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ABSTRACT

IMPROVED PHYSARUM POLYCEPHALUM SHORTEST PATH ALGORITHM
WITH PRECONDITIONED ITERATIVE METHODS

Keskiner, Hamide Hande
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Murat Manguoğlu

September 2015, 70 pages

Algorithms for finding the shortest path has many applications in Computer Science,
or in other areas of science and engineering. Network optimizations, artificial
intelligence and robotics are just a few examples where efficient computation of
the shortest path is needed. Various algorithms have been proposed to solve this
fundamental problem. Physarum Solver is biologically inspired method that deals
with this problem. In the end, a sparse linear system needs to be solved at each
iteration of the algorithm. Direct and iterative solvers are two main classes of
algorithms for solving sparse linear systems. Direct solvers are robust but they
could consume a lot memory due to fill-in. In this thesis, Physarum Polycephalum
Shortest Path algorithm is improved using preconditioned iterative methods. We
study the convergence behavior as well as memory consumption of various solvers
and preconditioners. We show that preconditioned iterative solvers are quite robust
and requires much less memory and solution time.

Keywords: Physarum Polycephalum, Shortest Path, Preconditioned Iterative Methods
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ÖZ

ÖN KOŞULLU YİNELEMELİ YÖNTEM İLE GELİŞTİRİLMİŞ PHYSARUM
POLYCEPHALUM EN KISA YOL ALGORİTMASI

Keskiner, Hamide Hande
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Murat Manguoğlu

Eylül 2015 , 70 sayfa

En kısa yol problemi algoritmalarının Bilgisayar Bilimi içerisinde veya bilim ve
mühendislik alanında pek çok uygulaması bulunmaktadır. Ağ optimizasyonu, yapay
zeka ve robotik en kısa yol probleminin uyguluma alanlarına örnektir. Pek çok
algoritma bu problemi çözebilmek için öne sürülmüştür. Physarum Çözümü en kısa
yol problemini çözebilen biyolojik olarak esinlenilmiş bir yöntemdir. Nihayetinde,
algoritma içerisinde her iterasyonda karşımıza çözülmesi gereken seyrek doğrusal
sistem çıkmaktadır. Direkt ve yinelemeli çözücüler iki ana seyrek doğrusal sistem
çözücüleridir. Direkt Çözücüler dayanıklı olmasına rağmen doldurulmuş hücreler
sebebiyle fazla hafıza harcar. Bu tez çalışmasında, Physarum Polycephalum en
kısa yol algoritması ön koşullu yinelemeli yöntemler ile geliştirilmektedir. Pek çok
doğrusal sistem çözücü ve önkoşulun yakınsama davranışı ve hafıza tüketimi üzerinde
çalışılmıştır. Ön küşullu yinelemeli çözücülerin gayet dayanıklı olduğu ve daha az
hafızaya ve zamana ihityaç duyduğu gösterilmiştir.

Anahtar Kelimeler: Physarum Polycephalum, En Kısa Yol Problemi, Ön Koşullu
Yinelemeli Yöntemler
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CHAPTER 1

INTRODUCTION

The shortest path problem in graph theory is to find the minimum length route

which connects two vertices. The problem differs according to type of graph that

is handled. Graph can be undirected, directed, weighted or their combination or etc.

Solution technique of the problem may vary from one type to another according to

the application field of the problem.

The shortest path problem has emerged in many fields such as network optimizations

[7], artificial intelligence [16] and robotics [9]. There have been many studies to

come up with this problem. Dijkstra and Bellman-Ford algorithms can be given as an

example of most known solution of the problem. As a matter of fact, development in

the theory of the shortest path algorithms is still in progress. After all these studies,

many bioinspired algorithms have appeared, for instance, genetic algorithm [1], ant

colony algorithm [6] and Physarum Polycephalum algorithm [14].

Physarum Solver algorithm inspired from an amoeba-like organism behavior [11]

in a labyrinth while finding shortest path by Tero, Kobayashi and Nakagaki [14].

They built a maze filled by Physarum Polycephalum and placed food sources at two

locations. After a while, plasmodium form a path between two food sources with

minimum length. Such behavior of this organism is due to its biological structure.

Physarum Polycephalum is a unicellular amoeba like organism. It contains a network

of tubes which transmits signals and nutrients all over its body. When the food sources

were presented to plasmodium, it concentrated to food sources to absorb nutrients and

the remaining tubes are the shortest path.
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Physarum Solver differs from the classical shortest path algorithms in terms of being

an iterative approach to the solution. In execution, it gradually eliminates the paths

that are not between start and ending node or that are not the shortest path. Then,

it reduces longer paths that connect start and ending node and reinforces the shortest

one. Thus, it easily handles problems that have more than one shortest path contrary to

some classical shortest path algorithms such as Dijkstra. Also, it is flexible according

to classical algorithms because the stopping criteria of the algorithm changes accuracy

rate of the solution. In classical algorithms, stopping criteria of the algorithm is not

interrupted, it stops whenever the execution ends. On the contrary, Physarum Solver

stops the execution according to stopping criteria defined before the execution.

In the Physarum Solver, a sparse linear system has to be solved in every iteration. As

far as we know, in the literature, only direct solvers are used and large scale graphs

are not studied. In this work we propose and use iterative solvers and study various

preconditioning techniques. The reason is that direct solvers consume a lot of memory

due to fill-in and great amount of time. In general, even if direct solvers are robust,

namely they can solve systems that iterative solvers can not, iterative solvers have

good performance on this algorithm.

We analyzed the convergence behavior, time and memory consumptions of different

iterative methods and preconditioners. Results are shown where we compare the

convergence rate, computation time and memory requirements for each of these

methods against direct solver as well as against one another. At the end, we show

that preconditioned iterative solvers are quite robust and requires much less memory

and computation time.

This thesis is organized as follows. In Chapter 2, detailed explanation about Physarum

Polycephalum shortest path algorithm and introduction about solving linear systems

are given. In the following chapter, Methods and Motivation are described. In

Chapter 4, programming and computing environment, and the experimental results

are presented. Finally, in Chapter 5, conclusion and future work is stated.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Physarum Polycephalum Shortest Path Algorithm

The plasmodium of true slime mould Physarum Polycephalum is a unicellular

amoeba-like organism. It contains a tube network perform circulation of signals and

nutrients through the body. Two food sources were positioned at different locations on

the plasmodium was spread over the entire agar surface. Then, starved plasmodium

concentrated at the food sources to absorb nutrients and the shape of the plasmodium

became a path that connects two food sources in minimum length [11].

Tero, Kobayashi and Nakagaki claim that reason behind the organism behavior is

that hydrostatic pressure along the tube [14]. If organism forms the thickest, shortest

tubes, it enhances its survival for the following reasons: (1) the body area cover food

sources and absorption nutrients is maximized and (2) the communication between

the locations of two food sources is at most effective.

According to the experiment performed Tero et al., two rules specify changes in the

tubular structure of the plasmodium [12]. The tubes that are not connected to a food

source inclined to eliminate and if two or more tubes connect the same food sources,

the lengthier tubes inclined to eliminate.

The tube network are formed in a specific direction driven by hydrostatic pressure

due to rhythmic contractions. When food sources are placed at the agar surface filled

with plasmodium, the oscillations between a food source and the adjacent tube are

occurred. The sol in the food sources flows in and out of the tube, exchanges between

3



the two food sources. The sol flows through the tube that is because the pressure

oscillation of food sources are different from each other. Thus, it can be said that one

food source is the source and the other is the sink of sol flow [14].

2.1.1 Mathematical Model

In this section, Physarum Polycephalum shortest path algorithm mathematical model

will be introduced. Mathematical model and physiological backgrounds are detailed

in [14, 10]

Let G = (V,E) be a graph where V = v0, . . . , vn is the set of nodes and eij where

i 6= j is the edge between vi and vj if it exists. There is a function L from E to R+

calculated length and assume that L(eij) = L(eji). G is considered a flow network

v0 to vn which source s is equal to v0 and target t is equal to vn. Assume that there

exactly one source and one target. For a path P = vβ0 · · · vβk in G, length of the P

calculated as follows:

L(P ) =
k−1∑
i=0

L(eβiβi+1).

Let τ indicate the time variable. For each node, the variable pi(τ) is pressure. For each

edge, Dij(τ) is conductivity, Qij(τ) is flux and Lij is length. While pi, Dij and Qij

are variables changing with time, Lij is a positive constant variable. Should be noted

that Dij is nonnegative for each edge.

The flux equation is an affinity of Ohm’s Law for electric circuits andQij is computed

in this way:

Qij =
Dij

Lij
(pi − pj) = gij(pi − pj), (2.1)

where gij =
Dij
Lij

is conductance of the edge eij . It can be seen in the equation that

4



Qij = −Qji so if we applied the Kirchhoff’s Law at each node:

∑
j 6=i

Qij =


I0 if i = 0,

0 if 0 < i < n,

−(I0) if i = n,

(2.2)

where I0 is the flux from the source node and it is a positive constant.

According to experimental results that tubes with smaller fluxes disappear while

tubes with larger fluxes are reinforced [14]. Therefore, conductivity changes in time

with regard to the flux Qij . Thus, the disappearance of the tubes is revealed by the

destruction of the conductivity edges. The conductivity can be calculated as follows:

Ḋij = |Qij| −Dij, (2.3)

where ẋ denotes the derivative dx
dτ

.

After substitution equation 2.1 in equation 2.2

∑
j 6=i

gij(pi − pj) =

I0 if i = 0,

0 if 1 ≤ i ≤ n− 1,
(2.4)

where pn = 0 and gij > 0 which give rise to the following linear system of equations:

Ap = b, (2.5)

where

p = (p0, p1, . . . , pn−1)
t, b = (I0, 0, . . . , 0)t, (2.6)

and A = (Aij) is a square matrix of order n and computed as follows:

Aij =


∑

l 6=i gil if i = j,

−gij otherwise
(2.7)

where i, j = 0, . . . , n − 1. It is proved that the coefficient matrix A is symmetric

nonsingular M-matrix in [10].

5



2.1.2 Algorithm

Algorithm 1 is the pseudocode for Physarum Polycephalum shortest path algorithm.

It is clear that, it is an iterative solution for the shortest path problem. In every iteration

flux Qij’s are changed so conductivity Dij’s are also changed.

Algorithm 1 Physarum Polycephalum Shortest Path Algorithm
1: // L is an n× n matrix, Lij denotes the length between vi and vj .

2: // s is the source node and t is the sink node.

3: // I0 is the flux from the s.

4: Dij ← (0, 1](∀i, j = 1, 2, . . . , n)

5: Qij ← 0(∀i, j = 1, 2, . . . , n)

6: Aij ← 0(∀i, j = 1, 2, . . . , n)

7: gij ← 0(∀i, j = 1, 2, . . . , n)

8: pi ← 0(∀i, j = 1, 2, . . . , n)

9: b =
[
I0, 0, 0, . . . , 0

]T
10: count← 1

11: repeat

12: gij ← Dij
Lij

(∀i, j = 1, 2, . . . , n)

13: Aij =


∑

l 6=i gil if i = j,

−gij otherwise
14: solve Ap = b where (∀i, j = 1, 2, . . . , n− 1)

15: pn ← 0

16: Qij ← gij × (pi − pj)
17: Dij ← |Qij|
18: count← count+ 1

19: until a termination criterion ismet

Execution continues until the termination criteria is met. To break out the execution,

conductivity values of nodes which are composed of minimum length path, are

monitored to determine that there is no changing in values. If so, iteration halts.

Another approach to end execution is limiting the iteration count. When iteration

count has reached maximum value, execution ends.

6



Clearly, for large problems the most time consuming operation of the algorithm is

expected to be Step 14 where the sparse linear system is solved. In the literature,

there is not much attention paid on various solution strategies, simply a dense or a

sparse direct solver is often used [17, 18, 15].

2.2 Linear Algebra Terminology

This section includes definition of some main and most frequent notions in linear

algebra used throughout this thesis.

• A matrix is sparse if it is primarily composed of zeros.

• A matrix A is symmetric if it is equal to its transpose A = AT .

• A matrix is positive-definite if xTAx > 0 for all non-zero vectors x ∈ Rn.

• A Krylov subspace of dimension n composed of a linear combination of the

vectors b, Ab, . . . , An−1b where A is matrix and b is a vector.

• pk−1 and pk are A-conjugate or conjugate with regard to A if pk−1Apk = 0.

• A matrix is nonsingular if there is a unique solution given by x = A−1b where

Ax = b.

2.3 Solving Linear Systems

Consider a linear system.

Ax = b

where A ∈ Rn×n is a large and sparse nonsingular coefficient matrix and x, b ∈ Rn

are the solution and right-hand-side vectors.

Sparse linear systems can be solved using direct or iterative methods. In direct

solvers, Gaussian Elimination or other factorization techniques are used to reduce

the system in a simpler form, then the solution is obtained finite number of arithmetic
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operations. On the other hand, iterative methods start with an initial guess and try to

get more accurate solutions to a linear system at each step.

Direct solvers are widely preferred due to their reliability and being predictable in

time and memory usage. Nonetheless, direct solvers usually require a lot of memory

for solving large scale problems. Problems appearing from discretization of three

dimensional partial differential equations is just one example of such problems where

direct solvers usually have difficulty. For these problems, iterative methods could

be used due to the fact that they usually require less storage and hence less time to

solution. However, iterative solvers are not robust as direct solvers [3]. Iterative

solvers without a preconditioner is usually not practical since they require a lot of

iterations to converge. Therefore, preconditioners are used for both improving the

number of iterations and the robustness.

Preconditioning involves transforming the linear system into another system where

the eigenvalue distribution of the coefficient matrix is more favorable (clustered

around 1) for iterative solvers to converge. The following shows left preconditioning,

M−1Ax = M−1b

which has the same solution vector x as the original system. But the coefficient matrix

M−1A may be better conditioned than A if M is chosen properly.

There are many options to find preconditioning a matrix M , but it must satisfy a few

constraints. First of all, it is expected to improve the convergence of the iterative

method. Second, the eigenvalues of M−1A should be clustered more around 1 and

M should be nonsingular [13].

2.4 Gaussian Elimination

Gaussian elimination is a method of solving linear systems by eliminating unknowns

and reducing the problem into systems of equations where the coefficient matrices are

lower and upper triangular. In other words, if we reduce a linear system Ax = b into

an equivalent system Ux = g. U is upper triangular matrix. Hence, the system can be

solved using back-substitution in which we start from the lowest unknown and sweep
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upwards. To reduce system in the triangular form Ux = g, some row operations are

performed.
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CHAPTER 3

METHODS AND MOTIVATION

In previous section, background information about solving linear systems and

preconditioning techniques are given. In this chapter, linear solvers and

preconditioning methods which are used in implementation are explained.

3.1 Direct Solver

Direct solver is the solver of choice in the literature for Physarum Polycephalum

shortest path algorithm. And hence, we use it as a basis comparison for our study in

this thesis. Since the implementation were performed on Matlab, mldivide operation

were used as direct solver. mldivide algorithm first determines which direct method to

use based on the coefficient matrix type. Due to coefficient matrix in Physarum Solver

is symmetric positive definite matrix, mldivide selects Cholesky Factorization. This

operation in Matlab is using the Cholesky factorization implementation CHOLMOD

[4] which is a part of SuitSparse package.

3.1.1 Cholesky Factorization

When coefficient matrix is symmetric and positive definite, the system can be solved

using the Cholesky Factorization. The idea of the Cholesky Factorization is that

reducing coefficient matrix A into product of lower triangular matrix L and its

transpose such that

A = LLT
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so that solving linear system Ax = b turn into solving two triangular systems

Ly = b and LTx = y.

• The system Ly = b, written as follows

Ly =


l1,1 · · · 0
... . . . ...

ln,1 · · · ln,n



y1
...

yn

 =


b1
...

bn


(yi) where 1 ≤ i ≤ n values are calculated as follows

l11y1 = b1 ⇒ y1 = (l11)
−1b1

l21y1 + l22y2 = b2 ⇒ y2 = l22
−1(b2 − l21y1)

...
n∑
j=1

lnjyj = bn ⇒ yn = lnn
−1

(
bn −

n−1∑
j=1

lnjyj

)

• Similarly the system LTx = y, written as follows

LTx =


l1,1 · · · l1,n
... . . . ...

0 · · · ln,n



x1
...

xn

 =


y1
...

yn


(xi) where 1 ≤ i ≤ n values are calculated using backward substitution, as

follows

lnnxn = yn ⇒ xn = (lnn)−1yn

...
1∑

n−1

lj1xj = y1 ⇒ x1 = l11
−1

(
y1 −

n∑
j=2

lj1xj

)

Algorithm for computing lower triangular matrix L is described below.

aij = (LLT )ij =
n∑
i=1

likljk =

min(i,j)∑
i=1

liklkj, 1 ≤ i, j ≤ n
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lpq = 0 if 1 ≤ p < q ≤ n because L is lower triangular matrix. Because of A being

symmetric, the upper triangular part of A identities must satisfy i ≤ j, and the entries

lij simply like that

aij =
i∑

k=1

likljk, 1 ≤ i, j ≤ n

All entries of L can be computed by reading the columns of A in increasing order.

1. for i = 1, the first column of L is

a11 = l11l11 ⇒ l11 =
√
a11

a12 = l11l21 ⇒ l21 = l11
−1a12

...

a1n = l11ln1 ⇒ ln1 = l11
−1a1n

2. for i ≥ 1, while computing the (i − 1) columns of L assumed to be already

computed. Then, ith column of A is given below:

aii =
i∑

k=1

liklik ⇒ lii =

(
aii −

i−1∑
k=1

lik
2

) 1
2

aii+1 =
i∑

k=1

likli+1k ⇒ li+1i = lii
−1

(
aii+1 −

i−1∑
k=1

likli+1k

)
...

ain =
n∑
k=1

liklnk ⇒ lni = lii
−1

(
ain −

i−1∑
k=1

liklnk

)

3.2 Preconditioned Iterative Methods

Iterative methods can be expressed as

xk = Bxk−1 + c

where k = 1, 2, . . . is the iteration count. If a method has variables like B and c

that does not change in every iteration, it is stationary method. Otherwise, it is a
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nonstationary method. Jacobi and Gauss-Seidel are examples of stationary methods,

and Krylov Subspace family methods are examples of nonstationary methods [2].

Krylov Subspace methods can handle large general sparse matrices. Besides their

performance can be enhanced using preconditioner techniques. As a consequence of

this, Preconditioned Conjugate Gradient, Biconjugate Gradient Stabilized and Quasi

Minimal Residual which are Krylov Subspace methods were used in Physarum Solver

implementation. These methods are introduced and explained in this section.

3.2.1 Preconditioned Conjugate Gradient

Preconditioned Conjugate Gradient (PCG) method solves sparse linear systems

whose coefficient matrix is symmetric and positive definite and there is a

preconditioner M that is also symmetric and positive definite.

PCG starts with an initial guess of the solution, initial residual and initial search

direction and at each iteration the iterates and the residuals are updated using the

search directions. The residuals generated at each steps are orthogonal to Krylov

subspace defined by b and A. Update scalars are used to ensure orthogonality

conditions. These conditions diminishes the distance to true solution.

The iterates x(i) calculated in every iteration as follows

x(i) = x(i−1) + αip
(i) (3.1)

where αi is update scalar and p(i) is search direction vector. The residuals r(i) =

b− Ax(i) are updated like that

r(i) = r(i−1) − αiq(i) where q(i) = Ap(i). (3.2)

The update scalar αi is computed as

αi =
r(i−1)

T
r(i−1)

p(i)
T
Ap(i)

. (3.3)

The search direction p(i) is computed in every iteration using the residuals

p(i) = r(i) + βi−1p
(i−1) (3.4)
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where βi = r(i)
T
r(i)

r(i−1)T r(i−1)
ensures that p(i) and Ap(i−1) are orthogonal. Also, βi make

sure that r(i) and r(i−1) are orthogonal.

Algorithm 2 is the pseudocode for the Preconditioned Conjugate Gradient method [2].

If we choose M = I then we can obtain unpreconditioned version of the Conjugate

Gradient Algorithm.

Algorithm 2 Preconditioned Conjugate Gradient Method

1: Compute r(0) = b− Ax(0) for some initial guess x(0)

2: for i = 1,2,... do

3: solve Mz(i−1) = r(i−1)

4: ρi−1 = r(i−1)
T
z(i−1)

5: if i = 1 then

6: p(1) = z(0)

7: else

8: βi−1 = ρi−1/ρi−2

9: p(i) = z(i−1) + βi−1p
(i−1)

10: end if

11: q(i) = Ap(i)

12: αi = ρi−1/p
(i)T q(i)

13: x(i) = x(i−1) + αip
(i)

14: r(i) = r(i−1) − αiq(i)

15: check convergence; continue if necessary

16: end for

3.2.2 Biconjugate Gradient Stabilized Method

The Biconjugate Gradient (BiCG) method is applicable for nonsymmetrical systems

in addition to symmetrical systems. BiCG method uses two mutual orthogonal

subspaces to ensure the orthogonality of the residuals.

The update process in each iteration is augmented with respect to Preconditioned

Conjugate Gradient method. Processes are similar but based on AT instead of A. So

residuals are updated as
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r(i) = r(i−1) − αiAp(i), r̂(i) = r̂(i−1) − αiAT p̂(i),

and search directions are updated as

p(i) = r(i−1) − βi−1p(i−1), p̂(i) = r̂(i−1) − βi−1p̂(i−1).

The update scalars

αi =
r̂(i−1)

T
r(i−1)

p̂(i)TAp(i)
, βi =

r̂(i)
T
r(i)

r̂(i−1)T r(i−1)

ensure the bi-orthogonality condition

r̂(i)
T

r(j) = ˆp(i)TAp(j) = 0 if i 6= j.

Although BiCG consumes less time while constructing basis vectors and less data

stroge, several variants of BiCG have been proposed to improve its convergence. The

Biconjugate Gradient Stabilized is one of these variants.

The Biconjugate Gradient Stabilized method differs from BiCG in minimizing

residual vector which leads to significantly smoother convergence behavior.

Additionally, BiCGStab handles the irregular convergence patterns that may emerge

squaring the residual polynomial [2].

Algorithm 3 is the pseudocode for the Preconditioned Biconjugate Gradient

Stabilized method [2]. M is the preconditioner.
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Algorithm 3 Biconjugate Gradient Stabilized Method

1: Compute r(0) = b− Ax(0) for some initial guess x(0)

2: Choose ř (for example, ř = r(0))

3: for i = 1,2,... do

4: ρi−1 = řT r(i−1)

5: if ρi−1 = 0 then method fails

6: end if

7: if i = 1 then

8: p(i) = r(i−1)

9: else

10: βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)

11: p(i) = r(i−1) + βi−1(p
(i−1) − ωi−1vi−1)

12: end if

13: solve Mp̌ = p(i)

14: v(i) = Ap̌

15: αi = ρi−1/ř
Tv(i)

16: s = r(i−1) − αiv(i)

17: check norm of s; if small enough: set x(i) = x(i) + αip̂ and stop

18: solve Mŝ = s

19: t = Aŝ

20: ωi = tT s/tT t

21: xi = x(i−1) + αip̂+ ωiŝ

22: ri = s− ωit
23: check for convergence; continue if necessary

24: for continuation it is necessary that ωi 6= 0

25: end for

BiCGStab algorithm has two checkpoints per iteration for the stopping criterion. The

method may converge at the first test on the norm of s then the following update could

be numerically unreliable. In addition, stopping in the first half of the iteration saves

a few unnecessary operations.
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3.2.3 Quasi Minimal Residual

The Quasi-Minimal Residual algorithm proposed by Freund and Nactigal [8] to

solve nonsingular, non-Hermitian linear systems. CG-type methods for example

Biconjugate Gradient method shows a rather irregular convergence behavior

moreover breakdowns may arise. QMR intends to handle these problems.

Algorithm 4 is the pseudocode for the Preconditioned Quasi Minimal Residual

method [2]. M1 and M2 used as a preconditioner.

Algorithm 4 Quasi Minimal Residual Method

1: Compute r(0) = b− Ax(0) for some initial guess x(0)

2: v̌(1) = r(0); solve M1y = v̌(1); ρ1 = ‖y‖2
3: Choose ω̌(1), (for example ω̌(1) = r(0))

4: solve M t
2z = ω̌(1); ξ1 = ‖z‖2

5: γ0 = 1; η0 = −1

6: for i = 1,2,... do

7: if ρi = 0 or ξi = 0 then method fails

8: end if

9: v(i) = v̌(i)/ρi; y = y/ρi

10: w(i) = w̌(i)/ξi; z = z/ξi

11: δi = zTy ;

12: if δi = 0 then method fails

13: end if

14: solve M2(̌y) = y

15: solve MT
1 ž = z

16: if i = 1 then

17: p(1) = y̌; q(1) = ž

18: else

19: p(i) = y̌ − (ξiδi/εi−1)p
(i−1)

20: q(i) = ž − (ρiδi/εi−1)q
(i−1)

21: end if
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22: p̌ = Ap(i)

23: εi = q(i)
T
p̌;

24: if εi = 0 then method fails

25: end if

26: βi = εi/δi;

27: if βi = 0 then method fails

28: end if

29: v̌(i+1) = p̌− βiv(i)

30: solve M1y = v̌(i+1)

31: ρi+1 = ‖y‖2
32: ω̌(i+1) = AT q(i) − βiω(i)

33: solve MT
2 z = ω̌(i+1)

34: ξi+1 = ‖z‖2
35: θi = ρi+1/(γi−1|βi|); γi = 1/

√
1 + θ2i ;

36: if γi = 0 then method fails

37: end if

38: ηi = −ηi−1ρiγi2/(βiγ2i−1)
39: if i = 0 then

40: d(1) = η1p
(1); s(1) = η1p̌

41: else

42: d(i) = ηip(i) + (θi−1γi)
2d(i−1)

43: s(i) = ηip̌+ (θi−1γi)
2s(i− 1)

44: end if

45: x(i) = x(i−1) + d(i)

46: r(i) = r(i−1) − s(i)

47: check for convergence; continue if necessary

48: end for

3.3 Preconditioning Techniques

Preconditioning is essential for the effective use of iterative solvers. While improving

spectral properties of coefficient matrix, the linear system is transformed into a more
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favorable condition. Hence a good preconditioner should meet some requirements:

• The preconditioner should reduce the number of iterations.

• Constructing and applying the preconditioner should not be expensive

computationally or in terms of storage.

3.3.1 Diagonal (Jacobi) Preconditioner

Diagonal preconditioner generated by getting diagonal entries of coefficient matrices

and putting these entries into preconditioner matrix diagonal.

mij =

aij if i = j

0 otherwise

Memory usage of diagonal preconditioner is very small (O(n)) and construction is low

cost. If, however, the diagonal contains zeros the diagonal preconditioner is singular.

3.3.2 Incomplete LU Factorization

Consider a sparse matrix A. Incomplete LU (ILU) factorization computes lower and

upper triangular matrices L and U which satisfies the same nonzero structure of A

lower and upper parts and also LU ≈ A.

In general, ILU factorizations can be obtained by performing Gaussian elimination

and dropping some predetermined nondiagonal elements [13]. To determine which

elements are dropped a zero pattern set P chosen, such that

P ⊂ {(i, j) | i 6= j; 1 ≤ i, j ≤ n}. (3.5)

The Incomplete LU factorization with no fill-in, ILU(0) in this context, takes the zero

pattern A as P . After ILU(0), L and U has the exact non-zero structure of A, and

if we calculate LU , there could be extra diagonal elements in the product. These
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extra diagonal elements are called fill-in elements [13]. If all these fill-in elements are

discarded, this factorization type is called ILU(0) factorization.

Algorithm 5 is the pseudocode for ILU(0) [13].

Algorithm 5 ILU(0)
1: for i = 1, 2, . . . , n do

2: for k = 1, . . . , i− 1 and for (i, k) ∈ NZ(A) do

3: Compute aik ← aik
akk

4: for j = k + 1, . . . , n and for (i, j) ∈ NZ(A) do

5: Compute aij ← aij − aikakj
6: end for

7: end for

8: end for

To increase efficiency and reliability of Incomplete LU factorization, some fill-in

elements may need to be allowed. ILU(p) represents the Incomplete LU factorization

with level of fill is p. The zero pattern of the product of L and U obtained from ILU(0)

taken as the P for ILU(1).

There are strategies for accepting or discarding fill-in such as level of fill. A level

of fill is applied to each element that is processed by Gaussian elimination, and the

dropping will be performed according to the value of the level of fill.

The initial level of fill of each element of a sparse matrix A is defined by

levij =

0 if aij 6= 0 ,or i = j

∞ otherwise

The level of fill is updated in line 6 of Algorithm 6 as follows

levij = min{levij, levik + levkj + 1}. (3.6)

Equations given to update level of fill value of each element demonstrated that the

level of fill of an element will never increases during the execution. Non-zero
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elements in the original matrix A has the 0 level of fill in entire execution. It can

be expressed that in ILU(p), all fill-in elements whose level of fill are not greater than

p are kept [13].

Algorithm 6 is the pseudocode of the Incomplete LU factorization with level of fill is

p [13].

Algorithm 6 ILU(p)

1: For all nonzero elements aij define lev(aij) = 0

2: for i = 2, . . . , n do

3: for k = 1, . . . , i− 1 and for lev(aik) ≤ p do

4: Compute aik ← aik
akk

5: Compute ai∗ ← ai∗ − aikak∗
6: Update the levels of fill of the nonzero aij ’s using Equation 3.6

7: Replace any element in row i with lev(aij) > p by zero

8: end for

9: end for

3.3.3 Incomplete Cholesky Factorization

Incomplete Cholesky (ICHOL) Factorization is another important preconditioning

technique yet it is applicable to only the symmetric positive definite matrices.

Preconditioned Conjugate Gradient can use ICHOL as preconditioning techniques

because the method is also suitable for spd matrices.

Basically, the idea of ICHOL factorization similar to ILU factorization except that

finding upper triangular factor of A. It is enough to finding lower triangular factor

of A and the product of L and its transpose LT is the Cholesky factorization of A.

Likewise ILU, LLT is much less sparse than A because of fill-in.

The incomplete factorization may have zeros in the same positions as A, if

we set the non-zero set as A’s non-zero structure. This leads to Incomplete

Cholesky factorization with no fill-in. ICHOL(0) algorithm given as pseudocode in

Algorithm 7.
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Algorithm 7 ICHOL(0)
1: l11 =

√
a11

2: for i = 2, . . . , n do

3: for j = 1, . . . , i− 1 do

4: if aij = 0 then

5: lij = 0

6: else lij =

(
aij−

j−1∑
k=1

likljk

)
lij

7: end if

8: lij =

(
aii −

i−1∑
k=1

lik
2

) 1
2

9: end for

10: end for

Allowing some fill-in entries may enhances the reliability of factorization. In this

case, non-zero entries are included when they are larger than the determined threshold

parameter.
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CHAPTER 4

NUMERICAL EXPERIMENTS

4.1 Computing and Programming Environment

All the numerical experiments were performed on Greyfurt which contains 4 x

1400MHz AMD Opteron(tm) Processor 6376 16-cores CPUs and 126GB memory.

The operating system is Debian GNU/Linux 7.8 and computer architecture is

x86_x64.

The algorithm was implemented using MATLAB R2013a 64-bit. All the test cases

were executed on this platform.

4.2 Experiments and Results

The matrices used in the simulations were obtained from University of Florida Sparse

Matrix Collection [5]. All the test matrices are square matrix and arising in various

application areas. Their sizes change in the range 956× 956 between 99617× 99617

and their number of non zero entries per row change in the range 2, 6 and 398, 8.

Detailed information about matrices are given in the Appendix A. Since the number

of test matrices are large (total 70), we present the best and worst cases, average and

median of the results.

The algorithm is tested using preconditioned iterative methods which are PCG, QMR

and BiCGStab and direct solver. Although the matrix is symmetric and positive

definite, we have experimented with other general iterative schemes other than CG as
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the matrix is updated in each iteration which could potentially loose some symmetry

or positive definiteness. Preconditioners which are used by preconditioned iterative

methods are as follows;

1. No-Preconditioner

2. Diagonal

3. ICHOL/ILU no fill-in

4. ICHOL/ILU with drop tolerance

While QMR and BiCGStab use Incomplete LU factorization, PCG uses Incomplete

Cholesky factorization as Preconditioner.

In the experiments outer tolerance, inner tolerance and drop tolerance are used as

variables.

Outer Tolerance : Outer tolerance mentioned in the previous chapters is the

condition to break out the execution. Outer tolerance affects the iteration count

directly. As outer tolerance increases the iteration time decreases; however, the

iteration is essential point of the algorithm. In every iteration, the algorithm

converges further to the exact solution. On the other hand, the execution time

increases with iteration count. If the outer tolerance is too large, the solution

could be far from the exact solution. On the other hand, if it is too small, we

could be doing work that is not really needed since the solution is already the

exact solution. So for that reason, we should find an optimum outer tolerance

which finds the solution with reasonable amount of iteration count.

Different outer tolerances in the range of 0, 00001 and 1 are tested and 0, 001 is

chosen as the outer tolerance. In most test cases, the shortest path is found and

the iteration count is not more than adequate.

Inner Tolerance : Iterative solvers uses a stopping tolerance to terminate the

iteration for solving the linear system. If the tolerance is greater than

the necessary, iteration stops and the solution may not be accurate enough.

When the solution of the linear system is not accurate enough, Physarum
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Polycephalum algorithm could fail. Because of that, the inner tolerance should

be chosen carefully.

After experimenting with various inner tolerances, 0, 01 which is produces less

errors, chosen as the inner tolerance (see Appendix B.3 for details).

Drop Tolerance : Drop tolerance is a parameter used in incomplete CHOL/LU

factorization. In the runs we experimented with three drop tolerances, these

are: 0, 001, 0, 01 and 0, 1.

Simulation results will be analyzed in three aspects; speed, convergence and memory

usage. Preconditioned iterative methods are compared to the direct solver. Effect of

the preconditioner on the performance studied separately. All methods are compared

within themselves, using different preconditioners and against each other.

Since large number of experiments were performed with many parameters, only a

summary of the results are presented here. For the details of these results the reader is

referred to Appendices B.1 and B.2. Plots composed of maximum, median, average

and minimum speedup and memory optimization values are presented.

Iterative methods are examined for all preconditioners to find out which

preconditioner gives better performance. "Preconditioner vs. Speedup" and

"Preconditioner vs. Memory Optimization" graphs for all three methods PCG, QMR

and BiCGStab are given later in this section. In the following sections, we also study

the robustness of various solvers and preconditioners.

4.2.1 Speedup and Convergence

In this section, results are evaluated in speedup and convergence perspective. The

speedup is a metric to measure how fast is an algorithm with respect to another

algorithm. We compute the speedup with respect to the direct solver.

An iterative methods start with an initial guess and improve the initial guess.

Sometimes iterative methods fail to find the solution of linear system. In addition,

computation of a preconditioner may fail especially when the preconditioner is in a

factorized form. In addition to the failure that are related to solving the sparse linear
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systems, Physarum Solver may end up with a wrong path. Overall, the failure rate

of preconditioned iterative methods is found by adding number of execution failures

and number of wrong path calculations.

Figure 4.1: PCG speedup for various preconditioners compared to the direct solver

Table 4.1: The sequential running time on solution using the direct solver for
corresponding PCG speedup values

- No-Precond (s) Diag (s) IC(0) (s) IC(0,001) (s) IC(0,01) (s) IC(0,1) (s)
maximum 2236,21 2236,21 2236,21 2236,21 2236,21 2236,21

median 295,10 381,95 87,50 693,15 613,50 4572,70
average 751,57 751,57 751,57 751,57 751,57 751,57

minimum 20,59 0,56 0,56 0,56 0,56 20,59

In Figure 4.1, PCG speedup values compared to the direct solver for different

preconditioners are given. The sequential running time of the direct solver is

given on Table 4.1 in seconds. Because maximum, median and minimum speedup

values for each preconditioner are from different test matrices, the direct solver time

consumption of corresponding speedup values not the same.

In all test cases, the diagonal preconditioner has the best maximum speedup value.

It is roughly 523, 9 times faster than the direct solver in the best case and 34, 7

times better on average. The minimum, however, speedup is slightly worse than

the other preconditioners. The reason behind such surprising performance is that the

matrix may be well conditioned or the fill-in with the direct solver is too much for

some matrices. Although the diagonal preconditioner is the best on average, other
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preconditioners also have significant speedup values, all of them being greater than

10. On the other hand, the minimum speedup value of all preconditioner cases are

around 1. It can be said that the performance of PCG method is better than the direct

solver method, in the worst case, it spends time as much as the direct solver.

Figure 4.2: PCG average iteration count for various preconditioners

To analyze the effect of preconditioners on iterative solvers convergence rate, average

iteration counts are calculated by dividing sum of the iteration counts that PCG

made in every iterations of Physarum Solver to outer iteration count. Figure 4.2

express the average iteration count of PCG for various preconditioners. As expected,

iteration count of PCG decreases when preconditioner is used. On average, PCG

requires roughly 90% less iterations if a preconditioner is used. Despite the fact that

the diagonal preconditioner has better time performance than others, the incomplete

Cholesky factorization preconditioners increases convergence rate of PCG more than

the diagonal preconditioner. Because of that, deciding the best preconditioner all of

the metrics should be considered.
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Figure 4.3: Number of failures of PCG using various preconditioners

In figure 4.3, the number of failures of PCG using different preconditioners is

presented. Execution error, wrong path and the total failure are indicated with

different lines. Based on the figure, PCG with No-Preconditioner there are more

failures than with a preconditioners. Other preconditioners have lower number of

failures yet the incomplete Cholesky with 0, 001 and 0, 01 drop tolerance are slightly

better than others. As expected we observe that using a preconditioner improves

the robustness of the Physarum Solver and the incomplete factorization with smaller

dropping has better success rate than ILU with no fill-in.

Figure 4.4: QMR speedup for various preconditioners compared to the direct solver
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Table 4.2: The sequential running time on solution using the direct solver for
corresponding QMR speedup values

- No-Precond (s) Diag (s) ILU(0) (s) ILU(0,001) (s) ILU(0,01) (s) ILU(0,1) (s)
maximum 2236,21 2236,21 2236,21 1021,61 596,55 2236,21

median 658,30 346,80 4436,40 1121,20 214,20 354,65
average 774,90 774,90 774,90 774,90 774,90 774,90

minimum 51,46 0,08 0,08 215,87 215,87 11,07

Figure 4.4 is preconditioner versus speedup graphs for QMR and Table 4.2 is the

sequential running time of the direct solver. While the diagonal preconditioner has the

maximum speedup value, the incomplete LU factorization with 0, 001 drop tolerance

has the minimum speedup value. Apart from ILU(0, 001), QMR method with or

without preconditioner has better time performance over direct solver. It can be

inferred from the Figure 4.13, that the diagonal and the ILU(0, 1) preconditioners are

a little better than others in average. Considering median line on graph, half of the test

cases have speedup values over 1. So that, QMR method spends less computational

time than the direct solver in general.

Figure 4.5: QMR average iteration count for various preconditioners

QMR average iteration counts are illustrated at Figure 4.5. Likewise PCG, using

preconditioning techniques increases the convergence rate of QMR and the diagonal

preconditioner is also not as good as the others in terms of the convergence rate.

31



Figure 4.6: Number of failures of QMR using various preconditioners

QMR failure rates are illustrated at in the Figure 4.6, Similar to PCG method, QMR

method fails most when preconditioner is not used. The diagonal and ILU(0, 1)

produces almost the same total error and ILU(0) has better success rate. The execution

errors for preconditioners generated by factorization have the majority of total failure

values. On the other hand, no-preconditioner and the diagonal preconditioner failed

to find correct path in most case. It can be inferred from the results, execution errors

are emerged while constructing the preconditioner.

Figure 4.7: BiCGStab speedup for various preconditioners compared to the direct

solver

32



Table 4.3: The sequential running time on solution using the direct solver for
corresponding BiCGStab speedup values

- No-Precond Diag ILU(0) ILU(0,001) ILU(0,01) ILU(0,1)
maximum 2236,21 2236,21 2236,21 2236,21 42,02 2236,21

median 432,75 431,40 636,55 613,50 915,75 431,40
average 760,07 760,07 760,07 760,07 760,07 760,07

minimum 51,46 0,56 0,56 51,46 51,46 6,19

Figure 4.7 shows the speedup for BiCGStab and Table 4.3 is the sequential running

time of the direct solver. On average, the diagonal and the incomplete LU

factorization with no fill-in preconditioners time performance preferable to others.

No-Preconditioner displays also good time performance on average. Like QMR, the

minimum results of BiCGStab are below 1 and the median values are above 1. As

a result, BiCGStab method gives better time performance than the direct solver by a

majority.

Figure 4.8: BiCGStab average iteration count for various preconditioners

In Figure 4.8 average iteration count of BiCGStab are presented. As expected, using

preconditioning techniques decreases the iteration count of the method. Similarly

PCG and QMR, the diagonal preconditioner has better time performance compared

to other preconditioners but it gives significantly more iteration count than others.
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Figure 4.9: Number of failures of BiCGStab using various preconditioners

Figure 4.9 illustrates BiCGStab preconditioner failures . As in other methods,

BiCGStab failed most when no preconditioner is used.e. Among all preconditioners,

the diagonal and ILU(0, 001) preconditioners have better success rate.

Figure 4.10: Iterative Solvers speedup for various preconditioners compared to the

direct solver

Finally, all methods are analyzed with respect to each other. Figure 4.10 is the method

versus speedup graph. Each line represents a preconditioner and markers on it are

average speedup values of iterative solvers. Although, QMR method is slightly better

than PCG method when preconditioner is not used, PCG method has better time

performance of all other preconditioning techniques as expected. It is clearly seen

that the average speedup values of all methods for various preconditioners are above

1. Thus, we can conclude that iterative solution of those linear systems should be
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preferred over direct solvers. Additionally, it can be inferred that the diagonal and the

incomplete factorization with no fill-in are relatively better than other preconditioning

techniques since they have better speedup values among preconditioning techniques

and they display similar time performance for all methods.

Figure 4.11: Number of failures of Iterative Solvers using various preconditioners

In Figure 4.11, PCG achieves the least number of failures almost all preconditioner

cases. On the contrary, BiCGStab brings out the most number of failures of almost

all preconditioner cases.

4.2.2 Memory Usage

Memory usage of direct solver and iterative solver differs from each other. In

this thesis, Cholesky Solver were used as direct solver and it consumes much

more memory because of fill-in. In addition to this, there have been memory

usage differences between all preconditioning techniques. In this section, memory

consumptions of methods are analyzed compared to the direct solver.

In order to simplify our analysis, memory optimization values were computed by

dividing non-zero entry count of the direct solver to non-zero entry count of the

iterative solver. Non-zero entry count of the direct solver is equal to summation of

lower triangular matrix nnz(L), in which nnz represents the non-zero entry count

of a matrix, and its transpose nnz(LT ). Same calculations were made for iterative

solvers.
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Figure 4.12: PCG memory improvement for various preconditioners compared to the

direct solver

Figure 4.12 is PCG memory improvement plot. The figure clearly shows that

PCG method memory requirement is less than the direct solver. Namely, the

smallest improvement greater than 1. As expected, the diagonal preconditioner

has better memory improvement than other preconditioning techniques. Although

the diagonal preconditioner is the best, other preconditioners have also significant

memory improvement. Besides, it can be said that, higher drop tolerance increases

the memory improvement of the factorized preconditioners.

Figure 4.13: QMR memory improvement for various preconditioners compared to

the direct solver
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Figure 4.13 is the memory improvement for QMR. Memory usage of QMR method

is as good as PCG method. While the diagonal preconditioner has the best memory

improvement, the incomplete LU factorization with 0, 001 drop tolerance case has the

worst memory requirement. It can be inferred from Figure 4.13, that the diagonal and

ILU(0, 1) preconditioners have better memory improvements than others on average.

Figure 4.14: BiCGStab memory improvement for various preconditioners compared

to the direct solver

BiCGStab memory improvement is given in Figure 4.14. All preconditioners improve

the memory usage compared to the direct solver. Even though ILU(0, 1) are close to

the diagonal preconditioner, the diagonal preconditioner is well ahead among others.

Figure 4.15: Iterative Solvers memory improvement for various preconditioners

compared to the direct solver
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Figure 4.15 shows the summary of memory improvement for each iterative method

of preconditioning technique. The figure emphasizes that the memory usage of an

iterative solver is much less than memory usage of the direct solver. It can be

said that, the diagonal preconditioner has better memory improvement than other

preconditioning techniques. ILU(0, 1) has also quite well memory improvement, just

behind the diagonal preconditioner.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Physarum Solver provides an unconventional solution to the shortest path problem.

It approaches to the solution gradually changing the conductivity value of nodes in

each iteration. A sparse linear system that needs to be solved in each iteration can be

solved using either direct or preconditioned iterative solvers.

The main idea behind the direct solver is reducing the coefficient matrix A into easily

invertible matrices. Direct solvers are widely used especially where reliability is the

fundamental concern. However, as problem size increases, efficiency of direct solvers

decreases in terms of time and memory requirement. In this case, Iterative solvers

may be a better option due to fewer memory requirement and generally less time

consumption. Nevertheless, they are not as robust as direct solvers but by means of

preconditioning techniques, the robustness of iterative solvers can be improved.

In this thesis, we present the improvement of preconditioned iterative solvers on

Physarum Polycephalum shortest path algorithm compared to the direct solver.

While Preconditioned Conjugate Gradient, Quasi Minimal Residual and Bi-conjugate

Gradient Stabilized methods were used as iterative method, the incomplete LU and

Cholesky factorization and the diagonal preconditioners were used as preconditioning

techniques. Experiments were evaluated in time consumption, convergence rate and

memory requirement.

It has been observed that, preconditioned iterative solvers make improvement in time

and memory consumption with respect to the direct solver. Indeed, preconditioned

iterative solvers spend as much time as direct solver even in the worst case yet in
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general time consumption of preconditioned iterative solvers is less than the direct

solver. Besides, memory consumption of iterative solver is much better than memory

consumption of the direct solver in the worst case. Although, some of the test

cases end with execution failure or wrong solution, the failures can be reduced with

preconditioning techniques.

Even though the matrix is symmetric and positive definite, we have experimented

QMR and BiCGStab method beside PCG. And still the expected result did not

change, PCG method performed better speedup, memory and success rate than other

iterative schemes. In addition to that, the diagonal preconditioner has better speedup

and memory optimization values than other preconditioning techniques however the

success rate of the factorized preconditioners are slightly better than the diagonal

preconditioner.

In the future, Physarum Solver will be enhanced using parallelization techniques.

Based upon to be held sequential computations, incomplete LU and Cholesky

factorizations have limits of parallelization. Diagonal preconditioner is parallel,

however it may not reduce the number of iterations as much as one would expect

and hence other alternative parallel preconditioning schemes could be explored.
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APPENDIX A

TEST MATRICES

The explanation about table contents are as follows:

Matrix Name : Matrix name in university of florida matrix collection.

Rows: Number of rows.

Non-Zeros: Number of non-zero entry.

nnz/n : Number of non-zero entry per row.

Kind: Matrix kind.
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Table A.1: Test Matrices (1/2)

Matrix Name Rows Non-Zeros nnz/n Kind
3dtube 45.330 3.213.618 70,89 computational fluid dynamics

a2nnsnsl 80.016 347.222 4,34 optimization
a5esindl 60.008 255.004 4,25 optimization

appu 14.000 1.853.104 132,36 directed weighted random graph
aug2dc 30.200 80.000 2,65 2D/3D
bbmat 38.744 1.771.722 45,73 computational fluid dynamics

bcsstk31 35.588 1.181.416 33,20 structural
big_dual 30.269 89.858 2,97 2D/3D
brack2 62.631 733.118 11,71 2D/3D

c-61 43.618 310.016 7,11 optimization
cca 49.152 139.264 2,83 undirected graph sequence
ccc 49.152 147.456 3,00 theoretical/quantum chemistry

Chebyshev4 68.121 5.377.761 78,94 structural
chem_master1 40.401 201.201 4,98 2D/3D
conf5_4-8x8-20 49.152 1.916.928 39,00 undirected graph sequence

cont-201 80.595 438.795 5,44 optimization
crankseg_1 25.804 5.186.900 201,01 structural
crankseg_2 63.838 14.148.858 221,64 structural

delaunay_n15 32.768 196.548 6,00 undirected graph
delaunay_n16 65.536 393.150 6,00 undirected graph

Dubcova2 65.025 1.030.225 15,84 2D/3D
e40r0100 17.281 553.562 32,03 2D/3D
fe_rotor 99.617 1.324.862 13,30 undirected graph

fe_sphere 16.386 98.304 6,00 undirected graph
fe_tooth 78.136 905.182 11,58 undirected graph

fem_filter 74.062 1.731.206 23,38 electromagnetics
G31 2.000 39.980 19,99 undirected weighted random graph
G56 5.000 24.996 5,00 undirected weighted random graph

gupta1 31.802 2.164.210 68,05 optimization
gupta2 62.064 4.248.286 68,45 optimization

helm3d01 32.226 428.444 13,29 2D/3D
kim1 38.415 933.195 24,29 2D/3D

L 956 3.640 3,81 2D/3D
L-9 17.983 71.192 3,96 2D/3D

mip1 66.463 10.352.819 155,77 optimization
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Table A.2: Test Matrices (2/2)

Matrix Name Rows Non-Zeros nnz/n Kind
msc23052 23.052 1.142.686 49,57 structural
ncvxqp3 75.000 499.964 6,67 optimization
nd12k 36.000 14.220.946 395,03 2D/3D
nd24k 72.000 28.715.634 398,83 2D/3D
net100 29.920 2.033.200 67,95 optimization
net125 36.720 2.577.200 70,19 optimization
net150 43.520 3.121.200 71,72 optimization

pct20stif 52.329 2.698.463 51,57 structural
pdb1HYS 36.417 4.344.765 119,31 weighted undirected graph

pesa 11.738 79.566 6,78 directed weighted graph
pkustk03 63.336 3.130.416 49,43 structural
pkustk05 37.164 2.205.144 59,34 structural
pkustk06 43.164 2.571.768 59,58 structural
pkustk09 33.960 1.583.640 46,63 structural
pkustk11 87.804 5.217.912 59,43 structural
pkustk12 94.653 7.512.317 79,37 structural
pkustk13 94.893 6.616.827 69,73 structural
raefsky3 21.200 1.488.768 70,22 computational fluid dynamics
rajat08 19.362 83.443 4,31 structural
rma10 46.835 2.329.092 49,73 computational fluid dynamics

ship_001 34.920 3.896.496 111,58 structural
shock-9 36.476 142.580 3,91 2D/3D
sme3Da 12.504 874.887 69,97 structural
sme3Dc 42.930 3.148.656 73,34 structural
sparsine 50.000 1.548.988 30,98 structural

t60k 60.005 178.880 2,98 undirected graph
Trefethen_2000 2.000 41.906 20,95 combinatorial
Trefethen_20000 20.000 554.466 27,72 combinatorial

TSOPF_FS_b162_c4 40.798 2.398.220 58,78 power network
tsyl201 20.685 2.454.957 118,68 structural

wathen100 30.401 471.601 15,51 random 2D/3D
wathen120 36.441 565.761 15,53 random 2D/3D

whitaker3_dual 19.190 57.162 2,98 2D/3D
wing 62.032 243.088 3,92 undirected graph

Zd_Jac3 22.835 1.915.726 83,89 chemical process simulation
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APPENDIX B

RESULTS

B.1 Speedup Results

The explanation about table contents are as follows:

Matrix Name : Matrix name in university of florida matrix collection.

No-Precond : Speeedup values of PCG\QMR\BiCGStab method when preconditioner

is not used.

Diag : Speedup values of PCG\QMR\BiCGStab method while using diagonal

preconditioner.

IC\ILU(0) : Speedup values of PCG\QMR\BiCGStab method while using Incomplete

Cholesky\LU factorization with no fill-in.

IC\ILU(0,001) : Speedup values of PCG\QMR\BiCGStab method while using

Incomplete Cholesky\LU factorization with 0,001 drop tolerance.

IC\ILU(0,01) : Speedup values of PCG\QMR\BiCGStab method while using

Incomplete Cholesky\LU factorization with 0,01 drop tolerance.

IC\ILU(0,1) : Speedup values of PCG\QMR\BiCGStab method while using

Incomplete Cholesky\LU factorization with 0,1 drop tolerance.

Direct Solver (s) : The sequantial running time of the direct solver in seconds.
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Table B.1: PCG Speedup for various preconditioners compared to the direct solver
and the direct solver time consumption in seconds (1/2)

Matrix Name No-Precond Diag IC(0) IC(0,001) IC(0,01) IC(0,1) Direct Solver (s)
3dtube 1,52 34,53 33,43 22,64 33,08 34,21 493,01

a2nnsnsl wrong 0,39 0,53 0,56 0,55 0,44 17,83
a5esindl wrong 1,13 0,11 0,49 0,38 0,57 1,31

appu 8,92 31,04 36,47 43,19 44,24 38,95 477,70
aug2dc wrong 0,68 0,96 1,72 1,32 0,78 20,36
bbmat 44,18 err err err err err wrong

bcsstk31 wrong 11,72 err 12,46 13,23 8,11 815,50
big_dual 0,57 1,46 2,10 2,22 2,36 2,03 6,19
brack2 2,70 19,56 19,55 15,60 21,16 12,37 215,87

c-61 err 2,33 err 3,35 4,03 3,38 43,38
cca 7,83 51,94 62,94 42,78 54,63 51,79 165,73
ccc 14,50 59,03 68,43 73,56 80,42 72,21 429,10

Chebyshev4 err 2,84 0,47 0,86 2,75 2,94 399,32
chem_master1 err 0,06 0,02 0,54 0,83 0,63 4,82
conf5_4-8x8-20 26,68 82,49 78,58 84,64 95,98 109,27 1087,29

cont-201 err 3,21 3,71 6,34 7,02 5,52 318,40
crankseg_1 err wrong 1,46 1,60 1,62 1,61 310,20
crankseg_2 err wrong wrong wrong err err 396,16

delaunay_n15 wrong 1,75 2,12 2,59 2,51 2,01 51,46
delaunay_n16 1,83 4,81 4,97 4,52 4,82 3,50 22,45

Dubcova2 err wrong 0,87 0,88 0,91 0,83 125,17
e40r0100 0,98 1,01 1,50 2,03 2,05 1,73 24,12
fe_rotor 3,33 24,14 23,66 21,49 26,00 21,26 1335,16

fe_sphere 0,18 9,14 27,80 17,80 22,02 0,94 20,59
fe_tooth 2,40 25,48 24,69 25,82 27,48 23,31 617,60

fem_filter err wrong err wrong err err 456,50
G31 13,45 44,73 32,52 26,06 33,60 33,81 10,99
G56 15,88 47,95 40,83 36,98 46,11 40,81 15,07
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Table B.2: PCG Speedup for various preconditioners compared to the direct solver
and the direct solver time consumption in seconds (2/2)

Matrix Name No-Precond Diag IC(0) IC(0,001) IC(0,01) IC(0,1) Direct Solver (s)
gupta1 3,99 25,36 2,25 26,98 29,23 5,40 571,83
gupta2 3,70 15,47 2,14 13,11 54,63 53,89 2857,74

helm3d01 3,82 5,12 14,21 7,87 8,28 7,96 100,91
kim1 2,81 6,38 19,75 19,87 21,85 21,72 1021,61

L 0,23 1,02 1,28 1,37 1,38 1,22 0,08
L-9 0,91 6,86 12,00 11,46 12,70 9,42 14,47

mip1 wrong wrong wrong wrong wrong wrong wrong
msc23052 err 0,82 err 0,82 0,84 1,02 15,97
ncvxqp3 5,68 6,80 12,63 13,85 14,49 12,96 74,07
nd12k 7,82 8,85 7,25 9,45 9,63 9,80 3777,71
nd24k 9,96 13,51 10,19 13,51 13,74 14,24 8510,20
net100 11,28 43,59 23,34 18,08 23,23 23,08 596,55
net125 10,83 38,80 22,36 16,33 24,92 25,75 720,83
net150 7,91 28,00 15,62 12,14 17,55 18,30 519,35

pct20stif 3,31 9,32 7,65 6,45 7,96 8,40 192,39
pdb1HYS wrong 1,53 3,10 2,29 2,25 2,16 222,18

pesa 0,36 0,83 1,19 1,08 1,20 1,02 0,56
pkustk03 3,64 10,19 7,50 8,43 8,58 9,27 227,58
pkustk05 1,94 24,95 8,82 13,71 10,55 14,14 1312,23
pkustk06 3,54 15,15 12,12 12,24 12,79 15,40 362,61
pkustk09 1,64 13,62 9,55 10,10 11,10 10,53 200,80
pkustk11 4,68 12,01 8,38 10,17 10,94 11,65 637,90
pkustk12 0,51 6,98 6,59 5,98 6,79 6,84 375,43
pkustk13 4,68 23,82 16,46 15,74 18,88 21,30 707,73
raefsky3 err 2,24 4,95 3,02 3,79 2,79 89,02
rajat08 1,49 5,10 5,97 5,60 7,23 6,67 4,41
rma10 err wrong wrong wrong wrong wrong 1368,71

ship_001 err wrong err 2,12 3,11 err 113,51
shock-9 err 2,22 3,34 3,93 4,06 2,83 30,79
sme3Da err err err err err wrong wrong
sme3Dc wrong wrong err wrong wrong wrong wrong
sparsine 14,57 30,93 33,02 30,89 32,18 23,79 532,53

t60k wrong 0,56 0,58 1,06 0,39 0,33 31,36
Trefethen_2000 32,98 116,05 92,12 70,83 86,42 87,00 42,02

Trefethen_20000 188,86 523,92 298,61 244,61 316,70 329,14 2236,21
TSOPF_FS_b162_c4 wrong wrong wrong 2,37 2,39 err 126,64

tsyl201 2,25 11,71 11,97 13,41 5,18 14,63 635,15
wathen100 err 0,92 2,08 1,78 1,96 1,75 183,87
wathen120 wrong 0,84 2,60 1,82 1,86 1,52 152,29

whitaker3_dual 0,19 0,93 1,45 2,02 1,83 1,50 11,07
wing 3,20 14,06 18,50 20,23 24,89 19,02 401,30

Zd_Jac3 err wrong err wrong wrong wrong 929,70
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Table B.3: QMR Speedup for various preconditioners compared to the direct solver
and the direct solver time consumption in seconds (1/2)

Matrix Name No-Precond Diag ILU(0) ILU(0,001) ILU(0,01) ILU(0,1) Direct Solver (s)
3dtube 1,52 34,53 33,43 22,64 33,08 34,21 493,01

a2nnsnsl wrong 0,39 0,53 0,56 0,55 0,44 17,83
a5esindl wrong 1,13 0,11 0,49 0,38 0,57 1,31

appu 8,92 31,04 36,47 43,19 44,24 38,95 477,70
aug2dc wrong 0,68 0,96 1,72 1,32 0,78 20,36
bbmat 44,18 err err err err err wrong

bcsstk31 wrong 11,72 err 12,46 13,23 8,11 815,50
big_dual 0,57 1,46 2,10 2,22 2,36 2,03 6,19
brack2 2,70 19,56 19,55 15,60 21,16 12,37 215,87

c-61 err 2,33 err 3,35 4,03 3,38 43,38
cca 7,83 51,94 62,94 42,78 54,63 51,79 165,73
ccc 14,50 59,03 68,43 73,56 80,42 72,21 429,10

Chebyshev4 err 2,84 0,47 0,86 2,75 2,94 399,32
chem_master1 err 0,06 0,02 0,54 0,83 0,63 4,82
conf5_4-8x8-20 26,68 82,49 78,58 84,64 95,98 109,27 1087,29

cont-201 err 3,21 3,71 6,34 7,02 5,52 318,40
crankseg_1 err wrong 1,46 1,60 1,62 1,61 310,20
crankseg_2 err wrong wrong wrong err err 396,16

delaunay_n15 wrong 1,75 2,12 2,59 2,51 2,01 51,46
delaunay_n16 1,83 4,81 4,97 4,52 4,82 3,50 22,45

Dubcova2 err wrong 0,87 0,88 0,91 0,83 125,17
e40r0100 0,98 1,01 1,50 2,03 2,05 1,73 24,12
fe_rotor 3,33 24,14 23,66 21,49 26,00 21,26 1335,16

fe_sphere 0,18 9,14 27,80 17,80 22,02 0,94 20,59
fe_tooth 2,40 25,48 24,69 25,82 27,48 23,31 617,60

fem_filter err wrong err wrong err err 456,50
G31 13,45 44,73 32,52 26,06 33,60 33,81 10,99
G56 15,88 47,95 40,83 36,98 46,11 40,81 15,07

gupta1 3,99 25,36 2,25 26,98 29,23 5,40 571,83
gupta2 3,70 15,47 2,14 13,11 54,63 53,89 2857,74

helm3d01 3,82 5,12 14,21 7,87 8,28 7,96 100,91
kim1 2,81 6,38 19,75 19,87 21,85 21,72 1021,61

L 0,23 1,02 1,28 1,37 1,38 1,22 0,08
L-9 0,91 6,86 12,00 11,46 12,70 9,42 14,47

mip1 wrong wrong wrong wrong wrong wrong wrong
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Table B.4: QMR Speedup for various preconditioners compared to the direct solver
and the direct solver time consumption in seconds (2/2)

Matrix Name No-Precond Diag ILU(0) ILU(0,001) ILU(0,01) ILU(0,1) Direct Solver (s)
msc23052 err 0,82 err 0,82 0,84 1,02 15,97
ncvxqp3 5,68 6,80 12,63 13,85 14,49 12,96 74,07
nd12k 7,82 8,85 7,25 9,45 9,63 9,80 3777,71
nd24k 9,96 13,51 10,19 13,51 13,74 14,24 8510,20
net100 11,28 43,59 23,34 18,08 23,23 23,08 596,55
net125 10,83 38,80 22,36 16,33 24,92 25,75 720,83
net150 7,91 28,00 15,62 12,14 17,55 18,30 519,35

pct20stif 3,31 9,32 7,65 6,45 7,96 8,40 192,39
pdb1HYS wrong 1,53 3,10 2,29 2,25 2,16 222,18

pesa 0,36 0,83 1,19 1,08 1,20 1,02 0,56
pkustk03 3,64 10,19 7,50 8,43 8,58 9,27 227,58
pkustk05 1,94 24,95 8,82 13,71 10,55 14,14 1312,23
pkustk06 3,54 15,15 12,12 12,24 12,79 15,40 362,61
pkustk09 1,64 13,62 9,55 10,10 11,10 10,53 200,80
pkustk11 4,68 12,01 8,38 10,17 10,94 11,65 637,90
pkustk12 0,51 6,98 6,59 5,98 6,79 6,84 375,43
pkustk13 4,68 23,82 16,46 15,74 18,88 21,30 707,73
raefsky3 err 2,24 4,95 3,02 3,79 2,79 89,02
rajat08 1,49 5,10 5,97 5,60 7,23 6,67 4,41
rma10 err wrong wrong wrong wrong wrong 1368,71

ship_001 err wrong err 2,12 3,11 err 113,51
shock-9 err 2,22 3,34 3,93 4,06 2,83 30,79
sme3Da err err err err err wrong wrong
sme3Dc wrong wrong err wrong wrong wrong wrong
sparsine 14,57 30,93 33,02 30,89 32,18 23,79 532,53

t60k wrong 0,56 0,58 1,06 0,39 0,33 31,36
Trefethen_2000 32,98 116,05 92,12 70,83 86,42 87,00 42,02

Trefethen_20000 188,86 523,92 298,61 244,61 316,70 329,14 2236,21
TSOPF_FS_b162_c4 wrong wrong wrong 2,37 2,39 err 126,64

tsyl201 2,25 11,71 11,97 13,41 5,18 14,63 635,15
wathen100 err 0,92 2,08 1,78 1,96 1,75 183,87
wathen120 wrong 0,84 2,60 1,82 1,86 1,52 152,29

whitaker3_dual 0,19 0,93 1,45 2,02 1,83 1,50 11,07
wing 3,20 14,06 18,50 20,23 24,89 19,02 401,30

Zd_Jac3 err wrong err wrong wrong wrong 929,70
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Table B.5: BiCGStab Speedup for various preconditioners compared to the direct
solver and the direct solver time consumption in seconds (1/2)

Matrix Name No-Precond Diag ILU(0) ILU(0,001) ILU(0,01) ILU(0,1) Direct Solver (s)
3dtube wrong 4,91 0,41 0,17 wrong 3,13 493,01

a2nnsnsl wrong 0,19 0,30 0,01 0,01 0,01 17,83
a5esindl wrong wrong 0,38 0,01 0,01 0,01 1,31

appu 13,42 16,71 22,70 17,20 15,53 12,81 477,70
aug2dc wrong err 0,17 wrong wrong err 20,36
bbmat err wrong wrong wrong wrong err wrong

bcsstk31 wrong 7,34 err err err err 815,50
big_dual 0,48 0,75 0,81 0,11 0,14 0,01 6,19
brack2 2,70 6,35 5,77 0,59 0,89 1,12 215,87

c-61 err 1,80 err 0,54 0,61 err 43,38
cca 5,59 9,77 11,46 0,34 0,51 0,72 165,73
ccc 16,99 35,52 61,93 0,48 0,81 0,92 429,10

Chebyshev4 err 2,84 0,42 1,29 1,38 1,42 399,32
chem_master1 wrong 0,01 wrong wrong wrong wrong 4,82
conf5_4-8x8-20 22,78 22,09 39,61 4,08 6,91 8,27 1087,29

cont-201 wrong 3,34 3,94 0,92 wrong wrong 318,40
crankseg_1 err 1,13 1,17 1,28 1,38 1,35 310,20
crankseg_2 wrong wrong wrong wrong wrong wrong 396,16

delaunay_n15 0,22 1,16 1,65 0,09 0,08 0,10 51,46
delaunay_n16 3,95 5,93 6,21 0,16 0,27 0,39 22,45

Dubcova2 wrong err 0,58 wrong err wrong 125,17
e40r0100 0,58 0,77 0,66 err 0,97 err 24,12
fe_rotor wrong 22,92 27,03 0,61 0,83 wrong 1335,16

fe_sphere wrong 0,50 wrong 0,07 wrong err 20,59
fe_tooth wrong 1,75 1,30 0,40 0,48 wrong 617,60
fem_filter err wrong 1,69 err err 1,49 456,50

G31 14,17 35,88 30,27 10,45 11,08 12,08 10,99
G56 14,55 33,65 33,95 4,83 5,62 5,15 15,07

gupta1 2,87 13,98 3,22 4,69 0,79 3,61 571,83
gupta2 wrong 14,55 5,99 wrong wrong 3,79 2857,74

helm3d01 5,11 3,97 10,93 0,90 1,08 1,27 100,91
kim1 4,19 9,92 17,14 2,38 4,53 7,39 1021,61

L 0,43 1,10 1,19 0,56 0,62 1,03 0,08
L-9 0,98 3,52 wrong 0,54 wrong wrong 14,47

mip1 wrong wrong wrong wrong wrong wrong wrong
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Table B.6: BiCGStab Speedup for various preconditioners compared to the direct
solver and the direct solver time consumption in seconds (2/2)

Matrix Name No-Precond Diag ILU(0) ILU(0,001) ILU(0,01) ILU(0,1) Direct Solver (s)
msc23052 err 0,48 0,29 0,23 0,34 err 15,97
ncvxqp3 5,48 10,39 6,46 0,41 0,44 0,45 74,07
nd12k 2,86 4,65 1,30 4,74 5,08 5,19 3777,71
nd24k 8,51 13,83 8,76 3,88 4,51 5,63 8510,20
net100 12,77 33,68 24,21 4,35 4,60 5,05 596,55
net125 10,18 20,22 18,04 3,43 2,94 3,61 720,83
net150 6,34 14,30 11,50 1,65 1,82 2,24 519,35

pct20stif 3,25 8,46 7,29 0,94 1,26 1,70 192,39
pdb1HYS 2,02 1,18 wrong 2,00 1,73 1,71 222,18

pesa 0,59 0,60 0,62 0,17 0,22 0,27 0,56
pkustk03 4,28 11,07 10,20 1,31 1,58 2,64 227,58
pkustk05 3,45 11,80 7,48 1,72 1,88 1,62 1312,23
pkustk06 3,34 8,90 8,18 2,02 2,72 3,64 362,61
pkustk09 1,78 6,43 7,14 1,47 1,72 1,59 200,80
pkustk11 4,20 11,68 10,17 1,38 2,27 3,50 637,90
pkustk12 0,69 1,62 5,60 0,35 0,22 0,34 375,43
pkustk13 5,36 23,42 20,15 1,54 3,19 3,96 707,73
raefsky3 err 1,28 2,84 3,15 wrong 1,97 89,02
rajat08 1,16 1,71 1,33 0,34 0,51 0,50 4,41
rma10 err wrong wrong wrong wrong wrong 1368,71

ship_001 err wrong err err err err 113,51
shock-9 wrong 0,67 wrong 0,26 wrong wrong 30,79
sme3Da err wrong err err err err wrong
sme3Dc err wrong wrong err err err wrong
sparsine 12,45 26,56 21,54 3,63 5,70 7,82 532,53

t60k wrong 0,36 0,48 0,10 0,11 0,11 31,36
Trefethen_2000 32,84 103,24 92,15 20,47 33,73 22,84 42,02

Trefethen_20000 139,44 274,95 228,22 20,70 33,53 38,68 2236,21
TSOPF_FS_b162_c4 err wrong wrong err wrong wrong 126,64

tsyl201 2,68 11,58 9,96 2,94 3,74 3,23 635,15
wathen100 wrong wrong wrong 0,81 0,75 0,58 183,87
wathen120 wrong wrong wrong 0,46 0,44 0,34 152,29

whitaker3_dual 0,17 0,67 wrong 0,22 0,24 err 11,07
wing 2,60 7,90 9,59 0,55 0,62 wrong 401,30

Zd_Jac3 wrong wrong wrong 3,70 2,91 3,69 929,70

B.2 Memory Optimization Results

The explanation about table contents are as follows:

Memory Optimization : The ratio of the average non-zero entry count of coefficient

matrix of the direct solver to average non-zero entry count of coefficient matrix of the

preconditioned iterative method.

Matrix Name : Matrix name in university of florida matrix collection.
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Diag : Memory optimization of PCG\QMR\BiCGStab method while using the

diagonal preconditioner.

IC\ILU(0) : Memory optimization of PCG\QMR\BiCGStab method while using

Incomplete Cholesky\LU factorization with no fill-in.

IC\ILU(0,001) : Memory optimization of PCG\QMR\BiCGStab method using

Incomplete Cholesky\LU factorization with 0,001 drop tolerance.

IC\ILU(0,01) :Memory optimization of PCG\QMR\BiCGStab method using

Incomplete Cholesky\LU factorization with 0,01 drop tolerance.

IC\ILU(0,1) : Memory optimization of PCG\QMR\BiCGStab method using

Incomplete Cholesky\LU factorization with 0,1 drop tolerance.

nnz(Direct Solver) : Average non-zero entry count of coefficient matrix of the direct

solver.
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Table B.7: PCG memory optimization for various preconditioners compared to the
direct solver and the direct solver non-zero entry count

Matrix Name Diag IC(0) IC(0,001) IC(0,01) IC(0,1) nnz(Direct Solver)
3dtube 2020,44 56,80 39,92 88,51 1929,30 183173104
appu 5429,92 96,60 590,95 1572,53 2920,46 83957398

big_dual 115,42 39,31 22,05 31,10 44,14 827421
brack2 6274,89 869,94 408,26 1000,05 3901,56 190442780

cca 2660,94 1480,78 275,11 493,35 853,60 184700925
ccc 477,09 273,08 109,29 159,37 211,16 21403380

conf5_4-8x8-20 12376,59 366,72 273,04 952,62 3689,62 240242071
delaunay_n16 417,43 94,10 37,01 63,03 152,20 5889878

e40r0100 82,17 9,97 28,92 33,64 47,86 429439
fe_rotor 5838,30 956,20 442,13 1229,70 3337,39 408622940

fe_sphere 176,99 44,25 24,11 38,14 68,30 5800320
fe_tooth 7060,18 1144,48 634,90 1409,92 3467,12 401173304

G31 686,92 70,38 46,84 148,63 355,08 2004428
G56 694,48 216,59 88,00 189,04 337,39 3425846

gupta1 8257,49 472,22 1651,05 4457,88 6086,50 502385604
gupta2 8487,67 244,37 2384,00 4216,78 4838,12 999338458

helm3d01 13416,03 1232,58 912,98 4341,36 8275,51 101639828
kim1 242,72 21,48 73,50 99,51 123,12 9680640

L 55,68 13,48 5,71 8,58 16,79 43987
L-9 309,96 50,87 28,73 50,62 74,65 5007075

ncvxqp3 11104,19 1660,94 1401,92 1874,97 3033,90 87634304
nd12k 8573,44 51,62 594,71 2176,38 4754,35 182219929
nd24k 13994,42 83,08 821,34 3586,60 8070,33 612312013
net100 1615,48 65,54 34,08 1170,96 1360,52 97736785
net125 3372,77 129,12 66,13 2537,76 2720,10 158361476
net150 3768,70 152,90 79,50 2731,69 3173,89 228006085

pct20stif 1290,35 57,89 45,15 127,43 1387,80 34547802
pesa 1153,36 166,48 52,32 99,89 309,26 1121063

pkustk03 188,33 6,25 3,87 10,75 184,21 2812025
pkustk05 209,56 8,97 6,37 17,82 214,07 13889878
pkustk06 251,51 8,35 6,11 15,94 250,25 6717142
pkustk09 141,68 5,51 4,07 10,03 136,11 6259262
pkustk11 360,36 11,30 8,56 24,09 356,04 11041500
pkustk12 168,68 3,86 4,78 7,86 134,54 21659076
pkustk13 450,95 11,02 10,07 32,41 361,74 16803296
rajat08 246,95 57,20 29,07 62,45 97,06 1321410
sparsine 15192,09 1030,25 588,96 2105,03 12096,46 46897983

Trefethen_2000 712,54 59,19 40,01 110,44 317,35 2274414
Trefethen_20000 6590,69 467,89 358,84 995,81 3429,81 148185145

tsyl201 2451,35 40,74 54,58 231,97 2301,27 86299833
whitaker3_dual 137,39 58,85 34,33 47,44 64,86 1292195

wing 1804,78 711,02 343,81 504,56 815,79 57913670
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Table B.8: QMR memory optimization for various preconditioners compared to the
direct solver and the direct solver non-zero entry count

Matrix Name Diag ILU(0) ILU(0,001) ILU(0,01) ILU(0,1) nnz(Direct Solver)
appu 5469,18 101,30 338,72 932,41 2406,62 83957398

big_dual 146,94 43,63 11,52 28,28 45,45 827421
brack2 6804,20 965,04 235,55 806,98 2586,31 190442780

conf5_4-8x8-20 7541,97 314,82 167,51 623,54 3368,65 240242071
delaunay_n15 147,21 40,82 16,12 23,88 52,56 5913330
delaunay_n16 651,25 127,90 23,30 64,23 150,61 5889878

G31 704,05 70,38 29,61 99,69 226,62 2004428
G56 787,19 216,69 45,43 142,75 285,13 3425846

gupta1 8167,28 234,63 555,16 1449,46 3958,22 502385604
kim1 271,23 21,76 33,26 81,31 123,47 9680640

L 31,92 14,06 5,47 7,85 17,65 43987
L-9 174,28 60,63 12,17 35,13 67,36 5007075

ncvxqp3 9316,85 1612,91 961,52 229,08 2378,20 87634304
nd12k 9782,57 51,73 309,65 1452,82 3644,62 182219929
nd24k 16832,39 82,57 472,62 2292,63 8244,41 612312013
net100 1935,34 65,54 23,27 382,73 768,03 97736785
net125 3653,34 129,12 47,89 703,75 1518,11 158361476
net150 4514,88 152,90 54,28 892,85 1791,71 228006085

pct20stif 1794,41 59,60 27,39 85,96 986,35 34547802
pesa 839,12 216,84 27,97 86,49 240,16 1121063

pkustk03 176,42 7,34 2,92 8,62 141,61 2812025
pkustk05 257,91 9,06 4,62 12,17 200,25 13889878
pkustk06 330,15 8,85 4,76 15,23 226,02 6717142
pkustk09 182,14 6,15 3,94 8,36 152,45 6259262
pkustk11 487,98 13,31 6,49 19,85 367,94 11041500
pkustk13 729,25 35,55 6,88 28,83 756,33 16803296
rajat08 376,15 77,19 9,47 33,03 88,76 1321410
sparsine 15727,02 1184,02 253,62 1199,10 9281,22 46897983

Trefethen_2000 645,96 59,21 29,02 94,74 314,97 2274414
Trefethen_20000 7837,58 468,23 206,53 865,56 3104,20 148185145

tsyl201 2342,62 40,79 33,30 123,00 2267,65 86299833
whitaker3_dual 172,50 60,89 19,82 38,83 35,80 1292195
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Table B.9: BiCGStab memory optimization for various preconditioners compared to
the direct solver and the direct solver non-zero entry count

Matrix Name Diag ILU(0) ILU(0,001) ILU(0,01) ILU(0,1) nnz(Direct Solver)
appu 5861,72 101,66 453,33 1617,36 7567,14 83957398

big_dual 114,66 43,55 26,16 26,55 43,21 827421
brack2 6384,06 952,22 638,74 916,72 2802,11 190442780

cca 2159,71 12759,99 411,52 1080,96 1271,59 184700925
ccc 479,03 181,63 144,97 139,94 269,15 21403380

conf5_4-8x8-20 46639,89 473,57 413,94 838,56 5141,51 240242071
delaunay_n15 136,59 42,75 19,35 30,11 59,85 5913330
delaunay_n16 523,08 126,21 86,67 62,07 407,18 5889878

G31 704,30 70,38 36,40 129,18 286,02 2004428
G56 739,13 216,54 301,73 164,08 317,47 3425846

gupta1 8245,43 233,94 1814,24 5345,72 5019,74 502385604
helm3d01 14709,09 1393,57 809,50 2559,36 6126,20 101639828

kim1 256,33 21,94 53,06 131,95 395,50 9680640
L 47,40 13,73 6,24 9,02 22,84 43987

ncvxqp3 4901,80 3593,93 2488,62 1769,28 2631,82 87634304
nd12k 8909,64 52,58 479,37 1874,65 4226,17 182219929
nd24k 15630,97 81,42 859,19 3297,58 9642,25 612312013
net100 1973,60 67,87 28,77 1458,58 5572,22 97736785
net125 3802,56 128,29 57,01 3013,48 10643,29 158361476
net150 4604,14 158,32 67,11 3402,67 12999,21 228006085

pct20stif 1473,82 60,00 93,36 100,59 1174,34 34547802
pesa 1058,61 177,38 36,52 91,75 250,97 1121063

pkustk03 194,03 7,17 3,26 8,20 126,36 2812025
pkustk05 242,48 9,63 5,25 11,81 195,48 13889878
pkustk06 251,50 8,72 5,26 14,85 193,67 6717142
pkustk09 138,51 5,65 4,16 8,00 119,42 6259262
pkustk11 402,95 12,81 7,13 19,60 284,38 11041500
pkustk12 305,94 4,03 4,48 6,09 83,65 21659076
pkustk13 596,12 14,46 32,63 24,33 508,70 16803296
rajat08 273,92 77,47 21,86 213,30 529,84 1321410
sparsine 16323,70 1217,72 509,47 1647,57 10646,53 46897983

Trefethen_2000 656,97 59,11 91,97 92,50 691,10 2274414
Trefethen_20000 6872,83 465,60 932,03 773,49 2700,56 148185145

tsyl201 2384,57 53,72 45,25 133,08 2238,18 86299833

B.3 Results for PCG on pkustk13

The explanation about table contents are as follows:

Inner Tolerance : Tolerance is used by iterative solvers to terminate the iteration for

solving the linear system.

Preconditioner : Preconditioner kind is used in the iterative methods.

57



Wall Clock Time (s) : The execution time of the method in seconds.

Outer Iteration : Physarum Solver iteration count.

Avg. Inner Iteration : Average number of iteration that iterative solver makes to find

linear system solution in each Physarum Solver iteration.

Distance : The shortest path length.

Table B.10: Results when outer tolerance is 1E-5. The direct solver time consumption
is 695,9 s, outer iteration count is 59 and distance is 10

Inner Tolerance Preconditioner Wall Clock Time (s) Outer Iteration Avg. Inner Iteration Distance
1,00E-03 No-Preconditioner 256,68 151 297,70 10
1,00E-03 Diag 141,77 151 7,56 10
1,00E-03 IC(0) 96,17 65 7,98 10
1,00E-03 IC(0,001) 84,32 59 5,15 10
1,00E-03 IC(0,01) 83,16 59 8,56 10
1,00E-03 IC(0,1) 69,27 59 14,92 10
1,00E-02 No-Preconditioner 143,26 151 89,23 10
1,00E-02 Diag 117,73 151 5,87 10
1,00E-02 IC(0) 76,63 78 5,27 10
1,00E-02 IC(0,001) 63,91 59 3,44 10
1,00E-02 IC(0,01) 73,42 59 5,20 10
1,00E-02 IC(0,1) 64,72 60 9,27 10
1,00E-01 No-Preconditioner 17,96 16 18,19 2
1,00E-01 Diag 14,16 17 2,00 2
1,00E-01 IC(0) 112,90 144 3,04 10
1,00E-01 IC(0,001) 53,82 63 2,14 10
1,00E-01 IC(0,01) 61,73 84 3,23 10
1,00E-01 IC(0,1) err err err err
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Table B.11: Results when outer tolerance is 1E-4. The direct solver time consumption
is 633,1 s, outer iteration count is 44 and distance is 10

Inner Tolerance Preconditioner Wall Clock Time (s) Outer Iteration Avg. Inner Iteration Distance
1,00E-03 No-Preconditioner 239,81 151 297,70 10
1,00E-03 Diag 51,96 39 14,92 10
1,00E-03 IC(0) 63,53 45 8,42 10
1,00E-03 IC(0,001) 59,97 44 5,55 10
1,00E-03 IC(0,01) 60,18 45 9,36 10
1,00E-03 IC(0,1) 58,84 45 16,13 10
1,00E-02 No-Preconditioner 151,03 151 89,23 10
1,00E-02 Diag 112,52 135 5,98 10
1,00E-02 IC(0) 54,27 45 5,62 10
1,00E-02 IC(0,001) 51,82 45 3,58 10
1,00E-02 IC(0,01) 47,08 44 5,61 10
1,00E-02 IC(0,1) 43,99 46 9,65 10
1,00E-01 No-Preconditioner 13,59 16 18,19 2
1,00E-01 Diag 9,68 13 2,00 2
1,00E-01 IC(0) 41,01 50 3,12 10
1,00E-01 IC(0,001) 40,35 48 2,19 10
1,00E-01 IC(0,01) 59,81 79 3,24 10
1,00E-01 IC(0,1) 10,33 13 1,08 2

Table B.12: Results when outer tolerance is 1E-3. The direct solver time consumption
is 707,7 s, outer iteration count is 31 and distance is 10

Inner Tolerance Preconditioner Wall Clock Time (s) Outer Iteration Avg. Inner Iteration Distance
1,00E-03 No-Preconditioner 155,71 74 320,57 10
1,00E-03 Diag 45,02 32 16,91 10
1,00E-03 IC(0) 52,42 31 9,06 10
1,00E-03 IC(0,001) 52,20 31 6,19 10
1,00E-03 IC(0,01) 48,68 30 11,03 10
1,00E-03 IC(0,1) 45,18 31 18,42 10
1,00E-02 No-Preconditioner 151,13 151 89,23 10
1,00E-02 Diag 29,71 27 9,89 10
1,00E-02 IC(0) 42,99 31 5,90 10
1,00E-02 IC(0,001) 44,97 31 3,84 10
1,00E-02 IC(0,01) 37,49 30 6,37 10
1,00E-02 IC(0,1) 33,23 32 10,38 10
1,00E-01 No-Preconditioner 14,76 16 18,19 2
1,00E-01 Diag 8,54 10 2,00 2
1,00E-01 IC(0) 29,55 35 3,17 10
1,00E-01 IC(0,001) 31,61 34 2,26 10
1,00E-01 IC(0,01) 31,13 40 3,50 10
1,00E-01 IC(0,1) 8,05 10 1,10 2
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Table B.13: Results when outer tolerance is 1E-2. The direct solver time consumption
is 643,1 s, outer iteration count is 19 and distance is 10

Inner Tolerance Preconditioner Wall Clock Time (s) Outer Iteration Avg. Inner Iteration Distance
1,00E-03 No-Preconditioner 108,45 19 382,47 10
1,00E-03 Diag 38,82 19 22,05 10
1,00E-03 IC(0) 40,91 19 10,37 10
1,00E-03 IC(0,001) 39,66 19 7,58 10
1,00E-03 IC(0,01) 41,08 19 13,42 10
1,00E-03 IC(0,1) 35,78 19 22,05 10
1,00E-02 No-Preconditioner 43,70 34 92,85 10
1,00E-02 Diag 24,40 18 12,28 10
1,00E-02 IC(0) 33,45 19 6,47 10
1,00E-02 IC(0,001) 32,69 19 4,37 10
1,00E-02 IC(0,01) 28,79 19 7,74 10
1,00E-02 IC(0,1) 26,21 19 12,00 10
1,00E-01 No-Preconditioner 14,82 16 18,19 2
1,00E-01 Diag 6,38 7 2,00 2
1,00E-01 IC(0) 19,98 22 3,27 10
1,00E-01 IC(0,001) 20,53 20 2,45 10
1,00E-01 IC(0,01) 20,26 25 3,80 10
1,00E-01 IC(0,1) 6,05 7 1,14 2

Table B.14: Results when outer tolerance is 1E-1. The direct solver time consumption
is 530,6 s, outer iteration count is 9 and distance is 10

Inner Tolerance Preconditioner Wall Clock Time (s) Outer Iteration Avg. Inner Iteration Distance
1,00E-03 No-Preconditioner 92,42 9 393,00 10
1,00E-03 Diag 27,57 9 31,78 10
1,00E-03 IC(0) 32,23 9 14,11 10
1,00E-03 IC(0,001) 34,46 9 10,89 10
1,00E-03 IC(0,01) 31,43 9 20,56 10
1,00E-03 IC(0,1) 27,00 9 31,67 10
1,00E-02 No-Preconditioner 24,09 9 94,22 10
1,00E-02 Diag 16,12 9 16,11 10
1,00E-02 IC(0) 22,94 8 8,63 10
1,00E-02 IC(0,001) 22,50 9 5,89 10
1,00E-02 IC(0,01) 18,81 8 12,25 10
1,00E-02 IC(0,1) 16,16 8 17,00 10
1,00E-01 No-Preconditioner 8,27 8 4,13 3
1,00E-01 Diag 4,04 4 2,00 2
1,00E-01 IC(0) 7,23 7 3,86 10
1,00E-01 IC(0,001) 10,76 8 3,13 11
1,00E-01 IC(0,01) 8,27 8 5,50 11
1,00E-01 IC(0,1) 5,06 5 1,20 2
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Table B.15: Results when outer tolerance is 1. The direct solver time consumption is
88,4 s, outer iteration count is 1 and distance is 14

Inner Tolerance Preconditioner Wall Clock Time (s) Outer Iteration Avg. Inner Iteration Distance
1,00E-03 No-Preconditioner 5,01 1 114 14
1,00E-03 Diag 3,70 1 63 14
1,00E-03 IC(0) 5,31 1 25 14
1,00E-03 IC(0,001) 4,41 1 22 14
1,00E-03 IC(0,01) 7,15 1 52 14
1,00E-03 IC(0,1) 6,45 1 63 14
1,00E-02 No-Preconditioner 3,58 1 58 14
1,00E-02 Diag 2,96 1 29 15
1,00E-02 IC(0) 3,35 1 13 14
1,00E-02 IC(0,001) 4,32 1 10 19
1,00E-02 IC(0,01) 4,39 1 26 19
1,00E-02 IC(0,1) 3,39 1 29 15
1,00E-01 No-Preconditioner 2,09 1 4 3
1,00E-01 Diag 2,31 1 2 2
1,00E-01 IC(0) 2,40 1 1 3
1,00E-01 IC(0,001) 3,12 1 1 14
1,00E-01 IC(0,01) 2,22 1 2 3
1,00E-01 IC(0,1) 2,19 1 2 2
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APPENDIX C

MATLAB CODES

C.1 PhysarumSolver

1 function [ path] = PhysarumSolver(p_OuterTolerance, p_InnerTolerance, p_droptol, fileName, outFile, p_SolverType)

2 // p_OuterTolerance : Tolerance to end execution.

3 // p_InnerTolerance : Iterative Solver tolerance.

4 // p_droptol : Iterative Solvers drop tolerance.

5 // fileName : Input matrix name.

6 // outFile : Output file that results are going to write.

7 // p_SolverType : Linear system solver type.

8

9 //the test matrix is loaded and adjusted to an undirected graph.

10 load(fileName);

11 L = triu(abs( Problem.A),1) +(triu(abs( Problem.A),1) );

12

13 //initally conductivity values of each node assigned as 1.

14 size = length(L);

15 [i,j] = find(L);

16 v = ones(length(i), 1);

17 D = sparse(i,j,v);

18

19 //to check the difference between flux values, the previous flux values are

20 //stored in this matrix.

21 prevQ = sparse(size,size);

22

23 // right hand side vector of the linear equation. It is conducted from the

24 // Kirchhoffs Law and it does not change during the execution. b = [1, 0, 0, ...., 0,-1]
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25 b1 = [1];

26 b = padarray(b1, size-1, post);

27 b(size) = -1;

28 b = sparse(b);

29

30 //During execution the coefficient matrix may lose its structure

31 //and there could be errrors. checkP is used to control this kind of errors.

32 checkP = sparse(zeros(size, 1));

33

34 //Initialization of parameters.

35 iterationNum = 0;

36 avgIter = 0;

37 avgInnerTime = 0;

38 OuterTolerance = str2double(p_OuterTolerance);

39 InnerTolerance = str2double(p_InnerTolerance);

40 droptol = str2double(p_droptol);

41 SolverType = str2double(p_SolverType);

42

43 //start timer.

44 tStart = tic;

45 while true

46 //D_ij / L_ij

47 g = D.*spfun(@(x) 1./x, L);

48

49 // if i = j then A_ij = row-sum(g_i)

50 // otherwise A_ij = -g_ij

51 A = -1*g +diag(abs(sum((-1*g) ,2)));

52

53 //solve linear system Ap = b.

54 [p, iter, innerTime] = SolveP(A,b, InnerTolerance,droptol, SolverType);

55 avgIter = avgIter +iter;

56 avgInnerTime = avgInnerTime +innerTime;

57

58 //check pressure values (p vector) are calculated correctly.

59 if(isequal(isnan(p),checkP) == 0)

60 fprintf(fileID, 6sn, F2);

61 break;
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62 end

63

64 // Q_ij = g_ij *(p_i -p_j)

65 [i,j,v] = find(g);

66 Q = sparse(i,j, v.*(p(i) -p(j)));

67

68 // D_ij = abs(Q_ij)

69 D = abs(Q);

70

71 //Termination criteria.

72 //check whether the flux values are still changing or not.

73 NormMatrix = Q -sparse(prevQ);

74 normValue = norm(NormMatrix,fro)./norm(Q, fro);

75 iterationNum = iterationNum +1;

76 if( normValue = OuterTolerance)

77 break

78 end

79

80 //Termination criteria.

81 //check the outer iteration count has reached maximum iteration count.

82 if(iterationNum 150)

83 break

84 end

85

86 //store the flux values for next iteration.

87 prevQ = Q;

88 end

89 //end timer.

90 tElapsed = toc(tStart);

91 InnerAvgIteration = avgIter/iterationNum;

92

93

94 //find the path that connects source and sink node traversing flux from starting node.

95 [, dim] = max(Q, [], 2);

96 path = [1];

97 i = 1;

98 while true
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99 path(end +1) = dim(i);

100 if(dim(i) == 1)

101 break;

102 end

103 if(dim(i) == size)

104 break;

105 end

106 i = dim(i);

107 end

108

109 //calculate the length of the path.

110 dist = 0;

111 for i = 2:length(path)

112 dist = dist +L(path(i-1), path(i));

113 end

114

115 end

C.2 SolveP

1 function [p, iter, innerTime] = SolveP( A, b, InnerTolerance, droptol, SolverType)

2 //---------Input Parameters-------------------//

3 // A : coefficient matrix

4 // b : right hand side vector

5 // InnerTolerance : tolerance that are used in iterative solver.

6 // droptol : iterative solvers droptol

7 // SolverType : to decide which solver is going to used.

8 // -0 Direct solver

9 // - 1 PCG

10 // - 2 QMR

11 // - 3 BiCGStab

12 //---------Output Parameters-------------------//

13 // p : pressure values.

14 // iter : iteration count of iterative solvers make.

15 // innerTime : Time spent while solving linear system iteratively.
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16

17 // Some of the values are going to decrease during the execution and they are really close to 0.

18 // This could cause computational errors because it breaks down the positive definiteness and non-singularity of the coefficient matrix A. Since the coefficient matrix is row-sum zero matrix, the indices that are not satisfy this property are found and eliminate while solving linear system.

19

20 ind = find(sum(abs(A)) 1e-10);

21 p = zeros(length(A), 1);

22

23 if(SolverType == 0) //DirectSolver

24 p(ind) = A(ind, ind)b(ind);

25 iter = 0;

26 innerTime = 0;

27 elseif(SolverType == 1) //PCG

28 [p, iter, innerTime ] = SolvePpcg(A,b, InnerTolerance,droptol);

29 elseif(SolverType == 2) //QMR

30 [p, iter, innerTime ] = SolvePqmr(A,b, InnerTolerance,droptol);

31 elseif(SolverType == 3) //BiCGStab

32 [p, iter, innerTime ] = SolvePqmr(A,b, InnerTolerance,droptol);

33 end

34

35 end

C.3 SolvePpcg

1 function [p, iter, tElapsed] = SolvePpcg( A, b, tolerance2, droptol)

2

3 v = sum(abs(A));

4 ind = find(v 1e-10);

5 Anew = A(ind, ind);

6 bnew = b(ind);

7

8 p = zeros(length(A), 1);

9 if(droptol == -2) // No-Preconditoner

10 tStart = tic;

11 [p(ind),,,iter] = pcg(Anew, bnew, tolerance2, 500);

12 tElapsed = toc(tStart);
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13 elseif (droptol == -1) // Diagonal

14 tStart = tic;

15 M = diag(diag(Anew));

16 [p(ind),,,iter] = pcg(Anew, bnew, tolerance2, 500, M);

17 tElapsed = toc(tStart);

18 elseif (droptol == 0) // No Fill-in

19 tStart = tic;

20 opts.type = nofill;

21 [L] = ichol(Anew, opts);

22 [p(ind),,,iter] = pcg(Anew, bnew, tolerance2, 500, L, L);

23 tElapsed = toc(tStart);

24 else // Incomplete factorization with drop tolerance.

25 tStart = tic;

26 opts.type = ict;

27 opts.droptol = droptol;

28 alpha = 0.1;

29 opts.diagcomp = alpha;

30 [L] = ichol(Anew, opts);

31 [p(ind),,,iter] = pcg(Anew, bnew, tolerance2, 500, L, L);

32 tElapsed = toc(tStart);

33 end

34

35 end

C.4 SolvePqmr

1 function [ p, iter, tElapsed ] = SolvePqmr(A, b, tolerance2, droptol )

2

3 v = sum(abs(A));

4 ind = find(v 1e-10);

5

6 Anew = A(ind, ind);

7 bnew = b(ind);

8

9 p = zeros(length(A), 1);
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10

11 if(droptol == -2) // No-Preconditoner

12 tStart = tic;

13 [p(ind),,,iter] = qmr(Anew, bnew, tolerance2, 500);

14 tElapsed = toc(tStart);

15 elseif (droptol == -1) // Diagonal

16 tStart = tic;

17 M = diag(diag(Anew));

18 [p(ind),,,iter] = qmr(Anew, bnew, tolerance2, 500, M);

19 tElapsed = toc(tStart);

20 elseif (droptol == 0) // No Fill-in

21 tStart = tic;

22 setup.type = nofill;

23 [L, U] = ilu(Anew, setup);

24 [p(ind),,,iter] = qmr(Anew, bnew, tolerance2, 500, L, U);

25 tElapsed = toc(tStart);

26 else // Incomplete factorization with drop tolerance.

27 tStart = tic;

28 setup.type = ilutp;

29 setup.droptol = droptol;

30 [L, U] = ilu(Anew, setup);

31 [p(ind),,,iter] = qmr(Anew, bnew, tolerance2, 500, L, U);

32 tElapsed = toc(tStart);

33 end

34 end

C.5 SolvePbicgstab

1 function [ p, iter, tElapsed ] = SolvePbicgstab( A, b, tolerance2, droptol )

2

3 v = sum(abs(A));

4 ind = find(v 1e-10);

5

6 Anew = A(ind, ind);

7 bnew = b(ind);
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8

9 p = zeros(length(A), 1);

10 if(droptol == -2) // No-Preconditoner

11 tStart = tic;

12 [p(ind),,,iter] = bicgstab(Anew, bnew, tolerance2, 500);

13 tElapsed = toc(tStart);

14 elseif (droptol == -1) // Diagonal

15 tStart = tic;

16 M = diag(diag(Anew));

17 [p(ind),,,iter] = bicgstab(Anew, bnew, tolerance2, 500, M);

18 tElapsed = toc(tStart);

19 elseif (droptol == 0) // No Fill-in

20 tStart = tic;

21 setup.type = nofill;

22 [L, U] = ilu(Anew, setup);

23 [p(ind),,,iter] = bicgstab(Anew, bnew, tolerance2, 500, L, U);

24 tElapsed = toc(tStart);

25 else // Incomplete factorization with drop tolerance.

26 tStart = tic;

27 setup.type = crout;

28 setup.droptol = droptol;

29 [L, U] = ilu(Anew, setup);

30 [p(ind),,,iter] = bicgstab(Anew, bnew, tolerance2, 500, L, U);

31 tElapsed = toc(tStart);

32 end

33

34 end

70


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Physarum Polycephalum Shortest Path Algorithm
	Mathematical Model
	Algorithm

	Linear Algebra Terminology
	Solving Linear Systems
	Gaussian Elimination

	METHODS AND MOTIVATION
	Direct Solver
	Cholesky Factorization

	Preconditioned Iterative Methods
	Preconditioned Conjugate Gradient
	Biconjugate Gradient Stabilized Method
	Quasi Minimal Residual

	Preconditioning Techniques
	Diagonal (Jacobi) Preconditioner
	Incomplete LU Factorization
	Incomplete Cholesky Factorization


	NUMERICAL EXPERIMENTS
	Computing and Programming Environment
	Experiments and Results
	Speedup and Convergence
	Memory Usage


	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDICES
	TEST MATRICES
	RESULTS
	Speedup Results
	Memory Optimization Results
	Results for PCG on pkustk13

	MATLAB CODES
	PhysarumSolver
	SolveP
	SolvePpcg
	SolvePqmr
	SolvePbicgstab


