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ABSTRACT

DISCONTINUOUS GALERKIN FINITE ELEMENTS METHOD WITH
STRUCTURE PRESERVING TIME INTEGRATORS FOR GRADIENT FLOW

EQUATIONS

Sarıaydın-Filibeliŏglu, Ayşe

PhD, Department of Scientific Computing

Supervisor : Prof. Dr. B̈ulent Karas̈ozen

August 2015, 92 pages

Gradient flows are energy driven evolutionary equations such that the energy decreases
along solutions. There have been surprisingly a large number of well-known partial
differential equations (PDEs) which have the structure of agradient flow in different
research areas such as fluid dynamics, image processing, biology and material sci-
ences. In this study, we focus on two systems which can be modeled by gradient flows;
Allen-Cahn and Cahn-Hilliard equations. These equations model the phase separation
in material science. Since an essential feature of the Allen-Cahn and Cahn-Hilliard
equations is the energy decreasing property, it is important to design efficient and ac-
curate numerical schemes that satisfy the corresponding energy decreasing property.
We have used symmetric interior penalty Galerkin (SIPG) method to discretize the
Allen-Cahn and Cahn-Hilliard equations in space. The resulting large system of ordi-
nary differential equations (ODEs) as a gradient system aresolved by the energy sta-
ble (energy decreasing) time integrators: implicit Euler and average vector field (AVF)
methods. We have shown that implicit Euler and AVF time integrators coupled with
SIPG method are unconditionally energy stable. Numerical results for both equations
with polynomial and logarithmic energy functions, and constant and variable mobility
functions illustrate the efficiency and accuracy of this approach.

Advective Allen-Cahn equation is the simplest model of surface tension in the droplet
breakup phenomena. The small surface time scale and convective time scale lead to
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unphysical oscillations in the solution. In contrast to thediscretization of Allen-Cahn
and Cahn-Hilliard equations using the method of lines, the advective Allen-Cahn equa-
tion is first discretized in time using implicit Euler methodand the resulting sequence
of semi–linear elliptic equations are solved with an adaptive algorithm. This corre-
sponds to Rothe’s method. As a remedy of unphysical oscillations, an adaptive version
of SIPG method based on residual based a posteriori error estimate is applied. Numer-
ical results for convection dominated Allen-Cahn equation show the performance of
adaptive algorithm.

Keywords: gradient flow equations, discontinuous Galerkin finite elements method,
structure preserving time integrators
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ÖZ

GRADYAN DENKLEMLERİ İÇİN YAPI KORUYAN ZAMAN
INTEGRATÖRLEṘI İLE SÜREKṠIZ SONLU ELEMANLAR YÖNTEMİ

Sarıaydın-Filibeliŏglu, Ayşe

Doktora, Bilimsel Hesaplama B̈olümü

Tez Yöneticisi : Prof. Dr. B̈ulent Karas̈ozen

Ağustos 2015, 92 sayfa

Gradyan akışlar bir enerji tarafından yönetilen ve enerjinin ç̈ozümler boyunca azaldığı
sistemlerdir. Akışkanlar dinamiği, görüntü işleme, biyoloji ve malzeme bilimi gibi
farklı araştırma alanlarında gradyan akış yapısına sahip şaşırtıcı şekilde pek çok kısmi
türevli denklem bulunmaktadır. Bu tezde, gradyan akışlarlamodellenen iki sistem
üzerinde yŏgunlaştık; Allen-Cahn ve Cahn-Hilliard denklemleri. Bu iki denklem mal-
zeme biliminde faz ayrımını modellemektedir. Allen-Cahn veCahn-Hilliard denklem-
lerinin enönemliözelliği azalan enerji oldŭgu için, bu azalan enerjïozelliğini săglayan
etkili ve dŏgru n̈umerik ÿontemlerin geliştirilmesïonem kazanmaktadır. Allen-Cahn
ve Cahn-Hilliard denklemlerinin uzaydaki ayrıklaştırılmasında simetrik kesintili Ga-
lerkin yöntemini kullandık. Ortaya çıkan büyük adi diferansiyel denklem sistemlerini
gradyan sistem olarak yapı koruyan zaman integratörlerinden geriye dŏgru yapılan Eu-
ler yöntemi ve ortalama vektör alanı ÿontemi ile ç̈ozd̈uk. Geriye dŏgru yapılan Euler
yöntemi ve ortalama vektör alanı ÿontemlerinin simetrik kesintili Galerkin ÿontemi
ile bir araya geldĭginde şartsız olarak enerjiyi koruduğunu g̈osterdik. Her iki den-
klemin polinom ve logaritmik enerji fonksiyonları ve sabitve dĕgişken akışkanlık
fonksiyonu ile elde edilen sayısal sonuçları bu yöntemin verimlilĭgini ve dŏgruluğunu
göstermektedir.

Advektif Allen-Cahn denklemi damlacık ayrılması olayındaki yüzey geriliminin basit
bir modelidir. Küçük zaman̈olçĕgi ve konvektif zaman̈olçĕgi bu denklemin ç̈ozünde
fiziksel olmayan dalgalanmalara sebep olmaktadır. Doğrular ÿontemi kullanılarak
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ayrıklaştırılan Allen-Cahn ve Cahn-Hilliard denklemlerinin aksine, advektif Allen-
Cahn denklemini ilk̈once geriye dŏgru yapılan Euler ÿontemi ile zamanda ayrıklaştı-
rılarak ortaya çıkan yarı liner elliptik denklemleri uyarlanabilir algoritmalarla ç̈ozük.
Bu Rothe ÿontemine karşılık gelmektedir. Fiziksel olmayan dalgalanmalara bir çare
olarak ç̈ozüme băglı hata kestiricilerüzerine kurulu simetrik kesintili Galerkin yön-
teminin uyarlanabilir biçimini kullandık. Konveksiyonun baskın oldŭgu Allen-Cahn
denklemi için verilen sayısal sonuçlar uyarlanabilir algoritmanın performansını gös-
termektedir.

Anahtar Kelimeler: gradyan denklemleri, sürekli olmayan Galerkin sonlu elemanlar
yöntemi, yapı koruyan zaman integratörleri
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Sinem Kozpınar, who shared all the stages of this thesis and provide me a joyful work-
ing atmosphere. I am also greatful to people of Institute of Applied Mathematics (IAM)
for the pleasant and friendship environment.

A special thank to my love Semih Filibelioğlu, for always finding a way to make me
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CHAPTER 1

INTRODUCTION

Gradient flows are evolutionary systems driven by the energydissipation mechanism.
A large number of well-known PDEs with a gradient flow structure occur in different
research areas such as fluid dynamics, image processing, biology and material science
[23, 32, 40, 58, 60]. In this thesis, we deal with two famous example from material
science; Allen-Cahn (AC) and Cahn-Hilliard (CH) equations.

The AC equation was first introduced by Allen and Cahn [2] in1979 as a simple model
for phase separation in a binary alloy at a fixed temperature,and given by

ut = µ(u)
(
ǫ2∆u− f(u)

)
in Ω× (0, T ], (1.1)

u(x, 0) = u0 in Ω× {0}.

The CH equation was proposed by Cahn and Hilliard [16] in1958 to describe the phase
separation of a binary fluid mixture below a critical temperature, and given by

ut = ∇ · [µ(u)∇(f(u)− ǫ2∆u)], in Ω× (0, T ], (1.2)
u(x, 0) = u0 in Ω× {0}.

Both equations are considered with periodic, Neumann, or Dirichlet boundary condi-
tions. The functionu represents the concentration of one of the components of the
mixture with the values in the region−1 < u < 1 representing the mixture state and
the end points correspond to pure states. Here,Ω ⊂ Rd(d ≤ 3) is a bounded domain,
the parameterǫ is a measure of interfacial layer representing the effective diffusivity,
andµ(u) is the non–negative mobility function. There are two choices for mobil-
ity function; constant mobility and degenerate mobility. In many numerical studies
constant mobility is used [3, 20, 22, 37, 39]. The degenerateor variable mobility is
given as a non-negative quadratic function either asµ(u) = βu(1 − u) [40, 79] or
µ(u) = β(1− u2) [9, 11, 40, 82], whereβ is a constant.

The phase separation is thoroughly explained by the difference in the concentration
of mixture of a binary alloy in the time evolution of AC and CH equations. It starts
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with cooling of a uniform mixture of a binary alloy under a critical temperature where
the uniform mixture becomes unstable. After that, two phases with different concen-
trations develop immediately. If initially both components have roughly similar pro-
portions, spinodal decomposition process takes place, where a mixture of two or more
materials separates into distinct regions with different composition. On the other hand,
if the amount of one component is higher, nuclei of the parameter component form and
grow, and phase separation takes via a process called nucleation and growth. During
the late stages of the time evolution, the structure becomescoarser, either by merging
of particles or by the growth of bigger particles at the expenses of smaller ones, known
as domain coarsening phenomena. The transition between these processes is known as
metastability, representing the transition from unstableto stable state in a short time.

The AC and CH equations can be written as a gradient descent flow

ut = −µ(u)δE(u)
δu

, (1.3)

with the Ginzburg-Landau free energy

E(u) =
∫

Ω

(
ǫ2

2
|∇u|2 + F (u)

)

dx, (1.4)

in L2 space andH−1 Hilbert spaces, respectively. Here,δE(u)/δu denotes the vari-
ational derivative andF (u) is the free energy function wheref(u) = F ′(u). There
are two common types of energy functions. One of these functions is the non-convex
logarithmic energy function [12, 68]

F (u) =
θ

2
[(1− u) ln(1− u) + (1 + u) ln(1 + u)]− θc

2
u2, (1.5)

which has different forms for CH equation (see [9, 11, 40, 79, 83]). The other one is
the convex double-well energy function [32, 54, 55]

F (u) =
(1− u2)2

4
, (1.6)

which is an approximation of the logarithmic energy function for temperaturesθ close
to θc. In most of the studies, AC and CH equations are considered with double-well
energy function and constant mobility. In this thesis, we consider the double-well
energy and logarithmic free energy with constant and degenerate mobility function for
both equations.

The main characteristic of both equations is the energy decreasing property,i.e.,

E(u(tn)) ≤ E(u(tm)), ∀ tn > tm

which poses a challenge to construct an unconditionally energy stable numerical meth-
ods. Moreover, the inherent non-linearity in the equations, the presence of the small
parameterǫ in phase separation applications and the different time scales of the stages
in the evolution of the concentration are other difficultiesencountered in the numerical
solution of AC and CH equations.
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AC and CH equations are the most popular examples of gradient descent flow. In
gradient flow problems, the construction of higher order methods with above energy
decreasing property is one of the major topics. The conservation of other structural
properties is also important. So, it is needed efficient and accurate numerical methods.

In the literature, many numerical methods have been developed with finite difference
[18, 73], spectral elements [23], continuous finite element[55], and local discontinuous
Galerkin (LDG) methods [31, 39] for space discretization ofAC equation. Time in-
tegration is performed by implicit-explicit (IMEX) methods [69], standard integrators
like Crank-Nicolson method [34] and linear multi-step integrators [33]. Recently high
accurate time integrators like the spectral deferred correction methods [55] and expo-
nential integrators [73] are applied. The CH equation is mostly considered with the
constant mobility function and finite differences [23], finite elements [12] and spectral
methods [20, 43] are used for space discretization whereas CHequation with degener-
ate mobility is discretized by continuous finite elements [9, 11, 12], by LDG method
[82, 83] discontinuous Galerkin (DG) method withC0 elements and with mixed finite
elements [79], finite differences [51], NURSB [36] and by spectral methods [84]. Most
of the time discretization methods for CH equation with degenerate mobility are based
on the convex splitting of the energy function. Moreover splitting methods are used by
adding stabilization terms to the energy functionF (u). A survey of time discretization
techniques for CH equation can be found in [72].

Discontinuous Galerkin finite elements methods (DGFEMs) have become so popular
since they exhibit attractive properties. They have higheraccuracy and work better in
complex geometries in contrast to continuous finite elements method (FEM). Further-
more, the discontinuous approximation spaces bring the flexibility of discontinuous
Galerkin (DG) methods which allows to adapt the mesh and the polynomial degree of
the basis function. By this way, the sharp layers and singularities can be detected eas-
ily. Another interesting feature of DG method is local mass conservation which makes
them a good candidate to solve flow and transport problems. Inaddition, the boundary
conditions can be imposed weakly different from continuousfinite element method. In
this thesis we discretize the AC equation and mass conservative CH equation in space
with symmetric interior point discontinuous Galerkin (SIPG) method [4, 63].

The design of energy stable time discretization techniquesis an important topic in the
numerical solution of gradient flow equations. The small values of the diffusion param-
eterǫ leads to stiff systems after spatial discretizations. In this case, implicit-explicit
methods are developed since the explicit methods are not suitable for stiff systems and
the fully implicit systems require solution of non-linear equations at each time step.
In the semi-implicit schemes, the linear stiff part is treated implicitly and the non-
linear part explicitly, so that at each time step a linear system of equations is solved.
Implicit Euler method and average vector field (AVF) method are energy stable time
discretization techniques which are robust with smallǫ. Implicit Euler method is the
most popular energy stable method. It is strongly energy decreasing, i.e. the discrete
energy decreases without any restriction on the step size∆t for very stiff gradient sys-
tems for very smallǫ [41]. The AVF method is the only second order implicit energy
stable method [17, 41] and it preserves energy decreasing property for the gradient sys-
tems and for systems with Lyapunov functionals. The mid–point method corresponds
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to AVF method for quadratics non-linearities. For gradientsystems involving higher
order polynomial or general nonlinear terms, the mid-pointmethod is not energy stable
[41]. There are also some higher order energy decreasing methods with orders≥ 3; the
discontinuous Galerkin-Petrov in time methods (with different trial and test functions)
[66] and Gauss Radau IIA Runge-Kutta collocation methods [42]. However, they re-
quire coupled systems of equations at each time step which increase the computational
cost.

The AC and CH equations are also investigated by an advection term to model surface
tension in the droplet breakup phenomena [56, 57]. We consider the advective AC
equation [57]

ut +∇ · (uV) = ǫ∆u− 1

ǫ
f(u) in Ω× (0, T ], (1.7)

∂u

∂n
= 0 in ∂Ω× [0, T ],

with an appropriate initial condition and prescribed velocity field V = (V1, V2)
T . In

most studies, the velocity field is divergent free, for example when the AC equation
with the incompressible Navier-Stokes equation is considered. Since we consider
droplet breakup phenomena under compressible flow, the velocity field V is not di-
vergent free; it is expanding when∇ ·V > 0 or it is contracting when∇ ·V < 0.

The existing numerical studies for advective AC equation are especially on the behav-
ior of solutions with respect to droplet breakup phenomena and analysis of the breakup
condition (see [57] and references in it). On the other hand,the advective AC equa-
tion is known for its computational stiffness due to the small surface time scale and
convective time scale. These two different time scales leadto sharp gradients and un-
physical oscillations in the solution and require an adaptive algorithm. We utilize a
space adaptive algorithm by first discretizing the advective AC equation in time using
implicit Euler method and then solving the resulting sequence of semi–linear elliptic
equations with an adaptive version of SIPG method using upwinding for the convective
term. This is known as Rothe’s method [26]. We also derive residual based a posteri-
ori error estimate [74] which is based on the a posteriori error estimates for stationary
non-linear diffusion-convection-reaction equations with divergent free velocity field.

The fully discretized systems of AC/advective AC and CH equations result in non-
linear system of equations. We apply Newton’s method to solve this non-linear sys-
tem of equations and all linear system of equations arising from the applied Newton’s
method are solved by sparse direct solvers of MATLAB.

The goal of this thesis is to solve AC and CH equations in an accurate and efficient
way using DG methods and structure preserving time integrators implicit Euler and
AVF methods. We have derived unconditionally energy stableschemes coupling DG
space discretization with implicit Euler and AVF methods which has not been applied
to AC and CH equations with constant and degenerate mobility,polynomial and non-
polynomial free energy functionals. We developed a residual based adaptive algorithm
to resolve the dynamics of the advective AC equation with expanding and contracting
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velocity filelds. To the best of our knowledge, this is the first study combining adaptive
algorithms with Rothe’s method and non-divergent velocity field.

The thesis is organized as follows: in Chapter 2, we first construct discontinuous
DGFEM based on the interior penalty method for the general Poisson problem. Then,
we give SIPG discretization of AC equation for Dirichlet, Neumann and periodic
boundary conditions. The large system of ordinary differential equations (ODEs) re-
sulting from semidiscretization by the SIPG method are solved in with the implicit
Euler method and AVF method, which corresponds to method of lines. The proof of
the unconditionally energy stability of the fully discretescheme is given. Also, a time
adaptive algorithm is presented to resolve the multiple time dynamics of AC equation.
Several numerical examples are given to demonstrate the applicability of the DGFEM
discretization coupled with time integrators for the AC equation.

In Chapter 3, we give the SIPG method discretization of mass conservative CH equa-
tion for Dirichlet, Neumann and periodic boundary conditions and present the time
discretization with the implicit Euler and AVF methods. Theunconditionally energy
stability of the fully discrete schemes is given. Numericalexamples are presented to
demonstrate the applicability of our method for the CH equation.

In chapter 4, we first discretize the advective AC equation intime by implicit Euler
method and the resulting sequence of semi–linear elliptic equations are discretized by
SIPG method. Then, we construct space adaptive algorithm for advective AC equation
with non–divergent velocity field and residual based a posteriori error estimates are
utilized. We highlight some examples that our adaptive algorithm is capturing the
spatial layers in the solution of advective AC equation. Finally, we end up with a
conclusion and future work in Chapter 5.
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CHAPTER 2

THE ALLEN-CAHN EQUATION

The first occurrence of AC equation goes over the 1970s when Allen and Cahn in-
troduced it to describe the motion of anti-phase boundariesin crystalline solids [2].
Recently, it has been widely used to model various phenomena in nature including bi-
ology, image processing, fluid flows, and material science. Actually, it is a basic model
equation for the diffuse interface approach to study phase separation and inter–facial
dynamics in material science. The generalized AC equation in a bounded domain
Ω ⊂ Rd(d ≤ 3) is given by

ut = µ(u)
(
ǫ2∆u− f(u)

)
in Ω× (0, T ], (2.1)

u(x, 0) = u0 in Ω× {0},
with suitable boundary conditions such as periodic boundary condition [18, 23], homo-
geneous Neumann boundary condition [22, 31, 35] or homogeneous Dirichlet bound-
ary condition [33, 50]. In the above,u represents the phase state between materials,
the parameterǫ is known as the interaction length, capturing the dominating effect of
the reaction kinetics and represents the effective diffusivity f(u) = F ′(u) is an energy
function, andµ(u) is the non negative mobility function which describes the physics
of phase separation.

It is well-known that the AC equation is a gradient flow with Liapunov energy func-
tional inL2

E(u) =
∫

Ω

(
ǫ2

2
|∇u|2 + F (u)

)

dx, (2.2)

with the convex double-well energy function [32, 54, 55]

F (u) =
1

4
(1− u2)2, (2.3)

or the non–convex logarithmic energy function [12, 68]

F (u) =
θ

2
[(1− u) ln(1− u) + (1 + u) ln(1 + u)]− θc

2
u2, (2.4)
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whereθ is the absolute temperature,θc is the transition temperature withθ ≤ θc. Note
that the logarithmic free energy function is usually approximated by the double well
energy function whenθ is close toθc which has the advantage of being smooth.

If the double-well energy function (2.3) is taken into consideration,f(u) = u3 − u
represents the bi-stable non-linearity. The bi-stabilitycomes from checking the sign
of f(u) on various intervals at the equilibrium pointsu = 0, u = 1, andu = −1. It
is easily seen thatu = 0 is an unstable equilibrium,u = 1 andu = −1 are stable
equilibrium which leads to new behavior. When we obtain solutions withu ≥ 0, the
stateu = −1 is not relevant and traveling waves occur. However, if the solutions are
betweenu = −1 andu = 1, we have a rather interesting competition between equal
and opposite stable states. When the logarithmic free energyfunction (2.4) is consid-
eredf(u) = θ

2
ln
(
1+u
1−u

)
− θcu in which the logarithmic terms describe the entropy of

mixture. The AC equation is considered with the double–wellpotential and constant
mobility in all numerical studies [33, 34, 35, 54, 55, 81]. In[68] it is introduced with
degenerate mobility function and logarithmic free energy for the first time. The de-
generate mobility function is introduced asµ(u) = β(1 − u2), β is a constant, which
is thermodynamically reasonable choice. The main propertythat a mobility function
should have is that it is zero in the pure component, i.e, whenu = ±1, and the mobility
function should be positive for|u| < 1.

The mobility functionµ(u), and both energy functionals (2.3) and (2.4) and their
derivatives are Lipschitz continuous foru1, u2 ∈ R with the constraints|u1,2| ≤ 1
[75] :

|µ(u1)− µ(u2)| ≤ Lµ |u1 − u2| ,
|f(u1)− f(u2)| ≤ Lf |u1 − u2| , (2.5)

|f ′(u1)− f ′(u2)| ≤ Lf ′ |u1 − u2| ,

with Lµ, Lf , Lf ′ ≥ 0 stand for the related Lipschitz constants.

The main characteristic of the AC equation is the energy decay property obtained by
differentiating the energy functional (2.2) to get

d

dt
E(u) =

∫

Ω

(f(u)ut + ǫ2∇u · ∇ut)dx

=

∫

Ω

(f(u)− ǫ2∆u)utdx

= −
∫

Ω

(ut)
2dx

where we have used integration by parts and apply periodic boundary condition or
homogenous Neumann boundary condition. Therefore, the total energy is decreasing
in time, i.e.,

E(u(tn)) < E(u(tm)), ∀tn > tm. (2.6)

In addition to energy decreasing property, the other main characteristics of AC equation
are
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• No mass conservation:

∫

Ω

u(x, t)dx 6=
∫

Ω

u(x, 0)dx.

• Phase separation:

When the timet is large enough, the solutionu(x, t) shows the combination of
intervals ofu(x, t0) = 1 andu(x, t0) = −1 at the timet = t0.

• Metastability phenomena:

In the time evolution of AC equation, the solution pass to stable state in a short
period and transforms to another state dramatically.

The presence of the small inter-facial parameterǫ in the equation and inherent non-
linearity leads to the difficulties in the numerical solution of AC equation. To overcome
these difficulties the spatial mesh size∆x and the time∆t has to be identified properly
to have an accurate and efficient solution. In most of the studies, finite difference
[18, 73], spectral elements [23], continuous finite element[55], LDG methods [31, 39]
are used for space discretization of AC equation.

Designing energy stable time discretization methods whichconserve the decay of dis-
crete energy is also a significant topic in the numerical solution of AC equation. Most
of the energy stable methods for AC equation have been developed with constant mo-
bility function. It is observed that the small values of the diffusion parameterǫ leads
to stiff systems after spatial discretizations. In this case, IMEX methods are developed
(see for example [69]), since the explicit methods are not suitable for stiff systems and
the fully implicit systems require solution of non-linear equations at each time step.
In the semi-implicit schemes, the linear stiff part is treated implicitly and the non-
linear part explicitly, so that at each time step a linear system of equations is solved.
Since the semi–implicit methods have time step restrictioninherently, parametrized
energy stable methods are developed like the IMEX methods [69], standard integra-
tors like Crank-Nicolson method [34] and linear multi-step integrators [33]. Recently
high accurate time integrators like the spectral deferred correction methods [55] and
exponential integrators [73] are applied for solving the ACequation.

In this work, we use interior penalty discontinuous Galerkin finite elements method
(IPDGFEM) for the space discretization [5, 63]. The DG methods were first introduced
in 1973 by Reed and Hill [62] for the solution of steady-state neutron transport being
a first-order hyperbolic problem. Then, Dougles, Dupont andWheeler [27, 80], and
Arnold [5] developed the DG methods for elliptic and parabolic problems. Afterward,
the DG methods for elliptic problems were developed in [7, 13, 15, 61, 65] and for the
ones with advection in [6, 14, 24, 38, 46].

In recent years, the DG methods have become so popular since they exhibit attractive
properties of both classical finite elements method (FEM) and finite volume method
(FVM). The combination of pros of both methods gives the DG methods flexibility,
stability, conservation of local quantities, robustness and compactness properties. The
discontinuity of the functions in DGFEM space along the inter–element boundaries
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brings in the flexibility of DG methods. Then, one can construct unstructured meshes
or hanging nodes to handle the complex geometries. In addition, different order basis
functions on each element can be used with DG discretization. Hence, it allows to use
in hp-methods [70] which arranges the mesh elements and also the order of polyno-
mials on each element adaptively. The stabilization of DG methods are handled via
the penalty term which penalizes the jumps of the solution onthe element boundaries.
Since the stability in DG methods are inherited by this way, there is no need to propose
additional stabilization as in the classical FEMs. The DG methods locally conserve
several physical quantities such as mass and energy, which plays an important role in
the flow and transport problems. Moreover, the sharp gradients or the singularities in
the mesh can be locally detected owing to the fully discontinuous polynomial repre-
sentation of the solution. In addition to all, the (Dirichlet) boundary conditions in DG
methods are imposed in a weak manner. In this way, one not onlyhave a scheme which
is robust on the boundary conditions but also do not need to construct finite element
spaces with certain conditions on the boundary. Besides all the advantages, DG meth-
ods have some drawbacks. Compared to the continuous finite elements methods, DG
methods produce systems with larger degrees of freedom and ill-conditioned matrices
increasing linearly with the order of basis functions.

For time discretization, energy stable implicit Euler method and AVF method is used.
Implicit Euler method is the most popular energy stable method. It is strongly energy
decreasing, i.e. the discrete energy decreases without anyrestriction on the step size
∆t for very stiff gradient systems for enough smallǫ [41]. The AVF method is the
only second order implicit energy stable method [17, 41] andit preserves energy de-
creasing property for the gradient systems and for systems with Lyapunov functionals.
The mid-point method corresponds to AVF method for quadratics non-linearities. For
gradient systems involving higher order polynomial or general nonlinear terms, the
mid-point method is not energy stable [41]. Higher order energy decreasing methods
with orders≥ 3 are the discontinuous Galerkin-Petrov in time methods (with different
trial and test functions) [66] and Gauss Radau IIA Runge-Kuttacollocation methods
[42]. However, they require coupled systems of equations ateach time step which
increase the computational cost.

In this chapter, we first construct discontinuous Galerkin finite elements method based
on the interior penalty method for the general Poisson problem in Section 2.1. Then,
in Section 2.2, we give the SIPG discretization of AC equation for Dirichlet, Neumann
and periodic boundary conditions. Section 2.3 presents thetime discretization with the
implicit Euler method and AVF method, where solution of the non–linear equations
are described in detail. Unconditionally energy stabilityof the fully discrete scheme
is given in Section 2.4. In Section 2.5, a time adaptive algorithm is presented. Lastly,
several numerical examples are given Section 2.6 to demonstrate the applicability of
the DGFEM discretization coupled with time integrators forthe AC equation.
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2.1 Interior Penalty Galerkin Method

In this section, the construction of interior penalty Galerkin (IPG) method [4, 63] ap-
plied to the general Poisson equation

−ǫ∆u = f in Ω, (2.7)
u = gD on ∂ΩD,

ǫ∇u · n = gN on ∂ΩN ,

with ∂Ω = ∂ΩD ∪ ∂ΩN and∂ΩD ∩ ∂ΩN = ∅ is presented since the construction of
interior penalty Galerkin methods concern with the diffusion part of the problem.

We first give some basic definitions used in the construction of IPG methods. On a
polygonal domain inRd, for 1 < p <∞, the spacesLp(Ω) are defined by

Lp(Ω) = {w Lebesgue measurable: ‖w‖2Lp(Ω) <∞},

with the norms

‖w‖Lp(Ω) =
(∫

Ω
|w(x)|pdx

)1/p
, 1 ≤ p <∞

‖w‖L∞(Ω) = esssup{|w(x)| : x ∈ Ω} , p = ∞

Along this thesis, theL2(Ω) space which is a Hilbert space given with the usualL2-
inner product

(u, w)Ω =

∫

Ω

u(x)w(x)dx , ‖w‖L2(Ω) =
√

(w,w)Ω.

LetD(Ω) denotes the subspace of the spaceC∞ having compact support inΩ. For any
multi-indexγ = (γ1, . . . , γd) ∈ Nd with |γ| = ∑d

i=1 γi, the distributional derivative
Dγw is defined by

Dαw(ψ) = (−1)|γ|
∫

Ω

w(x)
∂|γ|ψ

∂xγ11 · · · ∂xγdd
, ∀ψ ∈ D(Ω).

Then, the Sobolev spaceW (s,p) is introduced as

W (s,p)(Ω) = {w ∈ Lp(Ω) : Dγw ∈ Lp(Ω) , ∀ 0 ≤ |γ| ≤ s}.

Our main interest along this thesis is the Sobolev space given asHs(Ω) = W (s,2)(Ω)
for an integers with the associated Sobolev norm

‖w‖Hs(Ω) =




∑

0≤|γ|≤s

‖Dγw‖2L2(Ω)





1/2

,
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and the associated Sobolev seminorm

|w|Hs(Ω) = ‖∇sw‖L2(Ω) =




∑

|γ|=s

‖Dγw‖2L2(Ω)





1/2

.

The Sobolev spaces with vanishing functions on the domain boundary are defined by

Hs
0(Ω) = {w ∈ Hs(Ω) : w|∂Ω = 0},

and we have fors = 1

H1(Ω) = {w ∈ L2(Ω) : ∇w ∈ (L2(Ω))d},

Moreover, for a partition (most possibly triangles)Th of Ω the broken Sobolev spaces
are defined by

Hs(Th) = {w ∈ L2(Ω) : w|E ∈ Hs(E) , ∀E ∈ Th},

with the associated broken Sobolev norm

‖w‖Hs(Th) =

(
∑

E∈Th

‖w‖2Hs(E)

)1/2

,

and the associated broken gradient semi-norm

|w|H0(Th) =

(
∑

E∈Th

‖∇w‖2L2(E)

)1/2

.

Now, we are ready to construct the IPG method. Let{Th} be a family of shape regular
meshes with triangular elements, i.e., there exists a constantc0 such that

max
E∈Th

h2E
|E| ≤ c0

wherehE is the diameter and|E| is the area ofE, and also the elementsEi ∈ Th

satisfiesΩ = ∪E andEi ∩ Ej = ∅ for Ei, Ej ∈ Th. We split the set of all edgesEh

into the set of interior edgesE0
h, the set of Dirichlet boundary edgesED

h and the set of
Neumann boundary edgesEN

h , so thatEh = E∂
h ∪E0

h with E∂
h = ED

h ∪EN
h . Then, set

the finite dimensional solution and test function space by

Vh =
{
u ∈ L2(Ω) : u|E ∈ Pq(E), ∀E ∈ Th

}
6⊂ H1

0 (Ω),

wherePq(E) denotes the set of all polynomials onE ∈ Th of degree at mostq. Note
that the space of solution and test functions are chosen to bethe same since the bound-
ary conditions in DG methods are imposed weakly. In contrastto continuous finite
element method, discontinuous Galerkin methods are suitable to use non–conforming
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Figure 2.1: Left: two neighbor elements sharing an edge, Right: an element adjacent
to boundary of the domain

spaces in which case the functions inVh /∈⊂ H1
0 are allowed to be discontinuous along

the inter-element boundaries.

Because of the discontinuity of the functions inVh along the inter element boundaries,
there are two different traces from the neighboring elements sharing that edge. Ac-
cordingly, let us first give some notations before the construction of IPG methods. Let
the edgee be a common edge for two elementsEi andEj (i < j), (see Figure 2.1).
Then for a scalar functionu, there are two common traces ofu alonge, denoted by
u|Ei

from insideEi andu|Ej
from insideEj. Then, the jump and average ofu across

the edgee are defined as

[u] = u|Ei
ne − u|Ej

ne, {u} =
1

2
(u|Ei

+ u|Ej
),

wherene is the unit normal to the edgee oriented fromEi toEj. Similarly, we set the
jump and average values of a vector field∇u on e

[∇u] = ∇u|Ei
· ne −∇u|Ej

· ne, {∇u} =
1

2
(∇u|Ei

+∇u|Ej
),

Observe that[u] is a vector for a scalar functionu, while, [∇u] is scalar for a vector
field∇u. On the other hand, for a boundary edgee ⊂ Ei ∩ ∂Ω, we set

[u] = u|Ei
n, {u} = u|Ei

, [∇u] = ∇u|Ei
· n, {∇u} = ∇|Ei

wheren is the unit outward normal to the boundary ate.

Now, the IPG method discretization of the diffusion part of the problem is constructed.
If we multiply the continuous equation (2.7) by a test function v ∈ Vh, integrate over
Ω and split the integrals, we obtain

−
∑

E∈Th

∫

E

ǫ∆uvdx =
∑

E∈Th

∫

E

fvdx

Applying the divergence theorem on every element integral gives
∑

E∈Th

∫

E

ǫ∇u · ∇vdx−
∑

E∈Th

∫

∂E

ǫ(∇u · n)vds =
∑

E∈Th

∫

K

fvdx+
∑

e∈EN
h

∫

e

gNvds

Using the jump definitions (v ∈ Vh are element-wise discontinuous), we get
∑

E∈Th

∫

E

ǫ∇u · ∇vdx−
∑

e∈E0
h
∪ED

h

∫

e

[ǫv∇u]ds =
∑

E∈Th

∫

E

fvdx+
∑

e∈EN
h

∫

e

gNvds
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It can be easily verified that[ǫv∇u] = {ǫ∇u} · [v] + [ǫ∇u] · {v}. Also, using the fact
that [∇u] = 0 (u is assumed to be smooth enough so that∇u is continuous), we get

∑

E∈Th

∫

E

ǫ∇u · ∇vdx−
∑

e∈E0
h
∪ED

h

∫

e

{ǫ∇u} · [v]ds =
∑

E∈Th

∫

E

fvdx+
∑

e∈EN
h

∫

e

gNvds

However, the left hand side is not coercive, even not symmetric. To handle this and to
penalize the solutions, using the fact that[u] = 0 along the interior edges (u is assumed
to be continuous), we reach at

∑

E∈Th

∫

E

ǫ∇u · ∇vdx−
∑

e∈E0
h
∪ED

h

∫

e

{ǫ∇u} · [v]ds−
∑

e∈E0
h

∫

e

{ǫ∇v} · [u]ds

+
∑

e∈E0
h

σ

he

∫

e

[u] · [v]ds =
∑

E∈Th

∫

K

fvdx+
∑

e∈EN
h

∫

e

gNvds

wherehe denotes the length of the edgee andσ is called the penalty parameter. It
should be sufficiently large to ensure the stability of the DGdiscretization with a lower
bound depending only on the polynomial degree such that for 1D problemsσ = 5

2
(q+

1)2 andσ = 3q(q + 1) for 2D problems.

Finally, by keeping unknown on the left hand side and imposing Dirichlet boundary
condition on the right hand side, we add to the both sides the edge integrals on the
Dirichlet boundary edges

∑

E∈Th

∫

E

ǫ∇u · ∇vdx−
∑

e∈E0
h
∪ED

h

∫

e

{ǫ∇u} · [v]ds+K
∑

e∈E0
h
∪ED

h

∫

e

{ǫ∇v} · [u]ds

+
∑

e∈E0
h
∪ED

h

σ

he

∫

e

[u] · [v]ds =
∑

E∈Th

∫

E

fvdx+
∑

e∈ED
h

∫

e

gD

(
σ

he
v − ǫ∇v · n

)

ds

+
∑

e∈EN
h

∫

e

gNvds.

which gives the IPG formulation. In this formulation, the parameterκ determines the
type of the IPG method. It takes the values onK ∈ {−1, 0, 1} giving that

• K = −1: symmetric interior penalty Galerkin (SIPG) method

• K = 0: incomplete interior penalty Galerkin (IIPG) method

• K = 1: non–symmetric interior penalty Galerkin (NIPG) method

In this thesis, symmetric interior penalty Galerkin (SIPG)method is considered.
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2.2 SIPG Discretization of Allen-Cahn Equation

In this section, we describe the DG discretization based on SIPG method applied to
the diffusion part of the AC equation (2.1) for Dirichlet, Neumann [63], and periodic
boundary conditions [76]. Using the definitions and notations from the previous sec-
tion, the solution of (2.1) reads as: for eacht ∈ (0, T ] find uh(t) ∈ Vh such that

(∂tuh, υh)Ω + ah(κ; uh, υh) + bh(uh, vh)Ω = Ih(υh), ∀υh ∈ Vh (2.8)

wherebh(uh, vh)Ω = (µ(u)f(u), v) and the bilinear form is of the formah(κ; u, υ) =
ãh(κ; u, υ) + J∂

h (κ; u, υ) with

ãh(κ; uh, υh) =
∑

E∈Th

∫

E

κ∇u · ∇υ −
∑

e∈E0
h

∫

e

{κ∇u} · [υ]ds

−
∑

e∈E0
h

∫

e

{κ∇υ} · [u] +
∑

e∈E0
h

σκ

he

∫

e

[u] · [υ]ds.

In the above formula, the mobility functionµ(u) is computed explicitly as in form of
the integral

∫

E∈Th
µ(un)dΩ, whereun denotes the approximate solution at the previous

time stepn as for continuous finite elements in the Cahn-Hilliard equation [3, 4, 12].
In the DG discretized bilinear form (2.8)κ stands forκ =

∫

E∈Th
ǫ2µ(un)dΩ. The

the bilinear formãh(κ; uh, υh) includes the face integrals only on the interior edges,
the termJ∂

h (κ; uh, υh) includes the corresponding face integrals on the boundary edges
and together with the right hand sideIh(υh). So, it changes depending on the boundary
conditions. If Dirichlet boundary condition,u = gD, is prescribed, we set

J∂
h (κ; u, υ) = −

∑

e∈ED
h

∫

e

{κ∇u} · [υ]ds−
∑

e∈ED
h

∫

e

{κ∇υ} · [u]

+
∑

e∈ED
h

σκ

he

∫

e

[u] · [υ]ds,

Ih(υ) =
∑

e∈ED
h

∫

e

(
σκ

he
υ − κ∇υ · n

)

gDds.

In the case of Neumann boundary condition,ǫ2∇u · n = gN , they become

J∂
h (κ; u, υ) = 0, Ih(υ) =

∑

e∈EN
h

∫

e

gNυds.

When periodic boundary condition is applied, the periodic edges are treated as un-
known, in other words, as interior edges with appropriate definitions of the so–called
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jump and average terms. In this case, the set of all edgesEh is splitted into the set
E0

h of interior edges and the setEper
h of periodic boundary edge–pairs. An individual

element of the setEper
h is of the formω = {El, Em} whereEl ⊂ ∂Kl ∩ ∂Ω, and

Em ⊂ ∂Km ∩ ∂Ω is the corresponding periodic edge-pair ofEl with l > m, and
we associate with eachω a common normal vectorn that is outward unit normal to
El ⊂ ∂Kl ∩ ∂Ω. Then, for each suchω, we define the jump and average operators

[u]ω = u|El
n− u|Em

n, {u}ω =
1

2
(u|El

+ u|Em).

In this case, we have

J∂
h (κ; u, υ) = −

∑

ω∈Eper
h

∫

ω

{κ∇u}ω · [υ]ωds−
∑

ω∈Eper
h

∫

ω

{κ∇υ}ω · [u]ω

+
∑

ω∈Eper
h

σκ

hE

∫

ω

[u]ω · [υ]ωds,

andIh(υ) = 0.

2.2.1 Semi-Discrete System in Matrix-Vector Form

The approximate solution of the semi–problem (2.8) has the form

uh(t) =
N∑

m=1

nq∑

j=1

ξmj (t)ψm
j (2.9)

whereψm
j are the basis functions ofVh andξmj are the unknown coefficients,nq is local

dimension withnq = q + 1 for 1D problems,nq = (q+1)(q+2)
2

for 2D problems, and
N is the number of intervals for 1D problems or the number of triangular elements
for 2D problems. In DG methods, the basis functionsψm

j ’s are chosen in such a way
that each piecewise basis polynomial has only one triangle as a support, i.e., on a
specific triangleEe, e ∈ {1, 2, . . . , N}, the basis polynomialsψe

j are zero outsideEe.
This construction makes the stiffness matrix in DG methods block structure, each of
which related to a triangle. The productdof := N ∗ nq gives the degree of freedom
in DG methods. Inserting the approximate solutionuh in (2.8) and choosing the test
functions asvh = ψm

j , j = 1, 2, . . . , nq, m = 1, 2, . . . , N , the semi–discrete system
(2.8) in matrix vector form is given by

Mξt + Aξ + r(ξ) = L, (2.10)

whereξ ∈ Rdof is the vector of unknown coefficientsξmj ’s, M ∈ Rdof×dof is the
mass matrix,A ∈ Rdof×dof is the stiffness matrix corresponding to the bilinear form
ah(κ; uh, vh), r ∈ Rdof is the vector function ofξ related to the non-linear form
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rh(uh, vh) andL ∈ Rdof is the load vector related to the linear termIh(υh). The
explicit definitions are given by

M =








M11 M12 · · · M1,N

M21 M22
...

...
. ..

MN,1 · · · MN,N







, A =








A11 A12 · · · A1,N

A21 A22
...

...
. . .

AN,1 · · · AN,N








ξ =







ξ1
ξ2
...
ξN






, r(ξ) =







r1

r2
...
rN






, L =







L1

L2
...

LN







where all the block matrices have dimensionnq:

Mji =








(φi
1, φ

j
1) (φi

2, φ
j
1) · · · (φi

nq
, φj

1)

(φi
1, φ

j
2) (φi

2, φ
j
2)

...
...

. . .
(φi

1, φ
j
nq
) · · · (φi

nq
, φj

nq
)







,

Aji =








ah(κ;φ
i
1, φ

j
1) ah(κ;φ

i
2, φ

j
1) · · · ah(κ;φ

i
nq
, φj

1)

ah(κ;φ
i
1, φ

j
2) ah(κ;φ

i
2, φ

j
2)

...
...

.. .
ah(κ;φ

i
1, φ

j
nq
) · · · ah(κ;φ

i
nq
, φj

nq
)







,

ξi =







ξi1
ξi2
...
ξinq






, ri =







rh(uh, φ
i
1)

rh(uh, φ
i
2)

...
rh(uh, φ

i
nq
)






, Li =







Ih(φ
i
1)

Ih(φ
i
2)

...
Ih(φ

i
nq
)






.

2.3 Time Discretization by Backward Euler and AVF Method

In this section, the fully discrete formulation of AC equation (2.1) in matrix–vector
notation is given by using the backward Euler method and AVF method time integrators
through the semi–discrete formulation (2.10).

2.3.1 Time Discretization by Backward Euler Method

We consider the semi–linear system of ordinary differential equations

Mξt + Aξ + r(ξ) = L, (2.11)
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for the ordered unknown coefficient vector

ξ = (ξ11 , . . . , ξ
1
nq
, ξ21 , . . . , ξ

2
nq
, . . . , ξN1 , . . . , ξ

N
nq
)T .

Let consider the uniform partition0 = t0 < t1 < . . . < tJ = T of the time interval
[0, T ] with the uniform time step-size∆t = tk − tk−1, k = 1, 2, . . . , J . For t = 0,
let uh(0) ∈ Vh be the projection (orthogonalL2-projection) of the initial conditionu0
ontoVh, and letξ0 be the corresponding coefficient vector (ordered) satisfying (2.9).
Then, the backward Euler method applied to the semi linear system (2.11) reads as:
for n = 0, 1, . . . , J − 1, solve

Mξn+1 −Mξn
∆t

+ Aξn+1 + r(ξn+1) = Ln+1,

(M +∆tA)ξn+1 +∆tr(ξn+1)−∆tLn+1 = Mξn,

which is the fully discretized system that we will solve forξn+1. We solve this non-
linear system of equations using Newton’s method in Algorithm 1. From the algebraic
point of view, Newton’s method corresponds to solving the non-linear equations

R(ξn+1) = (M +∆tA)ξn+1 +∆tr(ξn+1)−∆tLn+1 −Mξn. (2.12)

Algorithm 1 Newton’s Method

given initial guessξ0

for k = 0, 1, 2, . . . do
solve ∂R

∂ξn+1
sk = −R

update solutionξk+1 = ξk + sk

end for

Starting with an initial guessξ(0)n+1, thek − th Newton iteration to solve the non-linear
equation (2.12) for the unknown vectorξn+1 reads as

Js(k) = −R(ξ(k)n+1), ξ
(k+1)
n+1 = ξ

(k)
n+1 + s(k) , k = 0, 1, . . . (2.13)

until a user defined tolerance is satisfied. In (2.13),J stands for the Jacobian matrix of
R(ξn+1), whose entries are the partial derivatives with respect toξn+1

Jij =
∂Ri

∂(ξn+1)j
, i, j = 1, 2, . . . , nq ×N

at the current iteration. It is easy to differentiate the linear terms, to differentiate the
nonlinear term using the expansionuh =

∑nq×N
k=1 ξkψ

k ordered version of (2.9), we
obtain

H(ξ) =
∂ri(ξ)

∂ξj
=

∂

∂ξj
(µ(unh)f(uh), ψ

i), i, j = 1, 2, . . . , N

= µ(unh)

∫

Ω

f ′(uh)ψ
jψidx
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wheref(u) is the double well potential or the logarithmic function in our model. We
finally reach

J = (M +∆tA) + ∆tH(ξn+1). (2.14)

Note that the Jacobian matrixH is in the form of

H(ξ) =






∂r1(ξ)
∂ξ1

∂r1(ξ)
∂ξ2

· · · ∂r1(ξ)
∂ξN

...
. ..

...
∂rN (ξ)
∂ξ1

∂rN (ξ)
∂ξ2

· · · ∂rN (ξ)
∂ξN




 .

2.3.2 Time Discretization by AVF Method

The semi-discretized AVF equation is a gradient system

u̇ = −∇E(u)
evolving into a state of minimal energy. Gradient systems are characterized by the
monotonically energy decreasing property of the potential

E(u(t)) ≤ E(u(s)), for t > s.

In the numerical approximation of the gradient systems, it is desirable to preserve the
energy decreasing property monotonically

E(u(tn)) ≤ E(u(tn−1)), for n = 1, 2 · · ·

The average vector field (AVF) method

un = un−1 −∆t

∫ 1

0

∇E(τun + (1− τ)un−1)dτ

possesses the energy decreasing property without restriction to step sizes∆t. It is a
modification of the implicit mid-point rule. In [25, 41] higher order variants of the
AVF methods for Hamiltonian and Poisson systems with Gauss-Legendre collocation
points are given. As Gauss-Legendre Runge-Kutta methods, the AVF method, and
higher order versions do not have damping property for very stiff systems, whereas for
discontinuous Galerkin-Petrov methods and Radua II Runge-Kutta methods, the en-
ergy decreases monotonically without restriction to the step size∆t and the Lipschitz
constant for∇E(y). But they require solution of coupled system of equations, which
increases the computation cost for 2 and 3 dimensional AC equations, where efficient
solution techniques are required [30]. The AVF method can beregarded as an efficient
integrator for the AC equation, i.e. the integrals by the DG semi-discretized can be
computed with the desired accuracy at low cost.

The AVF method is equivalent to the Petrov-Galerkin discontinuous Galerkin in time,
when the trial functions are piecewise linear and the test functions are piecewise con-
stant, which are given by

un = un−1 −
∫ tn

tn−1

∇E(∆t−1(t− tn−1)un +∆t−1(tn − t)un−1)dt. (2.15)
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With the time parametrizationt(τ) = tn−1 + (tn − tn−1)τ and using the change of
variable formulation

∫ tn

tn−1

g(t)dt =

∫ 1

0

g(t(τ))
dt(τ)

dτ
dτ,

we obtain for the integral term in (2.15)

un = un−1 −
∫ tn

tn−1

∇E(∆t−1(t− tn−1)un +∆t−1(tn − t)un−1)dt

= un−1 −∆t

∫ 1

0

∇E(τun + (1− τ)un−1)dτ

which is the AVF method on the interval[tn−1, tn].

The semi–linear system of ordinary differential equationsas a gradient system

Mξt = −∇E(ξ) = Aξ + r(ξ)− L (2.16)

for the ordered unknown coefficient vector

ξ = (ξ11 , . . . , ξ
1
nq
, ξ21 , . . . , ξ

2
nq
, . . . , ξN1 , . . . , ξ

N
nq
)T ,

same order for the basis functions. Let consider the same time interval partition in
the previous section. Then, fort = 0, let uh(0) ∈ Vh be the projection (orthogonal
L2-projection) of the initial conditionu0 ontoVh, and letξ0 be the corresponding coef-
ficient vector (ordered) satisfying (2.9). Then, the AVF method applied to the gradient
system (2.16) reads as: forn = 0, 1, . . . , J − 1, solve

Mξn+1 −Mξn
∆t

= −
∫ 1

0

∇E(τξn+1 + (1− τ)ξn)dτ

Mξn+1 = Mξn +∆t

∫ 1

0

[L− A(τξn+1 + (1− τ)ξn)] dτ

︸ ︷︷ ︸

linear

+ ∆t

∫ 1

0

r(τξn+1 + (1− τ)ξn)dτ

︸ ︷︷ ︸

non−linear

After a simple calculation for the linear part, we get

Mξn+1 = Mξn +∆tL+
∆t

2
(Aξn + Aξn+1) (2.17)

+ ∆t

∫ 1

0

r(τξn+1 + (1− τ)ξn)dτ

which is the fully discretized system that we will solve forξn+1. We solve this non-
linear system of equations using Newton’s method in Algorithm 1. Newton’s method
for (2.17) corresponds to solving the non-linear equations
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R(ξn+1) = Mξn+1 −∆tL−Mξn +
∆t

2
(Aξn + Aξn+1)

+ ∆t

∫ 1

0

r(τξn+1 + (1− τ)ξn)dτ (2.18)

= 0.

Starting with an initial guessξ(0)n+1, thek − th Newton iteration to solve the non-linear
equation (2.18) for the unknown vectorξn+1 reads as

Js(k) = −R(ξ(k)n+1), ξ
(k+1)
n+1 = ξ

(k)
n+1 + s(k) , k = 0, 1, . . . (2.19)

until a user defined tolerance is satisfied. In (2.19),J stands for the Jacobian matrix of
R(ξn+1), whose entries are the partial derivatives

Jij =
∂Ri

∂(ξn+1)j
, i, j = 1, 2, . . . , nq ×N

at the current iteration. It is easy to differentiate the linear terms in (2.18)

∂

∂(ξn+1)j
(Mξn+1 −Mξn −∆tL+

∆t

2
(Aξn + Aξn+1))i =Mij +

∆t

2
Aij .

We apply the chain rule to differentiate the non-linear term,

∂

∂(ξn+1)j
∆t

∫ 1

0

ri(τξn+1 + (1− τ)ξn)dτ = ∆t

∫ 1

0

τ
∂ri

∂(ξn+1)j
(τξn+1 + (1− τ)ξn)dτ

where, using the expansionuh =
∑nq×N

k=1 ξkϕ
k, ordered version of (2.9),

∂ri(ξ)

∂ξj
=

∂

∂ξj
(µ(unh)f(uh), ϕ

i)Ω, i, j = 1, 2, . . . , nq ×N (2.20)

= µ(unh)

∫

Ω

f ′(

nq×N
∑

j=1

ξjϕ
j)ϕjϕidx

We obtain finally

J =M +
∆t

2
A+∆t

∫ 1

0

τJr(τξ
(k+1)
n+1 + (1− τ)ξn)dτ. (2.21)

whereJr(τξ
(k+1)
n+1 + (1 − τ)ξn) is the differential matrix, whose entries are given in

(2.20), atτξ(k+1)
n+1 + (1− τ)ξn. At each Newton iteration, we approximate the integral

term in (2.21) using the fourth order Gaussian quadrature rule.
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2.4 Energy Stability of Fully Discrete Scheme

It is generally accepted that the fully discrete energy stable schemes should preserve the
discrete energy dissipation as their continuous parts, which leads to qualitatively better
approximations. The continuous (in time) energy of the semi-discrete AC equation is
given as [31] :

Eh(u) =
ǫ2

2
‖∇u‖2L2(Th)

+ (F (u), 1)Ω

+
∑

E∈E0
h

(

−({ǫ2∂nu}, [u])E +
σǫ2

2he
([u], [u])E

)

. (2.22)

On the other hand, the discrete DG counterpart of the continuous energy (2.22) at a
time tn = n∆t reads as

Eh
DG(u

n) =
ǫ2

2
‖∇un‖2L2(τh)

+ (F (un), 1)Ω

+
∑

E∈E0
h

(

−({ǫ2∂nun}, [un])E +
σǫ2

2hE
([un], [un])E

)

. (2.23)

In this section, we show that backward Euler and AVF methods applied to the semi-
discrete system (2.8) are energy stable through the discrete energy (2.23).

2.4.1 Energy Stability of Fully Discrete Scheme with BackwardEuler

When the backward Euler method applied to the semi-discrete system (2.8), the SIPG
discretized fully discrete scheme is given by

1

∆t
(un+1 − un, q)Ω + ah(µ(u

n)ǫ2; un+1, q) + bh(u
n+1), q)Ω = 0, ∀q ∈ Vh, (2.24)

where the bilinear formah(ǫ; u, v) is given by

ah(µ(u
n)ǫ2; u, v) =

∑

E∈τh

∫

E

µ(un)ǫ2∇u · ∇vdx−
∑

e∈E0
h

∫

e

{µ(un)ǫ2∇u}[v]ds

−
∑

e∈E0
h

∫

e

{µ(un)ǫ2∇v}[u]ds+
∑

e∈E0
h

σµ(un)ǫ2

he

∫

e

[u][v]ds,

bh(u, q) =
∑

E∈τh

∫

E

µ(un)f(u)qdx.
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Takingq = un+1 − un in (2.24), we obtain

1

∆t
(un+1 − un, un+1 − un)Ω + µ(un)ah(ǫ

2; un+1, un+1 − un)

+ µ(un)(f(un+1), un+1 − un)Ω
= 0.

By using the identity(a, a− b)Ω = 1
2
(a2 − b2 + (a− b)2, 1)Ω and the bilinearity ofah,

we get

(un+1 − un, un+1 − un)Ω + µ(un)(f(un+1), un+1 − un)Ω

+µ(un)
1

2
ah(ǫ

2; un+1, un+1)− µ(un)
1

2
ah(ǫ

2; un, un) (2.25)

+µ(un)
1

2
ah(ǫ

2; un+1 − un, un+1 − un) = 0.

Expanding the termF (un) aroundun+1, and neglecting the higher order terms, we
obtain

F (un) = F (un+1)− F ′(un+1)(un+1 − un)

F (un) ≈ F (un+1)− f(un+1)(un+1 − un) (2.26)
(f(un+1), un+1 − un)Ω ≈ (F (un+1), 1)Ω − (F (un), 1)Ω.

Note that the bilinear formah(ǫ2; un+1, un+1) satisfies

ah(ǫ
2; un+1, un+1) =

ǫ2

2
‖∇un+1‖2L2(Ω) −

∑

e∈E0
h

∫

e

{ǫ2∇un+1}[un+1]ds

+
∑

e∈E0
h

σǫ2

2h2
‖[un+1]‖2L2(E) (2.27)

≥ 0

since all the terms in ((2.27)) are non–negative (see [63, Sec. 2.7.1] for positivity of
edge integral term). Similarly, we haveah(ǫ2; un+1 − un, un+1 − un) ≥ 0. Using these
identities, and substituting the last equation in (2.26) into (2.25), we obtain

0 ≥ −(
1

∆tµ(un)

∥
∥un+1 − un

∥
∥
2

L2(Ω)
+

1

2
ah(ǫ

2; un+1 − un, un+1 − un))

≈ (F (un+1), 1)Ω +
1

2
ah(ǫ

2; un+1, un+1)−
(

(F (un), 1)Ω +
1

2
ah(ǫ

2; un, un)

)

= E(un+1)− E(un)
which implies thatE(un+1) ≤ E(un). Hence, the backward Euler method is uncondi-
tionally energy stable.
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2.4.2 Energy Stability of Fully Discrete Scheme with AVF Method

Time discretization of semi-discrete system (2.8) by the AVF methods, leads to

1

∆t
(un+1

h − unh, υh)Ω + µ(unh)
1

2
ah(ǫ

2; un+1
h + unh, υh)

+ µ(unh)

∫ 1

0

(f(τun+1
h + (1− τ)unh), υh)Ωdτ = 0, ∀υh ∈ Vh

Takingυh = un+1
h − unh, we obtain

1

∆t
(un+1

h − unh, u
n+1
h − unh)Ω + µ(unh)

1

2
ah(ǫ

2; un+1
h + unh, u

n+1
h − unh)

+ µ(unh)

∫ 1

0

(f(τun+1
h + (1− τ)unh), u

n+1
h − unh)Ωdτ

= 0.

By using the identity(a+ b, a− b)Ω = (a2 − b2, 1)Ω and the bilinearity ofah, we get

1

∆t
(un+1

h − unh, u
n+1
h − unh)Ω + µ(unh)

∫ 1

0

(f(τun+1
h + (1− τ)unh), u

n+1
h − unh)Ωdτ

+ µ(unh)
1

2
ah(ǫ

2; un+1
h , un+1

h )− µ(unh)
1

2
ah(ǫ

2; unh, u
n
h)

= 0. (2.28)

Taylor expansions ofF aroundunh andun+1
h leads to

F (unh) ≈ F (τun+1
h + (1− τ)unh)− f(τun+1

h + (1− τ)unh)(τ(u
n+1
h − unh)),

F (un+1
h ) ≈ F (τun+1

h + (1− τ)unh) + f(τun+1
h + (1− τ)unh)(1− τ)(un+1

h − unh)).

SubtractingF (unh) fromF (un+1
h ) and ignoring higher order terms including the deriva-

tives off , we obtain

F (un+1
h )− F (unh) ≈ f(τun+1

h + (1− τ)unh)(u
n+1
h − unh)

(F (un+1
h ), 1)Ω − (F (unh), 1)Ω ≈ (f(τun+1

h + (1− τ)unh), u
n+1
h − unh)Ω(2.29)

∫ 1

0

((F (un+1
h ), 1)Ω − (F (unh), 1)Ω)dτ ≈

∫ 1

0

(f(τun+1
h + (1− τ)unh), u

n+1
h − unh)Ωdτ

(F (un+1
h ), 1)Ω − (F (unh), 1)Ω ≈

∫ 1

0

(f(τun+1
h + (1− τ)un), un+1

h − unh)Ωdτ
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We note that the bilinear formah(ǫ2; un+1, un+1) satisfies

ah(ǫ
2; un+1, un+1) = ǫ2‖∇un+1‖2L2(Ω) − 2

∑

E∈E0
h

∫

E

{ǫ2∇un+1}[un+1]ds

+
∑

E∈E0
h

σǫ2

hE
‖[un+1]‖2L2(E) ≥ 0. (2.30)

Similar to previous case all the terms in (2.30) are non-negative (see [63, Sec. 2.7.1] for
positivity of edge integral term). Then, we haveah(ǫ2; un+1, un+1) ≥ 0 and similarly
ah(ǫ

2; un, un) ≥ 0. Using these identities and substituting the last equationin (2.29)
into (2.28) we obtain

− 1

∆t

∥
∥un+1

h − unh
∥
∥
L2(Ω)

︸ ︷︷ ︸

≤0

≈ µ(unh)

(

(F (un+1
h ), 1)Ω +

1

2
ah(ǫ

2; un+1
h , un+1

h )

)

− µ(unh)

(

(F (unh), 1)Ω +
1

2
ah(ǫ

2; unh, u
n
h)

)

,

− 1

∆tµ(unh)

∥
∥un+1

h − unh
∥
∥
L2(Ω)

︸ ︷︷ ︸

≤0

≈ (F (un+1
h ), 1)Ω +

1

2
ah(ǫ

2; un+1
h , un+1

h )

− (F (unh), 1)Ω +
1

2
ah(ǫ

2; unh, u
n
h),

= E(un+1
h )− E(unh),

which implies thatE(un+1
h ) ≤ E(unh), i.e., AVF discretized scheme is energy stable

through the discrete energy (2.23).

2.5 Time Adaptivity with Average Vector Field (AVF) Method and Ripening
Time

The solution of AC equation includes transition layers between stable equilibriums.
The initial dynamics require small time steps as the transition layers are formed. Then,
the metastable state is formed and during the metastable state, the dynamics changes
not much, larger time steps are required. Moreover, these transition layers changes
rapidly by crossing the zero axis with the time scale of evolution. At the moment
where the solution crosses the zero axis, it takes its minimum or maximum value and
this time is named as ripening time. To determine the ripening time arising from rapid
changes in the solution, and steep gradients in transition layers the uniform time steps
are inefficient as shown in [23, 81]. We use adaptive time stepping to resolve the
multiple time dynamics of the AC equation. The time adaptivity is required a local
error estimator. In our time adaptive algorithm (2.2), for local error estimation two
discrete solutionsuτ , ûτ of orderp+ 1 andp are computed in parallel such that

uτ (τ) = u(τ) +O(τ p+2), ûτ (τ) = u(τ) +O(τ p+1),
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whereτ denotes the time step∆t. Then

ǫ̂τ = ‖uτ (τ)− ûτ‖ = Cτ p+1 (2.31)

is an estimator of the actualǫ̂τ of ûτ measured in an Euclidean norm [26]. In the next
step, we search for the optimal step sizeτ ∗ satisfyingǫ̂τ∗ ≤ δTOL, whereδTOL denotes
a user specified tolerance. By insertion of bothτ andτ ∗ into (2.31), the estimation
formula

τ ∗ = p+1

√

ρδTOL

ǫ̂τ
τ

is obtained with a safety factorρ ≈ 0.9. Then, it is checked for̂ǫτ∗ ≤ δTOL. If it
is satisfied, we accept the current time stepτ ∗ and use in the next step; or else the
current time step is rejected and the present step is repeated with the time stepτ ∗. In
the successful case, the more accurate valueuτ (τ) will be used to start the next step.

In our time adaptive algorithm, the backward Euler method and AVF method are cho-
sen which are order ofp andp + 1, respectively. When we letδTOL → 0 the ripening
time estimates converge which matches the convergence of our solution to an accu-
rate value. Moreover, it is expected that the required number of time steps follow
M(δTOL/10)
M(δTOL)

= p+1
√
10, wherep is the order of the method, and in our casep = 1. The

decrease ofδTOL by a factor of10 leads to errorǫold = Cτ p+1. The new error will be
ǫnew = C(ντ)p+1 = νp+1Cτ p+1 = νp+1δold whereν is a constant. Therefore the time
step size should be reduced by a factorp+1

√
10 to reduce the local error by a factor10.

The findings of this numerical method are presented in the following section.

2.6 Numerical Results

In this section, we give several numerical examples demonstrating the accuracy and
stability of our numerical approach. In all numerical experiments, we have used linear
elements for the space discretization. Only for the ripening time calculations, linear
and quadratic elements are used for comparison.

2.6.1 1D AC equation with constant mobility function and double–well potential

We first consider 1D AC equation with constant mobilityµ(u) = 1, homogeneous
Neumann boundary conditions in the domain(x, t) ∈ [−1, 1] × [0, 80] and with the
initial condition [18]

u(x, 0) = 0.53x+ 0.47 sin(−1.5πx).

The diffusion constantǫ2 = 0.01 is taken as in [18] where Fourier spectral elements
method and Strang splitting method are used for space and time discretization respec-
tively with mesh sizes∆x = ∆t = 0.02. The time discretization is performed by
backward Euler method and the mesh sizes are taken as∆x = ∆t = 0.01. In Fig-
ure 2.3, the evolution of phase function and energy are given. The solutions of AC
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Figure 2.2: Time Adaptive strategy
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equation move from one equilibrium to the other one, which isknown as phase separa-
tion. The interfaces between two stable equilibria move over exponentially long times
between the region, which is known as metastability phenomenon.The right plot in
Figure 2.3 shows the phase separation and metastable state clearly. The state of phase
function is reflected in monotonically decreasing numerical energy for both time dis-
cretization techniques. We have proven that backward Eulerand AVF methods are
unconditionally energy stable. Figure 2.4 shows the energydecrease for different time
step sizes for both methods. It is clearly seen that both timeintegrators are energy
stable independent of time step size.
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Figure 2.3: Example 2.6.1: evolution of phase function and decay of the numerical
energy with backward Euler

2.6.2 1D AC equation with constant mobility function and double–well potential

We consider the 1D AC problem with constant mobilityµ(u) = 1, periodic boundary
conditions and initial condition with diffusion constantǫ = 0.12 [81] in the domain
(x, t) ∈ [0, 2π]× [0, 600]

u(x, 0) = 0.8 + sin(x).

Computations are done with the step sizes∆x = π/50 and∆t = 0.01 by AVF method.
The same problem was solved in [81] again using Fourier spectral space discretization
with the mesh size∆x = π/64 and with adaptive time integration using Backward
Differential formula (BDF3)- Adams-Bashfort method (AB-3).

We see in Figure 2.5 the fast dynamics from the initial condition to the metastable
state, where two transition layers are formed. Also, the numerical energy is decreasing
monotonically.

For this problem, we also compute the ripening time given in Table 2.1. The calcu-
lations are done with linear and quadratic polynomials in space. The time adaptive
algorithm is applied with initial time step sizeτ = 0.05 andδTOL = 1e − 04. We see
that our solution converges toTr = 546.5 as we expect. Also, the ratio ofM(δTOL)
converges to2

√
10 = 3.1622 which shows the reliability of our adaptive algorithm. In
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Figure 2.4: Example 2.6.1: decay of the numerical energy with backward Euler method
and AVF method for different time steps:∆t = 0.5 (top left),∆t = 0.25 (top right),
∆t = 0.1 (bottom left),∆t = 0.01 (bottom right)
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Figure 2.5: Example 2.6.2: evolution of phase function and decay of the numerical
energy with AVF method

Figure 2.6, the time step size evolution is presented. We seerapid growth initially and
step by step decline since the metastable state is finished.
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Table 2.1: Example 2.6.2: Convergence of the ripening time with the adaptive AVF
method using linear (quadratic) polynomials.

δTOL Ripening Time # Time Steps M(δnTOL)/M(δn−1
TOL)

1e-04 549.52 (539.71) 480 (480) 3.02 (3.02)
1e-05 554.46 (544.54) 1515 (1515) 3.12 (3.16)
1e-06 555.99 (546.05) 4792 (4790) 3.16 (3.16)
1e-07 556.47 (546.52) 15153 (15152) 3.16 (3.16)
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Figure 2.6: Example 2.6.2: evolution of time step sizes

2.6.3 2D AC equation with constant mobility function and double-well potential

2D AC equation with constant mobilityµ(u) = 1 under periodic boundary conditions
and initial condition for the diffusion constantǫ = 0.18 in [81] in the domain(x, y, t) ∈
[0, 2π]2 × [0, 33] is given as:

u(x, y, 0) = 2esin(x)+sin(y)−2 + 2.2e− sin(x)−sin(y)−2 + 1.

We have taken as mesh size∆x = ∆y = π/8 after three refinement steps in order to
obtain accurate solutions. The solutions with contour plots are obtained for uniform
time integration by average vector field (AVF) method with the step size∆t = 0.01.
The evolution of phase solution at different time steps are shown in Figure 2.7. It is
observed that the smaller region is annihilated prior to thelarger region. Both reach
the stable state ofu = −1 at the end as we expect.

The ripening time for different tolerances with linear and quadratic polynomials is
given in Table 2.2.The time adaptive algorithm is applied with initial time step sizeτ =
0.05 andδTOL = 1e− 04. We observe that the ripening time converges by decreasing
tolerance and the ratio is close to the theoretical one2

√
10. The numerical energy is

also decreasing for the adaptive time stepping in Figure 2.8(left) and until formation
of metastable state aroundt = 30, the small time steps are required. Afterward, time
steps are increased 2.8 (right) .
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Figure 2.7: Example 2.6.3: evolution of phase function

2.6.4 2D AC with constant mobility function and double-wellpotential

We consider 2D AC equation with constant mobilityµ(u) = 1 under periodic boundary
condition for diffusion constantǫ = 0.1 [39] in the domainΩ = [0, 2π] × [0, 2π] for
0 < t < 0.5

ut − ǫ2∆u+ f(u) = g(x, y, t),
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Figure 2.8: Example 2.6.3: decay of numerical energy (left)and evolution of time
steps (right)

Table 2.2: Example 2.6.3: Convergence of the ripening time with adaptive AVF method
using linear (quadratic) polynomials

δTOL Ripening Time # Time StepsM(δnTOL)/M(δn−1
TOL)

1e-03 27.20 (30.10) 209 (216) 3.12 (3.13)
1e-04 27.33 (30.24) 668 (692) 3.20 (3.20)
1e-05 27.37 (30.25) 2121 (2197) 3.18 (3.17)
1e-06 27.37 (30.27) 6707 (6956) 3.16 (3.17)

with the exact solutionu(x, y, t) = e−2ǫ2t sin(x) sin(y). The source functiong is com-
puted from from the left hand side using the exact solution. The initial condition is
taken to be consistent with the exact solution. We present theL2 error and the numer-
ical order of accuracy for both time integrators in Table 2.3at timeT = 0.5. We can
see that both methods withPk elements have the(k + 1)-th order of accuracy.

2.6.5 2D AC with constant mobility function and double-wellpotential

We consider 2D AC equation with constant mobilityµ(u) = 1 under homogenous
Dirichlet boundary condition [33] with diffusion constantǫ = 0.01 in the domainΩ =
[0, 2π] × [0, 2π] for 0 < t < 120. We have taken the mesh size as∆x = ∆y = π/8,
and uniform time step∆t = 0.1 for AVF method. The initial condition is randomly
distributed from−0.01 to 0.01 to each grid point. In Figure 2.9, the corresponding
solution contours are plotted, the numerical energy is decreasing again monotonically.

2.6.6 2D AC equation with constant mobility function and logarithmic free en-
ergy

We consider the 2D AC equation with constant mobilityµ(u) = 2 [68] and diffusion
constant isǫ = 0.04 subject to periodic boundary condition in the domainΩ = [0, 2π]×
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Table 2.3: Accuracy test for AC equation with constant mobility for backward Euler
method and AVF method∆t = 0.03∆x, ∆x = π

Backward Euler Average Vector Field
Mesh Size L2–Error Order L2-Error Order

(Dof)
h(24) 1.605e+000 - 1.605e+000 -

P1 h/2(96) 4.595e-001 1.80 4.595e-001 1.80
h/4(384) 1.225e-001 1.91 1.225e-001 1.91
h/8(1536) 3.142e-002 1.96 3.115e-002 1.98

h(48) 4.179e-001 - 4.179e-001 -
P2 h/2(192) 1.027e-001 2.02 1.027e-001 2.02

h/4(768) 1.399e-002 2.88 1.400e-002 2.88
h/8(3072) 2.300e-003 2.60 2.308e-003 2.60

[0, 2π] for 0 < t < 10. The logarithmic functionf(u) = θ
2
ln(1+u

1−u
) − θcu is given.

The initial condition isu0(x, 0) = 0.05(2 × rand − 1) where ’rand’ means a number
in [0, 1].

The spatial mesh size is taken as∆x = ∆y = π/8. The snapshots of phase evolution
is obtained with time adaptive algorithm for parameter valuesθ = 0.15, θc = 0.30 with
time adaptive scheme. The initial time step size isτ = 0.05 andδTOL = 4e − 03. In
Figure 2.11, the corresponding solution contours and numerical energy are plotted. It
is clearly seen that the time adaptive solutions are in good agreement with the reference
solutions in [68]. Figure 2.12 shows the progressively increase of time step based on
the energy evolution of the solution. When the coarsening becomes dominant (for
examplet > 1), the time steps become larger which shows that time adaptivity works
well.

2.6.7 2D AC with degenerate mobility function and logarithmic free energy

We consider the2D AC equation with mobility functionµ(u) = 2(1 − u2) [68] with
the diffusion constantǫ = 0.04 in the domainΩ = [0, 2π] × [0, 2π] for 0 < t < 10.
The initial condition isu0(x, 0) = 0.05(2 × rand − 1) where ‘rand’ means a number
in [0, 1].

The phase evolution is obtained for parameter valuesθ = 0.50, θc = 0.95 with time
adaptive algorithm where the initial time step size isτ = 0.05 andδTOL = 1e− 04. In
Figure 2.13, the corresponding solution contours are plotted, and the numerical energy
decrease is seen clearly with time step evolution in Figure 2.14.
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Figure 2.9: Example 2.6.5: evolution of phase function
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Figure 2.10: Example 2.6.5: decay of numerical energy

Figure 2.11: Example 2.6.6: evolution of phase function
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Figure 2.12: Example 2.6.6: decay of numerical energy (left) and evolution of time
steps (right)

Figure 2.13: Example 2.6.7: evolution of solutions
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Figure 2.14: Example 2.6.7: decay of numerical energy (left) and evolution of time
steps (right)
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CHAPTER 3

THE CAHN-HILLIARD EQUATION

The CH equation is the most known model of phase separation. Itwas originally
introduced by Cahn and Hilliard to describe the phase separation and coarsening phe-
nomena in a binary alloy [16]. It is also used as diffuse interface model problem from
different application areas, such as, image processing, planet formation and cancer
growth. The fourth order CH equation in a bounded domainΩ ⊂ Rd(d ≤ 3) is given
by,

ut = ∇ · [µ(u)∇(f(u)− ǫ2∆u)] + g(x, t), in Ω× (0, T ], (3.1)
u(x, 0) = u0 in Ω× {0},

or, equivalently, the CH system [40, 71, 82]

ut = ∇ · [µ(u)∇w] + g(x, t), in Ω× (0, T ],

w = −ǫ2∆u+ f(u), in Ω× (0, T ], (3.2)
u(x, 0) = u0 in Ω× {0},

with the suitable boundary conditions such as periodic boundary condition ([40]) and
homogenous Neumann ([11, 48]) or Dirichlet boundary condition ([53]). In the CH
equationu represents a relative concentration of one component in thebinary mixture,
the parameterǫ is related to the width of inter-facial layer,µ(u) is the non negative
mobility function,w is the chemical potential andf(u) = F ′(u) is the homogenous
free energy in the Ginzburg-Landau energy functional inH−1

E(u) =
∫

Ω

(
ǫ2

2
|∇u|2 + F (u)

)

dx. (3.3)

In the literature, the free energy functionF (u) is modeled in two different ways for
CH equation. The first one is a combination of logarithmic terms stated as logarithmic
free energy function and resulting in different forms in theliterature
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• [9, 11, 83]

F (u) =
θc
2
(1− u2) +

θ

2
[(1 + u) ln(1 + u) + (1− u) ln(1− u)] , (3.4)

• [12]

F (u) =
θ

2
[(1 + u) ln(1 + u) + (1− u) ln(1− u)]− θc

2
u2, (3.5)

• [40, 79]

F (u) =
θ

2
[u ln u+ (1− u) ln(1− u)]− θc

2
u2, (3.6)

whereθ is the absolute temperatureθc is the transition temperature with0 < θ ≤ θc.
Note that the logarithmic free energy function is a non–convex function. The second
one is the convex double well energy function

F (u) =
(1− u2)2

4
, (3.7)

which is the approximation of logarithmic free energy (3.4),(3.5),(3.6) in case the ab-
solute temperatureθ is close to transition temperatureθc. It is easy to see that double–
well energy function will favor two phases with densitiesu = ±1. The linear term in
double well potential is responsible for the interesting dynamics including the insta-
bility of constant solutions nearu = 0 and the nonlinear term is the one which mainly
stabilizes the flow. In logarithmic free energy function, the logarithmic terms describe
the entropy of mixture and the conditionθ < θc ensures thatF (u) has indeed dou-
ble well form. Both logarithmic free energy functions (3.4),(3.5), (3.6) and double
energy function (3.7) satisfy the monotonicity and Lipschitz continuity conditions for
u1, u2 ∈ R with the constraints|u1,2| ≤ 1 [75]

(f(u1)− f(u2))(u1 − u2) ≥ −C1(u1 − u2)
2,

|f(u1)− f(u2)| ≤ Lf |u1 − u2| , (3.8)
|f ′(u1)− f ′(u2)| ≤ Lf ′ |u1 − u2| ,

for C1, Lf , Lf ′ ≥ 0 stand for the related Lipschitz constants.

The mobility functionµ(u) can be constant or degenerate. In most of the studies
on the CH equation mobility functionµ(u) is assumed to be constant. However, the
original derivation of CH equation includes degenerate mobility. Although the CH
equation has been intensively studied, little mathematical analysis has been done for
degenerate mobility. The CH equation with degenerate mobility was introduced in
[28] and existence of the solutions are given. The commonly adapted versions of
the degenerate mobility function areµ(u) = βu(1 − u) [40, 79] andµ(u) = β(1 −
u2) [9, 11, 40, 82]. The first representation of mobility function reduces the long
range diffusion throughout bulk regions. This is a good choice when fluid flows with
immiscible components are studied. The second representation is the most common
one and thermodynamically reasonable choice as well as the first representation. By
these representations the diffusion process is restrictedto the interface zone, i.e. it is
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zero in the pure component (i.e., whenu = ±1) and the mobility function should be
positive for|u| < 1.

The CH model (3.1) has two important global properties. In contrast to AC equation,
CH equation has mass conservation property, i.e., the total amount of phase in the
regionΩ is always equal to the given original amount :

d

dt

∫

Ω

u(t)dx =

∫

Ω

utdx =

∫

Ω

∇ · (µ(u)∇w)dx (3.9)

=

∫

∂Ω

µ(u)∇w · ndS = 0,

where the no flux boundary condition ( or periodic boundary condition) is applied
[20, 40, 82].

CH equation has the dissipation of energy property similar toAC equation. Since the
CH equation is a gradient flow of energy functional, the total energy is always non
increasing, that is,

d

dt
E(u(t)) = E ′(u)(ut) =

∫

Ω

f(u)ut + ǫ2∇uut =
∫

Ω

wut (3.10)

=

∫

Ω

w∇ · (µ(u)∇w) = −
∫

Ω

µ(u) |∇w|2 dΩ.

In the numerical solution of CH equation three main challenges appear; the non–
linearity in the system coming from energy function, the presence of the parameter
ǫ in the equations (usually small in phase separation applications) and the different
time scales of each of the stages in the evolution of the concentration. Then, an effi-
cient numerical resolution of the problem requires proper relation of numerical scales,
that is, the spatial mesh size∆x and the time step size∆t.

It is also desirable to develop numerical schemes which are energy decreasing and
mass conservative from numerical point of view. Energy stability implies that the to-
tal energy of the fully discretized CH equation dissipates intime analogously to the
continuous energy (3.3). The schemes that preserve the discrete versions of the con-
tinuous energy lead to approximate solutions, which behavequalitatively similar to
the continuous ones. Explicit methods are not suitable for time discretization of the
CH equation because they are not energy stable and require very small time steps be-
cause of stability restrictions. Also the semi-discretization of the CH equation in space
leads to stiff systems for small values of the diffusion parameterǫ. Explicit methods
will work with severe restriction on time steps, which increase the computational cost
enormously. In the literature, mostly the CH equation with the constant mobility func-
tion is studied using finite differences [23], finite elements [12] and spectral methods
[20, 43] for space discretization. Energy stable time discretization methods are based
on the convex splitting of the energy functional. Alternatively, splitting methods are
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used by adding stabilization terms to the energy functionalF (u). A recent survey
of different space and time discretizations for the CH is given in [72]. CH equation
with degenerate mobility is discretized by continuous finite elements [9, 11, 12], local
discontinuous Galerkin method [82, 83], discontinuous Galerkin method withC0 el-
ements, with mixed finite elements [79], finite differences [51], NURSB [36] and by
spectral methods [84].

In this chapter, we use the mass conservative SIPG method [5,63] for the space dis-
cretization. Since the DG method is based on the set of piecewise polynomials that
are fully discontinuous at the interfaces, the DGFEM approximation allows to capture
the sharp gradients or singularities that affect the numerical solution locally. Further-
more, CH equation describes a gradient flow inH−1 and the semi-discretized form of
it (3.1) leads to a gradient system of ordinary differentialequations. Then, we again
need energy stable time integrators. It is well known that the first order backward Eu-
ler method is energy stable, i.e., the discrete energy decreases without any restriction
for the step size∆t for very stiff gradient systems withǫ → 0 [41]. The discontinu-
ous Galerkin-Petrov in time methods (with different trial and test functions) [66] and
Gauss Radau IIA Runge-Kutta collocation methods [42] are the most known higher
order energy decreasing methods with orders≥ 3. The only second order implicit en-
ergy stable method is the average vector field (AVF) method [17, 41] preserving energy
decreasing property for the gradient systems and for systems with Lyapunov functions.

The reminder of this chapter is organized as follows: we firstconstruct the SIPG dis-
cretization of CH equation with degenerate mobility for Dirichlet, Neumann and pe-
riodic boundary conditions in Section 3.1. In Section 3.2, time discretization with
backward Euler and AVF method is given. Then, energy stability of both methods is
proven in Section 3.3. We give several numerical examples inSection 3.4 to demon-
strate the performance of the SIPG discretization coupled with structure preserving
time integrators.

3.1 SIPG Discretization of Cahn-Hilliard Equation

In this section, we briefly describe the SIPG method discretization, applied to the dif-
fusion part of the CH equation (3.2) for Dirichlet, Neumann and periodic boundary
conditions. Using the definitions and notations from the previous chapter, the solution
of (3.2) reads as: finduh(t), wh(t) ∈ Vh such that for almost everyt ∈ (0, T ] and for
all υ ∈ Vh,

(∂tuh, υh)Ω + ah(µ̄;wh, υh) = Ih(µ̄; υh),

(wh, υh)Ω − (f(uh), υh)Ω = ah(ǫ
2; uh, υh) + Ih(ǫ

2; υh).
(3.11)
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The bilinear terms in the last two argument is of the formah(κ;w, υ) = ãh(κ;w, υ) +
J∂
1h
(κ;w, υ) such that

ãh(κ;w, υ) =
∑

E∈Th

∫

E

κ∇w · ∇υ −
∑

e∈E0
h

∫

e

{κ∇w} · [υ]ds

−
∑

e∈E0
h

∫

e

{κ∇υ} · [w] +
∑

e∈E0
h

σκ

he

∫

e

[w] · [υ]ds,
(3.12)

where the mobility functionµ(u) is computed explicitly as in form of the integral∫

K
µ(un)dΩ, whereun denotes the approximate solution at the previous time stepn

as for continuous finite elements in [9, 11]. In the DG discretized bilinear form (3.12)
κ stands for̄µ =

∫

K
µ(un)dΩ or for ǫ2. The the bilinear form̃ah(κ; uh, υh) includes

the face integrals only on the interior edges, whereas the term J∂
h (κ; uh, υh) includes

the corresponding face integrals on the boundary edges and together with the right
hand sideIh(κ; υh). So, it changes depending on the boundary conditions. If Dirichlet
boundary condition,u = w = gD, is prescribed, we set

J∂
h (κ; u, υ) = −

∑

e∈ED
h

∫

e

{κ∇u} · [υ]ds−
∑

e∈ED
h

∫

e

{κ∇υ} · [u]

+
∑

e∈ED
h

σκ

he

∫

e

[u] · [υ]ds,

Ih(κ; υ) =
∑

e∈ED
h

∫

e

(
σκ

he
υ − κ∇υ · n

)

gDds.

In the case of Neumann boundary condition,∂u
∂n

= µ(u)∂w
∂n

= gN , they become

J∂
h (κ; u, υ) = 0, Ih(κ; υ) =

∑

e∈EN
h

∫

e

gNυds.

When periodic boundary condition is applied, we have

J∂
h (κ; u, υ) = −

∑

ω∈Eper
h

∫

ω

{κ∇u}ω · [υ]ωds−
∑

ω∈Eper
h

∫

ω

{κ∇υ}ω · [u]ω

+
∑

ω∈Eper
h

σκ

hE

∫

ω

[u]ω · [υ]ωds,

andIh(υ) = 0.

The semi-discrete solutionsuh(t) andwh(t) of the system (3.11) satisfy

uh(t) =
N∑

m=1

nq∑

j=1

ξmj (t)ϕm
j , wh(t) =

N∑

m=1

nq∑

j=1

ζmj (t)ϕm
j , (3.13)
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whereϕm
j are the basis functions spanning the spaceVh, ξmj andζmj are the unknown

coefficients,nq is the local dimension, andN is the number of triangular elements.
By substituting the identities in (3.13) into the system (3.11) and choosingυ = ϕk

i ,
i = 1, . . . , nq, k = 1, . . . , N , we obtain the semi-linear systems of ordinary differential
equations

Mξt + Aµζ = L1,

Aǫξ + r(ξ)−Mζ = L2,
(3.14)

for the ordered unknown coefficient vectors and the basis functions

ξ = (ξ11 , . . . , ξ
1
nq
, ξ21 , . . . , ξ

2
nq
, . . . , ξN1 , . . . , ξ

N
nq
)T ,

ζ = (ζ11 , . . . , ζ
1
nq
, ζ21 , . . . , ζ

2
nq
, . . . , ζN1 , . . . , ζ

N
nq
)T ,

ϕ = (ϕ1
1, . . . , ϕ

1
nq
, ϕ2

1, . . . , ϕ
2
nq
, . . . , ϕN

1 , . . . , ϕ
N
nq
)T .

In (3.14),M denotes the mass matrix with the entriesMij = (ϕj, ϕi)Ω, 1 ≤ i, j ≤
nq×N ,Aµ andAǫ are the stiffness matrices with the entries(Aµ)ij = ah(µ(uh);ϕ

j, ϕi)
and (Aǫ)ij = ah(ǫ

2;ϕj , ϕi), 1 ≤ i, j ≤ nq × N , andb is the non–linear vector of
unknown coefficient vectorξ with the entriesbi(ξ) = (ψ′(uh), ϕ

i)Ω, 1 ≤ i ≤ nq ×N ,
andL1 andL2 are the load vectori-th component of which corresponding to the right
hand side linear formIh(ϕi), 1 ≤ i ≤ nq ×N such that a detailed description of each
term is given in previous section.

3.2 Fully Discrete System by Backward Euler and AVF Method

In this section, we give the fully discrete formulations of the CH system (3.2) in matrix-
vector notations by using the backward Euler and AVF time integrators through the
semi-discrete formulation (3.11).

In the sequel, we consider the uniform partition0 = t0 < t1 < . . . < tJ = T of the
time interval[0, T ] with the uniform time step-size∆t = tk − tk−1, k = 1, 2, . . . , J .
Moreover, fort = 0, we letuh(0), wh(0) ∈ Vh be the projections (orthogonalL2-
projections) of the initial conditionu0, w0 ontoVh, and we letη0 = (ξ0, ζ0)

T be the
corresponding coefficient vector (ordered) satisfying (3.13). At a specific timet = tn,
we denote the coefficient vector of the solutions(uh(tn), wh(tn))

T by ηn = (ξn, ζn)
T ,

as well.

3.2.1 Fully Discrete System by Backward Euler

Backward Euler discretization of the semi-linear system (3.14) reads as: forn =
0, 1, . . . , J − 1, solve forξn+1 andζn+1 the system

[
M ∆tAµ

Aǫ −M

] [
ξn+1

ζn+1

]

+

[
−∆t(L1)n+1

r(ξn+1)− (L2)n+1

]

=

[
Mξn
0

]

(3.15)
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which leads to the residual functionR(η) = (R1(η), R2(η))
T with

R1(ηn+1) =Mξn+1 −Mξn +∆tAµζn+1 −∆t(L1)n+1,

R2(ηn+1) = Aǫξn+1 + r(ξn+1)−Mζn+1 −∆t(L2)n+1.
(3.16)

We solve the non-linear system of equations (3.16) using theNewton’s method in Al-
gorithm 1 in Chapter 2: starting with an initial guessη(0)n+1 = (ξ

(0)
n+1, ζ

(0)
n+1)

T , thek − th
Newton iteration to solve the nonlinear system of equations(3.16) for the unknown
vectorηn+1 = (ξn+1, ζn+1)

T reads as

Js(k) = −R(η(k)n+1), η
(k+1)
n+1 = η

(k)
n+1 + s(k) , k = 0, 1, . . . (3.17)

until a user defined tolerance is satisfied. In (3.17),s = (s1, s2)
T is the increment, and

J stands for the Jacobian matrix ofR(ηn+1), whose entries are the partial derivatives
with respect toξn+1 andζn+1

Jij =

[
∂Ri(ξn+1, ζn+1)

∂(ξn+1)j

∂Ri(ξn+1, ζn+1)

∂(ζn+1)j

]

, i, j = 1, 2, . . . , nq ×N

at the current iteration. It is easy to differentiate the linear terms in (3.16), to differ-
entiate the nonlinear term using the expansionuh =

∑nq×N
k=1 ξkϕ

k, ordered version of
(3.13), we obtain

∂bi(ξ)

∂ξj
=

∂

∂ξj
(f(uh), ϕ

i)Ω =

∫

Ω

f ′(uh)ϕ
jϕidx (3.18)

such thatf(u) may be double well potential or logarithmic function. Hence, we obtain
for the Jacobien matrixJ

J =

(
M ∆tAµ

Aǫ + Jr −M

)

(3.19)

whereJr is the Jacobian matrix of the nonlinear formr(ξ) w.r.t. ξ at ξ = ξn+1.

3.2.2 Fully Discrete System by Average Vector Field Method

Firstly, we rearrange the semi linear system (3.14) forη = (ξ, ζ):
[
M 0
0 0

]

ηt = −
[
0 Aµ

Aǫ −M

]

η +

[
L1

L2 − r(η)

]

(3.20)

and then applying AVF method to the gradient system (3.20) reads as: forn = 0, 1, . . . , J−
1, solve

[
M 0
0 0

]
ηn+1 − ηn

∆t
= −

[
0 Aµ

Aǫ −M

] ∫ 1

0

(τηn+1 + (1− τ)ηn)dτ (3.21)

+

[ ∫ 1

0
L1dτ

L2 −
∫ 1

0
(r(τξn+1 + (1− τ)ξn))dτ

]

.
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After a simple calculation for the linear terms, we get
[
M 0
0 0

]
ηn+1 − ηn

∆t
= −

[
0 Aµ

Aǫ −M

]
ηn+1 + ηn

2
(3.22)

+

[
1
2
((L1)n+1 + (L1)n)

1
2
((L2)n+1 + (L2)n −

∫ 1

0
r(τξn+1 + (1− τ)ξn)dτ)

]

which is the fully discretized system that we will solve forηn+1 = (ξn+1, ζn+1) . We
solve this nonlinear system of equations using Newton’s method in Algorithm 1 in
Chapter 2. From the algebraic point of view, Newton’s method for (3.22) corresponds
to solving the nonlinear system of equations

R1(ξn+1, ζn+1) = M(ξn+1 − ξn) +
∆t

2
Aµ(ζn+1 + ζn) (3.23)

− ∆t

2
((L1)n+1 + L1)n),

R2(ξn+1, ζn+1) =
1

2
Aǫ(ξn+1 + ξn)−

1

2
M(ζn+1 + ζn) (3.24)

+

∫ 1

0

r(τξn+1 + (1− τ)ξn)−
1

2
((L2)n+1 + L2)n),

or equivalently,

R(ηn+1) =





M(ξn+1 − ξn) +
∆t
2
Aµ(ζn+1 + ζn)− ∆t

2
((L1)n+1 + (L1)n)

1
2
Aǫ(ξn+1 + ξn)− 1

2
M(ζn+1 + ζn)

+
∫ 1

0
r(τξn+1 + (1− τ)ξn)− ∆t

2
((L2)n+1 + (L2)n)



 (3.25)

whereηn+1 = (ξn+1, ζn+1). Starting with an initial guessη(0)n+1 = (ξ
(0)
n+1, ζ

(0)
n+1) , the

k − th Newton iteration to solve the nonlinear equation (3.23) forthe unknown vector
ηn+1 reads as

Js(k) = −R(η(k)n+1), η
(k+1)
n+1 = η

(k)
n+1 + s(k) , k = 0, 1, . . . (3.26)

until a user defined tolerance is satisfied. In (3.26),s = (s1, s2)
T is the increment,

J stands for the Jacobian matrix ofR(ηn+1), whose entries are the partial derivatives
with respect toξn+1 andζn+1

Jij =

[
∂Ri(ξn+1, ζn+1)

∂(ξn+1)j
,
∂Ri(ξn+1, ζn+1)

∂(ζn+1)j

]

, i, j = 1, 2, . . . , nq ×N

at the current iteration. It is easy to differentiate the linear terms in (3.23)

∂R1(ηn+1)i
∂(ξn+1)j

= Mij ,

∂R1(ηn+1)i
∂(ζn+1)j

=
∆t

2
(Aµ)ij, (3.27)

∂R2(ηn+1)i
∂(ξn+1)j

=
1

2
(Aǫ)ij +

∂ri
∂(ξn+1)j

(ξn+1),

∂R2(ηn+1)i
∂(ξn+1)j

= −1

2
Mij .
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To differentiate the nonlinear term using the expansionuh =
∑nq×N

k=1 ξkϕ
k, ordered

version of (3.13), we obtain

∂ri(ξ)

∂ξj
=

∂

∂ξj
(f(uh), ϕ

i)Ω, i, j = 1, 2, . . . , nq ×N (3.28)

=

∫

Ω

f ′(uh)ϕ
jϕidx

wheref(u) is logarithmic free energy or double–well potential in our model. Hence,
we obtain for the Jacobien matrixJ that

J =

(
M ∆t

2
Aµ

1
2
Aǫ + Jr −1

2
M

)

(3.29)

whereJr(ξ
(k+1)
n+1 ) is the differential matrix whose entries given in (3.28).

3.3 Energy Stability

In this section, we show that the backward Euler and AVF methods applied to the
semi–discrete system (3.11) are energy stable through the discrete energy

Eh
DG(u

n) =
ǫ2

2
‖∇un‖2L2(τh)

+ (F (un), 1)Ω

+
∑

E∈E0
h

(

−({ǫ2∂nun}, [un])E +
σǫ2

2hE
([un], [un])E

)

(3.30)

which is the discrete DG counterpart of the continuous energy [31]

Eh(u) =
ǫ2

2
‖∇u‖2L2(Th)

+
∑

E∈E0
h

(

−({ǫ2∂nu}, [u])E +
σǫ2

2he
([u], [u])E

)

(3.31)

+ (F (u), 1)Ω

at a timetn = n∆t.

3.3.1 Energy Stability of Fully Discrete Scheme with BackwardEuler

The backward Euler discretized scheme of the semi-discretesystem (3.11) is given by

(un+1 − un, q)Ω +∆tah(µ(u
n);wn+1, q) = 0, ∀q ∈ Vh, (3.32)

(wn+1, φ)Ω − (f(un+1), φ)Ω = ah(ǫ
2; un+1, φ), ∀φ ∈ Vh.

Takingq = wn+1 andφ = un+1 − un in (3.32), we obtain

(un+1 − un, wn+1)Ω +∆tah(µ(u
n);wn+1, wn+1) = 0,

(wn+1, un+1 − un)Ω − (f(un+1), un+1 − un)Ω = ah(ǫ
2; un+1, un+1 − un).
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Using the identity(a, a− b)Ω = 1
2
(a2 − b2 + (a− b)2, 1)Ω and the bilinearity ofah in

the last two arguments, we obtain

(un+1 − un, wn+1)Ω +∆tah(µ(u
n);wn+1, wn+1) = 0, (3.33)

(wn+1, un+1 − un)Ω − (f(un+1), un+1 − un)Ω =
1

2
ah(ǫ

2; un+1, un+1)

− 1

2
ah(ǫ

2; un, un) (3.34)

+
1

2
ah(ǫ

2; un+1 − un, un+1 − un).

ExpandingF (un+1) and neglecting higher order terms, we get

F (un) ≈ F (un+1)− f(un+1)(un+1 − un),

(f(un+1), un+1 − un)Ω ≈ (F (un+1), 1)Ω − (F (un), 1)Ω. (3.35)

We note that the bilinear formah(µ(un);wn+1, wn+1) satisfies

ah(µ(u
n);wn+1, wn+1) = µ(un)‖∇wn+1‖2L2(Ω) − 2

∑

E∈E0
h

∫

E

{µ(un)∇wn+1}[wn+1]ds,

+
∑

E∈E0
h

σµ(un)

hE
‖[wn+1]‖2L2(E) ≥ 0. (3.36)

Since all the terms in (3.36) are non-negative (see [63, Sec.2.7.1] for positivity of
edge integral term), we haveah(µ;wn+1, wn+1) ≥ 0. Similarly, we haveah(ǫ2; un+1−
un, un+1 − un) ≥ 0. Using these identities, subtracting (3.33) from (3.34) and substi-
tuting (3.35), we obtain

−∆tah(µ(u
n);wn+1, wn+1) ≈ (F (un+1), 1)Ω +

1

2
ah(ǫ

2; un+1, un+1)

−
(

(F (un), 1)Ω +
1

2
ah(ǫ

2; un, un)

)

≤ 0

which implies thatEh
DG(u

n+1) ≤ Eh
DG(u

n). Hence, the backward Euler discretized
scheme is energy stable through the discrete energy (3.30).

3.3.2 Energy Stability of Fully Discrete Scheme with AVF Method

Applying the AVF to the semi-discrete system (3.11), the fully discrete system reads
as

(un+1 − un, q)Ω +
∆t

2
ah(µ(u

n);wn+1 + wn, q) = 0, ∀q ∈ Vh, (3.37)
(
wn+1 + wn

2
, φ

)

Ω

−
∫ 1

0

(f(τun+1 + (1− τ)un), φ)Ωdτ =
1

2
ah(ǫ

2; un+1 + un, φ), ∀φ ∈ Vh,
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Takingq = (wn+1 + wn)/2 andφ = un+1 − un in (3.37), we obtain
(

un+1 − un,
wn+1 + wn

2

)

Ω

+
∆t

4
ah(µ(u

n);wn+1 + wn, wn+1 + wn) = 0,

(
wn+1 + wn

2
, un+1 − un

)

Ω

−
∫ 1

0

(f(τun+1 + (1− τ)un), un+1 − un)Ωdτ =

1

2
ah(ǫ

2; un+1 + un, un+1 − un).

By using the identity(a + b, a − b)Ω = (a2 − b2, 1)Ω and the bilinearity ofah in the
last two arguments, we get

(

un+1 − un,
wn+1 + wn

2

)

Ω

+
∆t

4
ah(µ(u

n);wn+1 + wn, wn+1 + wn) = 0,

(3.38)
(
wn+1 + wn

2
, un+1 − un

)

Ω

−
∫ 1

0

(f(τun+1 + (1− τ)un), un+1 − un)Ωdτ =

1

2
ah(ǫ

2; un+1, un+1)− 1

2
ah(ǫ

2; un, un). (3.39)

Expanding the termsF (un) andF (un+1), and neglecting the higher order terms, we
obtain

F (un) ≈ F (τun+1 + (1− τ)un)− f(τun+1 + (1− τ)un)(τ(un+1 − un)),

F (un+1) ≈ F (τun+1 + (1− τ)un) + f(τun+1 + (1− τ)un)(1− τ)(un+1 − un)).

SubtractingF (un) from F (un+1) leads to

F (un+1)− F (un) ≈ f(τun+1 + (1− τ)un)(un+1 − un)

(F (un+1), 1)Ω − (F (un), 1)Ω ≈ (f(τun+1 + (1− τ)un), un+1 − un)Ω
(3.40)

∫ 1

0

((F (un+1), 1)Ω − (F (un), 1)Ω)dτ ≈
∫ 1

0

(f(τun+1 + (1− τ)un), un+1 − un)Ωdτ

(F (un+1), 1)Ω − (F (un), 1)Ω ≈
∫ 1

0

(f(τun+1 + (1− τ)un), un+1 − un)Ωdτ

We note thatah(µ(un);wn+1 + wn, wn+1 + wn) ≥ 0 similar to previous section. Us-
ing this identity and subtracting (3.38) from (3.39) and substituting the last equation
in(3.40), we obtain

−∆t

4
ah(µ(u

n);wn+1 + wn, wn+1 + wn) ≈ (F (un+1), 1)Ω +
1

2
ah(ǫ

2; un+1, un+1)

−
(

(F (un), 1)Ω +
1

2
ah(ǫ

2; un, un)

)

≤ 0
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which implies thatEh
DG(u

n+1) ≤ Eh
DG(u

n). Hence, the AVF discretized scheme is
unconditionally energy stable.

3.4 Numerical Results

In this section, we present a set of numerical examples that show the accuracy and
the stability of our numerical approach. We first verify the accuracy of our numerical
approach for CH equation with constant and degenerate mobility for both time inte-
grators. Furthermore, the discrete energy dissipation anddiscrete mass conservation
properties of CH equation is demonstrated. In all numerical examples, we have used
quadratic elements for space discretization and average vector field method is used for
time discretization.

3.4.1 Constant mobility function and double-well potential under Neumann bound-
ary condition

We first carry out 2D CH equation with constant mobility function µ(u) = 1 under
homogenous Neumann boundary condition [20]. The CH equationin Ω = [−1, 1] ×
[−1, 1] for 0 < t < 1 with the exact solution

u(x, y, t) = ecos(t) cos(πx) cos(πy)

is considered. The source functiong is computed from the left hand side by using
the exact solution andǫ = 0.1. The initial condition is taken to be consistent with
the exact solution. TheL2 error and the numerical order of accuracy using time steps
∆t = 0.5∆x at timeT = 1 with linear and quadratic DG polynomials are presented in
Table 3.1. We can see that both methods withPk elements give a(k + 1)-th order of
accuracy.

Table 3.1: Example 3.4.1: Accuracy test with constant mobility for backward Euler
and AVF methods

Backward Euler Average Vector Field
∆x DoF L2–Error Order L2–Error Order
1/2 24 1.871e+000 - 3.347e+000 -

P1 1/4 96 7.320e-001 1.35 1.633e+000 1.04
1/8 384 2.035e-001 1.85 4.810e-001 1.76
1/16 1536 4.797e-002 2.09 1.079e-001 2.16
1/2 48 4.880e-001 - 6.694e-001 -

P2 1/4 192 1.428e-001 1.77 2.685e-001 1.32
1/8 768 1.968e-002 2.86 3.376e-002 2.99
1/16 3072 2.256e-003 3.12 3.733e-003 3.18

50



3.4.2 Degenerate mobility function and double-well potential under periodic
boundary condition

The next example is the CH equation in [40] with exact solution

u(x, y, t) = e−2t sin(x) sin(y)

in the domainΩ = [0, 2π] × [0, 2π] for 0 < t < 1 under periodic boundary condition
with degenerate mobility functionµ(u) = 1 − u2 and double– well potential. The
effective diffusivity is taken asǫ = 1.

TheL2-error and the numerical order of accuracy at timeT = 1 for backward Euler
method and AVF method are presented in Table 3.2 with linear and quadratic poly-
nomials. For the first order DG polynomials we use time steps∆t = 0.0032π and
quadratic DG polynomials∆t = 0.00032π with AVF method. Time steps are taken
as∆t = 0.00032π for linear DG polynomials and∆t = 0.000032π for quadratic DG
polynomials with backward Euler method. Order reduction isobserved in Table 3.2
for the first and second order DG polynomial which be due to thenon-linearity of the
degenerate mobility function. Both methods withPk elements give a(k + 1)-th order
of accuracy.

Table 3.2: Example 3.4.2: Accuracy test with degenerate mobility for backward Euler
and AVF methods

Backward Euler Average Vector Field
∆x DoF L2–Error Order L2-Error Order
π/2 24 1.620e+000 - 2.054e+000 -

P1 π/4 96 4.690e-001 1.79 5.742e-001 1.84
π/8 384 1.294e-001 1.86 1.566e-001 1.87
π/16 1536 3.308e-002 1.97 5.478e-002 1.52
π/2 48 4.181e-001 – 4.342e-001 -

P2 π/4 192 1.040e-001 2.01 1.136e-001 1.93
π/8 768 4.240e-002 1.29 1.713e-002 2.73
π/16 3072 6.007e-002 -0.50 4.895e-003 1.81

3.4.3 Constant mobility function and double-well functionunder Neumann bound-
ary condition: spinodal decomposition and nucleation

We consider 2D CH equation with constant mobilityµ(u) = 1 and double–well energy
function under homogenous Neumann boundary condition [37]. The computational
domain is takenΩ = [0, 1]× [0, 1] for 0 < t < 0.4 with ǫ = 1× 10−5.

This problem represents the two main separation mechanisms; spinodal decomposition
and nucleation. Both mechanisms in the CH equation are defined by the initial condi-
tionu0(x) = ū+r whereū is a constant andr is random number uniformly distributed
on [−0.005, 0.005].
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Whenū = 0, the spinodal decomposition is formed in Figure (3.1). First, the mixture
separates from a randomly perturbed homogeneous state (ū = 0), and then a com-
plicated striped pattern that coarsens over time is produced. If we let the simulation
evolve, the stationary solution would be a fully separated flow with two rectangular
patches.

Figure 3.1: Example 3.4.3: Phase solution of 2D CH equation with constant mobility
with ∆t = 1× 10−5(spinodal decomposition)

While ū 6= 0, the nucleation is formed seen Figure (3.3). The simulationresults are
given for ū = 0.4. The other parameters are the same as in the previous one. In the
nucleation mechanism, isolated nuclei come up from the mixture. Again, the spatial
microstructure of the mixture coarsens over time.

In both cases the discrete energy dissipates and the mass is conserved (see Figure 3.2
and 3.4). Our results are similar to those in [37], where for spatial discretization local
discontinuous Galerkin method and for time dicretization implicit convex splitting are
used.
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Figure 3.2: Example 3.4.3: Energy decrease and mass conservation of 2D CH equation
with constant mobility with∆t = 1× 10−5(spinodal decomposition)

3.4.4 Constant mobility and logarithmic energy under Neumann Boundary Con-
dition

2D CH equation with constant mobility function and logarithmic energy functionF (u) =
600(u ln u+(1−u) ln(1−u))+ 1800u(1−u)µ(u) = 1 is considered under homoge-
nous Neumann boundary condition [40]. The diffusion constant is taken asǫ = 1. The
initial condition is

u(x, 0) =

{
0.71 x ∈ Ω1

0.69 x ∈ Ω2

where the square domainΩ = (−0.5, 0.5)×(−0.5, 0.5),Ω1 = (−0.2, 0.2)×(−0.2, 0.2),
Ω2 = Ω− Ω1.

The plus shaped region evolves in to a circular region as shown in Figure 3.5. The
evolution process is characterized by grain diffusion and coarsening. Also, energy
decreases and mass is conserved as seen in Figure 3.6.

3.4.5 Degenerate mobility and logarithmic energy under Neumann boundary
condition

We consider 2D CH equation with degenerate mobility functionµ(u) = u(1 − u)
under homogenous Neumann boundary condition [40] with diffusion constantǫ = 1.
The computational domain isΩ = [−0.5, 0.5] × [−0.5, 0.5] for 0 < t < 0.2. The
logarithmic energy functionF (u) = 3000(u ln u+ (1− u) ln(1− u)) + 9000u(1− u)
is given. The initial condition is a random variation of uniform stateu = 0.63 with a
change no larger than0.05.
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Figure 3.3: Example 3.4.3: Phase solution of 2D CH equation with constant mobility
with ∆t = 1× 10−5 (nucleation)

Figure (3.7) shows the evolution of the concentration field.The two phases in the
concentration evolution, the phase separation stage and the coarsening process stage,
can be seen clearly. We can also see in Figure 3.8 that energy decrease and mass
conservation is satisfied.
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Figure 3.4: Example 3.4.3: Energy decrease and mass conservation of 2D CH equation
with constant mobility with∆t = 1× 10−5(nucleation)

Figure 3.5: Example 3.4.4: Phase solution of 2D CH equation with constant mobility
with ∆t = 1× 10−8
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Figure 3.6: Example 3.4.4: Energy decrease ans mass conservation of 2D CH equation
with constant mobility with∆t = 1× 10−8

Figure 3.7: Example 3.4.5: Phase solution of 2D CH equation with degenerate mobility
with ∆t = 1× 10−7
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Figure 3.8: Example 3.4.5: Energy decrease and mass conservation of 2D CH equation
with degenerate mobility with∆t = 1× 10−7
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CHAPTER 4

ADVECTIVE ALLEN-CAHN EQUATION

Interfacial dynamics has great importance in the modeling of multi phase flow. Re-
cently, it has raised quite interest since it plays an important role in different scientific
and industrial applications such as micro-structure evolution and grain growth in mate-
rial science [21], binary fluids flow movement [59], and complex interfacial dynamics
[44].

There have been various diffuse interface models for multi phase flow [49, 57]. In
this study, we focus on a specific model of diffuse interface for two phase flow; Allen-
Cahn model with advection. It is the most known dynamical model for diffuse interface
dynamics associated with surface energies [57]. Actually,it models droplet breakup
phenomenon of an incompressible material with another compressible fluid. It is an
important model problem for studying the influence of flow field and surface tension
on droplet breakup phenomena.

The AC model with advection is

∂u

∂t
+∇ · (Vu) = ǫ∆u− 1

ǫ
f(u), in Ω× (0, T ] (4.1)

∂u

∂n
= 0 on ∂Ω× (0, T ]

with an appropriate initial condition,f(u) = F ′(u) = 2u(1− u)(1− 2u) double-well
potential and prescribed velocity fieldV = (V1, V2)

T . The velocity field is related to
the Navier-Stokes equations since AC model with advection originally comes from the
combination of AC dynamics and fluid mechanics [49, 57]. In most of the studies, it
generally satisfies Navier-Stokes equations, thus the velocity field V is divergent free.
Here, our main interest is when∇ · V 6= 0 in general, i.e.V is not divergent free
which is the less studied case. The flow is stated as expandingwhen∇ · V > 0 and
contracting when∇ ·V < 0.

It is known from the previous chapters, the original AC equation does not satisfy the
mass conservation. For this reason, an additional termλ is often added to the equation
such that by adding the termλu instead ofλ to keepu localized, the mass conservative
advective AC equation can be written as
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∂u

∂t
+∇ · (Vu) = ǫ∆u− 1

ǫ
f(u) + λu in Ω× (0, T ] (4.2)

∂u

∂n
= 0 on ∂Ω× (0, T ]

whereλ is chosen so that
∫

Ω
u(x, 0)dΩ = M , M is a constant which can also be

computed as

λ =
1

ǫ

∫

Ω
f(u)

M
,

and it is called as the advective non-local AC equation.

Problems with surface tension in two-phase fluids are known as multi-scale problems
with two different time scales, the small surface tension, and the convection time scale,
which results in computational stiffness. Most of the studies for surface tension in
two phase fluids are based on the modeling aspect. Actually, there exists three main
algorithms: the sharp interface algorithm method, the level–set algorithm method and
the diffuse interface method [57]. The numerical simulations are illustrated using finite
elements method in space and semi–implicit schemes or semi–implicit schemes with
splitting in time [10, 56].

In this chapter, we focus on the numerical solution of advective AC equation. In the
solution some unphysical oscillations occur at the interior layers due to convection and
non–linear reaction leads to sharp fronts. Since the standard FEMs are known to pro-
duce strong oscillations around layers, we utilize the adaptive algorithms to tackle all
the so-called unphysical oscillations and shock. The adaptivity does this by refining the
mesh locally instead of refining the all mesh. By this way an accurate approximation
can be found with less degrees of freedom (DoFs) and computational time. The major
part of the adaptive algorithms is to estimate the local errors to refine the elements if
their estimated local errors are large. A posteriori error estimation is the main tool to
estimate the local errors which uses the approximate solution and the given problem
data. Many of the studies on a posteriori error estimation are obtained by the weak
formulation with respect to the energy norm [1, 8, 77]. Sincethe DG methods have the
flexibility on adaptive meshes, there have been many studieson a posteriori error esti-
mation using DG discretization. The first study for a posteriori error estimation using
DG methods was proposed by Karakashian and Pascal in [47]. Then, Hoppe et al. [45]
proposed the convergence analysis of a posteriori error estimation for SIPG method.
A posteriori error estimation using DG discretization are also studied by Rivìere et al.
[64], Houston et al. [46] and Ern et al. [29], and references therein.

We introduce an adaptive strategy for the numerical solution of advective non-local
AC equation (4.2). In the previous chapters, AC and CH equations are first discretized
in space by the SIPG method and the resulting large systems ofODEs are integrated
using implicit Euler and AVF methods. On the other hand, the advective non-local
AC equation is discretized first in time by implicit Euler method which produces a
sequence of semilinear elliptic equations, which is known as Rothe’s method [26].
Then, the resulting equations are solved with an adaptive version of SIPG method using
upwinding for the convective term. The adaptive strategy isbased on a residual based
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a posteriori error estimation. We prove the a posteriori error bounds with respect to the
energy norm induced by the SIPG formulation of the system given in [74] for semi-
linear diffusion-convection-reaction equations with divergent free velocity field. We
have applied only space adaptivity because the solutions donot show strong variations
with respect to time.

In this chapter, we first derive time discretization of advective AC equation to obtain
a stationary problem in Section 4.1. Then, SIPG formulationis constructed in Section
4.2 for the fully discrete advective AC equation. A detailedexplanation for space
adaptive algorithm is presented in Section 4.3. In Section 4.4. we derive a posteriori
error bound for stationary problem. Finally, a series of numerical examples are given
in Section 4.5 to demonstrate the applicability of the method.

4.1 Time Discretization of Advective AC Equation

Since the solutions of advective AC equation do not change much with the evolution
of time, we apply only space adaptivity. For this reason, we first derive semi– discrete
formulation of the problem (4.2) using backward Euler method, which corresponds to
Rothe’s method [26]. For the semi–discrete scheme, we consider the uniform partition
0 = t0 < t1 < . . . < tJ = T of the time interval[0, T ] with time step-size∆t = tk −
tk−1, k = 1, 2, . . . , J . Then, the semi–discrete problem, implicit Euler in time, reads
as: given initial conditionu0, setu0 = u0 and fork = 1, 2, . . . , J , find uk ≈ u(tk)
satisfying the stationary problem

uk − uk−1

∆t
− ǫ∆uk +V · ∇uk + (∇ ·V)uk − λuk +

1

ǫ
f(uk) = 0. (4.3)

For eachk = 1, 2, . . . , J , the system (4.3) can be written in the form of a semi-linear
elliptic problem as

αuk − ǫ∆uk +V · ∇uk + r(uk) = h(uk−1), (4.4)

whereα =
(

1
∆t

+∇ ·V − λ
)
, r(u) = 1

ǫ
f(u), andh(u) = 1

∆t
u. The stationary semi-

linear elliptic equation (4.4) are solved using SIPG methodwith an adaptive strategy.

We assume that the non–linear reaction term is bounded and locally Lipschitz contin-
uous, i.e., satisfy for anys, s1, s2 ≥ 0, s, s1, s2 ∈ R the following conditions

|r(s)| ≤ C, C > 0 (4.5)
‖r(s1)− r(s2)‖L2(Ω) ≤ L‖s1 − s2‖L2(Ω), L > 0.

Moreover, we assume that there is a non-negative constantκ0 satisfying

α− 1

2
∇ ·V(x) ≥ κ0, ‖ − ∇ ·V + α‖L∞(Ω) ≤ c∗κ0, (4.6)

for a positive constantc∗. In (4.6) the coercivity of the bilinear formah is satisfied by
the first condition, and the latter is used to prove the reliability of our a posteriori error
estimator [67].
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4.2 Full Discretization of Advective AC Equation

In this section, we apply SIPG method using upwinding for theconvective term [52,
62] to discretize the stationary problem (4.4). For discretization of the convection term,
we first define the sets of inflow edgesΓ−

t and outflow edgesΓ+
t for the boundary edges

for t ∈ [0, T ] by

Γ−
t = {x ∈ ∂Ω : V(x, t) · n(x) < 0} , Γ+

t = {x ∈ ∂Ω : V(x, t) · n(x) ≥ 0} ,

wheren is the unit outward normal to the boundary∂Ω. The set of inflow and outflow
boundary edges of an elementE ∈ Th is defined in a similar way by

∂E−
t = {x ∈ ∂E : V(x, t) · nE(x) < 0} , ∂E+

t = {x ∈ ∂E : V(x, t) · nE ≥ 0} .

wherenE is the unit outward normal vector to the element boundary∂E. Moreover,
for an interior edge∂E, we denote the trace of a functionu from inside the elementE
by uin and from outside the elementE by uout.

The set of interior and boundary edges are denoted byE0
h andE∂

h , respectively, such
that the frame of the mesh is the unionEh = E0

h ∪ E∂
h . The initial mesh is specified

by T 0
h and then a meshT k

h is associated to each time stepk ≥ 1 which is obtained
by locally refining or coarsening the meshT k−1

h . We also assign the finite element
spaceV k

h = Vh(T k
h ) to each meshT k

h . Then, applying the SIPG construction given
in Chapter 2 the fully–discrete problem reads as: fort = 0, setuh(0) ∈ Vh(T 0

h ) as
the projection (orthogonalL2-projection) ofu0 ontoVh(T 0

h ); for k = 1, 2, . . . , J , find
ukh ∈ Vh(T k

h ) such that for allvkh ∈ Vh(T k
h )

ah(t
k; ukh, v

k
h) + bh(t

k; ukh, v
k
h) = Ih(t

k; vkh), (4.7)

ah(t
k; ukh, v

k
h) =

∑

E∈Th

∫

E

ǫ∇ukh · ∇vkhdx+
∑

E∈Th

∫

E

(V · ∇ukh + αukh)v
k
hdx

+
∑

E∈Th

∫

∂E−

t \∂Ω

V · nE((u
out
h )k − (uinh )k)vkhds (4.8)

−
∑

E∈Th

∫

∂E−

t ∩Γ−

t

V · nE(u
in
h )kvkhds+

∑

e∈Eh

σǫ

he

∫

e

[ukh] · [vkh]ds(4.9)

−
∑

e∈Eh

∫

e

({ǫ∇vkh} · [ukh]− {ǫ∇ukh} · [vkh])ds,

bh(t
k; ukh, v

k
h) =

∑

E∈Th

∫

K

r(ukh)v
k
hdx, (4.10)

Ih(t
k; vkh) =

∑

E∈Th

∫

K

h(uk−1)vkhdx. (4.11)
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4.3 The adaptive algorithm

In this section, an adaptive procedure (in space) is presented for advective non-local
AC equation (4.2) which is similar to the one [74]. Followingthe steps of the adaptive
algorithm given in Figure 4.1, for each time step, we solve the fully discrete station-
ary system (4.7) of the advective non-local AC equation (4.2) adaptively through the
residual-based a posteriori error estimator.

Known uk−1

h

on T k−1

SOLVE for uk

h

on T k−1

ESTIMATE

Compute η2|E

∀E ∈ T k−1

η2|E

?

< stol
r

η2|E

?

> stol
c

MARK

Find MR,MC ⊂ T k−1

η2|E > stol
r, E ∈ MR

η2|E < stol
c, E ∈ MC

NO

SET

T k = T k−1

SET

k = k + 1

YES

Refine E ∈ MR

Coarsen E ∈ MC

Create T k

Figure 4.1: Adaptive algorithm chart on a single step(tk−1, tk]

In the adaptive algorithm, the first step SOLVE corresponds to numerical solution of
SIPG discretized system (4.7) for the unknownukh on the given triangulationT k−1

h .
The ESTIMATE step constitutes the crucial part of the adaptive procedure. This step
provides information to mark the elements to refine/coarsen. We prescribe two toler-
ancesstolr andstolc related to the refinement and coarsening, respectively. A residual
based error estimator is used to mark the elements, which is amodification of the error
estimator given in [67] for non-stationary diffusion-convection-reaction equation with
non–linear reaction mechanism [74]. For this, the non-linear reaction term is inserted
in the a posteriori error indicator as local contributions to the cell residuals and not to
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the interior/boundary edge residuals [78, Chp. 5.1.4]. For convenience, we ignore the
superscriptk and we letuh be the solution to the elliptic problem (4.7) at an arbitrary
time step. Then, the local error indicatorsη2E for each elementE ∈ T k−1

h is given as

η2E = η2RE
+ η2E0

E
+ η2EN

E
, (4.12)

whereηRE
stands for the cell residual

η2RE
= ρ2E‖h(uh)− αuh + ǫ∆uh −V · ∇uh − r(uh)‖2L2(E),

while, ηE0
E

andηEN
E

denote the edge residuals coming from the jump of the numerical
solution on the interior and Neumann boundary edges, respectively

η2E0
E

=
∑

e∈∂E∩E0
h

(
1

2
ǫ−

1

2ρe‖[ǫ∇uh]‖2L2(e) +
1

2
(
ǫσ

he
+ κ0he +

he
ǫ
)‖[uh]‖2L2(e)

)

,

η2EN
E

=
∑

e∈∂E∩E∂
h

ǫ−
1

2ρe‖ǫ∇uh · n‖2L2(e).

On an elementE, we set the weightsρE andρe as

ρE = min{hEǫ−
1

2 , κ
− 1

2

0 }, ρe = min{heǫ−
1

2 , κ
− 1

2

0 },

for κ0 6= 0. Whenκ0 = 0, we takeρE = hEǫ
− 1

2 andρe = heǫ
− 1

2 . Then, our a posteriori
error indicator is given by

η =




∑

E∈T k−1

h

η2E





1/2

. (4.13)

Also, we introduce the data approximation error

Θ =




∑

E∈T k−1

h

Θ2
E(f)





1/2

,

where

Θ2
E(f) = ρ2E(‖h(u)− h(uh)‖2L2(E) + ‖(V −Vh) · ∇uh‖2L2(E) + ‖(α− αh)uh‖2L2(E)).

In the step MARK, we form the setsMR andMC of the elements to be refined and
coarsened, respectively, given by

MR = {E ∈ T k−1
h : η2|E > stol

r},
MC = {E ∈ T k−1

h : η2|E < stol
c},

where the error indicatorη is introduced in (4.12).

Finally, we create the new meshT k
h by refining the elementsE ∈MR using the newest

vertex bisection method [19], and by coarsening the elements E ∈ MC . Numerical
studies show the capability of the error indicator to find thelayers properly.
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4.4 A posteriori error estimation

We utilize the energy norm and the semi-norm to present the reliability and efficiency
of a posteriori error estimator. The energy norm is given by

|||v|||2 =
∑

E∈Th

(‖ǫ∇v‖2L2(E) + κ0‖v‖2L2(E)) +
∑

e∈E0
h

ǫσ

he
‖[v]‖2L2(e), (4.14)

and the semi-norm is

|v|2C = |Vv|2∗ +
∑

e∈E0
h

(κ0he +
he
ǫ
)‖[v]‖2L2(e), (4.15)

with

|q|∗ = sup
u∈H1

0
(Ω)\{0}

∫

Ω
q · ∇udx
|||u||| .

The terms|Vv|2∗ and he

ǫ
‖[v]‖2L2(e) in the semi–norm are used to bound the convective

part. The other termκ0he‖[v]‖2L2(e) is used to bound the linear reaction part of the
discrete system. To bound the non-linear reaction part, theboundedness property (2a)
[Chp. 5.1.1-4, [78]] is used.

Theorem 4.1. For any time-stepk = 1, 2, . . . , J , let u and uh be the solutions to
the continuous problem(4.4) and the discrete SIPG problem(4.7) respectively. Also,
assume that the assumptions(4.5)and(4.6)hold. Then, we have the a posteriori error
bounds

|||u− uh|||+ |u− uh|C . η +Θ (reliability), (4.16)
η . |||u− uh|||+ |u− uh|C +Θ (efficiency). (4.17)

4.4.1 Proof of a Posteriori Error Bounds

For the proof of a posteriori error estimate, we follow [74] which is for stationary
diffusion–convection–reaction equation with a nonlinearreaction mechanism. We use
the DG norm defined by

‖v‖2DG = |||v|||+ |v|c (4.18)

with the definitions (4.14) and (4.15). Also, the symbols. and& represents the bounds
that are eligible up to positive constants independent of the local mesh sizeh, the
diffusion coefficientǫ and the penalty parameterσ.

Since the spatial error‖us − ush‖DG is not well-defined due tous ∈ H1
0 (Ω) andush ∈

Vh(Th) * H1
0 (Ω), we first split the stationary SIPG solutionush as

ush = uch + urh
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whereuch ∈ H1
0 (Ω) ∩ Vh(Th)) is the conforming part of the solution andurh ∈ Vh(Th))

is the remainder term . By this way, we getush ∈ H1
0 (Ω) + Vh(Th)), and

‖us − ush‖DG ≤ ‖us − uch‖DG + ‖urh‖DG

holds from the triangular inequality. Note that all the terms on the right hand side
become well-defined norms, and now we can find bounds for them.First, the following
auxiliary forms are utilized:

Dh(t; u, v) =
∑

E∈Th

∫

E

(ǫ∇u · ∇v + (α−∇ ·V)uv) dx, (4.19)

Oh(t; u, v) = −
∑

E∈Th

∫

E

Vu · ∇vdx+
∑

E∈Th

∫

∂E+∩Γ+

V · nuvds,

+
∑

E∈Th

∫

∂E+\∂Ω

V · nu(v − vout)ds (4.20)

Kh(t; u, v) = −
∑

e∈Eh

∫

e

({ǫ∇vh} · [uh]− {ǫ∇uh} · [vh])ds,

Jh(t; u, v) =
∑

e∈E0
h

σǫ

he

∫

e

[u] · [v]ds. (4.21)

Then, for a specifict ∈ [0, T ] the bilinear form̃ah(t; u, v) fulfills,

ãh(t; u, v) = Dh(t; u, v) +Oh(t; u, v) + Jh(t; u, v)

which is well-defined onH1
0 (Ω)+Vh(Th) and satisfies the coercivity property [Lemma

4.1, [67]]
ãh(t; u, v) ≥ |||u|||2, u ∈ H1

0 (Ω).

Furthermore, the SIPG bilinear formah(t; u, v) in (4.7) satisfies

ah(t; u, v) = ãh(t; u, v) +K(t; u, v) , ∀u, v ∈ Vh(Th), (4.22)
ah(t, u, v) = ãh(t, u, v) , ∀u, v ∈ H1

0 (Ω). (4.23)

Also, the auxiliary forms are continuous [Lemma 4.2, [67]]:

|Dh(t; u, v)| . |||u||| |||v||| , u, v ∈ H1
0 (Ω) + Vh(Th), (4.24)

|Oh(t; u, v)| . |Vu|∗ |||v||| , u ∈ H1
0 (Ω) + Vh(Th), v ∈ H1

0 (Ω), (4.25)
|Jh(t; u, v)| . |||u||| |||v||| , u, v ∈ H1

0 (Ω) + Vh(Th), (4.26)

and foru ∈ Vh(Th), v ∈ Vh(Th) ∩H1
0 (Ω) [Lemma 4.3, [67]]

|Kh(t; u, v)| . σ−1/2




∑

e∈E0
h

σǫ

he
‖[u]‖L2(e)





1/2

|||v|||. (4.27)
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Moreover, using the boundedness assumption of non–linear term given in (4.5), we get
for non–linear formbh(t; u, v) for a specific timet

|bh(t; u, v)| . |||v||| , u, v ∈ H1
0 (Ω) + Vh(Th). (4.28)

Then, some auxiliary results and conditions used in the proofs are given.

Lemma 4.2. The inf-sup condition in [Lemma 4.4, [67]] gives

|||u|||+ |Vu|∗ . sup
v∈H1

0
(Ω)\{0}

ãh(t; u, v)

|||v||| . (4.29)

for all u ∈ H1
0 (Ω).

Definition 4.1. For anyu ∈ Vh(Th), the following inequalities hold

∑

E∈Th

‖u− Ahu‖2L2(E) .
∑

e∈E0
h

∫

e

he|[u]|2ds, (4.30)

∑

E∈Th

‖∇(u− Ahu)‖2L2(E) .
∑

e∈E0
h

∫

e

1

he
|[u]|2ds. (4.31)

whereAh : Vh(Th) 7→ V c
h is the approximation operator withV c

h = Vh(Th) ∩H1
0 (Ω)

being the conforming subspace ofVh(Th).

Lemma 4.3. For anyu ∈ H1
0 (Ω), the interpolation operator is defined as

Ih : H1
0 (Ω) 7→ {w ∈ C(Ω) : w|E ∈ P1(E), ∀K ∈ T , w = 0 onΓ}

and it satisfies

|||Ihu||| . |||u|||, (4.32)
(
∑

E∈T

ρ−2
E ‖u− Ihu‖2L2(E)

)1/2

. |||u|||, (4.33)




∑

e∈E0
h

ǫ1/2ρ−1
e ‖u− Ihu‖2L2(E)





1/2

. |||u|||. (4.34)

Now, consider the splitting of the stationary solutionush = uch + urh asuch = Ahu
s
h ∈

H1
0 (Ω) ∩ Vh(Th) with Ah is the approximation operator andurh = ush − uch ∈ Vh.

Lemma 4.4(Lemma 4.4, [67]). The bound for the remainder term holds

‖urh‖ . η (4.35)

whereη is the a posteriori error estimator given in(4.13).
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Lemma 4.5. For a givent ∈ (0, T ] and for anyv ∈ H1
0 (Ω), we have

∫

Ω

h(ush)(v − Ihv)dx− ãh(u
s
h)(v − Ihv)− bh(t; u

s
h, v − Ihv) . (η +Θ)|||v|||(4.36)

whereIh is the interpolation operator.

Proof. Let

T =

∫

Ω

h(t; ush, v − Ihv)dx− ãh(t; u
s
h, v − Ihv)− bh(t; u

s
h, v − Ihv).

Applying integration by parts gives

T =
∑

E∈Th

∫

E

(h(ush) + ǫ∆ush −V · ∇ush − r(ush))(v − Ihv)dx

−
∑

E∈Th

∫

∂E

ǫ∇ush · n(v − Ihv)ds

+
∑

E∈Th

∫

∂E−\∂Ω

V · n(ush − us,outh )(v − Ihv)ds

= T1 + T2 + T3.

Addition and subtraction of the data approximation terms into the termT1 yields

T1 =
∑

E∈Th

∫

E

(h(ush) + ǫ∆ush −Vh · ∇ush − r(ush))(v − Ihv)dx

+
∑

E∈Th

∫

E

((h(u)− h(uh))− (V −Vh) · ∇ush)(v − Ihv)dx.

Using the Cauchy-Schwarz inequality and interpolation operator identity (4.33)

T1 .

(
∑

E∈Th

η2RE

)1/2(
∑

E∈Th

ρ−2
E ‖v − Ihv‖2L2(E)

)1/2

+

(
∑

E∈Th

Θ2
E

)1/2(
∑

E∈Th

ρ−2
E ‖v − Ihv‖2L2(E)

)1/2

.

(
∑

E∈Th

(η2RE
+Θ2

E)

)1/2

|||v|||.

For the termsT2 andT3, we have [Lemma 4.8, [67]]

T2 .

(
∑

E∈Th

η2EE

)1/2

|||v|||
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T3 .

(
∑

E∈Th

η2JE

)1/2

|||v|||.

Lemma 4.6. For a givent ∈ (0, T ], the bound of the conforming part of the error
satisfies

‖us − uch‖DG . η +Θ. (4.37)

Proof. Sinceus − uch ∈ H1
0 (Ω), we have|us − uch|C = |V(us − uch)|∗. Then, from the

inf-sup condition (4.29)

‖us − uch‖DG = |||us − uch|||+ |us − uch|C . sup
v∈H1

0
(Ω)\{0}

ãh(t; u
s − uch, v)

|||v||| .

So, we need to bound the termah(t; us−uch, v). Using thatus−uch ∈ H1
0 (Ω), we have

ãh(t; u
s − uch, v) = ãh(t; u

s, v)− ãh(t; u
c
h, v)

=

∫

Ω

h(us)vdx− bh(t; u
s, v)− ãh(t; u

c
h, v)

=

∫

Ω

h(us)vdx− bh(t; u
s, v)−Dh(t; u

c
h, v)− Jh(t; u

c
h, v)−Oh(t; u

c
h, v)

=

∫

Ω

h(us)vdx− bh(t; u
s
h, v) + bh(t; u

s
h, v)− bh(t; u

s, v)

−ãh(t; ush, v) +Dh(t; u
r
h, v) + Jh(t; u

r
h, v) +Oh(t; u

r
h, v).

We also have from the SIPG scheme
∫

Ω

h(us)Ihvdx = ãh(t; u
s
h, Ihv) +Kh(t; u

s
h, Ihv) + bh(t; u

s
h, Ihv)

Hence, we obtain
ã(t; us − uch, v) = T1 + T2 + T3 + T4

T1 =

∫

Ω

h(ush)(v − Ihv)dx− ãh(t; u
s
h, v − Ihv)− bh(t; u

s
h, v − Ihv)

T2 = Dh(t; u
r
h, v) + Jh(t; u

r
h, v) +Oh(t; u

r
h, v)

T3 = Kh(t; u
s
h, Ihv)

T4 = bh(t; u
s
h, v)− bh(t; u

s, v)

From the inequality (4.36), we have

T1 . (η +Θ)|||v|||
The continuity results (4.24-4.26) and the bound to remainder term (4.35) yields

T2 . (|||urh|||+ |~βurh|∗)|||v||| ≤ η|||v|||
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Moreover, using the identities (4.27) and (4.32), we get

T3 . σ−1/2

(
∑

E∈T

η2JE

)1/2

|||Ihv||| . σ−1/2

(
∑

E∈T

η2JE

)1/2

|||v|||.

Finally, using Cauchy-Schwarz inequality and the boundedness property (4.28), we get

T4 = bh(t; u
s
h, v)− bh(t; u

s, v) =

∫

Ω

r(ush)vdx−
∫

Ω

r(us)vdx

≤ C1‖v‖L2(Ω) − C2‖v‖L2(Ω)

. |||v|||.

which finishes the proof.

Now, we can give the proof of Theorem 4.1.

Proof. Combining the bounds (4.35)) and (4.37)) to the remainder andthe conforming
parts of the error, respectively, we obtain

‖us − ush‖DG ≤ ‖us − uch‖DG + ‖urh‖DG

≤ η +Θ+ η

. η +Θ

The proof of the efficiency is similar to Theorem 3.3 in [67]. We only use the bound-
edness property (4.5) of the non-linear reaction term to bound the terms occurring in
the procedure in [67].

4.5 Numerical Results

In this section, we present several numerical examples for advective non-local AC
equation under homogenous Neumann boundary conditions forone and two dimen-
sional problems. For the 1D problems, our aim is to show the droplet breakup phe-
nomena, where space adaptivity is not needed. For 2D problems we demonstrate the
effectiveness of the adaptive SIPG method to recapture sharp layers in convection dom-
inated cases.

4.5.1 1D advective non-local AC equation

The advective AC equation does not satisfy the droplet breakup under certain situa-
tions. We present a set of 1D numerical examples under what conditions the droplet
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breakup is formed by focusing on the dynamics of the solutions when the strength of
the velocity field changes.

We first consider 1D advective non-local AC equation [56] in the domainΩ = [−5, 5]
for 0 < t < 0.2 with the initial condition

u (x, 0) =

{

1; −0.3 ≤ x ≤ 0.3

0; otherwise.

This test example was solved in [56] by taking he diffusion constantǫ = 0.01 with
the linear finite elements in space and semi–implicit splitting scheme in time for mesh
sizes∆x = 0.005 and time steps∆t = 0.001. The velocity field is taken asV = V0x.
We performed simulations with coarser mesh sizes∆x = 0.1 and with the same time
steps∆t = 0.001. For different values ofV0, we obtain different results. AsV0
increases, two different types of solutions appear. WhenV0 = 3 is small as in Figure
4.2, the solution decreases and settles into a non–constantsteady state depicting a
single droplet. Also, mass conservation is seen in Figure 4.3, right. If V0 = 10 which
is large in Figure 4.4, the solution decays to a small constant value. Mass is again
conserved as shown in Figure 4.5, right. These two examples reveal that a typical
advective AC equation that does not show droplet breakup phenomena.
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−0.5

0

0.5

1

1.5
t=0

x

u

−5 0 5
−0.5

0

0.5

1

1.5
t=0.2

x

u

Figure 4.2: Example 4.5.1: Solutions at initial and final times withV0 = 3

4.5.2 1D advective non-local AC equation: non-monotone initial condition

We again consider 1D advective non-local AC equation [56] inthe domainΩ = [−5, 5]
for 0 < t < 0.45 with the diffusion constantǫ = 0.01 which is solved again by linear
finite elements in space and semi–implicit splitting schemein time with mesh sizes
∆x = 0.005 and time steps∆t = 0.001, respectively. The velocity field is taken as
V = 5x. The non-monotone initial condition is given by
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Figure 4.3: Example 4.5.1: Solution profile (left) and mass error (right) withV0 = 3
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Figure 4.4: Example 4.5.1: Solutions withV0 = 10
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Figure 4.5: Example 4.5.1: Solution profile (left) and mass error (right) withV0 = 10

u (x, 0) =







1; [−0.5, 0.01) ∪ (0.01, 0.5]

0.99; [−0.01, 0.01]

0; otherwise

We have used the same coarse mesh sizes∆x and the same time steps∆t as in the
previous example. When the initial value is non–monotone, asshown in Figure 4.6,
the solutions take a different from. Even a small concavity at the origin leads to a
completely different evolution. The solution shows a breakup. Also, mass conservation
is satisfied in Figure 4.7, right.

4.5.3 2D advective non-local AC equation: expanding flow

For 2D problems, we consider the expanding velocity field anda sheer flow [56]. For
the expanding case, the velocity field is prescribed as

V = (V0x, V0y),

and for sheer flow
V = (0,−V0x).

We first test the expanding flow case. We work on the domainΩ = [−1, 1]× [−1, 1] for
0 < t < 0.06 with the diffusion constantǫ = 0.01 andV0 = 10. The initial condition
is

u (x, 0) =

{

1; x2 + y2 ≤ 0.3

0; otherwise

We first solve by uniform mesh using linear DG elements with mesh sizes∆x =
∆y = 1/32 and the time step size is∆t = 1× 10−3. Similar to 1D case, advective AC
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Figure 4.6: Example 4.5.2: Solutions with non–monotone initial condition
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Figure 4.7: Example 4.5.2: Solution profile (left) and mass error (right)
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does not have droplet breakup as shown in Figure 4.8, top. Mass conservation is also
satisfied as shown in Figure 4.8, bottom. However, the solutions show some unphysical
oscillations (see Figure 4.10, left). We have applied the space adaptive algorithm with
the prescribed tolerancesstolr = 1 × 10−3, stolc = 1 × 10−6 and uniform time step
size∆t = 1× 10−3. The adaptive mesh at timeT = 0.06 is shown in Figure 4.9, left.
It can be clearly seen in Figure 4.9, right, that refinement/coarsening of the adaptive
algorithm works well and spurious oscillations disappear in Figure 4.10, right.
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Figure 4.8: Example 4.5.3: Uniform solutions at initial andfinal times (top) for ex-
panding flow and mass error plot (bottom)

Then, we consider the same problem with the square initial data

u (x, 0) =

{

1; −0.3 ≤ x, y ≤ 0.3

0; otherwise

The uniform and adaptive solutions at final timet = 0.06 are given in Figure 4.11, top,
which shows the effectiveness of our adaptive algorithm. Itcan be seen from Figure
4.11, bottom right, that initially the mesh is refined, afterward the mesh is coarsened
non-monotonically around the internal layer.
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Figure 4.9: Example 4.5.3: Adaptive mesh at final timet = 0.06 (left) and evolutions
of DoFs (right) for expanding flow

Figure 4.10: Example 4.5.3: Uniform (left) and adaptive (right) solutions at final time
t = 0.06 for expanding flow

4.5.4 2D advective non–local AC equation: sheer flow

Now, we test the sheering flow case. We consider 2D advective non-local AC equation
[56] in the domainΩ = [−1, 1] × [−1, 1] for 0 < t < 0.06 with diffusion constant
ǫ = 0.01 andv0 = 100. The initial condition is

u (x, 0) =

{

1; −0.1 ≤ x, y ≤ 0.1

0; otherwise

We solve using linear DG elements on uniform mesh with mesh sizes∆x = ∆y =
1/32 and time step size is taken as∆t = 1 × 10−3. It can be easily seen in Figure
4.12, top, that advective AC does not have droplet breakup. The mass conservation
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Figure 4.11: Example 4.5.3: (Top) Uniform (left) and adaptive (right) solutions at final
time t = 0.06, (Bottom) adaptive mesh (left) at final timet = 0.06 and evolution of
DoFs (right) for expanding flow with square initial data

is satisfied which is seen in Figure 4.12, bottom. However, there have been internal
layers in the solution. We have applied space adaptivity algorithm to handle these
unphysical oscillations with tolerancesstolr = 1× 10−3, stolc = 1× 10−6 and time
step size∆t = 1 × 10−3, as well. The adaptive mesh at timeT = 0.06 is given in
Figure 4.13, left. In Figure 4.14, it is shown that all the oscillations are damped out
by adaptive algorithm using less DoFs compared to the uniform one. When we take
smaller diffusion parameter asǫ = 0.001 and the other parameters are the same, the
accuracy of the adaptive algorithm can be seen clearly in Figure 4.15. In contrast to the
expanding flow, the grids are refined monotonically around the internal layer (Figure
4.13, right).
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Figure 4.12: Example 4.5.4: Uniform solutions at initial and final times (top) and mass
error plot (bottom) for sheer flow withǫ = 0.01
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Figure 4.13: Example 4.5.4: Adaptive mesh at final timet = 0.06 (left) and evolution
of DoFs (right) for sheer flow withǫ = 0.01
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Figure 4.14: Example 4.5.4: Uniform (left) and adaptive (right) solutions at final time
t = 0.06 for sheer flow withǫ = 0.01
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Figure 4.15: Example 4.5.4: Adaptive mesh (left) and adaptive solution (right) at final
time t = 0.06 for sheer flow withǫ = 0.001
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CHAPTER 5

CONCLUSION

In this thesis, we have studied AC and CH equations modeling the phase separation
in material sciences. Both equations are considered for a general class of problems
with constant and degenerate mobility, convex double-welland non-convex logarith-
mic free energy functions. AC and CH equations have gradient flow structure with the
energy decreasing property. We have applied the SIPG method, a type of discontinu-
ous Galerkin methods, as an effective space discretizationtechnique for both models.
The SIPG method is combined with the energy stable time integrators implicit Euler
and AVF methods in order to capture the gradient flow structure of AC and CH equa-
tions. We gave the proofs of energy decreasing property of the fully discrete solutions
for both equations. Numerical results demonstrate the convenience of time integra-
tors with the structure of both equation. The presence of theeffective diffusivity ǫ
leads to multiple time scale of the dynamics of both equation. This is handled by
the SIPG space discretization being an alternate to the well-known stabilized contin-
uous Galerkin methods such as streamline upwind Petrov-Galerkin (SUPG) method.
The nonlinear terms were accurately integrated using standard Newton method arising
from the discrete system of stationary equations. The energy decreasing property of
implicit Euler and AVF methods for both AC and CH equations in very general form
is confirmed by several numerical examples.

We have also considered advective AC equation modeling the droplet breakup phe-
nomenon of an incompressible material with another compressible fluid. The AC and
CH equations are first discretized in space by the SIPG method and the resulting large
systems of ODEs are integrated using the implicit Euler and AVF methods which corre-
sponds to method of lines. On the other hand, the advective ACequation is discretized
first in time by implicit Euler method which produces a sequence of semilinear elliptic
equations, which is known as Rothe’s method. At each time step, a space adaptive
version of the SIPG method is used to discretize the semilinear elliptic equations. Us-
ing this space adaptive version of the SIPG method, we have shown that the internal
layers are resolved accurately for convection dominated problems as an alternate to
the shock/discontinuity capturing techniques in the literature. The adaptivity tool is
based on the residual-based a posteriori error estimation.Then, we have also proven
the a posteriori error bounds for stationary semilinear elliptic equations at each time
step. Numerical results demonstrate that the space adaptive algorithm resolves well
the multiscale dynamics of the advective AC equation for expanding and contracting
velocity fields.
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Extension of the methods to more realistic three dimensional AC and CH equations,
advective AC equation might be the major topic of a future work. Also the development
of an efficient time–space adaptive method would be considered in future studies to
resolve the multiscale dynamics of AC and CH equations and advective AC equation.
Since the formation of the steady state solutions takes a long time which makes the
computation expensive, a model order reduction technique could be also considered
for a future work.

As a further study, numerical solution of Navier Stokes AC and CH equations might
also be considered as different versions of advective AC equation.
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