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ABSTRACT 

IDENTIFICATION OF INERTIAL SENSOR ERROR PARAMETERS 

Altınöz, Bağış 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Kemal Leblebicioğlu 

September 2015, 169 Pages 

Inertial sensors (gyroscopes and accelerometers) that are used in navigation systems 

have distinct error characteristics such as bias, scale factor, random walk, etc. 

Calibration and characterization tests are done with 2 or 3 axes rate tables in order to 

identify these errors. It is possible to utilize error characteristics of these devices, and 

the navigation accuracy is directly dependent on the accuracy of this identification 

process. In this thesis, inertial sensor error parameters are identified by a membership 

function based method which also uses Allan deviation parameters. Additionally, 

traditional line method is used to identify random error parameters. Different types of 

sensors are modeled according to the identified parameters and Allan deviation 

curves of simulated and real data are compared. Error identification techniques are 

used to decrease errors in fiber optic gyroscope. 

Keywords: Inertial sensors, quantization error, fiber optic gyroscope, error 

compensation, membership functions ,Allan deviation. 
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ÖZ 

ATALETSEL SENSÖR HATA PARAMETRELERİNİN 

TANIMLANMASI  

Altınöz, Bağış 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kemal Leblebicioğlu 

Eylül 2015, 169 Sayfa 

Navigasyon sistemlerinde kullanılan ataletsel sensörler (dönüölçerler ve 

ivmeölçerler) sabit kayma, ölçeklendirme katsayısı ve rastgele yürüyüş gibi ayrı hata 

parametrelerine sahiptir. Hata parametrelerinin belirlenmesi için yapılan testler 2 ya 

da 3 eksenli dönü tablalarında gerçekleştirilmektedir. Navigasyon doğruluğu, hata 

belirleme işlemi ile direkt ilişkili olduğundan, bu cihazların hata özelliklerini faydalı 

kılmak mümkündür. Bu tezde, Allan sapma verilerini kullanan üyelik 

fonksiyonlarıyla rastgele hata parametreleri belirlenmiştir. Ek olarak, rastgele 

hataların belirlenmesinde genellikle kullanılan doğru yöntemiyle de hata 

parametreleri belirlenmiştir. Farklı tip sensörler belirlenen hata parametrelerine göre 

modellenmiştir ve gerçek sensör verileri ile benzetim verileri birbirlerine göre 

kıyaslanmıştır. Hata tanımlama yöntemleri fiber optic ataletsel algılayıcı hatalarının 

azaltılması için kullanılacaktır. 

Anahtar Kelimeler: Nicemleme hatası, fiber optik dönüölçer, kalibrasyon, üyelik 

fonksiyonları, Allan sapma yöntemi. 
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CHAPTER 1  
 

 

INTRODUCTION 
 

 

 

1.1 Literature Survey 

 

Navigation is a process that defines position, velocity or direction of a platform using 

information about a movement [1]. Throughout the history, some devices or 

landmarks which are used by human to reach true destination. Ancient people 

observed stars, mosses and anthills to learn their direction. Modern people have 

observed same environmental objects but big advances have been made in navigation 

technology after fabrication of electronic components. Global Navigation Satellite 

System (GNSS), magnetometers, barometers, altimeters and inertial sensors (e.g., 

accelerometers and gyroscopes) are examples of these advanced devices. Inertial 

navigation systems (INS) and GNSS are of great help in navigation, but these 

systems individually have several disadvantages.  

GNSS determines the navigation parameters (e.g., velocity, position and attitude) 

with respect to the satellites, which are in orbit around the earth [2]. GNSS helps to 

produce very accurate navigation parameters but it can be jammed or signals from 

satellites can be very weak to produce true parameters in bad weather or in urban 

areas. In contrast to GNSS, inertial sensors cannot be jammed and always produce 

data.  

IMU is the heart of the navigation process because it gives angular velocity and 

linear acceleration information to INS [1]. Angular velocity data is produced by 

gyroscopes and linear acceleration data is produced by accelerometers. INS 

algorithms integrate gyroscope and accelerometer outputs to generate navigation 
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parameters. Unfortunately, inertial sensor errors degrade the accuracy of navigation. 

These errors are divided into 2 parts: deterministic and random (stochastic) errors 

[3]. Deterministic part is usually the major error source and it depends mostly on 

temperature [4]. Deterministic errors are estimated and compensated through the 

calibration tests [4, 5]. Calibration tests are performed under different temperatures 

with two-axis rate table and a polynomial is obtained for each error source [4, 5]. 

IMU error compensation algorithm parameters are formed according to calibration 

tests. IMU error compensation algorithm is generally responsible from digital to 

physical data conversion, deterministic error degradation and digital filtering [6].  

Random or stochastic errors also have considerable effects on measurement accuracy 

of inertial sensors; therefore, they have to be estimated properly. Random errors can 

be split into two categories: uncorrelated and correlated [7, 8]. Uncorrelated errors 

have white noise characteristics and correlated errors have random walk 

characteristic. Several models have been suggested [9, 10] to estimate random error 

parameters; but, the most well-known and standard method is Allan deviation 

method [11]. Yet, some important disturbances such as dithering and unexpected 

sinusoidal noises cause slightly inaccurate determination of IMU random error terms 

that are usually ignored ([11]). After obtaining random error parameters from Allan 

deviation curve, a dynamical mathematical model is used to model random errors [7, 

12].  Accurate modeling of inertial sensor errors is essential because a designer meets 

cost and performance requirements according to error models.  

Inertial sensor errors affect the IMU level such as navigation, tactical and control 

grade [2, 13]. Several types of inertial sensors have been produced with different 

technologies over the past two decades. Optical sensors, microelectromechanical 

sensors (MEMS), quartz sensors are widely used in navigation applications [14]. 

MEMS sensors are generally in the control level but optical sensors and quartz 

sensors are generally in the tactical level [14]. Navigation grade sensors are 

evaluated for long-range applications such that ballistic missiles and aircrafts [14].  

 

http://tureng.com/search/standardize
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1.2 Scope of this Study 

 

Scope of this thesis is about identification and modeling of deterministic and 

stochastic errors of an inertial sensor. Some important comments about quantization 

error are given and confusions about this error are clarified. Autocorrelation function 

is generally used for identification of correlation time of bias instability, but 

autocorrelation is also used to investigate sinusoidal noise in this study. Power 

spectral density (PSD) shows different random error sources but it is mainly used to 

identify quantization error. Moreover, traditional line method has some problems; 

therefore, separate errors in their dominant time range give opportunity to identify 

the error parameters accurately. A simple modification to modeling Allan deviation 

curves has been suggested.  Allan deviation curves of simulated data and real data 

are compared for validation of proposed estimation technique. Allan deviation curves 

of fiber optic gyroscopes, ring laser gyroscopes, MEMS and quartz IMUs are 

investigated to determine dominant random error sources for each sensor type. 

Temperature calibration is very important for all sensors and it has to be performed 

in rate tables to find deterministic error parameters. Real data examples demonstrate 

that determined error parameters decrease the total error levels. 

 

1.3 Organization of the Thesis 

 

Gyroscope and accelerometer technologies are explained in CHAPTER 2. Several 

sensor types are discussed in this chapter and general measurement principles are 

given. CHAPTER 3 presents important error terms, which have effect on the 

accuracy of navigation sensors.  CHAPTER 4 investigates several error estimation 

techniques for random error sources. CHAPTER 5 discusses modeling issues and 

difference equations are generated to model an IMU error. In CHAPTER 6, 

stochastic error parameters are identified with two different methods for MEMS, 

quartz, ring laser gyro (RLG), and fiber optic gyro (FOG) sensors. CHAPTER 7 
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discusses temperature calibration for FOG sensor. This chapter also shows the effect 

of temperature calibration on the total error. 
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CHAPTER 2  
 

 

INERTIAL SENSORS 
 

 

 

An IMU contains different components such that gyroscopes, accelerometers, a 

processor and an integrated power supply [2, 13, 14]. Mostly, an IMU has three 

gyroscopes and three accelerometers that are placed perpendicularly to each other 

[2]. Digital filtering, size effect compensation, data type conversions, sampling are 

executed by the processor [14]. Therefore, performance of an IMU does not only 

depend on the capability of inertial sensors, but, true determination of error 

parameters and error compensation algorithm is also important.  In this section, we 

concentrate on several sensor types and their measurement principles and structures.  

2.1 Accelerometers 

 

An accelerometer mainly has four parts to measure the specific force on it [1]. A 

proof mass moves along the case and it is attached to two springs that satisfy free 

movement environment for the proof mass [4]. A pick-off circuit generates electrical 

voltage proportional to applied acceleration [4]. In this way, total acceleration can be 

detected and it can be used for navigation. Figure 1 shows basic parts of an 

accelerometer at equilibrium state. 
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Figure 1 Components of an accelerometer [2] . 

 

In Figure 2 , a force is applied on the accelerometer and proof mass moves left side 

of the case. In that case, 1g value is read from the accelerometer. An accelerometer 

can be used to measure the gravitational acceleration as shown in Figure 3. Specific 

force equation is given by, 

 f a g

f specific force

g gravitational force

a acceleration at the inertial frame

 







 

(2.1) 

 

 

Figure 2 Linear acceleration is applied to accelerometer and it causes positive 

acceleration [13]. 
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Figure 3 Gravitational force measurement of an accelerometer [13]. 

 

There are different types of the accelerometers such as mechanical and solid-state. 

Although, mechanical accelerometers still provide very accurate measurements, 

MEMS accelerometers are widely used because their error levels are acceptable and 

their costs are very low.  

 

Figure 4 Current error levels of different accelerometer technologies [15]. 

 

As shown in Figure 4, solid-state sensors have very low error levels and they will 

replace mechanical sensors in the future. Solid-state accelerometers can be divided 

into three categories: piezoresistive accelerometers, piezoelectric accelerometers, and 

capacitive accelerometers [14]. 
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Capacitive accelerometers work similar to mechanical accelerometers but their 

measurement principle is different. Two 180
 
degrees out-of-phase signals are applied 

to capacitive fingers. Capacitance changes between fingers when force is applied to 

pendulous mass as shown in Figure 5. Due to the capacitive change, phase difference 

increase or decrease according to direction of movement [16]. Then, demodulation of 

phase difference generates voltage.  

 

Figure 5 Applied acceleration changes capacitance between fingers [16] 

 

 

Figure 6 Working principle of a capacitive accelerometer [16] 
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A block diagram of a capacitive accelerometer is given in Figure 6. Capacitive 

sensors are commonly used in navigation applications. Quartz accelerometers and 

MEMS accelerometers are important members of capacitive accelerometers [14].  

Piezoelectric accelerometers converts applied acceleration to electrical signal as 

indicated in Figure 7. Proof mass changes its position relative to the applied 

acceleration; therefore, piezoelectric material generates voltage related to 

acceleration [17].  These accelerometers are generally used for vibration 

measurements. 

 

Figure 7  Applied acceleration trigs voltage generation for piezoelectric material 

[18]. 

 

A piezoresistive accelerometer is composed of six different parts [19]. Seismic or 

proof mass is fixed to a rigid frame with acceleration stress sensing piezoresistive 

sensor being connected to a Wheatstone bridge as illustrated in Figure 8. 

Acceleration changes the location of the proof mass; thus, resistances of Wheatstone 

bridge also change. As a result, a voltage that is related to the applied acceleration is 

produced at the Wheatstone bridge. Temperature dependency and offsets on 

Wheatstone bridge are disadvantage of these sensors [19]. Piezoresistive sensors are 

commonly evaluated for shock and vibration measurements. Table 1 presents 

advantages and disadvantages of different accelerometer technologies. 
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Figure 8 Elements of piezoresistive accelerometer is shown in left side of figure [19]. 

Wheatstone bridge (right side) provides voltage relevant to applied acceleration 

 

Table 1 Comparison of different accelerometer types 

Type of sensor Advantages Disadvantages 

Capacitive 

 Measures constant (e.g., 

gravitational) acceleration 

 High accuracy and 

reliability 

 Low costs 

 Low bandwidth (nearly 

5000 Hz) 

 Fragile 

Piezoresistive 

 Measures constant (e.g., 

gravitational) acceleration 

 High acceleration range 

 Long term stability 

 Low temperature 

performance 

Piezoelectric 

 Large bandwidth 

 High acceleration range 

 Constant acceleration 

cannot be measured 

 Poor stability and 

temperature performance 

 

2.2 Gyroscopes 

 

Gyroscopes detect angular velocity of a moving platform. Attitude parameters (i.e., 

roll, pitch and yaw) are calculated with respect to the gyroscope measurements. 

Therefore, if one wants to obtain full navigation parameters, accurate gyroscope 
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measurements are needed. Four main categories are available in gyroscope 

technology. These are optical, mechanical, quartz and MEMS gyroscopes [14].   

The evaluation of both gyroscope and accelerometer technologies are illustrated in 

Figure 9. This figure indicates that no further developments for mechanical gyros. 

Yet, fiber optic gyros (FOG), quartz and MEMS gyros are still being developed.      

 

Figure 9 Development of accelerometer and gyroscope technology [14]. 

 

Mechanical gyros (i.e. MEMS gyroscopes) use Coriolis force to measure angular 

rate. These gyroscopes are stimulated by vibration and high rotation. As shown in 

Figure 10, linear motion is applied to gyroscope structure and if rotation occurs, 

Coriolis acceleration that is related to angular rotation can be sensed. Coriolis 

acceleration is perpendicular to both rotation axis and linear motion axis.    

 2

,

,

ca V

V linear velocity

rotationvelocity

  



 

(2.2) 
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Figure 10 Coriolis acceleration is generated by linear motion and rotation [14]. 

 

MEMS gyroscopes can be categorized into 3 main groups: tuning fork, vibrating 

plate and resonant ring gyros. Tuning fork gyros basically have two plates that 

vibrate in different directions. Due to the Coriolis acceleration, tuning forks come 

closer or move away from the sensing elements when rotation occurs [14]. 

Capacitive sensing elements generate voltage proportional to applied rotation. A 

simple tuning fork structure is demonstrated in Figure 11 . 

 

Figure 11 Working principle of tuning fork gyroscope [14] 
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Two silicon proof mass plates are hanged over a glass substrate by folded beams and 

they can vibrate in-plane 180 degrees out of phase as shown in Figure 12.  

 

Figure 12 Vibrating plate MEMS gyroscope [14] 

 

Vibrating piezoceramic cylinders are used to detect angular motion in resonant ring 

gyroscopes [14]. A metal disc or a disc resonator is used as the sensing element. 

Resonant ring gyroscope generates a resonance in the ring structure through a 

sequence of current flowing through the metal structure on the surface of the ring and 

a magnetic field vertical to the sensor [14]. When the sensor is rotated, energy is 

coupled from another mode (e.g., primary mode to secondary mode). This coupling 

generates a voltage which is related to angular motion. 

 

 

Figure 13 Structure of resonant ring gyroscope [14]. 
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Optical gyroscopes use Sagnac effect to measure angular motion [2, 14]. Sagnac 

effect can be described as follows: if rotation occurs in a direction of light, total path 

of laser beam increases, rotation in the opposite direction leads to a reduction of the 

total path [2] as shown in the Figure 14. 

 

Figure 14 Illustration of Sagnac effect for a rotating system [2]. 

 

Three or more mirrors can be used in a triangular shaped laser path. Each light beam 

is generated at any point on path; light beam rotates around the path and it is 

reflected by all of the mirrors and turns back again its initial point [14]. Optical 

oscillations are produces when the transmitted laser beam is in phase with the 

received laser beam. Two laser beams track two different directions (e.g., clockwise 

and counter clockwise directions) in an RLG. These two laser beams have same 

frequency when sensor is in stable position [14]. If sensor is rotated along one 

direction, laser beams have different path length due to the Sagnac effect. This 

difference has effect on frequency of laser beams and it can be converted to rotation 

information [14]. Yet, because of the backscatter from mirrors, lock-in phenomena 

occurs when very low input rates are applied to RLG. An artificial bias that is called 

dither is used to remove lock-in problem.  A simple RLG is illustrated in Figure 15. 
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Figure 15 Components of an RLG [14]. 

 

Measurements of the fiber optic gyroscope are also based on the Sagnac effect. Light 

from a broadband source is divided into two beams and rotate in different directions 

in the fiber optic coil. Second beam splitter mixes two beams to produce an 

interference pattern. Photo-detector senses resulting intensity of the interference 

pattern. In the stationary position, two light beams are in phase and interference 

pattern is in the maximum amplitude. One light beam travels larger than other light 

beam when the sensor is rotated around an axis, which is perpendicular to the sensor 

plane [2, 14]. The change in path length of one light causes phase difference that is 

directly observed as a change in the amplitude of interference pattern. Advantages 

and disadvantages of different gyroscope technologies are summarized in Table 2. 
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Figure 16 FOG sensors contain different parts: beam splitter, detector, light source, 

coupling lens and fiber optic coil [14]. 

 

Table 2 Comparison of different gyroscope technologies 

Type of sensor Advantages Disadvantages 

MEMS gyroscope 

 Small size 

 Cheap 

 Suitable for aided 

navigation 

 

 Limited 

performance range 

 Low bias 

repeatability 

performance 

FOG 

 Suitable for 

strapdown 

applications 

 Very rugged 

 Very small 

residual bias 

 No moving parts 

 Complex 

electronic parts 

 Sensitive to 

changes in 

temperature 

 

RLG 

 Stable in different 

temperature 

 Simple electronics 

 Suitable for 

strapdown 

applications 

 High voltage 

requirement 

 Expensive 
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CHAPTER 3  
 

 

INERTIAL SENSOR ERRORS 
 

 

 

Dead-reckoning is based on the knowledge of previous or initial velocity and 

position that can be added by the integration of recent acceleration and angular rate 

[14]. Inertial navigation systems perform dead-reckoning procedure. Velocity and 

position can be calculated by once and twice integration of accelerometer 

measurements, respectively.  Body angles (i.e., roll, pitch and yaw) are formed by 

integration of gyroscope measurements. Due to the integration process, position and 

velocity errors increase with time [7].  

Inertial sensor errors can be divided into two categories: deterministic and stochastic 

errors. Estimation and compensation of these errors is essential for navigation 

process [4, 14]. Magnitudes of sensor errors also determine the classification of an 

IMU such as navigation grade, tactical grade, control grade (automotive grade) [13].  

Table 3 IMU classes according to random and deterministic errors. 

Performance Navigation Grade Tactical Grade 
Control/Automotive 

Grade 

Gyroscope Bias 

(deg/h) 
<0.01 1-10 >10 

Accelerometer 

Bias (mg) 
<0.1 1-10 >10 

Gyroscope 

Random Walk 

(deg/√h) 

0.05 to 0.005 0.5 to 0.05 >0.5 
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A sensor output can be described by, 

 ( ) ( ) ( ) ( )

( )

( )

( )

( )

o t i t D T n t

o t output

i t input

D T Deterministicerror

n t noise term

t time

T temperature

  













 

(3.1) 

   

According to Equation (3.1), it is important that measurement accuracy depends on 

true determination of deterministic errors and noise term [20]. Deterministic errors 

are generally dependent on the temperature and they can be investigated by 

application of different temperatures [4, 5]. Stochastic errors terms (noise terms) 

change with time [7, 20]. Therefore, noise has to be modeled by stochastic models 

[21]. 

In this section, stochastic errors and their characteristics in different types of sensors 

are investigated. Deterministic errors are explained and discussed in details 

 

3.1 Deterministic Errors 

 

Deterministic errors are split into four categories such that bias, scale factor, 

misalignment and g-dependent bias [15]. Scale factor, bias and misalignment 

generally define the accelerometer deterministic errors while a gyroscope contains all 

of the error parameters in the measurements.  

3.1.1 Bias  

 

Ideally, when no input is applied to an inertial sensor, the output signal received from 

the sensor should be zero [1]. However, an offset occurs on the output signal. 
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Average value of a sensor output in stationary position over a predetermined time is 

called bias. Unit of the bias is mg or m/s
2 

for accelerometer and deg/h for gyroscope. 

 

Figure 17 Bias offset is determined as a constant drift from true value. Red line 

shows bias offset at zero acceleration. 

 

3.1.2 Scale Factor Error 

 

Ratio between the output and the related input is defined as scale factor error. 

Expected value of the scale factor is 1, but, in general, this value is not observed in 

most cases. Unit of scale-factor error is percentage (%) or ppm (parts per million) 

[14]. Accelerometer scale factor error causes position error which is proportional to 

t
2 

(square of time) 
 
[11]. 
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Figure 18 Scale factor error for an inertial sensor [13] 

 

3.1.3 Misalignment Error 

 

There are two types of the misalignment error. Firstly, there is the misalignment error 

which is non-orthogonality between the body axis of the vehicle and IMU [13]. 

Secondly, imperfect mounting of the inertial sensors to body of the inertial 

measurement unit is another source of misalignment error. This error source causes 

continuous drift of the sensor data.  Unit of this error is mrad (mili-radian). 

 

Figure 19 Non-orthogonality error between sensor axes [13] 
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Figure 20 Angle between the body frame and the sensor frame determines the 

misalignment error [13] 

 

3.1.4 G-Dependent Bias 

 

MEMS gyroscopes have solid materials, proof mass and springs etc., to detect the 

rotation [15]. Acceleration causes additional motion on these components. This 

additional term is directly proportional to applied acceleration; hence it is determined 

by calibration tests. G-dependent bias is only observed in gyroscope measurements. 

Unit of this error term is deg/h/g. 

 

3.2 Stochastic (Random) Errors 

 

Inertial sensor data have random characteristics due to electrical circuits, 

interferences and temperature [8]. Random errors are categorized as Quantization 

Noise, Rate Random Walk, Bias Instability, Angle/Velocity Random Walk, Rate 

Ramp errors as shown in Equation (3.2).  
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) /

( )

( )

( )

( )

( )

n t Q t N t B t R t P t s t

Q t quantization noise

N t angle velocity randomwalk

B t biasinstability

R t raterandomwalk

P t rateramp

s t sinusoidal noise

n t total noise term
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
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





 

                       (3.2) 

   

All of the random errors, which are given in the Equation (3.2), are dependent on 

time.  In this section, random errors and their sources are explained. 

 

3.2.1 Quantization Error 

 

Generally, optical sensors measure angle increments through the fringes on the 

output of the sensor. Quantization error occurs when all fringes on the output of the 

optical sensor is not counted in a sampling time interval [22]. Remainder of the 

rotation is included in the next iteration. Hence, a non-integrating error occurs on the 

output of the sensor.  Quantization error is observed in rate integrated sensors such as 

ring laser gyros (RLG). There is a confusion about bit quantization and time 

quantization in the literature [11].  Bit-quantization error is another type of error but 

it is not the stochastic type because maximum value of bit quantization error is 

somewhat deterministic (i.e., half of the least significant bit) [20]. If quantization 

noise is modeled as a bit-quantization noise, power of total error grows when number 

of samples increases [20]. On the other hand, time quantization error does not 

increase in time [20, 22]  
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Figure 21 Bit-quantization error occurs during the conversion the true (analog 

output) signal to the quantized output [13] 

 

3.2.2 Angle/Velocity Random Walk 

 

Inertial sensor output is disturbed by thermo-mechanical noise and the correlation 

time of this disturbance is smaller than the sampling period of an inertial sensor [8]. 

Therefore, angle/velocity random walk has white noise characteristic hence, it is 

assumed to be in the uncorrelated noise type. Angle/velocity random walk is the 

dominant error source for all of sensor type [8, 20].  Angle random walk is referred 

to white noise of a gyroscope and velocity random walk is also referred to white 

noise of an accelerometer. This noise has a constant level in the frequency domain 

[23]. Thus, low pass filtering techniques can be applied to corrupted data to decrease 

this white noise like error source.  
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Figure 22 Effect of the angle/velocity random walk on an inertial sensor 

measurement. 

 

3.2.3 Exponentially Correlated Noise 

 

Exponentially correlated noise term is characterized by an exponentially decaying 

function with a finite correlation time [11]. PSD of this error term is [11], 

 

2
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If we assume that qcTc = Q and T ≫ Tc, we would obtain angle/velocity random 

walk [11]. 
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2
2 ( )
( ) c c

c

q T
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
   (3.5) 

If we perform Taylor expansion for exponential terms in the Equation (3.4) we can 

obtain the following equation for T ≪ Tc which means that selected time values 

always smaller than correlation time. Hence, it represents low frequency correlated 

noise.  

 

2
2 ( )
( )

3

c
c

q
T         (3.6) 

Plot of Equation (3.4) is shown in Figure 23.  According to Figure 23,  

 Curve approaches its maximum value at T ≅ 1.89Tc 

 Maximum value of curve is σmax ≅ 0.437 qc√Tc 

These observations are used to model the flat region of Allan deviation curve.  

 

Figure 23 Exponentially correlated noise. This figure is drawn with the following 

parameters: Tc = 10s and qc = 1. 
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3.2.4 Bias Instability 

 

Bias instability is named as “flicker noise” [20] , “low-frequency noise” which is 

used to describe the specific class of perturbations due to the oscillator. Flicks can be 

classified as noise on electronic equipment and/or environmental noises. Bias 

instability has low-frequency characteristic; therefore, it is assumed that bias drift on 

constant (residual) bias error. Sometimes, bias instability is called as 1/f noise 

because power spectral density (PSD) of bias instability is proportional to 1/f [24].  

 

Figure 24 Effect of bias instability on the sensor output [13]. 

 

 

3.2.5 Rate Random Walk 

 

Rate random walk occurs at larger cluster time [11]. As the name indicates, this error 

has random walk characteristic but identification of the rate random walk is very 

hard because of the temperature variations for long-time data acquisition [20]. Rate 

random walk is generally observed in tactical and control grade sensors.   
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3.2.6 Sinusoidal Noise 

 

MEMS sensors are excited by sinusoidal vibrations to measure physical quantity. 

Sinusoidal input has effect on input axis of a sensor. Therefore, sinusoidal noise may 

be observed at the output of the sensor. Sinusoidal components are filtered out from 

data by low-pass filters. This is why several sensor producers use a filter in their 

sensor design [20]. If the frequency of sinusoidal noise is same with the motion 

frequency it is very hard to filter out sinusoidal component without manipulating the 

motion signal. Accuracy of inertial navigation system decreases due to this type of 

sinusoidal components.  

General measurement models for accelerometer and gyroscope are given below. 

Acceleration error model can be modified as follows, 

 

 ˆ
ax axx x axy axz z axya =(1+S )a +M a M a +B +n+   (3.7) 

x

ax

axy

axz

x

ax

ax

a =acceleration output

B = accelerometerbias term

M = Misalignment between xand y axes

M = Misalignment between xand z axes

a =real acceleretionterm

n =accelerometer noiseterm

scale- factor errorS 

 

 

Gyroscope error model is given by, 

 ˆ
gx gx x gxx x gxy gxz z gxyw ) a +=(1+S w +M w M w +B +G n+   (3.8) 
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ˆ
x

gx

gxy

gxz

x

gx

gx

gx

w =gyroscopeoutput

B = gyroscopebias term

M = Misalignmentbetween xand y axes

M = Misalignmentbetween xand z axes

a =real acceleretionterm

g dependent bias

scale factor error

n =gyroscopenoiseterm

G

S

 

 
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CHAPTER 4  

 

 

IDENTIFICATION OF THE STOCHASTIC ERRORS 
 

 

 

Stochastic errors cause position and velocity errors in INS measurements. Since, they 

have to be estimated and modeled. Accurate modeling of an inertial sensor is the 

difficult problem because estimation techniques are based on error models. If a 

model parameter does not approach the real value, navigation algorithm cannot give 

accurate results. Estimation of stochastic error parameters is the other problem 

because several methods are available in the literature but many of them do not 

satisfy enough accuracy level.  

Autocorrelation, PSD and Allan deviation methods are commonly used to estimate 

random error parameters. Allan deviation is standardizing method to estimate 

random errors therefore Allan deviation is selected as main reference in this chapter.  

Autocorrelation function is used to identify sinusoidal components on the output of a 

sensor. PSD is used to illustrate all error terms in an inertial sensor. Moreover, 

membership function based error identification technique will be discussed in this 

chapter. 

 

4.1 Autocorrelation Method 

 

Autocorrelation function describes the time constant of an inertial sensor.  Time 

constant has special meaning because bias instability starts correlating the IMU data 

after time constant [7, 11]. Autocorrelation function is calculated according to 

Equation (4.1).  
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Important properties of autocorrelation function can be expressed as [23], 

 | ( ) | (0) 0.xx xR R where     The amplitude of the autocorrelation coefficient 

always smaller than (0)xR  .  

 If ( )x t  has some periodic parts, ( )xxR   also has periodic parts with same 

frequency. However, phase information cannot be estimated from 

autocorrelation data if periodic data is sinusoidal.  

 If ( )x t does not have any periodic or correlated parts, ( )xxR  approaches zero 

when  . 

Second property is about behavior of an autocorrelation function when it contains 

periodic components. If an inertial sensor contains periodic parts such as a sinusoidal 

signal, we remember this property of an autocorrelation function. Third property is 

mainly about the correlated parts; autocorrelation function of an inertial sensor data 

approaches the zero value.   

Bias instability is modeled as correlated noise because autocorrelation function of 

this process reaches zero when 𝑡 goes to infinity [3]. Therefore, true determination of 

time constant is important for inertial sensor bias instability models. However, IMU 

output is generally corrupted by uncorrelated noise (e.g., white noise), which causes 

inaccurate identification of inertial sensors’ time constant.  

Before autocorrelation analysis, uncorrelated random errors are removed from 

inertial sensor data [7]. Some methods are suggested to filter IMU data and then 

obtain the correlated part of inertial sensor data, but these methods are not standard 

[12]. Furthermore, cut-off frequency of the filter is an important issue to get desired 
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correlated signal. Generally, cut-off frequency is selected very close to zero 

frequency due to the low-frequency characteristic of correlated signal [7]. Expected 

autocorrelation function after low-pass filter is given in Figure 25. 

 

Figure 25 Simple autocorrelation function after low-pass filter [7] 

 

If no filter is applied to data contaminated by white noise, autocorrelation function 

does not have any meaning because autocorrelation function reaches its minimum 

value too sharply due to the effect of uncorrelated parts. One example of this 

situation is shown in Figure 26. 

 

Figure 26 Autocorrelation function if low-pass filter is not applied [7] 
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The value of the time constant of an inertial sensor can be obtained from the %36.8 

point of autocorrelation function of Gauss-Markov process. 

 

Figure 27 Autocorrelation function represents time constant value of an inertial 

sensor. Corresponding time value of 1/e point equals to time constant [7]. 

 

Figure 28 gives important real-data example of determination of time constant. In 

this configuration, Butterworth filter is selected as the low-pass filter [12] and fc is 

set to four different cut-off frequencies. In this example, sampling frequency is set to 

1000 Hz. 

 

Figure 28 Accelerometer data after filtering. Bias instability can be observed from 

data. 
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Different cut-off frequencies yield different autocorrelation function as shown in 

Figure 29. Four cutoff frequencies (e.g., 0.003 Hz, 0.01 Hz, 0.03 Hz and 1 Hz) are 

tried. Identification of true cutoff frequency is empirical but autocorrelation gives an 

important approximation when comparison is made between same sensor types.  

 

Figure 29 Normalized autocorrelation function of a gyroscope output that filtered 

with Butterworth filter at different cutoff frequency. 

 

In this example, fc = 0.01 Hz is selected because it is smoother than other two types 

(e.g., fc = 0.03 Hz and fc = 1 Hz). Moreover, it is more realistic than the case with fc 

= 0.003 Hz example because fc = 0.003 Hz moves very slowly to zero value. Time 

constant value equals to 33.18 s (33180 (data number)*1/10
3
 (sampling period) = 

33.18s).  

Accuracy level of autocorrelation function is determined by the following equations 

[23]. 
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Accuracy of an experimentally determined autocorrelation function is defined by 

Equation (4.6). Accuracy of data, which is shown in Figure 30, is calculated as 

follows: 
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Figure 30 Identification of time constant with autocorrelation method. Time lags of 

0.368 (1/e value) point equals to 33.18 s. 

 

Besides the correlation time estimation, autocorrelation function can be used to 

investigate sinusoidal noise in the output of an inertial sensor [20]. Figure 31  and 

Figure 32 show autocorrelation functions of two different accelerometers. While 

former suffers from sinusoidal noise and the latter does not have this noise but it is 

still effected by other noise terms. Before applying autocorrelation function to data, 

these two data is filtered with a high-pass filter (Butterworth, fc = 1 Hz). It is 

assumed that high-pass filter reduces the effect of correlated part. So that there is no 

correlated part on the output of the sensor and we only observe uncorrelated parts 

and sinusoidal parts. 

Autocorrelation analysis is an accurate method to test whether a signal contains 

periodic parts or not. Thus, autocorrelation function is examined if sinusoidal parts 

are expected. 
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Figure 31 Sinusoidal parts can be observed in the autocorrelation function 

 

 

Figure 32 Autocorrelation function reaches zero value in small time lags due to the 

uncorrelated parts. 

 

4.2 Power Spectral Density function 

 

Power spectral density (PSD) is another descriptor of inertial sensor noise terms. 
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frequency components. PSD contains information about the frequency components 

of the time series and “power” indicates the amount of noise in the data [25].   

If the random process ( )x t  is stationary, it is not absolutely integrable; therefore, 

Fourier transform of this signal does not converge. In order to assure absolutely 

integrability of Fourier transform of a random process, data is truncated to a finite 

time interval such that [0, T] and this data can be indicated as ( )Tx t  [23].  

Relationship between autocorrelation and PSD is given in Equation (4.7).  
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In another approach, we take the expectation value of the periodogram, expressed in 

Equation (4.8) for large time interval (T). 
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(4.8) 

 

One sided power spectral density is shown in Equation (4.9) but we usually use 

discrete signals; therefore an approximation is indicated in Equation (4.10) has to be 

used. This equation converts Fourier transform of discrete signal to Fourier transform 

of continuous signal at discrete frequencies. 
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Substituting Equation (4.10) into Equation (4.9) gives discrete one-side equivalent of 

the PSD function. Equation (4.11) shows the resulting equation for power spectral 

density function of discrete data. 
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Each random noise term has a different PSD equation, hence, loglog plot of an 

inertial sensor gives different slopes and these slopes indicate that different error 

terms are available in data. A simple PSD with different error characters is given in 

Figure 33 . 
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Figure 33 PSD gives information about different error terms [21]. 

 

According to Figure 33, rate random walk, bias instability, angle/velocity random 

walk and quantization noise can be found in the regions of slope -2, -1, 0 and +2, 

respectively.  

PSD plot of an accelerometer is illustrated in the Figure 34. Angle random walk is 

observed from data due to the flat region. However, PSD function spreads too much; 

because of that, frequency averaging has to be performed [11]. Frequency averaging 

technique reduces the frequency points and magnitude of error terms are identified 

easily [11].  
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Figure 34 PSD function of an accelerometer data. Identification of noise is not easy 

because PSD spreads too much. 

 

Frequency averaging can be performed in the logarithmic order at orders of 2. 

According to this method, first 32 frequency points are assigned to frequency 

averaged data and then continue with orders of 2
N
, N=1,2,..n frequency points and 

calculate the mean value of each group. This averaging technique is applied until the 

last frequency point. This technique prevents the bunching at high frequencies and 

slope of error parameters easily intersects with PSD estimate. An example of 

application of frequency averaging technique on PSD given in Figure 34 and 

resulting PSD graph is illustrated in Figure 35. 
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Figure 35 Different error parameters are identified after frequency averaging 

technique. 

 

Identified error parameters are stated in Table 4.  

 

Table 4 Error parameters with respect to the Figure 35. 

Error parameter (Unit) Magnitude 

Rate random Walk (m/s/h
3/2

) 97.2 

Bias Instability (m/s
2
) 0.0035 

Velocity Random Walk(m/s/√s) 0.0041 

 

In some applications, cut-off frequency of an inertial sensor is not known. There are 

some useful methods are available in the literature to extract transfer function of an 

inertial sensor. Yet, PSD gives quick information about cutoff frequency of a sensor 

but details are not available in the PSD estimation. An example of above discussion 

is shown in Figure 36. In this example, the producer of this inertial sensor only 

declares that minimum bandwidth which is 75 Hz but exact bandwidth is larger than 

75 Hz. 
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Figure 36 Cut-off frequency of the inertial sensor is nearly 100 Hz. 

 

4.3 Allan Deviation Technique 

 

Allan deviation method was first used for oscillator stability and this method 

extracted the instability errors of the oscillators [26]. Yet, these errors have many 

similarities with inertial sensor random errors. Furthermore, some studies introduce 

that how this method can be used for identification of random errors of inertial 

sensors [27]. Allan variance method is accepted by IEEE as a standard method for 

identification of stochastic errors for inertial sensors [21]. 

Allan deviation method considers on time-domain analysis of a data and it gives 

error parameters of noises that corrupt the inertial sensor data. This method assumes 

a noise is produced by specific character [11]. This method estimates the standard 

deviation of a noise character from collected data. Allan variance curve represents an 

identification of the underlying processes in the time-dependent stochastic error term 

n(t). 
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4.3.1 Calculation of Allan Deviation  

 

Allan deviation method splits a signal into different clusters. Number of data in each 

cluster is different. For example, time difference between two consecutive samples is 

1 second (𝜏1)  in cluster 1 but this difference can be 2 seconds (𝜏2) for cluster 2. If 

total number of the collected data is N, the last cluster may be divided into two 

consecutive parts. Therefore, 
2

N
 data defines the last time index ( n ) value (

2

N
*Δt). 

n determines the maximum cluster time which can be presented by an Allan 

variance curve. It means that Allan deviation method needs more data points than 

other methods to extract true noise characteristic.  Generally, it is necessary to collect 

data over an hour.   

 

 

Figure 37 Clusters in Allan deviation method. Each cluster has different time (tau) 

information. 

 

Allan deviation curve is obtained by following steps: 

 Determine the 𝜏 (cluster time) values.  

 Separate the data with one of the pre-determined 𝜏𝑘 values and take 

the average value of each division. Assign these mean values to ( )y i  

variable where 0i   and 𝑖 is an integer value. 
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 Note that the term ( )y i  includes the mean value of data between 𝑖 ∗  𝜏 

and (𝑖 + 1) ∗  𝜏. 

 Calculate 𝜎(𝜏) from the following equation: 
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                         (4.12) 

 

 Draw loglog plot of the sigma ( ( )  ) values with corresponding tau 

values (𝜏𝑘). 

 Obtain the sigma values (standard deviation) of each error term. For 

example, if the unit of the raw measurements deg/s, then, unit of 

sigma values is also deg/s. 

According to [21], relationship with PSD and Allan Variance is given in Equation 

(4.13). Therefore, we can extract special characteristic of each noise term with given 

PSD function. 
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Allan deviation is related to the noise power after PSD of the random process is 

passed through a filter with transfer function 
4

2

( )

( )

sin f

f

 

 
 [7, 11] . Response of the 

filter depends on varying 𝜏; therefore, several types of noise characters can be 

inspected by the Allan deviation method [7]. 
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Error level of the Allan deviation method can be calculated by Equation (4.14) [11]. 

In this thesis, at least 88 % accuracy level is satisfied to identify random error 

coefficients. 

 

1
% 100

2( ) 1

Error level in AD Method x
M

n

M total data points

n total data points used toidentify error coefficient









  (4.14) 

Allan deviation technique is a powerful technique to identify five major stochastic 

error terms as shown in Figure 38. 

 

 

Figure 38 A simple Allan deviation curve [11] 

 

4.3.1.1 Quantization Noise Parameter 

 

PSD of the quantization noise is shown in Equation (4.15). This PSD function can be 

used in Allan variance expression given in Equation (4.13) [21]. 
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Resulting Allan deviation sigma value is expressed in Equation (4.16) [11]. 

 3
( ) zT Q

T
 

                                 (4.16) 

Therefore, slope of quantization noise is -1 in a logarithmic plot. Quantization noise 

parameter is obtained by intersection line which slope is -1 with the Allan deviation 

curve.  

 

 

Figure 39 Allan deviation curve of an RLG. Red line indicates that slope equals to -1.  
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4.3.1.2 Angle/Velocity Random Walk Coefficient 

 

As indicated in Section 3.2.2, angle/velocity random walk has constant level in 

frequency domain.  Hence, its PSD function is the square of a constant, 
2N    

 2( )S f N                                    (4.17)                     

Assume that,  𝑘 = 𝜋𝑓𝜏 and substitude PSD function into the Equation (4.13) [11]. 

 
 

4
2 2

2

0

4 ( )
.

( )

sin k
N dk

k



  


 
(4.18) 

 
 

4
2 2

2

0

4 ( )

( )

sin k
N dk

k



  


 
(4.19) 

 4

2

0

( )

( ) 4

sin k
dk

k






 
(4.20) 

 
( )

N
 


 

(4.21) 

Equation (4.21) shows sigma value of angle/velocity random walk. Slope of 

logarithmic plot of the Equation (4.21) equals to -1/2 due to the square root in 

denominator.  Angle/ velocity random walk can be estimated directly from the τ=1s 

or the actual value of angle/velocity random walk can be identified with the 

intersection of a line (slope equals to -1/2) with the τ = 1s. Sometimes, there is small 

difference between former and latter methods. Unit of angle/velocity random walk is 

deg/ h  for gyroscopes and 
m

s s
 or 

g

Hz
 for accelerometers. Suppose that, 

corresponding value of τ = 1s is 9x10
-3

 deg/s. According to Equation (4.21), 

supposed that, ( 1 )s   equivalence of Allan deviation curve is given as 9x10
-3

 

deg/s and parameter N is identified by the following conversion.  
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Figure 40 Allan deviation curve of a MEMS accelerometer. Velocity random walk 

coefficient is estimated from τ=1s. 

 

4.3.1.3 Bias Instability Coefficient 

 

Bias instability affects the output of an inertial sensor after some time constant as 

stated before.  Therefore, determination of both correlation time and noise coefficient 

is important for navigation algorithms.  These two parameters can be estimated by 

the Allan deviation curve. Bias instability is a low-frequency noise term; thus, its 

PSD is zero in high frequency and it cannot be estimated in small τ values in the 

Allan deviation curve. PSD of bias instability is given by [11], 
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fc indicates that bias instability starts to vanish in an inertial sensor output; therefore, 

it has a relationship with time constant (𝑇𝑐) of an inertial sensor. 
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Equation (4.27) does not depend on time. Therefore, bias instability is obtained from 

flat region of an Allan deviation curve. Sigma value of the bias instability can be 

taken as the minimum value of the flat region. When slope of Allan deviation curve 

becomes zero, corresponding cluster time is the correlation time (time constant) of 

the bias instability [7]. Unit of this error is deg/h or m/s
2
 for gyroscope and 

accelerometer, respectively. Unit conversion is given by,  
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Figure 41 Red line indicates that slope equals to zero. Time constant is 20s and 

sigma value of bias instability is 0.002041 m/s
2 

 

4.3.1.4 Rate Random Walk Coefficient 

 

Rate random walk appears at higher cluster time than other errors and it can be 

observed at larger τ values than other noises. Therefore, if an inertial sensor works in 

short-time applications this error may not be modeled. Rate random walk is generally 

seen in MEMS accelerometer and quartz-MEMS gyroscope measurements.  PSD 

density of the rate random walk is given in Equation (4.28). Resulting sigma value of 

the rate random walk in the Allan deviation curve is expressed in (4.29).  
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Slope of the rate random walk is 1/2 and K is estimated by the intersection of rate 

random walk line with the Allan deviation curve using Equation (4.29) as shown in 

Figure 42. 

 

Figure 42 Rate random walk line which is indicated as red line. This line intersects 

with Allan deviation curve to define rate random walk coefficient. Slope of red line 

is +1/2. 
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2
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4.3.1.5 Sinusoidal Noise 

 

Sinusoidal noise cannot be determined from Allan deviation curve because white 

noise characters conceal sinusoidal noise. There are some indicators about sinusoidal 
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noise in an Allan deviation curve [20]. Firstly, if some bulges are observed they can 

be sign of sinusoidal noise. Secondly, sinusoidal noise is directly detected from an 

Allan deviation curve in some examples [11]. Allan deviation curve of an RLG 

usually has sinusoidal noise due to dithering. Some imperfections in a power supply 

or vibrations in MEMS sensors also cause sinusoidal noise. Expression of sinusoidal 

noise, which has a particular frequency component, is given in Equation (4.30) [21].  
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(4.30) 

 

There are some relationships in Allan deviation curve of sinusoidal noise if it is not 

corrupted by another noise source. These relationships are given below: 

 Peak values of sinusoidal noise decrease as time index increases. Slope of the 

line formed by combining peak values of sinusoidal noise is -1. 

 Slope of the curve at the first peak is +1. 

 Substituting Equation (4.30) into (4.13) gives Equation (4.31). According to 

this equation, magnitude of sinusoidal noise can be determined.  
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Figure 43 Representation of sinusoidal noise in Allan deviation curve [11] . 

 

A real accelerometer data example of sinusoidal noise is given in Figure 44. The 

signal in this figure satisfies the sinusoidal noise criteria. This information is crucial 

for IMU design because sinusoidal noise has to be filtered or the source of the error 

must be investigated in order to increase the accuracy of the IMU.   

Frequency information of sinusoidal data can be found from the autocorrelation 

function or FFT. The data which Allan deviation curve is obtained in Figure 44 is 

affected by two different sinusoidal sources and frequencies of these sinusoidal 

sources are 8.3 Hz and 25 Hz. Our system can be influenced by these sinusoidal 

signals and they may be in the measured frequency range. Therefore, source of 

sinusoidal noise has to be inspected. Autocorrelation function of affected data is 

given in Figure 45. Before performing this autocorrelation analysis, data has to be 

filtered out, because of the correlated noises.  
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Figure 44 Allan deviation curve of an accelerometer that is effected by the sinusoidal 

noise. Green line indicates that slope is +1, red line represents that slope is -1. 

 

 

Figure 45 Autocorrelation function of an accelerometer. This data is affected by the 

sinusoidal noise. 

One supposes that there is nothing abnormal in Allan deviation curve, which is given 

in Figure 46 at the first glance. Yet, it has some suspicious bulges in the 
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angle/velocity random walk side. Therefore, this data can be analyzed with 

autocorrelation function.   

 

 

Figure 46 Allan deviation curve of a quartz accelerometer. This accelerometer is also 

affected by sinusoidal noise. There are some bulges at velocity random walk region. 

 

Figure 47 shows the close view of angle/velocity random walk region and some 

bulges can be observed from this figure. Therefore, autocorrelation analysis can be 

performed with this data in order to reveal sinusoidal characteristic of the data.  
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Figure 47 Suspicious bulges in the velocity random walk region. 

 

Autocorrelation function of data is given in Figure 48; and it is obvious this data is 

also affected by sinusoidal noise. 

 

 

Figure 48 Autocorrelation function of a quartz accelerometer. Sinusoidal noise 

cannot be directly detected from Allan deviation curve. 
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To sum up, all of the methods are summarized in the Table 5. 

 

Table 5 Comparison of different error estimation methods. 

Parameter Autocorrelation Allan Deviation PSD 

Sinusoidal + + - 

Quantization - + + 

ARW/VRW - + + 

Bias Instability - + + 

Time Constant - + - 

Rate Random Walk - + + 

Bandwidth - - + 

+ = Applicable 

- = Not Applicable 

 

4.4 Error Parameter Estimation with Proposed Method 

 

Allan deviation is the one of the main method to find random errors of an inertial 

sensor, as indicated before. Yet, line method is very intuitive because line can be 

intersected with the Allan deviation curve after several iterations. Additionally, line 

method is disturbed by another dominant noise and it causes incorrect estimation of 

error term. Therefore, we can use the dominant region of the specific error terms and 

estimate error through this method. 

Another important argument of this chapter is that we can extract an equation which 

satisfies sigma values of Allan deviation curve for each time (tau) value as given by, 
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                                  (4.32) 
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Equation (4.32) is a generic equation for all kind of inertial sensors. For example, if 

an RLG is modeled, B and K may be selected as zero because we know that RLG 

generally does not have bias instability and rate random walk errors. This structure 

satisfies another important advantage that we do not have to investigate all of the 

errors individually; therefore, arbitrary lines are not required. Yet, equation (4.32) 

needs some important modifications to satisfy that all random errors are suited with 

their exact values. 

These modifications are separate errors in time because, usually, only one random 

error dominates Allan deviation curve in a specific time range. Therefore, a 

membership function is used to modify Equation (4.32) , indicating  the dominated 

time range. For instance, angle random walk is dominating error term up to 

correlation time of bias instability; bias instability becomes dominant term after 

correlation time. Modified generic random error equation can be stated as, 
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  (4.33) 

Membership functions change their values between one and zero in different time 

zones; thus, we can adapt a special error term in a special time zone. Mathematical 

expression of membership function is stated as,  
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An illustration of a membership function is given in Figure 49, 

 

 

Figure 49 An example of a membership function 

0 20 40 60 80 100 120 140 160 180 200

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 (s)

M
ag

ni
tu

de

Membership Function



60 

 

All of the error parameters are included in the state parameter vector and each error 

parameter has to be estimated. In this thesis, least-square estimation is used to 

estimate error terms. Therefore, we have to express error parameters in the matrix 

form. Matrix representation of Equation (4.33) is given by, 
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  (4.35) 

 

Error parameters are estimated by the least-square estimation. Details about this 

method are given in [4]. One important problem of Allan deviation technique is the 

determination of lines with suitable slopes accurately. Therefore, the line method 

gives approximate values of error parameters, but these levels sometimes are not 

accurate enough. For example, sinusoidal noise has effect on quantization noise 

region and this situation causes wrong estimation of quantization error parameter.  If 

we take the corresponding value of the τ = 1 s in Allan deviation curve, we would 

have some errors in the estimated parameter.  

The proposed method finds the error parameters for given Allan deviation values. 

Additionally, there is no special merit to look for each error term. Least-square 

method is applied to calculated error terms as indicated in Equation (4.36), but the 

important problem is to decide the true time indices of membership functions.    

 
1( )T Tx HH H y   (4.36) 
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As discussed earlier, noise parameters have some important properties in the Allan 

deviation curve: 

 Quantization error can be identified from smaller than the 0.5 s region of the 

Allan deviation curve. 

 Time index of angle/velocity random walk is between 0.5 s and the correlation 

time of bias instability. 

 Bias instability is the dominant error term from correlation time of bias 

instability to starting time of rate random walk. Furthermore, when τ approaches 

to correlation time of bias instability, slope of Allan deviation curve converges 

to zero. 

Allan deviation is scattered too much when the higher time (tau) values come into 

investigation. Hence, if a polynomial is fitted to an Allan deviation curve, we can 

find the correlation time of bias instability and starting time of rate random walk. 

Polynomial is formed by exponential terms and their powers to perform the curve 

fitting. 

If we analyze the simple Allan deviation curve, which is given in Figure 50, we can 

see the important indicators about time indices. Firstly, when the bias instability 

becomes correlate, slope of the Allan deviation curve is zero; thus, investigation of 

zero slope gives time constant. Moreover, rate random walk produces a local 

minimum point in the Allan deviation curve.  

An example is shown to simplify the discussions above. A gyroscope of MEMS-

IMU is used in this example. First of all, we extract the sigma values of Allan 

deviation curve for given time indices. 
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Figure 50 Allan deviation curve of a MEMS-Gyro 

 

Secondly, we can fit a Gaussian expression to this curve; mathematical expression of 

the curve is given by, 
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Before performing the fitting process, we take natural logarithm of both sigma and 

tau values, since Allan deviation works on the logarithmic plane. Coefficients in 

Equation (4.37) can be found by nonlinear estimation techniques and trust-region 

method is selected to determine these coefficients. Figure 51 shows the fitted curve 

and real Allan deviation curve.  
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Figure 51 Fitted curve and real Allan deviation curve. 

 

As mentioned before, due to the rate random walk a local minimum occurs; 

therefore, we have to find a local minima of this curve. 
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Figure 52 Local minimum (green) and local maximum (red) points. 

 

As shown in Figure 52, green point indicates the minimizing point. Exponential of 

this point gives time index of the starting time of the rate random walk. Starting time 

of rate random walk equals to 154.8 s in this example. Membership functions can be 

set according to this information. Transition region between angle random walk and 

rate random walk is selected as 10 s. This region is selected according to general 

behavior of error terms. Membership functions can be formed by Equation (4.34), 

resulting functions are shown in Figure 53 
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Figure 53 Membership functions for rate random walk and angle random walk 

 

When the rate random walk reaches the time constant value, the associated 

membership function value is one. Last step of proposed method is the estimation of 

error parameters. Simplification of Equation (4.35) for this example is given in 

Equation (4.38). Least-square estimation is performed according to Equation (4.36) 

to find the error parameters.  
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Q and B parameters are selected as zero, because these terms are not observed in the 

Allan deviation curve. Table 6 shows the estimation results of the proposed method 

and the line method [7, 11] 

 

Table 6 Estimated error parameters with different method 

Method 
Angle Random 

Walk (deg/√h) 

Rate Random Walk 

(deg/h/√s) 

Time Constant 

of RRW (s) 

Proposed Method 0.078 0.059 154.8 

Line Method 0.078 0.062 140  

 

 

The major difference between the two methods is the magnitude of the rate random 

walk. It is, of course, due to the different measurement principles of these two 

methods. The proposed method finds the exact minimum point of the Allan deviation 

curve to investigate time constant of the rate random walk; but the line method says 

that when the slope of curve changes the corresponding time value can be selected as 

time constant. This example will be expanded in the next section for different inertial 

sensors. The proposed method also has very promising results for certain types of 

inertial sensors. 
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Steps of the proposed method are shown below: 

 

Take logarithm of tau and 

sigma values.

Fit a curve according to 

logarithm values.

Apply threshold to find 

correlation time of bias 

instability

Find local minima and 

determine correlation time of 

rate random walk

Generate membership 

functions in accordance with 

determined correlation times

Apply least squares 

estimation and find random 

error parameters

Calculate differences 

between each fitted point.

 

Figure 54 Flow diagram of the proposed method 
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CHAPTER 5  

 

 

MODELING OF AN INERTIAL SENSOR 
 

 

 

According to previous chapters, inertial sensor data is affected by deterministic and 

stochastic errors. Deterministic errors change with temperature and stochastic errors 

are usually dependent on time, as indicated before. Therefore, temperature 

dependency of deterministic errors and time variant characteristic of stochastic errors 

must be included in an inertial sensor model. Before performing Allan deviation 

tests, temperature dependency of such errors has to be defined, because performance 

of Allan deviation and other stochastic models are related to the deterministic error 

compensation techniques. Polynomial fitting is a common way to interpolate the 

deterministic errors. Calibration tests are performed under different temperatures by 

soak method [4]. Therefore, an algorithm which compensates deterministic errors 

must include a proper interpolation method such that linear interpolation, cubic 

spline and polynomial fitting [4, 5]. In addition, third, fourth and fifth-order 

polynomial fitting methods are performed in literature [4, 5]. Generally third or 

fourth order polynomial fitting is enough for deterministic errors [4]. Degree of 

polynomial fitting is important for the processing time of algorithm which is 

embedded in IMU processor. The more multiplication operations are, the more 

algorithm process time is [6]. On the other hand, modeling stochastic errors also 

improves the navigation accuracy [13]. To obtain better results, Kalman filtering is 

executed by INS processor to estimate stochastic errors. If one wants sensitive 

estimations of stochastic errors, number of states increases inevitably. This situation 

is another important problem when algorithms are executed in a processor. 

An IMU error compensation algorithm or more generally, an IMU algorithm 

contains 4 steps: Digital to physical data conversion, data filtering, deterministic 
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error compensation and stochastic error estimation [2]. Therefore, IMU data 

modeling must include all of these steps. Additionally, some parameters of IMU 

stochastic data modeling, such as time constant, random error coefficients, etc. are 

obtained by post-processing. 

 

5.1 Modeling Deterministic Errors 

 

Deterministic errors (bias, scale factor, misalignment, g-dependent error) have to be 

modeled with temperature information after the calibration process. Magnitude of 

deterministic error is constant for certain temperature points [19, 20]. It means that 

there is no hysteresis for deterministic errors. Hence, look-up tables and fitting 

methods are used to model deterministic error. 

Least-square technique is used for the estimation of deterministic error parameters. 

IMU tests are performed in different orientations for accelerometers and different 

angular rate for gyroscopes. Two methods are supposed in the literature: six position 

tests and multi position tests. Six position tests are performed in six different 

orientations to extract deterministic error parameters of an accelerometer. Multi 

position tests are executed for the same purpose; but the main difference between the 

two methods is the number of positions. In this thesis work, IMU calibration tests are 

performed under different temperatures. Calibration tests are thermal calibration of 

inertial systems; it means that temperature characteristics of deterministic errors are 

defined. Polynomial coefficients are obtained after calibration tests.  

Changes in bias, misalignment and scale factor errors with respect to the temperature 

are also deterministic errors and polynomial fitting method is used to extract these 

errors from IMU raw data. Effect of g-dependent bias changes with applied 

acceleration; therefore, accelerometer data has to be obtained. G-dependent bias has 

to be multiplied with acceleration data and this value is subtracted from the 

gyroscope data. 
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Degree of polynomial is another important point of calibration process. A fourth 

degree polynomial is chosen for IMU deterministic error models. 

Temperature information is needed for IMU deterministic error calibration. If any 

inertial sensor does not include temperature information, some methods are available 

to provide temperature information. Firstly, an additional temperature sensor may be 

attached to a PCB. Another option is having a temperature sensor directly attached to 

sensor structure. Finally, temperature of chamber can be obtained and this 

information is used in calibration process. 

Temperature dependent deterministic error formula is given below: 

 
2 3

1 2

4

3 4 5x
B a a T a T a TT a       (5.1) 

1 2 3 4 5
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One important point is that we have to collect raw data under 5 different thermal 

conditions, because the degree of polynomial is 4 (maximum degree of polynomial 

equals to n-1 where n = data points). The same procedure is applied to scale factor 

and misalignment errors. Difference between two temperature points is not chosen 

too separately but frequent temperature points increase test duration. 

In this error modeling, IMU has 3 accelerometers and 3 gyroscopes. Therefore, we 

split temperature information into 3 individual accelerometer temperature 

measurements, because each inertial sensor has different polynomial coefficients.  

Sometimes, it is impossible to know temperature dependency of deterministic errors. 

In this case, repeatability takes into account, since, if 1σ value of deterministic error 

is known, in worst case, error effects outputs at 3σ value. Hence, a random error 

generator (e.g., zero mean with known variance) is used to model this error. This 

kind of model is useful for Monte-Carlo analysis. 
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The same procedure is valid for scale factor error. Yet, misalignment error is 

different from others because there are 6 different misalignment parameters. These 

are misalignment between x and y axes, x and z axes, y and x axes, y and z axes, z 

and x axes, z and y axes.  

Deterministic sensor errors are removed from raw inertial sensor data according to 

equations below, at each initialization. 

 

  1 1
acc uc accc acc A BA M S     (5.2) 

  1 1  
c gyr gyr uc gyr c

W M S W B GA      (5.3) 
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c
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c

B Biasvector

M Misalignment matrix

S Scale factor matrix

G g dependentbiasmatrix

A uncompensatedaccelerometer data

A compensated accelerometer data

W uncompensated gyroscopedata

W compensated gyroscopedata







 






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Gyroscope measurements are affected by scale factor errors, constant bias error, 

misalignment error and g-dependent error. All errors have the same modeling 

principle with accelerometer, but additional g-dependent bias has to be omitted. 
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5.2 Modeling Stochastic Errors: 

 

Stochastic error parameters are identified by several methods such as autocorrelation, 

Allan Variance and PSD as explained in previous chapter. These methods reveal 

some important noise parameters (i.e., angle/velocity Random Walk, bias instability, 

time constant). Modeling of stochastic errors is a complicated problem; because one 

may consider the specific error type dependent on the application, time duration and 

sensor type etc. For example, angle/velocity random walk is inserted into all 

stochastic models because it corrupts all measurements. MEMS sensors do not 

integrate their measurements. Therefore, modeling the quantization error is not 

useful for MEMS sensors. If a vehicle/missile which has a ring laser gyro (RLG) 

working for ten seconds, then bias instability may not correlate it to the sensor 

output. Therefore, modeling bias instability is not a critical problem for this RLG 

application.  

Stochastic errors are meaningful together with their difference equations, since state 

space equations of different error sources are primarily used by error estimation 

techniques (i.e., Kalman Filters) [7]. Some inertial sensors include deterministic 

disturbances; for example, dithering is a common application in ring laser gyros due 

to the lock-in phenomena and these kind of artificial effects have to be modeled. 

IMUs generally consist of dampers, which remove the additional vibration from the 

inertial sensor data. Bandwidth of an inertial sensor is usually not known exactly. 

PSD analysis satisfies good approximation to find the bandwidth. Bandwidth of a 

sensor has to be known, because magnitude of stochastic errors is also affected by 

filters. Thus, all of these effects have to be taken into account for IMU modeling. In 

this section, differential equation of each error terms will be given; and 

implementation of stochastic error parameters on difference is explained. 

 

5.2.1 Quantization Error (Non-Integrating White Noise) 
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PSD function of quantization error is given as, 

 

2 2
ΩS (f)=(2πf) Q t

Q= quantization error parameter

t sampling period



 

  (5.4) 

Equation (5.4) can be considered as the output of a shaping filter. Details about the 

shaping filter can be found in [23]. Therefore, PSD function of input is unity. 
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  X(s)= sW(s)Q t   (5.10) 

Taking the inverse Laplace of Equation (5.10) gives, 

 x(t)= Q tw(t)   (5.11) 

At that point, discretization process can be explained. First of all, assume that we 

have a linear system in the following form, 

 
x(t)= Ax(t)+Bu(t)+w(t)

y(t)=Cx(t)+Du(t)+n(t)
  (5.12) 
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w(t) and n(t)are process and measurement noise terms, respectively and these terms 

are distributed according to 𝑁(0, 𝜎𝑤
2) and 𝑁(0, 𝜎𝑛

2). Suppose that, u(t) is passed 

through a zero-order hold system, Equation (5.12) is discretized as, 

 
d d

d d

x[k+1]= A x[k]+B u[k]+w[k]

y[k]=C x[k]+D u[k]+n[k]
  (5.13) 

w[k]  and n[k]  are distributed according to 𝑁(0, 𝜎𝑤
2) and 𝑁(0, 𝜎𝑛

2) other 

discretization equations can be summarized as, 
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



  (5.14) 

Equation (5.11) is not directly discretized because it does not satisfy the conditions 

of Equation (5.12). Additionally, Equation (5.11) cannot be implemented physically 

[28], but according to definition of the error term, quantization error is approximated 

by Equation (5.15).  

 t

Q
x[k] = w[k]

y[k] = x[k] - x[k -1]

   (5.15) 

 Q Quantization error coefficient

t sampling interval



 
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Quantization noise can be seen on the output of a rate or acceleration integrated 

sensors [28]. RLG is a rate integrated sensor; therefore, slope of -1 regime can be 

obtained from Allan deviation curve. Quantization noise does not accumulate with 

time as shown in Equation (5.15). Moreover, quantization error is not a dominant 

error source for MEMS accelerometers, MEMS gyros and quartz sensors. 

 

5.2.2 Angle/Velocity Random Walk 

 

Angle/Velocity random walk corrupts output of all types of sensor. Hence, it affects 

the measurements of an inertial sensor as white noise [8]. Continuous time 

expression of Angle/Velocity random Walk is given below: 

 
 

   

t

N
y t = w(t)arw

w t ~ N 0,1

   (5.16) 

/N angular velocity random walk

t sampling rate

coefficient

 


 

Discrete time expression of Equation (5.16) is given by 

 

   

arw
y [k] = w[k]

t

w k ~ N 0,1  

N

   (5.17) 

 

5.2.3 Exponentially Correlated Noise 

 

Exponentially correlated noise can be approximated by Gauss-Markov process [7, 

13]. If one attempts to model correlated noise with autoregressive or autocorrelation 
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methods, collected data can be put into a filtering process [7, 24]. On the other hand, 

Gauss-Markov process needs correlation time and bias instability coefficient and 

these parameters can be found from Allan deviation curve [7].  

Here, correlated noise has to be considered if correlation time is smaller than the total 

working time from turn on to turn off. For instance, Allan deviation curve of RLG 

sensors usually does not represent correlated noise for small tau values. The same 

condition is valid for quartz MEMS sensors. Yet, correlated noises become one of 

the major error sources for MEMS sensors.  

Gauss-Markov process is a suitable approximation for modeling slope of zero region 

of Allan deviation curve, since formulations of Allan deviation and Gauss-Markov 

process can be approximately matched in slope of zero region [20]. Autoregressive 

process is another option, but it does not include time constant and sampling time of 

an inertial sensor [20]. Additionally, noise term of autoregressive process does not 

have any information from Allan deviation curve [7].   

Gauss-Markov process can be given as [15, 20], 

 

2

[ 1] [ ] 1 [ ]

[ ] [ ]

0.618

[ ] (0,1)

c c

t t

T T
corr

corr BI

x k e x k e w k

y k x k

w k N

 
 

   



  

  (5.18) 

BI  is selected as bias instability parameter which is identified by Allan deviation 

method or the proposed method. Tc is an unknown parameter but two methods are 

available to determine the time constant, namely autocorrelation and Allan variance 

[3, 11]. 

These methods to estimate Tc value are detailed below: 



78 

 

 Autocorrelation method is applied after sensor filtering process as mentioned 

in Section 4.1, and corresponding time value of % 36.8 point of 

autocorrelation function is equal to the correlation time.  

 When the regime of Allan deviation becomes flat, related tau value 

determines the correlation time. 

5.2.4 Bias Instability 

 

PSD function of the bias instability noise is given in Equation (5.19) 

2

Ω

B

2πf
S (f)=                        (5.19) 

If Equation (5.19) is solved by a shaping filter, denominator of system transfer 

function includes square root of frequency component. Therefore, this error cannot 

be simulated with common methods. 

 

5.2.5 Rate Random Walk 

 

Rate random walk has low-frequency characteristic and therefore, this error is 

obtained from higher tau values [20]. Therefore, if an inertial sensor works in short-

range applications this error may not be modeled. Mathematical expressions of rate 

random walk are given below, 

 

2

2
( )

(2 )
rrw

K
S f

f
   (5.20) 

 
*( ) ( ) ( ) ( )

rrw w
S jw H jw S jw H jw   (5.21) 

Input of shaping filter, which converts the white noise input to rate random walk 

process. Hence, PSD function of input is unity. 

 ( ) 1
w

S jw    (5.22) 
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2

*

2
( ).1. ( )

(2 )

K
H jw H jw

f
   (5.23) 

According to Equation (5.21),  transfer function of shaping filter is given by, 

  
K

H s =
s

  (5.24) 

Therefore, 

 
X(s) K

=
W(s) s

  (5.25) 

  sX s = Kw(s)   (5.26) 

Taking the inverse-Laplace transform gives, 

 

   

   

x t = Kw t

y t = x t

w(t) ~ N(0,1)

  (5.27) 

Discrete-time equation of rate random walk is expressed below, 

 

     x k +1 = x k + K t  w k

y[k] = x[k]

K = rate random walk coefficient

t =sampling time





  (5.28) 

To sum up, we had identified all of the equations about the random inertial sensor 

errors. These equations are formed by discretization of continuous time equations of 

random errors. Some of errors become dominant with time; therefore, time duration 

of an application is important for IMU modeling. There are some constraints about 

modeling an IMU output. Firstly, filtering has important effects on random errors; 
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because of that, before modeling an IMU output we have to know the filtering 

structure. Secondly, some kinds of sensors (i.e., RLG) have disturbances in their 

measurements. For instance, dither movement of RLG sensors has to be modeled 

because these movement changes noise level of sensor. Thirdly, designers use 

insulator on their IMUs in order to prevent undesired vibrations. These insulators 

have some effect on stochastic errors of an inertial sensor because they work like a 

low-pass filter. Random error modeling structure is shown in Figure 55. 

. 

ISOLATOR Σ+

Bias Instability

+

Velocity/

Angular 

Random Walk

INPUT Σ

Rate Random 

Walk

+

FILTER

+

OUTPUT

 

Figure 55 General modeling structure of a random inertial sensor data 
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CHAPTER 6  
 

 

SIMULATION RESULTS OF IMU MODELING 
 

 

 

Inertial sensors have different noise characteristics related to their structure and their 

materials. For example, optical sensors generally do not suffer from rate random 

walk for short cluster time (τ), but MEMS sensors are affected by rate random walk. 

Allan deviation curve shows errors in different slope regions and this implies that 

random errors have different frequency characteristic. Therefore, they have to be 

modeled by different random processes. Dampers and digital filters are modeled 

according to PSD or manual of inertial sensors. PSD is suitable method to reveal 

frequency characteristic of an inertial sensor. It also shows error parameters but 

identifying true error parameters is relatively hard because PSD spreads too much at 

high frequency thus frequency averaging is needed. Hence, Allan deviation method 

is selected as the main method to identify error parameters because it works in time 

domain and Allan deviation shows starting time of each correlated noise parameter.  

Additionally, comparisons of proposed error estimation method and line methods are 

given for each sensor. In addition, all sensors are modeled by the line and the 

proposed methods. Model outputs of the line method, the proposed method and real 

data are compared with each other to show performance of the proposed method. 
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6.1 Modeling MEMS Sensors 

 

6.1.1 Estimation of Sensor Errors with the Line Method for the MEMS IMU 1 

 

MEMS sensors are usually influenced by angle/velocity random walk, bias instability 

and rate random walk errors. MEMS sensors can be affected by deterministic errors 

very dramatically, because of their structure. Allan deviation curve does not give any 

information about deterministic errors and levels of Allan deviation curve 

independent from the deterministic errors. Yet, temperature calibration has to be 

performed before performing Allan deviation tests.  

Two different MEMS IMUs are investigated in this thesis work; one of them has 

automotive grade sensors, and the other one has tactical grade sensors Therefore, we 

expect different noise levels between Allan deviation curves. Before performing 

IMU modeling, we have to identify error parameters with calibrated IMU data. As 

indicated before, velocity random walk parameter can be found from slope of -1/2 

line, bias instability is shown in flat region and Allan deviation curve demonstrates 

rate random walk in slope of +1/2 region. Bias instability parameter equals to 1.506 

times of the minimum point of the flat region.  Allan deviation results of control 

grade inertial sensors are given in Figure 56 to Figure 61. 
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Figure 56 Allan deviation curve of the x-axis accelerometer of the MEMS IMU 1. 

 

 

Figure 57 Allan deviation curve of the y-axis accelerometer of the MEMS IMU 1. 
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Figure 58 Allan deviation curve of z-axis accelerometer of the MEMS IMU 1. 

  

 

 

Table 7 Error parameters of the accelerometers according to Allan Deviation curves. 

Accelerometer 

Velocity 

Random 

Walk(mg/√Hz) 

Bias 

Instability(m/s
2
) 

Rate Random 

Walk(m/s/h
3/2

) 

Time 

constant 

(s) 

x-axis 0.4899 0.0031 75.6 20 

y-axis 0.3062 0.0019 30.24 20 

z-axis 0.2666 0.0016 64.8 20 
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Figure 59 Allan deviation curve of x-axis gyroscope of the MEMS IMU 1. 

 

 

Figure 60 Allan deviation curve of the y-axis gyroscope of the MEMS IMU 1. 
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Figure 61 Allan deviation curve of  z-axis gyroscope of the MEMS IMU 1. 

 

 

 

Table 8 Gyroscope error parameters according to Allan deviation curve 

Gyroscope 
Angle Random 

Walk(deg/√h) 

Bias Instability 

(deg/h) 

Time 

constant 

(s) 

x-axis 0.504 10.27 60 

y-axis 0.504 10.14 50 

z-axis 0.504 10.11 50 

 

6.1.2 Estimation of Errors with Proposed Method for MEMS IMU 1 

 

Same error components are identified by proposed method and each step of error 

parameter estimation will be explained in this section. First of all, we have to obtain 

natural logarithm equivalence of sigma and tau values for x-axis accelerometer and 
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we apply curve fitting method to prevent scattering. Fitted Allan deviation curve is 

given in Figure 62. 

 

 

Figure 62 Real and fitted Allan deviation curves. 

 

We perform the algorithm, which is stated in Section 4.4. According to algorithm, 

firstly we find the correlation time of bias instability. We set a threshold to estimate 

slope of zero, threshold value equals to 6.3x10
-7

 and it is constant for all sensors. In 

this example, correlation time of bias instability is 24 s. Additionally, we have to find 

local minimum points of the curve to define the starting time of the rate random 

walk.  
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Figure 63 Minimum and maximum points of the fitted curve for x-axis 

accelerometer. 

 

Figure 63 shows that minimum point of Allan deviation curve is 29.8 s. We have 

time indices about error terms and we can form the membership functions in 

accordance with the estimated correlation times.  

 

Figure 64 Membership functions for different error types. 
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Least square estimation, which is expressed in, (6.1) is performed to estimate three 

types of errors such as angle random walk, bias instability and rate random walk.  

Estimated errors are stated in the Table 9. 

 . 
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  (6.1) 

 

 

 

Table 9 Error parameters of x-axis accelerometer. 

Parameter 
x-axis 

accelerometer 

Velocity random 

walk (N) (mg/√Hz) 
0.4924 

Bias Instability 

(B)(m/s
2
) 

0.0037 

Rate Random 

Walk (K) (m/s/h
3/2

) 
86.4

 

Time constant 24 
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Same process is applied for y-axis accelerometer and the fitted curve is demonstrated 

in Figure 65.  

 

 

Figure 65 Minimum and maximum points of the fitted curve for y-axis 

accelerometer. 

 

There are two local minimum points in the Figure 65. First one is due to the bias 

instability, but it is ignored, because we use the threshold approximation to estimate 

the time constant value. Second minimum point states starting time of rate random 

walk. Time constant of the bias instability and rate random walk is 21 s and 133 s, 

respectively. Relevant membership functions are shown in Figure 66 and error 

parameters are given in the Table 10. 
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Figure 66 Membership functions for y-axis accelerometer. 

 

Table 10 Error parameters of y-axis accelerometer 

  Parameter 
y-axis 

accelerometer 

Velocity random 

walk (N) (mg/√Hz) 
0.3051 

Bias Instability 

(B)(m/s
2
) 

0.0017 

Rate Random 

Walk (K) (m/s/h
3/2

) 
21.6

 

Time constant (s) 21 

 

Fitted Allan deviation curve is shown in Figure 67 for z-axis accelerometer.  
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Figure 67 Maximum and minimum points for fitted curve of z-axis accelerometer. 

 

z-axis accelerometer has a local minimum at 29 s. Slope investigation gives that 

correlation time of bias instability is 23 s. We can form the membership functions for 

z-axis accelerometer. Estimation results are given in Table 11. 

 

Figure 68 Membership functions for z-axis accelerometer. 
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Table 11 Error parameters for z-axis accelerometer. 

  Parameter 
z-axis 

accelerometer 

Velocity random 

walk (N) (mg/√Hz) 
0.27 

Bias Instability 

(B)(m/s
2
) 

0.0019 

Rate Random 

Walk (K) (m/s/h
3/2

) 
66.3

 

Time constant (s) 23 

 

x-axis gyroscope of the MEMS IMU 1 is inspected  by the proposed method. Firstly, 

fitted Allan deviation curve is given in Figure 69. 

 

Figure 69 Fitted function for x-axis gyroscope. 

 

There are two minimum points in this figure, but these are not the indication of the 

rate random walk because these are only due to the deviation of the bias instability. 

We can extract the correlation time of bias instability with our threshold method. 
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Correlation time of bias instability is 57 s and membership functions are shown in 

Figure 70 for x-axis gyroscope. Results are given in the Table 12. 

 

Figure 70 Membership functions for x-axis gyroscope of the MEMS IMU 1. 

 

 

Figure 71 Applying threshold value to x-axis gyroscope of the MEMS IMU 1. 

 

 

0 20 40 60 80 100 120 140 160 180 200

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

second

F
a
c
to

r

 

 
ARW Membership Function

BI Membership Function

0 20 40 60 80 100 120 140 160 180 200
-0.01

0

0.01

0.02

0.03

0.04

0.05

Time(s)

D
if
fe

re
n
c
e

 

 
Difference Curve

Threshold



95 

 

Table 12 Error parameters of x-axis gyroscope. 

  Parameter x-axis gyroscope 

Angle random 

walk (N) (deg/√h) 
0.552 

Bias Instability 

(B)(deg/h) 
11.52 

Time constant (s) 54 

 

Fitted curve for y-axis gyroscope is given in Figure 72 .  

 

 

Figure 72 Fitted curve, maximum and minimum points for y-axis gyroscope. 

 

This curve also has the minimum point but it is not the starting time of rate random 

walk, therefore, rate random walk equals to zero. Correlation time of bias instability 

is nearly 30 s according to threshold method. Determined error parameters are given 

in the Table 13. 
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Figure 73 Membership functions for the y-axis gyroscope of the MEMS IMU 1. 

 

 

Figure 74 Applying threshold value to y-axis gyroscope of the MEMS IMU 1. 
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Table 13 Error parameters for the y-axis gyroscope. 

  Parameter y-axis gyroscope 

Angle random 

walk (N) 

(deg/√h) 

0.522 

Bias Instability 

(B)(deg/h) 
12.96 

Time constant (s) 30 

 

Fitted curve of z-axis gyroscope is shown in Figure 75. 

 

Figure 75 Fitted curve for z-axis gyroscope. 

 

There is a minimum point in Figure 75, but slope of the curve becomes zero at the 

end of the curve. Therefore, rate random walk is not a dominant error term in this 

region. It is also considered as the bias instability. Minimum point in the Figure 75 

indicates that this point is the correlation time of bias instability. Membership 

functions are given in the following figure. 
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Figure 76 Membership functions for z-axis gyroscope of MEMS-IMU 1. 

 

 

Figure 77 Applying threshold value to z-axis gyroscope of the MEMS IMU 1. 
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Table 14 Error parameters of z-axis gyroscope. 

  Parameters z-axis gyroscope 

Angle random 

walk (N) 

(deg/√h) 

0.552 

Bias Instability 

(B)(deg/h) 
12.96 

Time constant (s) 50 

 

To sum up, we estimated all of the sensor errors for the MEMS IMU 1. We will 

generate random and deterministic errors and compare with the real Allan variance 

curve.  

 

6.1.3 Noise Generation for the MEMS IMU 1 

 

IMU random error parameters are shown in Table 7 and Table 8 for line method and 

from Table 9 to Table 14 for the proposed method. These parameters are used in 

IMU error modeling. Deterministic errors are modeled with their 1σ value, for 

example if bias repeatability value is 10 mg bias can be modeled by random 

generator with variance of 10 mg. In this example, maximum expected IMU bias is 

±30 mg (3σ value).  IMU modeling is based on white noise process, Gauss Markov 

process and random walk process.  

Low-pass filter is employed by the IMU model because all random error generators 

produce wide-band errors hence; it causes differences between real data and 

simulated data. Accurate modeling of the filter is an important problem when true 

parameters of the low-pass filter are unknown. 
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Parameters of x-axis accelerometer are taken from Table 7, Table 9 to Table 10. 

According to Table 7, resulting random error generator equations can be given for x-

axis accelerometer as, 
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As stated below, 1σ value of white noise is 0.1512 m/s
2
, and correlated noise is 

modeled by Gauss-Markov process and the parameter of Gauss-Markov process is 

demonstrated by, 
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According to Equation (5.28), rate random walk is expressed as follows,  
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All sensors are modeled with the same structures but different parameters (i.e., the 

line method and the proposed method) and comparisons of simulated data and real 

data are given in Figure 78 to Figure 80.  

 

Figure 78 Comparison of Allan deviation curve of real data and simulated data for x-

axis accelerometer. 

 

Allan deviation curve of simulated data somehow match with Allan deviation curve 

of real data but bias instability cause main difference between two curves. 

Additionally, it is supposed that real Allan deviation curve does not represent real 

sensor behavior due to the temperature. Differences between exact value and 

simulated error are not huge.    
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Figure 79 Allan deviation curves of real data and simulated data for y-axis 

accelerometer of the MEMS IMU 1. 

 

The main problem of this IMU is both temperature and correlated noise are around τ 

= 100 s which cannot be modeled easily. Temperature causes deviations from true 

error characteristic and causes some errors on estimated error parameters. Therefore, 

differences occur between real data curve and the simulated data curve.  
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Figure 80 Allan deviation curves of real data and simulated data for z-axis 

accelerometer of the MEMS IMU 1. 

 

Main problem in Figure 80 is small time scale of bias instability error. Summations 

of all errors cause deviation from real Allan deviation curve. For instance, 

summation of bias instability and velocity random walk increases the noise level at 

τ<10 s region. Additionally, summation of rate random walk and bias instability 

causes variation of Allan deviation curve. 

Rate random walk is not included the gyroscope models because slope of +1/2 region 

cannot be obtained from the Allan deviation curves. Yet, other errors have the same 

modeling structures with the accelerometers. Error parameters are taken from Table 

8, Table 12, Table 13 and Table 14. Comparisons are shown in Figure 81 to Figure 

83. 
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Figure 81 Allan deviation curves of real data and simulated data for x-axis gyroscope 

of the MEMS IMU 1. 

 

Curves are slightly different from each other; it means that the suggested error model 

is enough for modeling this gyroscope. Nevertheless, the proposed method estimates 

are more accurately than the line method.   
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Figure 82 Allan deviation curves of real data and simulated data for y-axis gyroscope 

of the MEMS IMU 1. 

 

 

Figure 83 Allan deviation curves of real data and simulated data for z-axis gyroscope 

of the MEMS IMU 1. 
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Error identification techniques find different results for each error term. Sometimes 

slightly different results are obtained even if temperature dependency of bias and 

scale factor errors are modeled. Yet, residuals of temperature dependent part of 

deterministic errors still affect the output of the sensor.   

     

6.1.4 Estimation of Sensor Errors with Traditional Line Method for the 

MEMS IMU 2 

 

 

Figure 84 Allan deviation curve of x-axis accelerometer of the MEMS IMU 2. 
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Figure 85 PSD curve of x-axis accelerometer of the MEMS IMU 2. 

 

 

 

Figure 86 Allan deviation curve of y-axis accelerometer of the MEMS IMU 2. 
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Figure 87 PSD curve of y-axis accelerometer of the MEMS IMU 2. 

 

 

Figure 88 Allan deviation curve of z-axis accelerometer of the MEMS IMU 2. 
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Figure 89 PSD curve of z-axis accelerometer of the MEMS IMU 2. 

 

 

Table 15 Identified accelerometer error parameters of the MEMS IMU 2. 

Accelerometer 

Velocity 

Random 

Walk(mg/√Hz) 

Rate Random 

Walk(m/s/h
3/2

) 

x-axis 0.0925 8.64 

y-axis 0.0729 4.96 

z-axis 0.0706 5.83 

 

 

Bias instability is not modeled because it does not have any effect on the 

accelerometer output as shown in Figure 84 to Figure 88. We decide which error 

affects the output of sensor according to the location of the lines. PSD method is 

useful in these kinds of situations.  
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Figure 85 shows that dominant error terms are rate random walk and angle random 

walk for x-axis accelerometer sensor. The same result is also valid for other 

accelerometers. Therefore, if one cannot decide about dominant noise terms, PSD 

function gives important outcomes about noise characters. 

 

 

Figure 90 Allan deviation curve of x-axis gyroscope of the MEMS IMU 2. 

 

 

 

Figure 91 Allan deviation curve of y-axis gyroscope of the MEMS IMU 2. 

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

(s)


(d

eg
/s

)

 

 
AD Curve

Angle Random Walk

Rate Random Walk

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

 (sec)


 (

de
g/

s)

gyr-y Test Results

 

 
AD Curve

Angular Random Walk

Rate Random Walk



111 

 

 

Figure 92 Allan deviation curve of z-axis gyroscope of the MEMS IMU 2. 

 

As the lines indicated, gyroscopes generally have only angle random walk and rate 

random walk on the output of the sensor. Moreover, we cannot draw a unique line for 

bias instability and rate random walk. For example, Allan deviation results start to 

oscillate at higher tau values. Therefore, it is very hard to draw a specific line on 

Allan deviation curve.  

 

Table 16 Identified gyroscope error parameters of the MEMS IMU 2. 

Gyroscope 
Angle Random 

Walk(deg/√h) 

Rate Random 

Walk (deg/h/√s) 

x-axis 0.078 0.0583 

y-axis 0.0448 0.043 

z-axis 0.048 0.0677 
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6.1.5 Estimation of Sensor Errors with Proposed Method for the MEMS IMU 

2 

 

The same procedures with the MEMS IMU 1, are treated to investigate Allan 

deviation curves of the MEMS IMU 2. Firstly, a curve is fitted to Allan deviation 

curve and then we extract the correlation times of specific error terms. 

 

 

Figure 93 Fitted curve of x-axis accelerometer of the MEMS IMU 2. 

 

Figure 93 implies that starting time of the rate random walk is 58 s. Additionally, 

threshold method finds 55 s for the correlation time of bias instability. This condition 

occurs when the data is affected by rate random walk and velocity random walk. It 

can be supposed that bias instability parameter can be identified between τ = 55 s and 

τ = 58 s, but modeling bias instability causes unexpected behavior of Allan deviation 

curve. Therefore, this data is affected by rate random walk and velocity random 

walk. 
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Figure 94 Fitted curve of y-axis accelerometer of the MEMS IMU 2. 

 

Figure 94 shows that the starting time of the rate random walk is 12 s. Bias instability 

does not correlate the data, because both threshold method and local minimum point 

approach finds same time value (τ = 12 s). This data is certainly affected by velocity 

random walk and rate random walk. 

 

 

Figure 95 Fitted curve of z-axis accelerometer of the MEMS IMU 2. 

 

-6 -4 -2 0 2 4 6
-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

log(tau)

lo
g
(s

ig
m

a
)

 

 
Fitted Curve

Maximum Point

Minimum Point

-6 -4 -2 0 2 4 6
-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

log(tau)

lo
g(

si
gm

a)

 

 

Fitted Curve

Maximum Point

Minimum Point



114 

 

According to Figure 95, z-axis accelerometer is also affected by the velocity random 

walk and rate random walk. It has one minimum point and the threshold method 

finds the same point for slope of zero regions. Time index of minimum point is 52 s. 

Bias instability can be considered as the corresponding value of this minimum point. 

Yet, both bias instability and velocity random walk have the same time index. 

Additionally, fitted curve always increases after 52 s. To sum up, this data contains 

velocity random walk and rate random walk. 

 

Figure 96 Fitted curve of x-axis gyroscope of the MEMS IMU 2. 

 

Starting time of rate random walk is 155 s and the correlation time of bias instability 

is 152 s according to threshold method.  Bias instability is not available in this time 

range. Thus, angle random walk and rate random walk are taken into account.    
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Figure 97 Fitted curve of y-axis gyroscope of the MEMS IMU 2. 

 

Starting time of the rate random walk noise is 110 s. Additionally, threshold method 

finds that the correlation time of bias instability is 107 s. Therefore, bias instability is 

supposed as the dominant error term with only a very short time range.   

 

Figure 98 Fitted curve of z-axis gyroscope of the MEMS IMU 2. 
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In Figure 98, minimum point occurs at 51 s and flat region starts 50 s. Therefore, bias 

instability is not included in models, rate random walk and angle random walk errors 

are modeled. Resultant membership functions are given in Figure 99 and Figure 100. 

 

 

Figure 99 Membership functions of x, y, z axes accelerometers respectively (up to 

bottom). Red line indicates membership function of angle random walk, green line 

states membership function of rate random walk. 
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Figure 100 Membership functions of x, y, z axes gyroscopes respectively (up to 

bottom). Red line indicates membership function of angle random walk, green line 

states membership function of rate random walk. 

 

Error parameters are estimated by the least-square estimation and are shown in Table 

17 and Table 18. 

 

Table 17 Accelerometer error parameters with proposed method. 

Accelerometers 

Velocity 

Random 

Walk(mg/√Hz) 

Rate Random 

Walk (m/s/h
3/2

) 

x-axis 0.0956 8.1 

y-axis 0.0741 5.08 

z-axis 0.0710 5.96 
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Table 18 Gyroscope error parameters with proposed method. 

Gyroscopes 
Angle Random 

Walk(deg/√h) 

Rate Random 

Walk (deg/h/√s) 

x-axis 0.078 0.0590 

y-axis 0.0466 0.0446 

z-axis 0.0419 0.0691 

 

 

Angle random walk on x-axis gyroscope is higher than other axes because 

measurement range is two times higher than other axes. Inertial sensors are modeled 

with estimated parameters and comparisons are made between real Allan deviation 

curve and Allan deviation curve of the simulated data. 

 

 

Figure 101 x-axis accelerometer comparison result. 

 

Parameters of the proposed method are slightly better than that of the line method, 
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proposed method, especially in the velocity random walk region. These differences 

sometimes occur due to the filter or isolator parameters.  

    

 

Figure 102 y-axis accelerometer comparison result. 

 

 

Figure 103 z-axis accelerometer comparison result. 
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Figure 102 and Figure 107 shows that the proposed method produces more accurate 

results than the traditional line method. Additionally, three curves reach the same 

value at the end of the curve. 

 

Figure 104 x-axis gyroscope comparison result. 

 

 

Figure 105 y-axis gyroscope comparison result. 
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Figure 106 z-axis gyroscope comparison result. 

 

Gyroscope results show two error identification results are enough to produce nearly 

the same results with real Alan deviation curve, but small dissimilarities are observed 

from the figures. Yet, parameters of the line method cause deviation from the real 

Allan deviation curve as shown in Figure 106.  

 

6.2 Modeling Quartz Sensor 

 

Quartz sensors use quartz material to measure physical quantity. Therefore, 

magnitudes of random error parameters are very low for quartz sensor and 

repeatability values of deterministic errors are better than MEMS sensors. These 

sensors are in the tactical grade class. For example, bias repeatability value of this 

sensor is 1 mg (1σ-value). This is twenty times better than control grade 

accelerometers. Deterministic error parameters are demonstrated in Table 19.  

Deterministic errors are modeled with zero mean and known variance. Random error 

parameters are estimated by both the line method and the proposed method, but 
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detailed analysis of the proposed method is not given in this section. PSD analysis 

shows that bias instability and angle/velocity random walk is dominant error terms 

for quartz sensor. Allan deviation results are shown in Figure 107 to Figure 112.   

 

Table 19 Deterministic error parameters of the quartz sensor. 

Sensor Type Error Parameter Magnitude 

Accelerometer 

Scale Factor (3σ) ppm 600 

Bias (3σ) (mg) 3 

Misalignment (3σ) mrad 5.6 

Gyroscope 

Scale Factor (3σ) ppm 600 

Bias (3σ) (deg/h) 3 

Misalignment (3σ) mrad 5.6 

 

 

 

Figure 107 Allan deviation curve of x-axis accelerometer of the quartz IMU. 

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

acc-x Test Results

 (s)


(m

/s
2
)

 

 
AD Curve

VRW

Bias Instability



123 

 

 

Figure 108  Allan deviation curve of y-axis accelerometer of the quartz IMU. 

 

 

Figure 109 Allan deviation curve of z-axis accelerometer of the quartz IMU. 
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instability is not the dominant error in Figure 109. Additionally, x-axis and y-axis 

accelerometers do not have rate random walk error.  Detailed error parameters are 

demonstrated in Table 20 and Table 21. 

 

Table 20 Identified error parameters of the quartz accelerometer with line method. 

Accelerometer 

Velocity 

Random 

Walk(mg/√Hz) 

Bias 

Instability(m/s
2
) 

Rate Random 

Walk(m/s/h
3/2

) 

Time 

constant 

(s) 

x-axis 0.0757 0.000243 - 30 

y-axis 0.0674 0.00032 - 10 

z-axis 0.0716 0.00027 10.8 20 

 

 

Table 21 Identified error parameters of the quartz accelerometer with proposed 

method 

Accelerometer 

Velocity 

Random 

Walk(mg/√Hz) 

Bias 

Instability(m/s
2
) 

Rate Random 

Walk(m/s/h
3/2

) 

Time 

constant 

(s) 

x-axis 0.0846 0.00027 - 30 

y-axis 0.0741 0.00042 - 13 

z-axis 0.0796 0.0002 11.65 22 
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Figure 110 Allan deviation curve of the x-axis gyroscope of the quartz IMU. 

 

 

Figure 111 Allan deviation curve of y-axis gyroscope of the quartz IMU. 
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Figure 112 Allan deviation curve of z-axis gyroscope of the quartz IMU. 

 

Bias instability and angle random walk are dominant error terms for quartz 

gyroscopes; therefore, these two errors are modeled. Gyroscope error levels are 

lower than MEMS IMU 1 and MEMS IMU 2, due to the accuracy of quartz 

structure.  

 

Table 22 Identified error parameters of the quartz gyroscope with the line method. 

Gyroscope 
Angle Random 

Walk(deg/√h) 

Bias Instability 

(deg/h) 

Time 

constant 

(s) 

x-axis 0.017 0.21 30 

y-axis 0.016 0.17 30 

z-axis 0.017 0.27 20 
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Yet, one can obtain these bulges if details are increased in the Allan deviation curve 

(decrease the time difference between two tau values).  This problem is discussed in 

Section 4.3.1.5 for more details. 

 

Table 23 Identified error parameters of the quartz gyroscope with the proposed 

method. 

Gyroscope 
Angle Random 

Walk(deg/√h) 

Bias Instability 

(deg/h) 

Time 

constant 

(s) 

x-axis 0.0176 0.37 42 

y-axis 0.0173 0.25 50 

z-axis 0.0175 0.23 20 

 

 

As can be seen in the figures, noise levels are better than MEMS sensors, especially 

for gyroscopes. Therefore, noise levels are important indicators of IMU 

classification. Bias instability is a critical parameter, because it is non-stationary, 

hence; total error increases with data size. Moreover, angle random walk is the 

dominant error term and it is primarily used for sensor classification but bias 

instability is another major term for long-range applications. This quartz IMU is in 

the tactical level because both deterministic and stochastic errors are in the tactical 

grade levels as indicated in Table 3. 

Before simulations, we have to know filter characteristic of the IMU; but we only 

know the minimum bandwidth from the manual of the IMU. We do not have any 

additional information about the exact bandwidth. PSD is a good solution when 

frequency dependent characteristic come into question. We first evaluate the PSD 

function of the quartz IMU and then establish a filter, which determines the 

bandwidth of the IMU.  
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Figure 113 PSD curve of the quartz gyroscope. 

 

According to Figure 113, bandwidth of the quartz sensor is nearly 100 Hz maybe we 

cannot evaluate exact -3dB point from the figure, but we have an approximate 

bandwidth. Accuracy of modeling is highly dependent on the accurate modeling of 

the filter. 

 

 

Figure 114 Modeling results of x-axis accelerometer. 
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Figure 115 Modeling results of y-axis accelerometer. 

 

 

Figure 116 Modeling results of z-axis accelerometer. 
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errors than expected. This situation happens owing to the small time range of the bias 

instability and existence of rate random walk. 

 

 

Figure 117 Modeling results of x-axis gyroscope. 

 

 

Figure 118 Modeling results of y-axis gyroscope. 
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Figure 119 Modeling results of z-axis gyroscope. 

 

6.3 Modeling Optical sensor 

 

Optical sensors usually suffer from bias instability, quantization error and angle 

random walk. This type of sensors measure phase difference between two light 

beams. Phase difference is measured from fringe patterns. Sampling time of rate 

integrating sensor is not enough to count whole fringe patterns and remainder of 

movement is included in the output of the next output [29]. Hence, small errors occur 

due to the remainder. Remainder is the source of the quantization error [29]. 

Quantization error occurs in the rate integrating sensors; other type of sensors (i.e., 

MEMS) generally do not include this error term.  

 

6.3.1 Ring Laser Gyro (RLG) 

 

Ring laser gyroscopes use laser beams; therefore, their noise levels and magnitude of 

deterministic errors are very low. Hence, ring laser gyros are tactical grade sensors. 

Yet, dither movement is the main reason of the sinusoidal component in Allan 
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deviation curve of ring laser gyroscopes. Thus, slope of -1 can be obtained in Allan 

deviation curve of the gyroscopes, but origin of this slope is the sinusoidal 

component. Additionally, PSD analysis shows that angle random walk and 

quantization errors are the dominant error terms for RLGs. Allan deviation curves of 

RLG are demonstrated in Figure 120 to Figure 122.  

 

Figure 120 Allan deviation curve of x-axis RLG. 

 

  

Figure 121 Allan deviation curve of y-axis RLG. 
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Figure 122 Allan deviation curve of z-axis RLG. 

 

Table 24 Error parameters of the ring laser gyroscopes. 

Gyroscope 

Angle Random 

Walk(deg/√h)-

Line Method 

Angle Random 

Walk(deg/√h)-𝝉 =

𝟏 𝒔𝒆𝒄 equivalence 

Quantization 

error (arcsec)-

Line Method 

x-axis 0.078  
0.126 (higher than 

manual) 
4.822 

y-axis 0.071 0.073 2.125 

z-axis 0.065 0.066 2.116 

 

Table 24 shows that angle random walk of x-axis gyroscope is higher than defined 

angle for random walk parameter in IMUs manual, according to τ = 1 sec 

equivalence. RLG sensors are generally affected by dithering moreover; Allan 

deviation curve shows dither components in the short correlation time (0.1 s <τ < 10 

s). Therefore, this situation causes inaccurate determination of angle random walk 

and quantization error in the Allan deviation curve. We have to analyze this sensor 

with the proposed method to find the exact angle random walk and quantization 

error. 
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PSD is used for identification of quantization error of RLG sensor, because 

sinusoidal components due to the dither are shown by Allan deviation curve. Hence, 

parameter of quantization error is affected. PSD is more reliable than Allan deviation 

method when quantization error comes into question, because both sinusoidal errors 

due to dither and quantization error can be shown to be slope of -1 region in the 

Allan deviation curve. 

PSD plots of RLG sensors are shown in Figure 123 to Figure 125. Frequency 

averaging is applied to the PSD and then quantization error parameters are identified. 

 

 

Figure 123  Identification of quantization error of the x-axis gyroscope with PSD 

method. 
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Figure 124 Identification of quantization error of the y-axis gyroscope with PSD 

method. 

 

 

Figure 125  Identification of quantization error of the z-axis gyroscope with PSD 

method. 
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Allan deviation data to estimate error terms.  Table 25 indicates that the proposed 

method is effective for investigating quantization noise because it estimates very 

similar parameters with the PSD method. 

 

Table 25 Quantization error of the RLG sensors for different methods. 

RLG 

Quantization 

error (arcsec)-

Line Method 

Quantization 

error (arcsec)-

PSD 

Quantization 

error (arcsec)-

Proposed 

Method 

x-axis 4.822 2.808 2.946 

y-axis 2.125 0.923 0.761 

z-axis 2.116 0.828 0.775 

 

Table 26 Estimated error parameter comparison for the proposed method and Allan 

deviation method. 

RLG 

Angle Random 

Walk(deg/√h)-

Line Method 

Angle Random 

Walk(deg/√h)-

𝝉 =

𝟏 𝒔𝒆𝒄 equivalence 

Random Walk 

(deg/√h)-

Proposed 

Method 

x-axis 0.082  
0.126(higher than 

manual) 
0.091 

y-axis 0.071 0.073 0.066 

z-axis 0.065 0.066 0.062 

 

 

The proposed method estimates the angle random walk in the normal range that is 

defined in producer manual. This result shows that the line method results are 

affected from the sinusoidal or other disturbances. As shown in Allan deviation 
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curves, angle random walk level is nearly the same with the quartz sensor, but RLG 

has better white noise characteristic than MEMS sensors. RLG has additional dither 

movement and this movement has to be inserted in RLG models as indicated before.  

Resulting Allan deviation curves and modeling results are shown in Figure 126 to 

Figure 128. 

 

 

Figure 126 Comparison of Allan deviation curves of real and simulated data for x-

axis RLG. 
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Figure 127 Comparison of Allan deviation curves of real and simulated data for y-

axis RLG 

 

 

Figure 128 Comparison of Allan deviation curves of real and simulated data for z-

axis RLG. 
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Correlation time of bias instability is very long for RLG sensors, therefore it does not 

included in this work. Quantization error and angle random walk are the dominant 

error terms, especially when angle random walk characteristic has to be inspected 

deeply because it affects all time scale in the Allan deviation curve.  

 

6.3.2 Fiber optic gyroscope 

 

FOG sensors are, either rate integrated type or rate sensors, depending on their 

electronic read-out circuit. Therefore, quantization error can be seen in the 

measurements of FOGs. Sometimes, angle random walk is more dominant than 

quantization error for open-loop FOG sensors. This is the reason of why we cannot 

obtain quantization error for some open-loop FOGs. On the other hand, quantization 

error is minimized in close-loop operation. However, quantization error is also 

encountered in Allan deviation curves, but with amplitude being smaller than that of 

RLG sensors.    

Two types of fiber optic gyroscope are investigated in this thesis. Open-loop FOG 

sensors are simple, low cost and low power devices and they are in the tactical grade. 

Output of an open-loop FOG is generally voltage but thermal errors affect the output. 

On the other hand, closed-loop FOG sensors have high dynamic range but they 

require high power and additional read-out circuits. Hence, these type sensors are 

more expensive than open-loop fiber optic gyroscopes but close-loop FOG sensors 

are in the navigational grade class. It should be noted that, before investigating 

random errors, PSD method should be used. 

6.3.2.1  Open-Loop FOG sensor 

 

Allan deviation curve and PSD curve of single-axis open-loop FOG sensor are 

shown in Figure 129 and Figure 130. Error parameters are identified with Allan 

deviation method and PSD method, error parameters are shown in Table 27. 
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Figure 129 Allan deviation curve of the open-loop FOG sensor. 

 

 

Figure 130 PSD curve of the open-loop FOG sensor. 
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Figure 131  Applying threshold value to the open loop FOG sensor. 

 

0.5 s < τ ≤ 65 s is the dominant region for angle random walk and 65 s < τ ≤ 100 s is 

the dominant region for bias instability. 65 s is found by threshold method; therefore 

membership functions are formed according to this information. As previously 

stated, transition region between angle random walk and bias instability is selected 

as 10 s.  Figure 130 shows that this data includes bias instability and angle random 

walk because output of open-loop FOG sensor is generally voltage. Therefore, data 

contains dominant angle random walk; quantization noise is not observed from open 

loop RLG sensor. 
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Table 27 Error parameters of open-loop FOG sensor. These parameters are identified 

with Allan deviation method and PSD method. 

 

 

According to Figure 130, filter is not included in the algorithm of the sensor. It 

means that there is no need for a filter model. There is no quantization error because 

+2 slope is not observed from PSD curve. In addition, Allan deviation curve does not 

show quantization error. Therefore, only bias instability and angle random walk 

noises are modeled for open-loop FOG sensor. 

Deterministic error parameters are given in Table 28. These parameters are taken 

from the manual of the FOG sensor. G-dependent bias can be ignored due to the 

structure of optical sensors.  

 

Table 28 Deterministic error parameters of the open-loop FOG. 

Error Parameter Magnitude 

Scale Factor (3σ) ppm 2900 

Bias Error (3σ) (deg/h) 10 

 

Error Parameter 

Allan Deviation 

Curve-Line 

Method 

PSD Method 
Proposed 

Method 

Bias Instability 

(deg/h) 
0.1182 0.1215 0.135 

Angle Random 

Walk(deg/√h) 
0.0092 0.0092 0.0093 

Time Constant (s) 60 Not Applicable 65 
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Deterministic and random error parameters are included in the sensor model and 

comparison of Allan deviation curve of real data and simulated data is given in 

Figure 132. 

 

Figure 132 Comparison between simulation results and real data 

 

The proposed method is somewhat better than the line method, but one important 

observation is that error parameters are estimated by any of the methods for the low-

noise sensors. They produce very similar results, because the sensor is not affected 

by other noise terms (i.e., sinusoidal noise or exponentially correlated noise).  

 

6.3.2.2  Close-loop FOG Sensor 

 

Navigation grade close-loop FOG sensor is investigated in this thesis. Quantization 

error is identified by PSD method and this error is modeled by Equation (5.15).  
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Figure 133 Allan deviation curve of the close-loop FOG sensor. 

 

 

Figure 134 PSD curve of the FOG sensor. 

 

According to Figure 133 and the proposed method, estimated error parameters are 

given in Table 29. 
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Table 29 Estimated error parameters of the close-loop FOG sensor 

 

 

 

 

 

 

 

 

Quantization error is formed as, 

 

[ ] 0.0103 [ ]

[ ] [ ] [ 1]

[ ]

x k w k

y k x k x k

w k Whitesequence


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

  (6.5) 

Sigma value of white noise can be generated by the following equation: 

 

[ ]

[ ]

0.002

0.0034

[ ]

N

N w k

w k White sequence

t s

t

y k



 










  (6.6) 

FOG is modeled in accordance with Equation (6.5) and Equation (6.6). Bias 

instability is not observed from the PSD figures hence it is not included in the noise 

model.  

Error 

Parameter 

Allan Deviation-

Line Method 

Allan Deviation-

Proposed 

Method 

Angle 

Random 

Walk(deg/√h) 

0.0037 0.0034 

Quantization 

Error 

(arcsec) 

0.0576 0.074 
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Figure 135 Comparison of Allan deviation curve of real data and simulated data for 

the close loop FOG sensor. 

 

An angle random walk coefficient of closed-loop FOG sensor is better than other 

sensors. These noise levels are enough for sensitive angle measurements (e.g., 

aircrafts, UAVs, long-range missiles, etc.). 
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CHAPTER 7  
 

 

CALIBRATION OF THE FOG SENSOR 
 

 

 

Error estimation and error degradation processes are essential to increase the 

accuracy of sensors and navigation processes. The proposed method identifies 

random error parameters to be used. Additionally, some parameters are important to 

estimate errors. For example, sampling time and time constant form state transition 

matrix and process noise covariance matrix of bias instability.  

As mentioned before, magnitude of deterministic errors change with temperature. 

Therefore, behavior of errors has to be investigated. Thus, calibration tests are 

performed under different temperatures to catch error characteristics. Temperature 

difference between two successive temperature points is selected carefully, because 

if these points are selected close to each other, test duration increases. Yet, optimal 

temperature steps are generally determined by several experiments.  

Calibration tests are performed in the rate tables under different temperatures. 

Sensitivity and accuracy of rate table is also important to estimate sensor errors 

accurately. If exact turn rate is not captured, it can cause incorrect estimation of error 

parameters.   

Multi-position tests are applied to determine sensor errors precisely [15], but six-

position test is usually sufficient [3]. Multi-position tests increase the test duration; 

therefore, random errors correlate the output of the sensor.  

Additionally, error parameters are estimated at each temperature and a polynomial is 

fitted to all temperature range. This polynomial is used in the IMU error 

compensation algorithm [6]. The same process is repeated for all deterministic errors. 
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Therefore, degree of polynomial is important for error compensation algorithms, 

because process time of algorithm depends on the multiplication operations in the 

error compensation algorithms [6]. 

Temperature difference is selected 10 
0
C in this thesis and a 4

th
 degree polynomial is 

fitted to deterministic errors. For this application, open-loop FOG sensor is selected. 

Operating range of FOG sensor is between -40 
0
C and 75 

0
C. Therefore, we perform 

calibration tests under twelve different temperatures (-40 
0
C to 70 

0
C).   

Residuals of deterministic errors are important but their magnitude change with turn-

on to turn-on. This circumstance can be explained as the repeatability of the 

deterministic error. After several turn-on to turn-offs residual are distributed with 

zero mean and known variance.   

Measurement equation for gyroscope can be stated with the following; 

 ˆ
gx gx x gxx x gxy gxz z gxyw a += S w +M w M w +B +G n+   (7.1) 

g-dependent errors are negligible error terms for FOG and RLG sensors because they 

use laser beams instead of the solid structures. We perform the test with single-axis 

FOG sensor; therefore, misalignment parameters can be ignored. Equation (7.1) is 

simplified as, 

 ˆ
gx gxx x gxw += S w +B n   (7.2) 

We only estimate bias and scale factor as the deterministic error. We can rewrite the 

equation in the vector form for simplicity. 

 ˆ [ ]
1

gx gx

x

x gxw n
w

S B
 

  
  

  (7.3) 

We collected data at different 28 angular rates in order to increase the sensitivity of 

the calibration process. Suppose that matrix U is formed by the mean value of the 

sensor output for each step of the multi-position test. Matrix A is formed by exact 

inputs to the rate table. 
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 1 2 3 28[ ... ]

n

U MA

meanvalueof thesensor output

U u u u u

u





   (7.4) 

 

 1 2 28...

1

, ( )

x

n

x

A a a a

w
a

w input of theratetable referenceinput



 
  
  

  (7.5) 

Least-square method estimates the deterministic error in the output of the sensor. It is 

a very simple method and accuracy is high enough for identification of the sensor 

errors [15]. Equation of least squares estimation is given by, 

 

1( )

,

T TM UA AA

M error component matrix


  (7.6) 

Before the calibration tests are performed, FOG sensor is aligned true north because 

FOG sensor has capability of the measuring the rotation of the Earth. Hence, if we do 

not remove this term from our measurements we will estimate inaccurate bias terms. 

Rotation of the Earth for the given latitude is, 

 

( 15.041deg/ )

elat

lat

e

rotationrateof theEarth forgivenlatitude

rotationrateof the Earth h

L latitude

sinL



 



 




  (7.7) 

Calibration tests are performed on the 39.987086
0 

north latitude and rotation rate on 

this point is 0.00268 
o
/s.  

Measurement range of sensor is ±500 
o
/s thus, we evaluate between -490 

o
/s to +490 

o
/s with 70 

o
/s increments. Sampling rate of the sensor is 0.001 s and total test 
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duration is 280 s for calibration tests. An example of calibration data is shown in 

Figure 136. 

 

Figure 136 Calibration data of FOG sensor. 

Deterministic error estimation and corresponding temperatures are given in Table 30. 

Table 30 Estimated deterministic error terms under different temperatures. 

Temperature (
o
C) Bias (deg/h) 

Scale Factor 

(ppm) 

-40 
o
C 2.1268 1199 

-30 
o
C 1.8260 1002 

-20 
o
C 0.9252 1099 

-10
 o
C 1.6962 1149 

0
  o

C 1.9759 880 

10 
o
C -0.6767 1349 

20
 o
C 1.1252 919 

30
 o
C -1.2771 992 

40
 o
C -0.1760 1056 

50
 o
C -0.3761 869 

60
 o
C -1.6776 1084 

70
 o
C -1.5270 799 
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We can fit a polynomial according to parameters of the Table 30. Parameters and 

fitted curves are shown in Figure 137 and Figure 138. 

 

 

Figure 137 Real and fitted curves for bias error 

 

 

Figure 138 Real and fitted curves for scale factor error 
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Total angle error is investigated under room temperature (25 
0
C) at 10 

o
/s rotation 

rate. Thermal rate of FOG sensor is 1 
0
C/min, which means that temperature of 

sensor increases 1 
0
C per minute. This information can be used by error 

compensation algorithm. Total angle for given rotation rate is calculated by the 

following expression: 

 

1

t

total k
k

k

w t

t sampling time

w sensoroutput



 

 





  (7.8) 

Angle error increases due to the summation operation. Two main cases are compared 

with each other to show efficiency of the calibration and error estimation.  

 Angle error in raw data 

 Angle error in only deterministic error calibrated data 

Angle error is stated as the following expression: 

 

 

1

error truetotal

true

t

true
k

w dt


 



  


  (7.9) 

 

Uncompensated data is shown in figure for truew =10 
o
/s input.  
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Figure 139 Uncompensated data for the FOG sensor. 

 

Total angle error is calculated through the Equation (7.9) which is about 12 degrees 

after 840 seconds.  

 

 

Figure 140 Total angle error on the uncompensated FOG data. 
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Total error is slightly low for the FOG sensor because bias and noise levels are very 

low even if sensor is not calibrated. Error compensation parameters are applied to 

data through Equation (7.10) then total angle error is evaluated again. 
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uc gyr
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c gyr

gyr

uncompensated angular raw te

w B

Scale factorerror

B Bia

w

s Error

S

S







 





  (7.10) 

 

Deterministic errors in Equation (7.11) are replaced with their polynomial 

equivalences.  

 

 

4 3 2

4 3 2

gyr

gyr

S aT bT cT dT e

B kT lT mT nT r
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  (7.12) 

 

Polynomial coefficients for Equation (7.12) are given below. 
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    



 (7.13) 

 

Error compensated data is shown in Figure 141.  
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Figure 141  Compensated FOG data. 

 

Residual bias is 0.05 deg/h after the compensation process. These error levels are 

applicable for long-range applications but some improvements are provided by 

Kalman filtering. 

 

 

Figure 142 Total angle error for the compensated FOG data. 
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is somewhat random for specific turn-ons. If deterministic errors are not estimated 

correctly, errors in INS system grow dramatically. 
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CHAPTER 8  
 

 

CONCLUSION 
 

 

 

This study proposes that a method which estimate random error parameters from the 

Allan deviation results. This method is effective to find random error parameters of 

an inertial sensor and it solves problems of the line method. Line method generally 

has some estimation error if it is used for disturbed data. RLG sensor is one of the 

most important applications of the proposed method because corresponding value of 

τ = 1 s is not suitable with the manual of RLG. Threshold value for correlation time 

of bias instability is somewhat easier than most of the probabilistic methods, but it 

requires some initial knowledge about the error characteristic on the Allan deviation 

curve of an inertial sensor. Membership functions are also used to identify stochastic 

errors successfully. Parameters of these functions can be adjusted adaptively 

regarding to empirical data. 

Autocorrelation method is generally used to estimate time constant of a sensor but it 

can be used to detect periodic signals in a sensor output. It is very essential for 

navigation system design, because some systems cannot work with a specific 

sinusoidal noise, which has frequency in the bandwidth of the system. 

PSD is one of the most important functions, which reveal error parameters, but it has 

deviations in high frequency ranges. PSD method requires frequency averaging but 

resolution of PSD is not good for low frequency components. PSD method also 

depends on line hence, determination of true line is very crucial. Moreover, 

quantization error can be estimated from PSD curve and it is not affected by 

dithering or other high frequency components. Because, sinusoidal noise has Dirac 

components on the PSD curve. 
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The most important error terms are deterministic errors. Magnitude of these errors 

changes with temperature and they have to be compensated with several calibration 

tests. Temperature tests are performed in a rate table under different temperatures. 4
th

 

degree polynomial is fitted to interpolate deterministic errors. It seems enough to 

degrade sensor errors. Additionally, if temperature dependency of deterministic 

errors is not investigated, Allan deviation curves have undesired deviations. In that 

case, both the line method and the proposed method give inaccurate solutions. 
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APPENDIX A  
  

 

INTRODUCTION TO RANDOM PROCESSES 
 

 

 

General problem in linear system analysis is finding a relationship between input and 

output. Deterministic systems have obvious expressions to determine their response 

or output. This situation is not possible in random input-output problems. Random-

input problems are defined with a small amount of descriptors. Random processes 

are defined with their autocorrelation function, power spectral density function, etc. 

In other words, these functions are important descriptors of a random process.  

Stochastic errors are generally modeled as random processes. Modeling inertial 

sensor errors gives the opportunity to understand real behavior of an IMU in a 

dynamic system. Performance of an INS is directly related with true knowledge of 

stochastic error models of an inertial sensor [1, 4]. Stochastic errors have to be 

modeled as close as the real data to decrease INS position and velocity errors. 

 

A.1 White Noise 

 

White noise is a stochastic process which has a constant PSD function. Therefore, 

white noise effects on all frequency range. “White” term is derived from this 

property because white light contains all visible frequencies [23].  

Autocorrelation function of a white noise can be given by, 

 ( ) ( )wR N     (A.1) 
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 PSD function of white noise is calculated by Equation (4.7). It is given by, 

 ( )wS jw N   (A.2) 

For simplicity, it is assumed that spectral amplitude of white noise is unity. Equation 

(A.2) also gives some important outcomes because white noise can be used in linear 

time-invariant systems to extract minimum phase transfer function as described in 

detail at Section A.3.  

 

A.2 Random Walk Process 

 

Random walk process can be defined as follows: a man after taking k steps in 

arbitrary directions (e.g., backward and forward) with equal step size l , average 

distance is zero and standard deviation of this travel is l k . The above discussion is 

explained as, 

1 2 ...

, tan

[ ] 0 1,2,...,

k

n

d a a a

d total dis ceafter taking k steps

E a wheren k

   

 

  

Mean value of each step is zero because if the experiment is repeated too much time 

each step has equal probability of being l  or l   

2

[ ] 0

[ ]

i j

i j

E a a where i j

E a a l where i j

 

 
 

 
2

1 1 2 2 3 3 1 2 1 3[ ] [ ] [ ] [ ] ... [ ] 2( [ ] [ ] ...)k kE d E a a E a a E a a E a a E a a E a a         (A.3) 

Last term in Equation (A.4) can be omitted. Variance calculation of distance is given 

in Equation (A.4). Thus, variance of distance is equals to 
2l k . 
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( ) [ ] [ ]
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[ ] 0
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

 (A.4) 

 

In general, continuous time representation of random walk signal is the output of an 

integrator while input is white noise as shown in Figure 143.  

 

 

Figure 143 Block diagram of random walk generation [23]. 

 

According to Figure 143,  

   

0

( ) ( )

( ),

t

x t F m dm

x t randomwalk process

           (A.5) 

 

Mean value of the output is, 

   

0 0

[ ( )] ( ) [ ( )] 0

t t

E X t E F m dm E F m dm
 

   
 
   (A.6) 

 

Variance of this process is given by, 

   
2

0 0 0 0

[ ( )] [ ( ) ( ) ] [ ( ) ( )]

t t t t

E x t E F m dm F k dk E F m F k dmdk      
(A.7) 
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 [ ( ) ( )] ( )

( ), .

F

F

E F m F k R m k

R m k autocorrelation functionof F

 


 

            

(A.8) 

 

Autocorrelation function of white noise is a Dirac delta function [23]. Therefore, 

autocorrelation function given in Equation (A.8) can be rewritten as, 

   [ ( ) ( )] ( ) ( )FE F m F k R m k m k     (A.9) 

 

Substitution of Equation (A.9) into Equation (A.7) is stated below, 

   
2

0 0 0

[ ( )] ( )

t t t

E x t m k dmdk dk t       (A.10) 

Resulting solution given in Equation (A.10) is very similar with Equation (A.4). 

Especially, correlated noises can be modeled as a random walk. This noise sources 

depend on the previous output due to the memory of excited electrons. 

 

A.3 Gauss Markov Process 

 

A process is first-order Gauss-Markov if probability distribution function only 

depends on one previous state of the process as shown in Equation (A.11). 

 

   
1 2

1 1 1

...

[ ( ) | ( ) |,..., ( )] [ ( ) | ( )]

[*],

k

k k k k

t t t

F x t x t x t F x t x t

F probability distribution function

 
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  

(A.11) 

 

Gauss-Markov process is Gaussian process but it has an exponential autocorrelation 

[5]. Autocorrelation function of a Gauss-Markov process is given as, 
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 2 | |( )xR e     (A.12) 

 

Computing the Fourier-Transform of autocorrelation function with Equation (4.7) 

gives Equation (A.13). 

 
2 | |( ) jw

x e deS jw     







   (A.13) 

 

Due to the absolute value on tau (τ) we split into the integral in Equation (A.14) two 

parts which is expressed in the Equation (A.14).  
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2 2
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( ) jw jw

xS jw e e d e e d      
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  
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    

 

(A.14) 

   
  

2

2 2

2
xS j

 


 



  (A.15) 

 

Shaping filters are defined as a filter which converts its white noise input to desired 

spectral function. Shaping filters generally modifies input with minimum-phase 

transfer function. Analysis with white noise is simpler because PSD of white noise is 

unity and autocorrelation function of white noise is a Dirac delta function. 

 

 

Figure 144: A simple shaping filter [3]. 
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Gauss-Markov process can be considered as a shaping filter. PSD function of any 

linear time-invariant system is stated as, 

 

 

   

     *( ) ( )x wS j H j S j H j      (A.16) 

“*” implies the complex conjugate operation.  PSD function of a shaping filter is 

shown in Equation (A.17) 
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



  (A.17) 

 

PSD of shaping filter’s output stated in (A.15). Transfer function of the shaping filter 

can be found according to Equation (A.17). Poles and zeros locations have to be on 

the left-hand side in the transfer function in order to obtain suitable shaping filter 

[23].    

    
2 2

*2 2
H j and H j

j j

   
 

   
 

 
  (A.18) 

 

Shaping filter is stable system therefore we have to choose stable portion of the 

system response as indicated before and system transfer function is given as [23]: 
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    2( ) 2x s s w s      (A.21) 

 

Taking the inverse-Laplace transform gives the time-domain equation of the Gauss-

Markov process.  
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  (A.22) 

   ( )y t x t   (A.23) 

 
1

  
 cT

    (A.24) 


