
A SCALABLE EVOLUTIONARY ALGORITHM FOR SOLVING
THE ONE-DIMENSIONAL BIN PACKING PROBLEM

ON GPU USING CUDA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SÜKRÜ ÖZER ÖZCAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2015

Approval of the thesis:

A SCALABLE EVOLUTIONARY ALGORITHM FOR SOLVING
THE ONE-DIMENSIONAL BIN PACKING PROBLEM

ON GPU USING CUDA

submitted by SÜKRÜ ÖZER ÖZCAN in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Ahmet Coşar
Supervisor, Computer Engineering Department, METU

Asst.Prof.Dr.Yusuf Sahillioğlu
Co-supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Dept., METU

Prof. Dr. Ahmet Coşar
Computer Engineering Dept., METU

Asst.Prof.Dr. Yusuf Sahillioğlu
Computer Engineering Dept., METU

Prof. Dr. Faruk Polat
Computer Engineering Dept., METU

Assoc. Prof. Tansel Özyer
Computer Engineering Dept., TOBB ETU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: SÜKRÜ ÖZER ÖZCAN

Signature :

iv

ABSTRACT

A SCALABLE EVOLUTIONARY ALGORITHM FOR SOLVING
THE ONE-DIMENSIONAL BIN PACKING PROBLEM

ON GPU USING CUDA

Özcan, Sükrü Özer
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Ahmet Coşar

Co-Supervisor : Asst.Prof.Dr.Yusuf Sahillioğlu

September 2015, 105 pages

One-dimensional Bin Packing Problem (1DBPP) is a challenging NP-Hard combi-
natorial industrial engineering problem which is used to pack finite number of items
into minimum number of fixed size bins. Different versions of 1DBPP can be faced
in real life. Although the problems that have small number of items up to 20 can be
solved with brute-force algorithms, large problem instances of the 1DBPP cannot be
solved exactly due to its intractable nature. Therefore, heuristic approaches such as
Genetic, Particle Swarm, Tabu Search, and Minimum Bin Slack have been widely
used to solve this important problem (near-) optimally. Most of the the state-of-the-
art algorithms that have been proposed to solve the 1DBPP are executed on a single
processor and do not make use of the high performance opportunities that are offered
by the recent parallel computation technologies. In this study, we increase the per-
formance of a Grouping Genetic Algorithm (GGA) by harnessing the power of the
graphics processing unit (GPU) using Compute Unified Device Architecture (CUDA)
for the first time in literature. The time consuming crossover and mutation processes
of the GGA are executed on the GPU and the population of solutions is kept on the
global memory of GPU while running the whole algorithm in a heterogeneous com-
puting environment. The obtained experimental results on 1,238 benchmark problem
instances show that the proposed algorithm, CUDA GGA for 1DBPP (CUDA-GGA-
1DBPP), is a high performance and scalable algorithm that can be counted among the

v

best performing algorithms in literature and it is about 60 times faster than its CPU
counterpart.

Keywords: 1D Bin packing, grouping genetic, CUDA, GPU

vi

ÖZ

TEK BOYUTLU KUTU PAKETLEME PROBLEMİNİN GRAFİK İSLEMCİ
ÜZERİNDE CUDA KULLANILARAK ÖLÇEKLENEBİLİR EVRİMSEL

ALGORİTMA İLE ÇÖZÜMÜ

Özcan, Sükrü Özer
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ahmet Coşar

Ortak Tez Yöneticisi : Yrd.Doç.Dr. Yusuf Sahillioğlu

Eylül 2015 , 105 sayfa

Farklı genişlik ve uzunluktaki nesnelerin mümkün olan en az sayıda sabit kapasiteli
kutu kullanılarak yerleştirilmesini amaçlayan tek boyutlu kutu paketleme problemi,
çözümü polinom zamanlı olmayan (NP) ve endüstri mühendisliği alanında popüler
olan kombinatoriyal bir en iyileme problemdir. Çok bilinen bu endüstri probleminin
çok amaçlı versiyonlarıyla gündelik hayatta sıkça karşılaşılmaktadır. 20 kutuya kadar
olan küçük olçekli problemler karmaşık olmayan basit algoritmalar kullanılarak çö-
zülebilse de, büyük ölçekli problemlere optimal çözüm üretmek problemin kolay ta-
kip edilemeyen doğası sebebiyle mümkün olmayabilir. Kesin çözüm bulmanın müm-
kün olmadığı büyük ölçekli söz konusu problemlere en iyi o̧zümü bulabilmek amacı
ile şimdiye kadar En Az Boşluk Algoritması, Tabu Araması, Parçacık Sürü Optimi-
zasyonu benzeri sezgisel yontemler yaygın olarak kullanılmıştır. Ancak, problemin
çözümüne yönelik geliştirilen bu sezgisel yöntemler performansı artıran son nesil pa-
ralel bilgisayar teknolojisi kullanılmaksızın tek bir işlemci kullanilarak çözülmüştür.
Bu çalişma ile literatürde ilk defa CUDA (Compute Unified Device Architecture)
kullanılarak grafik islemci birimi (GPU) katkısı ile Gruplama Genetik Algoritması
(GGA)’nın performansı artırılmıştır. Heterojen bir mimari üzerinde koşturulan prog-
ram ile GGA’nin islem süresini uzatan çarprazlama ve mutasyon algoritmalari GPU
uzerinde çalıştırılmış, sonuçlar ise ekran kartı üzerinde bulunan global bellek üzerinde
tutulmuştur. 1.238 farkli problem seti uzerinde koşturulan problem ve sonuçlari, Tek

vii

Boyutlu Kutulama CUDA GPU algoritmasının literatürde yer alan en iyi algoritmalar
arasında yer alabileceğini ve CPU karşılığına göre de 60 kat daha hızlı olabileceğini
göstermiştir.

Anahtar Kelimeler: 1B Kutu paketleme, gruplayan genetik, CUDA, GPU

viii

To my family and especially my little princess who is in heaven

ix

ACKNOWLEDGMENTS

Many thanks to my supervisor, Prof. Dr. Ahmet Coşar, for spending his months and
effort during this study. It has been a great privilege to have been mentored by such
an esteemed researcher.

Special thanks to Dr. Tansel Dökeroğlu who provided encouragement for this study
and also for his valuable insight and his guidance about this thesis.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 1D Bin Packing Problem 1

1.2 Genetic Algorithms as Evolutionary Optimization Tools . . . 3

1.3 Compute Unified Device Architecture 6

2 RELATED WORK . 15

2.1 State-of-the-art 1DBPP Algorithms 15

2.2 Grouping Genetic Algorithms 17

2.3 Parallel Optimization with CUDA 21

2.4 A Simple CUDA Example 23

3 PROPOSED ALGORITHM . 27

3.1 Chromosome Structure . 28

3.2 Exon Shuffling Crossover Operator 28

3.3 Mutation Operator . 29

3.4 Inversion Operator . 29

3.5 Fitness function . 29

3.6 Proposed Algorithm, CUDA-GGA-1DBPP 30

xi

3.6.1 Setting up Host and Device Memory Allocation . . 32

3.6.2 Generating Random Numbers on GPU 33

3.6.3 Generation of Initial Population 34

3.6.4 Truncate Population 35

3.6.5 Reinserting Items with BFD Algorithm 35

3.6.6 Finding Slacks of the Groups 36

3.6.7 Crossover . 37

3.6.8 Mutation on GPU 38

3.6.9 Calculating Fitness Values 38

4 EXPERIMENTAL RESULTS . 41

4.1 Experimental Environment 41

4.2 Problem Data Sets . 42

4.3 Configuration Settings For The Proposed Algorithm 42

4.4 Settings The Population Size 47

4.5 Settings The Number of Generations 57

4.6 Settings Random Population Initialization Product 67

4.7 Settings the Crossover, Mutation and Inversion Ratios 75

4.8 Speed Up Performance of the Algorithm 86

4.9 Comparison with state-of-the-art algorithms 97

5 CONCLUSION AND FUTURE WORK 99

REFERENCES . 101

xii

LIST OF TABLES

TABLES

Table 1.1 Time Complexity of BPP Algorithms 3

Table 2.1 Increasing Array Size . 25
Table 2.2 Increasing ThreadPerBlock Size 26

Table 4.1 GPU’s Technical Specifications . 43
Table 4.2 The benchmark problem data sets 44
Table 4.3 Configuration Settings for Set_1 Data Set(720 Problem Instances) . 45
Table 4.4 Configuration Settings for Set_2 Data Set(480 Problem Instances) . 45
Table 4.5 Configuration Settings for Set_3 Data Set(10 Problem Instances) . . 46
Table 4.6 Configuration Settings for hard28 Data Set(28 Problem Instances) . 46
Table 4.7 The Effect of Changing Population Size for Set_1 Data Set(720

Problem Instances) . 47
Table 4.8 The Effect of Changing Population Size for Set_2 Data Set(480

Problem Instances) . 51
Table 4.9 The Effect of Changing Population Size for Set_3 Data Set(10 Prob-

lem Instances) . 54
Table 4.10 The Effect of Changing Population Size for hard28 Data Set(28

Problem Instances) . 56
Table 4.11 The Effect of Changing the Number of Generations for Set_1 Data

Set(720 Problem Instances) . 58
Table 4.12 The Effect of Changing Number of Generations for Set_2 Data

Set(480 Problem Instances) . 60
Table 4.13 The Effect of Changing Number of Generations for Set_3 Data

Set(10 Problem Instances) . 63
Table 4.14 The Effect of Changing Number of Generations for hard28 Data

Set(28 Problem Instances) . 66
Table 4.15 The Effect of Changing the Random Population Initialization Prod-

uct for Set_1 Data Set(720 Problem Instances) 68
Table 4.16 The Effect of Changing the Random Population Initialization Prod-

uct for Set_2 Data Set(480 Problem Instances) 70
Table 4.17 The Effect of Changing the Random Population Initialization Prod-

uct for Set_3 Data Set(10 Problem Instances) 72
Table 4.18 The Effect of Changing the Random Population Initialization Prod-

uct for hard28 Data Set(28 Problem Instances) 74

xiii

Table 4.19 The Effect of Changing the Crossover and Mutation&Inversion Ra-
tio for Set_1 Data Set(720 Problem Instances) 76

Table 4.20 The Effect of Changing the Crossover and Mutation&Inversion Ra-
tio for Set_2 Data Set(480 Problem Instances) 79

Table 4.21 The Effect of Changing the Crossover and Mutation&Inversion Ra-
tio for Set_3 Data Set(10 Problem Instances) 82

Table 4.22 The Effect of Changing the Crossover and Mutation&Inversion Ra-
tio for hard28 Data Set . 85

Table 4.23 Comparisons between CPU and GPU Implementation for Set_1
Data Set (720 Problem Instances) . 87

Table 4.24 Comparisons between CPU and GPU Implementation for Set_2
Data Set(480 Problem Instances) . 89

Table 4.25 Comparisons between CPU and GPU Implementation with Chang-
ing Number of Generations for Set_3 Data Set(10 Problem Instances) . . . 91

Table 4.26 Comparisons between CPU and GPU Implementation with Chang-
ing Population Size for Set_3 Data Set(10 Problem Instances) 93

Table 4.27 Comparisons between CPU and GPU Implementation with Chang-
ing Population Size for hard28 Data Set(28 Problem Instances) 95

Table 4.28 Comparing the solution quality of GPU parallel 1DBPP-GGA-CUDA
algorithm with state-of-the-art algorithms on the hard28 data set. 97

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Grouping Genetic Algorithm Flowchart [21] 5
Figure 1.2 Heterogeneous Architecture [6] 8
Figure 1.3 Device Capabilities and Performances 9
Figure 1.4 Maxxwell GM107 Device Architecture [26] 9
Figure 1.5 2D Grid and Thread Block . 11
Figure 1.6 3D Grid and Thread Block . 12

Figure 2.1 An Example of Parallel Genetic Algorithm 22
Figure 2.2 Kernel Function of Dot Product(which is taken from the book [24]) 24

Figure 3.1 Algorithm Schema . 32

Figure 4.1 GPU Card [27] . 42
Figure 4.2 Population Size vs. Number of Optimal Solution for Set_1(720

Problem Instances) . 48
Figure 4.3 Population Size vs. Total Number of Extra Bins for Set_1(720

Problem Instances) . 49
Figure 4.4 Population Size vs. Execution Time for Set_1(720 Problem In-

stances) . 49
Figure 4.5 Population Size vs. Number of Optimal Solution for Set_2(480

Problem Instances) . 52
Figure 4.6 Population Size vs. Total Number of Extra Bins for Set_2(480

Problem Instances) . 53
Figure 4.7 Population Size vs. Execution Time for Set_2(480 Problem In-

stances) . 53
Figure 4.8 Population Size vs. Total Number of Extra Bins for Set_3(10 Prob-

lem Instances) . 55
Figure 4.9 Population Size vs. Execution Time for Set_3(10 Problem In-

stances) . 55
Figure 4.10 Population Size vs. Execution Time for hard28(28 Problem In-

stances) . 57
Figure 4.11 The Number of Generations vs. Execution Time for Set_1(720

Problem Instances) . 59
Figure 4.12 Number of Generations vs. Number of Optimal Solution for Set_2(480

Problem Instances) . 61

xv

Figure 4.13 Number of Generations vs. Total Number of Extra Bins for Set_2(480
Problem Instances) . 61

Figure 4.14 Number of Generations vs. Execution Time for Set_2(480 Problem
Instances) . 62

Figure 4.15 Number of Generations vs. Total Number of Extra Bins for Set_3(10
Problem Instances) . 64

Figure 4.16 Number of Generations vs. Execution Time for Set_3(10 Problem
Instances) . 65

Figure 4.17 Number of Generations vs. Execution Time for hard28(28 Problem
Instances) . 67

Figure 4.18 Random Population Initialization Product vs. Number of Optimal
Solutions Set_1(720 Problem Instances) 69

Figure 4.19 Random Population Initialization Product vs. Number of Optimal
Solutions Set_2(480 Problem Instances) 71

Figure 4.20 Random Population Initialization Product vs. Total Number of
Extra Bins Set_3(10 Problem Instances) 73

Figure 4.21 Random Population Initialization Product vs. Execution Time for
hard28(28 Problem Instances) . 75

Figure 4.22 Crossover Ratio vs. Number of Optimal Solutions Set_1(720 Prob-
lem Instances) . 77

Figure 4.23 Mutation&Inversion Ratio vs. Number of Optimal Solutions Set_1(720
Problem Instances) . 78

Figure 4.24 Crossover Ratio vs. Number of Optimal Solutions Set_2(480 Prob-
lem Instances) . 80

Figure 4.25 Mutation&Inversion Ratio vs. Number of Optimal Solutions Set_2(480
Problem Instances) . 81

Figure 4.26 Crossover Ratio vs. Total Number of Extra Bins Set_3(10 Problem
Instances) . 83

Figure 4.27 Mutation&Inversion Ratio vs. Total Number of Extra Bins Set_3(10
Problem Instances) . 84

Figure 4.28 Crossover Ratio vs. Time hard28(28 Problem Instances) 85
Figure 4.29 Mutation&Inversion Ratio vs. Time 86
Figure 4.30 Population Size vs. Time for both CPU and GPU implementations

Set_1 (720 Problem Instances) . 88
Figure 4.31 Number of Generations vs. Time for both CPU and GPU imple-

mentations Set_2(480 Problem Instances) 90
Figure 4.32 Number of Generations vs. Time for both CPU and GPU imple-

mentations Set_3(10 Problem Instances) 92
Figure 4.33 Number of Generations vs. Speed Up Ratio Set_3(10 Problem

Instances) . 92
Figure 4.34 Number of Generations vs. Time for both CPU and GPU imple-

mentations Set_3(10 Problem Instances) 94

xvi

Figure 4.35 Number of Generations vs. Speed Up Ratio Set_3(10 Problem
Instances) . 94

Figure 4.36 Population Size vs. Time for both CPU and GPU implementations
hard28(28 Problem Instances) . 96

Figure 4.37 Population Size vs. Speed Up Ratio hard28(28 Problem Instances) 96

xvii

LIST OF ABBREVIATIONS

1DBPP One-Dimensional Bin Packing Problem
ACO Ant Colony Optimization
ALU Arithmetic Logic Unit
BF Best Fit
BFB Best Fit Bin
BFD Best Fit Decreasing
CUDA Compute Unified Device Architecture
CUDA-GGA-1DBPP CUDA Grouping Algorithm for 1DBPP
CPU Central Processing Unit
DRAM Dynamic Random Access Memory
EA Evolutionary Algorithm
FFD First Fit Decreasing
FF First Fit
NF Next Fit
GA Genetic Algorithm
GGA Grouping Genetic Algorithm
GGA-CGT Grouping Genetic Algorithm with Controlled Gene Transmis-

sion
GFA Gravitation Field Algorithm
GPC Graphics Processing Unit
HPC High-Performance-Computing
H-SGGA Hybrid Steady State GGA
MBS Minimum Bin Slack
MISD Multiple Instruction Single Data
MIMD Multiple Instruction Multiple Data
MTRP Martello and Toths Procedure
SAW Sufficient Average Weight
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SM Streaming Multiprocessor
SISD Single Instruction Single Data
TDR Timeout Detection Recovery
TPC Texture Processing Unit
TSP Traveling Salesman Problem
VRP Vehicle Routing Problem

xviii

CHAPTER 1

INTRODUCTION

One-dimensional Bin Packing Problem (1DBPP) is a challenging NP-Hard combi-

natorial industrial engineering problem which is used to pack finite number of items

into minimum number of bins. Different versions of 1DBPP may be faced frequently

in real life situations [2, 3, 5, 7, 8]. Although the problems that have small number of

items up to 20 can be solved with brute-force algorithms, large problem instances of

the 1DBPP cannot be solved exactly due to its intractable nature. Therefore, heuristic

approaches such as Genetic, Particle Swarm, Tabu Search, and Minimum Bin Slack

have been widely used to solve this important problem (near-) optimally. Most of

the the state-of-the-art algorithms that have been proposed to solve the 1DBPP are

running on a single processor and do not make use of the high performance opportu-

nities that are offered by the recent parallel computation technologies. In this study,

we increase the performance of a Grouping Genetic Algorithm (GGA) by making use

of the power of the graphics processing unit (GPU) using Compute Unified Device

Architecture (CUDA) for the first time in literature. The time consuming crossover

and mutation processes of the GGA are executed on the GPU environment and the

population of solutions is kept on the global memory of GPU while running the whole

algorithm in a heterogeneous computing environment.

1.1 1D Bin Packing Problem

The bin packing problem (BPP) is an NP-hard combinatorial optimization problem

which is used to pack finite number of items of different volume [9]. The general

1

purpose of the problem is to pack items of interest subject to various constraints, such

that the overall number of bins is minimized .The BPP is the process of packing N

items into bins which are unlimited in numbers and same in size and shape. The bins

are assumed to have a capacity of C > 0, and items are assumed to have a size S i for

I in {1, 2, ...,N} where S i > 0. The goal is to find minimum number of bins in order to

pack all of N items. Formal mathematical formulation of the problem can be written

as following:

minimize z =

n∑
i=1

yi

subject to
n∑

i=1

w jxi j ≤ cyi, i ∈ N = {1, ..., n},

n∑
i=1

xi j = 1, j ∈ N,

yi = 0 or 1, i ∈ N,

xi j = 0 or 1, i ∈ N, j ∈ N,

where wi is the weight of item i,

yi =


1 if bin i is used;

0 otherwise,

xi j =


1 if item j is assigned to bin i;

0 otherwise,

There are many variations of the problem such as one dimensional, 2D packing, lin-

ear packing, packing by cost, packing by weight, and so on. One dimensional bin

packing problem is chosen as the main focus of our study. In one dimensional BPP

objects have a single dimension such that cost, weight, time, size, etc... In this vari-

ation finding the optimal solution is also known to be NP-hard. The problem can

be modeled as an integer programming problem for relatively small sizes without

degrading the computational time. For larger problems, different heuristic methods

have been developed in order to find optimal solution and to deal with run-time per-

formance. In addition to strength of formulation and power of algorithm, hardware

capabilities can also be utilized in order to improve run time performance. In this

2

study, we utilize CUDA platform in order to analyze contribution of GPU on run time

performance of BPP solving with Genetic Algorithm. Genetic algorithms and its vari-

ations, First-Fit (FF) algorithm, Next-Fit (NF) algorithms, Best-Fit (BF) Algorithm,

Next-Fit Decreasing (NFD), Best-Fit Decreasing (BFD) are some of the well- known

algorithms in the literature to solve BPP. Time complexity of the algorithms can be

seen in Table 1.1:

Table 1.1: Time Complexity of BPP Algorithms
Algorithms NF FF BF NFD FFD BFD
Time Complexity O(n) O(nlogn) O(nlogn) O(nlogn) O(nlogn) O(nlogn)

1.2 Genetic Algorithms as Evolutionary Optimization Tools

Genetic Algorithms (GAs) are evolutionary heuristic search algorithms of machine

learning which are inspired by natural evolution and genetics. Reproduction, muta-

tion, recombination and selection are key mechanisms of Evolutionary Algorithms

(EA) that are used to solve optimization problems since they represent an intelligent

exploitation of a random search. Although known as nonlinear Monte Carlo methods

to sample from complex high-dimensional search space, GAs harness the resources

and simulate the natural selection; "survival of the fittest", and stands as a promis-

ing methods for exponentially growing NP-hard optimization problems [4, 10, 11,

13, 14]. Bin Packing, Traveling Sales Person and Quadratic Assignment Problem

[15, 16, 17] are well-known problems that are solved with EAs.

Evolution starts with the creation of a set of character strings that are analogous to

the base-4 chromosomes which represents the population of individuals as we see in

our own DNA. The individuals in the population then go through a process. Differ-

ent than natural evolution, ongoing process is managed purposefully and directed to

choose the most promising offspring in machine learning. The encoding takes place

during the reproduction and the crossover operation enables the selection. Some GAs

use a simple method called as fitness-proportionate selection of the fitness measure

to select individuals probabilistically. Other implementations use a model called as

tournament selection in which certain randomly selected individuals in a subgroup

compete and the fittest is selected. By the way, mutation plays a key role in this pro-

3

cess and GAs use a stochastic process, which provides better results than random, for

the mutation.

GAs are developed in a cyclic manner and each cycle is called as a generation. The

process starts over a randomly generated population and then old population is dis-

carded from the process with the generation of new population.

The Grouping Genetic Algorithms (GGA), an extension of the conventional Genetic

Algorithms, were developed by Falkenauer to solve clustering problems [18, 19, 20].

In GGA, the chromosomes are enhanced with a group element containing the group

composition and all operators of the GAs work on group elements of chromosomes.

As a well-known NP-hard grouping problem, 1DBPP, is one of the application area

of GGAs [21].

The GGAs gain a power over the standard GAs by reducing the selection pressure.

Since the chromosomes are grouped and the operators are applied to groups rather

than a single gene, algorithms converges the solution faster then the classical ap-

proach. Grouping approach provides a room for simultaneous run which reduces the

number of iterations and so time required to reach optimal solution. Different se-

lection mechanisms and the genetic operators are very crucial to the success of GA

[22, 23]. So, a benchmark of selection schemes are still needed to study in terms of

finding the most effective approach in terms of convergence velocity. However, GGAs

are applicable only for complex problems that can be divided into sub-problems with-

out any overlap and then can be combined back to original problem to generate the

solution (see Fig. 1.1 for the flowchart of GGAs). With the help of additional effort

and caution, GGAs stand as a promising approach to produce efficient solutions to

NP-Hard problems.

4

Start

Divide the genes within
chromosomes into groups

Initialize Population

Calculate fitness
value for the first i

positions in the
chromosomes

Calculate fitness
value for the next i

positions in the
chromosomes

Calculate fitness
value for the last i

positions in the
chromosomes

…

Select Individuals Select Individuals Select Individuals

Apply Genetic
Operators

Apply Genetic
Operators

Apply Genetic
Operators

Combine
Solutions

Are
optimization
criteria met?

Stop

Yes

No

Figure 1.1: Grouping Genetic Algorithm Flowchart [21]

5

1.3 Compute Unified Device Architecture

Especially for the last three decades, increase in the clock speed of the processors

give a way to the search of looking alternative ways to have a better computational

power. As a result, CPU manufacturers began to sell processors with more than one

cores rather than a single core. These tendency named as multi-core revolution.

With multi-core revolution the modern parallel computation environments have found

a thorough interest in the field due to their efficiency and accuracy on hard problems.

Within a single chip multi-core processors host many cores and provide higher com-

puting power. These cores can be used by parallel algorithms and they can increase

the quality of the results and reduce the time required to get the results of NP-Hard

problems such as 1DBPP [53].

While CPUs are evolving, graphically driven operation systems have emerged from

urgent need for additional display accelerators in personal computers. In 1980s a

company named Silicon Graphics study the idea to have 3D graphics and released

OpenGL library. After that, games, which have 3D Graphics, began to work on to

offer realistic 3D environment. The release of GPUs capable of implementing Mi-

crosoft’s DirectX 8.0 in 2001 was a one of the most important breakthrough in de-

velopment of programmable graphic units. In the early 2000s, GPUs produce colors

for every pixel via pixel shaders which are programmable arithmetic units. Than re-

searches focused on putting any data to the pixel shaders other than just colors. And

they faked the GPUs with sending back numerical data other than colors after pro-

cessed in the pixel shaders. Initial results from the studies brought hope to use GPUs

which have high arithmetic throughput for computational studies.

While gaming industry pushes the limitations of the GPUs, limited number of de-

velopers were trying to learn OpenGL or DiretX funcitons which were only way to

communicate with GPU. In addition to that they were dealing to locate their data on

the arbitrary GPU memory even in a simple computation. After approximately five

years later, NVIDIA announce the GeForce 8800GTX with DirectX 10. This GPU

was the first one built with Compute Unified Device Architecture (CUDA) Architec-

ture.

6

CUDA copped with the early computable GPUs drawbacks and designed with a uni-

fied shader pipeline permits every arithmetic logic unit (ALU) on the chip to be used

by programs for arithmetic computations.No later than a few months after the an-

nouncement, NVIDIA made a public compiler for the CUDA language which has

limited number of keywords and standard C language [24].

Development in both High-Performance-Computing (HPC) and CUDA which is a

parallel computing platform and programming model, have led to a fundamental

paradigm shift in parallel programming.

According to Flynn’s Taxonomy, computer architecture comprises of four different

types corresponds to how instructions and data flow through cores including:

• Single Instruction Single Data (SISD)

• Single Instruction Multiple Data (SIMD)

• Multiple Instruction Single Data (MISD)

• Multiple Instruction Multiple Data (MIMD)

SISD refers to the traditional computers which has only one core, and simply means

serial architecture. SIMD is a parallel architecture while all cores execute the same

instructions but different data. MISD is a special purpose architecture where all cores

uses the same data with different instruction. In MIMD architecture different cores

operates with different data.

In CUDA Architecture, it can be referred as Single Instruction, Multiple Thread

(SIMT), where the same instruction can be operated in multiple threads, because

of the design differences between GPU and CPU. A CPU core, relatively heavy-

weight, is designed for very complex control logic, seeking to optimize the execution

of sequential programs, while a GPU core, relatively light-weight, is optimized for

data-parallel tasks with simpler control logic, focusing on the throughput of paral-

lel programs. These difference causes us to change from traditional programming

to light-weight programming which is highly and repeatedly optimized. Since every

procedure of our algorithm can’t run on GPU due to its limited control logic, we used

heterogeneous computing techniques.

7

Control

Cache

DRAM

ALU ALU

ALU ALU

DRAM

GPU CPU

PCIe BUS

Figure 1.2: Heterogeneous Architecture [6]

Heterogeneous computing is a type of computing which applying tasks to the GPU

or CPU choosing the one best suits for them. Main actor in this architecture is PCI-

Express bus which connects CPU and GPU as shown in Figure 1.2 . CPU is referred

as host, while GPU is a device in this architecture. We will use these terms from now

on in our study.

In addition to the Figure 1.2, the simple architecture of the device can be listed as

following;

• A host interface that connects the GPU to the PCI Express bus

• Copy Engines

• A DRAM interface that connects the GPU to its device memory

• Some number of TPCs or GPCs (texture processing clusters or graphics pro-

cessing clusters), each of which contains cache and some number of streaming

multiprocessors (SMs)

The program execution starts on host, some of the procedures are executed in GPU an

then solutions are displayed in host. Device capability can be defined with Number

of CUDA cores and Memory Size, and device performance can be defined with Peak

Computational Performance (tflops (tflops-trillion floating-point calculations per sec-

ond) and Memory Bandwidth (gigabytes per second, GB/s.) . Our CUDA device

(GeForce 750 Ti) characteristics comparing some other NVIDIA’s CUDA devices

capabilities and performances can be shown in Figure 1.3 [24].

8

GeForce GTX 750 Ti Quadro K5200 Tesla K80

CUDA Cores 640 2304 2496 x2

Memory 2GB GDDR5 8GB GDDR5 12GB x2 GDDR5

Peak Performance 1.306 Tflops 2.1 Tflops 8.74 Tflops

Memory Bandwidth 86.40 GB/s 192GB/s 240 GB/s x2

Figure 1.3: Device Capabilities and Performances

A CUDA enabled device is well-know with solving highly parallel and compute-

intensive computation because it is designed with more transistors to process data

rather than data caching and flow control. A detailed version of our CUDA De-

vice(Maxxwell GM107) Architecture is shown in Figure 1.4

PCI Express 3.0 Host Interface

Giga Thread Engine

GPC

Raster Engine

SMM SMM SMM SMM SMM

Polymorph Engine 2.0 Polymorph Engine 2.0 Polymorph Engine 2.0 Polymorph Engine 2.0 Polymorph Engine 2.0

Memory Controller Memory Controller

L2 Cache

Figure 1.4: Maxxwell GM107 Device Architecture [26]

Our device has five Streaming Multiprocessors, referred as SMM. SMM uses a quadrant-

9

based design with four 32-core processing blocks each with a dedicated warp sched-

uler capable of dispatching two instructions per clock. Each SMM provides eight

texture units, one polymorph engine (geometry processing for graphics), and dedi-

cated register file and shared memory.

CUDA is a software development platform consisting of CUDA-accelerated libraries,

OpenACC like compiler directives, and extensions of some of the standard program-

ming languages such as C, C++ and Fortran. C/C++ use "nvcc" compiled code, or

NVIDIA’s LLVM-based C/C++ compiler. Fortran can also be used via CUDA For-

tran based on PGI CUDA Fortran developed by The Portland Group.

In addition to above, OpenCL, MS DirectCompute, OpenGL Compute Shaders and

C++ AMP interfaces are also supported. Wrappers for Python, Java, Ruby, Lua,

Haskell, R, MATLAB, and others also exist.

GPUs are used in computer games for graphics rendering as well as in calculating

game physics (e.g. smoke, fire, fluids effects). CUDA, has also been in computational

biology, cryptography, and other fields in addition to computer graphics, providing

speed-ups of 10 times or more.

In this study, our main purpose is to solve offline 1DBPP using GGAs with the help

of massive parallel execution capable GPU and CUDA Software Platform.

One of the processes need to be done in CUDA software development platform is

allocating memory on device side and copying the data from host to device in order

to use it in kernels. CUDA has fallowing command to allocate memory on GPU;

cudaMal loc ((vo id) g p o p u l a t i o n , 10 s i z e o f p o p u l a t i o n

s i z e o f (chromosome)) ;

If any data is need to be used in device code, it must be copied with cudaMemcpy .

For example we need the item values, which we read from data set, on device. So, we

copy them with the following command;

cudaMemcpy (g i t e m v a l u e s , h i t emValues , 500 s i z e o f (i n t) ,

cudaMemcpyHostToDevice) ;

First parameter "g_item_values" is the device pointer where the items copied, "hitem-

10

Figure 1.5: 2D Grid and Thread Block

Values" is the source values, third parameter is the size of the data to be copied and

the final parameter defines the direction which the copy operation occurs. cudaMem-

cpyHostToDevice defines the copy operation take data from host and paste it to the

device pointer where cudaMemcpyDeviceToHost makes the opposite direction.

Kernels are pieces of functions which run on GPU in GPU related terms. For launch-

ing a kernel some kernel execution parameters which must be inside triple-angle-

brackets and an argument list are needed;

setup_kernel < < < 64, 64 > > > (devState or devMRGStates);

generate_normal_kernel < < < 64, 64 > > > (devState or devMRGStates , 1000,

dev_rnd_Results);

With the execution parameters, the configuration of how the kernels are going to

work is determined. Kernels are launched as grids of blocks of threads . The first

value 64 is simply the number of blocks to launch, grid dimension at the same time,

the second value 64 is the number of threads within each block. These terms are

important because the performance change is observed when we tune them. General

relationship between grid, block and thread is shown as 2D and 3D in Figures 1.5 and

1.6 respectively.

11

Figure 1.6: 3D Grid and Thread Block

Threads are a special case in CUDA platform. They can communicate with each other

over a shared memory which is defined usually at the beginning of a kernel with the

" __shared " pre-word. For example:

Every kernel needs a unique id to be distinguished by the other processes. These

unique ids can be generated differently depending on the launching configuration.

The following code is general lines to generate a unique id in each concurrent process:

const unsigned long long int tid = blockIdx.x //1D

+ blockIdx.y * gridDim.x //2D

+ gridDim.x * gridDim.y * blockIdx.z; //3D

For example, in the configuration of the kernel of generating initial population; there

is only one dimension and the unique id is simply blockIdx.x because other all vari-

ables are zeros.

Each concurrent process has a unique identification number to be distinct. This id

number can be generated with sum of threadIdx.x with product of blockIdx.x and

blockDim.x if DIM3 configuration is not used. In addition to that shared memory

size which is the size of all variables used by threads in the same thread block and

streaming attributes can be defined in this configuration parameters. Detailed infor-

12

mation can be found in NVIDIA’s CUDA Toolkit Documentation [25] .

In this study we implemented CUDA Streams, for limited speed up and practice.

CUDA streams provides four types of concurrency to get even faster;

• CPU/GPU concurrency

• Host-Device Memory Copy Concurrency

• Kernel Concurrency

• Multi-GPU Concurrency

Since CPU and GPU operations can be independent from each other, they can be run

asynchronously. Another exhausting process is the host to device memory copy and it

can be run asynchronously too. Moreover, current GPUs have a computing capability

which allows to be run 4 kernels concurrently. Final one as it can be obviously seen

from it’s name, Multi-GPUs can be run concurrently.

13

14

CHAPTER 2

RELATED WORK

In this chapter, we give information about the state-of-the-art methods for solving

the 1DBPP, GGAs, and recent studies about the optimization of other combinatorial

optimization problems that are solved by using CUDA.

2.1 State-of-the-art 1DBPP Algorithms

Many exact and approximation algorithms can be found in the literature about BPP.

Martello and Toth’s book named "Knapsack Problems" in which has a section about

BPP, explained briefly about approximation algorithms like NF algorithm which sim-

ply assigns the next item to the current bin after putting first item to the first bin [41].

If it doesn’t fit to the current bin, it opens a new bin and put the item in it. A better

approximation algorithm is the FF where putting the next item to the bin it fits begin-

ning from the first bin. If it can’t find any bin to fit, it opens a new bin and assigned

the item to the new bin. BF algorithm is a version of FF and it put the next item

to the feasible bin which has smallest residual capacity. Time complexity for NF is

O(n) where FF and BF’s are O(nlogn) if it stores the slacks of the bin in the leaves.

If the algorithm sorts the items in decreasing order, the algorithm’s names change

as Next-Fit Decreasing (NFD), First-Fit Decreasing (FFD) and Best-Fit Decreasing

(BFD) respectively and their time complexities become the same as O(nlogn). In

addition the the approximation algorithms, they provided an exact algorithm named

(MTP) and a resulting reduction procedure named (MTRP).

Scholl et al. developed an hybrid solution, named BISON, consist of several heuristics

15

[48]. They found tabu search as the most effective procedure among other heuristics.

In addition to that they provided a new local lower bound method which is well-

known in capacity related problems.

Schwerin and Wascher criticized the results provided by the early studier of BPP be-

cause of the test design they use [49]. Schwerin and Wascher found the results unsat-

isfactory and unconvincing. Because of that, they provided a new problem generator

for the BPP.

A new model and an exact procedure is also presented in 1999 by Valério de Carvalho.

The procedure combines column generation and branch-and-bound and it grows in

two dimension [34].

With respect to FFD and BFD, a new and effective algorithm called Minimum Bin

Slack (MBS) has been produced by Gupta and Ho in 1999 [39]. Their algorithm

generates optimal solutions if all items’ total weight is less than or equal to twice the

bin size. Random generator is used to build the test data sets. They named a difficult

set of problems with variable bin capacities and 5 new data sets. For that 5 difficult

problems sets, their algorithm produced one total bin less than FFD and BFD each.

Based on MBS, a new procedure named MBS
′

is designed by Fleszar and Hindi in

2002 [7]. The procedure’s specialty is putting one item to the next bin to fill before

the classical MBS’s search function run. In addition to MBS
′

, three new procedure

is designed using MBS
′

. First one is relaxed MBS
′

, which permits non-zero residual

capacity in bins, second one is perturbation MBS
′

which aims to have a better solution

just using one-packing function and building new bins, third one is sampling MBS
′

which calls MBS
′

recursively only changing the order of items randomly. The only

drawback in this study is computational complexity of the procedures O(2n) .

Alvim et al. (2004) put forward an hybrid heuristic which has several characteris-

tics including tabu search, differencing and unbalancing, getting initial solution from

dual-min-max problem, lower bound method and so on [1]. Their most effective

contribution came from tabu search improvement procedure. The benchmark data

set results were better in 41 instances than Fleszar and Hindi [7]. Fleszar and Char-

alambous see the problem of general classical bin-oriented heuristics which is putting

16

small items mostly to the initial bins means bigger slack at later bins [8]. To deal with

that problem, a control mechanism named Sufficient Average Weight (SAW) also the

prefixes of the procedures is designed. In the beginning of the procedure, they took

the average weight of the remaining items. When constructing a new bin, the solution

compares the current bin average weight with the remaining items’ average weights.

If it passes the test of being sufficient, current bin construction will be approved. They

integrated this SAW control with FFD,B2F,MBS and MBS
′

changing their names as

SAWB2F, SAWMBS, SAWMBS
′

. In addition to the procedures above they also used

SAW with Perturbation MBS
′

resulting in solution quality perspective, the best of the

known improvement heuristics. Plus no increase in computational time [8]

A different simulated annealing heuristic is designed with psychometric literature

well-known characteristic of splitting the problem set into subgroups which has the

same number of items. A mixed zero-one integer linear programming(MZOILP) are

developed and solved in IBM CPLEX ILOG [31].

A heuristic is produced which only deals with the 28 data packet of the hard28 set

by De la Rosa et al. [36] They compared the time to solve all 28 instances of hard28

with previous studies’ timings on the same data set. Hard28 data set has two important

characteristics; one of them is its’ one third of items’ weights are heavier than half the

bin sizes and the other is about a six of its’ weights are prime numbers.These charac-

teristics cause large items in first bins get alone before applying bin-oriented heuristic

like FFD. The heuristic are designed to deal with the characteristics of hard28 data

set and reduce the time need to solve the instances.

2.2 Grouping Genetic Algorithms

Many optimization problems have been a well study area to find a better solution. On

the other hand, in decades scientist looked at the environment and saw how living

cells survived with adapting harsh conditions. With the recent development in the Bi-

ology and Genetics, a GA is developed as a method to find better solutions for many

optimization problems using the same reproductive functions in gene level to build

new generations. A GA typically starts with the generation of the initial population

17

which are randomly found solutions. Then, it eliminates the solutions which have

undesirable characteristics. Finally reproduction occurs with crossover and mutation.

The elimination process in each level is mentored by a fitness function which cal-

culates the fitness of the solution. Nature of the evaluation, solutions, which have a

better fitness value, are given more priority to be an offspring.

The GGA is a version of GA and it has been altered to cope with grouping problems.

Falkenauer was the first one who implemented GGA in different problems. GGA has

two characteristics different than standard GA. First a special encoding scheme is used

to make the relevant structures of grouping problems become genes in chromosomes.

The standard chromosome structure is changed and subgroups named group part is

added. Second, given the encoding, special genetic operators are used, suitable for

the chromosomes [18]. By solving the problem set of BPP and adding dominance

criterion to the GGA, a hybrid grouping genetic algorithm(HGAA) for BPP showed

that GGA hold promise both for bin packing and other grouping problems [19].

A heuristic named better-fit, which simply replace the item with remaining items if it

fits better, is produced by Bhatia and Basu. Results of the study matches the quality

of Falkenauer’s HGGA, but in an efficient computational time differently [28].

Rohlfshagen and John A. Bullinaria presents a simple steady-state genetic algorithm

developed using an evolutionary approach to solve hard optimization problems which

conventional approaches tend to fail [45]. The algorithm provides an approach to

solve the BPP without the need for any additional heuristics. The design of the al-

gorithm presented here is an example of group encoding, developed by molecular

genetics inspiration, which allows for a modularization of the search space in which

individual sub-solutions may be assigned independent cost values. Following the

modularization, crossover process modeled on the theory of exon shuffling is applied

on to the values to select an offspring that inherits the most promising segments from

its parents. Here, purpose of the crossover process is to ensure that only one off-

spring, which inherit the most tightly packed bins from both parents, is chosen and

also it ensures that the bins with minimum slack are preserved for further considera-

tion in order to find optimal number of bins. The crossover process in exon shuffling

approach is greedy in terms of finding the best bin first. Three sets of online avail-

18

able hard BPP problem instances are utilized to test proposed algorithm. The results

of runs show that algorithm is able to find global optimum solution for 8 out of 10

instances. The cases which optimal solution cannot be found, the solution is only

one bin away from the optimal. Fitness (bin slack), number of bins, and number of

constraint violations are studied to investigate overall behavior of the algorithm and it

verified that this current biologically inspired exon shuffling GA has the highest rank

in terms of success rate over the existing algorithms. The algorithm first orders the

bins by slack space increasing. Then all the same level bins has a chance to be in the

offspring. In the second phase of the algorithm deleting of the same bins occurs. For

Scholl and Klein’s hard10 data set, it found 8 optimal solution while MBS, MBS
′

,

Perturbation MBS
′

, Sampling MBS
′

, FFD, BFD, B2F has 0, Relaxed MBS
′

has 2,

GA, BISON has 3 optimal solution for the same data set. The only exception is that

Alvim et al.’s study found 10 instances as optimal [1].

An algorithm works by reducing the distance between slacks of the bins and item-

weights distribution progressively on histograms, is presented by Poli et al. [42]. The

algorithm has two main procedures; a procedure to choose the item to be inserted and

a procedure to chose how to priorities gaps in order of urgency. These two procedures

works progressively and reduce the gap on histogram.

Singh and Gupta introduced two different heuristics. One of them is hybrid steady-

state grouping genetic algorithm (H-SGGA) and the other is improved version of

Perturbation MBS
′

which is based on the study of Fleszar and Hindi (2002) [7][51]

. In addition to that a combined heuristics of H-SGGA and an improved Perturba-

tion MBS
′

tested and named C_BP. The improved Perturbation MBS
′

performance is

better than Perturbation MBS
′

and C_BP performance are better than Alvim et al.’s

algorithm (2002) [1].

A simple, non-specialized, non-hybridized and evolutionary based algorithm is pre-

sented by Stawowy [52]. The algorithm has effective size reduction and unique con-

cept of separators movements during mutation. It gives somehow less satisfactory

solutions than its fancy competitors. The main focus of the study is verifying an evo-

lutionary method’s applicability to the bin packing problem and as the result, yes it

can be applied to the BPP very well.

19

To lower the computational time of genetic algorithms, a parallel-island based multi-

objectivized memetic algorithm, which is widely used as a synergy of evolutionary

or any population-based approach with separate individual learning or local improve-

ment procedures for problem search, is designed by Segura et al. for two-dimensional

BPP [50]. Mono-objective problems can be transferred to multi-objective ones with

avoiding local optima. In addition to that island-based models provided benefits in

terms of solution quality, and in terms of time saving.

A hybrid heuristic, which combines the effectiveness of island parallel algorithms

and GGA, is proposed by Dokeroglu and Cosar [38]. The developed parallel hy-

brid grouping genetic algorithm make use of the multiprocessors to set up the several

distinct population randomly and search for a better solution for a given number of

generation. The algorithm has several steps; firstly it generates the population and

truncate it to a pre-defined population size in each processor, than it add BFD and

FFD to the population, after crossover and mutation procedures, items that couldn’t

fit for any bin are inserted as BFD or FFS or MBS. 1,318 benchmark sets are ana-

lyzed and 88.5% of the instances are solved with optimal solution . In addition to

that, Parallel GGAs generates distinct sub-populations concurrently, thus probably

assembling better solution quality by providing many chromosomes and generations.

An algorithm named as Grouping Genetic Algorithm with Controlled Gene Trans-

mission (GGA-CGT) for BPP is described by Quiroz-Castellanos et. al. [20]. The

algorithm chooses the best genes in the chromosomes for the offspring without losing

the balance between the selective pressure and population distinction. New group-

ing genetic operators is used to convey the best genes. Even more the evolution is

controlled by a new reproduction technique which eases finding the best genes and

avoids incomplete convergence of the algorithm. The improved performance with

choosing the best genes and binding and rearrangement heuristics can be seen in the

results gathered from the study. GGA-CGT finds 16 optimal solutions of hard28’s

28 instances while Alvim et al.’s study, Pert.-SAWMBS and BFD find only 5 optimal

solution to the same 28 data instances [1].

20

2.3 Parallel Optimization with CUDA

The computational power of GPUs significantly outperforms present multi-core pro-

cessors (CPUs), and so there is an increased interest in using graphics cards for solv-

ing combinatorial problems. One of the earliest study with a combinatorial problem

is done by Janiak A. et. al. [40] . The traveling salesman and flow shop scheduling

problems are tried to be solved with a parallel tabu search algorithm. General-Purpose

Computation Using Graphics Hardware, which is the ancestor of the CUDA platform,

are used and noted that GPU can be even 16 times raster than CPU implementation

at that time.

An integer programming model,Knapsack Problem, are studied on a Tesla Platform

which is a multi GPU computing system architecture by Boyer, V. et. al. [29]. Single

CPU is connected to a multi GPU structure and a heterogeneous programing is im-

plemented. The implemented design is referred as robust, because timing results are

stayed approximately the same even with an increase in size of the problem.

A parallel island-based genetic algorithm which shows one of the best examples of

the heterogeneous computing model described by Pospichal, P. et al. [43]. Up to our

knowledge, there are not many works using homogeneous computing model for NP-

hard combinatorial problems. The tests are conducted with Griewank, Michalewicz

and Rosenbrock’s benchmarks and the speed up is promising. The only drawback of

the algorithm is transfer times between host and device. The design scheme of the al-

gorithm can be seen in Figure 2.1 . In addition to that Built-in CUDA timer functions

is used to get kernel execution times. The results also show that the proposed GPU

implementation of GA can provide better results in the shorter time or produce better

results in equal time.

21

Input = population, migrating individuals, parameters

Output = population

…

T0 T1 T2 … TN T0 T1 TN

block0=island0

Fitness Function Evaluation

selection

crossover

mutation

End

?

T0 T1 T2 TN

S
h
ar

ed
 m

em
o
ry

 w
it

h
in

 m
u
lt

ip
ro

ce
ss

o
r

no

yes

Threads

=

Genes

T0 T1 TN

T0 T1 TN

Threads

=

Genes

T0 T1 TN

Figure 2.1: An Example of Parallel Genetic Algorithm

A cluster of GPU computing units named multi-GPU cluster is used in the study

which presents distributed tabu search meta-heuristics [30] . The algorithm is based

on another study which is about distributed parallelizations with cooperation. It is

controlled by a master process to communicate between concurrent threads. The

results are compared with 1,2 and 3 processors which have 11.66,10.03 and 6.37

speed up respectively.

A parallel multi-start tabu search (PMTS) for quadratic assignment problem is pro-

posed by M. Czapiński(2012) [35] . Quadratic Assignment Problem, an NP-hard

problem, is studied with detailed analysis of parallelization possibilities, memory or-

ganization and access pattern. The timing results of the PMTS are showed us it is

420x faster than single-core CPU implementation, while 70x faster than a parallel

CPU implementation with a six-core CPU.

One of the other combinatorial optimization problem is the vehicle routing problem

(VRP) . If the problem has 50 visiting points in a direct solution, there will be 3064

distinct solution. The inaccessibility to try out all possibilities caused a need for

22

high performance computing. Cekmez, U. et. al. presents an implementation of

GA with 1-Thread in 1-Position (1T1P) approach[33] . The size of population is

increased with maximizing efficiency to execute the algorithm parallel on GPU. Also

as the other studies, GPU and CPU implementation is compared. As a result, GPU

implementation has a speed up ratio varying 366 to 1955.

One of the other heuristic search algorithm named Gravitation Field Algorithm (GFA)

is proposed by Rong et.al.[46] to be optimized with running parallel on CUDA plat-

form. The algorithm is based on island model which minimize the need for commu-

nication between concurrent threads. It was compared with uni-modal version and

noted that the parallel version is not only have speedup, but also accuracy. One of the

instance of the six standard benchmark functions is took 319735 ms with GFA while

14179 ms with Parallel GFA.

A Parallel ant colony optimization(ACO) on graphics processing units is presented

by Delévacq et.al [37] . It is an example of heterogeneous computing which performs

tour construction on the GPU and pheromone update on the CPU. It performs 3-opt

local search for solving the TSP. After the first construction of a block, a new an

tour and the local search is implemented. Then, three edges from the tour is deleted

with reassigning them to have a resulting tour shorter than the initial tour if this is at

all possible. The algorithm is very complex and it takes a lot of time but can yield

near optimal results. In addition to that the proposed study achieved the maximum

speed-up factor of 23.9 over the CPU implementation.

The resource constrained project scheduling problem, a complex problem even for

small instances, is studied by Bukata et.al. [32] . A parallel Tabu Search algorithm

is altered to maintain quality solutions with speedup. For J90 Benchmark problem, it

showed 10.5/42.7 faster ratio than it’s CPU counterpart.

2.4 A Simple CUDA Example

In this section we would like give an example of massive computational power of

CUDA platform. The example is named as inner product or dot product and it takes

two vectors, then it multiplies the corresponding elements of these two vectors and

23

finally calculates the sum of the products. The following equation shows the mathe-

matical description of a simple dot product.

(x1, x2, x3, x4) × (y1, y2, y3, y4 = x1y1 + x2y2 + x3y3 + x4y4) (2.1)

A detailed information is given below with the Figure 2.2. The code in the figure

shows the kernel part of the dot product algorithm.

__global__ void dot(float *a, float *b, float *c) {
 __shared__ float cache[threadsPerBlock];
 int tid = threadIdx.x + blockIdx.x * blockDim.x;
 int cacheIndex = threadIdx.x;
 float temp = 0;
 while (tid < N) {
 temp += a[tid] * b[tid];
 tid += blockDim.x * gridDim.x;
 }
 // set the cache values
 cache[cacheIndex] = temp;
 // synchronize threads in this block
 __syncthreads();
 // for reductions, threadsPerBlock must be a power of 2
 // because of the following code
 int i = blockDim.x/2;
 while (i != 0) {
 If (cacheIndex < i)
 cache[cacheIndex] += cache[cacheIndex + i];
 __syncthreads();
 i /= 2;
 }
 if (cacheIndex == 0)
 c[blockIdx.x] = cache[0];
}

Figure 2.2: Kernel Function of Dot Product(which is taken from the book [24])

As seen above we declared a shared memory which all threads in a block can read

and write. Each thread’s running sum is stored in this fast accessed memory. The size

of this shared memory is as threadsPerBlock which is an enough space for threads to

write their summations.

First while loop designates where a parallel product operation occurs. For example

a thread which has a tid equals to "0" multply array a’s first element with array b’s

first element while other threads do the same operation with different corresponding

24

elements of the arrays. After all threads writes the product of elements to the shared

cache memory with cacheIndex, a thread synchronize operation must be executed to

continue rest of the operations. All thread execute the same instruction until the line

of syncthreads() called and they wait for the other threads to complete the instruction.

After all threads finish their job, execution continues with the reduction part of the

algorithm.

In the reduction while loop, each thread will add corresponding two elements in

shared memory. It will continue for log2(threadsPerBlock) and at the end the first

element has the summation of the products and we give the job of writing the solu-

tion to the global memory to tid "0".

We conducted some test to have a better understanding of CUDA platform. First we
increased the array size to see how execution time changes, and the results presented
in Table 2.1.

Table 2.1: Increasing Array Size
Size of the Array Execution Time (sec)

1×1024 × 1024 2.57
2×1024 × 1024 4.64
4×1024 × 1024 8.11
8×1024 × 1024 17.00

16×1024 × 1024 33.58

Then we examined how ThreadPerBlock size might effect the execution times with

the array size of 128 ×1024 × 1024

The results are presented in Table 2.2 . "512" ThreadPerBlock size have the optimal

configuration for the algorithm.

25

Table 2.2: Increasing ThreadPerBlock Size
ThreadPerBlock Execution Time (ms)

1 43.96
2 25.78
4 16.75
8 12.28

16 10.23
32 8.97
64 8.31

128 7.96
256 8.03
512 8.11

1024 8.19

listings

26

CHAPTER 3

PROPOSED ALGORITHM

As discussed in previous chapters, we tried to solve one dimensional bin packing

problem with an aim to have the same results in shorter time or getting better results

in the same time than its CPU implementations. Through our study we tried to learn

as much as we can from GPU computations and GAs. A standard GA can be seen in

Algorithm 1 .

Algorithm 1 A Standard Genetic Algorithm
1: function GA(sizeO f population)

2: Generate random population of n Chromosomes

3: Evaluate the fitness f (x) of each chromosome x in the population

4: n←sizeOfpopulation.length

5: for i← 1, n do

6: [Selection] Select two parent chromosomes from a population according

to their fitness (the better fitness, the bigger chance to be selected)

7: [Crossover] With a crossover probability cross over the parents to form

a new offspring (children). If no crossover was performed, offspring is an exact

copy of parents.

8: [Mutation] With a mutation probability mutate new offspring at each lo-

cus (position in Chromosome).

9: [Accepting] Place new offspring in a new population

10: Use new generated population for a further run of algorithm

11: pack rect(i) into new bin

12: end for

13: end function

27

3.1 Chromosome Structure

Based on two main reasons, Falkenaur’s chromosome structure is chosen for our

study. GGAs nature is the primary reason that drive our decision since GGAs work

better with special encoding scheme of Falkenaur’s chromosome structure.[44, 18,

19]. Additionally, Holland-style chromosome structure has drawbacks such as in-

valid offspring generation and degeneration.

3.2 Exon Shuffling Crossover Operator

The selection procedure is variable to study. r chromosomes are picked from the

solution population and the one which has the highest value of interest are passes to

next generation from these previously chosen r elements. In this study we preferred

to select items randomly. After selection of the parents, an offspring is generated

using different crossover techniques. A two phase exon shuffling crossover technique

is utilized to generate offspring of our study. Items of each parent are grouped in bins

and then the bins of parents are combined together. In next step, the bins are ordered

according to their fitness value. Minimum slack criterion is used as the fitness value

of our study. Remaining item list is another crucial part of exon shuffling crossover.

If items of the current optimal bin are exist in the remaining item list, then it can be

added to the offspring’s chromosome as a new gene. If not, next bin of the ordered

list is evaluated using the same approach.

We used exon shuffling crossover [45, 12], a recent technique borrowed from molec-

ular genetics, for our proposed parallel algorithms. A Field of biology and genetics,

called molecular genetics, deals with genes in molecular level and mimics the molec-

ular methods and interactions among genes. After a two phase crossover, an offspring

is generated. First phase takes two chromosomes and chooses the genes with best

qualities to pass them to the offspring, while the second phase reinsert the remaining

items.

28

3.3 Mutation Operator

The mutation operator enables new solutions using the current optimal solution. In

this study, the mutation operator works based on the population size and predefined

mutation ratio. Number of groups chosen change depending on the population size

and mutation ratio. The mutation operator works on number of groups computed as

multiplication of population size and mutation ratio and select that number of groups

randomly. The items of the selected groups are removed from the current solution list

and they are added to remaining item list. At then end of mutation process, items in

the remaining item list are inserted back to groups in the solution list using BFD al-

gorithm. However, mutation operator does not guarantee a solution with less number

of bins than the current optimal solution. If slack of the existing groups are not ap-

propriate for the items in remaining item list, then the algorithm can add new groups

to the remaining items.

3.4 Inversion Operator

Inversion operator is applied to increase the transfer probability of fitter gene pair to

the next generation. At the beginning of process, two groups are chosen simultane-

ously from each chromosome and their slack and groups numbers are interchanged.

The upcoming crossover and mutation operators take place on these interchanged

sets. The inversion operator provides an increased opportunity for promising future

generations without changing the item list during the operation.

3.5 Fitness function

A fitness value, which will allow us to choose most promising chromosome, is com-

puted based on an equation defined by Falkenauer :

FF =

N∑
i=1

(
Fi

c
)k (3.1)

29

There are different approaches to compute a fitness value in order to lead choice

procedure. Some of the approaches to calculate fitness value increase the solution

space by keeping suboptimal solutions. From the other side if we only prefer to use

group size as the fitness value, better solutions can be discarded. As a result, the

choice of fitness function (FF) requires additional caution.

In Equation 3, N is the number of bins, Fi is the total weights of the items packed into

the gene i (i = 1 ,..., N), c is the bin size, and k is a heuristic exponential number. The

value k prefers the most filled genes rather than the ones has plenty of space. Study

[18] uses k = 2 but the study [52] proposed that k = 4 demonstrates higher qualified

solutions.

3.6 Proposed Algorithm, CUDA-GGA-1DBPP

Our algorithm for BPP consist of following main functions;

• Setting up Host and Device Allocations

• Generation of Arrays with Random Numbers - on GPU asynchronously

• Generation of Initial Population - on GPU asynchronously

• Truncate Population to Population Size - on CPU

• Add BFD solution to the Population - on CPU

• Find slacks of each bin in every chromosome - on GPU asynchronously

• Crossover - on GPU asynchronously

• Calculate Fitness Value for each solution - on GPU asynchronously

• Mutation - on GPU asynchronously

• Calculate Fitness Value for each solution - on GPU asynchronously

• Validate and display results - on CPU

The pseudo code of our proposed algorithm;

30

Algorithm 2 Our Proposed Algorithm for 1D-BPP
1: Setting up Host and Device Allocations

2: Generation of Arrays with Random Numbers (sizeO f population*TRatio)

3: Transfer generated population from Device to Host

4: Truncate Population and add Best Fit Decreasing Solutions to the population

(sizeO f population)

5: Transfer truncated population from Host to Device

6: Find slacks (numberO fGroups)

7: Evaluate the fitness f (x) of each chromosome x in the population

8: function Generation(sizeO f population)

9: n←numberOfgeneration

10: for i← 1, n do

11: Crossover (sizeO f population ∗CrossoverRatio)

12: Mutation (sizeO f population)

13: Place fittest offsprings into population

14: Inversion (sizeO f population)

15: end for

16: end function

17: Validate and display results

A general schema of device and host functions in time-line can be seen in Figure 3.1

.

31

T
IM

E

CPU GPU

Truncate Population

Validate and Display Results

PCIe BUS

G
en

er
at

io
n

 L
o

o
p

Generate Initial Population

Find the Slacks of the

Groups in the Chromosomes

Crossover

Mutation

Inversion

Figure 3.1: Algorithm Schema

3.6.1 Setting up Host and Device Memory Allocation

Since it is an GA we need enough memory space on both device and host to generate

population freely. So First of all we allocate memory on host side with the following

command;

chromosome p o p u l a t i o n = (chromosome) c a l l o c (s i z e o f p o p u l a t i o n

T r a t i o , s i z e o f (chromosome)) ;

chromosome is a structure which has following variables in it;

i n t g r o u p n a m e s o f t h e i t e m s [5 0 0] ;

i n t g ro up s [5 0 0] ;

i n t g r o u p s i z e ;

i n t s l a c k o f t h e g r o u p [5 0 0] ;

f l o a t f i t n e s s v a l u e F F ;

32

group_names_of_the_items is an array which describes the group names of each

items. For example if first item which is [0]. element in the array has a bin where it is

deployed, the value of the [0] is the bin’s number or group number in GGA. Groups

array stores the group numbers and group_size is the solution that shows how many

bin/group is used to pack the problem data set items.

Slack_of_the_group is another array which shows the residual capacity of the groups

and float fitness_valueFF store the solution’s Fitness Value. Since we can’t use vec-

tors, we need to determine the size of the array with the maximum number of items.

The reason why the size of allocation is T_Ratio times grater than size of population

is to generate initial population in order to truncate to the size of population with best

ones of the population. cudaMalloc allocate memory on GPU with the g_population

device pointer and T_ratio times greater than the size of population

In addition to that, since we need a memory space to generate initial population, we

allocated exactly the same sized space in the device;

cudaMalloc((void**)g_population, tratio*size_of_population* sizeof(chromosome))

3.6.2 Generating Random Numbers on GPU

For mutation and generation of initial population we need to have random numbers to

select from wide selection possibilities. Since CUDA platform is not have standard

libraries of C languages, generation of random numbers seem to little problematic.

One way to have them is, firstly generate and append to an array, then copy the array

to the GPU side, the other option is to use CURAND library of GPU side. We prefer

second option, not only for we need it on GPU side but also for having the specialty

to generate them parallel.

A basic generation of CURAND is used in our study. We generate two different

random set in order to use it sequentially. To generate the numbers CURAND needs

a state information;

c u r a n d S t a t e d e v S t a t e ;

curandStateMRG32k3a devMRGStates ;

33

We send the state pointers to kernels to make the states ready for the generation-

kernels. In this study we used two different generation states to have completely

different two 1000-element arrays. One of them generated by MTGP32 pseudoran-

dom sequence generator which is an NVIDIA’s adaption of an algorithm proposed by

Saito et.al [47] . The other state we used is CURAND’s default state which generates

an array of pseudorandom numbers greater than 2190 .

In addition to what we have done above for generation, “Kernel Concurrency” and

“Host-Device Memory Copy Concurrency“ are used to do asynchronous operation

for generation of two distinct random numbered arrays. Three streams are created

totally in this step. First two of three is used for the generation, and the last one used

for asynchronous memory copy of item weights from host to device. These three

operations are completely independent and can run asynchronously. There is only

one exception in the generation which is the generation hugely depends on setting up

kernel states. So these two kernels must run synchronously.

3.6.3 Generation of Initial Population

As a standard GA an initial population is generated with the random numbered arrays

which gathered in previous section. After allocation enough memory on the device

the kernel which executes the generation procedure, is luanched with the following

configuration;

Block Size: (N + f ill_groups_ThreadS ize − 1)/ f ill_groups_ThreadS ize

Thread Size: f ill_groups_ThreadS ize

As seen above, a variable named N corresponds to product of population_size with

T_Ratio and helps to calculate the amount of thread of block size. Block size is tai-

lored to generate enough thread for pre-specified and tunable fill_groups_ThreadSize .

Size of population and fill_groups_ThreadSize are given in MetaData file read initially

even before the reading of data set. The size of population and number of generation

are two tunable variables to examine if the better results can be acquired with increas-

ing them. With the above formulation the kernel grantees to have block and thread

sizes to produce T Ratio times Population Size concurrent GPU processes.For exam-

34

ple if a population size is defined as "350" and T ratio is defined as "30"the kernel

will be executed with concurrent 10500 processes to generate initial population.

After generating each chromosome, the population array is filled with the chromo-

somes to the " population[tid].th "element resident on the device memory.

3.6.4 Truncate Population

A population of chromosomes is generated in previous step. Next consequent step

is truncating population to the size of population with selecting best chromosomes

of the population. Eliminating the chromosomes which have solutions not as well as

the others means better generations or offspring especially for mutation and crossover

operators.

It is a simple host function and it does not have any heavy part to run on GPU asyn-

chronously. So we decided not to run it on GPU. The only drawback in this step is

the population which reside in device memory need to be copied to the host.

3.6.5 Reinserting Items with BFD Algorithm

As described in Chapter 1&2 BFD is one of the uncomplicated heuristic algorithms

for solving the BPP. The algorithm’s pseudo code can be seen as following;

35

Algorithm 3 Best Fit Decreasing (BFD) algorithm
1: function BFDH(itemsList, binCapacity)

2: sort itemsList by decreasing height

3: n←itemsList.size

4: for i← 1, n do

5: minRemainingS pace← binCapacity

6: m←bins.size

7: for j← 1,m do

8: if item(i) fits into bin(j) then

9: pack item(i) into bin(j)

10: if remainingS pace < minRemaningS pace then

11: minRemainingS pace← remainingS pace

12: end if

13: end if

14: end for

15: if item(i) fits fit into more than one bin then

16: repacks the item into minRemainingSpace bin level

17: else

18: create new bin

19: pack item(i) into new bin

20: end if

21: end for

22: end function

3.6.6 Finding Slacks of the Groups

Crossover and Mutation operators need the last status information of the groups to

rearrange them. The one of the crucial information of the groups is how much slacks

do we have to put new items. At beginning the the study we had two opportunities for

calculating the slacks on the device. The first option is to running the each chromo-

some concurrently and the second option is to running the chromosome sequentially

while in each step calculating the slacks of the each bin concurrently. We chose the

36

latter one because it utilizes the device more than the first one for even increasing the

population size. So each chromosome of the population goes in the algorithm, then

its groups divided into parallel processes to calculate its’ slacks. After finishing the

last chromosome, we have a population which all chromosomes have the information

about amount of residual capacity of each its’ groups.

3.6.7 Crossover

While designing the algorithm, we implemented the crossover operator on the device

firstly. But running the algorithm for two randomly chosen chromosomes concur-

rently caused us to get TDR (Timeout Detection Recovery) from operating system

which is a protection to have a responsive GPU. The reason why we get TDR is the

crossover’s complex structure. As we discussed in chapter 1, GPU core is quite differ-

ent from a CPU core. GPU core is designed for highly parallel lightweight operations

while a CPU core is designed for complex and single processed operations. This dif-

ference is pushed us to run the operator on host side . For example, hard28 data set

is took 50-70 seconds with executing the crossover on device while max 7 seconds

on host side (For total data set and complete algorithm) . So we decided to run the

Crossover on the host initially.

Then we searched the problem and found out the structure of the remaining item has

the main responsibility. Searching for a remaining item whether it is deleted or not is

an exhausting procedure. So we decided to put a deleted Boolean to the structure of

the remaining item list. In this way, the complexity of the algorithm is decreased and

with other minor changes we could perform the crossover function on GPU.

In addition to than we divided the function to three main kernels. One of them is to

prepare remaining items and offspring for the crossover, second one is the crossover

and the final one is to pack remaining items to the generated offspring.

After we have a courage to implement the operator on the GPU, we implemented three

different crossover operators but finally we can run it with exon shuffling method

which chooses the best groups from the chromosomes with an aim to have better

offspring. Also we added a variable named "Crossover Ratio" which defines the size

37

of the offspring population after multiplication with population size.

3.6.8 Mutation on GPU

Two main parts of a general GA are Crossover and Mutation. For Mutation we suc-

cessfully implemented it on device. Mutation is less complex than crossover. Firstly

every block takes a distinct chromosome. Then every block chooses a group via ran-

dom numbers reside on the device. This group’s items are deleted from the each

chromosome. After reinserting the items deleted with BFD, we have a chance to have

better slacks on the array which have the slacks of the groups. Rather than calculating

slacks of every group, we preferred to update the slack information every time when

an item inserted or deleted. In this way we pushes all blocks to execute a mutation in

itself without communicating other processes.

Another constant variable we read from the meta data text file, is number of gener-

ation. The algorithm executes the Crossover and Mutation for a definite number of

times.

To increase the chance for fitter chromosomes we also added the "Mutation Ratio" to

our proposed algorithm. A for loop which runs for "population size * mutation ratio"

times. Rather than deleting just a group, more than one number of groups are deleted

and inserted to the remaining item list. The solution quality is increased with added

mutation ratio.

3.6.9 Calculating Fitness Values

For calculating the fitness values of each chromosome, we preferred to have an enough

block size division of size of population by 64 and 64 threads. We likely have bet-

ter performance results than run it by blocks which have one thread per. So every

chromosome’s Fitness Values are calculated by concurrent blocks and threads.

As we discussed, communication between host and device has a price. Since item

weights are constant values, it doesn’t need to transfer back from device to host. But

the population is needed to transfer from the device to host after the initial generation

38

on the device for the truncating and adding BFD to the population. After these func-

tions we need to transfer the population back again to the device to find slacks. For

crossover,mutation and calculating fitness values, the population is transferred to the

device again. Finally after the last function in the last generation on GPU, we transfer

it back to host for validating and displaying the results. At that time we no longer

need the Random Numbered Arrays, item values and population on the device. So

the final operation takes place on the device is to free the memory they are occupied

on GPU.

39

40

CHAPTER 4

EXPERIMENTAL RESULTS

In this section, we briefly explain our environment, then give information about prob-

lem data sets, configuration settings and results for the data sets, finally conclude with

general analyzes of the gathered results.

4.1 Experimental Environment

Two different personal computers are used for the experiments. One for CUDA im-

plementation tests and the other is CPU implementation to compare the results. The

main PC, which has a CUDA capable graphical processing unit, has following hard-

ware capabilities; For CPU implementations;

• Intel Core i5-2467M CPU 1.60 GHz with 4 cores

• 4 GB Memory (RAM)

• Windows 7 64bit Operating System

is used.And for GPU implementations;

• Intel Pentium 3258 CPU 3.20 GHz with 2 cores

• 8 GB Memory (RAM)

• Windows 7 64bit Operating System

• EVGA NVIDIA GeForce GTX 750 Ti Graphical Processing Unit

41

is used. Our GPU, named as NVIDIA GeForce GTX 750 Ti, is a mid-sized GPU

designed for both gaming and computing environment 4.1:

Figure 4.1: GPU Card [27]

Main specifications of the GPU can be seen in Table 4.1.

4.2 Problem Data Sets

In our study we used three sets of problem instances for the experiments . The in-

stances are set_1, set_2 , set_3 [48] and hard28 [54]. The benchmark problem data

sets are presented in Table 4.2.

4.3 Configuration Settings For The Proposed Algorithm

As we described in previous chapters, launching a kernel with "N" Blocks contains

one Thread in each, equals to launching with one Block contains "N" Thread in terms

of generating N software depended parallel processes. But execution times can be

different for each configuration.Since time is not luxury we have, we tried to select

best block and thread sizes to read minimum execution times.

42

Table 4.1: GPU’s Technical Specifications
Specifications Values

Architecture Implementation 7

Architecture Revision 162

Number of GPCs 1

Number of TPCs 5

Number of SMs 5

Warps per SM 64

Lanes per warp 32

Register file size 65536

Max CTAs per SM 32

Max size of shared memory per CTA (bytes) 49152

SM Revision 327680

Driver WDDM

GPU Family GM107-A

MAX THREADS PER BLOCK 1024

MAX BLOCK DIM X 1024

MAX BLOCK DIM Y 1024

MAX BLOCK DIM Z 64

MAX GRID DIM X 2147483647

MAX GRID DIM Y 65535

MAX GRID DIM Z 65535

MAX SHARED MEMORY PER BLOCK 49152

TOTAL CONSTANT MEMORY 65536

WARP SIZE 32

MAX REGISTERS PER BLOCK 65536

MULTIPROCESSOR COUNT 5

KERNEL EXEC TIMEOUT 0

INTEGRATED 0

MEMORY CLOCK RATE 2700000

GLOBAL MEMORY BUS WIDTH 128

L2 CACHE SIZE 2097152

MAX THREADS PER MULTIPROCESSOR 2048

MAX SHARED MEMORY PER MULTIPROCESSOR 65536

MAX REGISTERS PER MULTIPROCESSOR 65536

COMPUTE CAPABILITY MAJOR 5

COMPUTE CAPABILITY MINOR 0

TOTAL MEMORY 2147483648

43

Table 4.2: The benchmark problem data sets
problem instance # instances item weights bin capacity (c) # items (n)

set_1 720 [1,100] {100, 120, 150} {50, 100, 200, 500}

set_2 480 [3, 9] items at each bin 1,000 {50, 100, 200, 500}

set_3 10 [20,000, 35,000] 100,000 200

hard28 28 [1, 800] 1,000 {160, 180, 200}

For each data set we tried to find best "Block and Thread Sizes" to get minimum exe-

cution times before conducting the tests. Since Set_1 and set_2 have relatively more

number of instances, the configuration setting tests are studied for only 50 instances

of them. How the setting effects the execution time is presented in Table 4.3 for Set_1

data set, Table 4.4 for Set_2 data set, Table 4.5 for Set_3 data set and Table 4.6 for

hard28 data set. Gray shaded configurations are chosen for the tests. For example,

as seen in Table 4.4, settings for Fill Groups Randomly function which is used for

generation of initial population with 28-BlockSize and 64-ThreadSize and Generation

stands for the functions which needs a total process number equals to population size

with 5-BlockSize and 16-ThreadSize has best execution time for 40 Number of Gen-

erations and 80 Population Size. Other tests which force to tune these parameters are

conducted with saving the ratio between Block and Thread Sizes. Set_2 data set in

Table 4.4, and Set_3 data set in Table 4.5 have the most attractive examples of how the

Block and Thread Size configuration can effect execution time. The best configura-

tions have approximately 40 seconds while the worst ones have 60 seconds execution

time for 50 instances.

44

Table 4.3: Configuration Settings for Set_1 Data Set(720 Problem Instances)

Function
#Blocks

/Grid

#Threads

/Block

Time(Sec)

 for 1st 50

Problem

Instances

Fill Groups Randomly 14 128

Generations 3 32

Fill Groups Randomly 28 64

Generations 5 16

Fill Groups Randomly 56 32

Generations 10 8

Fill Groups Randomly 112 16

Generations 20 4

Fill Groups Randomly 224 8

Generations 40 2

Fill Groups Randomly 448 4

Generations 80 1

23.09

17.82

19.51

17.95

18.68

20.44

Table 4.4: Configuration Settings for Set_2 Data Set(480 Problem Instances)

Functions
#Blocks

/Grid

#Threads

/Block

Time(Sec)

 for 1st 50

Problem

Instances

Fill Groups Randomly 8 256

Generations 3 32

Fill Groups Randomly 16 128

Generations 5 16

Fill Groups Randomly 32 64

Generations 10 8

Fill Groups Randomly 64 32

Generations 20 4

Fill Groups Randomly 128 16

Generations 40 2

Fill Groups Randomly 256 4

Generations 80 1
38.58

60.01

53.54

47.44

51.27

47.50

45

Table 4.5: Configuration Settings for Set_3 Data Set(10 Problem Instances)

Function
#Blocks

/Grid

#Threads

/Block
Time(Sec)

Fill Groups Randomly 14 128

Generations 3 32

Fill Groups Randomly 28 64

Generations 5 16

Fill Groups Randomly 56 32

Generations 10 8

Fill Groups Randomly 112 16

Generations 20 4

Fill Groups Randomly 224 8

Generations 40 2

Fill Groups Randomly 448 4

Generations 80 1
39.09

61.28

51.29

47.24

44.70

40.08

Table 4.6: Configuration Settings for hard28 Data Set(28 Problem Instances)

Function
#Blocks

/Grid

#Threads

/Block
Time(Sec)

Fill Groups Randomly 14 128

Generations 3 32

Fill Groups Randomly 28 64

Generations 5 16

Fill Groups Randomly 56 32

Generations 10 8

Fill Groups Randomly 112 16

Generations 20 4

Fill Groups Randomly 224 8

Generations 40 2

Fill Groups Randomly 448 4

Generations 80 1
49.65

54.55

49.91

46.80

47.02

46.28

46

4.4 Settings The Population Size

We tried to increase the Population Size with a predefined and constant Number of

Generations and Truncate, Crossover, Mutation, Inversion Ratios. The Results for the

Set_1 data set are presented in Table 4.7 and the charts as "Population Size vs. Num-

ber of Optimal Solutions" can be seen in Figure 4.2, "Population Size vs. Total Num-

ber of Extra Bins" in Figure 4.3 and "Population Size vs. Execution Time" in Figure

4.4. Number of Optimal Solutions shows the amount of optimal solution with com-

paring every instance with given optimal solutions for each data set instances.Total

Number of Extra Bins shows the summation of extra bins which is calculated by sub-

tracting found best solution, which is group/bin number required to pack all items,

with the best solution for each data set instances.

Table 4.7: The Effect of Changing Population Size for Set_1 Data Set(720 Problem
Instances)

Set_1 with 720 Problem Instances

Number of Generations 40

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

Population Size

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20 574 212 1239.00

40 584 174 1374.57

60 612 117 1570.78

80 622 102 1696.64

100 614 108 1701.86

150 613 110 2233.97

300 611 124 3712.35

47

550

560

570

580

590

600

610

620

630

20 40 60 80 100 150 300

N
u

m
b

e
r

o
f

O
p

ti
m

al
 S

o
lu

ti
o

n

Population Size

Figure 4.2: Population Size vs. Number of Optimal Solution for Set_1(720 Problem
Instances)

48

50

70

90

110

130

150

170

190

210

230

20 40 60 80 100 150 300

To
ta

l N
u

m
b

e
r

o
f

Ex
tr

a
B

in
s

Population Size

Figure 4.3: Population Size vs. Total Number of Extra Bins for Set_1(720 Problem
Instances)

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

20 40 60 80 100 150 300

Ti
m

e
 (

Se
c)

Population Size

Figure 4.4: Population Size vs. Execution Time for Set_1(720 Problem Instances)

49

In our first design, we only change population size and run the algorithm for the pre-

determined fixed values of the configuration parameters on Set_1 data set. When we

look at the Figure4.3 and Figure 4.4, it is obvious that there is a negative correlation

between the number of optimal solutions and total number of extra bins required as

expected. However, there is a change of trend for both parameters starting from the

population size 80. We conclude that increase in population size has a limited effect

on number of optimal solutions when number of generations is constant. That is why

we observe a decrease as population size increases 80 through 300. Execution time,

another parameter of interest, follows an increasing trend. The time required to solve

algorithm displays a steepest slope when population size is in between 20 and 100

then when population size is in between 100 and 300. Global memory constraint may

be the result of this steepest slope.

Following the Set_1 data set, we run the algorithm for Set_2 data set using the same

configuration by only changing the population size. The correlation between the num-

ber of optimal solutions and total number of extra bins and the relation between the

population size and execution time has a similar trend with the results of Set_1 data

set. The results for the Set_2 data set are presented in Table 4.8 and the charts as

"Population Size vs. Number of Optimal Solutions" can be seen in Figure 4.5, "Pop-

ulation Size vs. Total Number of Extra Bins" in Figure 4.6 and "Population Size vs.

Execution Time" in Figure 4.7.

50

Table 4.8: The Effect of Changing Population Size for Set_2 Data Set(480 Problem
Instances)

Number of Generations 40

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

Population Size

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20 299 292 730.32

40 338 196 755.37

60 378 140 770.54

80 381 126 885.88

100 372 128 999.98

150 373 139 1387.99

300 372 138 2485.03

51

250

270

290

310

330

350

370

390

20 40 60 80 100 150 300

o

f
O

p
ti

m
al

 S
o

lu
ti

o
n

s

Population Size

Figure 4.5: Population Size vs. Number of Optimal Solution for Set_2(480 Problem
Instances)

52

50

100

150

200

250

300

350

20 40 60 80 100 150 300

To
ta

l N
u

m
b

er
 o

f
Ex

tr
a

B
in

s

Population Size

Figure 4.6: Population Size vs. Total Number of Extra Bins for Set_2(480 Problem
Instances)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

20 40 60 80 100 150 300

T
im

e
 (

Se
c)

Population Size

Figure 4.7: Population Size vs. Execution Time for Set_2(480 Problem Instances)

53

Suggested algorithm cannot find an optimal solution for Set_3 data set for same con-

figuration and execution time follows an increasing trend as before. The results for

the Set_3 data set are presented in Table 4.9 and the charts as "Population Size vs.

Total Number of Extra Bins" is presented in Figure 4.8 and "Population Size vs. Ex-

ecution Time" in Figure 4.9. Since we couldn’t find any optimal solution for this data

set we didn’t present any chart related with it.

Table 4.9: The Effect of Changing Population Size for Set_3 Data Set(10 Problem
Instances)

Number of Generations 40

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

Population Size

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20 0 76 25.85

40 0 88 30.70

60 0 102 36.23

80 0 108 39.09

100 0 116 47.83

150 0 110 123.46

300 0 109 164.38

54

50

60

70

80

90

100

110

120

20 40 60 80 100 150 300

To
ta

l N
u

m
b

e
r

o
f

Ex
tr

a
B

in
s

Population Size

Figure 4.8: Population Size vs. Total Number of Extra Bins for Set_3(10 Problem
Instances)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

20 40 60 80 100 150 300

Ti
m

e
(S

ec
)

Population Size

Figure 4.9: Population Size vs. Execution Time for Set_3(10 Problem Instances)

55

The results for the hard28 data set are presented in Table 4.10 and the chart of "Popu-

lation Size vs. Execution Time" in Figure 4.10.Our algorithm ends up with an optimal

solution of 5 for the hard28 data set. The execution time increase with the population

size and execution time still has a drastic slope after the population size 100. Since

the number of optimal solutions and total number of extra bins are not changed for

this data set during the configuration change we didn’t present any chart related with

them.

Table 4.10: The Effect of Changing Population Size for hard28 Data Set(28 Problem
Instances)

Number of Generations 40

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

Population Size

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20 5 23 31.18

40 5 23 33.61

60 5 23 38.73

80 5 23 46.35

100 5 23 42.26

150 5 23 57.04

300 5 23 98.02

56

0.00

20.00

40.00

60.00

80.00

100.00

120.00

20 40 60 80 100 150 300

Ti
m

e
 (

Se
c)

Population Size

Figure 4.10: Population Size vs. Execution Time for hard28(28 Problem Instances)

4.5 Settings The Number of Generations

After finding best population size, we increased the number of generation to see how it

effects the solution quality and execution times. As we discussed in previous chapters

the Number of Generation corresponds to the number which crossover, mutation and

inversion operations occurs repeatedly. When we run the algorithm for this given set

up on Set_1 data set, number of optimal solutions stays as 619 after the number of

generation 40 and so total number of extra bins required stays unchanged as expected.

Additionally, execution time increases with the number of generations. The results

for the Set_1 data set with each Number of Generationsbetween "20" and "300" are

presented in Table 4.11 and the chart as "Population Size vs. Execution Time" is

shown in Figure 4.11 . Since there is no change in the Number of Optimal Solutions

found and Total Number of Extra Bins, we didn’t present any chart about them.

57

Table 4.11: The Effect of Changing the Number of Generations for Set_1 Data
Set(720 Problem Instances)

Set_1 with 720 Problem Instances

Population Size 80

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

of Generations

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20 611 118 1038.01

40 619 107 1282.00

60 619 107 1457.57

80 619 107 1832.35

100 619 107 2205.55

150 619 107 3150.46

300 619 107 6171.10

58

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

20 40 60 80 100 150 300

Ti
m

e
 (

Se
c)

Number of Generations

Figure 4.11: The Number of Generations vs. Execution Time for Set_1(720 Problem
Instances)

When we run the same configuration for Set_2 data set, number of optimal solutions

does not show a significant increase after the number of generation 40. Hence, total

number of extra bins required follows an almost unchanged trend after the number of

generation 40. Execution time increases with the number of generation as observed

in previous tests. The results for the Set_2 data set are presented in Table 4.12 and

the charts as "Number of Generations vs. Number of Optimal Solution" can be seen

in Figure 4.12, "Number of Generations vs. Total Number of Extra Bins" in Figure

4.13 and "Number of Generations vs. Execution Time" in Figure 4.14.

59

Table 4.12: The Effect of Changing Number of Generations for Set_2 Data Set(480
Problem Instances)

Population Size 80

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

of Generations

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20 351 209 837.96

40 380 131 950.85

60 384 118 1288.54

80 384 117 1510.43

100 385 115 1933.06

150 385 115 3463.36

300 385 114 4642.20

60

250

270

290

310

330

350

370

390

410

20 40 60 80 100 150 300

o

f
O

p
ti

m
al

 S
o

lu
ti

o
n

s

Number of Generations

Figure 4.12: Number of Generations vs. Number of Optimal Solution for Set_2(480
Problem Instances)

0

50

100

150

200

250

20 40 60 80 100 150 300

To
ta

l N
u

m
b

e
r

o
f

Ex
tr

a
B

in
s

Number of Generations

Figure 4.13: Number of Generations vs. Total Number of Extra Bins for Set_2(480
Problem Instances)

61

250.00

750.00

1250.00

1750.00

2250.00

2750.00

3250.00

3750.00

4250.00

4750.00

5250.00

20 40 60 80 100 150 300

Ti
m

e
 (

Se
c)

Number of Generations

Figure 4.14: Number of Generations vs. Execution Time for Set_2(480 Problem
Instances)

Our proposed algorithm cannot find an optimal solution for the Set_3 data set for our

current configuration. By the way, execution time follows an increasing trend with

number of generations.The results for the Set_3 data set are shown in Table 4.13 and

the charts as "Number of Generations vs. Total Number of Extra Bins" in Figure 4.15

and "Number of Generations vs. Execution Time" are presented in Figure 4.16 .

62

Table 4.13: The Effect of Changing Number of Generations for Set_3 Data Set(10
Problem Instances)

Population Size 80

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

of Generations

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20 0 61 22.57

40 0 72 40.36

60 0 72 56.25

80 0 72 72.18

100 0 72 87.89

150 0 72 125.00

300 0 72 242.89

63

54

56

58

60

62

64

66

68

70

72

74

20 40 60 80 100 150 300

T
o

ta
l N

u
m

b
e

r
o

f
Ex

tr
a

 B
in

s

Number of Generations

Figure 4.15: Number of Generations vs. Total Number of Extra Bins for Set_3(10
Problem Instances)

64

0.00

50.00

100.00

150.00

200.00

250.00

300.00

20 40 60 80 100 150 300

T
im

e
 (

Se
c)

Number of Generations

Figure 4.16: Number of Generations vs. Execution Time for Set_3(10 Problem In-
stances)

The number of optimal solutions turns out to be 5 for the hard 28 data set and number

of extra bind required is determined to be 23. Trend in execution time is similar with

the previous runs. The results for the hard28 data set are presented in Table 4.14 and

the chart of "Population Size vs. Execution Time" in Figure 4.17.

65

Table 4.14: The Effect of Changing Number of Generations for hard28 Data Set(28
Problem Instances)

Population Size 80

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

of Generations

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20 5 23 30.36

40 5 23 46.24

60 5 23 61.21

80 5 23 76.19

100 5 23 73.05

150 5 23 93.72

300 5 23 240.94

66

0.00

50.00

100.00

150.00

200.00

250.00

300.00

20 40 60 80 100 150 300

Ti
m

e
 (

Se
c)

Number of Generations

Figure 4.17: Number of Generations vs. Execution Time for hard28(28 Problem
Instances)

4.6 Settings Random Population Initialization Product

Random Population Initialization Product is a production factor for population size to

have a bigger initial search space which consist of randomly generated chromosomes.

We examined the effect of increasing the Random Population Initialization Product

to the urge of finding more optimal solutions.

The number of optimal solutions displays a mild decrease after the Random Popula-

tion Initialization Product 20 for Set_1 data set. Increasing only Random Population

Initialization Product when number of generations is constant can be thought as in-

creasing the population size again number of generations is constant. That is why

we see a mild decrease with increasing Random Population Initialization Product.

However, increasing the Random Population Initialization Product does not have a

significant effect on number of optimal solutions when run on Set_1 data set. The

proposed algorithm cannot find an optimal solution for Set_3 data set for given con-

67

figuration. An optimal number of solutions 5 and number of extra bins 23 are found

for hard28 data set and execution time has an increasing pattern as Random Popula-

tion Initialization Product increases.

Results for the Set_1 data set with each Random Population Initialization Product

between "10" and "50" are presented in Table 4.15 and the chart as "Random Popula-

tion Initialization Product vs. Number of Optimal Solutions" is shown in Figure 4.18.

We preferred to fix Number of Generations as "40" and Population Size as "80" since

they yield to have best number of optimal solutions in our tests.

Table 4.15: The Effect of Changing the Random Population Initialization Product for
Set_1 Data Set(720 Problem Instances)

Set_1 with 720 Problem Instances

Number of Generations 40

Population Size 80

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

Random Population

Initialization

(N x population)

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

10 622 100 1045.11

20 626 97 1089.27

30 619 104 1198.33

40 617 105 1254.07

50 619 108 1396.05

68

615

617

619

621

623

625

627

10 20 30 40 50

N
u

m
b

e
r

o
f

O
p

ti
m

al

So
lu

ti
o

n
s

Random Population
Initialization Product Number

Figure 4.18: Random Population Initialization Product vs. Number of Optimal Solu-
tions Set_1(720 Problem Instances)

The results for the Set_2 data set are presented in Table 4.16 and the chart of "Random

Population Initialization Product vs. Number of Optimal Solutions" can be seen in

Figure 4.19.

69

Table 4.16: The Effect of Changing the Random Population Initialization Product for
Set_2 Data Set(480 Problem Instances)

Number of Generations 60

Population Size 80

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

Random Population

Initialization

(N x population)

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

10 382 115 1205.82

20 384 118 1288.54

30 380 122 1270.50

40 380 119 1296.42

50 379 118 1334.11

70

350

360

370

380

390

400

410

420

430

440

450

10 20 30 40 50

o

f
O

p
ti

m
al

 S
o

lu
ti

o
n

s

Random Population
Initialization Product Number

Figure 4.19: Random Population Initialization Product vs. Number of Optimal Solu-
tions Set_2(480 Problem Instances)

The results for the Set_3 data set are presented in Table 4.17 and the chart of "Random

Population Initialization Product vs. Total Number of Extra Bins" can be seen in

Figure 4.20.

71

Table 4.17: The Effect of Changing the Random Population Initialization Product for
Set_3 Data Set(10 Problem Instances)

Number of Generations 40

Population Size 80

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

Random Population

Initialization

(N x population)

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

10 0 114 45.44

20 0 72 40.41

30 0 68 40.10

40 0 70 41.93

50 0 63 45.64

72

0

20

40

60

80

100

120

10 20 30 40 50

To
ta

l N
u

m
b

e
r

o
f

Ex
tr

a
B

in
s

Random Population
Initialization Product Number

Figure 4.20: Random Population Initialization Product vs. Total Number of Extra
Bins Set_3(10 Problem Instances)

The results for the hard28 data set are presented in Table 4.18 and the chart of "Ran-

dom Population Initialization Product vs. Execution Time" in Figure 4.21.

73

Table 4.18: The Effect of Changing the Random Population Initialization Product for
hard28 Data Set(28 Problem Instances)

Number of Generations 40

Population Size 80

Random Population

Initialization Product 20

Crossover Ratio

(% of population) 50%

Mutation Ratio 20%

Inversion Ratio 20%

Random Population

Initialization

(N x population)

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

10 5 23 45.72

20 5 23 46.23

30 5 23 46.30

40 5 23 48.41

50 5 23 48.42

74

45.00

46.00

47.00

48.00

49.00

50.00

51.00

52.00

53.00

54.00

55.00

10 20 30 40 50

Ti
m

e
(S

ec
)

Random Population
Initialization Product Number

Figure 4.21: Random Population Initialization Product vs. Execution Time for
hard28(28 Problem Instances)

4.7 Settings the Crossover, Mutation and Inversion Ratios

These three ratios are used in main operators of a GA. Crossover Ratio defines the

offspring size which will be generated after the operation, while Mutation and Inver-

sion Ratios corresponds to the size of array which will be generated in a mutation

and inversion functions. We tried to select best effective ratios to find optimal or near

optimal solutions.

Number of optimal solutions has an increasing pattern for Set_1 and Set_2 data sets.

However, our proposed algorithm cannot find an optimal solution for Set_3 data set.

Additionally, an optimal number of solution 5 and extra number of bins 23 are found

as the result for hard28 data set.

For the mutation & inversion ratio, number of optimal solutions increase until the 636

when mutation & inversion ratio is 0,4. After the optimal level, number of optimal

solutions starts decreasing for Set_1 data set. For Set_2 data set, increasing mutation

75

& inversion ratio does not have a significant effect on number of optimal solution. The

proposed algorithm cannot find an optimal solution for Set_3 data set for different

values of mutation & inversion ratio. The increase on mutation & inversion ratio

does not change the results for hard28 data set. An optimal number of solution 5

and extra number of bins 23 are found for given configuration. For these two final

configurations, designed by changing crossover and mutation & inversion ratio one at

a time, execution time follows an increasing trend with increasing values of interest

as observed in earlier experiments.

The results for the Set_1 data set with each Crossover Ratio between "0,2" and "0,8"

and Mutation&Inversion Ratios between "0,1" and "0,5" are presented in Table 4.19

and the chart as "Crossover Ratio vs. Number of Optimal Solutions" is shown in

Figure 4.22 and "Mutation&Inversion Ratio vs. Number of Optimal Solutions" is

shown in 4.23 .

Table 4.19: The Effect of Changing the Crossover and Mutation&Inversion Ratio for
Set_1 Data Set(720 Problem Instances)

Crossover Ratio

(% of Population)

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20% 609 127 993.43

40% 623 99 1062.45

50% 622 102 1696.64

60% 629 93 1728.41

80% 639 82 1423.70

Mutation&Inversion Ratio

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

10% 618 110 1056.84

20% 629 93 1150.56

30% 635 86 1275.73

40% 636 85 1202.81

50% 629 92 1249.60

76

590

595

600

605

610

615

620

625

630

635

640

645

20% 40% 50% 60% 80%

N
u

m
b

er
 o

f
O

p
ti

m
al

So

lu
ti

o
n

s

Crossover Ratio
(% of population)

Figure 4.22: Crossover Ratio vs. Number of Optimal Solutions Set_1(720 Problem
Instances)

77

605

610

615

620

625

630

635

640

10% 20% 30% 40% 50%

N
u

m
b

e
r

o
f

O
p

ti
m

al

So
lu

ti
o

n
s

Mutation&Inversion Ratios

Figure 4.23: Mutation&Inversion Ratio vs. Number of Optimal Solutions Set_1(720
Problem Instances)

The results for the Set_2 data set are presented in Table 4.20 and the chart as "Crossover

Ratio vs. Number of Optimal Solutions" is shown in Figure 4.24 and "Mutation&Inversion

Ratio vs. Number of Optimal Solutions" is shown in 4.25 .

78

Table 4.20: The Effect of Changing the Crossover and Mutation&Inversion Ratio for
Set_2 Data Set(480 Problem Instances)

Crossover Ratio

(% of population)

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20% 337 200 910.71

40% 377 123 1152.38

50% 384 118 1288.54

60% 395 97 1444.57

80% 400 90 1538.93

Mutation&Inversion Ratio

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

10% 398 93 1374.16

20% 400 90 1538.93

30% 399 91 2200.35

40% 398 94 2302.59

50% 403 89 2443.13

79

300

310

320

330

340

350

360

370

380

390

400

410

20% 40% 50% 60% 80%

N
u

m
b

e
r

o
f

O
p

ti
m

al

So
lu

ti
o

n
s

Crossover Ratio
(% of population)

Figure 4.24: Crossover Ratio vs. Number of Optimal Solutions Set_2(480 Problem
Instances)

80

350

360

370

380

390

400

410

420

430

440

450

10% 20% 30% 40% 50%

N
u

m
b

er
 o

f
O

p
ti

m
al

So

lu
ti

o
n

s

Mutation&Inversion Ratios

Figure 4.25: Mutation&Inversion Ratio vs. Number of Optimal Solutions Set_2(480
Problem Instances)

The results for the Set_3 data set are presented in Table 4.21 and the chart as "Crossover

Ratio vs. Total Number of Extra Bins" is shown in Figure 4.26 and "Mutation&Inversion

Ratio vs. Total Number of Extra Bins" is shown in 4.27 .

81

Table 4.21: The Effect of Changing the Crossover and Mutation&Inversion Ratio for
Set_3 Data Set(10 Problem Instances)

Crossover Ratio

(% of population)

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20% 0 78 40.12

40% 0 74 40.64

50% 0 72 40.41

60% 0 78 49.57

80% 0 60 48.01

Mutation&Inversion

Ratio

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

10% 0 60 41.97

20% 0 60 47.47

30% 0 77 50.29

40% 0 77 53.07

50% 0 77 55.41

82

0

10

20

30

40

50

60

70

80

90

20% 40% 50% 60% 80%

To
ta

l N
u

m
b

er
 o

f
Ex

tr
a

B
in

s

Crossover Ratio
(% of population)

Figure 4.26: Crossover Ratio vs. Total Number of Extra Bins Set_3(10 Problem
Instances)

83

0

10

20

30

40

50

60

70

80

90

10% 20% 30% 40% 50%

To
ta

l N
u

m
b

e
r

o
f

Ex
tr

a
B

in
s

Mutation&Inversion Ratio

Figure 4.27: Mutation&Inversion Ratio vs. Total Number of Extra Bins Set_3(10
Problem Instances)

The results for the hard28 data set are shown in Table 4.22 and the chart as "Crossover

Ratio vs. Time" is shown in Figure 4.28 and "Mutation&Inversion Ratio vs. Time" is

shown in 4.29 .

84

Table 4.22: The Effect of Changing the Crossover and Mutation&Inversion Ratio for
hard28 Data Set

Crossover Ratio

(% of population)

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

20% 5 23 39.49

40% 5 23 44.27

50% 5 23 46.23

60% 5 23 50.74

80% 5 23 56.91

Mutation&Inversion Ratio

of

Optimal

Solutions

of Extra

 Bins

Time

(Sec)

10% 5 23 43.26

20% 5 23 46.23

30% 5 23 46.94

40% 5 23 48.65

50% 5 23 51.10

0.00

10.00

20.00

30.00

40.00

50.00

60.00

20% 40% 50% 60% 80%

Ti
m

e
(S

ec
)

Crossover Ratio
(% of population)

Figure 4.28: Crossover Ratio vs. Time hard28(28 Problem Instances)

85

38.00

40.00

42.00

44.00

46.00

48.00

50.00

52.00

10% 20% 30% 40% 50%

Ti
m

e
(S

ec
)

Mutation&Inversion Ratios

Figure 4.29: Mutation&Inversion Ratio vs. Time

The results of 4 different configurations on 4 different data sets turn out to be con-

sistent in terms of the effects of parameters on number of optimal solutions, extra

number of total bins and execution time.

4.8 Speed Up Performance of the Algorithm

In this section we compared our proposed algorithm’s solutions and execution times

with the sequential version of it which is used in the study by Dokeroglu and Cosar

[38]. These two algorithm used the same methods as Exon Shuffling proposed by the

studies [45] [12] and BFD Algorithm for reinserting remaining items in Corssover

and Mutatiton and inserting chromosomes with BFD solutions to the population be-

fore the generations.

The results of the comparisons made in Set_1 are presented in Table 4.23 and the

graphical visualization "Population Size vs. Time " is presented in the same Figure

4.30 for both sequential version named as CPU and GPU-parallel versions named

86

as GPU. Increasing Population Size causes increase in the execution time for both

CPU and GPU implementation, but CPU implementation can’t handle the increase

as GPU version. The last column shows the Speed Up Ratio which is the ratio of

Time CPU to Time GPU. There is a constant increase in the Speed Up Ratio. For

the Set_1 data set we have not only better solution but have a speed up between 6

and 12 approximately. In addition to that increase in the Population Size is not have

any effect on CPU implementation. We executed nearly the same algorithms in both

CPU and GPU implementation. But biggest reason of this solution beat up is having

a well distributed random generation of integers which help us to have a wide search

space of chromosomes and its groups. In addition to have better random generator,

we implemented a different switch method after crossover operations. Instead of

changing the worst one with the lowest Fitness Value we changed Population Size ×

Crossover Ratio number of chromosomes in parallel. This switch method changes

the order of better solutions and it yields to have a random distributed chromosomes.

Table 4.23: Comparisons between CPU and GPU Implementation for Set_1 Data Set
(720 Problem Instances)

Population

Size

Time CPU

(Sec)

Time GPU

(Sec)

of

Optimal

Solutions

CPU

of

Optimal

Solutions

GPU

Solution

Ratio

Speed

Up

20 4852 773 547 571 1.04 6.28

40 5907 835 547 585 1.07 7.07

60 8296 927 547 610 1.12 8.95

80 10387 999 547 612 1.12 10.40

100 12897 1014 547 613 1.12 12.72

87

0

2000

4000

6000

8000

10000

12000

14000

20 40 60 80 100

Ti
m

e
(S

e
c)

Population Size

Time CPU

Time GPU

Figure 4.30: Population Size vs. Time for both CPU and GPU implementations Set_1
(720 Problem Instances)

The results of the comparisons made in Set_2 are presented in Table 4.24 and the

chart shows "Number of Generations vs. Time " is presented in Figure 4.31. In this

part of the study we changed the Number of Generations while Population Size and

other paramters remain constant. As a result we noticed that Set_2 speed up fight is

not harsh as Set_1 in terms of execution times. So our proposed algorithm can handle

big population sizes better than big number of generations. Main cause of this fact is

we parallel the operations as population size, but since generation operations need to

be sequential in nature, speed up is not as effective as the test made with Set_1 data

set.

88

Table 4.24: Comparisons between CPU and GPU Implementation for Set_2 Data
Set(480 Problem Instances)

of

Generations

Time

CPU

(Sec)

Time

GPU

(Sec)

of

Optimal

Solutions

CPU

of

Optimal

Solutions

GPU

Solution

Ratio

Speed

Up

20
776 710 242 345 1.43 1.09

40
1610 891 240 380 1.58 1.81

60
4586 1178 243 383 1.58 3.89

80
6104 1420 244 383 1.57 4.30

100
7776 1651 242 383 1.58 4.71

89

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

20 40 60 80 100

Ti
m

e
(S

ec
)

Number of Generations

CPU Time

GPU Time

Figure 4.31: Number of Generations vs. Time for both CPU and GPU implementa-
tions Set_2(480 Problem Instances)

For Set_3 we also examined how increasing Number of Generations and Population

Size effect the Speed Up ratio which is the ratio of Time GPU to Time CPU. In Table

4.25 we fixed the Population Size as "20" and tuned the Number of Generations be-

tween "10" and "300". Time and Speed Up ratio charted vs. Number of Generations

in Figure4.32 and Figure4.33 . As we described above our proposed algorithm can

handle big population size better. But it doesn’t mean that it can’t handle big number

of generations as 300. Since all three generation operations executed on the GPU

in parallel fashion, a jump like between 100 and 300 Number of Generations cause

trouble in CPU implementation, it is not a big thing for our proposed algorithm. as

seen in Figure4.32 .

90

Table 4.25: Comparisons between CPU and GPU Implementation with Changing
Number of Generations for Set_3 Data Set(10 Problem Instances)

Size of Population=20

Number of

 Generations

Time CPU

(Sec)

Time GPU

(Sec)

Speed

Up

10 26 4.73 5.49

20 49 6.09 8.04

40 97 10.76 9.01

60 148 15.49 9.56

80 192 15.39 12.47

100 248 25.29 9.81

300 719 72.46 9.92

91

0

100

200

300

400

500

600

700

800

10 20 40 60 80 100 300

Ti
m

e
 (

Se
c)

Number of Generations

Time CPU

Time GPU

Figure 4.32: Number of Generations vs. Time for both CPU and GPU implementa-
tions Set_3(10 Problem Instances)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

10 20 40 60 80 100 300

Sp
ee

d
 U

p

Number of Generations

Figure 4.33: Number of Generations vs. Speed Up Ratio Set_3(10 Problem Instances)

92

After that, in Table 4.26 we fixed the Number of Generations as "40" and tuned the

Population Size between "20" and "300". Time and Speed Up ratio charted vs. Popu-

lation Size in Figure 4.34 and Figure 4.35 .

Table 4.26: Comparisons between CPU and GPU Implementation with Changing
Population Size for Set_3 Data Set(10 Problem Instances)

Number of Generations=40

Population Size
Time CPU

(Sec)

Time GPU

(Sec)

Speed

Up

20 148 10.92 13.56

40 193 24.38 7.92

60 290 30.67 9.46

80 394 30.85 12.77

100 486 31.40 15.48

150 726 22.75 31.91

300 1434 21.58 66.47

93

0

200

400

600

800

1000

1200

1400

1600

20 40 60 80 100 150 300

Ti
m

e
(S

e
c)

Population Size

Time CPU

Time GPU

Figure 4.34: Number of Generations vs. Time for both CPU and GPU implementa-
tions Set_3(10 Problem Instances)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

20 40 60 80 100 150 300

Sp
e

ed
 U

p

Population Size

Figure 4.35: Number of Generations vs. Speed Up Ratio Set_3(10 Problem Instances)

94

For hard28 data set we tuned the Population Size and saw the change in Speed Up

ratio in Table 4.27. We tried the show the impact in Figure 4.36 as "Population Size

vs. Time" for both GPU and CPU implementation and in Figure 4.37 as "Population

Size vs. Speed Up Ratio".

Table 4.27: Comparisons between CPU and GPU Implementation with Changing
Population Size for hard28 Data Set(28 Problem Instances)

Population Size
Time CPU

(Sec)

Time GPU

(Sec)

Speed

Up

20 236 38.76 6.09

40 461 48.25 9.55

60 693 40.75 17.01

80 902 41.72 21.62

100 1119 41.05 27.26

150 1693 47.05 35.99

300 3568 60.69 58.79

95

0

500

1000

1500

2000

2500

3000

3500

4000

20 40 60 80 100 150 300

Ti
m

e
(S

ec
)

Population Size

Time CPU

Time GPU

Figure 4.36: Population Size vs. Time for both CPU and GPU implementations
hard28(28 Problem Instances)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

20 40 60 80 100 150 300

Sp
ee

d
 U

p

Population Size

Figure 4.37: Population Size vs. Speed Up Ratio hard28(28 Problem Instances)

96

As seen in above Tables and Figures the biggest Speed Up differences occur for set_3

and hard28 data sets because of the group sizes of the chromosomes. Hard28 data

set has 60-70 group sizes for the optimal solutions while Set_1 and Set_2 has 15-25

group sizes to pack all items. Since our algorithm loves to have bigger numbers bigger

group sizes mean better parallelizations for specific functions like "finding slacks of

the groups" and "calculating fitness of the chromosomes".

4.9 Comparison with state-of-the-art algorithms

As shown with the results and charts in this chapter, our algorithm both improves

the solution quality while reducing the execution time even for a large population

size and number of generations. In this section we compare our proposed algorithm

with state-of-the-art algorithms in literature. Hard28 data set, one of the well known

and widely preferred data set in BPP, is used for the comparisons. The execution

times taken from the study which is conducted by Dokeroglu and Cosar [38] and

comparison table is presented in Table 4.28 .

Table 4.28: Comparing the solution quality of GPU parallel 1DBPP-GGA-CUDA
algorithm with state-of-the-art algorithms on the hard28 data set.

Algorithm # of Optimal Solutions Time (ms.)

BFD 2 2.26

MBS
′

2 3.64

MBS 3 4.20

B2F 4 3.65

SAWMBS
′

5 129.92

FFD 5 2.24

Pert-SAWMBS 5 6,946.4

Parallel Exon-MBS-BFD 5 5,341.02

1DBPP-GGA-CUDA 5 7,023.56

This comparison is not fair because we have parallel, sequential, GA and single so-

lution versions of solutions in the same table. Yet, it may give a hint about execution

times. A fair comparison can be made between Parallel Exon-MBS-BFD algorithm

and our proposed 1DBPP-GGA-CUDA algorithm. The most attractive outcome of

this table is we can have nearly the same execution time with an algorithm running

97

on expensive cluster computer(500K+ USD), only with a GPU with a cost of $200.

98

CHAPTER 5

CONCLUSION AND FUTURE WORK

The paradigm of heterogeneous CPU computation combined with a graphics process-

ing unit (GPU) makes use of parallel computation to speed up scientific, engineering,

consumer, and similar computation intensive applications. Since its introduction in

2007 by NVIDIA, GPU has become a part of power energy-efficient data centers in

government labs, universities, enterprises, and small-and-medium businesses around

the world. GPU computing presents high performance by sending computation-

intensive portions of the application to the GPU card, while the rest of the code is

still running on the CPU part. A contemporary CPU architecture has a few cores op-

timized for sequential processing while a GPU has a massively parallel architecture

consisting of hundreds of smaller, more efficient cores designed for running many

tasks simultaneously.

One-dimensional Bin Packing Problem (BPP) is an NP-Hard combinatorial optimiza-

tion problem and created when searching solutions for real life problems. When

it is not possible to obtain an exact solution due to the computation limitations for

BPP, Metaheuristics/heuristics are implemented for solving large problem instances

of BPP in reasonable running times with an urge to have (near-) optimal solutions.

In this study, we propose a scalable heterogeneous computation based hybrid parallel

algorithm (CUDA GGA for 1DBPP (CUDA-GGA-1DBPP)) that take advantage of

parallel computation technique, CUDA, evolutionary grouping genetic metaheuris-

tics, and bin-oriented heuristics to obtain high quality solutions for large scale one-

dimensional BPP instances. 1,238 benchmark problems are tested with our algorithm

and at the end of our exprements, we found out that for 84.57% of the problem in-

99

stances, optimal solutions can be seen within reasonable times comparing its sequen-

tial counterpart while finding 250 additional bins in total for the problems that optimal

solution couldn’t be reached. With the faster computation talent of the GPU-enabled

algorithm, it is now possible to reach very large number of generations and improve

the computation time of the crossover and mutation operators significantly. Existing

state-of-the-art heuristics are compared with our algorithm and, we found out that the

developed heterogeneous CUDA-parallel GGA can be considered as one of the best

one-dimensional BPP algorithms in terms of solution quality and execution time. In

addition to the better solution quality we have a speed up to 66.47 times depending

on the configuration and the examined data set.

The future of parallel computation has still several opportunities to offer for the com-

puter engineers and scientists. Most of the optimization algorithms and tools of the

engineers are single-processor oriented. We believe that with the new upcoming tech-

nologies, the hard computational problems of the past century will be solved opti-

mally while our new future is introducing harder ones.

100

REFERENCES

[1] Alvim, A.C.F., Ribeiro, C.C., Glover, F., Aloise, D.J., (2004). A hybrid im-
provement heuristic for the one-dimensional bin packing problem. Journal of
Heuristics, 10 (2), 205-229.

[2] Garey, M.R., Johnson, D.S., (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman.

[3] Johnson, D.S., Demers, A., Ullman, J.D., Garey, M. R., Graham, R.L., (1974).
Worst-case performance bounds for simple one-dimensional packing algo-
rithms. SIAM Journal on Computing, 3(4), 299-325.

[4] Cantu-Paz E., (2000). Efficient and Accurate Parallel Genetic Algorithms,
Kluwer Academic Publishers.

[5] Camacho, E.L., Terashima-Marin, H., Ochoa, G., Conant-Pablos, S.E. (2013).
Understanding the structure of bin packing problems through principal com-
ponent analysis. International Journal of Production Economics, 145(2), 488-
499.

[6] Cheng, J., Grossman, M., McKercher, T. (2014). Professional Cuda C Pro-
gramming. John Wiley & Sons.

[7] Fleszar, K., Hindi, K.S., (2002). New heuristics for one-dimensional bin-
packing. Computers and Operations Research 29 (7), 821-839.

[8] Fleszar, K., Charalambous, C., (2011). Average-weight-controlled bin-oriented
heuristics for the one-dimensional bin-packing problem, European Journal of
Operational Research 210: 176-184.

[9] Johnson, D. S. (1973). Near-optimal bin packing algorithms (Doctoral disser-
tation, Massachusetts Institute of Technology).

[10] Holland, J.H., (1975). Adaptation in Natural and Artifical Systems. University
of Michigan Press, Ann Arbor, MI.

[11] Luque G., Alba E., (2011). Parallel Genetic Algorithms, Theory and Applica-
tions, Springer.

[12] Kolkman, J. A., Stemmer, W. P. C. (2001). Directed evolution of proteins by
exon shuffling. Nature Biotechnology, 19, 423–428.

101

[13] Mitchell, M., (1996). An Introduction to Genetic Algorithms. MIT Press.

[14] Zitzler, E., Thiele, L., (1999). Multiobjective evolutionary algorithms: A com-
parative case study and the strength pareto approach. Evolutionary Computa-
tion, IEEE Transactions, 3(4), 257-271.

[15] Dokeroglu, T. (2015). Hybrid teaching–learning-based optimization algo-
rithms for the Quadratic Assignment Problem. Computers Industrial Engi-
neering, 85, 86-101.

[16] Ahuja, R. K., Orlin, J. B., Tiwari, A. (2000). A greedy genetic algorithm for
the quadratic assignment problem. Computers Operations Research, 27(10),
917-934.

[17] Misevicius, A. (2015). An extension of hybrid genetic algorithm for the
quadratic assignment problem. Information Technology and Control, 33(4).

[18] Falkenauer, E., (1994). A new representation and operators for GAs applied to
grouping problems. Evolutionary Computation, 2(2), 123-144.

[19] Falkenauer, E., (1996). A hybrid grouping genetic algorithm for bin packing.
Journal of Heuristics 2 (1), 5-30.

[20] Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-Jimenez, J., Gómez, C.,
Huacuja, H. J. F., & Alvim, A. C. (2015). A grouping genetic algorithm with
controlled gene transmission for the bin packing problem. Computers & Oper-
ations Research 55, 52-64.

[21] Sivaraj, R., and Ravichandran, T., (2011). "An Efficient Grouping Genetic Al-
gorithm." International Journal of Computer Applications 21.7 : 38-42.

[22] Grosso, P. B. (1985). Computer simulations of genetic adaptation: Parallel
subcomponent interaction in a multilocus model.

[23] Pettey, C. B., Leuze, M. R., & Grefenstette, J. J. (1987). Parallel genetic algo-
rithm. In Genetic algorithms and their applications: proceedings of the second
International Conference on Genetic Algorithms: July 28-31, 1987 at the Mas-
sachusetts Institute of Technology, Cambridge, MA.

[24] Sanders, J., & Kandrot, E. (2010). CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional.

[25] website <docs.nvidia.com/cuda/> [Last Accessed on September 17th, 2015].

[26] NVIDIA GeForce GTX 750 Ti White Paper available on-
line on <http://international.download.nvidia.com/geforce-
com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf> [Last Ac-

102

cessed on September 23th, 2015].

[27] EVGA NVIDIA GeForce GTX 750 Ti Product Page available on-
line on <http://www.evga.com/Products/Product.aspx?pn=02G-P4-3755-KR>
[Last Accessed on September 28th, 2015]

[28] Bhatia, A.K., Basu, S.K., (2004). Packing bins using multi-chromosomal ge-
netic representation and better fit heuristic. Lecture Notes in Computer Science,
3316, 181-186.

[29] Boyer, V., El Baz, D., & Elkihel, M. (2011, February). Dense Dynamic Pro-
gramming on Multi GPU. PDP, 545-551.

[30] Božejko, W., Hejducki, Z., Uchroński, M., Wodecki, M., Solving the flexible
job shop problem on multi-GPU, Proceedings of the International Conference
on Computational Science, Vol. 9 (0), 2020–2023.

[31] Brusco, Michael J., Hans Friedrich Köhn, and Douglas Steinley (2013). Exact
and approximate methods for a one-dimensional minimax bin-packing prob-
lem. Annals of Operations Research 206 (1) , 611-626.,

[32] Bukata, L., Šcha, P., Hanzálek, Z. (2015). Solving the Resource Constrained
Project Scheduling Problem using the parallel Tabu Search designed for the
CUDA platform. Journal of Parallel and Distributed Computing, 77, 58-68.

[33] Cekmez, U., Ozsiginan, M., & Sahingoz, O. K. (2013). Adapting the ga ap-
proach to solve traveling salesman problems on cuda architecture. In Compu-
tational Intelligence and Informatics (CINTI), 2013 IEEE 14th International
Symposium, 423-428.

[34] Valério de Carvalho, J.M., (1999). Exact solution of bin-packing problems us-
ing column generation and branch-and-bound. Annals of Operations Research,
86, 629-659.

[35] Czapiński, M. (2013). An effective parallel multistart tabu search for quadratic
assignment problem on CUDA platform. Journal of Parallel and Distributed
Computing, 73(11), 1461-1468.

[36] De la Rosa, R., Castillo, H., Zavala, J.C., Martínez, A., Estrada, H., (2015).
Application of prime numbers to solve complex instances of the bin packing
problem. Proceedings of the International Conference on Numerical Analysis
and Applied Mathematics 1648, 820006.

[37] Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.,(2013) Parallel ant colony
optimization on graphics processing units. Journal of Parallel and Distributed
Computing, 73(1), 52-61.

103

[38] Dokeroglu, T., & Cosar, A. (2014). Optimization of one-dimensional Bin Pack-
ing Problem with island parallel grouping genetic algorithms. Computers &

Industrial Engineering, 75, 176-186.

[39] Gupta, J.N.D., Ho, J.C., (1999). A new heuristic algorithm for the one-
dimensional binpacking problem. Production Planning and Control 10 (6),
598-603.

[40] Janiak, A., Janiak, W. A., & Lichtenstein, M. (2008). Tabu Search on GPU. J.
UCS, 14 (14), 2416-2426.

[41] Martello, S., Toth, P., (1990). Knapsack Problems. Wiley, available online
on <http://www.or.deis.unibo.it/knapsack.html> [Last Accessed on September
17th, 2015] .

[42] Poli, R., Woodward, J., Burke, E.K., (2007). A histogram-matching approach
to the evolution of bin-packing strategies. In: IEEE Congress on Evolutionary
Computation, 3500-3507.

[43] Pospichal, P., Jaros, J., & Schwarz, J. (2010). Parallel genetic algorithm on the
cuda architecture. In Applications of Evolutionary Computation, 442-451.

[44] Radcliffe, N., (1991). Equivalence class analysis of genetic algorithms. Com-
plex Systems, 5:183-205.

[45] Rohlfshagen, P., Bullinaria, J., (2007). A genetic algorithm with exon shuf-
fling crossover for hard bin packing problems. Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, 1365-1371.

[46] Rong, G., Liu, G., Zheng, M., Sun, A., Tian, Y., & Wang, H. (2013). Parallel
gravitation field algorithm based on the CUDA platform. J Inform Comput Sci,
10, 3635-3644.

[47] Saito, M., & Matsumoto, M. (2013). Variants of mersenne twister suitable
for graphic processors. ACM Transactions on Mathematical Software (TOMS),
39(2), 12.

[48] Scholl, A., Klein, R., Jurgens, C., (1997). BISON: A fast hybrid procedure
for exactly solving the one-dimensional bin packing problem. Computers and
Operations Research 24 (7), 627-645.

[49] Schwerin, P., Wascher, G., (1997). The bin-packing problem: A problem gen-
erator and some numerical experiments with FFD packing and MTP. Interna-
tional Transactions in Operational Research 4 (5/6), 377-389.

[50] Segura, C., Segredo, E., Leon, C., (2011). Parallel Island-Based Multiobjec-
tivised Memetic Algorithms for a 2D Packing Problem GECCO, July 12-16,

104

Dublin, Ireland.

[51] Singh, A., Gupta, A.K., (2007). Two heuristics for the one-dimensional bin-
packing problem. OR Spectrum 29 (4), 765-781.

[52] Stawowy, A. (2008). Evolutionary based heuristic for bin packing problem.
Computers & Industrial Engineering, 55, 465-474.

[53] Fernandez, A., Gil, C., Banos, R., Montoya, M.G., (2013). A parallel multi-
objective algorithm for two-dimensional bin packing with rotations and load
balancing. Expert Systems with Applications,40 (13): 5169-5180.

[54] Belov, G., Scheithauer, G., Mukhacheva, E.A., (2007). One-dimensional
heuristics adapted for two-dimensional rectangular strip packing. Journal of
the Operational Research Society, 59(6), 823-832.

105

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	1D Bin Packing Problem
	Genetic Algorithms as Evolutionary Optimization Tools
	Compute Unified Device Architecture

	RELATED WORK
	State-of-the-art 1DBPP Algorithms
	Grouping Genetic Algorithms
	Parallel Optimization with CUDA
	A Simple CUDA Example

	PROPOSED ALGORITHM
	Chromosome Structure
	Exon Shuffling Crossover Operator
	Mutation Operator
	Inversion Operator
	Fitness function
	Proposed Algorithm, CUDA-GGA-1DBPP
	Setting up Host and Device Memory Allocation
	Generating Random Numbers on GPU
	Generation of Initial Population
	Truncate Population
	Reinserting Items with BFD Algorithm
	Finding Slacks of the Groups
	Crossover
	Mutation on GPU
	Calculating Fitness Values

	EXPERIMENTAL RESULTS
	Experimental Environment
	Problem Data Sets
	Configuration Settings For The Proposed Algorithm
	Settings The Population Size
	Settings The Number of Generations
	Settings Random Population Initialization Product
	Settings the Crossover, Mutation and Inversion Ratios
	Speed Up Performance of the Algorithm
	Comparison with state-of-the-art algorithms

	CONCLUSION AND FUTURE WORK
	REFERENCES

