all users relationships data is divided into four parts that in-

cludes 25% (164.944 instances), 50% (329.886 instances), 75% (494.829 instances),

100% (659.773 instances) relationship information in order. Then, these four dif-

ferent amount of relationship information are experimented respectively. Obtained

accuracy and time performances can be seen in Figure 5.5 and Figure 5.6.

On each step, adding more relationship information is increased final accuracies sig-

nificantly. On the other hand, time consumption could be change for different combi-

nations except for some of them. However, network only bayes classifier (nobayes) –

iterative classification combination results with the best accuracy among all analyzed

classifiers. This coheres with the Netkit’s own published results in [20].

5.3 Experimental Analysis on Collective Classification for Emotion Analysis

5.3.1 Experimental Analysis on EmoDS-1 Dataset

5.3.1.1 Collective Classification with Synthetic Relationships Results

Each collective inferencing method-relational classifier configuration are run on the

same training data under generated four different types of synthetic relationship in-

formation. For each of the relationship types, base performances were tested on with

only the training data (no relationship information) for comparison purposes.

For understanding how much one-to-one homophily relationship information con-

tributes to collective classification task, relationship data are added to the process at

varying percentages. Link-based relational classifiers (nobayes, cdrn-norm-cos etc.)

combined with iterative inferencing method has leaded great accuracies in short time.
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As more amount of relationship is included in the data set, higher accuracy results are

obtained, as expected. This coheres with the Netkit’s own published results in [20].

Obtained accuracy and time performances can be seen in Figure 5.7 and Figure 5.8.

For the simple anger-joy emotion interactions experiments, relational classifiers (ag-

gregation with only class values of neighbours) wrapped from WEKA – iterative

classification combinations are leaded considerable accuracies in short time. Results

are on Table 5.8 and Table 5.9.

Table 5.8: Collective Classification with Simple Anger-Joy User Relationships Accu-
racy Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.15 0.1 0.05 0.01 0.3 0.2 0.01
Iterative Classification 0.2 0.1 0.2 0.01 0.25 0.25 0.1
Relaxation Labeling 0.1 0.15 0.25 0.01 0.25 0.25 0.2

Table 5.9: Collective Classification with Simple Anger-Joy User Relationships Run-
ning Time (msec) Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 219 15 31 20 185 68 32
Iterative Classification 10 7 26 10 31 33 15
Relaxation Labeling 18 58 44 15 65 113 17

On the other hand, when relational classifiers include aggregation option on all at-

tributes of neighbours, naive bayes relational (wrapped from Weka) classifier has got

the best accuracy result (40%) as shown on Table 5.10 and Table 5.11.

Table 5.10: Collective Classification with Simple Anger-Joy User Relationships Ac-
curacy Results (aggr. -All)

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.1 0.15 0.1 0.01 0.15 0.25 0.15
Iterative Classification 0.15 0.15 0.15 0.01 0.15 0.25 0.25
Relaxation Labeling 0.2 0.1 0.2 0.01 0.25 0.4 0.15
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Table 5.11: Collective Classification with Simple Anger-Joy User Relationships Run-
ning Time (msec) Results (aggr. -All)

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 117 15 76 42 288 97 45
Iterative Classification 9 6 45 23 70 51 26
Relaxation Labeling 14 78 31 19 104 136 19

For the anger-joy and sadness-joy emotion interactions experiments, network only

bayes (nobayes) - iterative inferencing is achieved best results. Also, while training

and relation data get much bigger, accuracies increase significantly. Results are shown

on Table 5.12, Table 5.13, Table 5.14 and Table 5.15 respectively.

Table 5.12: Collective Classification with Anger-Joy User Relationships Accuracy
Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.09 0.103 0.332 0.227 0.293 0.306 0.291
Iterative Classification 0.118 0.105 0.328 0.260 0.313 0.332 0.316
Relaxation Labeling 0.117 0.117 0.327 0.244 0.304 0.332 0.318

Table 5.13: Collective Classification with Anger-Joy User Relationships Running
Time (sec) Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.56 0.46 0.5 0.26 3 0.63 0.24
Iterative Classification 2 42 13 0.12 3 0.44 0.17
Relaxation Labeling 0.18 4 1 0.52 4 7 0.41

Table 5.14: Collective Classification with Sadness-Joy User Relationships Accuracy
Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.098 0.108 0.342 0.233 0.296 0.305 0.290
Iterative Classification 0.120 0.114 0.331 0.225 0.313 0.333 0.315
Relaxation Labeling 0.113 0.113 0.331 0.231 0.318 0.333 0.311
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Table 5.15: Collective Classification with Sadness-Joy User Relationships Running
Time (sec) Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.57 0.39 0.53 0.25 3 0.59 0.25
Iterative Classification 2 33 13 0.12 3 0.46 0.17
Relaxation Labeling 0.19 4 1 0.51 4 7 0.43

Finally, two more realistic random relationships were tested in order. For the first net-

work (more realistic relationships-1, each user has 30 friends at maximum), nobayes

– iterative classification has achieved the fastest result in ~0.35 seconds (353 millisec-

onds) as seen on Table 5.17. For the second network (more realistic relationships-2,

each user has 120 friends at maximum), again same combination has achieved the

fastest result in ~1 seconds (1230 milliseconds) as seen on Table 5.19.

As expected, amount of relation is directly proportional to running time. Whereas,

same idea is not applicable for the accuracies as seen on Table 5.16 and Table 5.18.

This collective classification combination could be improved by healing relational

classifier algorithm’s prediction capability. For this purpose, thesis proposed rela-

tional classifier (nobayes-vecsim) is focused on the network only bayes algorithm.

Table 5.16: Collective Classification with More Realistic Relationships-1 Accuracy
Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.177 0.173 0.159 0.150 0.157 0.164 0.171
Iterative Classification 0.181 0.170 0.173 0.144 0.164 0.165 0.163
Relaxation Labeling 0.168 0.175 0.170 0.152 0.161 0.172 0.170

Table 5.17: Collective Classification with More Realistic Relationships-1 Running
Time (sec) Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.69 0.51 0.52 0.44 3 0.71 6
Iterative Classification 5 54 0.35 0.35 5 43 17
Relaxation Labeling 0.65 7 2 4 4 5 7
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Table 5.18: Collective Classification with More Realistic Relationships-2 Accuracy
Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.152 0.158 0.169 0.144 0.152 0.172 0.171
Iterative Classification 0.142 0.167 0.162 0.155 0.165 0.171 0.172
Relaxation Labeling 0.158 0.165 0.167 0.151 0.163 0.173 0.164

Table 5.19: Collective Classification with More Realistic Relationships-2 Running
Time (sec) Results

wvrn prn cdrn-
norm-
cos

no-
bayes

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 1 1 1 1 4 1 6
Iterative Classification 20 135 1 1 12 68 44
Relaxation Labeling 3 14 5 18 7 9 10

5.3.2 Experimental Analysis on EmoDS-2 Dataset

5.3.2.1 SVM Classification Result

As a baseline algorithm that is selected as best method from study in [9], libSVM

algorithm on WEKA (Section 3.4.2) with default values (radial basis kernel function,

10-fold cross validation) is applied onto EmoDS-2 and leaded to 87.9167% accuracy.

Also, it helps to gain insights on the reliability of constructed feature vectors.

5.3.2.2 Collective Classification with Realistic Relationships Results

For the purpose of seeing the defined thesis problem clearly from the real twitter

world perspective, each collective inferencing method-relational classifier configu-

ration are run on emotion data with generated realistic relationship informations.

Also, proposed relational classifier, nobayes-vecsim and its another version, nobayes-

avgsim are taken into consideration.

As described on Section 4.6.1.1, according to the proposed relational classifier’s na-
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ture, it looks for each user’s each neighbour’s feature vector similarities, multiples

edge weights with this value and uses it as a new variable in probability function cal-

culation while inferencing. Differently, it is provided to add neighbour’s attributes

into process by changing aggregation option to "All" for the other configurations if

it is already implemented in Netkit-SRL by default. In this way, relational classifier

not only thinks class labels of its neighbours but also aggregates on attributes of them

and adds as a new feature for prediction.

In the first phase, each of collective classification combinations are tried with no

relationship information and "All" aggregation option. Results are shown on Table

5.20 and Table 5.21.

Table 5.20: Collective Classification with No Relationships Accuracy Results (aggr.
-All)

wvrn prn cdrn-
norm-
cos

no-
bayes

no-
bayes-
vecsim

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.165 0.173 0.174 0.174 0.174 0.174 0.912 0.986
Iterative
Classification

0.171 0.170 0.174 0.174 0.174 0.174 0.912 0.986

Relaxation
Labeling

0.165 0.170 0.174 0.174 0.174 0.174 0.911 0.986

Table 5.21: Collective Classification with No Relationships Running Time (sec) Re-
sults (aggr. -All)

wvrn prn cdrn-
norm-
cos

no-
bayes

no-
bayes-
vecsim

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 2 1 14 2 1 46 170 749
Iterative
Classification

3 17 15 1 1 47 321 740

Relaxation
Labeling

1 3 162 1 1 125 8822 950

In the second phase, to see the relationship information effect on user’s emotions,

each of collective classification combinations are tried with all relationship informa-

tion and "All" aggregation option. Results are shown on Table 5.22, Table 5.23, Table

5.24 and Table 5.25 respectively.
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Table 5.22: Collective Classification with All Relationships Accuracy Results (aggr.
-All)

wvrn prn cdrn-
norm-
cos

no-
bayes

no-
bayes-
vecsim

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.187 0.192 0.190 0.207 0.206 0.220 0.909 0.985
Iterative
Classification

0.187 0.195 0.189 0.207 0.211 0.223 0.909 0.986

Relaxation
Labeling

0.192 0.186 0.190 0.208 0.208 0.220 0.909 0.985

Table 5.23: Collective Classification with All Relationships Running Time (sec) Re-
sults (aggr. -All)

wvrn prn cdrn-
norm-
cos

no-
bayes

no-
bayes-
vecsim

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 2 2 14 2 11 498 170 762
Iterative
Classification

3 20 15 1 11 525 1031 787

Relaxation
Labeling

1 3 173 1 11 711 8789 974

Table 5.24: Collective Classification with All Relationships Accuracy Results-2
(aggr. -All)

wvrn prn cdrn-
norm-
cos

no-
bayes

no-
bayes-
avgsim

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 0.190 0.188 0.193 0.213 0.211 0.237 0.908 0.987
Iterative
Classification

0.194 0.195 0.190 0.217 0.210 0.231 0.909 0.986

Relaxation
Labeling

0.195 0.189 0.195 0.214 0.208 0.235 0.909 0.985

Table 5.25: Collective Classification with All Relationships Running Time (sec)
Results-2 (aggr. -All)

wvrn prn cdrn-
norm-
cos

no-
bayes

no-
bayes-
avgsim

nolb-
lr-

distrib

naive-
bayes

j48

Null Inference 1 1 15 1 1 659 169 788
Iterative
Classification

3 20 16 1 1 580 1559 823

Relaxation
Labeling

1 2 181 1 1 880 8798 1026
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As seen from the results, generated sparse user friendship relations are yielded in

different ranges between users so that some users do not share the same feelings with

their friends as opposite to homophily principle. This situation is to be observed by

seeing small performance gain (~5%) results in collective classification accuracies.

Proposed relational classifier (nobayes-vecsim) leads to a small increase in accuracies.

However, it consumes considerable amount of time. This situation is pretended to

be healed with nobayes-avgsim relational classifier’s running time. Actually, it is

completely due to the implementation differences of two algorithms. In nobayes-

avgsim, by calculating vector similarities before the classification time, almost the

same accuracy results are obtained in less time.

On the other hand, Netkit-SRL is able to wrap some classifiers from WEKA as re-

lational classifiers (Section 3.2.2.3.2) and these are leaded up to 98.6% significant

accuracies. However, learning relational models takes long time (~13 minutes for

iterative classification-j48 combination) for them. It can be seen that they are not

affected from the relationship information too much and features reliability is much

more important for them.

By looking from Netkit collective classification view, decision tree (j48) algorithm

(Section 3.2.2.3.2) aggregate on related neighbor features collectively and add them

as new attributes into unknown labeled node’s feature space while estimating model

by the inference method (iterative classification).

5.4 Overall Discussion of Experimental Results

SentDS dataset experiments show that the training data size is proportional to small

amount of increase on prediction accuracies except from two relational algorithms

that are weighted-vote relational neighbor (wvrn) and probabilistic relational neigh-

bour (prn) classifiers. It is not important to have much data instance to predict un-

known labels for them. They could be useful for less-data domains.

Network-only-bayes (nobayes) relational classifier combined with iterative classifica-

tion comes to the fore with its time performances. It predicts on whole data in about
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17 seconds. This situation is due to the nature of its algorithmic operations. Big data

classification may be a good choice for this collective classification configuration.

Then, synthetic relationships experiments on SentDS data are held on two phases. In

light of homophily principle, if there is a user who has at least one friend with positive

sentiment, its unknown labeled is strongly predictable as positive. On the other hand,

adding more relationship information is increased all accuracies significantly.

So, for the user relations, preserving homophily idea, it can be stated that the more

relationship information is gathered, the better increase is obtained in collective clas-

sification. This situation is supported by the initial experiment results on EmoDS-1

dataset.

On EmoDS-1 data, user’s emotion interactions are tested with synthetically gener-

ated relationships. Anger-joy and sadness-joy emotion pairs are experimented and

consistent results show that user emotions can be affected from their friend’s inten-

sive emotions. Finally, two more realistic random relationships experiment results

present that possible different bias on the emotions of their neighbors can harm pre-

diction capabilities of user’s unknown emotional labels. Also, amount of relationship

is directly proportional to running time performances.

In the last phase, by seeing previous experiments as preliminary, EmoDS-2 dataset is

tested with generated realistic relationships. It is investigated how previous obtained

results are prevailing for the real Twitter world perspective. The proposed algorithm

nobayes-vecsim and its other version, nobayes-avgsim are also tried with other com-

binations. As seen from the results, sparse relationships between users indicate that

friends do not tend to share similar emotions with their connected users.

However, wrapped relational classifier from Weka, decision trees (j48), yield to sig-

nificant accuracy results. Due to the reliability of instance features, attributes gain

more importance then relationship information for that algorithm’s nature. While ag-

gregating on all features of the neighbors contribute to prediction performance too

much, the same can not be said for running time performances.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, user emotions in social networks are aimed to be predicted in a collabo-

rative setting. Different collective classification configurations are applied on related

sentimental datasets with their kind of relationship information. Different results are

obtained especially for the real world of Twitter.

It was expected to have strong correlations with retweet relationships on Twitter so-

cial network. The impact of that information is evaluated on the experiment results

obtained. However, generated thesis Twitter network (retweet) relationship informa-

tion is not very useful for collective classification task due to its sparse and different

emotion distribution.

Text-based features (Turkish retweets) of users are turned into compact feature vec-

tors by using language-specific tools and methods. Combining classical text mining

techniques with collective classification leads great results especially for some re-

lational algorithms. As in traditional machine learning methods, these algorithms

benefit from reliable neighbor features while inferencing.

Experiments in multi-class emotional domains, ideally with more than two emotions,

cause lots of biases in class predictions. On the other hand, if the classes are greatly

separable in terms of features, feeding this characteristic into collective classification

achieves significant accuracies.

It is possible to extend current study with some future works such as:

• Since all the user nodes are fully-labeled with their sentiments in this study,
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same techniques can be evaluated on partially-labeled networked data where

few labels of entities are known.

• Edge weights are assumed equally as 1 in all this thesis relationship data. For

the networks that include weighted edges, different link mining techniques

could be considered such as edge selection or handling heterogeneous links.

Edge selection can propose techniques analogous to those used in traditional

feature selection.

• Proposed and existing methods are applied into time-dependent emotional data

that have changes in user emotions along the time.

• From the implementation view, the collective classification algorithms could be

distributed in a cloud compliant engine like Apache Spark 1. In this way, large-

scale social networks can be analyzed as fast as possible so that algorithms

running times are reduced.

1 http://spark.apache.org
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