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ABSTRACT

A COMPARISON OF SPARSE SIGNAL RECOVERY AND APPROXIMATE
BAYESIAN INFERENCE METHODS FOR SPARSE CHANNEL ESTIMATION

Uçar, Ayla

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Çağatay Candan

September 2015, 76 pages

The concept of sparse representation is one of the central methodologies of modern
signal processing and it has had significant impact on numerous application fields
such as communications and imaging. Sparsity expresses the idea that the infor-
mation rate of a continuous time signal may be much smaller than suggested by its
bandwidth, or that a discrete time signal depends on a number of degrees of free-
dom which is comparably much smaller than its (finite) length. With recent advances
in sparse signal estimation, some new estimation techniques have emerged yielding
more accurate sparse estimates than the traditional methods.

The main goal of this thesis is to analyse the performance of recently proposed sparse
signal estimation methods on the problem of sparse channel estimation. In this the-
sis, a literature survey has been conducted to examine the approaches for estimating
the sparse channels, then greedy pursuit algorithms, convex relaxation and an ap-
proximate Bayesian inference method, namely expectation propagation method, are
comparatively studied.

Keywords: Sparsity, Sparse Channel Estimation, OMP, LASSO, Approximate Bayesian
Inference, System Identification.
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ÖZ

SEYREK (SPARSE) KANAL KESTİRİM ANALİZİ

Uçar, Ayla

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Çağatay Candan

Eylül 2015 , 76 sayfa

’Seyrek’ (sparse) kanal kestirimi sinyal işleme alanının önde gelen araştırma konula-
rından biridir ve haberleşme, biyomedikal görüntüleme gibi pek çok uygulama alanını
ilgilendirmektedir. Zamanda sürekli sinyallerin (continuous time signal) taşıdığı bilgi
oranının önerilen bant genişliğine göre düşük seviyelerde olması veya ayrık zamanlı
sinyallerin (discrete time signal) sıfırdan farklı olan işaret sayısının sinyal uzunluğuna
göre oldukça düşük olması durumu ’seyreklik’ (sparsity) olarak tanımlanmaktadır.
Seyrek kanal kestirimi alanında yapılan güncel çalışmalar sayesinde klasik kestirim
yaklaşımlarına göre daha doğru sonuçlar veren bazı yeni kestirim teknikleri geliştiril-
miştir.

Bu tezin amacı önerilen seyrek sinyal kestirim metodlarının seyrek kanal kestirim
problemi üzerindeki performansını analiz etmektir. Bu tezde, seyrek kanal kestiri-
minde kullanılan yöntemlere ilişkin literatür taraması yapılmış, ardından greedy al-
goritması, konveks relaksiyon ve ’beklenti üretimi’ (expectation propagation) olarak
adlandırılan Bayes kestirim metodunun performansları karşılaştırmalı olarak çalışıl-
mıştır.

Anahtar Kelimeler: Seyreklik, Seyrek Kanal Kestirimi, OMP, LASSO, Bayes Kesti-
rimi, Sistem Tanımlama.
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CHAPTER 1

INTRODUCTION

In conventional systems, the channel estimation is performed with the assistance of
known transmitted training sequences. The receiver utilizes the known training bits
and the corresponding received samples for the estimation of channel impulse re-
sponse. The accuracy of the channel estimation is crucial for the receiver performance
and it depends on the channel estimation algorithms and the environmental condi-
tions, that is the statistics of the channel. There are several approaches for channel
estimation such as the Maximum Likelihood Estimation, Least Squares or Minimum
Mean Square Error Method etc.

Consider a communication system which is corrupted by noise as depicted in Figure
1.1. Source bits denoted by u are transmitted over the channel x and thermal noise,
modelled by additive white Gaussian noise, is added. The received signal y can be
expressed as follows:

y = Ax + w. (1.1)

Here, the channel impulse response vector x is expressed as

x =
[
x0 x1 . . . xL

]T
(1.2)

and w denotes the noise samples. Within each transmission burst, the transmitter
sends a unique training sequence of length P symbols:

u =
[
u0 u1 . . . uP−1

]T
. (1.3)

The Toeplitz training sequence matrix A in (1.1) can be explicitly written as

1



A =



u[0] 0 0 . . . 0

u[1] u[0] 0 . . . 0

...
...

...
...

u[P − 1] u[P − 2] u[P − 3] . . . u[P −N ]

0 u[P − 1] u[P − 2] . . . u[P −N + 1]

...
...

...
...

0 0 . . . u[P − 1] u[P − 2]

0 0 . . . 0 u[P − 1]


. (1.4)

Figure 1.1: Block diagram of a noise-corrupted system

The main concern here is to estimate the channel taps from the received signal y

and transmitted sequence u. In this thesis, we concentrate on the estimation of chan-
nels with sparse impulse responses. The exploitation of sparse channel estimation is
currently an active research field. Some channel measurements show that sparse or
approximate sparse distribution assumption is valid [2], [3].

Figure 1.2: A typical example of sparse channel

Sparse channels are frequently encountered in the communication applications such
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as Ultra Wide Band (UWB) channels [4], underwater acoustic communications [5]
or mobile radio communications [6]. Due to the sparse structure of these channels,
the sparse estimation techniques outperform the conventional least squares estimation
algorithm which results in over parametrization and thus produces poor performance
[7]. There are variety of approaches discussed in the literature for the sparse channel
estimation with linear observation model. Among these, the most popular approaches
are the greedy algorithms and convex optimizers.

Greedy algorithms iteratively add the most significant taps to the estimation and per-
form an update only on these selected taps as shown in Figure 1.3. The commonly
used two greedy algorithms which differ in their update functions are Matching Pur-
suit (MP) [8] [9] and Orthogonal Matching Pursuit (OMP). An important aspect of
the greedy algorithms is to determine when to stop the iteration. The number of iter-
ations can be limited to some number, say k, or another approach such as limiting the
energy of the residual can be considered. In the subsequent chapters, we observe that
limiting the iteration has an important effect on the channel recovery performance.

Figure 1.3: Diagram of a greedy algorithm processing measurements y and produc-
ing sparse channel estimates of x (definition of ’update X’ depends on the chosen
algorithm)

Greedy algorithms are easy to implement, but have no convergence guarantee. The
convex optimizer based on the linear programming resolves the convergence problem
of greedy algorithms. The main advantage of the convex programming method is
its guaranteed convergence and high estimation accuracy. However, this method is
computationally complex and difficult to implement [10].

Bayesian inference is another approach for the solution of sparse channel estimation
problem. It is a statistical inference method in which Bayes’ rule is used to update the
probability of an event. Exact Bayesian inference is not computationally feasible in
many problems. For such problems, there are different types of approximate Bayesian
inference methods such as Expectation Propagation, Importance Sampling, Iterative
Quadrature, Laplace Approximation, Variational Bayes and Markov Chain Monte
Carlo.

In this thesis, OMP and Least Absolute Shrinkage and Selection Operator (LASSO, in
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some areas known as Basis Pursuit Denoising) methods are investigated. In addition,
an efficient approximate Bayesian inference method called expectation propagation
method is examined and the performances of the studied algorithms for the case of
sparse channel recovery are compared.

The outline of the thesis is as follows: In Chapter 2, an overview of the traditional
channel estimation techniques such as minimum variance unbiased estimator, max-
imum likelihood estimator, least squares and minimum mean square error estimator
are provided. In Chapter 3, we present a background information on the basis concept,
measurement matrices, atoms, uniqueness and restricted isometry property. Then, we
describe types of sparse channel recovery methods and provide a brief summary of
these methods. In Chapter 4, the simulation results on the OMP and LASSO meth-
ods are presented and the performance comparison of these methods are provided. In
Chapter 5, an approximate Bayesian inference algorithm, namely expectation propa-
gation, is investigated and the performance comparison of the approximate Bayesian
inference algorithm to the previously studied methods are provided. Finally, in Chap-
ter 6, we summarize the results obtained during our study.
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CHAPTER 2

CHANNEL ESTIMATION

In this chapter we provide theoretical background on the channel estimation problem.
Then, we introduce well known channel estimation techniques such as the minimum
variance unbiased estimation, the maximum likelihood estimation, the least squares
estimation and the minimum mean square error methods.

2.1 Overview of Channel Estimation

In telecommunications, the information-bearing transmitted signal and the distur-
bances introduced by the channel can be modelled statistically. This reflects the fact
that receiver knows only some statistical properties of these signals, rather than the
signals themselves. From these known statistical properties and the observations of
the received signal, the receiver computes an estimate of the transmitted informa-
tion [14].

The channel estimation is accomplished by transmitting a training sequence which
is known by the transmitter-receiver pair. The channel estimation can be repeated in
every transmitted burst. The channel estimator generates an estimate on the chan-
nel impulse response for each burst by exploiting transmitted bits and corresponding
received bits.

Commonly used approaches to estimate parameters from a random sample are the
minimum variance unbiased estimation, maximum likelihood estimation, the least
squares estimation and the minimum mean square error method.

2.1.1 Minimum Variance Unbiased Estimation Method

The estimate x̂ is said to be an unbiased estimate of x if

E{x̂} = x ∀ a < x < b (2.1)

where (a, b) denotes the range of possible values of x.
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The condition of unbiasedness does not necessarily mean that the estimator is "good".
It only guarantees that average of the estimates yields the true value of the unknown
parameter.

Figure 2.1: Biased and Unbiased Estimator

Even though the estimate is unbiased, sizeable errors are likely to occur. Minimizing
the variance of the estimation error has the effect of concentrating the pdf of the
estimation error ε = x̂−x about zero. Therefore, we can say that the second measure
of the quality of the estimate is to have a small error variance.

The Cramer-Rao Lower Bound (CRLB) allows us to determine that for any unbiased
estimator the error variance is greater than or equal to the value indicated by the
bound. The Minimum Variance Unbiased (MVU) estimation method relies on the
concept of the sufficient statistics and closely related with the CRLB. The estimate x̂
is said to be the MVU estimate of x if it has the smallest variance among all unbiased
estimates of x. The variance of the MVU estimator does not always need to be equal
to the CRLB, however if an estimator exists with variance equal to the CRLB, then it
must be the MVU estimator.

For the linear observation model, the MVU estimator is efficient and achieves the
CRLB. Consider the linear model given in (2.2)

y = Ax + w (2.2)

where y ∈ Rm, x ∈ Rn and w ∼ N (0,Cw).

Then, the MVU estimator is given by

x̂MVU = (ATCw
−1A)−1ATCw

−1y (2.3)

and the covariance matrix of x̂MVU is given by

Cx̂MVU
= (ATCw

−1A)−1. (2.4)

6



x̂MVU is a linear transformation of a Gaussian vector y, therefore statistical perfor-
mance of x̂MVU is completely specified, i.e.

x̂MVU ∼ N (x, (ATCw
−1A)−1). (2.5)

If w ∼ N (0, σ2
nI), then the MVU channel estimate in the presence of additive white

Gaussian noise becomes
x̂MVU = (ATA)−1ATy (2.6)

and the covariance matrix of x̂MVU becomes

Cx̂MVU
= σ2

n(ATA)−1. (2.7)

Note that, ATA is a symmetric Toeplitz autocorrelation matrix. In order to achieve
the minimum possible variance of the MVU estimator, A should be chosen such that
ATA becomes a diagonal matrix. Stated differently, under the total energy constraint
of tr(ATA), the tr(ATA)−1 is minimized when ATA is proportional to the diagonal
matrix , i.e., ATA ∝ I [15]. Hence, ATA should be ideally a scaled identity matrix.
It can be noted that entries of ATA is related with the deterministic auto-correlation
of the training sequence. Hence, ideally the training sequence should have impulsive
autocorrelation. If this is the case, x̂MVU becomes a Gaussian vector with diagonal
covariance matrix.

2.1.2 Maximum Likelihood Estimation Method

There may be situations where MVU estimator does not exist, i.e. no unbiased es-
timates may exist or none of the unbiased estimates may have uniformly minimum
variance, or MVU estimator cannot be found even if it exists. For these cases, we
can find an approximately optimal estimator, termed the Maximum Likelihood (ML)
estimator. The ML estimation is a well-defined method and optimal for large data
records.

The ML function indicates how likely the observed sample y is as a function of pos-
sible parameter values x. The ML estimate of x is mathematically defined as

x̂ML = max
x

ln p(y|x). (2.8)

Therefore, maximizing the log likelihood function determines the parameters that are
most likely to produce the observed data.

Consider the linear model given in (2.9)

y = Ax + w (2.9)

where y ∈ Rm, x ∈ Rn and w ∼ N (0,Cw).

7



Under these conditions, p(y|x) is given by

p(y|x) =
1

((2π)m|Cw|)1/2
e−

1
2
(y−Ax)TCw

−1(y−Ax). (2.10)

Hence, for the above mentioned case it is required to minimize the cost function J(x)

where
J(x) = (y −Ax)TCw

−1(y −Ax). (2.11)

Solving for x̂ML produces

x̂ML = (ATCw
−1A)−1ATCw

−1y. (2.12)

The ML estimate is in general asymptotically unbiased and asymptotically achieves
the CRLB, it is therefore asymptotically efficient. Besides this, for the linear obser-
vation model examined here, x̂ has a Gaussian pdf [16] and it is given by

x̂ML ∼ N (x, (ATCw
−1A)−1). (2.13)

It can be noted that ML estimate coincides with MVU estimate. In general, when
a closed form expression cannot be found for the ML estimate, it is possible to use
numerical approaches such as brute-force search, Newton-Raphson or Expectation
Maximization (EM) method by which an approximation to the ML estimate can be
found.

2.1.3 Least Squares Estimation Method

The ML estimation uses the statistical knowledge on noise, that is its covariance Cw

to find a "good" estimator that is asymptotically unbiased and efficient. However, in
the Least Squares (LS) estimation no probabilistic assumptions are made. The only
criterion is to minimize the l2 norm of error. The LS estimation is widely used in
practice, however no claims about optimality can be made in general [16]. The most
important aspect of LS is the data fitting. The best fit in the LS sense minimizes the
l2 norm of error.

Consider the linear model given in (2.14)

y = Ax + w (2.14)

where y ∈ Rm, x ∈ Rn and w ∼ N (0,Cw).

Then, the LS estimate of x is given by the minimizer of ‖y −Ax‖22 with respect to
x. Hence, we need to minimize

J(x) = (y −Ax)T (y −Ax). (2.15)
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Taking the first order partial derivative of J(x) with respect to x and setting it equal
to zero yield the LS estimate of x which is

x̂LS = (ATA)−1ATy. (2.16)

Here, A is assumed to be full rank to guarantee the inversion of (ATA)−1. Thus, the
estimate is unique and minimizes J(x).

From a geometrical perspective, the linear LS estimation takes the orthogonal pro-
jection of y onto the subspace spanned by the columns of A. The aim is to make
the error vector ε = y −Ax orthogonal to the columns of A. This is the well-known
orthogonality principle.

Then, minimum cost function Jmin can be calculated as

Jmin = (y −Ax̂LS)T (y −Ax̂LS)

= yT (y −Ax̂LS)− x̂TLSAT ε

= yTy − yTAx̂LS

= yT (I−A(ATA)−1AT )y.

(2.17)

For the examined problem, the linear LS estimator is a special case of the ML method.
We see that the ML estimate is equivalent to the linear LS estimate for the linear
models with white Gaussian noise.

Some other adaptation rules like Recursive Least Squares (RLS) [17] could be con-
sidered in order to track time-varying signals.

2.1.4 Minimum Mean Square Error Method

The LS estimate is commonly used because of its simplicity. However; if the channel
statistics of x is known a-priori, then we can do better than the LS estimate. The
a-priori information can be exploited to decrease the estimation error. For instance, if
it is known that x ∼ N (µx,Cx) a-priori, then the estimate of x which minimizes the
mean square error (MSE, E{‖x− x̂‖22}) and its error covariance matrix is given by

x̂MMSE = E{x|y} = µx + CxAT (ACxAT + Cw)−1(y −Aµx) (2.18)

and

Ce = Cx̂MMSE
= C{x|y} = Cx −CxAT (ACxAT + Cw)−1ACx. (2.19)

The alternative form of MMSE estimate and its error covariance matrix is provided
below.

x̂MMSE = E{x|y} = µx + (ATCw
−1A + Cx

−1)−1ATCw
−1(y −Aµx) (2.20)
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and
Ce = Cx̂MMSE

= C{x|y} = (ATCw
−1A + Cx

−1)−1. (2.21)

The equations (2.18) and (2.19) require m ×m matrix inversion whereas (2.20) and
(2.21) requires n× n matrix inversion. So that, it is recommended to use the second
form for the applications where the number of observations is significantly larger than
the number of unknowns, that is m >> n.

When Cx → ∞ (meaning not having a-priori knowledge of x), then MMSE and LS
estimates coincide. Generally MMSE estimate is better (in the MSE sense) than the
LS estimate, owing to the a-priori knowledge of x.
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CHAPTER 3

AN OVERVIEW OF SPARSE CHANNEL RECOVERY
METHODS AND PROBLEM STATEMENT

Wireless channels in particular propagation environments are characterized as sparse
or sparse clustered. The sparsity of the channel impulse response is illustrated in
Figure 3.1, showing only a few peaks and many zeros in between.

Figure 3.1: Channel with Sparse Impulse Response

There are many advantages of working with the sparse vectors. For instance, calcula-
tions involving multiplying a vector by a matrix take less time if the vector is sparse.
In addition, the vectors are often used to represent large amount of data which can
be difficult to store or transmit and by using a sparse approximation, the amount of
space needed to store the vector would be reduced to a fraction of what was originally
needed when they are stored only as the position and the value of the non-zero entries.

In this chapter we are mainly interested in sparse channel estimation. MP and OMP
are efficient greedy algorithms used for estimating sparse channels. Both of them
iteratively build up the sparse signal by selecting the vector that improves the repre-
sentation at each iteration. In the MP algorithm, iteration optimization is performed
over all vectors in the dictionary so that it is possible to re-select a previously selected
vector. This process slows down the convergence speed to a sparse solution [7]. In
the OMP algorithm the re-selection problem is eliminated by using the stored dictio-
nary at each iteration and more accurate channel estimates can be acquired [18]. On
the other hand, the convex optimizer Basis Pursuit (BP) [19] searches for the vector
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which minimizes the l1 norm of the solution. It substitutes l0 norm by the closest con-
vex norm, which is the l1 norm and turns the problem into an l1 norm minimization
problem. Since the mentioned algorithms are better suited for the channels we con-
sider, they give more accurate estimates than the traditional methods such as LS [20]
and MMSE.

In this chapter, an overview of the sparse signal recovery is presented. In Section
3.1 basis concept is examined. In Section 3.2 and 3.3, we provide definitions for
"dictionary", "atom" and "measurement matrix", which are frequently used in the
incoming chapters. In Section 3.4, 3.5 and 3.6, we deal with the sparsity concept
and in Section 3.7 commonly used sparse signal estimation techniques are briefly
summarized.

3.1 Review of Basis

A set {φi}
n
i=1 is called a basis for Rn if the vectors in the set span Rn and are linearly

independent. This implies that each vector in the space has a unique representation as
a linear combination of these basis vectors. Specifically, for any x ∈ Rn, there exist
unique coefficients {ci}ni=1 such that

x =
n∑
i=1

ciφi. (3.1)

Letφ denote the n×nmatrix with columns given byφi, and let c denote the length-n
vector with entries ci, then this relation can be expressed as

x = φc. (3.2)

An important special case of a basis is an orthonormal basis, defined as a set of vectors
{φi}

n
i=1 satisfying the inner product relation

〈
φi,φj

〉
=

{
1, i = j

0, i 6= j
. (3.3)

An orthonormal basis has the advantage that the coefficients of c can be easily calcu-
lated as

ci = 〈x,φi〉 (3.4)

or
c = φTx. (3.5)

3.2 Dictionaries and Atoms

Mallat [21] introduced the terminology of dictionary. A dictionary D is a collection
of parametrized waveforms such that D = {φγ : γ ∈ Γ}. The waveforms φγ are
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discrete signals of lengthm, called atoms. Depending on the dictionary, the parameter
γ can have the interpretation of indexing frequency in which case the dictionary is a
frequency or Fourier dictionary, of indexing time-scale in which case the dictionary
is a time-scale dictionary or of indexing time-frequency jointly in which case the
dictionary is a time-frequency dictionary [19].

3.3 Measurement Matrices

Consider a model such that
y = Ax (3.6)

where A ∈ Rm×n and y ∈ Rm. The matrix A is called sensing matrix or measure-
ment matrix.

If m = n and the dictionary furnishes a basis, then A becomes an n×n non-singular
matrix. In this case, we can say that there exists a unique representation of x such that
x = A−1y. When the atoms are, in addition, mutually orthonormal then A−1 = AT

and the reconstruction formula becomes simpler.

If m is smaller than n, then the matrix A represents a dimensionality reduction, i.e.,
it maps Rn into Rm. In the over complete case (m � n), A is not invertible. There
are then many representations of x, i.e., there is no unique x.

We are motivated by the aim of achieving the sparsest possible representation and
non-uniqueness gives us the possibility of adaptation. It allows us to choose from
among many representations the one that is most suited to our purpose.

3.4 Sparse Models

Signals can often be well-approximated as a linear combination of just a few elements
from a known basis or dictionary. When this representation is exact it is said that
the signal is sparse. Sparse signal models provide a mathematical framework for
capturing the fact that in many cases high-dimensional signals contain relatively little
information compared to their ambient dimension [22].

Sparsity is measured by the l0 norm. Mathematically, a signal x ∈ Rn is called k-
sparse, if it has at most k non-zeros, i.e., ‖x‖0 ≤ k. The set of all k-sparse signals
can be denoted by

∑
k such that∑

k

= {x : ‖x‖0 ≤ k}. (3.7)

In the following subsections, when x is referred to be as k-sparse, it should be under-
stood that either x itself is sparse or x can be expressed as x = φc where ‖c‖0 ≤ k.
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3.5 Sparse Signal Recovery

To state the problem mathematically precisely, let x ∈ Rn be the signal of interest.
As a prior information, it is assumed that x is sparse, i.e., it has very few non-zero
coefficients or there exists a frame φ such that x = φc with c being sparse. Further,
consider A to be a full rankm×nmatrix withm < n and define the under-determined
linear system of equation y = Ax.

In that case, it is clear that

• there are more variables than equations,

• x is underspecified, i.e., many choices of x lead to the same y.

In order to narrow down the choice to one particular solution, there is a need for an
additional criteria such as introducing a cost function J(x). Given measurements y

and the knowledge that original signal x is sparse, the recovery of x can be achieved
by solving

x̂ = min
x

J(x) (3.8)

subject to y = Ax.

Selecting a convex function J(.) guarantees a unique solution. If we choose J(x) to
be the squared Euclidean norm ‖x‖22 then the unique solution x̂, so-called minimum
norm solution, is given by

x̂ = AT (AAT )−1y. (3.9)

AAT is invertible since A is full rank and at this point it is worth saying that x̂⊥N (A)

where N (A) = {x|Ax = 0}.

When we define J(.) to be the l0 norm of x such that J(x) = J0(x) = ‖x‖0, the
recovery of x can be achieved by solving

(P0) : x̂ = argminz‖z‖0 subject to z ∈ B(y) (3.10)

where B(y) = {z : Az = y} for the case of noise-free measurements. When the
measurements have been corrupted with a small amount of bounded noise, one could
consider B(y) = {z : ‖Az − y‖2 ≤ ε}. In both cases, (P0) finds the sparsest x

that is consistent with the measurement y. It should be noted that l0 norm, which is
the number of non-zero components of a vector x, is a quasi norm, since it does not
satisfy homogeneity property, that is ‖αx‖0 6= |α|‖x‖0.

Unfortunately, this problem requires an exhaustive search and, in general, it is not
a feasible problem. One way to convert this problem to a more tractable one is to
replace l0 norm with a convex approximation, i.e., l1 norm. Chen, Donoho and Saun-
ders have shown that l1 minimization promotes sparsity, [22]. This leads us to the
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following minimization problem, which is coined as Basis Pursuit:

(P1) : x̂ = argminz‖z‖1 subject to z ∈ B(y) (3.11)

where B(y) = {z : Az = y}. Again, when the measurements have been corrupted
by noise, one could consider B(y) = {z : ‖Az− y‖2 ≤ ε}.

The l0 minimization algorithms directly attempt to solve (P0). Examples of l0 min-
imization algorithms include OMP, Stagewise OMP (StOMP), Regularized OMP
(ROMP), Compressive Sampling MP (CoSaMP), Iterative Hard Thresholding (IHT)
etc.

The l1 minimization algorithms find sparse solutions by solving (P1). l1 minimiza-
tion algorithms include Basis Pursuit, LASSO, Weighted Least Squares, iterative al-
gorithms based on gradient thresholding etc.

In order to ensure the recovery of the sparse signal x from the measurements of y, the
measurement matrix A with m� n should satisfy a number of desirable properties.
In the following subsections, the uniqueness conditions for the solutions to problems
(P0) and (P1) are given, then the conditions under which (P0) has the same solution
as (P1) are provided.

3.6 The Sparsest Solution of y = Ax

Sufficient conditions to coincide the solutions of (P0) and (P1) do not only depend
on the sparsity of the original signal x, but also on the coherence of the measurement
matrix A. The equivalence of l0 and l1 problems in this case can also be phrased in
terms of restricted isometry property.

3.6.1 Uniqueness

3.6.1.1 Uniqueness via Spark

The null space of a matrix A ∈ Rm×n is denoted as

N (A) = {z : Az = 0}. (3.12)

In order to recover all sparse signals x from the measurements y, one must have
Ax 6= Ax′ for any pair of distinct vectors x, x′ ∈

∑
k, since otherwise it would be

impossible to distinguish x from x′ based solely on the measurements y. Formally,
if Ax = Ax′ then A(x− x′) = 0 with x− x′ ∈

∑
2k. So, it is clear that A uniquely

represents all x ∈
∑

k if and only ifN (A) contains no vectors in
∑

2k. This property
can be characterized by using spark definition.

15



The word spark comes from a verbal fusion of "sparse" and "rank" and spark of A

denoted by Spark(A) is the smallest number of linearly dependent columns of A. By
definition, Spark(A) ∈ [2,m + 1]. From this property we can say that Theorem 3.1,
given below yields the requirement of m ≥ 2k to ensure uniqueness.

Theorem 3.1 [23] For any vector y ∈ Rm, there exists at most one solution x ∈
∑

k

such that y = Ax if and only if k < Spark(A)/2.

It is clear from Theorem 3.1 that if there exists a solution x satisfying the condition
‖x‖0 < Spark(A)/2, then this solution is the sparsest possible.

For instance, if random matrix A comprises independent and identically distributed
(i.i.d.) entries with continuous distributions, then we can say that Spark(A) = m+ 1

with high probability. This implies that no m columns are linearly dependent. In this
case, uniqueness is ensured for every solution with m/2 or fewer non-zero entries.

3.6.1.2 Uniqueness via Mutual Coherence

Calculating the spark involves checking the dependence of combinations of columns
of the matrix A. This can be expensive and difficult to evaluate. A simpler way
that guarantees uniqueness is the use of mutual coherence of the matrix A. The
mutual coherence of a given matrix A is the largest absolute normalized inner product
between different columns from A.

Let A ∈ Rm×n. Denoting the ith column in A by ai, the mutual coherence µ(A) is
given by

µ(A) = max
1≤i,j≤n,i 6=j

| 〈ai, aj〉 |
‖ai‖2‖aj‖2

. (3.13)

The mutual coherence is a way to characterize the dependence between columns of
the matrix A. The measurement matrices are required to have a small coherence. The
coherence of a matrix is always in the range µ(A) ∈

[√
n−m
m(n−1) , 1

]
. The maximal

coherence of a matrix is 1 in the case that two columns coincide. The lower bound is
known as the Welch bound. Note that whenm� n, the lower bound is approximately
equals to 1/

√
m.

For any matrix A ∈ Rm×n, the following relationship holds [24]:

Spark(A) ≥ 1 +
1

µ(A)
. (3.14)

By merging Theorem 3.1 and inequality (3.14), one can pose the following condition
on A that guarantees the uniqueness.

Theorem 3.2 [25] If

k <
1

2

(
1 +

1

µ(A)

)
(3.15)
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then for each measurement vector y ∈ Rm there exists at most one signal x ∈
∑

k

such that y = Ax.

To conclude, if y = Ax where A ∈ Rm×n with m < n has a solution x ∈ Rn \ {0}
obeying ‖x‖0 < 1

2

(
1 + 1

µ(A)

)
, we can say that this solution is the sparsest and unique

solution of both l0 and l1 minimization.

Theorem 3.2, together with the Welch bound, provides an upper bound on the sparsity
level k that guarantees uniqueness using coherence: k = O(

√
m).

Comparison of Theorem 3.1 with Theorem 3.2:

Theorem 3.1 and Theorem 3.2 are similar in form, but have different assumptions.
Theorem 3.1 is more powerful than Theorem 3.2 which uses the coherence and so
only a lower bound on spark. The coherence cannot be smaller than 1/

√
m, therefore

the cardinally bound of Theorem 3.2 is never larger than
√
m/2. However, the spark

can easily be as large as m and Theorem 3.1 gives a bound as large as m/2.

3.6.2 The Restricted Isometry Property

When measurements are corrupted by additive noise, Restricted Isometry Property
(RIP) should be taken into consideration. If a matrix A satisfies the RIP, then this
is sufficient for a variety of algorithms to have a stable recovery in the presence of
additive noise [26].

Let A be an m × n matrix. Then, matrix A satisfies the RIP of order k if, for all
x ∈

∑
k, there exists a δk ∈ (0, 1) such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22. (3.16)

If the RIP holds, then l1 minimization gives an accurate reconstruction, i.e., it is
possible to recover x ∈

∑
k. RIP can be achieved with high probability by selecting

A as a random matrix. Random matrices from Gaussian distribution satisfies RIP of
order k with high probability if [27]

m = O(k ln(n/k)/δ2k). (3.17)

Moreover, if A has unit-norm columns and coherence µ = µ(A), then A satisfies the
RIP of order k with δk ≤ (k − 1)µ.

RIP enables recovery guarantee that is much stronger than those based on spark and
coherence. However, checking whether a matrix A satisfies the RIP property has a
combinatorial computational complexity.

Recently, researchers have observed that sparse matrices may satisfy a related prop-
erty, called RIP-1, even when they do not satisfy inequality (3.16). RIP-1 can also be
used to analyse sparse approximation algorithms [28].
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3.7 Sparse Signal Recovery Methods

In the literature, there are several methods discussing the sparse signal recovery.
These methods can roughly be divided into 3 main categories:

1. greedy pursuit algorithms include OMP, StOMP, ROMP, CoSaMP or IHT

2. convex relaxation methods include BP, LASSO, interior-point methods, pro-
jected gradient methods or iterative thresholding

3. Bayesian framework

Pursuit algorithms iteratively refine a sparse solution by successively identifying the
components that yield the greatest improvement in quality. They build up the sparse
signal by greedy decisions which iterate between 2 main steps:

• Support Update: The support of a signal is the locations of the non-zero entries
and is sometimes called its "sparsity pattern". The algorithm makes a guess
about the columns (or atoms) of the dictionary which have been used to gener-
ate observations.

• Coefficient Update: The estimate of the signal is updated by taking into account
the latest decision about the support.

Convex relaxation algorithms replace the combinatorial problem with a convex op-
timization problem. These techniques solve a convex program whose minimizer is
known to approximate the target signal. One of the commonly used convex relaxation
algorithm is the BP. It finds the solution of non-quadratic optimization problems by
l1 minimization.

Bayesian framework makes use of a prior distribution for the unknown coefficients
of the sparse signal that favours the sparsity and develops a maximum a posteriori
estimator that incorporates the observation.

There are also some combinatorial approaches to the sparse recovery problem. For
instance, in [29], the authors propose to combine Bayesian approach with the pursuit
algorithms to produce Bayesian OMP (BOMP), Bayesian StOMP (BStOMP) and
Bayesian CoSaMP (BCoSaMP) which result in a more efficient signal recovery with
respect to the non-Bayesian pursuit algorithms.

3.7.1 Pursuit Algorithms

Pursuit methods build up a sparse approximation by making locally optimal choices
at each iteration. They basically differ in the way they implement support update
(identification step) and coefficient update (estimation step) of the signal.

18



One of the most used and simplest greedy approach is the Orthogonal Matching Pur-
suit. OMP considers finding the column of the given matrix Am×n which promotes
the maximum correlation with the measurement. The identification step is the most
expensive part of the computation which costs O(mn) for an unstructured dense ma-
trix. The estimation step requires the solution of a least squares problem. The algo-
rithm then repeats these two steps by correlating the columns of A with the residual,
which is obtained by subtracting the contribution of the partial estimate from the orig-
inal measurement vector.

It is clear that there is a need for a stopping rule to halt the iterations. The natural
stopping criteria are given below:

• Cease after a fixed number of iterations: k

• Cease when residual has small magnitude: ||rt||2 ≤ ε

• Cease when no column explains a significant amount of energy in the residual:
||AT rt−1||∞ ≤ ε

These criteria can all be implemented at minimal cost.

Tropp and Gilbert [30] investigated the performance of OMP algorithm by measure-
ment. It is reported in [30] that if the measurement matrices satisfy some properties,
then OMP algorithm can recover the sparse signals with high probability. It has been
shown that by considering random matrices for A, OMP can recover k-sparse signals
with high probability using m ≈ O(k ln(n)) measurements.

The overall OMP algorithm is presented below:

OMP Algorithm

Task: Approximate the solution (P0) : minx ‖x‖0 subject to y = Ax

GET: A ∈ Rm×n where columns of A are denoted as (ai)
n
i=1, measurement y

and the "stopping criterion"

SET: the residual r0 = y, index set Λ0 = ∅, S0 = ∅ and the counter t = 1

1. Find the index λt that solves the optimization problem:

λt = argmaxi=1,...,n| 〈rt−1, ai〉 |

2. Augment the index set and the matrix of chosen columns:

Λt = Λt−1
⋃
{λt}
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and
St =

[
St−1 aλt

]
3. Solve the least squares problem to obtain signal estimate:

x̂t = argminx‖y − Stx‖2

4. Calculate the approximation of the measurement and update the residual:

zt = Stx̂t

rt = y − zt

Increment t. Repeat steps (1)-(4) until stopping criterion holds.

OUTPUT: x̂ is obtained after t iterations depending on the stopping criterion.
The estimate x̂ has non-zero indices at the components listed in Λ such that
x̂(λ) = x̂t(λ) for λ ∈ Λt and x̂(λ) = 0 otherwise.

For many applications, OMP does not offer adequate performance, so researchers
have developed more sophisticated pursuit methods that perform better in practice.
These techniques depend on several enhancements to the basic greedy framework:

1. selecting multiple columns per iteration

2. pruning the set of active columns at each step

3. solving the least squares problems iteratively

4. theoretical analysis using the RIP bound

StOMP [31] selects multiple columns at each step. ROMP [32] was the first greedy
technique whose analysis was supported by a RIP bound. CoSaMP [33] was the first
algorithm to assemble these ideas to obtain essentially optimal performance guaran-
tees.

3.7.2 Convex Relaxation Methods

Another fundamental approach to sparse approximation replaces the combinatorial l0
function with the l1 norm, yielding convex optimization problems. Indeed, l1 norm is
the closest convex function to the l0 function, so this relaxation is quite natural [34].

In Section 3.5 we have denoted the convex form of the sparse approximation problem
by (P1) and in (P1), if we take B(y) = {z : Az = y}, the minimization problem
can be posed as a linear program. In the case of B(y) = {z : ‖Az− y‖2 ≤ ε}, (P1)

becomes a convex problem and can be solved by a convex optimization approach.
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The dual form of the convex problem can be formulated by

x̂ = argminx
1

2
‖y −Ax‖22 + τ‖x‖1. (3.18)

Here, τ ≥ 0 is a regularization parameter whose value governs the sparsity level
of the estimate. Large values of τ typically produce sparser estimates. So, there is
a need to solve (3.18) repeatedly for different choices of this parameter or to trace
systematically the path of solutions as τ decreases toward zero.

Another variant is the LASSO formulation such that

x̂ = argminx ‖y −Ax‖22 subject to ‖x‖1 ≤ λ. (3.19)

The LASSO which is in some areas known as Basis Pursuit Denoising is equivalent
to (3.18) in the sense that the path of solutions to (3.19) parametrized by positive λ
matches the solution path for (3.18) as τ varies [34].

Theorem 3.3 says that l1 minimization recovers the signal with a high probability
when a certain condition is met.

Theorem 3.3 [22] Let A be an m × n matrix that satisfies RIP. Suppose that mea-
surements obey,

m ≥ C k ln
n

k
(3.20)

then minimizing l1 reconstructs x ∈
∑

k with a high probability.

If the constant C = 22(δ + 1), then the probability of success exceeds 1−O(n−δ).

3.7.3 Bayesian Framework

There are variety of approximate Bayesian inference methods such as Variational
Bayes, Expectation Propagation, Laplace Approximation and Markov Chain Monte
Carlo.

In this thesis, we study the approximate Bayesian inference method called expectation
propagation method [11], [12], [13]. For details, please refer to Chapter 5.

3.8 Multiple Measurement Vectors

For the multiple measurement vector (MMV) case, there exist l signals each of which
is sparse with the same indices for their non-zero coefficients. In this setting, one
attempts to simultaneously recover the set of jointly sparse signals {xi}li=1 from in-
complete measurements rather than recovering the l signals separately. This problem
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is an extension of single sparse signal recovery. By putting xi’s into the columns of a
matrix X, there will be at most k non-zero rows in X. That is, not only each signal
is k-sparse, but also the non-zero values occur on a common location set. There-
fore, X is row-sparse and the notation Λ = supp(X) is used to denote the index set
corresponding to the non-zero rows of X.

Assume that measurements are given to be {yi}li=1 where each vector is of length
m < n, and Y is an m × l matrix with columns yi. MMV problem tries to recover
X assuming a known matrix A so that Y = AX. Multichannel reconstruction tech-
niques mostly provide better performances because of the joint support gained from
multiple measurements.

Since xi’s may not be linearly independent from each other, rank of X satisfies
Rank(X) ≤ k. When Rank(X) = 1, all xi’s are multiples of each other resulting
in no advantage to their joint processing. In this case, MMV and Single Measure-
ment Vector (SMV) problems become identical. However, when Rank(X) is large,
we can benefit from the joint recovery. When X is generated at random, repeated
columns are not likely to occur and it allows an improved recovery.

Theorem 3.4 [35] Necessary and sufficient condition for the measurement Y = AX

to uniquely determine the jointly sparse matrix X is that

|supp(X)| < Spark(A)− 1 + Rank(X)

2
(3.21)

where |supp(X)| = |Λ| = k. A direct consequence of Theorem 3.4 is that matrices X

with larger rank can be recovered from fewer measurements. When Rank(X) = k and
Spark(A) takes on its largest possible value which is equal to m+ 1, condition (3.21)
becomes m ≥ k + 1. Therefore, in this best-case scenario, only k + 1 measurements
per signal are necessary to ensure uniqueness. This is much lower than the value of
2k obtained via Theorem 3.1.

As in the Single Measurement Vector (SMV) case, there are two main approaches for
solving MMV problems which are based on greedy methods and convex optimization.
They are the natural expansions of the well known SMV versions of the algorithms
and reduce to the SMV versions when applied to the measurements of a single sparse
signal.
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CHAPTER 4

APPLICATION OF SPARSE SIGNAL ESTIMATION
ALGORITHMS ON CHANNEL ESTIMATION

Channel estimation methods, such as LS algorithm, lead to bandwidth inefficiency
since it is necessary to use long training sequences. If the channel impulse response
follows a sparse distribution, we can apply more efficient methods to acquire channel
information. As a result, the training sequence length can be shortened compared
with the linear estimation methods [36].

In this chapter, we present OMP and LASSO methods for the sparse channel estima-
tion problems. In Section 4.1, we analyse the OMP algorithm and present simulation
results for two different types of measurement matrices. In Section 4.2, we analyse
the LASSO approach and finally in Section 4.3, we compare the performances of the
two methods.

4.1 Channel Recovery via Orthogonal Matching Pursuit

4.1.1 Application of OMP Algorithm to Linear Models with Gaussian Mea-
surement Matrix

In order to investigate the sparse channel recovery performance of the OMP method
under a noisy environment, we have implemented the OMP algorithm presented in
Section 3.7.1. Measurement matrix A is drawn to be an m× n Gaussian matrix with
N (0, 1) i.i.d. entries and x ∈ Rn is drawn with sparsity level k where non-zero taps
are normally distributed. Measurements are corrupted by additive white Gaussian
noise w with N (0, σ2

nI). Stopping criterion of the OMP algorithm is set to a fixed
number k which assures that the recovered channel has k non-zero coefficients.

Figure 4.1 describes channel recovery percentage as a function of number of measure-
ments m when n = 256 and SNR = 10 dB. Each curve represents a different sparsity
level k. For each curve, we have run the OMP algorithm for 1000 independent trials.
We assumed that channel recovery is achieved when l2 norm of the estimation error
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is smaller than 0.5 under noisy environment.

As seen from the figure, for the channels with the same length n and sparsity level
k, an increase in m results in an increase in the recovery percentage. We can also
conclude from the same figure that for the channels with the same n, when number
of non-zeros (k) increase, more measurements are necessary to guarantee channel
recovery.

Figure 4.1: Recovery percentage of the channel as a function of m

Figure 4.2 displays the percentage of the channels recovered correctly as a function
of k. It is clear from the figure that for a fixed n, m and SNR, an increase in k results
in a decrease in the recovery percentage. Moreover, for a fixed n, SNR and k, the
recovery probability increases when more measurements are taken. These two results
support the previous results derived from Figure 4.1.
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Figure 4.2: Recovery percentage of the channel as a function of k

Figure 4.3 represents the number of measurements m necessary to recover a k-sparse
channel with probability 80% and 95% when n = 256 and SNR = 10 dB. This
result supports the idea that number of measurements m should be proportional to the
sparsity level k to ensure recovery with high probability.

Figure 4.3: Number of measurements m, necessary to recover a k-sparse channel at
least 80% and 95% of the time

Table 4.1 is provided to examine the relationship between n, k and m to achieve a
recovery probability of 99% for two different channel lengths when SNR = 10 dB.
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Table 4.1: Number of measurements, m necessary to recover a k-sparse channel at
least 99% of the time in dimensions n = 256 and n = 1024 when SNR = 10 dB

Recovery probability of 99%

n=256 n=1024

k m m/(k ln(n)) k m m/(k ln(n))

10 69 1.24 10 84 1.21

20 90 0.81 20 115 0.83

30 108 0.65 30 144 0.69

40 128 0.58 40 175 0.63

50 147 0.53 50 204 0.59

Figure 4.4 represents the relationship between the channel recovery percentage and
SNR where SNR = (xTx)/n

σ2
n

. As expected, high SNR results in an increase in recov-
ery percentage and produces a better estimate with smaller Root Mean Square Error
(RMSE).

Figure 4.4: Recovery percentage vs. SNR (dB)

The relationship between RMSE and SNR is provided in Figure 4.5. It is clear from
the figure that high SNR results in a decrease in RMSE.
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Figure 4.5: RMSE vs. SNR

In the above mentioned cases, OMP iteration stops after k-steps in order to ensure that
the approximated sparse channel has a pre-specified sparsity level k. It is also possible
to define a stopping rule other than the sparsity level k such that the maximum residual
energy is limited to some value, say T . In other words, we could desire to find a sparse
approximation x̂ satisfying the inequality ‖y −Ax̂‖2 < T . Defining such a stopping
rule is more relevant to de-noising in cases when the noise power is fixed and known.

MP algorithms differ from each other in the sense of their stopping rules or in choos-
ing the relevant vector from the sensing matrix, A. As stated before; in the OMP
algorithm, next atom to be chosen is the one yielding the maximum correlation be-
tween residual and the atoms {ai}ni=1. Note that if there are several candidate atoms
that show a relatively high correlation, the highest is chosen regardless of the prox-
imity of the others to it. This brings us the randomization approach. In [37], Elad
and Yavneh proposed an algorithm which they call RandOMP (Randomized OMP) in
which the choice of the atom of A is randomized with a probability proportional to
|ai

T rt| where i = {1, 2, . . . , n} and t is the iteration number.

Running the proposed algorithm J0 times leads us to J0 solutions, {x̂j}J0j=1. Common
to all these approximations are the fact that,

• Their representation error ‖y − Sx̂RandOMP‖2 is below a threshold, T due to the
stopping rule enforced,

• All of them tend to be relatively sparse due to the greedy nature of this al-
gorithm that aims to decrease the residual energy, giving preference to those
atoms that serve this goal better.
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To compare the sparse channel recovery performance of the proposed RandOMP with
the OMP, we run both algorithms J0 = 1000 times independently and obtain the
histogram graphs of the sparsity level of the estimates and the representation errors
given in Figure 4.6. In both algorithms, iteration stops when we find an estimate x̂

satisfying the ‖y −Ax̂‖2 < T condition.

In OMP, all sparsity levels are observed to be fixed at 5 which is less than the sparsity
level of the original channel. Indeed, this is an expected result as choosing the next
atom is not randomized. Besides this, all representation errors are observed to vary
around the threshold T .

In RandOMP, all the approximations are relatively sparse with sparsity level in the
range [5, 32] indicating that OMP produces the sparsest solution and all representation
errors are observed to be slightly smaller than the threshold T .

Figure 4.6: Comparison of OMP and RandOMP algorithms where representation
error is defined as ‖y − Sx̂‖2

Note that, for the RandOMP case we can use the formula:

x̂ave =
1

J0

J0∑
j=1

x̂RandOMP
j . (4.1)

The averaged approximation x̂ave is no longer sparse, however its de-noising factor is
better than OMP.
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4.1.2 Application of OMP Algorithm to Linear Models with Toeplitz Measure-
ment Matrix

Consider a broadband communication system over a sparse channel. The input-output
system relation is described by:

y(t) =

∫ τmax

0

x(τ)u(t− τ) dτ + w(t) (4.2)

where y(t) and u(t) denotes the received and transmitted waveforms, respectively,
τmax is defined as the maximum tap delay introduced by the channel and w(t) is a
zero-mean additive white Gaussian noise. Commonly, after sampling, such channels
can be characterized as discrete, linear, time-invariant system as shown in Figure 4.7.

Figure 4.7: Framework on sparse channel estimation

Therefore, the discrete equivalent linear convolution system model is written in matrix
form as follows:

y = u ∗ x + w = Ax + w. (4.3)

In this case, measurement matrix A is an m× n Toeplitz matrix given as follows:

A =



u[0] 0 0 . . . 0

u[1] u[0] 0 . . . 0

...
...

...
...

u[lt − 1] u[lt − 2] u[lt − 3] . . . u[lt −N ]

0 u[lt − 1] u[lt − 2] . . . u[lt −N + 1]

...
...

...
...

0 0 . . . u[lt − 1] u[lt − 2]

0 0 . . . 0 u[lt − 1]


(4.4)

where u =
[
u[0] u[1] . . . u[lt − 1]

]T
is the training sequence of length lt and m

is restricted to be
m = lt + n− 1. (4.5)

Observe from (4.5) that there is a direct relationship between n and m. Now, let’s
define the compression rate ρ as:

ρ =
m

n
=
lt + n− 1

n
= 1 +

1

n
(lt − 1). (4.6)
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It is clear from (4.6) that an increase in n results in a decrease in ρ producing a positive
effect on channel recovery percentage.

In order to investigate the sparse channel recovery performance of the OMP method
under a noisy environment, we have run the algorithm presented in Section 3.7.1.
Measurement matrix A is drawn to be an m × n Toeplitz matrix provided in (4.4)
and channel x ∈ Rn is drawn with sparsity level k where non-zero taps are normally
distributed. Measurements are corrupted by additive white Gaussian noise w with
N (0, σ2

nI).

Cross-correlation is the measure of agreement between two different codes. When the
cross-correlation is zero, the codes are called orthogonal. In practice, the codes are
not perfectly orthogonal, hence the cross-correlation between user codes introduces
performance degradation. In the simulations, we tried to use the best suitable training
sequences with suitable autocorrelation properties along with low cross-correlation
values called minimum peak sidelobe (MPS) codes [38]. Finally, stopping criterion
of the OMP algorithm is set to a fixed number k which assures that the recovered
channel has k non-zero coefficients.

In the simulations, we assumed that channel recovery is achieved when l2 norm of the
estimation error is smaller than 0.5 under noisy environment. Recovery percentage
of the channels as a function of n are plotted in Figure 4.8. Each curve in the figure
represents a different sparsity level k. For each curve, we have run the OMP algorithm
for 1000 independent trials.

Figure 4.8 displays that an increase in n (thus a decrease in ρ) results in an increase in
the recovery percentage for a fixed lt, SNR and k. In addition; it is clear that a longer
channel is required in order to have the same recovery percentage when the sparsity
level of the channel increases.
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Figure 4.8: Recovery percentage of the channel as a function of n

Figure 4.9 represents the recovery percentage of the 1000 independent trials as a
function of k. We can conclude from the figure that there is an indirect relationship
between recovery probability and k for a fixed lt, SNR, n and so is m. Figure also
shows that for a fixed lt, SNR and k, the recovery probability increases when more
measurements are taken.

Figure 4.9: Recovery percentage of the channel as a function of k

Figure 4.10 represents the relationship between n and k necessary to achieve a recov-
ery probability of 95% for a fixed lt and SNR. The result supports the outcome of the
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Figure 4.8 such that to achieve a predefined reconstruction probability for a fixed lt
and SNR, n is required to increase whenever k increases.

Figure 4.10: Channel size n, necessary to recover a k-sparse channel at least 95% of
the time

From Figure 4.11, we can say that a decrease in compression rate ρ results in an
increase in the recovery percentage for a fixed k, lt and SNR supporting the previous
results. The relationship between RMSE and SNR, where SNR = (xTx)/n

σ2
n

, is provided
in Figure 4.12. As expected, high SNR forces RMSE to decrease.
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Figure 4.11: Recovery percentage vs. SNR

Figure 4.12: RMSE vs. SNR
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For a fixed k, SNR and n; increasing length of training sequence lt which is the
case in Figure 4.13, results in an increase in the recovery percentage of the channel
with small RMSE so that one should choose longer training sequences to guarantee
channel recovery.

Figure 4.13: Effect of lt on recovery percentage and RMSE

4.2 Channel Recovery Via LASSO

In Section 3.7.2, we have presented the theory behind LASSO approach and men-
tioned that it is an optimization principle rather than an algorithm. In this section, we
present the simulation results considering the LASSO approach.

In the simulations, measurement matrix A is drawn to be an m × n Gaussian ma-
trix with N (0, 1) i.i.d entries and x ∈ Rn is a k-sparse channel where non-zero taps
are drawn from a uniform distribution on [−2,−1]

⋃
[1, 2]. Measurements are cor-

rupted by additive white Gaussian noise w with N (0, σ2
nI). For each curve, 2500

independent Monte Carlo trials have been conducted.

First graph of Figure 4.14 describes l0 and l1 norm of the channel estimate as a func-
tion of λ when m = 50, n = 40, k = 4 and SNR = 10 dB. According to the
LASSO method ‖x̂‖1 should be less than or equal to λ, so a reference line is provided
to see how close the l1 norm of the channel estimate is to λ. ‖x̂‖0 is calculated by
considering the estimated channel taps satisfying condition |x̂i| > 0.1, where x̂i is
the estimate of the ith component of x for i = {1, 2, . . . , n}. The graph demonstrates
that an increase in λ promotes an increase in ‖x̂‖0 only up to a point.
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Because of the channel distribution, l1 norm of the true channel is in between |minimum
possible value of the channel taps| × k = 1 × 4 = 4 and |maximum possible value
of the channel taps| × k = 2 × 4 = 8. Thus, we expect the channel estimate to have
similar property. That is the reason of ‖x̂‖1 ≤ λ condition in the LASSO method
disappears and it tries to solve LS estimate for λ > 8. As a result of this, l0 and l1
norm of the channel estimate stabilizes after that point on. It is also worth to declare
that because of the differences between l0 and l1 norm, it is possible for the LASSO
method not being able to find the sparsest possible approximation.

Second graph of Figure 4.14 describes the relationship between RMSE and λ when
m = 50, n = 40, k = 4 and SNR = 10 dB. Since non-zero channel taps are drawn
from a uniform distribution on [−2,−1]

⋃
[1, 2], l1 norm of the true channel is likely

to be (|minimum possible value of the channel taps|+|maximum possible value of the
channel taps|)/2× k = (1 + 2)/2× 4 = 6. That is the reason of having high RMSE
for λ < 6. Therefore, an approximation would have to be obtained while deciding
the value for λ.

Figure 4.14: Effect of λ on the estimates

SNR effect on l0 and l1 norm of the channel estimate is shown in the first graph of
Figure 4.15 when m = 50, n = 40, k = 4 and λ = 12. ‖x̂‖0 is calculated by
considering the elements satisfying condition |x̂i| > 0.1. As seen from the graph,
both norms tend to decrease as SNR increases and l1 norm of the channel estimate
is always below the reference line which intersects the y-axis at 12 which is equal to
the λ value. Moreover, for the given conditions, sparsity level of the channel estimate
approaches the true sparsity level for SNR > 10 dB.
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The relationship between RMSE ans SNR is provided in the second graph of Figure
4.15. It is clear that high SNR produces a better estimate with smaller RMSE. We
have also conducted simulations for smaller λ’s and obtained similar results for both
graphs.

Figure 4.15: Effect of SNR on l0 & l1 norm of the channel estimates and RMSE

4.3 Comparison of OMP and LASSO

This section offers a brief comparison between known results for the greedy algorithm
and results for the convex relaxation approach.

In the previous sections, we have tried to estimate sparse channel x ∈ Rn based on
the linear models

y = Ax + w (4.7)

where y ∈ Rm, A is the known measurement matrix and w is additive white Gaussian
noise, N (0, σ2

nI).

In many problems, the sparsity level k is not known a-priori and must be detected as
a part of the estimation process. In OMP, the sparsity level of estimated channel is
precisely the number of iterations conducted before the algorithm terminates. Thus,
a good stopping condition is needed for a reliable estimation. The effect of different
stopping conditions on RMSE is shown in Figure 4.16 where RMSE and SNR are
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defined as

RMSE =

√√√√ 1

M

M∑
m=1

‖x− x̂m‖22

SNR =
(xTx)/n

σ2
n

(4.8)

and where M is the number of independent trials.

Figure 4.16: Performance of OMP algorithm with different stopping rules (M =

1000, A is drawn to be a Toeplitz structured matrix which uses length-7 MPS code as
the training sequence and non-zero taps of the channel are normally distributed)

Tropp and Gilbert [30] investigated the performance of OMP for a set ofm×n (m�
n) sensing matrices. They claim that OMP can recover the channels with high proba-
bility provided that the number of measurements is proportional to the sparsity level
of the channel such that m ≈ k ln(n). However, OMP’s condition on sensing ma-
trix given in [30] is more restrictive than the restricted isometry property. Kunis and
Rauhut [39] claimed that the first iteration in OMP is likely to identify the correct col-
umn from the sensing matrix given O(k ln(n)) measurements of a k-sparse channel
in Rn. Unfortunately, because of the unavoidable correlation between the columns
of the sensing matrix, it is difficult to analyse subsequent iterations of the algorithm.
OMP can acquire non-zero taps with high probability, but with high probability fails
to estimate all non-zero taps of a channel leading to instability.

On the other hand, LASSO tries to solve the quadratic program

x̂ = argminx‖y −Ax‖22 subject to ‖x‖1 ≤ λ (4.9)
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where λ ≥ 0 is an algorithm parameter that trades the prediction error with the spar-
sity of the solution. The convex program method is based on linear programming
however, it has disadvantages in computational cost and implementation complexity.

Figure 4.17 provides the overall taps estimation error using RMSE standard for MMSE,
LS, OMP and LASSO. In the simulation, measurement matrix A is drawn to be an
m × n Toeplitz structured matrix which uses length-7 MPS code as the training se-
quence. x ∈ Rn is a k-sparse channel where non-zero taps are drawn from a uniform
distribution on [−2,−1]

⋃
[1, 2]. Stopping criterion in OMP algorithm is set to chan-

nel sparsity level k. Measurements are corrupted by additive white Gaussian noise w

with N (0, σ2
nIm×m).

Parameter settings are as follows: n = 60, lt = 7, m = 66, k = 6 and estimation
constraint in LASSO is taken as ‖x̂‖1 ≤ λLASSO = 10 and 100 separately. For each
curve, 1000 independent Monte Carlo trials have been conducted.

From the figure, we can conclude that OMP performance is better than LASSO,
MMSE and LS for the given parameter settings. Note that performance of the OMP
algorithm depends on the stopping criteria used for halting the iterations and perfor-
mance of the LASSO method depends on the selection of the parameter λ. A-priori
knowledge of the channel distribution or channel sparsity is not taken into considera-
tion in LS so that its performance is lower than MMSE, LASSO with λLASSO = 10

and OMP. On the other hand, if we choose λLASSO large enough such that the effect
of the constraint in LASSO disappears, then LS and LASSO estimates coincide.

Figure 4.17: Performance comparison via RMSE of different channel estimation
methods at different SNR’s

While the optimization in LASSO is convex, the running time of LASSO is signifi-
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cantly longer than the OMP unless A has some particular structure [30]. Dependence
of the running times of the two algorithms on the number of columns of A, number
of rows of A and sparsity level of the channel presented in [1] are provided in Figures
4.18, 4.19 and 4.20.

Figure 4.18 shows the run time of the algorithms as a function of number of rows m.
As seen from the graph, LASSO takes the maximum time which increases linearly
with m.

Figure 4.18: Dependence of running times on the number of rows (n = 8000, k =

500), [1]

Figure 4.19 displays the run time of the algorithms as a function of n. The algorithms
seem to scale linearly with n. The output of each algorithm is compared with the
correct solution x and authors in [1] say that LASSO did not give correct results for
n > 8000 and hence its run time is omitted from the graph. Finally, Figure 4.20
shows the run time of the algorithms as a function of the sparsity level.
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Figure 4.19: Dependence of running times on the number of columns (m = 4000,
k = 500), [1]

Figure 4.20: Dependence of running times on the sparsity levels, [1]
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CHAPTER 5

SPARSE CHANNEL ESTIMATION FOR BAYESIAN LINEAR
MODELS

In chapter 4, we have investigated some of the commonly used algorithms to recover
sparse channels. In this chapter, we present Bayesian approach for modelling sparse
channels and examine sparse channel estimation problem for Bayesian linear models.

5.1 Posterior Density Calculation for Mixture of Gaussians

In this section, we examine different methods for the calculation of the posterior
density function of x given the observation y denoted as p(x|y) where x is a mixture
of Gaussians having probability density function given below:

p(x) = p1N (x;µ1, γ
2
1) + p2N (x;µ2, γ

2
2) (5.1)

where N (x;µi, γ
2
i ) = 1√

2πγ2i
e
− (x−µi)

2

2γ2
i for i = {1, 2} is the univariate Gaussian dis-

tribution with the component probabilities p1 and p2 where p1 + p2 = 1.

Figure 5.1: Mixture of Gaussians

Since the signal in our concern is assumed to be sparse, it is reasonable to think that
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the narrow Gaussian models the smaller peaks with zero-mean whereas the broad one
models the higher peaks. Some possible distributions for the one dimensional case
are provided in Figure 5.2.

Figure 5.2: Pdf for x ∈ R1 where x is composed of mixture of Gaussians

For simplicity, we assume that the random variable x is observed under linear model
with additive white Gaussian noise with distribution N (w; 0, σ2

n) such that

y = x+ w. (5.2)

Method 1: Posterior Density Calculation Through An Algebraic Approach

In the calculation of p(x|y), we use the following formulas:

N (x;µ1, γ
2
1)N (x;µ2, γ

2
2) = N (µ1;µ2, γ

2
1 + γ22)N (x;µ12, γ

2
12) (5.3)

where

1

γ212
=

1

γ21
+

1

γ22

µ12 = γ212

(
µ1

γ21
+
µ2

γ22

)
.

(5.4)

Note that N (µ1;µ2, γ
2
1 + γ22) is just a scaling constant. Therefore, the product of two

Gaussian functions having independent variable x yields a scaled Gaussian function
of x [40].

As in the case of multiplication of two Gaussian function, division of two Gaussian
functions can also be written in the usual Gaussian form with a scaling constant such
that:

N (x;µ1, γ
2
1)/N (x;µ2, γ

2
2) =

γ22 N (x;µ12, γ
2
12)

(γ22 − γ21) N (µ1;µ2, γ22 − γ21)
(5.5)
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where

1

γ212
=

1

γ21
+

1

γ22

µ12 = γ212

(
µ1

γ21
− µ2

γ22

)
.

(5.6)

The posterior density for the linear model given in (5.2) can be expressed in terms of
the likelihood function and the prior distribution as follows:

p(x|y) =
p(x, y)

p(y)

=
p(y|x)p(x)∫
x

p(x, y) dx

=
p(y|x)p(x)∫

x
p(y|x)p(x) dx

=
N (y;x, σ2

n)p(x)∫
x
N (y;x, σ2

n)p(x) dx
.

(5.7)

The numerator of the posterior can be rewritten as

N (y;x, σ2
n)p(x) = N (x; y, σ2

n)p(x)

= N (x; y, σ2
n)
(
p1N (x;µ1, γ

2
1) + p2N (x;µ2, γ

2
2)
)
.

(5.8)

From (5.3), it should be noted that

N (x; y, σ2
n)N (x;µi, γ

2
i ) = N (y;µi, σ

2
n + γ2i )N (x; µ̂i, γ̂

2
i ) (5.9)

where i = {1, 2}, 1
γ̂2i

= 1
σ2
n

+ 1
γ2i

and µ̂i = γ̂2i

(
y
σ2
n

+ µi
γ2i

)
. It should be noted that µ̂i

and γ̂2i are the mean and variance of the mixture components. Hence, the numerator
of p(x|y) becomes

N (y;x, σ2
n)p(x) = p1N (y;µ1, σ

2
n+γ21)N (x; µ̂1, γ̂

2
1)+p2N (y;µ2, σ

2
n+γ22)N (x; µ̂2, γ̂

2
2).

(5.10)

The denominator of p(x|y) given in (5.7) is a constant obtained by integrating (5.10)
with respect to variable x. Since each N (x; µ̂i, γ̂

2
i ) term has unit area, the denomina-

tor can be simplified to∫
x

N (y;x, σ2
n)p(x) dx = p1N (y;µ1, σ

2
n + γ21) + p2N (y;µ2, σ

2
n + γ22). (5.11)
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Combining these results, we have the following

p(x|y) =
N (y;x, σ2

n)p(x)∫
x
N (y;x, σ2

n)p(x) dx

=
p1N (y;µ1, σ

2
n + γ21)

p1N (y;µ1, σ2
n + γ21) + p2N (y;µ2, σ2

n + γ22)
N (x; µ̂1, γ̂

2
1)

+
p2N (y;µ2, σ

2
n + γ22)

p1N (y;µ1, σ2
n + γ21) + p2N (y;µ2, σ2

n + γ22)
N (x; µ̂2, γ̂

2
2).

(5.12)

By defining

p̂i =
piN (y;µi, σ

2
n + γ2i )

p1N (y;µ1, σ2
n + γ21) + p2N (y;µ2, σ2

n + γ22)
(5.13)

for i = {1, 2}, we can express the posterior density as follows:

p(x|y) = p̂1N (x; µ̂1, γ̂
2
1) + p̂2N (x; µ̂2, γ̂

2
2). (5.14)

From the last relation, it is clear that the posterior distribution is a mixture of Gaus-
sians with the updated parameters.

Method 2: Posterior Density Calculation Through A Latent Variable Approach

The random variable x can be written as follows:

x =

{
x1 θ = 1

x2 θ = 2
(5.15)

where x ∼ N (x;µi, γ
2
i ) for i = {1, 2} and θ is the latent variable which is inde-

pendent of xi’s. It can be noted that the density of random variable x appearing in
Methods 1 and 2 is indeed the same, i.e. the mixture of Gaussians.

The goal is to calculate the posterior density p(x|y) = p(y|x)p(x)
p(y) . To do that, we

calculate the posterior for p(x, θ|y) and then marginalize over the random variable θ.

p(x|y) =
2∑
θ=1

p(x, θ|y)

=
2∑
θ=1

p(y|x, θ)p(x, θ)

p(y)

=
2∑
θ=1

p(y|x)p(x, θ)

p(y)

=
2∑
θ=1

p(y|x)p(x|θ)p(θ)
p(y)

.

(5.16)
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It can be noted that

2∑
θ=1

p(y|x)p(x|θ)p(θ)
p(y)

=
2∑
i=1

N (x; y, σ2
n)N (x;µi, γ

2
i )pi

p(y)

=
2∑
i=1

N (y;µi, σ
2
n + γ2i )pi

p(y)
N (x; µ̂i, γ̂

2
i )

(5.17)

where we have used the definition given in (5.3) for Method 1. It is worth to mention
that the final result of (5.17) coincides with the final result of Method 1.

The mean and variance of the posterior distribution can be written as follows:

E[x|y] = p̂1µ̂1 + p̂2µ̂2

= x̄

var[x|y] = E[(x− x̄)2|y]

= E[x2|y]− x̄2

= Eθ[Ex[x2|y, θ]]− x̄2

= p̂1Ex[x2|y, θ = 1] + p̂2Ex[x2|y, θ = 2]− x̄2

= p̂1(γ̂
2
1 + µ̂2

1) + p̂2(γ̂
2
2 + µ̂2

2)− x̄2

= p̂1γ̂
2
1 + p̂2γ̂

2
2 + [p̂1µ̂

2
1 + p̂2µ̂

2
2 − (p̂1µ̂1 + p̂2µ̂2)

2].

(5.18)

The mean and variance of the posterior distribution are the only two parameters re-
quired to approximate the posterior distribution with a Gaussian distribution. As
noted later, this fact is utilized in the expectation propagation method which is a
method for approximate posterior calculation.

Extension to Mixture of Gaussian Random Vectors

We first present a short brief for finding out the posterior distribution of a random
vector x which is observed under a linear system model with additive white Gaussian
noise w. For this purpose, let’s consider the linear system below:

y = Ax + w (5.19)

where y ∈ Rm, x ∈ Rn is known to have Gaussian distribution N (x;µx,Cx) and w

is assumed to be independent of x with distribution N (w; 0,Cn) where Cn = σ2
nI.

In this system model, x and w are Gaussian, then y is also Gaussian, that is

y ∼ N (y;µy,Cy) (5.20)

where

µy = Aµx

Cy = ACxAT + Cn.
(5.21)
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The conditional density p(x|y) is also Gaussian which allows us to interpret x|y such
that

x|y ∼ N (x|y;µx|y,Cx|y) (5.22)

where

µx|y = µx + CxyCy
−1(y − µy)

Cx|y = Cx −CxyCy
−1Cxy

T

Cxy = CxAT .

(5.23)

In practice, the prior parameters q = [µx,Cx,Cn] are rarely known and methods
such as expectation-maximization algorithm [41], [42] are used to compute these un-
known statistical parameters. However, for the sake of simplicity we treat these prior
parameters as fixed and known so that there is no need to estimate them while simul-
taneously recovering the signal.

Our aim is to recover x ∈ Rn from noisy linear measurements by finding out the
posterior distribution of x given y. To do this, we need to define a method for finding
p(x|y). Bayes’ rule is the foundation of Bayesian inference. It provides a means
of updating the distribution from the prior to the posterior distribution in the light of
the observed data. p(x|y) is the joint posterior distribution that expresses uncertainty
about parameter set x after taking both the prior and the observation data into account.

In theory, the posterior distribution captures all information inferred from the data.
This posterior is then used to make optimal decisions, or to select between models
[43]. Now, let’s assume that the random vector x is a mixture of two Gaussian vector,
that is

p(x) = p1N (x;µ1,C1) + p2N (x;µ2,C2) (5.24)

where N (x;µi,Ci) = 1√
det(2πCi)

e−
1
2
(x−µi)

TCi
−1(x−µi) for i = {1, 2}. The parameter

vectors µi and Ci are the mean and covariance matrix of random vector x, respec-
tively.

Our goal is again to derive the posterior distribution of x given the vector y. Let’s
start by using the definition of the posterior density:

p(x|y) =
p(x,y)

p(y)

=
p(y|x)p(x)∫
x

p(x,y) dx

=
p(y|x)p(x)∫

x
p(y|x)p(x) dx

=
N (y; Ax,Cn)p(x)∫

x
N (y; Ax,Cn)p(x) dx

=
N (y; Ax,Cn)[p1N (x;µ1,C1) + p2N (x;µ2,C2)]∫

x
N (y; Ax,Cn)p(x) dx

.

(5.25)
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Using the identity for multiplication of Gaussian densities, we can express the com-
ponent i, where i = {1, 2}, appearing in the numerator of p(x|y) as follows:

N (y; Ax,Cn)N (x;µi,Ci) = N (y; Aµi,Si)N (x; µ̂i, Ĉi) (5.26)

where

Si = ACiA
T + Cn

µ̂i = µi + CiA
TS−1

i (y −Aµi)

Ĉi = Ci −CiA
TS−1

i ACi.

(5.27)

It should be noted that µ̂i is the mean of the posterior density for the component i, i.e.,
µ̂i is the estimate produced by the linear minimum mean square error (LMMSE) filter,
i.e. Wiener filter, given that the observation belongs to the component i. Similarly,
the matrix Ĉi is the error covariance matrix associated with the estimate µ̂i.

By progressing similar to the scalar case, we can express the posterior density as

p(x|y) = p̂1N (x; µ̂1, Ĉ1) + p̂2N (x; µ̂2, Ĉ2) (5.28)

where

p̂i =
piN (y; Aµi,Si)

p1N (y; Aµ1,S1) + p2N (y; Aµ2,S2)
(5.29)

for i = {1, 2}.

The mean and covariance of the posterior distribution can be expressed as follows:

E[x|y] = p̂1µ̂1 + p̂2µ̂2

= x̄

cov[x|y] = E[(x− x̄)(x− x̄)T |y]

= E[xxT |y]− x̄x̄T

= Eθ[Ex[xxT |y, θ]]− x̄x̄T

= p̂1Ex[xxT |y, θ = 1] + p̂2Ex[xxT |y, θ = 2]− x̄x̄T

= p̂1(Ĉ1 + µ̂1µ̂1

T
) + p̂2(Ĉ

2
2 + µ̂2µ̂2

T
)− x̄x̄T

= p̂1Ĉ1 + p̂2Ĉ2 + [p̂1µ̂1µ̂1
T + p̂2µ̂2µ̂2

T − (p̂1µ̂1 + p̂2µ̂2)(p̂1µ̂1 + p̂2µ̂2)T ].

(5.30)

5.2 Formulation of the Sparse Channel Recovery for Linear Observation Mod-
els

In this section, we present an approximate Bayesian inference algorithm, expectation
propagation [11], [12], [13], to estimate channel posterior density from noisy linear
measurements for three special cases:
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• when prior distribution of the channel taps are uncorrelated Gaussian,

• when prior distribution of the channel taps are Bernoulli-Gaussian and

• when prior distribution of the channel taps are correlated Gaussian.

5.2.1 Case 1: Estimation of Sparse Channels by Expectation Propagation
Method When Prior Distribution of the Channel Taps are Uncorrelated
Gaussian

Consider the following linear system model:

y = Ax + w (5.31)

where y ∈ Rm and random vector w is jointly Gaussian distributed withN (w; 0,Cn)

where Cn = σ2
nI. x ∈ Rn is a sparse random vector whose ith entry, say xi, is defined

as a Gaussian mixture random variable. More specifically, the random variable xi is
defined as

p(xi) = pLN (xi;µL, γ
2
L) + pHN (xi;µH , γ

2
H). (5.32)

Here, pL and pH denote the probability of selecting xi from the Gaussian component
with low and high variance, respectively. It is implicitly assumed that γ2L � γ2H .
The mixture component with the low variance denotes the channel coefficients which
are not active. Similarly, the mixture component with the large variance models the
active channel coefficients.

Typically, the number of active components is around pH×n where n is the length of
vector x. The channel coefficients forming the vector x is assumed to be independent
from each other. The prior distribution for the unknown channel vector x can then be
written as

p(x) = p(x1, x2, ..., xn) =
n∏
i=1

p(xi) =
n∏
i=1

(
pLN (xi;µL, γ

2
L) + pHN (xi;µH , γ

2
H)
)
.

(5.33)

Some possible distributions for the two dimensional case are provided in Figure 5.3.
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Figure 5.3: Pdf for x = [x1 x2]
T where xi’s for i = {1, 2} are assumed to be i.i.d.

and composed of mixture of Gaussians

It should be noted that the random vector x is a mixture of 2n components. It is clear
that computational complexity for posterior calculation, i.e., determining the "right"
mixture components, increases when n increases. Our goal is to estimate the channel
coefficients of the vector x given the observation vector y. We start with the posterior
density calculation. The posterior density can be expressed as follows:

p(x|y) =
p(x,y)

p(y)

=
p(y|x)p(x)∫
x

p(x,y) dx

=
p(y|x)p(x)∫

x
p(y|x)p(x) dx

=
N (y; Ax,Cn)p(x)∫

x
N (y; Ax,Cn)p(x) dx

=
N (y; Ax,Cn)

∏n
i=1 (pLN (xi;µL, γ

2
L) + pHN (xi;µH , γ

2
H))∫

x
N (y; Ax,Cn)p(x) dx

.

(5.34)
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Since the joint density in the numerator of p(x|y) is difficult to handle, we use a
sequential method, called expectation propagation, to approximate this density with
a computationally tractable density.

The approximation process starts with the assumption that all components of the ran-
dom vector x, that is {x1, x2, ..., xn}, except the ith component say xi, is sufficiently
well approximated with a Gaussian distribution with a known mean and variance. If
this is the case, the joint density p(x,y) is approximated as follows:

p(x,y) ≈ N (y; Ax,Cn)

(
n∏

k=1,k 6=i

N (xk;µk, γ
2
k)

)
(
pLN (xi;µL, γ

2
L) + pHN (xi;µH , γ

2
H)
)
. (5.35)

It should be noted that after this approximation, the joint distribution is a mixture of
only two components and we can write the approximate distribution as

p(x,y) ≈ N (y; Ax,Cn) (pLN (x;µL,CL) + pHN (x;µH,CH)) (5.36)

where

µL =
[
µ1 µ2 . . . µi−1 µL µi+1 . . . µn

]T
µH =

[
µ1 µ2 . . . µi−1 µH µi+1 . . . µn

]T
CL = diag(γ21 , γ

2
2 , ..., γ

2
i−1, γ

2
L, γ

2
i+1, ..., γ

2
n)

CH = diag(γ21 , γ
2
2 , ..., γ

2
i−1, γ

2
H , γ

2
i+1, ..., γ

2
n).

(5.37)

Substituting, the right hand side of (5.36) for p(x,y) into p(x|y) = p(x,y)
p(y) , we get

p(x|y) =
p(x,y)

p(y)
≈ N (y; Ax,Cn) (pLN (x;µL,CL) + pHN (x;µH,CH))∫

x
N (y; Ax,Cn) (pLN (x;µL,CL) + pHN (x;µH,CH)) dx

.

(5.38)

Using the results obtained in the previous section titled "Extension to Mixture of
Gaussian Random Vectors", the posterior density of the approximate relation given in
the right hand side of (5.38) can be written as

p(x|y) = p̂LN (x; µ̂L, ĈL) + p̂HN (x; µ̂H, ĈH) (5.39)

where

Si = ACiA
T + Cn

µ̂i = µi + CiA
TS−1

i (y −Aµi)

Ĉi = Ci −CiA
TS−1

i ACi

(5.40)

and

p̂i =
piN (y; Aµi,Si)

pLN (y; AµL,SL) + pHN (y; AµH,SH)
(5.41)

50



for i = {L,H}. Once the posterior density is approximated, the density of ith com-
ponent of x, xi, is updated using this approximation. To update the density of xi, the
joint density of x1, x2, ..., xn given the observation y, is marginalized and p(xi|y) is
retrieved. It can be easily seen that

p(xi|y) = p̂LN (xi; µ̂L,i, γ̂
2
L,i) + p̂HN (xi; µ̂H,i, γ̂

2
H,i). (5.42)

In the final relation, µ̂L,i is the ith entry of the vector µ̂L and γ̂2L,i is the (i, i) element
of matrix ĈL. Similar definitions apply for µ̂H,i and γ̂2H,i. The mean and variance of
p(xi|y) can be written as

E[xi|y] = p̂Lµ̂L,i + p̂H µ̂H,i

var[xi|y] = p̂Lγ̂
2
L,i + p̂H γ̂

2
H,i + [p̂Lµ̂

2
L,i + p̂H µ̂

2
H,i − (p̂Lµ̂L,i + p̂H µ̂H,i)

2].
(5.43)

The final step of expectation propagation is to approximate the updated density of
xi given the observation y with the Gaussian distribution with the mean E[xi|y] and
variance var[xi|y]. Once, the posterior distribution of xi is updated, the expectation
propagation process continues with the update of the next random variable, say, xi+1.

The process terminates once the conducted updates do not result in a significant
change, i.e., until the convergence to the fixed point of the iterations.

In the expectation propagation method, the computationally most complex operation
is the computation of the inverse of the matrix Si = ACiA

T +Cn for i = {L,H}.
It is possible to reduce the computation complexity with the application of matrix
inversion lemma which is provided in Appendix A.

Clairvoyant Estimator

If we have knowledge about the type of the channel coefficients, that is whether each
channel coefficient is generated from the low variance or high variance Gaussian
distribution, then we would have a better estimate than the approximate Bayesian
inference algorithm. Let’s assume that we have the clairvoyant knowledge about the
type of the channel coefficients such that

x ∼ N (x;µx,Cx) (5.44)

where

µx =
[
µ1 µ2 . . . µn

]T
Cx = diag(γ21 , γ

2
2 , . . . , γ

2
n)

(5.45)

and

µi =

{
µL if ith tap is L

µH if ith tap is H
(5.46)
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γ2i =

{
γ2L if ith tap is L

γ2H if ith tap is H
(5.47)

for i = {1, 2, . . . , n}. Then, the joint density can be written as

pclairvoyant(x,y) = N (y; Ax,Cn)N (x;µx,Cx). (5.48)

By using the results obtained in the previous section titled "Extension to Mixture of
Gaussian Random Vectors", the posterior density can be rewritten as

pclairvoyant(x|y) =
p(x,y)

p(y)
= N (x; µ̂x, Ĉx) (5.49)

where

S = ACxAT + Cn

µ̂x = µx + CxATS−1(y −Aµx)

Ĉx = Cx −CxATS−1ACx.

(5.50)

Clairvoyant knowledge on the channel taps does not always exist in practice, however
clairvoyant estimator serves a lower bound for RMSE.

5.2.1.1 Performance Comparison of Sparse Channel Estimation Methods

In this section, we first provide the simulation result which presents a general work-
ing principle of the expectation propagation method and then provide a performance
comparison of the sparse channel estimation techniques studied in this thesis.

We have implemented the expectation propagation algorithm by taking A to be m×
n Gaussian matrix and SNR at a fixed value. A sample output of the algorithm is
illustrated in Figure 5.4. Stem-function is used to illustrate the true and estimated
coefficient of each channel tap. True values for the coefficients are shown with crosses
and circles show the estimates at a given cycle. The length of x-axis is equal to the
channel length n and y-axis shows the true and estimated coefficients of the channel
taps. Simulation result shows us that under the given a-priori parameters, channel is
recovered at the end of approximately 50 cycles with RMSE ≈ 0.94.

We should choose smaller pH values in order to have sparser channels. Figure 5.5 is
the evidence of this deduction. In Figure 5.4 pH is set to 0.5, whereas it is set to 0.2

in Figure 5.5 and as a result of this, sparsity level of the estimated channel in Figure
5.5 is lower than the previous figure.
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Figure 5.4: Performance analysis of approximate Bayesian inference algorithm

Figure 5.5: Performance analysis of approximate Bayesian inference algorithm

53



In Figure 5.6, measurement matrix A is drawn to be anm×n Toeplitz structured ma-
trix which uses length-7 MPS code as the training sequence. x ∈ Rn is a sparse chan-
nel where channel taps are drawn from a mixture of a narrow Gaussian N (µL, γ

2
L)

and a broad Gaussian N (µH , γ
2
H). Stopping criterion in OMP algorithm is set to

channel sparsity level k where k is calculated by considering the estimated channel
taps satisfying condition |x̂i| > 0.1. Making a good guess for the parameter λ in the
LASSO method is difficult due to the channel distribution. Because of this reason,
for each iteration, λ is chosen such that its value is consistent with the l1 norm of
the sparse channel. Measurements are corrupted by additive white Gaussian noise w

with N (0, σ2
nI).

Parameter settings are as follows: n = 50, lt = 7, m = 56, pH = 0.2, (µL = 0, γ2L =

0.01), and (µH = 3, γ2H = 4). As mentioned before, pH should be chosen small
enough to construct a sparse channel. In according to our setting where pH = 0.2,
nearly 80% of the channel taps are chosen from the narrow Gaussian N (0, 0.01)

assuring sparsity. For each curve, 1000 independent Monte Carlo trials have been
conducted.

Figure 5.6 presents the channel estimation error that uses RMSE standard for the
LS, MMSE, LASSO, OMP, expectation propagation method and clairvoyant estima-
tor. As mentioned before, note that performances of the OMP and LASSO methods
depend on the selection of the stopping criteria used for halting the iterations and
parameter λ, respectively. From the figure, we can conclude that performance of
the expectation propagation method is better than the classical estimation techniques.
This is due to fact that it takes advantage of the a-priori knowledge of the channel
distribution.

In the same figure we also provide the estimation performance when clairvoyant
knowledge of the channel coefficients is available. The clairvoyant covariance ma-
trices contain the true second-order statistical information so that if one knows the
locations of the active taps of the channel, then this would be the best estimator that
can be realized. Clairvoyant knowledge on the channel taps does not always exist
in practice, however this algorithm presents a performance bound for the other algo-
rithms.
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Figure 5.6: Performance comparison of different channel estimation methods at dif-
ferent SNR’s

5.2.2 Case 2: Estimation of Sparse Channels by Expectation Propagation Method
When Prior Distribution of the Channel Taps are Bernoulli-Gaussian

Let’s assume that the prior distribution of channel tap x is composed of a mixture of
Dirac delta and Gaussian, then p(x) can then be written as follows:

p(x) = p1δ(x) + p2N (x;µ, γ2) (5.51)

where N (x;µ, γ2) = 1√
2πγ2

e−
(x−µ)2

2γ2 is the univariate Gaussian distribution with the

component probability p2 where p1 + p2 = 1.

Figure 5.7: Mixture of Dirac Delta and Gaussian

Parameter p2 can be thought as the sparsity level i.e., the ratio of k/n where k is the
number of non-zero coefficients in x. Note that this is the specific case of (5.1) where
γ21 → 0 such that the narrow distribution is taken as a Dirac delta and the broader one
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is taken as N (x;µ, γ2). Some possible distributions for the one dimensional case are
provided in Figure 5.8.

Figure 5.8: Pdf for x ∈ R1 where x is composed of Dirac Delta and Gaussian distri-
bution

Now, let’s define approximate Bayesian inference algorithm to recover the Bernoulli-
Gaussian modelled sparse channels. The general scenario has similar steps as in the
case of mixture of Gaussians. Consider the following linear system model:

y = Ax + w (5.52)

where y ∈ Rm, random vector w is jointly Gaussian distributed with N (w; 0,Cn)

where Cn = σ2
nI and x ∈ Rn is a random vector whose ith entry, say xi, is composed

of a mixture of Dirac delta and Gaussian. More specifically, prior distribution of xi is
defined as

p(xi) = pLδ(xi) + pHN (xi;µH , γ
2
H). (5.53)

Here, pL and pH denote the probability of selecting xi from the Bernoulli and the
Gaussian component, respectively. The component with the Bernoulli distribution
denotes the channel coefficients which are not active. Similarly, the component with
the Gaussian distribution models the active channel coefficients. Typically, the num-
ber of active components is around pH × n where n is the length of vector x.

The channel coefficients forming the vector x is assumed to be independent from each
other. The prior distribution for the unknown channel vector x can then be written as

p(x) = p(x1, x2, ..., xn) =
n∏
i=1

p(xi) =
n∏
i=1

(
pLδ(xi) + pHN (xi;µH , γ

2
H)
)
. (5.54)

Some possible distributions for the two dimensional case are provided in Figure 5.9.
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Figure 5.9: Pdf for x = [x1 x2]
T where xi’s for i = {1, 2} are assumed to be i.i.d.

and composed of Dirac Delta and Gaussian distribution

Our goal is to estimate the channel coefficients of the vector x given the observation
vector y. We start with the posterior density calculation. The posterior density can be
expressed as follows:

p(x|y) =
p(x,y)

p(y)

=
p(y|x)p(x)∫
x

p(x,y) dx

=
p(y|x)p(x)∫

x
p(y|x)p(x) dx

=
N (y; Ax,Cn)p(x)∫

x
N (y; Ax,Cn)p(x) dx

=
N (y; Ax,Cn)

∏n
i=1 (pLδ(xi) + pHN (xi;µH , γ

2
H))∫

x
N (y; Ax,Cn)p(x) dx

.

(5.55)

Since the joint density in the numerator of p(x|y) is difficult to handle, we use ex-
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pectation propagation method to approximate this density. The approximation pro-
cess starts with the assumption that all components of the random vector x, that is
{x1, x2, ..., xn}, except the ith component say xi, is sufficiently well approximated
with a Gaussian distribution with a given mean and variance. If this is the case, the
joint density p(x,y) can be approximated as follows:

p(x,y) ≈ N (y; Ax,Cn)

(
n∏

k=1,k 6=i

N (xk;µk, γ
2
k)

)(
pLδ(xi) + pHN (xi;µH , γ

2
H)
)

= N (y; Ax,Cn)

(
n∏

k=1,k 6=i

N (xk;µk, γ
2
k)

)
pLδ(xi)

+N (y; Ax,Cn)pHN (x;µH,CH)

= N (y; AsLxsL ,Cn)N (xsL ;µL,CL)pLδ(xi)

+N (y; AsHxsH ,Cn)pHN (xsH ;µH,CH)

(5.56)

where

AsL =
[
a1 a2 . . . ai−1 ai+1 . . . an

]
AsH = A =

[
a1 a2 . . . ai−1 ai ai+1 . . . an

]
xsL =

[
x1 x2 . . . xi−1 xi+1 . . . xn

]T
xsH = x =

[
x1 x2 . . . xi−1 xi xi+1 . . . xn

]T
µL =

[
µ1 µ2 . . . µi−1 µi+1 . . . µn

]T
µH =

[
µ1 µ2 . . . µi−1 µH µi+1 . . . µn

]T
CL = diag(γ21 , γ

2
2 , ..., γ

2
i−1, γ

2
i+1, ..., γ

2
n)

CH = diag(γ21 , γ
2
2 , ..., γ

2
i−1, γ

2
H , γ

2
i+1, ..., γ

2
n).

(5.57)

The vector ai is the ith column of A that is used to generate y. Substituting, (5.56)
for p(x,y) into p(x|y) = p(x,y)

p(y) , we get

p(x|y) =
p(x,y)

p(y)

≈ 1

K
N (y; AsLxsL ,Cn)N (xsL ;µL,CL)pLδ(xi)

+
1

K
N (y; AsHxsH ,Cn)pHN (xsH ;µH,CH).

(5.58)

Here K is a normalizing constant which is equal to the integral of the numerator over
x. Using the results obtained in the previous section titled "Extension to Mixture of
Gaussian Random Vectors", the posterior density of the approximate relation given in
the right hand side of (5.58) can be written as

p(x|y) = p̂LN (xsL ; µ̂L, ĈL)δ(xi) + p̂HN (xsH ; µ̂H, ĈH) (5.59)
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where

Si = AsiCiA
T
si

+ Cn

µ̂i = µi + CiA
T
si
S−1

i (y −Asiµi)

Ĉi = Ci −CiA
T
si
S−1

i AsiCi

(5.60)

and

p̂i =
piN (y; Asiµi,Si)

pLN (y; AsLµL,SL) + pHN (y; AsHµH,SH)
(5.61)

for i = {L,H}. Once the posterior density is approximated, the density of ith com-
ponent of x, xi, is updated using this approximation. To update the density of xi, the
joint density of x1, x2, ..., xn given the observation y, is marginalized and p(xi|y) is
retrieved. It can be easily seen that

p(xi|y) = p̂Lδ(xi) + p̂HN (xi; µ̂H,i, γ̂
2
H,i). (5.62)

In the final relation, µ̂H,i is the ith entry of the vector µ̂H and γ̂2H,i is the (i, i) element
of matrix ĈH. The mean and variance of p(xi|y) can be written as

E[xi|y] = p̂H µ̂H,i

var[xi|y] = (p̂H − p̂2H)µ̂2
H,i + p̂H γ̂

2
H,i.

(5.63)

The final step of expectation propagation is to approximate the updated density of
xi given the observation y with the mean E[xi|y] and variance var[xi|y]. Once, the
posterior distribution of xi is updated, the expectation propagation process continues
with the update of the next random variable, say, xi+1.

The process terminates once the conducted updates do not result in a significant
change, i.e., until the convergence to the fixed point of the iterations.

5.2.2.1 Performance Comparison of Sparse Channel Estimation Methods

In this section, we provide the simulation result which presents the performance com-
parison of the LS, MMSE, LASSO, OMP, expectation propagation and clairvoyant
methods which are used for sparse channel estimation purposes.

In the simulation, measurement matrix A is drawn to be an m×n Toeplitz structured
matrix which uses length-7 MPS code as the training sequence. x ∈ Rn is a sparse
channel where channel taps are drawn from a mixture of a Dirac delta and a Gaussian
N (µH , γ

2
H). Stopping criterion in OMP algorithm is set to channel sparsity level k

where k is the total number of estimated channel taps satisfying condition |x̂i| > 0.
Making a good guess for the parameter λ in the LASSO method is difficult due to
the channel distribution. Because of this reason, for each iteration, λ is chosen such
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that its value is consistent with the l1 norm of the sparse channel. Measurements are
corrupted by additive white Gaussian noise w with N (0, σ2

nI).

Parameter settings are as follows: n = 50, lt = 7, m = 56, pH = 0.2, and (µH =

3, γ2H = 4). As mentioned before, pH should be chosen small enough to construct a
sparse channel. When pH = 0.2, nearly 80% of the channel taps are chosen from the
Dirac delta assuring sparsity. For each curve, 1000 independent Monte Carlo trials
have been conducted.

Figure 5.10 presents the channel estimation error (RMSE) for the LS, MMSE, LASSO,
OMP, expectation propagation and clairvoyant methods. As mentioned before, note
that performances of the OMP and LASSO methods depend on the selection of the
stopping criteria used for halting the iterations and parameter λ, respectively. From
this figure, we can conclude that the performance of the expectation propagation al-
gorithm is better than the classical estimation techniques. This is due to fact that it
takes advantage of the a-priori knowledge of the channel distribution.

In the same figure we also provide estimation performance when clairvoyant knowl-
edge of the channel covariance is available. The clairvoyant covariance matrices con-
tain the true second-order statistical information so that if one knows the locations of
the active taps of the channel, then this would be the best estimator that could ever be
realized. Clairvoyant knowledge on the channel taps does not always exist in prac-
tice, however this algorithm presents a performance bound for the other algorithms.
As seen from the figure expectation propagation algorithm results in an estimation
performance that is close to the clairvoyant case.

Figure 5.10: Performance comparison of different channel estimation methods at dif-
ferent SNR’s
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5.2.3 Case 3: Estimation of Sparse Channels by Expectation Propagation
Method When Prior Distribution of the Channel Taps are Correlated
Gaussian

We consider the following Markov chain:

Figure 5.11: Markov chain

The chain contains two states shown with L and H . The transition probabilities be-
tween the states are given as pXY , where pXY is the probability of the transition from
state X to state Y . Then, the transition matrix can be written as:

T =

[
pLL pLH

pHL pHH

]
. (5.64)

The steady-state probabilities of the states, that is πL and πH , can be easily found
through the solution of the following equations:

πLpLH = πHpHL

πL + πH = 1.
(5.65)

The solution can be written as

[
πL

πH

]
= 1

pHL+pLH

[
pHL

pLH

]
. For example, the choice of

pLH = 0.1, pHL = 0.4 results in πL = 0.8 and πH = 0.2. Hence, if the states L andH
represents the channel state with low valued channel taps (non-active taps) and high
valued taps (active taps) respectively, then the number of non-active taps is expected
to be 4 times than the number of active taps. It can be seen that with a suitable choice
of transition probabilities any level of sparsity, in sense of active channel taps, can be
achieved.

If the channel state is H at time n, the probability of switching to the L state for the
first time at the time step n + k, i.e staying in H until n + k − 1 and then switching
to L at the n + k step, is (pHH)k−1pHL. From this distribution, the expected number
of consecutive H states can be calculated as E{number of consecutive H states} =
1

pHL
.

For pLH = 0.1, pHL = 0.4, the expected number of consecutive number of H states,
i.e., the number of steps that the channel remains in H state continuously, is 2.5. For
the same set of parameters, E{number of consecutive L states} = 1

pLH
= 10.
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A typical run of the Markov chain for the pLH = 0.1, pHL = 0.4 can be given as

[0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0].

Here 0 and 1 represents states L and H respectively.

The given channel model is aimed to represent the channels where a long string of
non-active taps are followed by a string of active taps. Such channels may arise in the
environments where the scatters are scarce in number such as underwater channels or
ultra wide band channels.

Our goal in this section is to present a method to estimate channels whose active and
non-active components obey a Markov chain. We focus on Gaussian channels where
ith channel tap, xi for i = {1, 2, . . . , n}, is distributed according the random variable
θi indicating the state of the Markov chain such that

xi ∼

{
N (µL, γ

2
L) θi = L

N (µH , γ
2
H) θi = H

. (5.66)

The joint distribution of x and θ can be written as follows:

p(x,θ) = p(x|θ)p(θ)

=

(
n∏
i=1

p(xi|θi)

)(
p(θ0)

n∏
i=1

p(θi|θi−1)

)

=

(
n∏
i=1

N (xi;µθi , γ
2
θi

)

)(
p(θ0)

n∏
i=1

p(θi|θi−1)

)
.

(5.67)

Similar to the earlier problems, we consider the following linear observation model:

y = Ax + w. (5.68)

Here, the random vector w is jointly Gaussian distributed with N (w; 0,Cn). Our
initial goal is to derive the posterior distribution of x and θ given the vector y.

p(x, θ|y) =
p(x, θ, y)

p(y)

=
p(y|x,θ)p(x,θ)∫
x

p(x,θ,y) dx dθ

=
p(y|x,θ)p(x,θ)∫

x
p(y|x,θ)p(x,θ) dx dθ

=
N (y; Ax,Cn)p(x,θ)∫

x
N (y; Ax,Cn)p(x,θ) dx dθ

=
N (y; Ax,Cn)

(∏n
i=1N (xi;µθi , γ

2
θi

)
)

(p(θ0)
∏n

i=1 p(θi|θi−1))∫
x
N (y; Ax,Cn)p(x,θ) dx dθ

.

(5.69)
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The posterior density of x can be derived by marginalizing p(x,θ|y) over θ. The
posterior computation is not feasible due to exponentially increasing total number of
components. Our aim is to approximate the posterior density calculation with the
expectation propagation method.

We assume that the posterior density of the random variable xi can be approximated
with a Gaussian density. Furthermore, the posterior density of θi is assumed to be
independent from the posterior density of xi. With these assumptions,

p(xi, θi|y) ≈ q(xi, θi|y) = q(xi|y)q(θi|y) (5.70)

where q(.) denotes the approximation to the posterior density. As noted before q(xi|y)

is the Gaussian density with mean µi and variance γ2i . The function q(θi|y) is the
probability mass function for the posterior density of the binary random variable θi.

By utilizing yet another independence assumption, the joint density for the posterior
is approximated as follows:

p(x,θ|y) ≈ q(x,θ|y) =
n∏
i=1

q(xi, θi|y). (5.71)

The expectation propagation aims to refine this approximation sequentially. To do
that, a single component, say ith component, is selected for the refinement process.
The ith component in approximate density given by (5.71) is replaced with the terms
of the ith component appearing in the true posterior density:

p(x,θ|y) ≈ 1

K

(
n∏

k=1,k 6=i

q(xk, θk|y)

)
N (y; Ax,Cn)N (xi;µθi , γ

2
θi

) (p(θi+1|θi)p(θi|θi−1)) . (5.72)

Here, K is a normalizing constant which is equal to the integral of the numerator over
x and θ.

The main idea of this method is to improve the approximate density via the utilization
of terms from the true posterior. It should be noted that the terms from the true poste-
rior establish "connections" between random variables and the joint density given in
(5.72) is no longer multiplication of individual marginals.

1. To update q(xi|y), we find the marginal of the refined approximation, that is we
integrate (5.72) with respect to x except xi (denoted as x\i) and θ.

qu(xi|y) =

(∫
dx\i

1

K

n∏
k=1,k 6=i

q(xk|y)N (y; Ax,Cn)

)
(∫

dθi−1 dθi dθi+1 q(θi−1|y)q(θi+1|y)N (xi;µθi , γ
2
θi

) (p(θi+1|θi)p(θi|θi−1))
)
.

(5.73)
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The second line of (5.73) can be written as∫
dθi−1 dθi dθi+1 q(θi−1|y)q(θi+1|y)N (xi;µθi , γ

2
θi

) (p(θi+1|θi)p(θi|θi−1))

= N (xi;µL, γ
2
L) [γ(L,L, L) + γ(H,L, L) + γ(L,L,H) + γ(H,L,H)]

+N (xi;µH , γ
2
H) [γ(L,H,L) + γ(H,H,L) + γ(L,H,H) + γ(H,H,H)] (5.74)

where

γ(A,B,C) = q(θi−1 = A|y)q(θi+1 = C|y)p(θi+1 = C|θi = B)p(θi = B|θi−1 = A).

(5.75)

Hence, the second line of (5.73) is a mixture of 2 Gaussians. Denoting the mixture of
Gaussians as wLN (xi;µL, γ

2
L) + wHN (xi;µH , γ

2
H) and inserting into (5.73), we get

qu(xi|y) =

∫
dx\i

1

K
N (y; Ax,Cn)[wLN (x;µL,CL) + wHN (x;µH,CH)]

(5.76)
where

µL =
[
µ1 µ2 . . . µi−1 µL µi+1 . . . µn

]T
µH =

[
µ1 µ2 . . . µi−1 µH µi+1 . . . µn

]T
CL = diag(γ21 , γ

2
2 , ..., γ

2
i−1, γ

2
L, γ

2
i+1, ..., γ

2
n)

CH = diag(γ21 , γ
2
2 , ..., γ

2
i−1, γ

2
H , γ

2
i+1, ..., γ

2
n)

wL = γ(L,L, L) + γ(H,L, L) + γ(L,L,H) + γ(H,L,H)

wH = γ(L,H,L) + γ(H,H,L) + γ(L,H,H) + γ(H,H,H).

(5.77)

The integrand of (5.76) can be simplified as

p̂LN (x; µ̂L, ĈL) + p̂HN (x; µ̂H, ĈH) (5.78)

where

Si = ACiA
T + Cn

µ̂i = µi + CiA
TS−1

i (y −Aµi)

Ĉi = Ci −CiA
TS−1

i ACi

(5.79)

and

p̂i =
wiN (y; Aµi,Si)

wLN (y; AµL,SL) + wHN (y; AµH,SH)
(5.80)

for i = {L,H}. Finally, by integrating over x\i, we get

qu(xi|y) = p̂LN (xi; µ̂L,i, γ̂
2
L,i) + p̂HN (xi; µ̂H,i, γ̂

2
H,i). (5.81)
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In the final relation, µ̂L,i is the ith entry of the vector µ̂L and γ̂2L,i is the (i, i) element
of matrix ĈL. Similar definitions apply for µ̂H,i and γ̂2H,i. The mean and variance of
p(xi|y) can be written as

E[xi|y] = p̂Lµ̂L,i + p̂H µ̂H,i

var[xi|y] = p̂Lγ̂
2
L,i + p̂H γ̂

2
H,i + [p̂Lµ̂

2
L,i + p̂H µ̂

2
H,i − (p̂Lµ̂L,i + p̂H µ̂H,i)

2].
(5.82)

2. To update q(θi|y), we find the marginal of the refined approximation, that is we
integrate (5.72) with respect to x and θ except θi (denoted as θ\i).

qu(θi|y) =

(∫
dx

1

K

n∏
k=1,k 6=i

q(xk|y)N (y; Ax,Cn)

)
(∫

dθi−1 dθi+1 q(θi−1|y)q(θi+1|y)N (xi;µθi , γ
2
θi

) (p(θi+1|θi)p(θi|θi−1))
)
. (5.83)

We start with the evaluation of qu(θi = L|y):

qu(θi = L|y) =

(∫
dx

1

K

n∏
k=1,k 6=i

q(xk|y)N (y; Ax,Cn)

)
(∫

dθi−1dθi+1q(θi−1|y)q(θi+1|y)

N (xi;µL, γ
2
L) (p(θi+1|θi = L)p(θi = L|θi−1))

)

=

(∫
dx

1

K

n∏
k=1,k 6=i

q(xk|y)N (y; Ax,Cn)N (xi;µL, γ
2
L)

)
(∫

dθi−1 dθi+1 q(θi−1|y)q(θi+1|y)

(p(θi+1|θi = L)p(θi = L|θi−1))

)

=

(∫
dx

1

K
N (y; Ax,Cn)N (x;µL,CL)

)
wL

=
N (y; AµL,SL) wL

N (y; AµL,SL) wL +N (y; AµH,SH) wH

(5.84)

where the intermediate variables are as defined in Equation (5.77) and (5.79).

Repeating the same calculations for qu(θi = H|y), we get[
qu(θi = L|y)

qu(θi = H|y)

]
∝

[
N (y; AµL,SL) wL

N (y; AµH,SH) wH

]
. (5.85)

65



From these results, the refined density is found as below.[
qu(θi = L|y)

qu(θi = H|y)

]
=

[
p̂L

p̂H

]
. (5.86)

5.2.3.1 Performance Comparison of Sparse Channel Estimation Methods

We have implemented the expectation propagation algorithm by taking the measure-
ment matrix A to be an m × n Toeplitz structured matrix which uses length-7 MPS
code as the training sequence. x ∈ Rn is a sparse channel whose active and non-active
components obey a Markov chain. Channel taps are drawn from a narrow Gaussian
N (µL, γ

2
L) or a broad Gaussian N (µH , γ

2
H). Stopping criterion in OMP algorithm

is set to channel sparsity level k where k is calculated by considering the estimated
channel taps satisfying condition |x̂i| > 0.1. Making a good guess for the parameter
λ in the LASSO method is difficult due to the channel distribution. Because of this
reason, for each iteration, λ is chosen such that its value is consistent with the l1 norm
of the sparse channel. Measurements are corrupted by additive white Gaussian noise
w with N (0, σ2

nI).

Parameter settings are as follows: n = 50, lt = 7, m = 56, pH = 0.2, πH = 0.2,
pHL = 0.4, pLH = 0.1, (µL = 0, γ2L = 0.01), and (µH = 3, γ2H = 4). For each curve,
1000 independent Monte Carlo trials have been conducted.

Figure 5.12 presents the channel estimation error that uses RMSE standard for the
LS, MMSE, LASSO, OMP, expectation propagation method, expectation propagation
method modified for the Markov chains and clairvoyant case. As mentioned before,
note that performances of the OMP and LASSO methods depend on the selection
of the stopping criteria used for halting the iterations and parameter λ, respectively.
From the figure, we can conclude that performance of the expectation propagation
method modified for the Markov chains is better than the rest of the techniques except
the clairvoyant estimator, as expected.
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Figure 5.12: Performance comparison of different channel estimation methods at dif-
ferent SNR’s when channel taps are correlated
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CHAPTER 6

CONCLUSION

In order to provide reliability and high data rates at the receiver, a communication
system needs an accurate estimate of the channel. In this thesis, our focus is the es-
timation of sparse channels. For sparse channels, among the large number of entries,
only a small portion of them is significantly different from zero and by taking advan-
tage of the sparsity, the channel impulse response can be recovered from relatively
small number of received data and training sequences [8].

The conventional linear least squares solution to this problem is generally non-sparse.
To obtain sparse solutions, there is a need for more sophisticated algorithms. Recent
studies have demonstrated that, in many cases of interest, there are algorithms that
can find good solutions to sparse approximation problems in a reasonable time.

Mathematically, the sparsest channel estimation can be obtained by solving the l0
sparse constraint problem. However, finding the sparsest solution is an NP-Hard com-
binatorial problem [26]. In order to find a suboptimal but a sufficient sparse solution,
several greedy algorithms and convex relaxation methods have been proposed. Their
goal is to obtain not only an accurate but also the sparsest possible estimate.

OMP [30] is the simplest effective algorithm among the greedy suboptimal methods.
We have mentioned that OMP relies on picking the atoms of the measurement matrix
A that has the maximum correlation with the residual. However, in order to generate
a set of distinct sparse approximations, a different approach is needed to randomize
the choice of the next atom. Rather than choosing the atom that maximizes the corre-
lation, one can choose the atom at random with a probability proportional to |ai

T yt|
which is the case in [37].

We have declared that the stopping criterion of the greedy algorithms can consist of
either a limit on the number of iterations, which also limits the number of non-zeros
in x̂, or a requirement that y ≈ Ax̂ in some sense.

The major advantages of OMP algorithm are such that it is fast and easy to implement.
However, according to the sufficient condition developed by Tropp and Gilbert in
[30], OMP suffers from Mutual Incoherent Property (MIP) and interference due to
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coherency. As a result of large MIP, it is possible to find an inaccurate estimate.

The convex relaxation based sparse channel estimation methods find signal represen-
tations in over-complete dictionaries and reconstructs the channel by minimizing the
l1 norm. They work correctly as long as the RIP is satisfied. They solve the optimiza-
tion problem by linear programming, however their complexity is very high and hard
to implement.

Greedy pursuits and convex optimization approaches are computationally practical
and lead to provably correct solutions under well defined conditions. Furthermore,
approximate Bayesian estimation methods can also be used to handle sparse and
sparse clustered channels. If additional information on channel taps are available
for example if the channel taps are composed of a mixture of Gaussians, an approxi-
mate Bayesian inference algorithm, namely expectation propagation, results in a more
accurate estimate. Simulation results ensure that performance of the approximate
Bayesian inference approach is close to the case where clairvoyant knowledge of the
channel covariance is available.
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APPENDIX A

EFFICIENT IMPLEMENTATION OF EXPECTATION
PROPAGATION BASED SPARSE CHANNEL ESTIMATION

METHOD

The main computational reduction tool is the application of matrix inversion lemma
for the inversion of matrices involved in the calculations. The matrix inversion lemma
can be written as follows:

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1, (A.1)

whereA, U , C and V all denote matrices of compatible sizes.

Here, we use the special case of the lemma for A = AT (symmetric A matrix) and
UCV = cvvT where c is a scalar and v is a column vector

(A+ cvvT )−1 = A−1 − (A−1v)(A−1v)T

1
c

+ vTA−1v
. (A.2)

In the expectation propagation method, the computationally most complex operation
is the computation of the inverse of the matrix Si = ACiA

T +Cn for i = {L,H},
(see (5.40)). It should be remembered that Ci is the covariance matrix at an itera-
tion of the expectation propagation method and it is a diagonal matrix with current
variance values on its diagonal.

It can be noted from (5.40) that at an iteration of expectation propagation, the inverses
of SL = ACLA

T + Cn and SH = ACHA
T + Cn are calculated. It should be

noted thatCL andCH only differ at a single entry, which is the diagonal entry whose
index corresponds to index of the channel tap whose distribution is being refined by
expectation propagation.

If we call, Cprev = diag(γ21 , γ
2
2 , ..., γ

2
n) as the covariance matrix of the previous ex-

pectation propagation step, then to update ith random variable, say xi, we need to form
CL = diag(γ21 , γ

2
2 , ..., γ

2
i−1, γ

2
L, γ

2
i+1, ..., γ

2
n), CH = diag(γ21 , γ

2
2 , ..., γ

2
i−1, γ

2
H , γ

2
i+1, ..., γ

2
n)

and insert into SL and SH matrices. As an example, the matrix SL = ACLA
T +Cn
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can be written as

SL = ACprevA
T +Cn + (γ2L − γ2i )aiaiT , (A.3)

where ai is ith column ofA. If the inverse of Sprev = ACprevA
T +Cn is available

from the earlier iteration of expectation propagation, then

S−1L = S−1prev −
(S−1prevai)(S

−1
prevai)

T

1
(γ2L−γ

2
i )

+ aiTS
−1
prevai

. (A.4)

Hence, calculation of the required inverse can be accomplished with a rank-1 update
on earlier inverse matrix. This can lead to significant computation reductions espe-
cially when the number of unknowns, i.e. dimension of the matrix S, is large. Similar
comments also apply to S−1H .

It can be noted that at each iteration of expectation propagation, two rank-1 updates
for the calculation ofS−1L andS−1H and an another rank-1 update to form the inverse of
Sfinal = ACfinalA

T + Cn with Cfinal = diag(γ21 , γ
2
2 , ..., γ

2
i−1, γ

2
final, γ

2
i+1, ..., γ

2
n)

where γ2final is the variance of ith random variable after refined as shown in (5.42).
The inverse of Sfinal becomes S−1prev in the next iteration.

As a summary, with the application of matrix inversion lemma the computation com-
plexity of each expectation propagation iteration reduces from O(n3) to O(n2). The
reduction can be very significant for n, say, greater than 10 which is almost always
the case for the sparse channel estimation.
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