
PROPERTIES OF CHARMONIUMLIKE STATES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HIKMET ÖZŞAHIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

PHYSICS

SEPTEMBER 2015





Approval of the thesis:

PROPERTIES OF CHARMONIUMLIKE STATES

submitted by HIKMET ÖZŞAHIN in partial fulfillment of the requirements
for the degree of Master of Science in Physics Department, Middle East
Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet T. Zeyrek
Head of Department, Physics

Prof. Dr. Tahmasib Aliyev
Supervisor, Physics Department, METU

Examining Committee Members:

Prof. Dr. Ali Ulvi Yılmazer
Physics Engineering Department, Ankara University

Prof. Dr. Tahmasib Aliyev
Physics Department, METU

Prof. Dr. Altuğ Özpineci
Physics Department, METU

Prof. Dr. Osman Yılmaz
Physics Department, METU

Assoc. Prof. Dr. İsmail Turan
Physics Department, METU

Date:



I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: HIKMET ÖZŞAHIN

Signature :

iv



ABSTRACT

PROPERTIES OF CHARMONIUMLIKE STATES

Özşahin, Hikmet

M.S., Department of Physics

Supervisor : Prof. Dr. Tahmasib Aliyev

September 2015, 42 pages

In this work, hadronic properties of exotic meson candidate Y (3940) and its

orthogonal state are studied. These meson states are considered as a mixture

of charmonium (χc0) and meson molecule. The interpolating quark currents for

χc0 and D∗D∗ are used to construct the correlation function. QCD sum rules

approach for two-point function is then used to derive OPE and phenomenolog-

ical representation of the correlation function of these mesons. Next, these two

representations are connected by the analytical continuity in the complex plane

and the sum rules for the mass and the mixing angle are derived. Using these

sum rules, properties of charmonium states are studied.

Keywords: Charmonium, Exotic Mesons, QCD Sum Rules, Mixing Angle
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ÖZ

CHARMONİUM BENZERİ PARÇACIKLARININ ÖZELLİKLERİ

Özşahin, Hikmet

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Tahmasib Aliyev

Eylül 2015 , 42 sayfa

Bu çalışmada Y (3940) ve Y ′ mezonlarının çeşitli hadronik özellikleri incelendi.

Bu parçacıklar, çarmonium ve mezon molekülünün karşımı olarak değerlendiril-

miştir. χc0 ve D∗D∗ parçacıklarının kuark akıları kullanılarak korelasyon fonksi-

yonu oluşturulmuştur. İki-nokta korelasyon fonksiyonu için QCD toplam kural-

ları kullanılarak, bu parçacıkların korelasyon fonksiyonlarının OPE ve fenome-

nolojik temsilleri çıkarıldı. Daha sonra bu iki temsil, kompleks düzlemde analitik

süreklilik ile birleştirilerek, bu parçacıkların kütle ve karışım açıları için toplam

kuralları çıkarıldı.

Anahtar Kelimeler: Charmonium, Egzotik parçacıklar,QCD toplam kuralları,

Karışım açısı
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CHAPTER 1

INTRODUCTION

Quantum electrodynamics proved to be a viable theory to explain quantum

phenomena of the electromagnetic interaction with exchanging of photons. This

theory is based on perturbation method, since the fine structure constant is

a small quantity, allowing a perturbative expansion when calculating physical

observables. The same method can be applied to explain phenomena with the

participation of other forces as well. In 1934, Hideki Yukawa proposed that the

nuclear force was carried out by a massive particle, which he named as meson

[3]. From the range of the force, he reasoned that the mass of this particle should

be nearly 200 times the mass of the electron. In 1937, separate experiments by

Anderson & Neddermeyer [4] and Street & Stevenson [5] discovered a particle

that is close to the mass of Yukawa’s prediction. However, it turned out that

this particle, now called muon, doesn’t interact via the nuclear force. In 1947,

another particle, so called pion, predicted by Yukawa was observed by Powell

and his colleagues [6, 7].

Today it’s well known that hadrons are not fundamental particles, but composed

of quarks and antiquarks. In the 1950s, the first models of elementary particle

physics were proposed. Several early attempt to explain structure of the hadrons,

such as the ones by Enrico Fermi and Chen-Ning Yang [8] and Shoichi Sakata

[9] ended up successfully explaining mesons, but failed with baryons. In 1961,

Gell-Mann and Ne’eman independently introduced a classification scheme for

baryons and mesons, which Gell-Mann called the Eightfold Way [10, 11]. This

model was grouping mesons and baryons into octets. Later on, in 1964 he

1



Table1.1: Isospin and flavor quantum numbers of the quarks [1]

d u s c b t

Q - Electric charge −1
3

+2
3
−1

3
+2

3
−1

3
+2

3

I - Isospin 1
2

1
2

0 0 0 0

Iz - Isospin z-component −1
2

+1
2

0 0 0 0

S - Strangeness 0 0 −1 0 0 0

C - Charm 0 0 0 +1 0 0

B - Bottomness 0 0 0 0 −1 0

T - Topness 0 0 0 0 0 +1

and Zweig independently proposed that protons, neutrons and all other baryons

and mesons are made of electrically charged constituent particles called quarks

[12, 10]. In this early model, quarks have three different flavours called up,down

and strange. Based on this model, Gell-Mann and Harald Fritzsch introduced

the color charge quantum number [13]. According to this, the theory explaining

quarks and the strong interaction is a non-Abelian gauge theory with SU(3)

color gauge and three different flavours of quarks, which also constituents an

approximate SU(3) flavour symmetry. Quarks are strongly interacting fermions

with spin quantum number 1
2
, and positive parity. Each quark has an associated

flavor quantum number and antiquarks have the opposite flavor signs.

The theory of strong interaction, known as quantum chromodynamics (QCD)

assumes that dynamics of the strong interaction is encoded in the following

Lagrangian:

L = Σqψ̄q,a(iγ
µδab∂µ − gsγµtCabACµ −mqδab)ψq,b −

1

4
FA
µνF

Aµν (1.1)

where the summation over repeated indices is understood. The γµ matrices are

the Dirac γ-matrices and ψq,a are quark-field spinors with mass mq and flavor

q. The color index a runs from a = 1 to a = 3, i.e. quarks come in three colors,

symbolically denoted as red, blue and green.

The ACµ indicates the gluon fields, with the index C running from 1 to 8, i.e.

there are eight different kinds of gluon. The TCab correspond to eight 3 × 3 ma-

trices that are generators of the SU(3) color group. They encode the fact that

2



a gluon’s interaction with the quark changes its color charge.

The field strenth tensor FA
µν is given by

FA
µν = ∂µA

A
ν − ∂νAAµ − gsfABCABµACν (1.2)

where fABC is the structure constant of the SU(3)c group. The last term in

Eq. (1.2) is so-called self interaction term. Similar term is absent in quantum

electrodynamics.

In QCD, predictions for observables are expressed in terms of the scale that de-

pends on the strong coupling constant αs(µ2
R). Here the µ2

R denotes the renor-

malization scale. When µ2
R is taken close to the momentum transfer Q2 in a

given proccess, then the coupling constant indicates the effective strength of the

interaction involved.

The coupling satisfies the following renormalization group equation:
dαs
dµ2

R

= −
{
b0α

2
s + b1α

3
s + b2α

4
s + · · ·

}
(1.3)

The minus sign in front of the parenthesis on the right-hand side of this equation

is the origin of Asymptotic Freedom [14, 15]. The coupling constant is small at

high energies (small distance) and large at low energies, i.e., interaction strength

which is determined by the coupling becomes weak at high energies and strong

at low energies. According to this, as quarks get closer, interaction strength

weakens and quarks become nearly free particles.

Since αs is small at high energies, calculations for physical observables can be

done perturbatively in this energy region. In the series expansion in αs, higher

order contributions can be neglected since as the power of αs increases, contri-

bution of corresponding Feynman graph decreases. This way, one only needs to

calculate finite amount of terms to obtain observables.

However, high energy behaviours corresponding to short distance interaction

are different than low energy interactions which are determined by the color

3



confinement. At long distances, perturbation theory does not work since the

coupling αs approaches to unity. This is the non-perturbative region of QCD.

In this region, interactions are completely governed by non-perturbative QCD

effects and situation is complicated since there is a lack of any reliable theory

to deal with the non-perturbative region of QCD.

There are several models and methods to treat the non-perturbative QCD prob-

lem, such as the chiral perturbation theory, Lattice theory, QCD Sum rules etc.

One of the most important and successful method for non-perturbative QCD is

QCD Sum Rules which is first introduced by Shiftman, Vainshtein and Zakharov

[16, 17]. Due to its applicability to variety of problems, QCD Sum Rules became

a widely used tool in hadron physics.

In QCD Sum Rule method, a correlation function of interpolating quark currents

representing the corresponding hadron is calculated in two ways: First, the

correlation function is calculated in terms of quark and gluon degrees of freedom.

The long distance contributions are taken into account in terms of so-called

condensates, where in "normal" perturbation theory these terms are equal to

zero. The operator product expansion is used to separate the short-distance and

long-distance contributions. The short distance contribution is written in terms

of Wilson’s coefficients which encode short-distance behaviour of the theory

and vacuum expectation value of gauge invariant operators [18]. The vacuum

expectation values of operators like 〈qq̄〉 are, by definition, zero in traditional

perturbation theory. In QCD Sum Rules method, however, they encode the

long-distance effects which is governed by confinement and they have to be

included in the method phenomenologically whereas Wilson’s coefficients can be

calculated theoretically.

The other way of treating the correlation function is to represent it in terms of

hadronic parameters. In order to do this, a complete set of intermediate state is

inserted to the correlating function and then the correlation function is written

in terms of hadronic parameters such as hadron mass, decay constant and etc.

Then, these two different representations of the correlation function is matched

via a dispersion relation and a sum rules for corresponding hadronic parameter

4



Table1.2: Meson classification according to their quantum numbers.

Meson family S L J P JP n2S+1LJ
Pseudoscalar 0 0 0 − 0− 11S0

Pseudovector 1 1 1 + 1+ 11P1

Vector 1 0 1 − 1− 13S1

Scalar 1 1 0 + 0+ 13P0

Axialvector 1 1 1 + 1+ 13P1

is obtained.

Another aspect of QCD is the so called confinement mechanism. It is well

known that hadrons are strongly interaction particles and they are bound states

of quarks and antiquarks. Confinement dictates that all observable hadrons to

be colorless, i.e. they must be color singlet of the symmetry group SU(3)c.

Neither quarks nor gluons can be observed as free particles and the number of

possible bound states are restricted by this confinement mechanism. Bound

states of quarks and antiquarks can be grouped into two categories: Baryons

which have qqq quark structure and mesons with qq̄ quark structure. Baryons

have baryon quantum number B = 1 while mesons have baryon number B =

0. Quark antiquark pairs in mesons don’t need to be the same flavor and a

meson composed of quark-antiquark pair with the same color charge is called

quarkonium.

Since gluons don’t carry intrinsic quantum number other than C parity and color

charge and since color is confined, most of the quantum number of a strongly

interacting particle have comes from the quantum numbers of their constituent

quarks and antiquarks. Mesons, in accordance with the standard constituent

quark model, are classified according to their isospin I, total angular momentum

J , parity P and quark content. Total angular momentum of a meson can be

expressed as J = L ⊕ S. Since quarks are fermions with spin 1
2
a meson can

only have a spin quantum number S = 0, 1. The parity for a meson is given as

P = (−1)1+L. Mesons can also be indicated according to spectroscopic notation,

with their radial excitation quantum number n, spin multiplicity 2S+ 1, orbital

angular momentum L and total angular momentum J . Table 1.2 shows different

5



Table1.3: Symbols for flavorless mesons [1]

JPC 0−+, · · · 1+−, · · · 1−−, · · · 0++, · · ·
quark content 2S+1LJ

1(Leven)J
1(Lodd)J

3(Leven)J
3(Lodd)J

ud̄, uū− dd̄, dū (I = 1) π b ρ a

dd̄+ uū and/or ss̄ (I = 0) η, η′ h, h′ ω, φ f, f ′

cc̄ (I = 0) ηc hc ψ† χc
bb̄ (I = 0) ηb hb υ χb
tt̄ (I = 0) ηt ht θ χt

Table1.4: Symbols for flavored mesons [1]

antiquark →
quark ↓ u d c s t b

u − − D
0

K+ T− B+

d − − D− K0 T− B0

c D0 D+ − D+
s T

0

c B+
c

s K− K
0

D−s − T−s B0
s

t T 0 T+ T 0
c T+

s − T+
b

b B− B
0

B−c B
0

s T−b −

class of mesons with their quantum numbers.

Another way of classifying mesons is to group them according to their flavor

content. Flavorless mesons (quarkonia) are composed of a quark-antiquark pair

of the same flavor and all their flavor quantum numbers but the isospin number

are zero: S = 0, C = 0, B = 0, T = 0. Symbols for flavorless mesons are given in

Table 1.3. Strongly decaying mesons are indicated with the mass in parenthesis.

For flavored mesons, one of the constituent quark is heavier than the other. In

naming these mesons, an upper-case letter indicating the heavier quark is used.

The convention that the flavor and the charge of a quark have the same sign is

employed, and also I3 isospin quantum number of the u quark is taken as positive

while for the d quark it’s taken as negative. With this convention, mesons have

the same charge sign as its flavor. Table 1.4 shows symbols for flavored mesons.
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The study of spectroscopy and decay properties of flavored mesons provides use-

ful information about the dynamics of QCD at the low energy regions. On the

experimental side, remarkable progress has been made over the last two decades.

Main body of experimental data about the heavy flavored mesons came from the

Beauty experiments. The B-factories like PEPII at SLAC in the USA and KEKB

at KEK in Japan were designed to test the CP violation mechanism. Through

these experiments, came contributions to the field of hadron spectroscopy, and

especially to the area of charmonium spectroscopy [19]. Starting from the dis-

covery of the X(3872) state by Belle Collaboration [20] and others [21] , more

than twenty new charmonium states have been discovered [19].

These newly discovered states might have more complex structure than those

predicted by the conventional quark model pictures. Many of these states, like

Y (3930), Z(3930), X(3940), Y (4008), Z+(4050), Y (4140), X(4160), Z+
2 (4250),

Y (4360), Z+(4430) and Y (4460) states are treated by considering them as a

mixture of a charmonium state with either a tetra-quark or a meson molecule.

Their masses and decay widths do not lie within the theoretical predictions from

the potential models [22]. For that reason, they are considered to be a natural

candidate for exotic states. Hadronic parameters of some of these XY Z states

are widely investigated in the framework of QCD Sum Rules method.

In this thesis, the properties of Y (3940) state is investigated by considering it

as a mixture of a chamonium and a meson molecule states. The state Y (3940)

has been observed by Belle Collaboration in the decay B −→ (J/ψω)K, with a

mass m = 3943 ± 11 ± 13 MeV and a decay width Γ = 87 ± 22 ± 26 MeV [23].

The discovery of Y (3940) has also been confirmed by BaBar Collaboration [24]

with a smaller mass of m = 3919.4± 2.2± 1.6 MeV and a width Γ = 13± 6± 3

MeV [25].An analysis for the states Y (3940) and its orthogonal Y ′ within the

QCD sum rules method is presented in Chapter 3.

7
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CHAPTER 2

QCD SUM RULES

QCD Sum Rule method has been a widely used tool for predicting observable

properties of hadronic ground states. The advantage of this method is that

hadrons are treated with a model independent approach in which each ground

state hadron is represented in terms of their interpolating quark current, taken

at large virtualities. One would start from the asymptotic side of QCD, where

quark-gloun interaction can be treated perturbatively and move to larger dis-

tances step by step where hadronic states are formed.

To begin in asymptoticaly free region of QCD, quarks and gluons in the cor-

responding hadronic process have to be highly virtual. With this condition,

the smallness of the strong coupling αs(Q2) is guaranteed and the perturbation

theory can be used. Typically, highly virtual quarks and gluons in an interac-

tion are obtained when momentum transfer Q2 is at large. However, even these

specially configured types of interaction are not enough to make sure that the

perturbation theory alone would be sufficient. Quarks and gluons participating

the interaction is confined inside the hadrons and thus non-perturbative effects

still play a considerable role even though quarks and gluons are highly virtual.

Hence, in studying these interaction, one needs to know dynamics of the theory

at hadronic scale.

To overcome this, one can also consider processes where there is no initial or final

hadronic state. Such an interactions are realized when a quark-antiquark pair

is produced and annihilated in an electron-positron elastic scattering. In this

scattering process , as shown in Fig. 2.1, quark-antiquark pair is produced and

9



Figure 2.1: Quark-antiquark creation and annihilation by virtual photon [2]

annihilated by the virtual photon. The quark-antiquark pair in this interaction

travel at short distances without non-pertubative effects. Although this process

contributes a very little radiative correction to cross section for electron-electron

scattering, the amplitude of quark-antiquark creation is an essential object for

QCD sum rules. Using the gauge invariance, the form of the correlation function

can be written as follows:

Πµν(q) = i

∫
d4xeiqx 〈0|T{jµ(x)jν(0)} |0〉 = (qµqν − gµνq2)Π(q2) (2.1)

where jµ(x) = ψ̄γµψ is an interpolating quark current with the quantum numbers

of the corresponding hadron and ψ is fermionic field operator ψ = u, d, s, . . ., q

is the four momentum of the virtual photon. Since there is no initial or final

hadronic state in this interaction, these quark currents are associated with the

QCD vacuum, |0〉.

The correlation function is an object of dual nature. At large momentum trans-

fers, Q2 ≡ −q2 >> Λ2
QCD, this correlation function would be solely dominated by

the short-distance effects. At small momentum transfers, however, long-distance

effects should also be accounted for to explain the behaviour of this function.

10



This dual nature of the correlation function can be used to relate hadronic ob-

servable parameters to the short-distance dynamics of the quark-gluon interac-

tion. At one hand, the correlation function can be a short-distance object encod-

ing the quark-gluon interaction. This representation of the correlation function

is called theoretical side, or OPE side. At the other hand, the correlation func-

tion can also be related to the hadronic observables. This representation is called

phenomenological side. Depending on the virtuality of quarks and gluons par-

ticipating the interaction, the correlation function can be treated in either way.

But the main point of QCD Sum Rules is that there is a kinematic region where

both representation of the correlation function is applicable. Matching these

two different representation of the correlation function, sum rules for various

hadronic parameters can be obtained.

QCD sum rules had been a reliable tool for predicting various parameter in

hadron spectroscopy. There are several reviews [26, 27, 28, 29, 2] which explains

various aspects and application of this method. In the following sections, we

briefly review the details of the traditional QCD sum rules method.

2.1 Theoretical Side of the Correlation Function

We begin our treatment of the correlation function by considering the theoret-

ical representation. The quark interpolating currents inside the correlator are

determined according to their quantum numbers and flavor content of the cor-

responding hadron. For various familiy of mesons, interpolating currents can be

listed as;

js = q̄q(JP = 0+)

jp = q̄γ5q(JP = 0−)

jVµ = q̄γµq(J
P = 1−)

JA = q̄γµγ
5q(JP = 1+)

As mentioned before, at high virtualities the correlation function can be treated

in the framework of perturbation theory and approximated by the free-quark

11



Figure 2.2: Diagrams contributing to the perturbative part of the correlation
function: free-quark loop (a), radiative corrections to loop diagrams (b,c,d). [2]

diagrams, as shown in the Fig. 2.2(a). One then can proceed with the standart

procedure to evaluate the correlator by considering the free-quark propagators.

This perturbative contribution can be further improved by considering higher

order loop diagrams, as shown in Fig. 2.2(b,c,d). Hovewer, this perturbative

part of the correlator is not the only contribution. One also has to include non-

perturbative effects due to soft quarks and gluons in QCD vacuum. Because of

the nonlineer nature of the QCD Lagrangian, the vacuum fluctuates with these

soft quarks and gluons. Since there is no consistent theory for the QCD vacuum,

these effects must be included phenomelogically.

A method to account these considerations mentioned above was developed by

Wilson [18]. To apply it, one has to expand the product of interpolating quark

currents in a series of local operators;

i

∫
d4xeiqx 〈0|T{jµ(x)jν(0)} |0〉 = (qµqν − gµνq2)

∑
d

Cd(q
2) 〈Od〉 (2.2)

where 〈Od〉 ≡ 〈0|Od |0〉. So we have

12



Π(q2) =
∑
d

Cd(q
2) 〈Od〉 (2.3)

The validity of this expansion can be understood as one considers the short-

distance limit x → 0. The product of two closely seperated interpolating cur-

rents creates a disturbance in the field near the point 0. However, this distur-

bance can also be described with a local operator placed at the same point.

Hence, we can obtain the form of OPE by writing this local operator in terms

of basis operators [30]. Here the vacuum expectation values of the operators

〈Od〉, also called vacuum condensates, constitude the standart basis at which we

can expand the correlation function. Coefficients Cd(q2) are c-numbers called

Wilson coefficients. In this expansion, the operators are ordered according to

their canonical dimensions d, with the first term operator corresponds to the

unit operator O0 = 1. Operators in higher order terms with d 6= 0 correspond to

diagrams with insertions of soft quarks and gluons. The long-distance and short-

distance effects in the correator are thus seperated in this expansion, with the

former are represented by the universal vacuum condensates while the latter are

encoded by the Wilson coefficients. Note that these vacuum condensates don’t

depend on neither the quantum number nor the flavor content of interpolating

currents. Vacuum condensate of QCD vacuum are phenomenological objects

independent of the method used. The quantum number and flavor content of

the correlator are rather absorbed into the Wilson coefficients.

Vacuum condensates introduced in this way are non-perturbative objects and

their numerical values can be calculated by using different methods like Lattice

QCD or instanton model . Since these vacuum condensates are independent of

the model used, they can be extracted from one sum rule and used in others.

13



Some examples of these vacuum condensates are;

〈O3〉 = 〈q̄q〉

〈O4〉 =
〈
Ga
µνG

aµν
〉

〈O5〉 =

〈
q̄σµν

λa

2
Gaµνq

〉
〈
Oψ

6

〉
=
〈
(ψ̄Γrψ)(ψ̄Γsψ)

〉
〈
OG

6

〉
= fabc

〈
Ga
µνG

bν
σ G

cσµ
〉

(2.4)

Where Γr,s are Dirac bilinears.

Note that in QCD there in no colorless, gauge and Lorentz invariant operators

with dimensions d = 1, 2. So operator product expansion of quark currents

continues with an operator of dimension d = 3 after the unit operator. Also

vacuum condensates of operators with d > 6 usually add small contribution to

the expansion and neglected in most of QCD sum rules applications.

Historically, operator product expansion of interpolating currents was developed

to evaluate Feynman diagrams and its use in QCD sum rules is not trivial. Apart

from the non-vanishing expectation values of local operators, introduction of

non-perturbative terms to OPE has another effect: That these non-perturbative

terms break down the expansion itself, starting at some dimension. The critical

dimension dcrit at which the expansion is badly broken depends on the interpo-

lating currents used in the method. For vector currents these effects appear at

d > 10 while for scalar and pseudoscalar currents the effect emerge at intermedia

levels. The computational recipe for the terms in OPE is as follows: Feynman

diagrams for the product of interpolating currents are cut through quark and

gluon line in all possible way. Then these cut lines are annihilated into the QCD

vacuum. There are also soft gluon and quark line attached to the diagrams

which are also produced and annihilated by the QCD vacuum. These diagrams,

which are shown in Fig. 2.3, determine the coefficients in front of the vacuum

condensates.

To match the correlation function calculated from the OPE side with the phe-
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Figure 2.3: Diagrams corresponding to the vacuum condensates. [2]

nomenological representation a more convenient form is used;

ΠOPE =

∫ ∞
0

ρOPE(s)

s− q2
ds (2.5)

Where the spectral density ρOPE(s) = 1
π
ImΠOPE(q2).

2.2 Phenomenological Side

In this section we discuss how the correlation function can be related to physical

hadronic states. Note that the correlation function is an analytical function of

q2. As mention before, the correlation function becomes a short-distance object

at hight virtualities q2 << 0. If q2 is shifted from negative to positive values,

the average distance between the quarks grows and the interaction gets stronger.

Hence quarks start to form hadrons and long-distance effects become important.

A rigorous way to quantify the hadronic content of the correlation function

Πµν(q
2) at long-distance can be obtained by using a complete set of intermediate
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Figure 2.4: Contour in q2 complex plane. Crosses indicates the hadronic thresh-
old at q2 > 0 and open point indicates the q2 < 0 reference point.

hadronic states:

1 =
∑
n

∫
d4pn
(2π)4

δ(p2n −m2
n)Θ(p2n) |n〉 〈n| (2.6)

where summation goes over all possible hadronic states |n > created by the

currents. Inserting this into Eq. (2.2), we obtain a unitary relation:

2ImΠµν(q) =
∑
n

〈0| j |n〉 〈n| j |0〉 dτn(2π)4δ(4)(q − pn) (2.7)

where dτn denotes the phase space integration. For our purposes, we single out

the ground state meson contribution at the right-hand side ;

1

π
ImΠ(q2) = f 2

nδ(q
2 −m2

n) + ρh(q2)Θ(q2 − sh0) (2.8)

where the decay constant fn is defined as fnmn = 〈n(q)| |j |0〉. fn is a parameter

that is determined by the long-distance dynamics of the theory. The spectral

density function ρh(q2) encodes the contributions from exited and continuum

states. And sh0 is the threshold of the lowest-lying continuum state. Hence

we obtained two different representation for the correlation function. Using the

analytically of Π throughout the both regions, we derive a dispersion relation
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that connects the OPE representation of the correlator to the hadronic sum we

obtain in Eq. (2.7). For that purpose, we employ the Cauchy’s formula, with

the choosen contour shown in Fig. 2.4.

Π(q2) =
1

2πi

∮
dz

Π(z)

z − q2

=
1

2πi

∫
|z|=R

dz
Π(z)

z − q2
+

1

2πi

∫ R

0

dz
Π(z + iε)− Π(z − iε)

z − q2
(2.9)

The radius R of the circle can be put to infinity if the correlation function

vanishes at |z| −→ ∞. The first term on the right-hand side of Eq. (2.9) then

becomes zero. If the correlator doesn’t vanish at the limit, the denominator 1
z−q2

can be expanded in power series and it’s guaranteed that higher order terms

O(z−n) vanish. The remaining terms are called subtraction terms. The second

integral can be replaced by an integral over the imaginary part of the correlator.

Using the Schwartz reflection, DiscΠ(z) = Π(z + iε) − Π(z − iε) = 2iImΠ(z).

After this, we obtain the dispersion relation:

Π(q2) =
1

π

∫ ∞
tmin

ds
ImΠ(s)

s− q2
(2.10)

Using the hadronic sum Eq. (2.7), we obtain the phenomenological representa-

tion of the correlator Π(q2):

Π(q2) =
f 2
n

m2
n − q2

+

∫ ∞
sh0

ds
ρh(s)

s− q2
(2.11)

2.3 Borel Transformation and Quark-Hadron Duality

We have now obtained two different representation for the correlation function;

Eq. (2.5) derived from the region q2 << 0 whereas Eq. (2.11) obtained by

considering the hadronic decomposition of the correlator. To obtain the sum

rules, these two representation are matched;

Π(phen)(q2) = ΠOPE(q2) (2.12)

However, this form of the sum rules has little use for our purposes. Estimating

the parameters of the ground state hadron is not possible since the sum rules
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in Eq. (2.12) are plagued by the subtraction terms and contributions of excited

and continuum states. To suppress these terms in the sum rules, one considers

the Borel transform defined as:

BM2Π(q2) = lim−q2,n→∞
(−q2)(n+1)

n!

(
d

dq2

)n
Π(q2) (2.13)

This transformation removes all the subtraction terms in the dispersion relation

and introduce exponential suppression for excited and continuum contributions.

After this transformation, the explicit form of the sum rules becomes:

f 2
ne
−m2

n
M2 +

∫ ∞
sh0

ρh(s)e
−s
M2 ds =

∫ ∞
0

ρOPE(s)e
−s
M2 ds (2.14)

There is one step to finalize our derivation of QCD sum rules. One can estimate

the integral over excited and continuum states at the left-hand side of Eq. (2.14)

by using quark-hadron duality ansatz. This ansatz states that in the spacelike

region q2 → −∞, all excited and continuum states can safely be neglected and

the limit Π(q2) −→ Π(pert)(q2) becomes valid;∫ ∞
sh0

ρh(s)

s− q2
ds =

∫ ∞
s0

ρOPE

s− q2
ds (2.15)

where s0 is an effective threshold parameter that isn’t necessarily coincide with

the hadronic threshold sh0 . After performing the Borel transformation, we have

for the left-hand side of Eq. (2.14):∫ ∞
sh0

dsρh(s)e
−s
M2 =

∫ ∞
s0

dsρOPE(s)e
−s
M2 (2.16)

Using the quark-hadron duality Eq. (2.16), the integration over excited and

continuum states at left-hand side of Eq. (2.14) can be subtracted from the

right-hand side. Therefore, we obtain the final form of the sum rules:

f 2
ne
−m2

n
M2 =

∫ s0

0

dsρOPEe
−s
M2 (2.17)

The Borel parameterM2 introduced in the Borel transformation is an unphysical

quantity and thus any prediction made by this method must be independent

of the Borel parameter. Therefore one should find a region at which physical

parameters don’t depend on the Borel parameter M2. The choice of the Borel
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parameter is restricted. Borel parameter M2 can’t be too small since the small

values of M2 lead to smaller suppression and excited states may become too

important to be neglected. The low limit of the Borel parameterM2 is decided by

demanding that the highest dimension operator in OPE remains a small fraction

of the sum of all terms. On the other hand, the Borel parameter can’t also be

too large, since this make the quark-hadron duality unapplicable. Therefore one

has to choose a upper limit to the Borel parameter so that the suppressed states

above s0 remains small part of the dispersion integral. After determining this

Borel window, one can find physical parameters by demanding independence

from variance of the Borel parameter within this dictated Borel window.
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CHAPTER 3

SUM RULES FOR CHARMONIUMLIKE STATES

In this chapter, we present the mass and the mixing angle calculation. In our

treatment of Y (3940) and its orthogonal state Y ′ , these two states are considered

as a mixture of charmonium and meson molecule with quark currents for a

charmonium state:

j(x)χ0 = c(x)c(x) (3.1)

and for a D∗D∗ molecule;

jD∗D∗ = {q(x)γµc(x)} {c(x)γµq(x)} (3.2)

Where c(x) and q(x) are c-quark and light quark (u,d,s) operators, respectively.

Then, the interpolating current for Y (3940) state can be written as;

j(1) = −〈qq〉√
2
cosθc(x)c(x) + sinθ {q(x)γµc(x)} {c(x)γµq(x)} (3.3)

whereas it orthogonal state Y ′ can be represented by;

j(2) =
〈qq〉√

2
sinθc(x)c(x) + cosθ {q(x)γµc(x)} {c(x)γµq(x)} (3.4)

With the factor − 〈qq〉√
2

being the normalization constant. Using these interpo-

lating currents, we calculate the mixing angle and mass of Y ′ state. Before

continuing the calculation itself, we first derive the heavy and light quark prop-

agators used in this calculation. The method of calculation the correlation func-

tion outlined in Chapter 2 was simple and straightforward, but inefficient. The
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correlation function, by its nature, is a gauge invariant quantity and any term

calculated from OPE side should also be gauge invariant. However, in the tra-

ditional Feynamn diagram analysis of the Wilson’s coefficients, one has to deal

with additional terms that aren’t gauge invariant. Although these terms cancel

each other at the end, they make the calculation much more inefficient. There

were several computational method proposed to overcome this [31, 32]. In this

work, we use the method [33] which is based on the Fock-Schwinger gauge [34].

Since the correlation function is gauge invariant, gauge condition used in this

calculation is irrelevant and any particular choice would lead the same answer

for the correlation function at consideration. Hence, one can use any desired

gauge condition to eliminate unwanted terms and make the calculation itself

easier. In this method, the gauge condition proposed by Fock and Schwinger is

used to eliminate gauge non-invariant terms;

(x− x0)Aµ = 0 (3.5)

Here Aµ is the external field operator and x0 is an arbitrary point on the

Minkowski spacetime. With the choice of gauge fixing x0 = 0, we have:

xµA
µ = 0 (3.6)

With this gauge choice, the external gluon field operator Aµ(x) can be repre-

sented as [31];

Aµ =
1

2
xνGνµ(0) +

1

3.1!
xνxρDνGρµ(0) + · · · (3.7)

Where D denotes the covariant derivative and G denotes the field-strength ten-

sor. One can also write an analogous expansion for the fermion field as well;

ψ(x) = ψ(0) + xµD
µψ(0) +

1

2
xµxνD

µDνψ(0) + · · · (3.8)

We consider quarks propagating through external gluon fields and denote the

propagator of the quark field in this external field as;

iS(x, y) = 〈0|T {q(x), q(y)} |0〉 (3.9)
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Expanding this propagator:

iS(x, y) = iS0(x− y) + g

∫
d4ziS0(x− y)i /A(z)iS0(x− y) +O(g2) (3.10)

Where S0(x − y) denotes the free quark propagator. The form of this free

quark propagator changes with the mass of the quark. For light quarks with

mq << ΛQCD, the quark mass can be neglected or its correction can be accounted

perturbatively. For heavy quarks, however, the mass cannot be taken as zero

since mQ >> ΛQCD.

Calculating the quark propagators in external field, we can derive simple rules

for the coefficients in OPE side of the correlation function. Using the Dirac

equation,

( /D −m)ψ = 0

and the identity, 〈
Ga
νµG

b
σρ

〉
=

1

96
δab(%µρ%νσ − %µσ%νρ

〈
G2
〉

we can write the above expressions for fermionic fields Eq.(3.8) and gluonic

fields Eq.(3.7) in terms of quark and gluon condensates. This way, once the

propagators are derived, correlation function can be calculated automatically

with the desired sensitivity to quark and gluon condensates.

The heavy quark propagator in configuration space is obtained by performing

Fourier transform of the momentum space expression [35];

iSabQ (q) =
iδab

/q −m
+
iλabn

8
%sG

n
µν

σµν(/q +m) + (/q +m)σµν

(p2 −m2)2
+ · · · (3.11)

Here is the first term is the free quark propagator. Performing the Fourier

transform,

iSabQ (x) =

∫
d4q

(2π)4
iSabQ (q)e−iq.x (3.12)

one obtains:

iSabQ (x) =
M2

Qδ
ab

(2π)2

{
K1(mQ

√
−x2√

−x2
− i/xK2(mQ

√
−x2)

x2

}
+ · · · (3.13)
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The free light quark propagator in coordinate representation can be written as:

S0(x− y) =
1

2π2

/x− /y
(x− y)4

Putting this and Eq. (3.7) into the full propagator Eq.(3.10), we obtain [35]:

iSabq (x) =
i/xδab

2π2x4
− δab

12
〈qq〉 − iδab%2sx

2/x

25 × x5
〈qq〉2 +

1

32π2
%sG

ab
µν

σµνimq/x+ imq/xσ
µν

x2

=
δabx2

192

(
1− imq

6
/x

)
〈%sqσGq〉+ · · · (3.14)

In the next section, we use these propagators to obtain spectral densities for

mass and the mixing angle.

3.1 Calculations

3.1.1 The Mixing Angle

The interpolating current for Y (3940) is given as:

j(1)(x) = cosθj1(x) + sinθj2(x) (3.15)

and for its orthogonal state Y ′ :

j(2)(x) = −sinθj1(x) + cosθj2(x) (3.16)

where,

j1(x) = −〈qq〉√
2
c(x)c(x)

j2(x) = {q(x)γµc(x)} {c(x)γµq(x)}

and the factor − 〈qq〉√
2
is normalization constant. The mixing angle θ can be found

from the following correlation function of these currents:

Π(q) = i

∫
d4xeiq.x 〈0|T

{
j(1)(x)j(2)(0)

}
|0〉 (3.17)
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Since these two states are orthogonal to each other, we expect the correlation

function to be zero. Then, the mixing angle θ can be determined by requiring

that the value of θ must give Π(q) = 0. Using Eq. (3.15) and Eq. (3.16), the

correlation function becomes:

Π(q) = sinθcosθ(Π22 − Π11) + cos2θΠ12 − sin2θΠ21 (3.18)

where Πij = i
∫
d4xeiq.x 〈0|T

{
j
(1)
i j

(2)
j

}
|0〉.

It is easy to show that the values of the mixing angle θ is given by:

tan2θ =
−ac± b

√
b2 + a2 − c2

−bc∓ a
√
b2 + a2 − c2

(3.19)

where a = 1
2
(Π22 − Π11), b = 1

2
(Π12 + Π21) and c = 1

2
(Π12 − Π21).

This relation further simplifies if we note that Π21 = Π12;

tan2θ =
2Π21

Π11 − Π22

(3.20)

Using the interpolating current, Eq. (3.18) becomes:

Π(q) = isinθcosθ

∫
d4xeiq.x

{
〈0|T [{q(x)γµc(x)} {c(x)γµq(x)} {q(0)γµc(0)} {c(0)γµq(0)}] |0〉

−〈qq〉
2

2
〈0|T [c(x)c(x)c(0)c(0)] |0〉

}

− icos2θ 〈qq〉√
2

∫
d4xeiq.x 〈0|T [c(x)c(x) {q(0)γµc(0)} {c(0)γµq(0)}] |0〉

+ isin2θ
〈qq〉√

2

∫
d4xeiq.x 〈0|T [{q(x)γµc(x)} {c(x)γµq(x)} c(0)c(0)] |0〉

Using the Wick’s theorem to evaluate T-products, we have:
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Π(q) = 9isinθcosθ

∫
d4xeiq.x {tr [Sq(x)γνS

c(−x)γµ] tr [Sc(x)γνSq(−x)γµ]}

+ isinθcosθ
〈qq〉2

2

∫
d4xeiq.xtr [Sc(x)Sc(−x)]

− icos2θ 〈qq〉
2

√
2

∫
d4xeiq.xtr [Sc(x)Sc(−x)]

+ isin2θ
〈qq〉2√

2

∫
d4xeiq.xtr [Sc(x)Sc(−x)] (3.21)

where tr denotes traces taken over Lorentz indices only and Sc and Sq are heavy

and light quark propagators derived in Eq. (3.13) and Eq. (3.14). Note that the

light quark operators in the third and fourth term are factored out as vacuum

condensates. After calculating these integrals, we find the following spectral

functions:

ρ11(s)− ρ22(s) =

∫ αmax

αmin

dα

{
18mQµ

26(m2
0 + 3µ)m2

q + 9m2
0µ

−12mqα(1− α)
[
3µ2 +m2

0(2µ− s)
]
− 36m2

0mqm
2
Q

−16α(1− α)(14µ− 7s+ 9m2
0)

+48(1− α)mqmQ(3αmq − 13mQ)mQ 〈qq〉

}

and,

ρ12 = ρ21 =
〈qq〉2√

2π2

∫ αmax

αmin

dα
{
m2
Q + α(1− α)s

}
(3.22)

where,

µ =
m2
Q

α(1− α)
− s

αmin =
1

2

1−

√
1−

4M2
Q

s


αmax =

1

2

1 +

√
1−

4M2
Q

s

 (3.23)

26



3.1.2 Mass and Residue

For the mass and the residue of the Y ′ state, we use the interpolating current

given in Eq.(3.4). The form of the correlation function then becomes:

Π(q) = i

∫
d4xeiq.x 〈0|T{j(2)(x)j(2)(0)} |0〉

= isinθcosθ
〈qq〉√

2

∫
d4xeiq.x {〈0|T {c(x)c(x)} {(q(0)γνc(0)) (c(0)γνq(0))} |0〉

+ 〈0|T [{(q(x)γνc(x)) (x(0)γνq(x))} c(0)c(0)] |0〉}

+ icos2θ

∫
d4xeiq.x 〈0|T [(q(x)γµc(x)) (c(x)γµq(x)) (q(0)γνc(0)) (c(0)γνq(0))] |0〉

+ isin2θ
〈qq〉2

2

∫
d4xeiq.x 〈0|T [c(x)c(x)c(0)c(0)] |0〉 (3.24)

Using the Wick’s theorem, we have:

Π(q) = 9isinθcosθ
〈qq〉√

2

∫
d4xeiq.x {tr [Sq(x)γνS

c(−x)γµ] tr [Sc(x)γνSq(−x)γµ]}

= isinθcosθ
〈qq〉√

2

∫
d4xeiq.xtr [Sc(x)Sc(−x)]

= icos2θ

∫
d4xeiq.xtr [Sc(x)Sc(−x)]

= isin2θ
〈qq〉2√

2

∫
d4xeiq.xtr [Sc(x)Sc(−x)] (3.25)

To derive the sum rules for the mass and the residue, we use the general form of

the sum rules given in Eq. (2.17). For the residue, the sum rules formula reads:

λ2 = e
m2

Y
′

M2

∫ s0

0

dsρe
−s
M2 (3.26)

For the mass sum rules, we take the derivative of the Eq.(2.17) with respect to

1/M2:

m2 =

∫ s0
0
dssρ(s)e−s/M

2∫ s0
0
dsρ(s)e−s/M2 (3.27)

where in both Eq. (3.26) and Eq. (3.27);

ρ(s) =
1

π
ImΠ(s) (3.28)
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Evaluating the integrals in Eq. (3.25), we have found:

ρ(s) =
1

384π4

∫ αmax

αmin

dα

{
3

2
mQµ

2 〈qq〉 cos2θ − 144m2
Qmq 〈qq〉µcos2θ

+
(
3m2

0 [3mq − 8α(1− α)mq] + 64π2α(1− α) 〈qq〉
)
〈qq〉µcos2θ

+
(
6m2

0mq

[
−6m2

q + 2α(1− α)s
]

16π2 [mq(3mq − 4mq)− 2α(1− α)s] 〈qq〉
)

+48π2
[
m2
Q + α(1− α)(2µ− s)

]
〈qq〉2 sinθ(3sinθ − 2

√
2cosθ)

−36α(1− α)mq 〈qq〉µ2cos2θ

}
where,

µ =
m2
Q

α(1− α)
− s

αmin =
1

2

1−

√
1−

4M2
Q

s


αmax =

1

2

1 +

√
1−

4M2
Q

s

 (3.29)

3.2 Numerical Analysis

In this section, the numerical results obtained on the mass and residues of Y ′ and

the mixing angle are presented. The values of the quark masses and condensates

used in the analysis are as follows: For the c-quark, its MS scheme mass is

used mc(mc) = (1.28 ± 0.03)GeV [36]. 〈q̄q〉 (1GeV ) = −(0.245+28
−19)MeV [37],

〈%2sG2〉 = (0.47)GeV , m2
0 = 0.8GeV [38].

Beside these input parameters, QCD sum rules obtained in this work contain

additional parameters. These are the Borel parameter M2 and the continuum

threshold s0. The value of the continuum threshold s0 is related to the first

excited state. In both analysis, the value of the continuum threshold is taken as
√
s0 = (4.4±0.1)GeV . The Borel parameterM2, on the other hand, an unphysi-

cal parameter and any result obtained in the calculations of observable quantities

should not depend on it. To this end, one needs to find a specific region of the
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Figure 3.1: The dependence of the mixing angle on the Borel parameter M2

Borel parameter M2 where dependence of the results on the Borel parameter is

minimum. The lower and upper limit of this Borel region are dictated by the

requirement that at the lower limit, OPE series should be convergent and at the

upper limit, the contribution coming from continuum states should be less than

1/3 of the contribution coming from the perturbative part, i.e.;∫∞
s0
dsρ(s)e−s/M

2∫∞
4m2

c
dsρ(s)e−s/M2 <

1

3

Then, the following Borel window is found:

2.0 < M2 < 4.0GeV 2 (3.30)

In Fig. 3.1, we present the dependence of the mixing angle on the Borel pa-

rameter M2 at
√
s0 = 4.4GeV . From this, the mixing angle is found to be

θ = (20± 2)o.

In Fig. 3.2 and Fig. 3.3 ,we present the dependence of the mass of Y ′ and the

residue of the state Y ′ on the Borel parameter M2. We see that the mass and

residue shows very limited variation with the variation of the Borel parameter.
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Figure 3.2: The dependence of the mass on the Borel parameter M2

From these, the mass and residue values are found to be:

mY ′ = (3.85± 0.20)GeV

λY ′ = (1.9± 0.4)× 10−2GeV −3 (3.31)
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Figure 3.3: The dependence of the residue of Y ′ on the Borel parameter M2
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CHAPTER 4

CONCLUSION

The B factories were designed to search for CP violation. But their unexpected

contributions to the field of hadron spectroscopy made a revival in the sub-

ject. Starting with discovery of X(3872) in 2003 by Belle Collaboration, more

and more charmoniumlike state are discovered. Today, over 20 charmoniumlike

states, called XY Z states, are known and their structure remain an unsolved

puzzle. These XY Z states are not considered as an ordinary cc states since they

can not be explained by the quark model.

Owing to the asymptotic freedom behaviour, perturbative methods in QCD does

not always work. In these cases, one needs a non-perturbative method to cal-

culate the observable properties of particles. Among these methods, QCD sum

rules occupies a special place, which based on fundamental QCD Lagrangian.

In the first section of this thesis, QCD sum rules method is discussed and sum

rules for two-point correlation function is derived. Afterwards, this sum rules

is used to determine the mixing angle that appear between the interpolation

current of Y (3940) state and its orthogonal state Y ′ . Also, using the same sum

rules the mass and residue of Y ′ is determined. These states are considered as

a mixture of charmonium and meson molecule D∗D∗ with the quantum number

assignment JP = 0+.

The mass of the Y ′ state is found to be mY ′ = (3.85 ± 0.20)GeV while the

residue λY ′ = (1.9± 0.4)× 10−2GeV −3. From this we concluded that the mass

estimation of the Y ′ state is in agreement with the experimental results.
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Using the same sum rules, the mixing was estimated to be θ = (20 ± 2)o. In

[39], the mixing angle of this state was calculated and it was found if the mixing

angle is choosen to be θ = (76 ± 5), then the mass can be reproduced with an

agreement with the experimental value. Our prediction on this mixing angle

three times less than that one presented in [39]. With this observation one can

conclude that the D∗D∗ is not quite right picture for describing the properties

of the Y (3940).
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APPENDIX A

EVALUATION OF THE CORRELATION FUNCTION

To evaluate the integral appearing at the Eq. (3.21), we use the representations

for the heavy and light quark propagators given in Eq. (3.13) and Eq. (3.14).

By comparing Eq. (3.18) with the Eq. (3.21), we identify the forms of Πij(q)’s

as;

Π11(q) = −i 〈qq〉
2

2

∫
d4xeiq.xtr [Sc(x)Sc(−x)] (A.1)

Π22(q) = i9

∫
d4xeiq.xtr [Sq(x)γνS

q(−x)γµ] tr [Sc(x)γνSq(−x)γµ] (A.2)

Π12(q) = Π21(q) =
−i 〈qq〉2√

2

∫
d4eiq.xtr [Sc(x)Sc(−x)] (A.3)

As it’s clearly seen, there are only two different kind of integrals that are needed

to be evaluated. Here in this Appendix, we only present the detailed calculation

of one integral, to give an example of the calculation method used in this work;

I1 = −i
∫
d4xeiq.xtr [Sc(x)Sc(−x)] (A.4)

With the heavy quark propagator representation Eq. (3.13), this becomes:

I1 = −
iM4

Q

(2π)4

∫
d4xeiq.xtr

{
K1(MQ

√
−x2√

−x2
− i/xK2(MQ

√
−x2)

x2

}
{
K1(MQ

√
−x2√

−x2
+
i/xK2(MQ

√
−x2)

x2

}
=

M4
Q

(2π)4

∫
d4xeiq.x

{
−K

2
1(MQ

√
−x2

x2
+
K2

2(MQ

√
−x2

x2

}
(A.5)

39



where functions K1 and K2 are modified Bessel functions of the second kind.

After Wick rotation where t→ −it, we have;

I1 = −
M4

Q

(2π)4

∫
d4xEe

−iqE .xE

{
K2

1(MQ

√
x2E

x2E
−
K2

2(MQ

√
x2E

x2E

}
(A.6)

Using the following integral representations for the Bessel function [40];

Kν(MQ

√
x2E)

(
√
x2E)ν

=
1

2

∫
dt

tν+1
e
−
MQ
2

{
t+

x2E
t

}
(A.7)

We have the following form for the product of two Bessel function:

Kν1Kν2

(
√
x2E)ν1+ν2

=
1

4

∫
dtdr

tν1+1rν2+1
e−

mQ
2

(t+r)e−
mQ
2 ( 1

t
+ 1
r )x2E

Performing the following change of variable: t→ MQ

2α
, r → MQ

2β
:

Kν1Kν2

(
√
x2E)ν1+ν2

=
2ν1+ν2−2

mν1+ν2
Q

∫
αν1−1dαβν2−1dβe−

m2
Q
4 ( 1

α
+ 1
β )e−(α+β)e

2
E

Introducing the identity
∫
dρδ(ρ−ρα−ρβ) and performing scale transformation

α→ ρα and β → ρβ;

Kν1Kν2

(
√
x2E)ν1+ν2

=

=
2ν1+ν2−2

mν1+ν2
Q

∫
ρν1+ν2−1dρδ(1− α− β)αν1−1dαβν2−1dβe−

m2
Q

4ρ ( 1
α
+ 1
β )e−ρ(α+β)x

2
E

=
2ν1+ν2−2

mν1+ν2
Q

∫
ρν1+ν2−1dραν1−1(1− α)ν2−1dαe−

m2
Q

4ρ ( 1
α
+ 1

1−α)e−ρx
2
E

In a general expression of the form;∫
d4xe−iqE .xE

Kν1(mQ

√
x2E)Kν2(mQ

√
x2E)√(√

x2E

)n
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We have the following "master equation":

∫
d4xe−iqE .xE

Kν1(mQ

√
x2E)Kν2(mQ

√
x2E)√(√

x2E

)n =

=
2ν1+ν2−2

mν1+ν2
Q

∫
ρν1+ν2−1dραν1−1(1− α)ν2−1dαe−

m2
Q

4ρ ( 1
α
+ 1

1−α)

×
∫
d4e−iqE .xEe−ρx

2
E

(√
x2E

)ν1+ν2−n
(A.8)

Using this form with ν1 = ν2 = 1& n = 2 for the first term and ν1 = ν2 = 2 and

n = 2 for the second term in the parenthesis in Eq. (A.6), the I1 becomes:

I1 =
−m2

Q

π4

∫
ρdρdαe−

m2
Q

4ρ ( 1
α
+ 1

1−α)
∫
d4xe−iqE .xEe−ρx

2
E

[
1− 4ρ2

m2
Q

α(1− α)x2E

]

Now we perform the integration over d4x at the dimension d, and obtain:

I1 = −πd/2−4m2
Q

∫
ρ1−d/2dρdαe−σ/ρ

[
1 +

2ρ

m2
Q

α(1− α)

(
−d+

q2E
2ρ

)]

where σ =
m2
Q

4α(1−α) +
q2E
4
. Performing a change of variable u→ σ/ρ;

I1 = πd/2−4m2
Q

∫
dασ2−d/2

∫
duud/2−3e−u

[
1 +

2σ

m2
Qu
α(1− α)

(
−d+

q2Eu

2σ

)]

= −πd/2m2
Q

∫
dα

[
σ2−d/2Γ(d/2− 2)

(
1 +

q2Eα(1− α)

m2
Q

)

−2αd(1− α)

m2
Q

σ1−d/2Γ(d/2− 1)

]

For ε = d− 4;

I1 = −πd/2−4m2
Q

∫
dα

[
σ−ε/2Γ(ε/2)

(
1 +

q2Eα(1− α)

m2
Q

)

− 2αd(1− α)

m2
Q

σ−1−ε/2Γ(ε/2 + 1)

]
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Using Γ(ε/2) = 2/ε+ 1− γ +O(ε2) [41];

I1 = −
m2
Q

π2

∫
dα

[(
1− ε

2
lnσ
) (

2/ε+ 1− γ +O(ε2)
)(

1 +
q2Eα(1− α)

m2
Q

)]

= −
m2
Q

π2

∫
dα (1− lnσ)

(
1 +

q2Eα(1− α)

m2
Q

)

Taking the imaginary part of this:

1

π
ImI1(q

2
E) =

1

π2

∫ αmax

αmin

dα
(
m2
Q + q2Eα(1− α)

)
(A.9)

where,

αmin =
1

2

1−

√
1−

4M2
Q

q2E


αmax =

1

2

1 +

√
1−

4M2
Q

q2E


Using Eq. (A.9), the spectral function ρ12(s) and ρ21(s) can be found as:

ρ12(s) = ρ21(s) =
〈qq〉2√

2π2

∫ αmax

αmin

dα
(
m2
Q + q2Eα(1− α)

)
(A.10)
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