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ABSTRACT

LOCATING EMS VEHICLES IN GENERAL NETWORKS WITH AN
APPROXIMATE QUEUEING MODEL AND A METAHEURISTIC SOLUTION

APPROACH

Akdoğan, Muharrem Altan

M.S., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Pelin Bayındır

Co-Supervisor : Assoc. Prof. Dr. Cem İyigün

September 2015, 59 pages

In this study, problem of optimal location decision of ambulances as an server-to-
customer Emergency Medical Service (EMS) vehicle is discussed. Hypercube queue-
ing models (HQM) are employed to achieve performance measures significant to the
location decision of EMS vehicles in spatial networks. Geroliminis et al(2009) ex-
tends HQM and propose Spatial Queueing Model(SQM). Our study proposes a gen-
eralization of SQM to be used in general networks. Quality of approximations inherit
to SQM is questioned, and reported against various system spesific variables such as
distribution of demand among regions, traffic intensity or distribution of demand re-
gions over the area. Restriction of number of servers to be located per each location
as one in the SQM model is relaxed. Effect of allowing multi servers per each loca-
tion in general networks are reported. A metaheuristic algorithm (genetic algorithm)
is proposed to solve the model for which no closed form expression exists and its
performance is reported.

Keywords: Emergency Medical Services, Ambulance Location, Hypercube Queueing
Model, Approximate Queueing Model, Server-to Customer Models
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ÖZ

ACİL TIBBİ YARDIM ARAÇLARININ GENEL AĞLARDA YAKLAŞIK BİR
KUYRUK MODELİ VE SEZGİSEL BİR ÇÖZÜM YAKLAŞIMI İLE

LOKASYONUNUN BELİRLENMESİ

Akdoğan, Muharrem Altan

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pelin Bayındır

Ortak Tez Yöneticisi : Doç. Dr. Cem İyigün

Eylül 2015 , 59 sayfa

Bu çalışmada, müşteriye hizmet götüren acil tıbbi yardım servisleri olarak ambu-
lansların en iyi lokasyonlarına karar verme problemi tartışılmıştır. Uzamsal ağlarda
verilen ambulans lokasyon kararları sonucunda ortaya çıkan sistemin performans pa-
rametrelerini hesaplamak için Hiperküp Kuyruk Modeli (HKM) kullanılır. Gerolimi-
nis ve ekibi, HKM modelini genişletir ve Uzamsal Kuyruk Modeli (UKM) önerir.
Bizim çalışmamız, UKM’nin genel ağlarda kullanılabilmesi için bir genişletme öne-
rir. UKM modelinde kullanılan yakınsama yaklaşımlarının kalitesi sorgulanır, ve bu
kalitenin değişimi, talep miktarının alanlara göre dağılımı, kuyruk sisteminin trafik
yoğunluğu ve talep alanlarının ağ üzerindeki dağılımı gibi farklı ağ parametrelerine
göre raporlanır. Bu çalışma her alana en fazla bir tane araç yerleştirme kısıtlamasını
kaldırır. Genel ağlarda bunun etkisini raporlar. Kapalı bir ifadesi olmayan matematik-
sel model için sezgisel bir çözüm algoritması önerilir ve performansı raporlanır.

Anahtar Kelimeler: Acil Tıbbi Servisleri, Ambulans Lokasyonu Problemi, Hiperküp
Kuyruk Modeli, Yaklaşık Kuyruk Modeli
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CHAPTER 1

INTRODUCTION

Emergency medical services (EMS) are defined by by Washington, DC, Department

of Health [30] as prehospital services providing transportation to definitive care and

on sight medical care to patients. EMS is a system of components which includes or-

ganizations, transportation and communication networks, hospitals, trauma centers,

trained professionals, physicians, nurses, administrators helping this system working

in success. Having the primary concern as emergencies, planing of this system re-

quires significant work to ensure serving the public at its best. Other than administra-

tive decisions, planing of physical infrastructure constitutes a major part in the perfor-

mance of the system. This study specifically concerns a strategic problem where we

determine locations of given number of ambulances in predefined possible regions.

While locating ambulances, there should be more than one concern to be taken into

consideration, each targeting different performance measures. These could be quan-

titative or qualitative concerns which regard the view of the decision maker and or

regulations. Some criteria can be listed as follows;

• utilization of ambulances

• fraction of demand lost

• mean response time

• investment and operational cost related to the ambulances

In this study, a model with the objective of mean response time is studied while con-

ceiving other criteria listed above could be other focuses for an EMS system location
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problem. Costs are not considered in the scope of this study. The problem is defined

as locating given number of ambulances to predefined candidate ambulance locations

which are also demand regions, by achieving minimum mean system response time

under a coverage criterion.

Regarding the nature of the problem, queueing theory is used to analyze the perfor-

mance of the candidate solutions to the problem. Spatial Queueing Model defined

by Geroliminis et al [10] is studied to be applied on networks with dispersed regions

other than regions with Manhattan distances as in their study.

SQM represents the system with an approximate queueing model. The quality of

approximations in SQM is questioned for general networks and reported against var-

ious network specific parameters such as distribution of demand, traffic intensity,

distribution of demand regions over the area and number of ambulances to be located.

Restriction of the number of ambulances to be located per location to one is relaxed

by allowing multiple ambulances per location. Effect of this relaxation is explored.

In the scope of the study, a metaheuristic algorithm is proposed to solve the model.

Experimental results for this algorithm is provided.

In Chapter 2, a brief summary of studies on EMS location problems is provided.

Problem definition, research questions and mathematical model is delivered in Chap-

ter 3. Solution approach is explained in Chapter 4. In Chapter 5, the experimental

results for research questions is analyzed. The study is concluded in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a brief review of studies in the literature on emergency vehicle location

models is provided.

Emergency vehicle locations are determined under strategic and operational consid-

erations. Response time and the coverage are the main issues for emergency vehicle

location problems.

Early studies model location problems in a static and deterministic way ignoring

stochasticity of components such as demand and travel time. These models are cate-

gorized as median and coverage models by Geroliminis et al. [10]. Median models

work on the average travel time or distance weighted with respect to the demand of

the areas in responsible districts. Hakimi [26] formulates a p-median problem for

locations of switching centers on a telephone network. Later, ReVelle and Swain [24]

model the p-median problem as an integer programming model, allowing only locat-

ing facilities on the nodes of the network. For emergency vehicle location problems,

Volz [20] locates and relocates ambulances in semi-rural areas regarding the mini-

mum response time and uses a coverage constraint as a predefined coverage standard

in minutes. Kunkel et al [6] uses weighted p-median problem to assign medical assis-

tants to population centers and then Capacitated Facility Location Problem (CFLP)

is solved to assign these medical assistants to resupply centers. Coverage models

takes the covered demand or number of regions into account in terms of proximity

to the vehicles. Coverage is defined as being closer to the demand areas than a pre-

defined travel time. Hakimi [27] introduces Set Covering Location Problem (SCLP)

to find minimum number of policemen to be located on a highway network. Toregas

3



et al [25] formulates the same problem as an integer programming problem to locate

emergency vehicles. Maximal Covering Location Problem (MCLP) is introduced by

Church and ReVelle [17] to locate emergency units in a way that every unit would

cover the maximum possible part of demand area. Daskin and Stern [15] modify the

original MCLP model and introduces the Backup Coverage Problem model which

maximizes demand areas covered more than once. Later, Gendreau et al. [9] intro-

duce the Double Standard Model (DSM) which includes two different time threshold

for coverage consideration. Berman et al. [5] use coverage decay function in a gen-

eralization of MCLP and median-based models.

In emergency vehicle location problems, stochasticity of the problem inputs and

change of inputs in time begin to take more attention, regarding the nature of the

problem. In this context, dynamic and probabilistic models emerge. Dynamic models

work on relocation of vehicles, facilities over a planning horizon. Ballou [22] puts

an emphasis on limits of deterministic and static models and locates a single facility

to maximize profit over a finite horizon. Scott [1] extends location-allocation prob-

lems dynamically by locating multiple facilities in discrete, equally spaced periods.

Gendreau [8] extends his DSM for relocation of ambulances considering the nature

of the problem. Degel et al [23] extends MCLP with time-dependent variations for

ambulance location problem. Probabilistic models are developed to consider chang-

ing condition or inputs as the availability of vehicles, changing travel times. Daskin

[14] introduces Maximum Expected Covering Problem for location analysis of public

service facilities. Maximum Availability Location Problem(MALP) is developed by

Revelle and Hogan [3] incorporating vehicle availability into the location problem.

Beraldi and Bruni [16] use Two Stage Stochastic Programming in locating ambu-

lances to cover demand with a specified reliance.

Queueing theory is embedded in probabilistic facility location-allocation models firstly

in the study of Larson [21]. Hyper Queueing Model (HQM) proposed by Larson,

analyzes vehicle location-allocation and districting in emergency response services

operating as server-to-customer manner (such as ambulances). HQM model is used

to observe steady-state probabilities of the system and get various performance mea-

sures such as travel times, work-loads, based on Markovian analysis and Queueing

Theory. The developed model is not used in an optimization approach. Sacks and
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Grief [28], Brandeau and Larson [13], Iannoni and Morabito [2], Takeda et al [12]

use HQM model as a base to measure performance of EMS systems. Marianov and

Revelle [29] extend the MALP with HQM and developes Queueing Maximum Avail-

ability Location Problem (QMALP). Mendonca and Morabito [7] extends HQM for

different service rates for each server in the system but same for intra-district or inter-

district responses for the same servers, where HQM is constructed with independent

service times from locations of the calls and responding server. Halpern [11] states

the estimations for service times in the study of Mendonca and Morabito [7] give

questionable results where travel time is a significant part of the service time. Iannoni

et al [18], [19] uses hypercube model in an optimization environment for location and

districting on high ways with alternative objectives.

Geroliminis et al [10] extends HQM and develops Spatial Queueing Model (SQM) by

defining non-identical service times for servers regarding the demand call’s charac-

teristics (inter-district or intra-district response). SQM relaxes the predefined server

location in HQM. It is used in an optimization algorithm to deliver the optimal lo-

cation solution for predefined number of service patrol vehicles to be located in pos-

sible server locations on a freeway. Dispatching preferences are also not predefined

in advance. An heuristic solution approach consisting of random search followed by

steepest decent method is used to find near optimal location solution while minimiz-

ing response time of the system.
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CHAPTER 3

PROBLEM DEFINITION AND MATHEMATICAL

FORMULATION

The problem studied is explained and the underlying mathematical formulation is

delivered in this chapter. Problem to the center of this study is introduced. Prob-

lem environment is explained in Section 3.1. Problem and the research questions is

defined in Section 3.2. Mathematical formulation is delivered in Section 3.3

This study aims to develop a mathematical formulation and a solution procedure that

locates given number of ambulances to achieve minimum mean response time for the

emergency medical service system. SQM defined for emergency vehicle services by

Geroliminis et al. [10] constitutes the base for our study. Geroliminis et al. [10]

model the problem as locating given number of vehicles in alternative locations , at

which at most one vehicle is allowed.The objective is to minimize mean response

time while the vehicle locations in the solution should be reachable by at least a given

percentage of the regions within a given travel time threshold.

In this model, as explained in Chapter 2, for a given vehicle location solution, dis-

patch fractions of the vehicles to the regions are taken from a queuing system. These

fractions are used to calculate mean response time to emergency calls under the given

locations. SQM is an approximate queueing system. Order of districting concept is

used to indicate the required level of approximation to be able to achieve the behav-

ior of the exact queueing system. Transition rates between states of the approximate

system are calculated regarding the order of districting decision. Travel distances

between location of vehicle and location of a demand call is taken into considera-

tion while calculating the service rate for that specific call. However, in the study no

7



closed form expression is delivered for travel distance consideration.

The model is applied to real life data to locate Free Service Patrol vehicles on a free-

way in San Francisco Bay Area. Service rates for the approximate queueing system

are generated from processing of this data. In that study, at most one ambulance

is allowed to be located per each candidate ambulance location. Level of order of

districting is set to 3 by stating calculations for further levels are tedious . The solution

approach for the problem modeled is stated as random search followed by steepest

decent method and it is tested against the real life data. Accident statistics on a 72

miles section of I-80 free-way in San Francisco Bay Area is used. 7 instances are

solved with different demand rates. 500 randoms server locations were calculated for

each instance and iterated in the algorithm.

3.1 The Environment

The environment in the study of Geroliminis et al. [10] as follows.

The entire region, where ambulances are to be located, is divided into demand re-

gions. Some of these demand regions are listed also as candidate ambulance loca-

tions. Number of ambulances to be located is predetermined.

Demand is defined as the call for ambulance services and occurs randomly at the

center of each demand region. It is assumed that the demand in the regions are in-

dependent and non identical and follows a time homogeneous Poisson process. The

mean number of calls for an ambulance in a unit time is known for each demand

region.

For each region, a list of ambulance locations sorted with respect to the proximity

is available. When a call is received from a certain region, ambulance locations are

checked for availability in the order of proximity to demand. When an available

ambulance is found, the service starts. If an available ambulance in the system cannot

be found, the demand is lost.

Travel times are defined between regions. It is assumed exponentially distributed with

known mean.

8



A service is composed of travel time to the demand region from the ambulance loca-

tion, travel time to the health care center from the demand region and travel time back

to the ambulance location. Total service time is random, dependent on the location of

both ambulance and the patient and assumed to be exponentially distributed. Since

order of districting is used in the queueing system, for every transition a set of demand

regions subject to this transition is defined as an area and service rate for this area is

calculated. As mentioned before, no formulation for this calculation is delivered in

the study.

The fraction of total demand generated from a demand region is calculated from the

demand rates. Any solution to the problem should cover regions of which demand

add up to a given percentage of total demand, within a given travel time threshold.

The quality of the service is defined as mean response time. The objective function

is selected as mean response time since it is one of the most important performance

measures for EMS systems.

Notation used is given in Table 3.1.

Table 3.1: Notation used for Environment
Sets
Q Set of demand regions
Subsets
R Set of candidate ambulance locations, R ⊆ Q

Parameters
N Number of ambulances to be located
tqr Mean travel time between demand region q and ambulance location

r in minutes
ωq Demand rate (number of demand calls per hour) for demand region

q ∈ Q
fq Frequency of demand generated from demand region q ∈ Q,

= ωq∑
q∈Q ωq

α Required minimum coverage

3.2 Problem Definition

The problem is defined as follows;

9



"Locating given number of ambulances to predefined possible ambulance locations,

which are also demand regions, under a coverage criterion by minimizing mean re-

sponse time of the system"

SQM to be used is an approximate model to the exact queuing system which generates

a wider state space than SQM. Approximation in the model appears in transition rate

calculations for the queueing system and in the order of districting decision. Since no

generic expression exists for the service rates used in transition rate calculation, we

aim to deliver a generic expression for the service rate calculations for the approxi-

mate model.

Order of districting is another major point that determines the quality of the approx-

imate model. The order of districting term indicates the size of the list to be used

in ordering ambulances in terms of proximity to a region. If we were to work with

third order of districting, it states that for a demand call from any region in the system

subject to the problem, at most the third nearest ambulance would be needed to be as-

signed to this call in exact queueing system, meaning fourth nearest ambulance would

never be needed in that system. Thus, three as the level of order of districting is ad-

equate to give information to the model about the assignment scheme of ambulances

in the exact queueing system. However, this scheme could be subject to change de-

pending on system parameters as demand, service time patterns, location distribution

of regions in the entire area.

The current study works on order of districting to observe the effect of changing

orders in approximating the mean response time of the exact queueing system. Min-

imum mean response time reported by using the approximate model is compared to

the mean response time of the simulation of the exact queueing system for location

solution of approximate model. With the guidance of this comparisons, we aim to

discuss the effect of order of districting in the quality of approximation to the exact

queueing system. In the scope of the current study, we do not discuss whether ap-

proximate model solution is optimal for the model constructed with exact queueing

system.

Other than quality of the approximations, the base model of Geroliminis et al. [10]

allows locating at most one ambulance in one region. This restriction can be reason-
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able for networks like high ways. In the study by Geroliminis et al. [10], there is

no further comment on networks with dispersed regions. This approach can result

in missing better solutions, unless it is required by the decision maker as a physi-

cal constraint. Hence, relaxing this restrictions and considering the effect of locating

multiple ambulances at a single location is included in our study.

We also aim to deliver a solution approach for the model developed which includes

terms for which no closed form expression exists. In the study by Geroliminis et al

[10], solution approach proposed for the model is not tested against different problem

instances and its performance is not clearly tested with respect to the optimal solution.

Hence, a genetic algorithm is developed, tested under various problem parameters and

its performance is reported.

Therefore, the main contributions of our study can be listed as follows;

• Developing a generic expression and looking into the effect of different service

rate formulations for the approximate queueing model on the approximation to

the exact queueing system.

• The effect of order of districting level on the quality of approximation.

• Effect of locating multiple in stead of single ambulance at a single location on

minimum mean response time of the system.

• Developing a solution approach and assessing its performance under different

system parameters.
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3.3 Mathematical Formulation

In this section, mathematical model proposed by Geroliminis et al. [10] is delivered

regarding the notation given in Table 3.2. Then, the changes required to include into

this base model is explained.

Table 3.2: Notation used for Mathematical Formulation
Notation
Q Set of demand regions
R Set of candidate ambulance locations, R ⊆ Q

Wq Set of possible ambulance locations covering demand region q :
{r ∈ R : trq ≤ T} ,∀q ∈ Q

N Parameter indicating the number of ambulances to be located
T Parameter indicating travel time threshold for coverage
tqr Parameter indicating the mean travel time between location q and r in

minutes
fq Parameter indicating the frequency of demand generated from demand

region q ∈ Q, = ωq∑
q∈Q ωq

α Parameter indicating the required minimum coverage
xr Decision variable indicating the number of ambulances located in

location r ∈ R
yq Decision variable indicating whether demand region q is covered by

an ambulance or not
1, if demand region q is covered by an ambulance
0, otherwise

x̄ Vector of xr in a solution
B(x̄) State space of the queuing system generated under x̄
Bi(x̄) ith member of state space B(x̄)

Enq(x̄) Set of states which ambulance location n has the nearest available
ambulance for region q under x̄, 1 ≤ n ≤ |Bi(x̄)|

rn(x̄) Ambulance location corresponding to the nth entry of the state Bi(x̄) :
rn(x̄) ∈ R and 1 ≤ n ≤ |Bi(x̄)|

λij(x̄) Upward transition rate with d+
ij = 1 from state i to j under x̄

µij(x̄) Downward transition rate with d−ji = 1 from state j to i under x̄
P (Bi(x̄)) Steady-state probability of state Bi(x̄)

ρrn(x̄)q Fraction of dispatch of ambulances in location rn(x̄) to region q

Mathematical model to find ambulance locations to minimize mean response time can

be expressed as follows:
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Minimize T̄ =

|Bi(x̄)|∑
n=1

Q∑
q=1

(
ρrn(x̄)qtrnq

)
(3.1)

subject to:
∑
q∈Q

fqyq ≥ α, (3.2)

∑
r∈Wq

xr ≥ yq, ∀q ∈ Q (3.3)

∑
r∈R

xr = N, (3.4)

xr ∈ {0, 1} , ∀r ∈ R (3.5)

yq ∈ {0, 1} ,∀q ∈ Q (3.6)

ρrn(x̄)q = fq

∑
Bi(x̄)∈Enq(x̄) P (Bi(x̄))(

1− P (B|B(x̄)|−1(x̄))
) , rn(x̄) ∈ R,

1 ≤ n ≤ |Bi(x̄)| ,

∀q ∈ Q

(3.7)

P (Bj(x̄)) ∗

 ∑
Bi(x̄)∈B(x̄):d−ij=1

λij(x̄) +
∑

Bi(x̄)∈B(x̄):d+ij=1

µij(x̄)


=

∑
Bi(x̄)∈B(x̄):d−ij=1

µij(x̄) ∗ P (Bi(x̄))

+
∑

Bi(x̄)∈B(x̄):d+ij=1

λij(x̄) ∗ P (Bi(x̄)),

j = 0, 1, ...., |B(x̄)| − 1,

(3.8)

|B(x̄)|−1∑
i=0

P (Bi(x̄)) = 1, (3.9)

The model is up to minimize the mean system response time while using queueing

models to calculate necessary parameter for mean response time measure. Constraint

3.2 is minimum coverage restriction stating a solution should have a coverage score

larger then a predefined value α ≤ 1. Constraints in Equations 3.3 - 3.6 are added

for estimation of coverage. Constraint 3.3 forces yq taking value of zero if there are

no ambulances located covering region q. Constraint 3.4 implies the number of am-

bulances located should be equal to the predefined number N . Constraints 3.5 and

3.6 stand for decision variables x and y taking integer values respectively. Constraint

13



3.7 is to calculate fraction of dispatch of ambulances with respect to locations. Con-

straints 3.8 and 3.9 are balance equations regarding the solution stated by x̄.

This model allows locating at most one ambulance on a candidate location. We relax

this restriction and replace constraint 3.5 with Equation 3.10

xr ≥ 0,∀r ∈ R (3.10)

We explained that the service rates for transitions are data-driven in the study of

Geroliminis et al. [10]. We propose generic formulations using predefined service

rates to be used in transition rates. Mean total service time is assumed to be known

only for the case that a demand region is served by an ambulance located in that re-

gion. Therefore, travel times should be included into calculation of the total service

time if an ambulance from a different region is serving the call. Notation used for

service rate and mean total service time is given in Table 3.3.

Table 3.3: Notation used for Service Rate and Mean Total Service Time
Parameters
νq Mean total service time in minutes for demand region q ∈ Q
φq Service rate per hour (60

νq
) for demand region q ∈ Q,

In the rest of the study, x̄ is dropped from the notation given in Table 3.2 for the sake

of brevity.

3.3.1 Underlying Queuing System

An approximate queuing model is generated to obtain the performance measures and

accordingly to calculate the objective function value under a solution as mentioned

previously. Notation and definitions used are similar to those by Geroliminis et al.

[10]

To represent a solution to the problem in exact queueing system, we have to track

where an ambulance is located in, if it is busy or not and which region it serves if it is

busy. Then, the underlying queueing system can be represented by an N-dimensional
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state as follows:

Bi = (b1, b2, ..., bN), (3.11)

bi = {s, r} , i = 1, ..., N (3.12)

where s ∈ (0
⋃
Q), r states in which location the ambulance represented in ith entry

of the state definition located. bi = {0, r} represents the state that the ambulance is

free and bi = {q, r} represents the state where the ambulance is busy serving demand

region q ∈ Q,. This would result in a state space with (|Q| + 1)N states and its size

increases exponentially with increasing number of ambulances.

In the approximate queueing model, system can be modeled by an n-dimensional state

indicating the number of busy ambulances on each location selected in the solution.

Bi = (b1, b2, ..., bk, ..., bn) (3.13)

where 1 ≤ n ≤ |R| is the number of locations selected in the solution in concern and

bk is the number of busy ambulances at location rk ∈ R in state i

The approximate queueing system, generate a state space with
∏

r∈V (xr + 1) states

where V = {r ∈ R, xr ∈ x̄ : xr > 0}. The cardinality of the state space of the ap-

proximate system is bounded by 2N . The maximum size of the state space of solutions

to the problem increases exponentially but slower than the maximum size of the exact

queueing system with increasing number of ambulances.

For clarification of the approximate identification of the queueing system worked

with, it is, explicitly, resulted from not tracking which region a busy ambulance is

serving in the state definition. We need to track where an busy ambulance is serving

as in the exact queueing system to find exact mean response time but this increases

state space and make it computationally inefficient to solve. For this reason, we use

an approximate queueing system.

In this stystem, only one step transition between states is allowed, meaning only one
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ambulance can become idle or busy in a transition. Hamming distance dij between

state i and j is used to express this behavior in the model. Hamming distance is the

number of digits between two states, Bi and Bj , of the system that is different from

each other. For states (2,1,0,3,2,0) and (2,1,1,3,2,0), Hamming distance is equal to 1.

Therefore, only transition with Hamming distance equal to 1 is allowed.

A transition is classified as upward or downward regarding the characteristic of Ham-

ming distance between states. Upward and downward Hamming distances are intro-

duced as d+
ij and d−ij by Larson [21] where d+

ij represents the number of digits with

increase in entries in the transition from state i to j while the latter indicates the num-

ber of digits with decrease in the entries in the transition from state i to j. Allowing

only transition with Hamming distance of one results in a system having upward and

downward Hamming distances equal to again only one between transitions.

By use of the definitions, upward transition refers to transitions with upward Ham-

ming distance d+
ij = 1 while downward to ones with d−ij = 1. Followingly, rates for

the queueing system are identified as upward transition rate and downward transition

rate.

λij represents the rate of demand call resulting in a transition from state i to j while µij

is the service rate for this demand call, namely the downward transition rate from state

j to i where Bi = (b1, ..., 0k, ..., b|Bs|−1, b|Bs|) and Bj = (b1, ..., 1k, ..., b|Bs|−1, b|Bs|)

Recall that balance equations for the queuing system exist in the form of constraints

in the mathematical model, namely Constraint 3.8 and 3.9 as follows:

P (Bj) ∗

 ∑
Bi∈B:d−ij=1

λij +
∑

Bi∈B:d+ij=1

µij


=

∑
Bi∈B:d−ij=1

µij ∗ P (Bi) +
∑

Bi∈B:d+ij=1

λij ∗ P (Bi), j = 0, 1, ...., |B| − 1,

|B|−1∑
i=0

P (Bi) = 1,

In the mathematical model, the objective is to minimize the mean system response
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time. Fraction of dispatches of ambulances to every region is used to express the

objective function in Equation 3.1.

Fraction of dispatches from ambulance location rn to region q can be stated in Con-

straint 3.7 in the mathematical model:

ρrnq = fq

∑
Bi∈Enq

P (Bi)(
1− P (B|B|−1)

) , ∀n : 1 ≤ n ≤ |Bi| and ∀q ∈ Q

Numerator in 3.7 is the sum of steady state probabilities of states where n is the

nearest available server for demand region q while denominator is the fraction of

total demand that is met. The result of the division multiplied by fraction of demand

originated from demand region q gives the fraction of dispatch of ambulances from

ambulance location rn to demand region q.

3.3.2 Order of Districting

Order of districting is introduced to estimate the upward and downward transition

rates in the approximate queuing system. nth order of districting indicates that de-

mand in every region is satisfied by at most nth closest ambulance location. It ignores

the possibility that when a demand occurs all n locations’ vehicles are busy.

According to order of districting structure, sub areas are introduced for transition rate

calculations. The notation used is defined in Table 3.4

Table 3.4: Notation used for Sub Area Definition
Parameters
O Maximum level of order of districting
Sets
Dn
kl Set of regions belonging to the 1st order of district of server k and

the nth order of district of server l, n = 1...O

Uq Ordered set of ambulance locations selected in the solution with
respect to mean travel times to demand region q, closest first
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Regarding the notation, sub areas are defined as follows:

Dn
kl = {q ∈ Q : Uq(1) = rk and Uq(n) = rl} (3.14)

By definition, Dn
kl is the sub area consisting of the set of regions to which k is the

nearest ambulance location and l is the nth nearest ambulance location, and at both of

which at least one ambulance is located.

To clarify the order of districting structure, a problem instance is used. In Figure 3.1,

red dots represent the demand regions without an ambulance and blue dots represent

the locations with at least an ambulance. According to the figure, location 9 has two

ambulances, location 10 has one ambulance and location 14 has one ambulance.

Figure 3.1: A problem instance

For this instance, assume r1 = 9, r2 = 10 and r3 = 14. Then, Dn
kl sets occurs as in

Table 3.5 for O = 3.

18



Table 3.5: Sub Area Sets for Problem Instance 3.1
Sets
D1

1,1 {2, 3, 4, 5, 9, 18, 19, 20}
D1

2,2 {6, 7, 8, 10, 16, 17}
D1

3,3 {1, 11, 12, 13, 14, 15}
D2

1,2 {2, 4, 5, 9, 18}
D2

1,3 {3, 19, 20}
D2

2,1 {8, 10, 16, 17}
D2

2,3 {6, 7}
D2

3,1 {1, 14, 15}
D2

3,2 {11, 12, 13}
D3

1,2 {3, 19, 20}
D3

1,3 {2, 4, 5, 9, 18}
D3

2,1 {6, 7}
D3

2,3 {8, 10, 16, 17}
D3

3,1 {11, 12, 13}
D3

3,2 {1, 14, 15}

3.3.3 Calculation of Rates in Queuing System

Sub areas defined in Section 3.3.2 are used in the calculation of upward and downward

transition rates since the exact region to which an ambulance is sent for a demand call

is not tracked. Added notation for this calculations is given in Table 3.6

Table 3.6: Notation added for Transition Rate Calculation
Sets
Lnkl Set of regions in the sub area Dn

kl

Parameters
Ωn
kl Total demand of the regions in the sub area Dn

kl

=
∑

q∈Ln
kl
ωq

Λ Total demand of the system =
∑

q∈Q ωq

For every order of districting, it is obvious that demand will be completely covered.

∑
k∈|Bi|

∑
l∈|Bi|

Ωn
kl = Λ,∀n = 1, 2, ...,min(O, |Bi|) (3.15)

Upward transition rate λij for a transition from Bi = (b1, ..., 0k, ..., b|Bi|−1, b|Bi|) to
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Bj = (b1, ..., 1k, ..., b|Bi|−1, b|Bi|) is calculated as follows;

λij = Ω1
kk +

∑
1≤l1≤|Bi|:bl1=xrl1

Ω2
l1k

+
M∑
m=3

∑
1≤l1,...,lm−1≤|Bi|:bli=xrli

Ωm
l1k

⋂
Ωm−1
l1lm−1

⋂
...
⋂

Ω2
l1l2

(3.16)

where M = min {A,O}, A = |{bs ∈ Bj : 1 ≤ s ≤ |Bi| and bs = xrs}| as the num-

ber of locations with all of their servers busy in state j and Ωm
lk

⋂
Ωm

′

l′k′
stands for

the sum of the demand of the regions in the intersection; Dm
lk

⋂
Dm

′

l′k′
with the same

indices.

Equation 3.16 declares that in the transition from state i to j, an available ambulance

in the location indexed k will respond to the demand call if the call is originated from

D1
kk or; if it is from sub area Dm

lk and from first to (m − 1)th nearest ambulances are

busy.

Example

For states Bi = (2, 1, 0, 3, 2, 0), Bj = (2, 1, 1, 3, 2, 0), assume that the number of am-

bulances to be located isN = 11, the solution at hand is x̄ = (2, 1, 2, 3, 2, 1, 0, 0, 0, 0),

R = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and O = 4. Then, we have li = {1, 2, 4, 5 : bli = xli}
to be used in Equation 3.16 , k = 3 and M = 4. Accordingly, λij is calculated as

follows;

λij = τ1 + τ2 + τ3 + τ4 (3.17)

where

τ1 = Ω1
33

(3.18)

τ2 = Ω2
13 + Ω2

23 + Ω2
43 + Ω2

53
(3.19)
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τ3 = Ω3
13

⋂
Ω2

12 + Ω3
13

⋂
Ω2

14 + Ω3
13

⋂
Ω2

15

+Ω3
23

⋂
Ω2

21 + Ω3
23

⋂
Ω2

24 + Ω3
23

⋂
Ω2

25

+Ω3
43

⋂
Ω2

41 + Ω3
43

⋂
Ω2

42 + Ω3
43

⋂
Ω2

45

+Ω3
53

⋂
Ω2

51 + Ω3
53

⋂
Ω2

52 + Ω3
53

⋂
Ω2

54

(3.20)

τ4 = +Ω4
13

⋂
Ω3

12

⋂
Ω2

14 + Ω4
13

⋂
Ω3

12

⋂
Ω2

15

+Ω4
13

⋂
Ω3

14

⋂
Ω2

12 + Ω4
13

⋂
Ω3

14

⋂
Ω2

15

+Ω4
13

⋂
Ω3

15

⋂
Ω2

12 + Ω4
13

⋂
Ω3

15

⋂
Ω2

14

+Ω4
23

⋂
Ω3

21

⋂
Ω2

24 + Ω4
23

⋂
Ω3

21

⋂
Ω2

25

+Ω4
23

⋂
Ω3

24

⋂
Ω2

21 + Ω4
23

⋂
Ω3

24

⋂
Ω2

25

+Ω4
23

⋂
Ω3

25

⋂
Ω2

21 + Ω4
23

⋂
Ω3

25

⋂
Ω2

24

+Ω4
43

⋂
Ω3

41

⋂
Ω2

42 + Ω4
43

⋂
Ω3

41

⋂
Ω2

45

+Ω4
43

⋂
Ω3

42

⋂
Ω2

41 + Ω4
43

⋂
Ω3

42

⋂
Ω2

45

+Ω4
43

⋂
Ω3

45

⋂
Ω2

41 + Ω4
43

⋂
Ω3

45

⋂
Ω2

42

+Ω4
53

⋂
Ω3

51

⋂
Ω2

52 + Ω4
53

⋂
Ω3

51

⋂
Ω2

54

+Ω4
53

⋂
Ω3

52

⋂
Ω2

51 + Ω4
53

⋂
Ω3

52

⋂
Ω2

54

+Ω4
53

⋂
Ω3

54

⋂
Ω2

51 + Ω4
53

⋂
Ω3

54

⋂
Ω2

52

(3.21)

τ2 is the term representing the explicit form of the summation in the second term of

λij in Equation 3.16, τ3 for the third summation with m = 3 and τ4 with m = 4.

Notice that τ1 only includes demand coming from the regions where 3rd server is

nearest server, τ2 from regions where 3rd is the second nearest server and 1st is the

nearest, 3rd is the second nearest and 2nd is the nearest, 3rd is the second nearest and

4th is the nearest, and finally 3rd is the second nearest and 5th is the nearest.

Downward transition rate is calculated regarding the upward rate λij . In the formu-

lation of upward rate, sub areas in which a demand call could result in the transition

from state i to j are taken into account. Then, in the downward rate, these sub areas

should be included into the formulation of µij since we need to work with the service

rates of these sub areas. Four different downward transition rate formulations are
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proposed.

Alternative I

Notation added for Alternative I is given in Table 3.7.

Table 3.7: Notation added for Alternative I
Parameters
Ωp pth term of Equation 3.17 in explicit form
Φp Sum of service rates of the regions in the sub area corresponding to

the pth term of Equation 3.17 in explicit form
P Set of order of terms in Equation 3.17 in explicit form

With respect to the notation given, µij is calculated as follows for downward transition

from state j to i

µij =
λij∑P
p=1

Ωp

Φp

(3.22)

For the example of which λij is given in Equation 3.17, term Ωp

Φp
of Equation 3.22

is; Ω1
33∑

m∈L1
33

(φm)
for p = 1, Ω2

13∑
m∈L2

13
(φm)

for p = 2 and Ω3
13

⋂
Ω2

12∑
m∈L3

13
⋂

L2
12

(φm)
for p = 6 and

likewise for p ∈ P .

The denominator of the Equation 3.22 occurs as the traffic intensity of the system

consisting of location indexed with k in state definition and sub areas in Equation

3.17. It should also be stated that denominator forms as the sum of the traffic intensity

of the sub areas; similar to the previous definition as systems consisting of individual

terms of Equation 3.17 and location indexed with k in state definition.

In this alternative, service rates for of the regions are directly used in the calculations

without considering the travel time to the demand region and after completing the

service for the demand, travel time for going back to the server location. This results

in a higher downward transition rate. This alternative result in a higher rate as demand

call is served by many ambulances simultaneously due to the summation of service

rates in the term of the denominator.
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Alternative II

In the first formulation of µij given in Equation 3.22, service rates are used directly

without any consideration of travel time to the demand region. If there is no ambu-

lance located in the region, it is obvious that service rate for transition occurring from

serving this region from another ambulance location would be different from serving

with an ambulance from inside the region. Therefore, it is considered to be mean-

ingful processing service rates with respect to the location of the ambulance that will

serve the demand call for that transition. Differently from the first formulation, traffic

intensity is not used. Service rates of the regions in set Lij are recalculated regard-

ing the location of ambulance serving in that transition and summed to calculate the

downward transition rate. The notation for formulation is delivered in Table 3.8

Table 3.8: Notation added for Alternative II
Sets
Lij set of regions included in the sub areas resulting of transition from

state i to j
Parameters
φ
′
qr Service rate per hour for demand region q ∈ Q when it is served

from ambulance location r ∈ R

For transition from Bi(b1, ..., 0k, ..., b|Bi|−1, b|Bi|) to Bj(b1, ..., 1k, ..., b|Bi|−1, b|Bi|), we

have λij as in Equation 3.17 and Lij as the set of regions in the corresponding sub

areas for transition from state i to j. The location of ambulance serving the call is

the location corresponding to the kth entry of the state space Bi. Then rk ∈ R is the

corresponding ambulance location for kth entry in the state space representation as

defined in Table 3.2 Then, for this transition, service rates (φ′lrk) of regions that could

be served in this transition can be calculated as in Equation 3.23.

φ
′

lrk
=

60
60
φlrk

+ 2 ∗ tlrk
, ∀l ∈ Lij (3.23)

where φlrk is defined as per hour and tlrk is given in minutes.
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Followingly, µij can be written as;

µij =
∑
l∈Lij

φ
′

lrk
(3.24)

Alternative III

This alternative is constructed upon Alternative II. Apart from considering travel time

to demand region, frequency of demand generated from regions in set Lij is also

considered.

For a transition, it is obvious that only one ambulance will serve only one of the

regions in set Lij . Summing up service rates of the regions (as traffic intensities of

the sub areas in Alternative I) is considered resulting in a downward transition rate

such that |Lij| (P in Alternative I) number of ambulances are serving simultaneously

in this transition which multiplies the real service rate.

Based on this consideration, downward transition rate is formulated as the weighted

average recalculated service rates (φ′lrk) of the regions with respect to demand fre-

quencies of these regions in Alternative II.

µij =
∑
l∈Lij

(
fl∑

m∈Lij
fm

)
∗ φ′lrk (3.25)

Alternative IV

This alternative is based upon the first formulation 3.22. Traffic intensity approach is

used. Differently, processed service rates and frequencies are included. Demand fre-

quencies is calculated for every term of the Equation 3.17 regarding the total demand

of the sub area corresponding to each term.

24



Table 3.9: Notation added for Alternative IV
Sets
Lijp Set of regions included in the sub area corresponding pth term of

Equation 3.17 in explicit form, resulting from transition from state i
to j, p ∈ P

Parameters
Fp Weighted demand frequency of the sub area corresponding to pth

term of Equation 3.17 in explicit form, p ∈ P
Φ
′
p Sum of recalculated service rates (φ′

ln
′
k

) of the regions in the sub area
corresponding to the pth term of Equation 3.17 in explicit form

Regarding the notation, Fp is calculated from Equation 3.26.

Fp =

∑
k∈Lijp

fk∑
p∈P

∑
k∈Lijp

fk
(3.26)

Frequencies defined for terms of Equation 3.17, Fp , are used inversely proportional to

traffic intensities of the corresponding terms. Accordingly, Alternative IV for down-

ward transition rate is formulated as the following;

µij =
λij∑P

p=1
Ωp

Φ′p∗Fp

(3.27)
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CHAPTER 4

SOLUTION APPROACH

In this chapter, solution approach for the model given in Chapter 3 is delivered. In

Section 4.1, algorithm is described and pseudo code for the algorithm is delivered.

4.1 Genetic Algorithm

The model developed includes terms for which no closed form expression exists.

Therefore, a genetic algorithm (GA) is constructed to solve the problem.

Genetic algorithm uses chromosome structure to encode different solutions and com-

pares their fitness function values, i.e objective function values. It is designed to

generate a population of initial solutions and evolve toward better ones in terms of

the fitness function value. Evolution is realized through reproduction of the popula-

tion using two main genetic operators; crossover and mutation operator which create

next generation for the algorithm.

Table 4.1: Notation used for Genetic Algorithm
Parameters
SPop Size of the population and the mating pool
fiti Fitness value of individual i of the population
Ps(i) Probability of selection of individual i
Pc Probability of crossover
cp Crossover point
Pm Probability of mutation

A solution to the model is simply stating the number of ambulances located in given
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locations. In the chromosome structure, a solution is represented by an N-dimensional

array. Each entry of this array is called as gene of the chromosome and shows the

location of an ambulance in the solution. Since the model allows multiple ambulances

in one location, genes with same locations show up in chromosomes. The number

of genes with the same location indicates the number of ambulances located in that

location.

For an instance where N = 11, the solution at hand x̄ = (2, 1, 2, 3, 2, 1, 0, 0, 0, 0) and

I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, chromosome is encoded as 〈1|1|2|3|3|4|4|4|5|5|6〉.
Each chromosome is called an individual.

Fitness value of an individual is simply the objective function value. Equation 3.1 is

used to calculate the objective function value and is recorded as the fitness value of

the chromosome.

A multiple number of SPop many random individuals are generated to form the initial

population. Each individual should represent a feasible solution for the model to be

solved. For this reason, the coverage values for these solutions are calculated and the

infeasible individuals are discarded. Then, best SPop feasible individuals with respect

to coverage values are selected as the initial population. If the number of individuals

is less than SPop, then feasible ones are chosen randomly with equal probabilities

and multiplied to generate SPop individuals for the initial population. This procedure

guarantees working with feasible solutions for the model.

In reproduction process, predefined number of individuals, SPop, are copied to a mat-

ing pool to reproduce the next generation population. Selection of the individuals is

based on their fitness value. A larger probability is assigned to an individual with

smaller fitness value.

The probability of selection for each individual is given by:

Ps(i) =

1
fiti∑SPop

j=1
1
fitj

(4.1)

After constructing the mating pool with individuals from the population, parents are

selected in pairs for reproduction. This selection is random with equal probabilities
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for all individuals in the mating pool.

Crossover operator is used to transfer genes from parents to children. Crossover op-

eration is applied to selected pairs of individuals (as parents) with a predefined prob-

ability Pc. If the probability fails, crossover operation is not applied, the parents are

duplicated, i.e, resulting children are the same with the parents. If crossover would

be applied, one point crossover is used. A crossover point, cp, is selected randomly

between 1 and N . First cp genes of parent 1 is copied to child 1, and of parent 2 to

child 2. Genes after crossover point, cp, are copied from parent 1 to child 2 and from

parent 2 to child 1.

As an example consider Parent 1, Parent 2 which are given below and cp = 5. Child

1 and Child 2 are reproduced with crossover as follows;

Parent 1 Parent 2

〈1|1|2|3|3|4|4|4|5|5|6〉 〈1|2|3|3|3|4|6|6|7|7|10〉

Child 1 Child 2

〈1|1|2|3|3|4|6|6|7|7|10〉 〈1|2|3|3|3|4|4|4|5|5|6〉

After reproducing children from crossover operation, every gene of a child is mutated

to diversify the solutions in the population and better search the solution space by

not restricting the search to solutions only with genes represented in a generation.

Mutation is realized with probability Pm for every gene in a child. If probability

succeeds, the gene of the child is overridden by a random location from set I with

equal probabilities.

After crossover and mutation operations, 2 ∗ SPop individuals exist in the mating

pool including the children. Infeasible individuals in terms of coverage are discarded.

Next generation is constructed from the best SPop feasible individuals in terms of the

fitness function value from the mating pool. If the number of feasible individuals

in the mating pool is less than SPop, feasible ones are chosen randomly with equal

probabilities and multiplied to have SPop individuals in the next generation.

When the next generation produced from a population of individuals consists of a
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single chromosome represented SPop times, it is stated that the population converges.

This individual is taken as the best solution suggested by genetic algorithm and iter-

ation is terminated.

The pseudo code of the GA is given in Algorithm 4.1.
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Algorithm 4.1: Pseudo Code

1: RP =
{
rp1, ..., rpSPop∗15

}
:Generate RP with SPop ∗ 15 solutions

2: Pop =
{
p1, ..., pSPop

}
: INITIAL POPULATION (rp1, ..., rpSPop∗15)

3: repeat

4: for i = 1 to Spop do

5: p = rand(0, 1)

6: mi = pi where
∑i−1

j=1 Ps(j) ≤ p ≤
∑i

j=1 Ps(j) and MatPool =

{m1, ...,mi} :

7: end for

8: for i = 1 to Spop/2 do

9: Generate i = rand(1,mSPop
) and j = rand(1,mSPop

)

10: Parent1 := mi and Parent2 := mj

11: p=rand(0, 1)

12: if p ≤ Pc then

13: Child1 := CROSSOVER(Parent1, Parent2)

14: Child2 := CROSSOVER(Parent1, Parent2)

15: else

16: Child1 := Parent1

17: Child2 := Parent2

18: end if

19: for j = 1 to 2 do

20: p = rand(0, 1)

21: if p ≤ Pm then

22: Childj := MUTATION(Childj)

23: end if

24: end for

25: Pop = NEXT GEN (Parent1, ..., ParentSPop
, Child1, ..., ChildSPop

)

26: end for

27: until Termination condition is satisfied

28: return The best individual
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CHAPTER 5

COMPUTATIONAL STUDY

In this chapter, computational study is provided. Problem instance generation is ex-

plained in Section 5.1. Discrete event simulation study to achieve the exact perfor-

mance measures of a solution to the mathematical model in 3.3 is provided in Section

5.2.

Experimental results for generic service rate formulations proposed in Chapter 3 for

the approximate queueing system and effect of order of districting levels is provided

in Section 5.3. Genetic algorithm proposed to solve the problem is tested. Analysis of

parameter setting for the algorithm is reported in Section 5.4. The effect of relaxing

single server restriction for locations on mean system response time is provided in

Section 5.5.

5.1 Problem Instances

For this study, problem instances are generated with different specifications. 6 param-

eters are considered significant to the problem environment. They are given in Table

5.1 with different levels to be used in this study.
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Table 5.1: Notation used for Problem Instance Parameters
Parameters Levels
DoD Distribution of demand regions over the area uniform

circular
NoD Number of demand regions -
RoL Ratio of number of possible ambulance locations to

number of demand regions
0.3
0.4

RoA Ratio of number of ambulances to be located to
number of demand regions

0.2
0.3

VoD Variance of demand low
high

TI Traffic intensity low
medium
high

In uniform DoD, demand regions are uniformly distributed over the area as given in

Figure 5.1

Figure 5.1: Uniform DoD with 50 demand regions

In circular DoD, 40 percent of the regions is placed in a inner circle, 30 percent in the

middle and rest in the outer circle as can be seen in Figure 5.2

Figure 5.2: Circular DoD with 50 demand regions
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Demand of the regions is generated from uniform distribution with mean equal to 4

and, variance equal to 0.33 for low VoD and to 3 for high VoD levels. Service rates

for these regions is assumed equal. Total demand is divided into traffic intensity. This

division is again divided to the number of regions and is written as the service rate for

all regions.

For all the problem instances, minimum required coverage, α, is taken as 0.90 and

travel time threshold, T , as 10 minutes.

5.2 Discrete Event Simulation

To be able to compare the results of different models, it is necessary to observe the

objective function value of the exact system for the solution delivered by these mod-

els. To observe the behavior of the underlying exact queueing system, a simulation

model is constructed and coded in Matlab environment to simulate the exact queueing

system.

In the simulation model, environment is as defined in 3.1. Demand call arrives to the

system and it is served from the nearest available server. If there is no available server,

demand is considered lost. Service time for a call from region q and a responding am-

bulance from location r is assumed the sum of three exponentially distributed random

variables as service time for this region (νq), travel time from ambulance location to

region (trq) and travel time from region to ambulance location back (trq). Simulation

is ended when steady state is reached. Steady state is searched for the objective func-

tion value in Equation 3.1 which is calculated from the performance measures at the

end of each iteration of the simulation.

Confidence interval (CI) for assessing steady state behavior of objective function

value is constructed with a number of consecutive, non-overlapping batches taken

from a single run after a warm-up period by referring the study of Steiger et al [4].

These bathes are treated as independent runs and used to construct a confidence in-

terval.

In our study, steady state is assumed achieved by comparing mean of first batch
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against CI constructed. If the mean of first batch falls in CI, the system is assumed

to be at steady state. Mean of CI is reported as the objective function value of the

solution. If it is not in the interval, simulation is continued for another one-batch-

long-many demand calls. New CI is constructed in a rolling horizon by discarding

the first batch and adding the period of last one-batch-long-many demand calls as the

new batch to end. Again, mean of new first (old second) batch is checked against CI.

Simulation continues till having the first batch in CI constructed recently . Pseudo

code of the procedure to construct a CI for the objective function value under the

given solution using the simulation model is given in Algorithm 5.1. This procedure

is defined to be sure that we are over warm up period and there is no trend in the

performance measures over iterations.

In the experiments, warm up period is determined as 30000 demand calls. Number of

batches to be collected is set to 10 with 5000 demand calls in each of them.

Algorithm 5.1: Pseudo Code

1: Warm up : 30000 demand calls processed

2: Initialization : 50000 demand calls processed

3: Construct CI : 10 recent consecutive batches with 5000 demand calls

4: Check; if Mean of first batch ∈ CI, go to Step 7. Otherwise, go to Step 5.

5: Iteration : 5000 more demand calls processed

6: Construct new CI : 10 recent consecutive batches with 5000 demand calls. Go to

Step 4.

7: Take mean of CI as objective function value of the solution simulated and stop

5.3 Comparison of Alternative Downward Transition Rate Formulations and

Levels of Order of Districting Combinations

In this part of the study, approximations in the SQM is questioned for different net-

works. For different levels of order of districting, errors in the objective function

value calculated from performance measures of the simulated exact queueing system
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is found. We aim to show order of districting decision is sensitive to network spe-

cific parameters in general networks. Alternative transition rate formulations are also

tested in this part with order of districting decision.

Complete enumeration of solutions to the problem instances is made to find the op-

timal solution. Thereby, problem sizes are kept small due to computational time

required to solve the problems with complete enumeration. Instances are generated

as follows:

Number of demand region is set to 10. All of demand regions are taken as can-

didate ambulance locations. Number of ambulances located is changed from 1 to

7. As stated in Chapter 3, it is observed that increasing number of ambulances in-

creases state space of the approximate queueing system exponentially and becomes

intractable to solve. In an instance with uniform DoD and RoA 0.8, it takes more

than 20 hours in real time on a computer with Intel Core i7 processor and 16 GB

of RAM to make complete enumeration for 12 combinations of alternative rate for-

mulation and order of districting levels. Concerning this outcome, a maximum of 7

ambulances are located in this study.

84 problem setting are generated with the combination of 6 parameters in the setting

in Table 5.2. For every problem setting, 5 instances are generated. A total of 420

problem instances are solved for this part of the study.

Table 5.2: Levels of parameters for problem instances
Parameters DoD NoD RoL RoA VoD TI
Levels Uniform 10 1.0 0.1 0.33 0.4

Circular 0.2 3 0.6
0.3 0.8
0.4
0.5
0.6
0.7

Order of districting levels are determined as 3,4 and 5. Every problem instance is

solved for every combination of order of districting level and alternative rate for-

mulation delivered in 3.3.3. In this part, optimal solution to the problem instances

are found with complete enumeration. After finding the approximate evaluation of
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the optimal solution, this solution is simulated to observe the performance measures

of the exact queueing system. Exact evaluation of the objective function value of

the optimum solution is calculated from the results of the simulation. Two objec-

tive function values, one from mathematical model and other from simulation model,

is compared to find the effect of changing levels of order of districting and alterna-

tive rate formulations on approximation to the objective function value of the exact

queueing system.

Mean absolute percent error (MAPE) of objective function value given by mathe-

matical model for each combination of order of districting level and alternative rate

formulations is calculated and reported across different parameters.

Table 5.3: MAPE across DoD
Alternative Order of Districting Level Uniformly Circularly
I 3 0.35 0.24

4 0.34 0.23
5 0.34 0.23

II 3 0.39 0.32
4 0.38 0.31
5 0.38 0.31

III 3 0.13 0.08
4 0.10 0.06
5 0.10 0.05

IV 3 0.13 0.12
4 0.13 0.12
5 0.13 0.12

In Table 5.3, it is seen that downward transition rate formulation is more significant

for the quality of approximation than order of districting. If the rate formulation is

poorly performing, changing levels of order of districting cannot improve approxima-

tion quality. Among alternatives, Alternative III is performing best in circular DoD.

Alternative III and IV perform equally better than others in uniform DoD. This can

be concluded as follows: Alternative IV works with traffic intensities of subareas

weighted according to the total demand of the subareas. When demand regions are

dispersed (uniform DoD), this approach gets closer to working with weighted aver-

ages of service rates of individual demand regions in that transition (Alternative III).

Quality of approximation with Alternative III is better in systems with circular DoD
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than the ones with uniform DoD for all levels of order of districting. Other alter-

natives performs slightly better in circular DoD but not as significant as Alternative

III. This is considered to result from problem instances with no feasible solutions for

smaller RoA levels, with Uniform DoD. So, instances with RoA levels 0.1 and 0.2

is excluded from the analysis. It is seen that for Alternative II and IV difference in

quality across DoD vanish while Alternative I and III are still better in Circular DoD.

MAPE results without RoA 0.1 and 0.2 is given in Appendix A, Table A.1

For Alternative III, we see that increasing order of districting tends to increase quality

of approximation by decreasing MAPE.

Every problem instance is solved for 12 different alternative formulation and order of

districting level. We want to show that better performing combinations would con-

sequently find better performing solutions among other combinations. To show this,

fraction of time that an order of districting and rate formulation combination finds

a solution giving the minimum (out of 12 results with different combinations) mean

response time reported by simulation model for a problem instance is given in Ta-

ble 5.4. In this performance measure, while comparing combinations, mean response

time reported using simulation model is used. Objective function value calculated

from approximate queueing system with different combinations are considered in-

comparable since objective function values for a given location solution calculated

with different combinations can be different from each other.

Table 5.4: Fraction of Time Minimum Found across DoD
Alternative Order of Districting Level Uniformly Circularly
I 3 0.28 0.23

4 0.32 0.22
5 0.34 0.22

II 3 0.21 0.21
4 0.20 0.21
5 0.20 0.21

III 3 0.36 0.61
4 0.45 0.66
5 0.52 0.66

IV 3 0.36 0.34
4 0.46 0.33
5 0.49 0.33
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Experimental results in Table 5.4 is used to confirm that approximating the objective

function value better increases the possibility of finding a better performing solution

for the problem. It is seen that Alternative III is also better in finding the better per-

forming solution among other alternatives in circular DoD and equal with Alternative

IV in uniform DoD.

In Table 5.5, MAPE for different levels of RoA is given for combinations of order

of districting and alternative formulations. In Table 5.6 , fraction of time minimum

found with combinations is reported for levels of RoA.

Table 5.5: MAPE across RoA
Alternative Order of Districting

Level
0.1 0.2 0.3 0.4 0.5 0.6 0.7

I 3 0.01 0.16 0.22 0.29 0.34 0.41 0.47
4 0.01 0.16 0.22 0.29 0.34 0.38 0.42
5 0.01 0.16 0.22 0.29 0.34 0.38 0.42

II 3 0.01 0.10 0.22 0.33 0.44 0.53 0.60
4 0.01 0.10 0.22 0.34 0.43 0.52 0.59
5 0.01 0.10 0.22 0.34 0.43 0.51 0.58

III 3 0.01 0.03 0.05 0.04 0.08 0.17 0.27
4 0.01 0.03 0.05 0.07 0.06 0.10 0.18
5 0.01 0.03 0.05 0.07 0.09 0.08 0.13

IV 3 0.01 0.10 0.11 0.11 0.15 0.15 0.19
4 0.01 0.10 0.11 0.13 0.15 0.14 0.17
5 0.01 0.10 0.11 0.13 0.16 0.14 0.17

MAPE values under Alternative III are often better than MAPE under other alterna-

tive formulations. MAPE values for RoA 0.1 are ignorable. For RoA 0.1, resulting

approximate system is actually the exact queueing system. So, for every combina-

tion formulation, dispatch fraction of this one ambulance (ρrnq) to demand regions

are simply equal to the fraction of demand (fq) generated from these regions, result-

ing from the Equation 3.7. So, the MAPE values calculated for this RoA level result

from the slight difference between objective function value of the model with the ap-

proximate queueing system and objective function value of simulation model, due to

steady-state analysis of simulation. For other levels of RoA Alternative III always

performs better. Increasing level of order of districting does not affect the quality in

Alternative I, II and IV as much as in Alternative III. This result is also supported by
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the MAPE values in Table 5.3.

Table 5.6: Fraction of Time Minimum Found across RoA
Alternative Order of Districting

Level
0.1 0.2 0.3 0.4 0.5 0.6 0.7

I 3 1.00 0.37 0.36 0.26 0.12 0.08 0.02
4 1.00 0.37 0.36 0.28 0.13 0.07 0.07
5 1.00 0.37 0.36 0.28 0.13 0.08 0.12

II 3 1.00 0.47 0.30 0.21 0.02 0.00 0.00
4 1.00 0.47 0.30 0.16 0.02 0.00 0.00
5 1.00 0.47 0.30 0.16 0.02 0.00 0.00

III 3 1.00 0.89 0.80 0.62 0.37 0.20 0.10
4 1.00 0.89 0.80 0.48 0.60 0.43 0.17
5 1.00 0.89 0.80 0.62 0.37 0.55 0.45

IV 3 1.00 0.47 0.56 0.21 0.27 0.20 0.17
4 1.00 0.47 0.56 0.22 0.30 0.10 0.38
5 1.00 0.47 0.56 0.22 0.32 0.18 0.55

Results in Table 5.6 support the observations for combinations from MAPE values.

Alternative III and order of districting level 5 finds the minimum solution out of 12

combinations with a higher fraction than the others in most of the instances. For

instances with higher number of ambulances on the other hand, Alternative IV and

order of districting level 5 seems performing better. But, the MAPE values for this

combinations is not better than Alternative III and order of districting level 5. So it

is concluded that Alternative III and order of districting level 5 would be better in

finding better performing solution in the long run.

It should be stated that quality of approximations for all combinations decreases with

increasing number of ambulances.

In Table 5.7, MAPE values are reported for combinations and different levels of vari-

ance (VoD) in demand across regions. Percent of time finding the minimum response

time among combinations is reported in Table 5.8.
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Table 5.7: MAPE across VoD
Alternative Order of Districting Level Low High
I 3 0.30 0.29

4 0.28 0.28
5 0.28 0.28

II 3 0.34 0.35
4 0.34 0.35
5 0.34 0.35

III 3 0.10 0.10
4 0.08 0.08
5 0.07 0.07

IV 3 0.13 0.12
4 0.13 0.12
5 0.13 0.12

Table 5.8: Fraction of Time Minimum Found across VoD
Alternative Order of Districting Level Low High
I 3 0.24 0.26

4 0.25 0.27
5 0.26 0.29

II 3 0.23 0.19
4 0.22 0.19
5 0.22 0.19

III 3 0.53 0.47
4 0.58 0.56
5 0.64 0.55

IV 3 0.34 0.36
4 0.38 0.38
5 0.39 0.39

Alternative III again performs better than other alternatives for both levels of VoD.

Increasing order of districting level does not change the quality of Alternative I,II and

IV but of Alternative III , same as stated previously for other network parameters.

Results in Table 5.8 also shows Alternative III is better in finding better performing

solutions.

In Table 5.9 and Table 5.10, MAPE results and fraction of finding the solution with

minimum mean response time for combinations is given across 3 different traffic

intensity levels.
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Table 5.9: MAPE across TI
Alternative Order of Districting Level Low Medium High
I 3 0.39 0.29 0.20

4 0.39 0.27 0.19
5 0.39 0.27 0.19

II 3 0.42 0.35 0.28
4 0.42 0.34 0.28
5 0.41 0.34 0.27

III 3 0.15 0.09 0.06
4 0.12 0.07 0.04
5 0.11 0.06 0.03

IV 3 0.18 0.12 0.07
4 0.18 0.12 0.08
5 0.18 0.13 0.08

Table 5.10: Fraction of Time Minimum Found across TI
Alternative Order of Districting Level Low Medium High
I 3 0.26 0.24 0.26

4 0.22 0.25 0.31
5 0.22 0.27 0.33

II 3 0.21 0.20 0.23
4 0.20 0.19 0.22
5 0.20 0.19 0.22

III 3 0.49 0.53 0.50
4 0.56 0.56 0.59
5 0.54 0.59 0.67

IV 3 0.38 0.33 0.35
4 0.38 0.34 0.41
5 0.40 0.34 0.43

Results in Table 5.9 and Table 5.10 shows that Alternative III with different order of

districting levels performs better than any other combination. Quality of approxima-

tion increases with increasing level of traffic intensity.

Overall MAPE for alternative formulation and order of districting level combinations

is reported in Table 5.11.
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Table 5.11: Overall MAPE
Alternative Order of Districting Level Overall
I 3 0.29

4 0.28
5 0.28

II 3 0.35
4 0.34
5 0.34

III 3 0.10
4 0.08
5 0.07

IV 3 0.13
4 0.12
5 0.13

Regarding Table 5.11, and analysis of performance in the level of network parameters,

Alternative III is seen as the best performing rate calculation formulation. It is seen

that generating a transition rate formulation is not trivia. Best alternative at hand still

tends to worsen by increasing the number of ambulances to be located and requires

further study to find out whether it is resulting from rate formulation, from sub-area

structure or from calculation of fractions of dispatches (ρrnq).

Order of districting level is found significant for the quality of approximation to the

exact queueing system. Increasing order of districting levels increases the quality of

approximation in meaningful rate formulations.

In the rest of the study, rate formulation Alternative III and order of districting level

5 are considered to be used.

5.4 Design of Experiment for Genetic Algorithm

In this section, we set up a design of experiment for the genetic algorithm presented

in Chapter 4 to see the effect of different algorithm parameters on finding the opti-

mal solution to the problem. These parameters are determined as initial population

size (Spop), probability of crossover(Pc) and probability of mutation (Pm). For each

parameter, two levels are defined as in Table
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Table 5.12: DOE Setup
Parameter Spop Pc Pm
Levels 50 0.80 0.05

100 0.90 0.10

Problem instances which are solved with complete enumeration in Section 5.3 are

used. To have problem instances with higher number of feasible solutions, problem

settings with RoA 0.5, 0.6 and 0.7 are selected. From resulting 36 different problem

settings, only one instance is selected, meaning 36 different problem instances are

solved using GA. Each problem instance is solved by starting GA five times. Percent

of time that GA finds the optimal solution for a problem instance is calculated using

the result of these five independent runs. This measure is reported across different

network parameters in Table 5.13

Table 5.13: Fraction of Time Optimum Found with GA
Spop Pc Pm DoD RoA VoD TI

Uni Circ 0.5 0.6 0.7 0.33 3 0.4 0.6 0.8
50 0.80 0.05 0.63 0.70 0.63 0.80 0.57 0.71 0.62 0.62 0.70 0.68

0.10 0.79 0.87 0.80 0.88 0.80 0.80 0.86 0.83 0.82 0.83
0.90 0.05 0.66 0.80 0.67 0.85 0.67 0.70 0.76 0.70 0.72 0.77

0.10 0.81 0.86 0.83 0.87 0.80 0.84 0.82 0.82 0.87 0.82
100 0.80 0.05 0.92 0.93 0.87 0.98 0.93 0.96 0.90 0.97 0.97 0.85

0.10 0.97 0.92 0.92 0.95 0.97 0.94 0.94 0.97 0.98 0.88
0.90 0.05 0.96 0.91 0.90 0.98 0.92 0.97 0.90 0.98 0.93 0.88

0.10 0.93 0.90 0.92 0.95 0.88 0.92 0.91 0.97 0.90 0.88

To show the overall performance, fraction of time (OF) that GA found optimum solu-

tion in all problem instances, fraction of time (BF) that GA found a solution perform-

ing better than the optimum solution (regarding simulation mean with CI), average

percent of the difference (AW) between optimum solution and worser solutions in

the five runs, maximum percent of the difference (MW) between optimum solution

and worst solution in the five runs, maximum percent of the difference (MB) between

optimum solution and the solution better than optimal solution in the five runs is re-

ported in Table 5.14.

In the fitness value calculations of GA, mathematical model including approximate

queueing system is used. This is the reason why GA could converge to better perform-
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ing solution than the optimal solution given by complete enumeration of mathematical

model.

Table 5.14: Overall Performance
Spop Pc Pm OF BF AW(%) MW(%) MB(%)
50 0.80 0.05 0.67 0.11 1.7 4.3 4.4

0.10 0.83 0.05 1.4 3.7 4.4
0.90 0.05 0.73 0.07 1.5 6.4 4.4

0.10 0.83 0.05 1.8 6.1 4.4
100 0.80 0.05 0.93 0.01 1.2 2.9 4.2

0.10 0.94 0.01 0.4 0.8 0.4
0.90 0.05 0.93 0.02 1.9 5.3 3.5

0.10 0.92 0.03 1.0 1.6 4.2

From the results in Table 5.14, it is seen that GA finds optimal or a better performing

solution (OF + BF) more likely with (Spop = 100, Pc = 0.80 , Pm = 0.10), (Spop =

100, Pc = 0.90 , Pm = 0.05) and (Spop = 100, Pc = 0.90 , Pm = 0.10). In addition to

likelihood of finding optimal or better solutions, AW and MW values are considered.

It is seen that these values are smaller for Spop = 100, Pc = 0.80 , Pm = 0.10. We

also consider fractions in Table 5.13 by checking the minimum fraction among levels

of a network variable. For Spop = 100, Pc = 0.80 , Pm = 0.10, minimum for DoD,

RoA, VoD and TI occurs as 0.92, 0.92, 0.94 and 0.88 respectively. This values are

equal to or better than the minimums with Spop = 100, Pc = 0.90 , Pm = 0.05 or

Spop = 100, Pc = 0.90 , Pm = 0.10.

Hence, parameters are set as Spop = 100, Pc = 0.80 , Pm = 0.10 for the GA.

5.5 Comparison of Single and Multi Server Model

In this section, effect of allowing more than one ambulance at a single location is

explored. Mathematical model given in Chapter 3 is model as allowing multiple

ambulances per each location and referred as Multi Server Model (MSM). For this

part of the study, a Single Server Model (SSM) is constructed by adding the following
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constraint in Equation 5.1 to the model.

xi ∈ {0, 1} ,∀i ∈ I (5.1)

Crossover and mutation operations of GA is changed to be able to reproduce single

server solutions. For crossover operation, an exchange vector for each parent which

showing the genes only exist in the other parent is constructed. One point crossover

is applied to each parent with corresponding exchange vector. This procedure guar-

antees having single server solutions in the mating pool. For mutation operation, a

mutation pool with locations non existent in the current child is constructed. If muta-

tion occurs for a gene, previous location in the gene that is mutated now is added to

the mutation pool, allowing it appears in the next genes of the child by mutation.

Using GA algorithm with the parameters set in Section 5.4, following problem in-

stances are solved.

Number of demand regions (NoD) in the problem instances is determined as 20. 48

different problem settings are constructed with the combination of network parame-

ters levels in Table 5.15. For each setting, 5 problem instances are generated resulting

in 240 problem instances. Each problem instance is solved by restarting GA 5 times

with MSM and 5 times for SSM.

Table 5.15: Levels of Parameters for Problem Instances
Parameters DoD NoD RoL RoA VoD TI
Levels Uniformly 20 0.3 0.2 0.33 0.4

Circularly 0.4 0.3 3 0.6
0.8

Each instance has 5 independent solutions with MSM and 5 with SSM. In 33 instances

out of 240, GA could not find a feasible solution in the random search to start the

iterations. These are instances with uniform DoD and most of them with RoA 0.2,

which makes finding solutions satisfying coverage constraint harder. These problem

instances are discarded.

It is not possible to compare MSM and SSM solutions one by one. Average of mean

response time of solutions are found for MSM results and SSM results of each in-
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stance. Then, the fraction of difference (PD) between them is calculated by taking

SSM average as base. Positive levels of PD implies that mean response time would

be improved if MSM is used to locate ambulances. Mean response time values are

taken from simulation study for this measure. The solution handed by GA is simu-

lated and the mean response time is used in the calculation of PD.

Another performance measure as fraction of time that GA with MSM gives a solution

with multiple ambulances at least in one locations (FQ) is calculated. While PD

shows the amount of improvement obtained from relaxing single server restriction,

FQ gives information about frequency of solutions with multiple ambulances at least

in one location.

These performance measures are reported across network parameters in Table 5.16.

Table 5.16: Comparison of MSM and SSM solutions
DoD ROL RoA VoD TI Over-

all
Levels Uni Circ 0.3 0.4 0.2 0.3 0.33 3 0.4 0.6 0.8
PD 0.03 0.13 0.12 0.06 0.06 0.12 0.09 0.09 0.07 0.10 0.10 0.09
FQ 0.57 0.96 0.83 0.76 0.60 0.97 0.77 0.83 0.76 0.82 0.81 0.80

MSM improves mean response time in Circular DoD more than in Uniform. It also

gives more solutions with multi servers at least in one location in Circular DoD. In

Circular DoD, model locates ambulances to areas with high demand accumulation

in multiple numbers rather than distributing them one by one which increases mean

response time of the system.

Candidate ambulance location number generated from RoL also affects the improve-

ments with MSM. As the number of candidate locations increases, number of feasible

solutions increases. It is seen that FQ decreases with increasing RoL level. But still

MSM gives solutions with smaller mean response time (positive PD) in both levels of

RoL.

Number of ambulances to be dispatched (computed from RoA) is another factor af-

fecting locating multiple ambulances. As RoA increases, both PD and FQ increases.

For different levels of VoD, PD and FQ stay fairly stable. This is because locating

multiple ambulances is more related to high demand around an area than in an indi-
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vidual region. There is still a slight increases in FQ with increasing levels of VoD.

If some demand region generate very significant fraction of demand in the system

(resulting from generating problem instances with higher levels of VoD than 3), then

it will be more likely MSM will locate multiple ambulances in nearest candidate lo-

cation to that region. These type of regions would accumulate enough demand which

would increase FQ.

Different TI levels do not change PD and FQ to much extent. Since service times are

taken equal among regions, changing the traffic intensity does not create significant

difference in PD or FQ.

Overall, allowing multiple ambulances per location outperforms SSM in mean re-

sponse time in general networks. It is also seen that among different network param-

eters with different levels, MSM locates multiple ambulances at least in one location,

in more than 50% of the instances.
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CHAPTER 6

CONCLUSION

In this study, an EMS location problem is studied for locating ambulances. Previ-

ous studies on locating EMS vehicles are reviewed. A mathematical model using

queueing theory from the literature is employed. Approximate queueing model by

Geroliminis et al. [10] is used. This model is analyzed for quality of approximations

in general networks. In the approximate queueing model, generic service rate formu-

lations for state transitions are developed and tested. A relaxation to the model of

Geroliminis et al is proposed and reported for its effect on mean response time of the

system. Discrete event simulation is used to observe the performance measures of ex-

act queueing system which is infeasible to be solved analytically due to exponentially

increasing size of the state space, more rapid than approximate queueing system.

Mathematical model proposed uses queueing theory to calculate the objective func-

tion value, for which no closed form expression exists. A metaheuristic algorithm

(Genetic Algorithm) is proposed to solve the problem. Performance of this algorithm

is questioned and reported.

It is showed that developing a generic formulation for service rates in the approximate

queueing model is not trivial. Four different formulations are proposed. One of the

alternative formulations gives promising results. However, quality of this formulation

is not determined by comparing objective function value from simulation of every

feasible solution to the problem, with objective function value of mathematical model.

Only optimal solutions are compared with their simulation results. This gives us an

initial idea about the performance of the alternatives but it requires further study to

fully understand it.
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Analysis of alternative service rate formulations is made based on the objective func-

tion value. Approximations of dispatch frequencies can also be analyzed against

frequencies in simulation of exact system. This would give us the errors in individ-

ual terms, which are summed with a multiplier (mean travel time) in the objective

function. Steady state probability of having all ambulances busy can also be com-

pared to the one in simulation study. Only the steady state probability of this state

can be comparable since we need again approximation to compare another state of

the approximate system which are represented by multiple number of states in exact

system.

Order of districting decision is found significant to the quality of approximation.

Geroliminis et al [10] uses third order of districting in a planar network but it is

showed that higher order of districting increases the quality in general networks. Yet,

we do not know where quality of approximation becomes insensitive to increasing

order of districting level, from the experimental results with ambulances up to 7. It

is required to solve problem instances with higher number of ambulances than 7 and

higher order of districting. However a weakness of the mathematical model is be-

coming inefficient to solve computationally by increasing number of ambulances as

mentioned in Chapter 5, Section 5.3. As a further study, a partitioning of the problem

into subproblems can be explored by decreasing the state space of the systems that

show up in the subproblems.

Allowing multiple ambulances at a single location has a positive effect on the ob-

jective function value. We know that after relaxing single server restriction, we can

still come up with results which at most one ambulance is located in each location in

the solution. In the computational study, it is also shown that multiple ambulances

at a single location are preferred with significant percentages and improved objective

function value. This implies that it is worth modeling the problem without single

server restriction in general networks, as long as it is not a constraint by the decision

maker.

A weakness of the mathematical model proposed is taking only mean response time

into account. When we work with queueing theory, other performance measures such

as utilization of ambulances or fraction of lost demand is inherited in the problem.
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These performance measures can also be used as objective function values in a single

objective manner, or as constraints to the problem, or as multiple objectives for the

problem. This can be an extension resulting a problem formulation with more solid

ground for EMS systems.
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APPENDIX A

Table A.1: MAPE across DoD without problem instances with RoA 0.1 & 0.2
Alternative Order of Disticting Level Uniformly Circularly
I 3 0.38 0.31

4 0.36 0.30
5 0.36 0.30

II 3 0.42 0.42
4 0.42 0.42
5 0.42 0.42

III 3 0.14 0.11
4 0.11 0.07
5 0.10 0.06

IV 3 0.14 0.15
4 0.13 0.15
5 0.14 0.15
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