





DISCONTINUOUS GALERKIN FINITE ELEMENTS METHOD WITH
STRUCTURE PRESERVING TIME INTEGRATORS FOR GRADIENT FLOW
EQUATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYSE SARIAYDIN FILIBELIOGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
SCIENTIFIC COMPUTING

AUGUST 2015






Approval of the thesis:

DISCONTINUOUS GALERKIN FINITE ELEMENTS METHOD WITH
STRUCTURE PRESERVING TIME INTEGRATORS FOR GRADIENT
FLOW EQUATIONS

submitted byAYSE SARIAYDIN F iL IBEL IOGLU in partial fulfillment of the re-
quirements for the degree @octor of Philosophy in Department of Scientific
Computing, Middle East Technical University by,

Prof. Dr. Bulent Karagzen
Director, Graduate School éfpplied Mathematics

Assoc. Prof. DrOmir Ugur
Head of Departmengcientific Computing

Prof. Dr. Bulent Karagzen
SupervisorPepartment of Mathematics & Institute of Applied
Mathematics, METU

Examining Committee Members:

Assoc. Prof. DrOmir Ugur
Institute of Applied Mathematics, METU

Prof. Dr. Bulent Karagzen
Department of Mathematics & Institute of Applied Matheroafi
METU

Assoc. Prof. Dr. Murat Manguiu
Department of Computer Engineering, METU

Assist. Prof. Dr. Enes Yilmaz
Department of Mathematics, Gazi University

Assist. Prof. Dr. Fikriye Nuray Yilmaz
Department of Mathematics, Gazi University

Date:







| hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical cduct. | also declare
that, as required by these rules and conduct, | have fully ceéd and referenced all
material and results that are not original to this work.

Name, Last Name: AYSE SARIAYDINIEIBELIOGLU

Signature



Vi



ABSTRACT

DISCONTINUOUS GALERKIN FINITE ELEMENTS METHOD WITH
STRUCTURE PRESERVING TIME INTEGRATORS FOR GRADIENT FLOW
EQUATIONS

Sariaydin-Filibeliglu, Ayse
PhD, Department of Scientific Computing
Supervisor : Prof. Dr. Blent Karagzen

August 2015 92 pages

Gradient flows are energy driven evolutionary equations shat the energy decreases
along solutions. There have been surprisingly a large numbeell-known partial
differential equations (PDEs) which have the structure gfadient flow in different
research areas such as fluid dynamics, image processiriggyiand material sci-
ences. In this study, we focus on two systems which can be lexdg gradient flows;
Allen-Cahn and Cahn-Hilliard equations. These equationsairtbe phase separation
iIn material science. Since an essential feature of the Allahn and Cahn-Hilliard
equations is the energy decreasing property, it is impottadesign efficient and ac-
curate numerical schemes that satisfy the correspondiaegygmecreasing property.
We have used symmetric interior penalty Galerkin (SIPG)hoeétto discretize the
Allen-Cahn and Cahn-Hilliard equations in space. The resylarge system of ordi-
nary differential equations (ODES) as a gradient systensalied by the energy sta-
ble (energy decreasing) time integrators: implicit Euled average vector field (AVF)
methods. We have shown that implicit Euler and AVF time irdggrs coupled with
SIPG method are unconditionally energy stable. Numereslis for both equations
with polynomial and logarithmic energy functions, and dans and variable mobility
functions illustrate the efficiency and accuracy of thisrapgh.

Advective Allen-Cahn equation is the simplest model of stef@ension in the droplet
breakup phenomena. The small surface time scale and covevéote scale lead to
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unphysical oscillations in the solution. In contrast to tecretization of Allen-Cahn
and Cahn-Hilliard equations using the method of lines, thveeative Allen-Cahn equa-
tion is first discretized in time using implicit Euler methadd the resulting sequence
of semi-linear elliptic equations are solved with an adepélgorithm. This corre-
sponds to Rothe’s method. As a remedy of unphysical osoitlatian adaptive version
of SIPG method based on residual based a posteriori erioragstis applied. Numer-
ical results for convection dominated Allen-Cahn equatibovs the performance of
adaptive algorithm.

Keywords gradient flow equations, discontinuous Galerkin finiteredats method,
structure preserving time integrators
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GRADYAN DENKLEMLERI ICIN YAPI KORUYAN ZAMAN
INTEGRATORLER! ILE SUREKSIZ SONLU ELEMANLAR Y ONTEMI

Sariaydin-Filibeliglu, Ayse
Doktora, Bilimsel Hesaplamad@imi
Tez Yoneticisi : Prof. Dr. Bllent Karagzen

Agustos 20159, 92 sayfa

Gradyan akislar bir enerji tarafindaiinetilen ve enerjinin@ziimler boyunca azalgi
sistemlerdir. Akiskanlar dinami, goruntll isleme, biyoloji ve malzeme bilimi gibi
farkli arastirma alanlarinda gradyan akis yapisingosgdmirtict sekilde pek ¢cok kismi
tirevli denklem bulunmaktadir. Bu tezde, gradyan akislartaellenen iki sistem
uzerinde ygunlastik; Allen-Cahn ve Cahn-Hilliard denklemleri. Bu ileriklem mal-
zeme biliminde faz ayrimini modellemektedir. Allen-CahrGahn-Hilliard denklem-
lerinin endnemliozelligi azalan enerji oldgu icin, bu azalan enerjizelligini sajlayan
etkili ve dagru nimerik yontemlerin gelistirimesbnem kazanmaktadir. Allen-Cahn
ve Cahn-Hilliard denklemlerinin uzaydaki ayriklastirdsinda simetrik kesintili Ga-
lerkin yontemini kullandik. Ortaya cikanilyuk adi diferansiyel denklem sistemlerini
gradyan sistem olarak yapi koruyan zaman intéglatinden geriye dgru yapilan Eu-
ler yontemi ve ortalama veét alani yontemi ile @zdik. Geriye dgru yapilan Euler
yontemi ve ortalama veéit alani yontemlerinin simetrik kesintili Galerkingntemi
ile bir araya geldjinde sartsiz olarak enerjiyi korugunu d@sterdik. Her iki den-
klemin polinom ve logaritmik enerji fonksiyonlari ve sabi¢ degjisken akiskanlik
fonksiyonu ile elde edilen sayisal sonuglari tintemin verimlilgini ve dajrulugunu
gostermektedir.

Advektif Allen-Cahn denklemi damlacik ayrilmasi olayindgkzey geriliminin basit
bir modelidir. Kiiclik zamardlcagi ve konvektif zamarblcedi bu denklemin dziinde
fiziksel olmayan dalgalanmalara sebep olmaktadir.gar yontemi kullanilarak
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ayriklastirilan Allen-Cahn ve Cahn-Hilliard denklemleniraksine, advektif Allen-
Cahn denklemini ilkdnce geriye dgru yapilan Euler gntemi ile zamanda ayriklasti-
rilarak ortaya ¢ikan yari liner elliptik denklemleri uyamabilir algoritmalarla @zuk.
Bu Rothe yntemine karsilik gelmektedir. Fiziksel olmayan dalgatalara bir care
olarak @ziime bd@l hata kestiricileriizerine kurulu simetrik kesintili Galerkinon-
teminin uyarlanabilir bicimini kullandik. Konveksiyonubaskin oldgu Allen-Cahn
denklemi icin verilen sayisal sonuclar uyarlanabilig@itmanin performansiniog-
termektedir.

Anahtar Kelimeler gradyan denklemleri,isekli olmayan Galerkin sonlu elemanlar
yontemi, yapi koruyan zaman integbderi



To My Mom and Dad
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CHAPTER 1

INTRODUCTION

Gradient flows are evolutionary systems driven by the endiggipation mechanism.
A large number of well-known PDEs with a gradient flow struetoccur in different
research areas such as fluid dynamics, image processitggyend material science
[23,132,[40/ 58] 60]. In this thesis, we deal with two famouaregle from material
science; Allen-Cahn (AC) and Cahn-Hilliard (CH) equations.

The AC equation was first introduced by Allen and Cahn [2]979 as a simple model
for phase separation in a binary alloy at a fixed temperatume given by

up = p(u) (€Au— f(u)) in Qx(0,7], (1.1)
u(x,0) =up in Qx {0}

The CH equation was proposed by Cahn and Hilliard [16Pi%8 to describe the phase
separation of a binary fluid mixture below a critical tempera, and given by

u, = V- [u(w)V(f(u) —€Au)], in Qx (0,T], (1.2)
u(x,0) = wug in Q2 x{0}.

Both equations are considered with periodic, Neumann, dciidéet boundary condi-
tions. The functioru represents the concentration of one of the components of the
mixture with the values in the regionl < u < 1 representing the mixture state and
the end points correspond to pure states. Here, R¢(d < 3) is a bounded domain,
the parameter is a measure of interfacial layer representing the effediifusivity,

and u(u) is the non—negative mobility function. There are two chsiée mobil-

ity function; constant mobility and degenerate mobility rhany numerical studies
constant mobility is used [3, 20, 22,137,/ 39]. The degenevatariable mobility is
given as a non-negative quadratic function eithepi@s) = pSu(l — u) [40,[79] or

p(u) = (1 — w?) [9,[11,[40[82], where is a constant.

The phase separation is thoroughly explained by the diffexen the concentration
of mixture of a binary alloy in the time evolution of AC and CHugions. It starts
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with cooling of a uniform mixture of a binary alloy under ateal temperature where
the uniform mixture becomes unstable. After that, two phasi¢h different concen-
trations develop immediately. If initially both componeritave roughly similar pro-
portions, spinodal decomposition process takes placesendhmixture of two or more
materials separates into distinct regions with differemhposition. On the other hand,
if the amount of one component is higher, nuclei of the patan@mponent form and
grow, and phase separation takes via a process called tianlead growth. During
the late stages of the time evolution, the structure becamasser, either by merging
of particles or by the growth of bigger particles at the exggsof smaller ones, known
as domain coarsening phenomena. The transition betwesa pinecesses is known as
metastability, representing the transition from unstablstable state in a short time.

The AC and CH equations can be written as a gradient descent flow

0E (u)
=— 1.
with the Ginzburg-Landau free energy
2
E(u) = / (%|Vu\2+F(u)) dz, (1.4)
Q

in L? space and7 ! Hilbert spaces, respectively. Hew®; (u)/du denotes the vari-
ational derivative and”(u) is the free energy function whergu) = F'(u). There
are two common types of energy functions. One of these fonstis the non-convex
logarithmic energy function [12, 68]

F(u) = g[(l —u)In(l —u)+ (1 +u)In(l +u)] — %u2, (1.5)

which has different forms for CH equation (see([9, (11,40, 3)).8The other one is
the convex double-well energy function [32] 54] 55]
2)2

Fuy =12 (L6)
which is an approximation of the logarithmic energy funotfor temperatureé close
to #.. In most of the studies, AC and CH equations are considerddduaitible-well
energy function and constant mobility. In this thesis, wasider the double-well
energy and logarithmic free energy with constant and degémenobility function for
both equations.

The main characteristic of both equations is the energyedeang property,i.e.,
E(u(ty)) < E(u(ty)), V t,>ty

which poses a challenge to construct an unconditionallyggretable numerical meth-
ods. Moreover, the inherent non-linearity in the equatidhs presence of the small
parametet in phase separation applications and the different timkesad the stages
in the evolution of the concentration are other difficuléesountered in the numerical
solution of AC and CH equations.



AC and CH equations are the most popular examples of gradestedt flow. In
gradient flow problems, the construction of higher orderhuds with above energy
decreasing property is one of the major topics. The conservaf other structural
properties is also important. So, it is needed efficient adiigte numerical methods.

In the literature, many numerical methods have been degdloygth finite difference
[18,[73], spectral elements [23], continuous finite elenf&bl, and local discontinuous
Galerkin (LDG) methods [31, 39] for space discretizatiorAf equation. Time in-
tegration is performed by implicit-explicit (IMEX) methed69], standard integrators
like Crank-Nicolson method [34] and linear multi-step ireggrs [33]. Recently high
accurate time integrators like the spectral deferred ctome methods([55] and expo-
nential integratorg [713] are applied. The CH equation is tpasinsidered with the
constant mobility function and finite differencés [23], faelements [12] and spectral
methods([20, 43] are used for space discretization whereasqObtion with degener-
ate mobility is discretized by continuous finite elemehisl®,[12], by LDG method
[82,[83] discontinuous Galerkin (DG) method wiflt elements and with mixed finite
elements[79], finite differences [61], NURSB [36] and by sp@enethods[84]. Most
of the time discretization methods for CH equation with degate mobility are based
on the convex splitting of the energy function. Moreoveitsp methods are used by
adding stabilization terms to the energy functiofu). A survey of time discretization
techniques for CH equation can be foundin/[72].

Discontinuous Galerkin finite elements methods (DGFEMsgHzecome so popular
since they exhibit attractive properties. They have higteeuracy and work better in
complex geometries in contrast to continuous finite elesardthod (FEM). Further-
more, the discontinuous approximation spaces bring thébfliex of discontinuous
Galerkin (DG) methods which allows to adapt the mesh and eéhgpmial degree of
the basis function. By this way, the sharp layers and singigsican be detected eas-
ily. Another interesting feature of DG method is local massservation which makes
them a good candidate to solve flow and transport probleneddition, the boundary
conditions can be imposed weakly different from continuiinige element method. In
this thesis we discretize the AC equation and mass conser\@it equation in space
with symmetric interior point discontinuous Galerkin (&Pmethod[[4, 63].

The design of energy stable time discretization technidgiaa important topic in the
numerical solution of gradient flow equations. The smallealof the diffusion param-
etere leads to stiff systems after spatial discretizations. |a tase, implicit-explicit
methods are developed since the explicit methods are rtabseifor stiff systems and
the fully implicit systems require solution of non-lineajuations at each time step.
In the semi-implicit schemes, the linear stiff part is teshimplicitly and the non-
linear part explicitly, so that at each time step a lineatesysof equations is solved.
Implicit Euler method and average vector field (AVF) method energy stable time
discretization techniques which are robust with smallmplicit Euler method is the
most popular energy stable method. It is strongly energyedesing, i.e. the discrete
energy decreases without any restriction on the step/sider very stiff gradient sys-
tems for very smalt [41]. The AVF method is the only second order implicit energy
stable method [17, 41] and it preserves energy decreasipgpy for the gradient sys-
tems and for systems with Lyapunov functionals. The midr{pmiethod corresponds



to AVF method for quadratics non-linearities. For gradigygtems involving higher
order polynomial or general nonlinear terms, the mid-poiathod is not energy stable
[41]. There are also some higher order energy decreasirtgpaetvith orders> 3; the
discontinuous Galerkin-Petrov in time methods (with ddéf& trial and test functions)
[66] and Gauss Radau IIA Runge-Kutta collocation methods. [E@\wever, they re-
quire coupled systems of equations at each time step whicbase the computational
cost.

The AC and CH equations are also investigated by an adveetiontb model surface
tension in the droplet breakup phenomena [56, 57]. We censite advective AC
equation[[57]

u+ V- (uV) = eAu— %f(u) in Qx (0,77, (1.7)

Ju

on
with an appropriate initial condition and prescribed véptield V = (1, 15). In
most studies, the velocity field is divergent free, for exlamphen the AC equation
with the incompressible Navier-Stokes equation is comeile Since we consider

droplet breakup phenomena under compressible flow, theiteliteld V is not di-
vergent free; it is expanding whé&n - V > 0 or it is contracting whev/ - V < 0.

= 0 in 092 x]0,T],

The existing numerical studies for advective AC equati@empecially on the behav-
ior of solutions with respect to droplet breakup phenomemnbamalysis of the breakup
condition (seel[57] and references in it). On the other hémel advective AC equa-
tion is known for its computational stiffness due to the dreatface time scale and
convective time scale. These two different time scales teatharp gradients and un-
physical oscillations in the solution and require an ada&péilgorithm. We utilize a

space adaptive algorithm by first discretizing the advect€ equation in time using

implicit Euler method and then solving the resulting seaqeeof semi—linear elliptic

equations with an adaptive version of SIPG method using nghwg for the convective

term. This is known as Rothe’s methad [26]. We also derivedtesibased a posteri-
ori error estimate [74] which is based on the a posteriodregstimates for stationary
non-linear diffusion-convection-reaction equationdwdivergent free velocity field.

The fully discretized systems of AC/advective AC and CH equmetiresult in non-
linear system of equations. We apply Newton’s method toestitis non-linear sys-
tem of equations and all linear system of equations arisioig the applied Newton’s
method are solved by sparse direct solvers of MATLAB.

The goal of this thesis is to solve AC and CH equations in anratewand efficient
way using DG methods and structure preserving time integgamplicit Euler and
AVF methods. We have derived unconditionally energy stableemes coupling DG
space discretization with implicit Euler and AVF methodsethhas not been applied
to AC and CH equations with constant and degenerate molgplitynomial and non-
polynomial free energy functionals. We developed a residased adaptive algorithm
to resolve the dynamics of the advective AC equation withaexiing and contracting
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velocity filelds. To the best of our knowledge, this is thetfatsidy combining adaptive
algorithms with Rothe’s method and non-divergent veloceydfi

The thesis is organized as follows: in Chagdiér 2, we first constdiscontinuous
DGFEM based on the interior penalty method for the genersis®a problem. Then,
we give SIPG discretization of AC equation for Dirichlet, iNeann and periodic
boundary conditions. The large system of ordinary diffée¢requations (ODES) re-
sulting from semidiscretization by the SIPG method are el with the implicit
Euler method and AVF method, which corresponds to methothe§! The proof of
the unconditionally energy stability of the fully discreteheme is given. Also, a time
adaptive algorithm is presented to resolve the multipletitynamics of AC equation.
Several numerical examples are given to demonstrate thealpifity of the DGFEM
discretization coupled with time integrators for the AC atijon.

In Chaptef B, we give the SIPG method discretization of massawative CH equa-
tion for Dirichlet, Neumann and periodic boundary condigcand present the time
discretization with the implicit Euler and AVF methods. Timeconditionally energy
stability of the fully discrete schemes is given. Numerieshmples are presented to
demonstrate the applicability of our method for the CH equmti

In chaptei ¥, we first discretize the advective AC equatiotinte by implicit Euler
method and the resulting sequence of semi-linear elligtimBons are discretized by
SIPG method. Then, we construct space adaptive algorithadfcective AC equation
with non—divergent velocity field and residual based a pasiecrror estimates are
utilized. We highlight some examples that our adaptive witlgm is capturing the
spatial layers in the solution of advective AC equation. alfyp we end up with a
conclusion and future work in Chapfdr 5.






CHAPTER 2

THE ALLEN-CAHN EQUATION

The first occurrence of AC equation goes over the 1970s whéanAlnd Cahn in-
troduced it to describe the motion of anti-phase boundaniesystalline solids[[2].

Recently, it has been widely used to model various phenonmenature including bi-

ology, image processing, fluid flows, and material sciencgudlly, it is a basic model
equation for the diffuse interface approach to study phaparation and inter—facial
dynamics in material science. The generalized AC equatioa bounded domain
Q) C RY(d < 3) is given by

up = p(u) (€Au— f(u)) in Qx(0,7], (2.1)
u(x,0) =up in Qx {0},

with suitable boundary conditions such as periodic boundandition [18[ 23], homo-
geneous Neumann boundary condition| [22,[31, 35] or homagenBirichlet bound-

ary condition [33/ 50]. In the above, represents the phase state between materials,
the parameter is known as the interaction length, capturing the domimpéfiect of

the reaction kinetics and represents the effective difftysif (u) = F’(u) is an energy
function, andu(u) is the non negative mobility function which describes thggits

of phase separation.

It is well-known that the AC equation is a gradient flow withapunov energy func-
tional in L?

2
E(u) = / (%WUF + F(u)) dz, (2.2)
Q
with the convex double-well energy functidn [32) 54| 55]
1 2\2
Flu) = (1 —u??, (2.3)

or the non—convex logarithmic energy functionl[12, 68]

F(u) = g[(l —u)In(l —u)+ (1 +u)In(l +u)] — %uz, (2.4)



whered is the absolute temperatug,is the transition temperature with< 6.. Note
that the logarithmic free energy function is usually apjpmated by the double well
energy function whed is close tod. which has the advantage of being smooth.

If the double-well energy functiod (2.3) is taken into cafesiation, f(u) = u® — u
represents the bi-stable non-linearity. The bi-stabititynes from checking the sign
of f(u) on various intervals at the equilibrium points= 0, v = 1, andu = —1. It

is easily seen that = 0 is an unstable equilibriumy = 1 andu = —1 are stable
equilibrium which leads to new behavior. When we obtain sohg withu > 0, the
stateu = —1 is not relevant and traveling waves occur. However, if tHatgms are
betweenu = —1 andu = 1, we have a rather interesting competition between equal
and opposite stable states. When the logarithmic free eriengyion [2.4) is consid-
eredf(u) = ¢In (%) — 6.u in which the logarithmic terms describe the entropy of
mixture. The AC equation is considered with the double—wetential and constant
mobility in all numerical studies [33, 34, B5,]54,/55] 81].[&8] it is introduced with
degenerate mobility function and logarithmic free energythe first time. The de-
generate mobility function is introduced aéu) = (1 —u?), B is a constant, which

is thermodynamically reasonable choice. The main progesgiya mobility function
should have is that it is zero in the pure component, i.e, whent-1, and the mobility
function should be positive fau| < 1.

The mobility functiony(u), and both energy functionals (2.3) arid {2.4) and their
derivatives are Lipschitz continuous fak, u, € R with the constraintgu; »| < 1

[75] :

[p(ur) = p(uz)| < Ly, fur — usl,
| f(ur) — fluz)| < Ly lug — ugl, (2.5)
| (ur) — f'(ug)| < Ly [ur — gl

with L, Ly, Ly > 0 stand for the related Lipschitz constants.

The main characteristic of the AC equation is the energy ylecaperty obtained by
differentiating the energy functional(2.2) to get

d

cltg( u) = /Q(f(u)ut+62Vu-Vut)dx

_ /Q (F(u) — EAu)udx

- - /ﬂ (ur)?dx

where we have used integration by parts and apply periodimdery condition or
homogenous Neumann boundary condition. Therefore, thédokrgy is decreasing
intime, i.e.,

E(u(ty)) < E(ultnm)), Vi, > tm. (2.6)

In addition to energy decreasing property, the other maamaiteristics of AC equation
are



e NO mass conservation:

/ u(x,t)dx # / u(x,0)dz.

Q Q

e Phase separation:
When the time is large enough, the solutianx, t) shows the combination of
intervals ofu(x, to) = 1 andu(x,ty) = —1 at the timet = ¢,.

e Metastability phenomena:

In the time evolution of AC equation, the solution pass tb&atate in a short
period and transforms to another state dramatically.

The presence of the small inter-facial parameter the equation and inherent non-
linearity leads to the difficulties in the numerical solutiof AC equation. To overcome
these difficulties the spatial mesh sixe and the timeAt has to be identified properly
to have an accurate and efficient solution. In most of theissydinite difference
[18,[73], spectral elements [23], continuous finite elenf®b}, LDG methods[31, 39]
are used for space discretization of AC equation.

Designing energy stable time discretization methods wbaiserve the decay of dis-
crete energy is also a significant topic in the numericaltsmiuwf AC equation. Most
of the energy stable methods for AC equation have been deeMith constant mo-
bility function. It is observed that the small values of th#u$ion parameter leads
to stiff systems after spatial discretizations. In thissgdBMEX methods are developed
(see for example [69]), since the explicit methods are nibaksie for stiff systems and
the fully implicit systems require solution of non-lineaguations at each time step.
In the semi-implicit schemes, the linear stiff part is teghimplicitly and the non-
linear part explicitly, so that at each time step a lineateysof equations is solved.
Since the semi—implicit methods have time step restriciibrerently, parametrized
energy stable methods are developed like the IMEX metHo@ls fandard integra-
tors like Crank-Nicolson method [34] and linear multi-stapegrators[[33]. Recently
high accurate time integrators like the spectral deferm@dection methods [55] and
exponential integrators [73] are applied for solving the équiation.

In this work, we use interior penalty discontinuous Galerfnite elements method
(IPDGFEM) for the space discretization [5)63]. The DG melhwere first introduced
in 1973 by Reed and Hil[[62] for the solution of steady-stageitnon transport being
a first-order hyperbolic problem. Then, Dougles, Dupont Witeeler [27| 80], and
Arnold [5] developed the DG methods for elliptic and parabploblems. Afterward,
the DG methods for elliptic problems were developed in 718361/ 65] and for the
ones with advection in [6, 14, 24,138,146].

In recent years, the DG methods have become so popular siegexhibit attractive
properties of both classical finite elements method (FEM) famte volume method
(FVM). The combination of pros of both methods gives the DGhuds flexibility,
stability, conservation of local quantities, robustnessd eompactness properties. The
discontinuity of the functions in DGFEM space along the rinedement boundaries
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brings in the flexibility of DG methods. Then, one can constunstructured meshes
or hanging nodes to handle the complex geometries. In addiifferent order basis
functions on each element can be used with DG discretizatience, it allows to use
in hp-methods|[[70] which arranges the mesh elements and alsadlee af polyno-
mials on each element adaptively. The stabilization of DGhoe@s are handled via
the penalty term which penalizes the jumps of the solutiotherelement boundaries.
Since the stability in DG methods are inherited by this wiagre is no need to propose
additional stabilization as in the classical FEMs. The DGhuods locally conserve
several physical quantities such as mass and energy, wlaigh @n important role in
the flow and transport problems. Moreover, the sharp grésli@mthe singularities in
the mesh can be locally detected owing to the fully discardus polynomial repre-
sentation of the solution. In addition to all, the (Dirict)lboundary conditions in DG
methods are imposed in a weak manner. In this way, one notanty a scheme which
is robust on the boundary conditions but also do not need rietnact finite element
spaces with certain conditions on the boundary. Besidesakhdvantages, DG meth-
ods have some drawbacks. Compared to the continuous finiteeete methods, DG
methods produce systems with larger degrees of freedomnilazmhditioned matrices
increasing linearly with the order of basis functions.

For time discretization, energy stable implicit Euler nogtland AVF method is used.
Implicit Euler method is the most popular energy stable metht is strongly energy
decreasing, i.e. the discrete energy decreases withoukatrction on the step size
At for very stiff gradient systems for enough smal41]. The AVF method is the
only second order implicit energy stable method [17, 41] &mpdeserves energy de-
creasing property for the gradient systems and for systathd ywapunov functionals.
The mid-point method corresponds to AVF method for quadsaton-linearities. For
gradient systems involving higher order polynomial or gaheonlinear terms, the
mid-point method is not energy stable [41]. Higher ordemrgnelecreasing methods
with orders> 3 are the discontinuous Galerkin-Petrov in time methods(ditferent
trial and test functions) [66] and Gauss Radau IlIA Runge-Ketiiocation methods
[42]. However, they require coupled systems of equationsaah time step which
increase the computational cost.

In this chapter, we first construct discontinuous Galerkintdielements method based
on the interior penalty method for the general Poisson prakih Sectio ZJ1. Then,
in SectiorL 2.2, we give the SIPG discretization of AC equatar Dirichlet, Neumann
and periodic boundary conditions. Section 2.3 presentsrtieediscretization with the
implicit Euler method and AVF method, where solution of thennlinear equations
are described in detail. Unconditionally energy stabidifythe fully discrete scheme
is given in Sectiofl 2]4. In Sectign 2.5, a time adaptive atlyor is presented. Lastly,
several numerical examples are given Sedtioh 2.6 to demawe@she applicability of
the DGFEM discretization coupled with time integratorstfoe AC equation.
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2.1 Interior Penalty Galerkin Method

In this section, the construction of interior penalty Ghier(IPG) methodl[4] 63] ap-
plied to the general Poisson equation

—eAu = f in Q, (2.7)
w =gp on oNP,
eVu-n =gy on o0V,

with 9Q = 90QP U 9N andoQP N QY = () is presented since the construction of
interior penalty Galerkin methods concern with the difturspart of the problem.

We first give some basic definitions used in the constructiol?@ methods. On a
polygonal domain iR?, for 1 < p < oo, the spaceé?(2) are defined by

LP(Q) = {w Lebesgue measurable [|w||7,, < oo},

with the norms
1
)y = (fi lw(@)Pd)"’” L 1<p<oo
HwHLw(Q) = esssup{lw(z)|:x €Q} |, p=o0

Along this thesis, thd.?(Q2) space which is a Hilbert space given with the uslial
inner product

(u,w)q = /Qu(:v)w(:v)dsn ;Nwllz2) = V(w, w)a.

Let D(£2) denotes the subspace of the sp@€ehaving compact support . For any

multi-indexy = (71,...,74) € N? with |[y| = 3_% ~,, the distributional derivative

D"w is defined by

ol

Q
Then, the Sobolev spa¢&*?) is introduced as
WEP(Q) = {w e LP(Q) : D'w € LP(Q), V0 < |y] < s}.

Our main interest along this thesis is the Sobolev spacengigé/*()) = W2 (Q)
for an integers with the associated Sobolev norm

[w]
0<|v|<s

1/2
Ho(Q) = ( > D”wiqm) ,
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and the associated Sobolev seminorm

1/2

[w|gs ) = | Vw2 = Z IDYw|Z2 )

[vl=s
The Sobolev spaces with vanishing functions on the domaimd@ry are defined by
Hy(Q2) = {w € H*(Q) : wlpa = 0},
and we have fog = 1
HY(Q) = {w e L*(Q) : Vw € (L*(Q))"},
Moreover, for a partition (most possibly trianglég) of 2 the broken Sobolev spaces
are defined by
H(Ty) = {w € L*(Q) : w|p € HY(E) , VE € Ty},

with the associated broken Sobolev norm

1/2
oy — ( 5 uw\zm) |
E€Ty,

and the associated broken gradient semi-norm

1/2
(wlpo(7,) = (Z HVwHia(E)> :

E€Th

[[]

Now, we are ready to construct the IPG method. {{Bt} be a family of shape regular
meshes with triangular elements, i.e., there exists a anthstsuch that

2

B
=K
ser, |B] =

wherehg is the diameter an¢lF| is the area of, and also the elements; € 7,
satisfies) = UE andE; N E; = () for E;, E; € T,. We split the set of all edges),
into the set of interior edgek}, the set of Dirichlet boundary edgés’ and the set of
Neumann boundary edgé’, so thatks;, = E? U E? with E? = EP U EYY. Then, set
the finite dimensional solution and test function space by

Vi ={ue L*(Q):ulg € PUE), VE € T} ¢ Hy(),

whereP¢(E) denotes the set of all polynomials éhe 7, of degree at most. Note
that the space of solution and test functions are chosentteelgame since the bound-
ary conditions in DG methods are imposed weakly. In cont@stontinuous finite
element method, discontinuous Galerkin methods are daitaluse non—conforming
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Figure 2.1: Left: two neighbor elements sharing an edge, (Rt element adjacent
to boundary of the domain

spaces in which case the functiondin¢ c H;} are allowed to be discontinuous along
the inter-element boundaries.

Because of the discontinuity of the functionsiinalong the inter element boundaries,
there are two different traces from the neighboring elesishairing that edge. Ac-
cordingly, let us first give some notations before the camesion of IPG methods. Let
the edge: be a common edge for two elemeriisand E; (i < j), (see Figuré 2]1).
Then for a scalar function, there are two common traces @falonge, denoted by
u,, frominsideE; andu,,, from insideE;. Then, the jump and average @&cross
the edge: are defined as

1
) = e = g Des - {uk = 5, + ),

wheren, is the unit normal to the edgeoriented from~E; to £;. Similarly, we set the
jump and average values of a vector fi&ld on e

1
[VU} = VU’|E1 ‘Ne — VU|EJ * De, {VU} = §<VU‘E1 + VU‘EJ')’

Observe thatu| is a vector for a scalar functiom, while, [Vu] is scalar for a vector
field Vu. On the other hand, for a boundary edge FE; N 0f2, we set

u] =u,n, {u}=v,, [Vu=Vu, n {Vu}=V,
wheren is the unit outward normal to the boundaryeat

Now, the IPG method discretization of the diffusion partted problem is constructed.
If we multiply the continuous equatioh (2.7) by a test fuanti € V},, integrate over
(2 and split the integrals, we obtain

— Z/EeAuvd:B: Z/Efvdx

EcTh E€T

Applying the divergence theorem on every element integvaisy
Z / eVu - Vodr — Z / e(Vu -n)vds = Z / fodx + Z /ngds
E oFE K eEE,N e

EcTy, EcTy, EcTy,
Using the jump definitionsy(<€ V}, are element-wise discontinuous), we get

Z /EEVu~Vvdx — Z /JevVu]ds = Z /Efvdx—l— Z gnvds

E€Th e€ EQUEP EE€Th, ecEN V€
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It can be easily verified thatvVu| = {eVu} - [v] + [eVu] - {v}. Also, using the fact
that[Vu] = 0 (u is assumed to be smooth enough so ¥atis continuous), we get

Z /EEVu-Vvda:— Z {eVu} - [v]ds = Z /Efvdx—i— Z gnvds

E€Th e€EJUED ” ¢ EE€Th ecEN 7€
However, the left hand side is not coercive, even not symmelo handle this and to

penalize the solutions, using the fact thgt= 0 along the interior edges (s assumed
to be continuous), we reach at

Z /EGVU - Vudzr — Z /{EVu} - [v]ds — Z {eVo} - [u]ds

EET; e€ EQUEP ecEp " ©
+Zhie/€[u]-[v}d3: Z/Kfvdx—l— Z/engds
EGE?L E€Ty, EEE}IL\’

whereh, denotes the length of the edgeand o is called the penalty parameter. It
should be sufficiently large to ensure the stability of the d€&retization with a lower
bound depending only on the polynomial degree such thatDgorbblemss = g(q +

1)?> ando = 3¢(q + 1) for 2D problems.

Finally, by keeping unknown on the left hand side and impgd$irichlet boundary
condition on the right hand side, we add to the both sides dge étegrals on the
Dirichlet boundary edges

> /E Vu-Vode— ) [{eVu}-[lds+K Y [{eVo} - [ulds

EE€Th, e€BJUEP ©° e€EQUEP 7 ¢
+ Z hie/e[u]-[v]ds: Z/Efvdx%— Z/egD (h%v—er-n)ds
ecEYUEP EeTh ecEP

+ Z gnvds.

eeE}]LV ¢

which gives the IPG formulation. In this formulation, therpaeters determines the
type of the IPG method. It takes the valuestore {—1,0, 1} giving that

e I = —1: symmetric interior penalty Galerkin (SIPG) method
e I = 0: incomplete interior penalty Galerkin (IIPG) method

e IC = 1: non—symmetric interior penalty Galerkin (NIPG) method

In this thesis, symmetric interior penalty Galerkin (SIRf®thod is considered.
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2.2 SIPG Discretization of Allen-Cahn Equation

In this section, we describe the DG discretization basedIB&3nethod applied to
the diffusion part of the AC equatiof (2.1) for Dirichlet, Weann [63], and periodic
boundary conditions [76]. Using the definitions and notatirom the previous sec-
tion, the solution of[(Z]1) reads as: for each (0, '] find u,(t) € V}, such that

(@uh, Uh)Q + ah(m; U, Uh) + bh(uh, Uh)Q = ]h(Uh), Yo, € Vj, (28)

whereby, (up, vn)q = (1(u) f(u),v) and the bilinear form is of the forma, (x; u,v) =
an(k;u,v) + J2 (k3 u, v) with

(K3 up, vp) Z / kVu - Vo — Z {kVu} - [v]ds

E€Tn ecE) V¢

— Z {kVv} - [u] + Z Uﬁ/
e€E) € e€EY)

In the above formula, the mobility functigmn(«) is computed explicitly as in form of
the integraleeE p(u™)dS2, whereu™ denotes the approximate solution at the previous
time stepn as for continuous finite elements in the Cahn-Hilliard equrafB, 4, 12].

In the DG discretized bilinear forni (2.8) stands forx = fEeTh ep(u™)d. The
the bilinear formay, (x; uy, vy,) includes the face integrals only on the interior edges,
the termJ? (k; uy,, vy) includes the corresponding face integrals on the boundiggs

and together with the right hand sidgv,). So, it changes depending on the boundary
conditions. If Dirichlet boundary conditiom, = ¢gp, is prescribed, we set

J(kyu,0) = — Z {kVu} - [v]ds — Z {kVv} |

ceEP 7€ ecEP V¢
n Z 0/{/
eeED
In(v) = Z /(—U—HVU n) gpds.
ecED V€

In the case of Neumann boundary conditietV« - n = gy, they become

J,?(/f;u,v) =0, Z /ngds

eGEN

When periodic boundary condition is applied, the periodigesdare treated as un-
known, in other words, as interior edges with appropriatendmns of the so—called
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jump and average terms. In this case, the set of all edyéas splitted into the set
E} of interior edges and the séf“" of periodic boundary edge—pairs. An individual
element of the seE})" is of the formw = {E;, E,,} whereE;, C 0K, N 09, and
E,, C 0K,, N 02 is the corresponding periodic edge-pair i6f with [ > m, and
we associate with each a common normal vectat that is outward unit normal to
E, C 0K, N 0N. Then, for each such, we define the jump and average operators

1
[wlo = ulgn —ulg,n,  {ufo = 5 (uls + ulg,).

In this case, we have

Tru0) = = > [ {&Vul, luds = D [ {xVo}, - [ul
weEPeT V¥ weEPeT ¥
ol
+ h—/[U]w-[U]wds,
weEﬁcr E w
and/,(v) = 0.

2.2.1 Semi-Discrete System in Matrix-Vector Form

The approximate solution of the semi—problém](2.8) hasdha f

un(t) = ijf;”(t)w;” (2.9)

m=1 j=1

where7" are the basis functions &, and¢’" are the unknown coefficients, is local

dimension withn, = ¢ + 1 for 1D problemsyn, = @)@t for 2D problems, and
N is the number of intervals for 1D problems or the number @ngular elements
for 2D problems. In DG methods, the basis functigrjss are chosen in such a way
that each piecewise basis polynomial has only one triangla aupport, i.e., on a
specific triangleF,, e € {1,2,..., N'}, the basis polynomialg; are zero outsidé..
This construction makes the stiffness matrix in DG methddslbstructure, each of
which related to a triangle. The produtif := N = n, gives the degree of freedom
in DG methods. Inserting the approximate solutignin (2.8) and choosing the test
functions aso, = ¢}, j = 1,2,...,n4, m = 1,2,..., N, the semi—discrete system
(2.8) in matrix vector form is given by

M&+ A+ r() =1L, (2.10)

where¢ € R%/ is the vector of unknown coefficient§™s, M e R%/*%/ is the

mass matrix A € R%/*d/ s the stiffness matrix corresponding to the bilinear form
an(k;up,vp), 7 € R/ is the vector function of related to the non-linear form
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ru(un,vp) and L € R/ is the load vector related to the linear tediy(vy,). The
explicit definitions are given by

My My -+ My A A o Ay
M = Mo Mo : A= Agr An :
M;v,1 e | My N Az'v,1 T | AN N
&1 Iy Ly
¢ = &2 ) = 1“.2 CL- Lo
99 r'n Ly

where all the block matrices have dimensign

Jt

(6, 6) - ]

[an(r; ¢4, 61)  an(r; 05, 1) -+ an(k; o, 61)
A= an(K; 91, d5)  an(k; ¢, ¢3) : ’
Lan(k; 01, &), an(K; ¢, &3,
& (U, 9}) In(})
&= ;é , Ii= Th(u’;“%) , Li= ]h(:%)
&, rn(Un; B3, 1n(9},,)

2.3 Time Discretization by Backward Euler and AVF Method

In this section, the fully discrete formulation of AC equati(Z.1) in matrix—vector
notation is given by using the backward Euler method and Aéfhmd time integrators
through the semi—discrete formulatién (2.10).

2.3.1 Time Discretization by Backward Euler Method

We consider the semi—linear system of ordinary differ¢etipations

M&+ A+ r(6) =L, (2.11)
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for the ordered unknown coefficient vector

E=(El,..., &8, .. & .. &, e
Let consider the uniform partitiod = t, < t; < ... < t; = T of the time interval
[0, 7] with the uniform time step-siz&t¢ = ¢, — t,_1, k = 1,2,...,J. Fort = 0,
letu,,(0) € Vj, be the projection (orthogondP-projection) of the initial condition,
ontoV},, and let{, be the corresponding coefficient vector (ordered) satighy?.9).
Then, the backward Euler method applied to the semi linestesy[2.1]1) reads as:
forn=0,1,...,J — 1, solve

ME, .1 — ME,
§+1At 5 +A£n+1+7n<€n+l> = Ln+1a

(M + AtA)£n+1 + At'f’(fn+1) - Ath+1 = Mgn,

which is the fully discretized system that we will solve fpr.,. We solve this non-
linear system of equations using Newton’s method in Algponitl. From the algebraic
point of view, Newton’s method corresponds to solving the-tinear equations

R<£n+1> = (M + AtA)£n+1 + At’f’(gnJrl) - Ath+1 - an (212)

Algorithm 1 Newton’s Method

given initial guesg’
for k=0,1,2,...do

OR .k _
solveagan =R

update solutiog"*+! = ¢+ + s+

end for

Starting with an initial guessﬂl, thek — th Newton iteration to solve the non-linear
equation[(Z2.12) for the unknown vectgr, ; reads as

Js® = —Rr(El)),  dV =l +sW ) k=01, (213)

until a user defined tolerance is satisfied.[In (R.1/33tands for the Jacobian matrix of
R(&,41), whose entries are the partial derivatives with respe€t t@

OR; .
Jii = , 1,7 =1,2,...,ny X N
a(gn—i-l)j I
at the current iteration. It is easy to differentiate theedéinterms, to differentiate the
nonlinear term using the expansiop = >7*" ¢,4* ordered version of{219), we
obtain
ori(§) 0 N
HS - — 3¢ unfu ,’QDZ, 27]21727'--7]\[
©) = 5o = g WD flw). o)
= ) [ v
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where f(u) is the double well potential or the logarithmic function iaranodel. We
finally reach

J=(M+ AtA) + AtH (&n4q). (2.14)
Note that the Jacobian matriX is in the form of
ori(§)  ori(§) . (&
861 852 aEN
HE)=| ET
orn(§) Orn(§) .. 9rn(§)
861 652 agN

2.3.2 Time Discretization by AVF Method

The semi-discretized AVF equation is a gradient system
u=—-VE(u)

evolving into a state of minimal energy. Gradient systenesdaracterized by the
monotonically energy decreasing property of the potential

E(u(t)) < E(u(s)), fort>s.

In the numerical approximation of the gradient systems, dasirable to preserve the
energy decreasing property monotonically

g(u(tn)) S g(u(tn—l))a forn = 172
The average vector field (AVF) method
1
Up = Up_1 — At/ VE(Tu, + (1 — T)uy_q)dr
0

possesses the energy decreasing property without resirict step sizeg\t. Itis a
modification of the implicit mid-point rule. IN[25, 41] high order variants of the
AVF methods for Hamiltonian and Poisson systems with Gaueggndre collocation
points are given. As Gauss-Legendre Runge-Kutta methodsAiF method, and
higher order versions do not have damping property for viifysgstems, whereas for
discontinuous Galerkin-Petrov methods and Radua Il Rung&Kunethods, the en-
ergy decreases monotonically without restriction to tlep sizeAt and the Lipschitz
constant forVE(y). But they require solution of coupled system of equationscivh
increases the computation cost for 2 and 3 dimensional A@tems, where efficient
solution techniques are required [30]. The AVF method carebarded as an efficient
integrator for the AC equation, i.e. the integrals by the D¥gnisdiscretized can be
computed with the desired accuracy at low cost.

The AVF method is equivalent to the Petrov-Galerkin discardus Galerkin in time,
when the trial functions are piecewise linear and the testtfans are piecewise con-
stant, which are given by

tn
Up = Up_q — / VEAt Mt —ty 1)up + At (t, — t)u,_)dt. (2.15)
tn—1
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With the time parametrizatiot(7) = ¢,_1 + (¢, — t,—1)7 and using the change of

variable formulation
tn 1 di(T
| swai= [ g S
tnh—1 0 T

we obtain for the integral term il (2.115)

tn
Up = Up_q — / VE(AL™ (t —ty_1)uy + At (ty — O)uy_y)dt
tn—1

1
= Upy_q — At/ VE(Tu, + (1 — T)uy,_q)dr
0

which is the AVF method on the intervgl,_, ¢, ].
The semi-linear system of ordinary differential equatiass gradient system

Mg = —VEE) = A +71(&) - L (2.16)
for the ordered unknown coefficient vector

5: (5117"'7571Lq7£%7‘"75’3(17"‘76{\/7"'75’2{1)7—‘7

same order for the basis functions. Let consider the same inierval partition in
the previous section. Then, for= 0, letu,(0) € V}, be the projection (orthogonal
L?-projection) of the initial condition, ontoV},, and let¢, be the corresponding coef-
ficient vector (ordered) satisfying(2.9). Then, the AVF huet applied to the gradient
system[(Z.16) reads as: for=0,1,...,.J — 1, solve

M1 — ME, !
§ HAt 3 = —/0 VE(T&n1 + (1 —7)&,)dr

1
M = Mé, + Al / L — A(réun + (1 — 1)&)] dr
0

N J/

~
linear

1
+ At/ r(7ént1 + (1 —71)&,)dr
0

J/

WV
non—linear

After a simple calculation for the linear part, we get

At
My = M&+ AL + (Al + Abur) (2.17)

1
+ At/ (7€ + (1 = 7)&,)dT
0
which is the fully discretized system that we will solve fgr ;. We solve this non-

linear system of equations using Newton’s method in Aldgonifl. Newton’s method
for (2.117) corresponds to solving the non-linear equations
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R(gnJrl) = M£n+1 - AtL - an + %(Agn + AgnJrl)

1

LA / (s 1 (1— )€ dr (2.18)
0

= 0.

Starting with an initial guesfg(ﬂzl, thek — th Newton iteration to solve the non-linear
equation[(Z.1B) for the unknown vectgr, , reads as

until a user defined tolerance is satisfied.[In (R.199tands for the Jacobian matrix of
R(&,41), whose entries are the partial derivatives

OR;
a(§n+1)j 7

at the current iteration. It is easy to differentiate theéinterms in[(Z.18)

Jij: i,j:1,2,...,nq><N

0 At At
(M§n+1 - an — AtL + _(Afn + Agn-i—l))l = Mij + _AZ]
I(&nt1); 2 2

We apply the chain rule to differentiate the non-linear term

0
a(£n+1)j

87’1'
a(£n+1)j

1 1
At/ ri(t&r + (1 =7))dr = At | 7 (T&nr1 + (1 = 7)&,)dr
0 0

nq><N

where, using the expansion = >/ &.¢", ordered version of (29),

o5 04

() f(un), ©")a, i,j=1,2,...,ngx N  (2.20)

We obtain finally

J =M+ %A + At/ I (rEEY 4 (1 = 7)€,)dr. (2.21)

0

where J, (Tf‘n'f{l + (1 — 7)¢&,) is the differential matrix, whose entries are given in

(2.20), atrfn’fll + (1 — 7)&,. At each Newton iteration, we approximate the integral
term in [2.21) using the fourth order Gaussian quadratuee ru
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2.4 Energy Stability of Fully Discrete Scheme

Itis generally accepted that the fully discrete energylstathemes should preserve the
discrete energy dissipation as their continuous parts;twleads to qualitatively better
approximations. The continuous (in time) energy of the séisgrete AC equation is

given as([31] :
h ¢ 2
Eu) = S IVulliaer) + (F(u), o
2

T Z( ({20,u}, [u)) g gZG(M,[uDE). (2.22)

EcE}

On the other hand, the discrete DG counterpart of the comtinenergy[(2.22) at a
timet" = nAt reads as

2
n € n n
Epeu®) = = ||VU Hi%h) + (F(u"), 1)

0'62

- Z ( {0,u"}, [u"]) g + —([u"], [u”])E). (2.23)

EcE) 2hs

In this section, we show that backward Euler and AVF methqidied to the semi-
discrete systeni (2.8) are energy stable through the diseretrgy[(Z.23).

2.4.1 Energy Stability of Fully Discrete Scheme with BackwarcdEuler

When the backward Euler method applied to the semi-discysters [2.8), the SIPG
discretized fully discrete scheme is given by

1
Kt(un“ —u", @) + an(p(u™)eu™ q) + by ("), )o =0, Vg€ Vi, (2.24)

where the bilinear formy, (¢; u, v) is given by

an(p(u™)eu,v) = Z/ M2V - Vvda:—z {u(u™EVulvlds

Eer, GEO €
-y e{u pevutlds + 3 U0 [igpas,
e€EY e€EY
wa) = 3 [ pla)f(wgds
Eery,
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Takingg = u™* — u™ in (Z2.24), we obtain

1
un—i—l _n o, ntl 2., n+l n+l un)

At( u-,u _un)Q + :u(un)ah<€ ;U , U
+ (U (f @), um = u)g
0

By using the identity(a,a — b)qo = £ (a? — b* + (a — b)?, 1) and the bilinearity ofi,,
we get

1
) S, ) = ) S o) (2.25)
1
+p(u )§ah( T — "yt — ) =0

Expanding the tern#(u™) aroundv™*!, and neglecting the higher order terms, we
obtain

F(u") Fu™h) — F'(u™™) (" — u™)
F(u") Fu™h) — f(u™™) (u" ™ —u™) (2.26)
(fu™ )™ —u)o ~ (Fu"), 1) — (F(u"), 1.

Q

Note that the bilinear form, (¢?; u" ™!, u"*1) satisfies

2
an(uumt) = %uw"“nim—z {EVar ] ds
eeE,OL ¢
+ Z w72 ) (2.27)
BEEO
> 0

since all the terms in[((Z.27)) are non—negative (5ek [68, 8&.1] for positivity of
edge integral term). Similarly, we haug(e?; v — u™, ™ —u™) > 0. Using these
identities, and substituting the last equatiorin (P.26) {&.2%), we obtain

1 1
n+1 Con+1 n n+1 n
0o > (Atu(u” [u" = u HL2 +2ah( T T T )
1 1
~ (Fu"™),1)q + Eah(GQ; u"tum ) — ((F(u”), o + éah(e2; u", u”))

= M) — E(un)

which implies thatt (u"*!) < £(u™). Hence, the backward Euler method is uncondi-
tionally energy stable.
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2.4.2 Energy Stability of Fully Discrete Scheme with AVF Methal

Time discretization of semi-discrete systdm|2.8) by thé-AWethods, leads to

1
At(

1
uptt =g, vn)a + M(uh)2ah(€2 uptt 4+ ujl, o)

1
+ p(up) / (f(rup™ + (1= 7)up), vn)odr =0, Vv, €V,
0
Takingv, = u;™! — u2, we obtain

1
At

( n+1 n+1 n+1 n+1

up™ — g, up —up)o + N(Uh>2ah<€ up gy, uy, — up)

1
T / (™ + (1= 7)), uf — uf)odr

= 0.

By using the identitya + b,a — b)q = (a® — 1?, 1) and the bilinearity ofi;,, we get

1 1
A T = e+ ) [ (1= n) - a)adr
0

1 n n n 1 n n
+ N(Uh>2ah<€ “hH;UhH) N(uh)iah(g;uhvuh)
= 0. (2.28)

Taylor expansions of” aroundu} andu}*! leads to
F(up) ~ F(rup™ + (1= 7)up) = f(rup™ + (1= m)up)(r(uy™ = up)),
Flup™) ~ F(rup™ + (1= 7)up) + f(rup™ + (1= 7)up)(1 = 7) (™ = up)).

SubtractingF (u}) from F(u}*') and ignoring higher order terms including the deriva-
tives of f, we obtain

Q

F(up™) — F(up)
(F(up™), Da = (F(up), Da

f(
(f
/O (F(u), e — (F(u™), Dg)dr ~ / g (1= 7)), — uf)adr

Tup ™ 4+ (1= m)up) (up ™ — )
(Tuf ™ 4+ (1 = 7)uf), uf ™ — uf)a(2.29)

Q

[e=]

1
/ (f(rup™ + (1 = 7)u™), uf ™ — uf)odr
0

E
;“‘3
+
[S
:_/
=
2
|
=
—~
I
>3
=
2
2
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We note that the bilinear formm, (e; v, v" ') satisfies

ah(GQ;u"H,unﬂ) _ 2Hvun+1”L2(§2) 22 /{62vun+1} n+1]
EcE?
0'6
+ Z w2 > 0. (2.30)
EeE0

Similar to previous case all the terms[in (2.30) are non-tegéseel[63, Sec. 2.7.1] for
positivity of edge integral term). Then, we havg(e?; "™ v ') > 0 and similarly
an(e%;u™, u™) > 0. Using these identities and substituting the last equatiq@.29)
into (2.28) we obtain

1

oy Juh™ = ]| oy = pilup) ((F(uzﬂ) Do+ 2ah(e urtt UZ+1))

~ ) (PR Do+ Gon(e ) )

|| n+1_uZHL2(Q) ~ (F(UZ'H) 1)9_'_ n+1 n+1)

1
2%(6 up Uy

1
= (F(), Do + ol af, o),
= St (),

which implies that€ (u}™!) < £(u}), i.e., AVF discretized scheme is energy stable
through the discrete enerdy (2123).

2.5 Time Adaptivity with Average Vector Field (AVF) Method and Ripening
Time

The solution of AC equation includes transition layers hew stable equilibriums.
The initial dynamics require small time steps as the traorslayers are formed. Then,
the metastable state is formed and during the metastaldée gta dynamics changes
not much, larger time steps are required. Moreover, thesesition layers changes
rapidly by crossing the zero axis with the time scale of etioflu At the moment
where the solution crosses the zero axis, it takes its mimmumaximum value and
this time is named as ripening time. To determine the ripgtime arising from rapid
changes in the solution, and steep gradients in transiigers the uniform time steps
are inefficient as shown in [23, 81]. We use adaptive timepstepto resolve the
multiple time dynamics of the AC equation. The time adaptivs required a local
error estimator. In our time adaptive algorithim {2.2), focdl error estimation two
discrete solutions.., u, of orderp + 1 andp are computed in parallel such that

ur(7) = u(r) + O(r"%),  ir(7) = u(r) + O(7"*),
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wherer denotes the time steft. Then
e = |lur(1) — @, = OTP* (2.31)

is an estimator of the actual of 4, measured in an Euclidean norm [26]. In the next
step, we search for the optimal step sizesatisfyinge, - < éror, whered o, denotes
a user specified tolerance. By insertion of betand 7* into (2.31), the estimation

formula
I p(STOL -
€r

is obtained with a safety factor ~ 0.9. Then, it is checked foé,- < d7op. Ifit

is satisfied, we accept the current time stépand use in the next step; or else the
current time step is rejected and the present step is repestie the time step™*. In
the successful case, the more accurate valge) will be used to start the next step.

In our time adaptive algorithm, the backward Euler methaodi AviF method are cho-
sen which are order gf andp + 1, respectively. When we lét-o;, — 0 the ripening
time estimates converge which matches the convergencersobution to an accu-
rate value. Moreover, it is expected that the required nurobéime steps follow

% = /10, wherep is the order of the method, and in our case 1. The

decrease ofro; by a factor of10 leads to erroe,,; = C7P™t. The new error will be
€new = C(v7)PTt = POt = pP+lG  wherer is a constant. Therefore the time
step size should be reduced by a factay/10 to reduce the local error by a facto.
The findings of this numerical method are presented in tHeviiahg section.

2.6  Numerical Results

In this section, we give several numerical examples demaititsg the accuracy and
stability of our numerical approach. In all numerical expwnts, we have used linear
elements for the space discretization. Only for the ripgrime calculations, linear
and quadratic elements are used for comparison.

2.6.1 1D AC equation with constant mobility function and dowble—well potential

We first consider 1D AC equation with constant mobilityu) = 1, homogeneous
Neumann boundary conditions in the doméint) € [—1,1] x [0,80] and with the
initial condition [18]

u(z,0) = 0.53x + 0.47 sin(—1.57x).

The diffusion constant? = 0.01 is taken as in[[18] where Fourier spectral elements
method and Strang splitting method are used for space aeddisoretization respec-
tively with mesh sizes\x = At = 0.02. The time discretization is performed by
backward Euler method and the mesh sizes are takéxwas: At = 0.01. In Fig-
ure[2.3, the evolution of phase function and energy are gividre solutions of AC
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Figure 2.2: Time Adaptive strategy
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equation move from one equilibrium to the other one, whidtnewn as phase separa-
tion. The interfaces between two stable equilibria move exponentially long times
between the region, which is known as metastability phemamd& he right plot in
Figure[2.8 shows the phase separation and metastable Istaty.cThe state of phase
function is reflected in monotonically decreasing numemceergy for both time dis-
cretization techniques. We have proven that backward EandrAVF methods are
unconditionally energy stable. Figure 2.4 shows the endegyease for different time
step sizes for both methods. It is clearly seen that both integrators are energy
stable independent of time step size.

0 20 40 60 80
t

Figure 2.3: Examplé_2.8.1: evolution of phase function aadag of the numerical
energy with backward Euler

2.6.2 1D AC equation with constant mobility function and dowble—well potential

We consider the 1D AC problem with constant mobilityt.) = 1, periodic boundary
conditions and initial condition with diffusion constant= 0.12 [81] in the domain
(x,t) € ]0,27] x [0,600]

u(z,0) = 0.8 + sin(z).

Computations are done with the step si2es= /50 andAt = 0.01 by AVF method.
The same problem was solved in [81] again using Fourier sgesgace discretization
with the mesh size\z = /64 and with adaptive time integration using Backward
Differential formula (BDF3)- Adams-Bashfort method (AB-3).

We see in Figuré 215 the fast dynamics from the initial caadito the metastable
state, where two transition layers are formed. Also, theemical energy is decreasing
monotonically.

For this problem, we also compute the ripening time givenabl&2.1. The calcu-
lations are done with linear and quadratic polynomials iacgp The time adaptive
algorithm is applied with initial time step size= 0.05 anddro;, = le — 04. We see

that our solution converges . = 546.5 as we expect. Also, the ratio of (6ro1)

converges ta/10 = 3.1622 which shows the reliability of our adaptive algorithm. In
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Figure 2.4: Examplie 2.6.1: decay of the numerical enerdy backward Euler method
and AVF method for different time stepast = 0.5 (top left), At = 0.25 (top right),
At = 0.1 (bottom left),At = 0.01 (bottom right)
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Figure 2.5: Examplé_2.8.2: evolution of phase function aadag of the numerical
energy with AVF method

Figure[2.6, the time step size evolution is presented. Weagee growth initially and
step by step decline since the metastable state is finished.
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Table 2.1: Examplé_2.6.2: Convergence of the ripening tinté e adaptive AVF
method using linear (quadratic) polynomials.

dror,  Ripening Time  # Time Steps M (645, )/M(5}5;)
1e-04 54952 (539.71) 480 (480) 3.02 (3.02)
1e-05 554.46 (544.54) 1515 (1515) 3.12 (3.16)
1e-06 555.99 (546.05) 4792 (4790) 3.16 (3.16)
1e-07 556.47 (546.52) 15153 (15152) 3.16 (3.16)

Time-Steps vs Time

20

15

0 200 400 600
t

Figure 2.6: Example2.8.2: evolution of time step sizes

2.6.3 2D AC equation with constant mobility function and dowble-well potential

2D AC equation with constant mobility(x) = 1 under periodic boundary conditions
and initial condition for the diffusion constant= 0.18 in [81] in the domain(z, y, t) €
[0, 27]? x [0, 33] is given as:

w(z,y,0) = 2e5n(@HsinW)=2 | 9 gp—sin(z)=sin(y)=2 | 7

We have taken as mesh si2a = Ay = 7/8 after three refinement steps in order to
obtain accurate solutions. The solutions with contourgpéot obtained for uniform
time integration by average vector field (AVF) method witle #tep sizeAt = 0.01.
The evolution of phase solution at different time steps a@vs in Figurd 2.J7. It is
observed that the smaller region is annihilated prior toléinger region. Both reach
the stable state af = —1 at the end as we expect.

The ripening time for different tolerances with linear angadratic polynomials is
given in Tablé 2.2.The time adaptive algorithm is appliethwnitial time step size =

0.05 andéror, = le — 04. We observe that the ripening time converges by decreasing
tolerance and the ratio is close to the theoretical ¢fi®. The numerical energy is
also decreasing for the adaptive time stepping in Figurdlf§ and until formation

of metastable state around= 30, the small time steps are required. Afterward, time
steps are increaséd .8 (right) .
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Figure 2.7: Example_2.8.3: evolution of phase function

2.6.4 2D AC with constant mobility function and double-wellpotential

We consider 2D AC equation with constant mobilitit:) = 1 under periodic boundary
condition for diffusion constant = 0.1 [39] in the domair2 = [0, 27| x [0, 27| for

0<t<0.5

U — GZAU + f(u) = g(l’,y,t)./
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Time-Steps vs Time
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Figure 2.8: Examplé 2.8.3: decay of numerical energy (lafi)l evolution of time
steps (right)

Table 2.2: Example 2.8.3: Convergence of the ripening tintle adaptive AVF method
using linear (quadratic) polynomials

6ror  Ripening Time # Time StepsM (62;)/M (845;)
1e-03 27.20(30.10) 209 (216) 3.12 (3.13)
le-04 27.33(30.24) 668 (692) 3.20 (3.20)
1e-05 27.37(30.25) 2121 (2197) 3.18 (3.17)
1e-06 27.37(30.27) 6707 (6956) 3.16 (3.17)

with the exact solution(z, y, t) = e~2*sin(z) sin(y). The source functiop is com-
puted from from the left hand side using the exact solutiohe Thitial condition is
taken to be consistent with the exact solution. We presenttterror and the numer-
ical order of accuracy for both time integrators in Tdblé & 3me7 = 0.5. We can
see that both methods witf elements have th@: + 1)-th order of accuracy.

2.6.5 2D AC with constant mobility function and double-wellpotential

We consider 2D AC equation with constant mobiljtyu) = 1 under homogenous
Dirichlet boundary conditiori [33] with diffusion constant 0.01 in the domair2 =
[0,27] x [0,27] for 0 < t < 120. We have taken the mesh sizeas = Ay = /8,
and uniform time step\¢ = 0.1 for AVF method. The initial condition is randomly
distributed from—0.01 to 0.01 to each grid point. In Figure 2.9, the corresponding
solution contours are plotted, the numerical energy iseBsing again monotonically.

2.6.6 2D AC equation with constant mobility function and logarithmic free en-
ergy

We consider the 2D AC equation with constant mobilify:) = 2 [68] and diffusion
constantis = 0.04 subject to periodic boundary condition in the dom@ia- [0, 27| x
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Table 2.3: Accuracy test for AC equation with constant mtbfbr backward Euler

method and AVF method\t = 0.03Az, Ax =7

Backward Euler Average Vector Field
Mesh Size L*—Error Order L?-Error Order
(Dof)
h(24) 1.605e+000 - 1.605e+000 -
P! h/2(96) 4.595e-001 1.80 4.595e-001 1.80
h/4(384) | 1.225e-001  1.91 1.225e-001 1.91
h/8(1536) 3.142e-002 1.96 3.115e-002 1.98
h(48) 4.179e-001 - 4.179e-001 -
P? | h/2(192) 1.027e-001 2.02 1.027e-001 2.02
h/4(768) 1.399e-002 2.88 1.400e-002 2.88
h/8(3072) 2.300e-003 2.60 2.308e-003 2.60

[0,27] for 0 < ¢ < 10. The logarithmic functionf(u) = £ In(3£%) — 6.u is given.
The initial condition isug(x,0) = 0.05(2 x rand — 1) where 'rand’ means a number
in [0, 1].

The spatial mesh size is takenAs = Ay = 7/8. The snapshots of phase evolution
is obtained with time adaptive algorithm for parameter gatu= 0.15, 6. = 0.30 with
time adaptive scheme. The initial time step size is 0.05 andd;or, = 4e — 03. In
Figure[Z.11, the corresponding solution contours and nigaleznergy are plotted. It
is clearly seen that the time adaptive solutions are in ggoeksment with the reference
solutions in[[68]. Figuré2.12 shows the progressivelyéase of time step based on
the energy evolution of the solution. When the coarseningines dominant (for
examplet > 1), the time steps become larger which shows that time adgptworks
well.

2.6.7 2D AC with degenerate mobility function and logarithmic free energy

We consider the D AC equation with mobility function:(u) = 2(1 — «?) [68] with
the diffusion constant = 0.04 in the domain2 = [0, 27| x [0, 2] for 0 < ¢ < 10.
The initial condition isuy(z,0) = 0.05(2 x rand — 1) where ‘rand’ means a number
in [0, 1].

The phase evolution is obtained for parameter vatues 0.50, 6. = 0.95 with time
adaptive algorithm where the initial time step size is 0.05 anddror, = le — 04. In
Figure[2.1B, the corresponding solution contours aregqidotind the numerical energy
decrease is seen clearly with time step evolution in Figutd.2

33



x10

o

N~ on

>

N W

t-

=5

oo

2 4 6
X

t=30

6

>3
2
1

o
5
4
>3
2
| .
00 2 4 6
X

|

t=120

0
0

2
X

I

0.04
0.02

o

-0.5

o

O
—_

o

o
on

Figure 2.9: ExampleZ.8.5: evolution of phase function
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Figure 2.12: Example_2.8.6: decay of numerical energy)(kfd evolution of time
steps (right)

t=0.4833

Figure 2.13: Example 2.8.7: evolution of solutions
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CHAPTER 3

THE CAHN-HILLIARD EQUATION

The CH equation is the most known model of phase separatiomadtoriginally
introduced by Cahn and Hilliard to describe the phase seaparahd coarsening phe-
nomena in a binary alloy [16]. It is also used as diffuse fiaie® model problem from
different application areas, such as, image processimgeplformation and cancer
growth. The fourth order CH equation in a bounded donfaia R?(d < 3) is given

by,

u = V- [pw)V(f(u) — €Au)] +g(z,t), in Qx(0,T], (3.1)
u(x,0) = wy in Qx{0},

or, equivalently, the CH systerin [40,]71, 82]

w = V[Vl + ga 1), in 9 x (0,7]
w = —Au+ f(u), in Qx (0,7], (3.2)
u(x,0) = wuy in Qx{0},

with the suitable boundary conditions such as periodic damncondition ([40]) and
homogenous Neumanr _(]11,/48]) or Dirichlet boundary coodif[53]). In the CH
equationu represents a relative concentration of one component ibitfagy mixture,
the parametee is related to the width of inter-facial layet,(«) is the non negative
mobility function,w is the chemical potential anf{u) = F’(u) is the homogenous
free energy in the Ginzburg-Landau energy functional/in'

g(@:/ﬂ(éwmuzr(u)) da. (3.3)

In the literature, the free energy functidi{«) is modeled in two different ways for
CH equation. The first one is a combination of logarithmic testated as logarithmic
free energy function and resulting in different forms in liberature
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F(u) = %(1 —u?) + g [(14+w)In(14+w)+ (1 —u)In(l —u)], (3.4)
* 12 0 0
F(u) = 5 (14 w)In(14+u)+ (1 —u)In(l —u)] — §u2, (3.5)
e [40,[79]

F(u) = g [ulnu+ (1 —u)In(1l —u)] — %uQ, (3.6)

wheref is the absolute temperatufgis the transition temperature with< 6 < 6..
Note that the logarithmic free energy function is a non—earfunction. The second
one is the convex double well energy function

F(u) = % (3.7)

which is the approximation of logarithmic free enerfy [3&8),[3.6) in case the ab-
solute temperaturgis close to transition temperatufg It is easy to see that double—
well energy function will favor two phases with densities= +1. The linear term in
double well potential is responsible for the interestingayics including the insta-
bility of constant solutions near = 0 and the nonlinear term is the one which mainly
stabilizes the flow. In logarithmic free energy functiore tbgarithmic terms describe
the entropy of mixture and the conditieh< 6. ensures that'(u) has indeed dou-
ble well form. Both logarithmic free energy functioris (3.43.3), (3.6) and double
energy function[(3]7) satisfy the monotonicity and Lipszitiontinuity conditions for
uy,uz € R with the constraint$u; »| < 1 [75]

(f(ur) = fluz))(ug — ug) > —Cy(uy — up)?,
|f(ur) — flup)| < Ly [uy — g, (3.8)
| (ur) = f'(u2)| < Ly Juy — ugl,

for Cy, Ly, Ly > 0 stand for the related Lipschitz constants.

The mobility functionu(u) can be constant or degenerate. In most of the studies
on the CH equation mobility functiop(u) is assumed to be constant. However, the
original derivation of CH equation includes degenerate titgbiAlthough the CH
equation has been intensively studied, little mathemiaginalysis has been done for
degenerate mobility. The CH equation with degenerate nmphilas introduced in
[28] and existence of the solutions are given. The commodbpted versions of
the degenerate mobility function afgu) = pu(l — u) [40,[79] andu(u) = 5(1 —

u?) [0, [11,[40,[82]. The first representation of mobility functiceduces the long
range diffusion throughout bulk regions. This is a good chaihen fluid flows with
immiscible components are studied. The second repres@niatthe most common
one and thermodynamically reasonable choice as well asrtedpresentation. By
these representations the diffusion process is restriotdite interface zone, i.e. itis
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zero in the pure component (i.e., when= +1) and the mobility function should be
positive for|u| < 1.

The CH model[(311) has two important global properties. Intiast to AC equation,
CH equation has mass conservation property, i.e., the totalat of phase in the
region(? is always equal to the given original amount :

& [ - /Q ot = /Q V- (u(u)Ve)de (39)

= / p(u)Vw - ndS = 0,
B

where the no flux boundary condition ( or periodic boundargdition) is applied
[20,(40,82].

CH equation has the dissipation of energy property similak@oequation. Since the
CH equation is a gradient flow of energy functional, the totadrgy is always non
increasing, that is,

Eg(u(t)) = El(u)(ut):/Qf(u)ut%—eZVuut:/ﬂwut (3.10)
= /QwV (p(u)Vw) = —/Qu(u) V| dS.

In the numerical solution of CH equation three main challsngppear; the non—
linearity in the system coming from energy function, thegerece of the parameter
e in the equations (usually small in phase separation agits) and the different
time scales of each of the stages in the evolution of the curaté@n. Then, an effi-
cient numerical resolution of the problem requires propé&tion of numerical scales,
that is, the spatial mesh siZer and the time step sizAt.

It is also desirable to develop numerical schemes which aeegg decreasing and
mass conservative from numerical point of view. Energyiltalimplies that the to-
tal energy of the fully discretized CH equation dissipatetinme analogously to the
continuous energy (3.3). The schemes that preserve theetisersions of the con-
tinuous energy lead to approximate solutions, which behlmaditatively similar to
the continuous ones. Explicit methods are not suitableifioe discretization of the
CH equation because they are not energy stable and requyrswail time steps be-
cause of stability restrictions. Also the semi-discrdt@aof the CH equation in space
leads to stiff systems for small values of the diffusion pagtere. Explicit methods
will work with severe restriction on time steps, which ingse the computational cost
enormously. In the literature, mostly the CH equation with ¢bnstant mobility func-
tion is studied using finite differences |23], finite elense[iZ] and spectral methods
[20,[43] for space discretization. Energy stable time dization methods are based
on the convex splitting of the energy functional. Altermaly, splitting methods are
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used by adding stabilization terms to the energy functidn@l). A recent survey
of different space and time discretizations for the CH is giue[72]. CH equation
with degenerate mobility is discretized by continuous éitements [9, 11, 12], local
discontinuous Galerkin method [82,183], discontinuouse@ah method withC® el-
ements, with mixed finite elements [79], finite differendg3][ NURSB [36] and by
spectral methods [84].

In this chapter, we use the mass conservative SIPG meth@&g][%or the space dis-
cretization. Since the DG method is based on the set of pisegwlynomials that
are fully discontinuous at the interfaces, the DGFEM apjpnation allows to capture
the sharp gradients or singularities that affect the nuraésolution locally. Further-
more, CH equation describes a gradient flowdin' and the semi-discretized form of
it (3.1)) leads to a gradient system of ordinary differenéigiations. Then, we again
need energy stable time integrators. It is well known thatfifst order backward Eu-
ler method is energy stable, i.e., the discrete energy dsesawithout any restriction
for the step size\t for very stiff gradient systems with — 0 [41]. The discontinu-
ous Galerkin-Petrov in time methods (with different triadatest functions) [66] and
Gauss Radau IIA Runge-Kutta collocation methdds [42] are thstknown higher
order energy decreasing methods with orderd. The only second order implicit en-
ergy stable method is the average vector field (AVF) meth@d41] preserving energy
decreasing property for the gradient systems and for syst@th Lyapunov functions.

The reminder of this chapter is organized as follows: we &oststruct the SIPG dis-
cretization of CH equation with degenerate mobility for Diniet, Neumann and pe-
riodic boundary conditions in Sectidn B.1. In Section 3ithet discretization with

backward Euler and AVF method is given. Then, energy stgth both methods is

proven in Section 313. We give several numerical exampl&eition 3.4 to demon-
strate the performance of the SIPG discretization coupligl structure preserving
time integrators.

3.1 SIPG Discretization of Cahn-Hilliard Equation

In this section, we briefly describe the SIPG method diszagbn, applied to the dif-
fusion part of the CH equation (3.2) for Dirichlet, Neumanr geriodic boundary
conditions. Using the definitions and notations from thevjones chapter, the solution
of 3.2) reads as: find,(t), w,(t) € Vj, such that for almost every< (0,7] and for
allv e V,,

(Opun, vn)a + an(fi; wp, vy) = Iy vn),

(wn, vn)a — (f(un), vn)a = an(e*; un, vp) + In(e%;vp). (3.11)
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The bilinear terms in the last two argument is of the fenx; w, v) = a,(k; w,v) +
J? (k;w,v) such that

(k;w,v) Z/va VU—Z {kVw} -]

EcT, e€EY €
or (3.12)
- Z {kVv} - +Z /
ecE) V¢ ecEY

where the mobility functionu(u) is computed explicitly as in form of the integral
[ 1(u™)d$2, whereu™ denotes the approximate solution at the previous timesstep
as for contlnuous finite elements [n [9] 11]. In the DG dideest bilinear form[(3.112)

k stands forn = fKu ")dS2 or for €2. The the bilinear forniy, (x; uy, vy,) includes
the face integrals only on the interior edges, whereas tine & (; u, v;,) includes
the corresponding face integrals on the boundary edgesagedhier with the right
hand side},(x; vy,). So, it changes depending on the boundary conditions. iRt
boundary conditiony = w = gp, is prescribed, we set

Jo(kju,v) = — Z {kVu} - [v]ds — Z {kVv} -]

e€EP "€ e€cEP €

. Zaﬁ:/

ecED

I(kiv) = Z /6<—u—wu n) gpds.

In the case of Neumann boundary condltlgh p(u ) = gn, they become
Jo(kyu,v) =0, I(s;v) Z /ngds
eEEN ¢

When periodic boundary condition is applied, we have

J(kju,v) = — Z {kVu} - [v],ds — Z {kVv}, - [u]w

EEPET w eEper w

n Zcm/

eEpPT‘
and/,(v) = 0.
The semi-discrete solutions,(t) andwy,(t) of the system[(3.11) satisfy

=D D GO, wt) =Y GO (3.13)

m=1 j=1 m=1 j=1
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wherey’" are the basis functions spanning the spege’* and(;" are the unknown
coefficients,n, is the local dimension, and’ is the number of triangular elements.
By substituting the identities in (3.113) into the systém 1B.and choosing = ¥,
i=1,...,n4k=1,..., N, we obtain the semi-linear systems of ordinary differdntia
equations

Mg + AuC = L,
A +7(§) = M( = Ly,

for the ordered unknown coefficient vectors and the basistioims
(5%7'“757]‘;‘176%7"'75727,(17“'75{\[7"'7 7{L\/;)T7

1 1 2 2 N NAN\T
(glw-'7§nq7€17"'7qu7"'7<1 P nq> )

1 1 2 2 N NA\T
(@17"'7S0nq7%017"'790nq7~--79017--.780nq> :

(3.14)

§
¢
P

In 3I2), M denotes the mass matrix with the entrigs; = (7, ¢')o, 1 < i,j <
n,x N, A, andA, are the stiffness matrices with the entriess, );; = a5 (i(un); 7, ¢")
and (A)i; = an(e®;¢7, "), 1 < 4,5 < n, x N, andb is the non-linear vector of
unknown coefficient vectaf with the entried; () = (¢'(un), ¢")a, 1 <i < nyg x N,
andL; and L, are the load vectarth component of which corresponding to the right
hand side linear fornd, (¢), 1 < i < ny x N such that a detailed description of each
term is given in previous section.

3.2 Fully Discrete System by Backward Euler and AVF Method

In this section, we give the fully discrete formulationsioé CH systeni (312) in matrix-
vector notations by using the backward Euler and AVF timegrators through the
semi-discrete formulatiof (3.111).

In the sequel, we consider the uniform partition= ¢, < t; < ... < t; = T of the
time interval[0, 7] with the uniform time step-siz&t = ¢, — t;_1, k = 1,2,...,J.
Moreover, fort = 0, we letwu,(0),w,(0) € V;, be the projections (orthogonaP-
projections) of the initial condition, wy, onto V},, and we lety, = (&, ()T be the
corresponding coefficient vector (ordered) satisfylndg}. At a specific time = ¢,,,
we denote the coefficient vector of the solutigng(t,,), wy(t,))* by 7, = (&4, Ca)7 s
as well.

3.2.1 Fully Discrete System by Backward Euler

Backward Euler discretization of the semi-linear systéni4Breads as: fon =
0,1,...,J — 1, solve for¢,,; and(, ., the system

{ A } { o } " { o S } - { o } (3.15)
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which leads to the residual functid®(n) = (Ri(n), Rz2(n))* with

Ri(Nny1) = M&n — ME, + AtA, G — AL )nt1,

RQ(nn+1) = Ae£n+1 -+ T(gn—i-l) — MCpy1 — At([@)n-&-l‘ (316)

We solve the non-linear system of equatidns (3.16) usingN#wton’s method in Al-
gorithm[1 in Chapte[l2: starting with an initial guegs, = (¢, ¢\%)7, thek — th
Newton iteration to solve the nonlinear system of equati@%$8) for the unknown
Vectorn, 1 = (&u41,Cay1)” reads as

Js® = =R, i) =alh+s®, k=01, (3.17)

until a user defined tolerance is satisfied.[In (B.17, (s1, s2)T is the increment, and
J stands for the Jacobian matrix 8(7,1), whose entries are the partial derivatives
with respect t&,,,; and(,, 1

8Rz (€n+17 Cn—l—l) aRz (£n+17 gn-i—l)
O(&n+1); O(Cnr1);

at the current iteration. It is easy to differentiate thedinterms in[(3.16), to differ-
entiate the nonlinear term using the expansign= ZZ‘QN &x, ordered version of

B.13), we obtain
o5 ¢

such thatf («) may be double well potential or logarithmic function. Henwe obtain
for the Jacobien matrix

Jij: :| s i,j:1,2,...,anN

f(uh),sf?i)ﬂ—/gf'(uh)sojgoidx (3.18)

Ac+J, —M
where J, is the Jacobian matrix of the nonlinear fontg) w.r.t. £ até = &,.1.

J:( M AtAﬂ) (3.19)

3.2.2 Fully Discrete System by Average Vector Field Method

Firstly, we rearrange the semi linear systém (B.14))fer (¢, ¢):

[]\04 8} = Lg —Az@] n+ l% _Llr(n)] (3.20)

and then applying AVF method to the gradient system (3.28)sas: fon = 0,1,...,J—
1, solve

M 0| 1 — 1 0 A 1
{0 OlHTt - _[AE —]l\ﬂ /0 (Tl + (1= T)na)dr (3.21)

{ ) Lydr
Ly — fol(T(TfnJrl + (1 =7)&))dr]
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After a simple calculation for the linear terms, we get

[M 0] Tl =T _{0 AM‘|7]n+1+7]n

0 ol At T |A -M 2 (3.22)

[ <<L1>n+1 + (L1)n)

((LQ)n-H + L2 fo Tgn—i—l + 1 - T)gn)dT)
which is the fully discretized system that we will solve fgr,, = (£141, Gor1) - We
solve this nonlinear system of equations using Newton’shogkin Algorithm[1 in

Chaptef 2. From the algebraic point of view, Newton’s methmd3.22) corresponds
to solving the nonlinear system of equations

+

A
Rilern Cont) = M(Enit— &)+ 20 Ay (ot + Co) (3.23)
- Aj((L1>n+1+L1>>

R2 (gn—i-la Cm—l) A6(5n+1 + gn) - M(Cn—&-l + Cn> (3-24)

1 1
5 2
+ /0 T(Tén + (1 —7)&) — %((Iﬂ)nﬂ + La)n),

or equivalently,

M(£n+1 fn) AtA (CnJrl + Cn) - ((Ll)nJrl + (L ) )
R(Np41) = (€n+1 + én) - (Cm +C) (3.25)
+fyr Tfn+1 +( )fn) SH(La)nsr + (La)n)

wheren,1 = ({41, Cur1). Starting with an initial gues&ﬂ1 = (§n+1,§(0) ),
k — th Newton iteration to solve the nonlinear equation (B.23)terunknown vector
a1 reads as

Js® = —R™ ), g =W L s® k=01, (3.26)

until a user defined tolerance is satisfied. [0 (B.26} (s, s2)” is the increment,
J stands for the Jacobian matrix 87, 1), whose entries are the partial derivatives
with respect ta,, ., and(,,, 4

8Rz (£n+17 Cn—i—l) 8Rz (£n+17 Cn—i—l)

Jij = Ny 2 Crr); , t,j=1,2,...,ng x N
at the current iteration. It is easy to differentiate theéinterms in[(3.23)
OR1(Mns1)i
ek — Ay, 3.27)
% = %(Ae)z‘j %(ﬁn-&-l)
OR2(Mns1)i 1



nq><N

To differentiate the nonlinear term using the expansign= >,
version of [3.1B), we obtain

&,0%, ordered

agg) _ %(f(uh), ©a, i,j=1,2,...,ny x N (3.28)
= / f'un)¢'dw
0

where f(u) is logarithmic free energy or double—well potential in oundel. Hence,
we obtain for the Jacobien matrikthat

M atg,
J—(%AE+JT __M) (3.29)

whereJ, (fn'fll)) is the differential matrix whose entries given [n (3.28).

3.3 Energy Stability

In this section, we show that the backward Euler and AVF nuthapplied to the
semi—discrete systern (3]11) are energy stable throughsbeete energy

Ehalw) = S IVU gy + (F), D
+ Z( ({e0nu™}, [u ])E+%([ ", W])E> (3.30)

which is the discrete DG counterpart of the continuous gnf&{]
2
g€

£ = G IVull + 3 (—COub e+ S-(li e ) (33D

EcE?
+ (F(u), 1)
at atimet™ = nAt.

3.3.1 Energy Stability of Fully Discrete Scheme with Backwardzuler

The backward Euler discretized scheme of the semi-dissystem[(3.1]1) is given by

(un+1 - un7 Q)Q + Atah(:u(un)7 wn—Ha q) = 07 vq S Vh> (332)
(W™, @) — (f(u"™),0)a = an(hu", 9), Vo€V,
Takingg = w™™! and¢ = v — ™ in (3.32), we obtain
(u" ™ —u", W g + Atay (p(u™); w™ T w™t) = 0,

(wn-l—l’ un+1 o un)ﬂ o (f(un+1)’un+1 o un)Q _ ah(EZ;un—}—l’ un-i—l o un)
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Using the identity(a, a — b)o = 5(a* — b* + (a — b)?, 1), and the bilinearity ofy, in
the last two arguments, we obtain

(u™ — ™ w" g 4+ Atap (p(u"); W™ W) =0, (3.33)

(wn—ﬁ—l’un—&—l o un)Q o (f(Un+1),Un+1 - un)Q — —ah(EQ; un—i—l’ un+1)

+ §ah(€2;un+l _ un’un+1 _ un)

ExpandingF'(u"™') and neglecting higher order terms, we get

Fu") =~ F@") = f@ )™ —u"),
(f™ ) u™ —u)o ~ (Fu"), 1) — (F(u"), g (3.35)

We note that the bilinear form, (x(u™); w™ ™, w™*?) satisfies

(a0 = Ve e 2 3 [ () Ve s,
E

E€E)

op(u™ n
s 3 2 g 2 0 3.39)

E€E)

Since all the terms i (3.86) are non-negative ($eé [63, Qet.1] for positivity of
edge integral term), we havg (y; w™™!, w ™) > 0. Similarly, we haveu, (¢?; u™ ™ —
u™, u"tt —y™) > 0. Using these identities, subtracting (3.33) frdm (B.34) aubsti-
tuting (3.35), we obtain

1
—Atah(,u(u"); wnJrl, wn+1> ~ (F(unJrl), 1)9 T §ah(62; un+17 un+1)

— (P D+ Ja@sa o)
0

<

which implies that€ . (u"*1) < &8 (u™). Hence, the backward Euler discretized
scheme is energy stable through the discrete enkrgy (3.30).

3.3.2 Energy Stability of Fully Discrete Scheme with AVF Methal

Applying the AVF to the semi-discrete systeim (3.11), thdyfdiscrete system reads
as

At
(unJrl - un’ Q)Q + _ah(,u(un)a wnJrl + wn’ Q) = 07 VQ € Vh7

2
(,wn-l—l + w"

48

(3.37)

1
,qﬁ) —/ (f(ru"™ + (1 — 7)u™), ¢)odr = %ah(EQ;un+1+u”,gb), Yo € Vi,
0 0



Takingg = (w"™ + w™)/2 and¢g = v — ™ in (3:37), we obtain

n+1 n At
<u“+1 Y N 2+ = ) + Iah(u(u”);w"+1 +w", W' +w™) = 0,
Q
n+1 n 1
(w +w ’un+1 o un> . / (f(Tun+1 +(1- 7_)un)’urﬂrl — yMgdr =
Q 0

1
§ah< 2’ n+1+u u™ n+1 un)

By using the identity(a + b,a — b)q = (a* — b%,1)q and the bilinearity ofy, in the
last two arguments, we get

n+1 n At
(u”“ —u”, wotw > + —ap(p(u™); w4+ w™ w" T +w™) =0,
Q

2 4
(3.38)

n+1 n 1
<w +w 7Un+1 _ un) . / (f(Tun—i-l +(1- T)un)’urﬁ-l — WModr =
9] 0

1 1
§ah(e2; u" ) — §ah(e2; u™u").  (3.39)

Expanding the term$'(u") and F'(v"*'), and neglecting the higher order terms, we
obtain

Fu") ~ F(ru"™ + (1 — 7)u™) — f(ru™ + (1 — 7)u™) (7 (u™h — u™)),
Fu"™) = F(ru™™ + (1 —n)u™) + f(ru"™ + (1 = 7)u™) (1 — 7)(u" T —u™)).
Subtractingf’(u™) from F'(u"!) leads to
Fu™") — F(u™) = f(ru"™ + (1 — 7)u™) (u"™ —u™)

(F(u"™), g — (F(u"), g ~ (f(ru"™™ 4+ (1 — 7)u™), v —u™)q
(3.40)

A«FW“%UQ—@MMJMMT%A(ﬂﬂﬁ4+ﬂ—ﬂﬁhﬁ“—u%MT

(F(u"™),1)g — (F(u™),1)q ~ /0 (f(ru"™ + (1= 7)u™), u™ —u™)gdr

We note that, (p(u™); w™™ 4+ w", w4+ w™) > 0 similar to previous section. Us-
ing this identity and subtracting (3138) from_(31.39) andstiibting the last equation

in(3.40), we obtain

At
__ah(lu(un);wn-i-l _’_wn’wn—&-l +wn> ~ (F(unﬂ),l)g +

n+1 n+1)
4

1 2
§ah(e cu"
1

= (F D0+ ju@nan)
0

IN
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which implies that€? . (u"™') < &p.(u"). Hence, the AVF discretized scheme is
unconditionally energy stable.

3.4 Numerical Results

In this section, we present a set of numerical examples tiat she accuracy and
the stability of our numerical approach. We first verify tlee@racy of our numerical
approach for CH equation with constant and degenerate ryofali both time inte-
grators. Furthermore, the discrete energy dissipationdsstiete mass conservation
properties of CH equation is demonstrated. In all numerigathrgles, we have used
guadratic elements for space discretization and averagenfegeld method is used for
time discretization.

3.4.1 Constant mobility function and double-well potentidunder Neumann bound-
ary condition

We first carry out 2D CH equation with constant mobility fulecti:(u) = 1 under
homogenous Neumann boundary condition [20]. The CH equatiéh= [—1,1] x
[—1,1] for 0 < ¢t < 1 with the exact solution

cos() cos () cos(my)

u(z,y,t) =e
Is considered. The source functigns computed from the left hand side by using
the exact solution and = 0.1. The initial condition is taken to be consistent with
the exact solution. Thé? error and the numerical order of accuracy using time steps
At = 0.5Az at timeT" = 1 with linear and quadratic DG polynomials are presented in
Table[3.1. We can see that both methods Witrelements give &« + 1)-th order of
accuracy.

Table 3.1: Examplé_3.4.1: Accuracy test with constant niybibr backward Euler
and AVF methods

Backward Euler Average Vector Field
Ax DoF L*>—Error Order L*—Error Order
1/2 24 1.871e+000 - 3.347e+000 -
Pt | 1/4 96 7.320e-001 1.35 1.633e+000 1.04
1/8 384 2.035e-001 1.85 4.810e-001 1.76
1/16 1536 4.797e-002 2.09 1.079e-001 2.16
1/2 48 4.880e-001 - 6.694e-001 -
P2 | 1/4 192 1.428e-001 1.77 2.685e-001 1.32
1/8 768 1.968e-002 2.86 3.376e-002 2.99
1/16 3072 2.256e-003 3.12 3.733e-003 3.18
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3.4.2 Degenerate mobility function and double-well potern#l under periodic
boundary condition

The next example is the CH equation(in][40] with exact solution
u(z,y,t) = e * sin(x) sin(y)

in the domain) = [0, 27| x [0, 27] for 0 < ¢ < 1 under periodic boundary condition
with degenerate mobility functiop(u) = 1 — u* and double— well potential. The
effective diffusivity is taken as = 1.

The L?-error and the numerical order of accuracy at tifhe= 1 for backward Euler
method and AVF method are presented in Tablé 3.2 with linedrcuadratic poly-
nomials. For the first order DG polynomials we use time st&ps= 0.00327 and
quadratic DG polynomialg\t = 0.000327 with AVF method. Time steps are taken
asAt = 0.00032r for linear DG polynomials and\t = 0.000032x for quadratic DG
polynomials with backward Euler method. Order reductionbserved in Table_3.2
for the first and second order DG polynomial which be due tanthe-linearity of the
degenerate mobility function. Both methods withelements give &k + 1)-th order
of accuracy.

Table 3.2: Example_3.4.2: Accuracy test with degenerateilityofor backward Euler
and AVF methods

Backward Euler Average Vector Field
Axr  DoF L?—Error Order L?-Error Order
/2 24 1.620e+000 - 2.054e+000 -
P! | w/4 96 4.690e-001 1.79 5.742e-001 1.84
/8 384 1.294e-001 1.86 1.566e-001 1.87
7/16 1536| 3.308e-002 1.97 5.478e-002 1.52
w/2 48 4.181e-001 — 4.342e-001 -
P2 | w/4 192 1.040e-001 2.01 1.136e-001 1.93
/8 768 4.240e-002 1.29 1.713e-002 2.73
7/16 3072| 6.007e-002 -0.50 4.895e-003 1.81

3.4.3 Constant mobility function and double-well functionunder Neumann bound-
ary condition: spinodal decomposition and nucleation

We consider 2D CH equation with constant mobilitf:) = 1 and double—well energy
function under homogenous Neumann boundary condition [3Tije computational
domain is takef2 = [0,1] x [0,1] for 0 < ¢ < 0.4 withe =1 x 107°.

This problem represents the two main separation mechansgmmodal decomposition
and nucleation. Both mechanisms in the CH equation are defynétehnitial condi-
tion uy(z) = u+r whereu is a constant andis random number uniformly distributed
on[—0.005,0.005].
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Whenu = 0, the spinodal decomposition is formed in Figure(3.1). tFitee mixture
separates from a randomly perturbed homogeneous state (), and then a com-
plicated striped pattern that coarsens over time is pratlutfene let the simulation
evolve, the stationary solution would be a fully separated fivith two rectangular
patches.
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Figure 3.1: Example_3.4.3: Phase solution of 2D CH equatidh eonstant mobility
with At = 1 x 10~°(spinodal decomposition)

While @ # 0, the nucleation is formed seen Figue {3.3). The simulatesults are
given foru = 0.4. The other parameters are the same as in the previous oniee In t
nucleation mechanism, isolated nuclei come up from theurext Again, the spatial
microstructure of the mixture coarsens over time.

In both cases the discrete energy dissipates and the mamssisreed (see Figufe 3.2
and3.4). Our results are similar to thoselin/[37], where fatisl discretization local
discontinuous Galerkin method and for time dicretizatimplicit convex splitting are
used.
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Figure 3.2: Example_3.4.3: Energy decrease and mass catisersf 2D CH equation
with constant mobility withAt = 1 x 10~(spinodal decomposition)

3.4.4 Constant mobility and logarithmic energy under Neuman Boundary Con-
dition

2D CH equation with constant mobility function and logariibranergy function’’(u) =
600(ulnu+ (1 —u)In(1 —u))+ 1800u(1l —u)u(u) = 1is considered under homoge-
nous Neumann boundary condition [40]. The diffusion camstataken ag = 1. The
initial condition is

0.71 =z € Ql
u(,0) = {0.69 v EQ

where the square doméih= (—0.5,0.5)x(—0.5,0.5), ; = (—0.2,0.2)x(—0.2,0.2),
Qy =0 — Q.

The plus shaped region evolves in to a circular region as shoviFigure[3.5. The
evolution process is characterized by grain diffusion aodrgening. Also, energy
decreases and mass is conserved as seen in Eiglire 3.6.

3.4.5 Degenerate mobility and logarithmic energy under Nemnann boundary
condition

We consider 2D CH equation with degenerate mobility functidn) = u(1 — u)
under homogenous Neumann boundary condifion [40] withusiiffin constant = 1.
The computational domain 8 = [—0.5,0.5] x [-0.5,0.5] for 0 < t < 0.2. The
logarithmic energy functiod’(u) = 3000(uInu + (1 — ) In(1 — u)) +9000u(1 — u)
is given. The initial condition is a random variation of wonifn statex. = 0.63 with a
change no larger than05.
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Figure 3.3: Example_3.4.3: Phase solution of 2D CH equatidh gonstant mobility
with At = 1 x 1075 (nucleation)

Figure [3.7) shows the evolution of the concentration fi€lthe two phases in the
concentration evolution, the phase separation stage &ncbtrsening process stage,
can be seen clearly. We can also see in Figure 3.8 that eneaggase and mass
conservation is satisfied.
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Figure 3.4: Example-3.4.3: Energy decrease and mass catiseref 2D CH equation
with constant mobility withAt = 1 x 10~°(nucleation)
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Figure 3.5: Example_3.4.4: Phase solution of 2D CH equatidh eonstant mobility
with At =1 x 1078

55



2
10t
)
B g
E 0 0
i a
s
_10,
_20 L L L L L L
0 2 4 6 8 2 4 6 8
t x10" t x10"

Figure 3.6: Example_3.4.4: Energy decrease ans mass catisaref 2D CH equation
with constant mobility withAt = 1 x 1078
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Figure 3.7: Example3.4.5: Phase solution of 2D CH equati¢imaégenerate mobility
with At =1 x 1077
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CHAPTER 4

ADVECTIVE ALLEN-CAHN EQUATION

Interfacial dynamics has great importance in the modelingnaiti phase flow. Re-
cently, it has raised quite interest since it plays an ingodrtole in different scientific
and industrial applications such as micro-structure diwariuand grain growth in mate-
rial sciencel[21], binary fluids flow movement [59], and coexpinterfacial dynamics

[44).

There have been various diffuse interface models for milése flow [49] 57]. In
this study, we focus on a specific model of diffuse interfawewo phase flow; Allen-
Cahn model with advection. Itis the most known dynamical nhtmteliffuse interface
dynamics associated with surface enerdies [57]. Actuiliypodels droplet breakup
phenomenon of an incompressible material with another cessible fluid. It is an
important model problem for studying the influence of flowdiahd surface tension
on droplet breakup phenomena.

The AC model with advection is

%+v-(w) — Au—Lf@), in Qx(0,1] (4.1)
€
ou
5 = 0 on 99 x (0,7

with an appropriate initial conditiory;(v) = F'(u) = 2u(1 — u)(1 — 2u) double-well
potential and prescribed velocity fieM = (7, 15)?. The velocity field is related to
the Navier-Stokes equations since AC model with advecti@irally comes from the
combination of AC dynamics and fluid mechanics|[49, 57]. Irstmaf the studies, it
generally satisfies Navier-Stokes equations, thus theigloeld V is divergent free.
Here, our main interest is whe¥i - V # 0 in general, i.e.V is not divergent free
which is the less studied case. The flow is stated as expamdiegV - V > 0 and
contracting wherv - 'V < 0.

It is known from the previous chapters, the original AC eguratioes not satisfy the
mass conservation. For this reason, an additional feisroften added to the equation
such that by adding the teriu instead of\ to keepu localized, the mass conservative
advective AC equation can be written as
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1 .
%+v.(vu) = eAu——f(u)+Iu in Qx(0,7] (4.2)
€
ou
D — ) T
o 0 on 092 x (0,7]

where X is chosen so thaf, u(x,0)dQ2 = M, M is a constant which can also be
computed as
Jo I(®)

M
and it is called as the advective non-local AC equation.

1
€

Problems with surface tension in two-phase fluids are kncsvymalti-scale problems
with two different time scales, the small surface tensiow), e convection time scale,
which results in computational stiffness. Most of the stgdior surface tension in
two phase fluids are based on the modeling aspect. Actuladlye texists three main
algorithms: the sharp interface algorithm method, theleset algorithm method and
the diffuse interface method [57]. The numerical simulagiare illustrated using finite
elements method in space and semi—implicit schemes or seplieit schemes with
splitting in time [10/56].

In this chapter, we focus on the numerical solution of adve®C equation. In the
solution some unphysical oscillations occur at the intdegers due to convection and
non-linear reaction leads to sharp fronts. Since the stdrfeBMs are known to pro-
duce strong oscillations around layers, we utilize the adajalgorithms to tackle all
the so-called unphysical oscillations and shock. The adgptoes this by refining the
mesh locally instead of refining the all mesh. By this way arueate approximation
can be found with less degrees of freedom (DoFs) and coniughtime. The major
part of the adaptive algorithms is to estimate the localrerto refine the elements if
their estimated local errors are large. A posteriori ergtingation is the main tool to
estimate the local errors which uses the approximate sol@nd the given problem
data. Many of the studies on a posteriori error estimati@encdotained by the weak
formulation with respect to the energy nofm([1] 8|, 77]. SitteeDG methods have the
flexibility on adaptive meshes, there have been many stadiesposteriori error esti-
mation using DG discretization. The first study for a posterrror estimation using
DG methods was proposed by Karakashian and Pascallin [4&h, Hoppe et al[ [45]
proposed the convergence analysis of a posteriori erronason for SIPG method.
A posteriori error estimation using DG discretization asoatudied by Rivére et al.
[64], Houston et al.[[46] and Ern et al._[29], and referentesdin.

We introduce an adaptive strategy for the numerical satutibadvective non-local
AC equation[(4.R). In the previous chapters, AC and CH eqgnstéwe first discretized
in space by the SIPG method and the resulting large syste®@®&fk are integrated
using implicit Euler and AVF methods. On the other hand, theeative non-local
AC equation is discretized first in time by implicit Euler rhetl which produces a
sequence of semilinear elliptic equations, which is knowrRathe’s method [26].
Then, the resulting equations are solved with an adaptirsoreof SIPG method using
upwinding for the convective term. The adaptive stratedyaised on a residual based
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a posteriori error estimation. We prove the a posterioordsounds with respect to the
energy norm induced by the SIPG formulation of the systerarmgin [74] for semi-
linear diffusion-convection-reaction equations witheatiyent free velocity field. We
have applied only space adaptivity because the solutiomgtishow strong variations
with respect to time.

In this chapter, we first derive time discretization of adixecAC equation to obtain
a stationary problem in Section #.1. Then, SIPG formulaisaronstructed in Section
4.2 for the fully discrete advective AC equation. A detaikcplanation for space
adaptive algorithm is presented in Secfiod 4.3. In Se¢fidn we derive a posteriori
error bound for stationary problem. Finally, a series of ruoal examples are given
in Sectiorf 4.b to demonstrate the applicability of the mdtho

4.1 Time Discretization of Advective AC Equation

Since the solutions of advective AC equation do not changehmuith the evolution
of time, we apply only space adaptivity. For this reason, vat flerive semi— discrete
formulation of the probleni(4]12) using backward Euler methehich corresponds to
Rothe’s method [26]. For the semi—discrete scheme, we centid uniform partition
0=ty <t <...<t;=T ofthe time interval0, 7] with time step-size\t = t;, —
ty—1, kK =1,2,...,J. Then, the semi—discrete problem, implicit Euler in timegds
as: given initial conditionu, setu® = ug and fork = 1,2,...,J, find u* ~ u(t;)
satisfying the stationary problem

uF — k-t

At

For eachk = 1,2, ..., J, the system[(4]3) can be written in the form of a semi-linear
elliptic problem as

1
—eAUF £V VU + (V- VR — 4 = F(uf) = 0. (4.3)
€

au® — eAur +V - Vb + r(uk) = h(uk_l), (4.4)

wherea = (2 + V-V = ), r(u) = 1 f(u), andh(u) = 2 u. The stationary semi-

linear elliptic equation’(414) are solved using SIPG metivdti an adaptive strategy.

We assume that the non—linear reaction term is bounded aathid.ipschitz contin-
uous, i.e., satisfy for any, s;, sy > 0, s, s1, s2 € R the following conditions

r(s)] < C, C>0 (4.5)
[7(s1) = 7r(s2)llz2) < Llls1 — s2llz2), L >0.

Moreover, we assume that there is a non-negative constaatisfying
1
a— 5V.V(x) > Ko, I —V-V+a||Loo(Q) < "k, (4.6)
for a positive constant*. In (4.8) the coercivity of the bilinear form, is satisfied by

the first condition, and the latter is used to prove the réitgtof our a posteriori error
estimator|[[67].
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4.2 Full Discretization of Advective AC Equation

In this section, we apply SIPG method using upwinding fordbevective term([52,

162] to discretize the stationary probleim (4.4). For diszegton of the convection term,
we first define the sets of inflow edgEs and outflow edgeE;" for the boundary edges
fort € [0, 7] by

I, ={re€dQ:V(z,t) n(x) <0}, I ={xed:V(z,t) n(x) >0},

wheren is the unit outward normal to the boundai$2. The set of inflow and outflow
boundary edges of an elemdiite 7, is defined in a similar way by

OE; ={x € OF : V(x,t) -ng(z) <0}, OB ={x € OF : V(z,t) -ng > 0} .

whereng is the unit outward normal vector to the element boundaty Moreover,
for an interior edgé I, we denote the trace of a functiarfrom inside the element
by v and from outside the elementby .

The set of interior and boundary edges are denotefibgnd E?, respectively, such
that the frame of the mesh is the uniél) = E? U E?. The initial mesh is specified
by 7,0 and then a mesff,* is associated to each time step> 1 which is obtained
by locally refining or coarsening the me§ji—*. We also assign the finite element
spaceV;* = V;,(T) to each mesly;k. Then, applying the SIPG construction given
in Chapte2 the fully—discrete problem reads as:tfer 0, setu,(0) € V,(7) as
the projection (orthogondl?-projection) ofu, onto V;,(7,0); for k = 1,2, ..., J, find

uf € V,(TF) such that for albf € V;,(T;F)

an (5 up, vF) + by (5 uf o) = I,(t%;0f), (4.7)

an(th;uf vf) = Z / eVuf - Vordr + Z /(V - Vup 4+ auf)vkde
E E

E€Ty, E€T,,
FO Ve - ks @8)
per, JOET\09
— Z / V- ng(ui™)*ords + Z o< /[ulg] - [vF]ds(4.9)
EeT, OB NIy ceBy he Je
— > [ ({eVop} - Tuf] — {eVui} - [vp])ds,
ecEy €
b (5wl vf) = Z / r(up)vkde, (4.10)
EeT, VK
It 0r) = Z / h(u" 1oy dz. (4.11)
EeT, VK
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4.3 The adaptive algorithm

In this section, an adaptive procedure (in space) is preddot advective non-local
AC equation[(4.2) which is similar to the orie [74]. Followitige steps of the adaptive
algorithm given in Figuré 41, for each time step, we sohefthly discrete station-

ary system[(4]7) of the advective non-local AC equation)(ddaptively through the

residual-based a posteriori error estimator.

SOLVE for UZ
on Tk-1

ESTIMATE

Compute n?|g

MARK
Find Mg, Mc C 751
2|g > stol*, E € Mg

2|g < stol®, E € M¢

&
SET SET Create T
Refine EF € Mg
_ k _ k-1
k=k+1 Th=T Coarsen F € M¢

Figure 4.1: Adaptive algorithm chart on a single step, ¢x]

In the adaptive algorithm, the first step SOLVE correspondsumerical solution of
SIPG discretized systeri (#.7) for the unknowjnon the given triangulatioﬂjf‘l.
The ESTIMATE step constitutes the crucial part of the adepprocedure. This step
provides information to mark the elements to refine/coar¥&a prescribe two toler-
ancestol® andstol® related to the refinement and coarsening, respectivelysidual
based error estimator is used to mark the elements, whicingsd#fication of the error
estimator given in[67] for non-stationary diffusion-c@ution-reaction equation with
non-linear reaction mechanism [74]. For this, the nondimeaction term is inserted
in the a posteriori error indicator as local contributionghe cell residuals and not to
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the interior/boundary edge residualsl[78, Chp. 5.1.4]. Borenience, we ignore the
superscripk and we letu;, be the solution to the elliptic problem (4.7) at an arbitrary
time step. Then, the local error indicatags for each elemenk € 7,5~ is given as

NE = i, + N + N (4.12)
whereny,, stands for the cell residual
e = OblIB(w) - ow o+ e, = V- V() [

while, ey, andnEg denote the edge residuals coming from the jump of the nualderic
solution on the interior and Neumann boundary edges, résplc

1 . 1 eo he
e = Y. (56 zpe|y[ewh]\|i2(e)+§(h—+mohe+;)|![uh]lli2<e>>a
eE(‘)EﬂEg ‘
_1
Moy = D € pelleVun i)
e€OENEY

On an element’, we set the weights andp. as

[SIE

_1
7I{0 2}7

for ko # 0. Whenk, = 0, we takepp = hpe 2 andp. = h.e~2. Then, our a posteriori
error indicator is given by

1
PE = min{hEe_é, Ko 2}, pe = min{hee”

1/2
n= Z ne : (4.13)
BeTF!
Also, we introduce the data approximation error
1/2
o= > onn| .
EeTF !

where

O%(f) = pp(1h(w) = h(un)72m) + IV = Vi) - Vun|[ T2 + [[(@ = an)unll72(s))-

In the step MARK, we form the set&/y and M. of the elements to be refined and
coarsened, respectively, given by

Mg =1{F € Ek_l : n2|E > stol"},
Mo ={FE €T " : n’|p < stol},

where the error indicatoy is introduced in[(4.12).

Finally, we create the new me§if by refining the element& € My, using the newest
vertex bisection method [19], and by coarsening the elesnEn& M-. Numerical
studies show the capability of the error indicator to findltheers properly.
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4.4 A posteriori error estimation

We utilize the energy norm and the semi-norm to present trebrity and efficiency
of a posteriori error estimator. The energy norm is given by

[l = D (eVolfa + rollvllzas) + Y —H VZ2 ) (4.14)

E€Ty, ecEY e

and the semi-norm is

[[& = [Vol2 + ) (kohe + )||[ V720 (4.15)
eGEO
with S
|Q|* - sup qu B
ueHL (2)\{0} [l

The terms/Vu|2 and = [v]||%2(e) in the semi—norm are used to bound the convective
part. The other ternmoheH[v]H%Q(B) is used to bound the linear reaction part of the

discrete system. To bound the non-linear reaction parfytldedness property (2a)
[Chp. 5.1.1-4,[[78]] is used.

Theorem 4.1. For any time-stept = 1,2,...,J, let uw and u; be the solutions to
the continuous problerf@.4) and the discrete SIPG proble@.7) respectively. Also,
assume that the assumptig@ds3) and (4.8) hold. Then, we have the a posteriori error
bounds

[ = un|l] + |u = uple Sn+© (reliability), (4.16)
1 S uw = unl|] + Ju — uple + O (efficiency. (4.17)

4.4.1 Proof of a Posteriori Error Bounds

For the proof of a posteriori error estimate, we folldw [74hiah is for stationary
diffusion—convection—reaction equation with a nonlinesction mechanism. We use
the DG norm defined by ,

[ollpe = lloll] + vl (4.18)

with the definitions[(4.14) an@(4.115). Also, the symbgland> represents the bounds
that are eligible up to positive constants independent efltical mesh sizé, the
diffusion coefficient and the penalty parameter

Since the spatial errdfu® — u§ || pc is not well-defined due to* € H;(Q2) andu; €
Vi(Tw) € Hi(Q), we first split the stationary SIPG solutiaf) as

s _ ¢ r
Up, = Uy, + Uy,
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whereu$ € Hj(Q2) NV, (7)) is the conforming part of the solution angl € V;,(73,))
is the remainder term . By this way, we gégte H}(Q) + V,.(7z)), and

[u” = uillpe < llu” = ujllpe + |lupllpe

holds from the triangular inequality. Note that all the teron the right hand side
become well-defined norms, and now we can find bounds for tkést, the following
auxiliary forms are utilized:

Dy (t;u,v) = Z / (eVu-Vu+ (o — V- V)uv) de, (4.19)
EeT, ' F
On(tu,v) = — Z/Vu~Vvd:U+ Z/ V - nuvds,
per JE per, JOE+AT
+ Z / V - nu(v — v®)ds (4.20)
per, JOET\09
Kp(tu,v) = =Y [ ({eVon} - [un] = {eVun} - [vn])ds,
ecEy €
o€
In(t;u,v) = Zh— / [u] - [v]ds. (4.21)
e€EY € e

Then, for a specifi¢ € [0, T] the bilinear formay, (¢; u, v) fulfills,
an(t;u,v) = Du(t;u,v) + Op(tiu, v) + Ju(t;u, v)

which is well-defined o} (Q2) + V4,(7,) and satisfies the coercivity property [Lemma

4.1, [671]

an(t;u,v) > |[[ull]?, we Hy().
Furthermore, the SIPG bilinear form (¢; u, v) in (4.1) satisfies

ap(t;u,v) = ap(t;u,v) + K(t;u,v) , Yu,v € Vi (Th), (4.22)
an(t,u,v) = ap(t,u,v), Vu,v € Hy(Q). (4.23)

Also, the auxiliary forms are continuous [Lemma 4.2/ [67]]:

[Du(tsw,0)l < Ml [llll], w,v € Hy(Q) + Va(Th), (4.24)
On(tu,v)l S [Vulc oIl we Hy(Q) + Vi(Ta),v € Hy (), (4.25)
[Tntu o)) S Nl ol w,v € Hy(Q) + Va(Ta), (4.26)

and foru € V,,(Tp,), v € Vi(Tn) N Hy () [Lemma 4.3,[[67]]

e€E2

1/2
_ ge
[Kn(t;u,0)] S o7 '? (Z h—[u]me)) ][] (4.27)
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Moreover, using the boundedness assumption of non-liegardiven in[(4.5), we get
for non—linear formb,, (¢; u, v) for a specific timet

bu(tu, o) S Ml wv € Hy(Q) + Va(Th). (4.28)
Then, some auxiliary results and conditions used in thefpra@ given.
Lemma 4.2. The inf-sup condition in [Lemma 4.4, [67]] gives

-
ul|| +|Vul. S su an(t; v, v)
llulll + [Vl S sup

—_— (4.29)
veHL(Q)\{0} [[|v]]]

forall u € H}(Q).

Definition 4.1. For anyu € V},(7), the following inequalities hold

> = Aulagsy £ Y [ ol s, (4.30

E€Th ecEY
1
> IV Al S Y [ llPas (431)
E€Th ecEY Y C C

whereA,, : V;,(T,) — V¢ is the approximation operator withj° = V},(75,) N H}(Q)
being the conforming subspacegf(7},).

Lemma 4.3. For anyu € H} (), the interpolation operator is defined as
I HY Q) = {we CQ): wlg €P(E),VYK € T,w=0onT}

and it satisfies

[ Znul|| < [l (4.32)
1/2
<Z pEQHU—IhUHiz(E)) < [ulll, (4.33)
EeT
1/2
> o = Lulfag | S Nl (4.34)
ecEY

Now, consider the splitting of the stationary solutigh= u§ + u}; asuj = Ayu; €
H} () NV, (Tr) with Ay, is the approximation operator amgl = u; — u§ € V.

Lemma 4.4(Lemma 4.4,[[67]) The bound for the remainder term holds
Jupll < n (4.35)

wheren is the a posteriori error estimator given {@.13)
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Lemma 4.5. For a givent € (0, 7] and for anyv € H}(2), we have
/ h(uj) (v = Iyo)de — an(up) (v — Iyv) — bp(t; up, v — Iyw) S (n+ ©)|[[v][|(4.36)
Q

wherel, is the interpolation operator.

Proof. Let
T= / h(t;uy, v — Iyv)de — ap(t; up, v — Iv) — by (t;uy, v — Ihv).
Q
Applying integration by parts gives

T = Z /E(h(ufl) + eAu; — V- Vu;, —r(up)) (v — Iyv)de

E€Ty,
- Z / eVu;, -n(v — Iv)ds
EeT;, 7 9F
+ Z / V- n(u) —u)®) (v — Iyv)ds
per, JoE=\00
- T1 + T2 + Tg.

Addition and subtraction of the data approximation ternts the term’; yields

o= ) / (h(u}) + eAui — V), - Vg, — r(uf)) (v — Lyw)ds
BeT, E

# 3 [ (htw) =) = (V= Vi) D)0 = o)

E€Th

Using the Cauchy-Schwarz inequality and interpolation aferidentity [4.38)

1/2 1/2
T S (Z 7712%3) (Z PE2||U—IW||%2(E)>

E€Ty, EcTy,

1/2 1/2
+ (Z @%E> (Z P‘EQHU - Ih“”%ms))

EeTy, EeTy,

1/2
S (Z (M, + @%)> [Holl]-

EcTh

For the termd; andT3, we have [Lemma 4.8, [67]]

1/2
Ty S (Z H%E> ol

E€Ty,
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1/2
I < (znaE) el

EcTy,
[

Lemma 4.6. For a givent € (0,7, the bound of the conforming part of the error
satisfies
|u® = uyllpe S n+©. (4.37)

Proof. Sinceu® — u§ € H}(Q2), we havelu® — u$|c = [V (u® — u$)|.. Then, from the
inf-sup condition[(4.29)

an(t; u® — uj,,v)

lu® = upllpe = [[[u* = uill| + [u* —uple S sup
veHL()\{0} [[|vl]]

So, we need to bound the temp(¢; u® — ug, v). Using thatu® — u§ € H;(2), we have
dh(t; u® — ufw U) = &h<t; us, U) - &h(t; ufw U)
= / h(u®)vdx — by (t;u’, v) — ap(t; uy, v)
Q
= / h(u®)vdz — by (t; u’,v) — Dy(t;uy,, v) — Jp(t;us, v) — Op(t;uj,, v)
Q

- / h(u®)vdx — by (t;uy,v) + by (t; up, v) — by(t;u®, v)
Q
—ap(t; uj,, v) + Du(t; up, v) + Jn(t up, 0) + On(E up, v).

We also have from the SIPG scheme

/ h(u®)pvdx = ap(t;uy, Inv) + Ky(t;uy, Iyv) 4 by (t;uy,, Ihv)
Q

Hence, we obtain
Zi(t,us —’LLZ,’U) = T1 +T2 —|—T3+T4
T, = / h(up)(v — Iyw)de — ap(t; uy, v — Iv) — by (t;uy, v — Ihv)
Q

T, = Dh(t7u27v)+‘]h(t7u27v) +Oh(t7 u27v)
T3 = Kh(t;ufwjhv)
Ty = bp(t;ug,v) — by(t;u’,v)

From the inequality[(4.36), we have
Ty S (n+O)||[v]]]
The continuity resultd(4.24-4.26) and the bound to renexiteim [4.3b) yields

Ty 5 (gl + [Bub [l < mlllvfl]
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Moreover, using the identitieE (4127) and (4.32), we get

1/2 1/2
Ty <ol (Z@) [11Zwol|| S o~ (Zvi) o]

EeT EeT
Finally, using Cauchy-Schwarz inequality and the boundssipeoperty((4.28), we get

T4 - bh(tufwv) _bh(t;usvv) :/
Q

T(ui)vda:—/gr(us)vdm

< Cil|v|l ) — Collv| 220
Sl

which finishes the proof. [
Now, we can give the proof of Theordm}.1.

Proof. Combining the bound§ (4.85)) arid (4.37)) to the remaindetlzdonforming
parts of the error, respectively, we obtain

lu* —upllpe < llv* = uillpe + [lupllpe
< n+O+7
S n+0

[

The proof of the efficiency is similar to Theorem 3.3[in/[67]e\&hly use the bound-
edness property (4.5) of the non-linear reaction term tanddhe terms occurring in
the procedure i [67].

45 Numerical Results

In this section, we present several numerical examples deecive non-local AC

equation under homogenous Neumann boundary conditionen®mnd two dimen-

sional problems. For the 1D problems, our aim is to show tlopldt breakup phe-
nomena, where space adaptivity is not needed. For 2D prebleardemonstrate the
effectiveness of the adaptive SIPG method to recapture &ngers in convection dom-
inated cases.

4.5.1 1D advective non-local AC equation

The advective AC equation does not satisfy the droplet hnealknder certain situa-
tions. We present a set of 1D numerical examples under winatittens the droplet

70



breakup is formed by focusing on the dynamics of the solstiwhen the strength of
the velocity field changes.

We first consider 1D advective non-local AC equation [56]ha tiomairt2 = [—5, 5]
for 0 < t < 0.2 with the initial condition

{1; —03<2<03

u(x,0) = :

0; otherwise

This test example was solved in_[56] by taking he diffusionstante = 0.01 with
the linear finite elements in space and semi—implicit spttscheme in time for mesh
sizesAx = 0.005 and time stepa\t = 0.001. The velocity field is taken a¥ = Vjx.
We performed simulations with coarser mesh sizes= 0.1 and with the same time
stepsAt = 0.001. For different values olj, we obtain different results. A¥j
increases, two different types of solutions appear. WiHes: 3 is small as in Figure
4.2, the solution decreases and settles into a non—corsteady state depicting a
single droplet. Also, mass conservation is seen in Fig@Beright. If 1, = 10 which
is large in Figurd_4)4, the solution decays to a small constalue. Mass is again
conserved as shown in Figure 4.5, right. These two examplesal that a typical
advective AC equation that does not show droplet breakupgrhena.

15 t:‘O 15 t:9-2
1 M 1
5 05 5 05
0 0
05 0 5 = 0 5
X X

Figure 4.2: Example_4.5.1: Solutions at initial and final@éswith1;, = 3

4.5.2 1D advective non-local AC equation: non-monotone itial condition

We again consider 1D advective non-local AC equation [S@édomair(2 = [—5, 5]
for 0 < t < 0.45 with the diffusion constant = 0.01 which is solved again by linear
finite elements in space and semi—implicit splitting schememe with mesh sizes
Az = 0.005 and time stepg\t = 0.001, respectively. The velocity field is taken as
V = 5x. The non-monotone initial condition is given by
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x10

Mass Error
(=)

0 005 01 015 02
i

Figure 4.3: Example4.5.1: Solution profile (left) and maserg(right) with 1, = 3

t=0 t=0.1
15 : 15 :
1 — 1
5 05 5 05
0 0
-05 : -05
5 0 5 5 0 5
X X
0.2 t=0.25
15 : 15 :
1 1
5 05 505
| A G )
05 : -0.5 :
%5 0 5 %5 0 5
X X

Figure 4.4: Example4.5.1: Solutions with = 10
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0 0 005 01 t 015 02 025

Figure 4.5: Example4.5.1: Solution profile (left) and maserg(right) with V5, = 10

1; [—0.5,0.01) U (0.01,0.5]
u(z,0) =4 0.99; [-0.01,0.01]
0; otherwise

We have used the same coarse mesh sivesnd the same time stegst as in the
previous example. When the initial value is non—monotoneshasvn in Figuré 4]6,
the solutions take a different from. Even a small concavityha origin leads to a
completely different evolution. The solution shows a brgakAlso, mass conservation
is satisfied in Figure4l7, right.

4.5.3 2D advective non-local AC equation: expanding flow

For 2D problems, we consider the expanding velocity field astieer flow([56]. For
the expanding case, the velocity field is prescribed as

V = (Vox, Voy),

and for sheer flow
V = (0,—Vpx).

We first test the expanding flow case. We work on the dofain|[—1, 1] x [—1, 1] for
0 < t < 0.06 with the diffusion constart = 0.01 andV;, = 10. The initial condition
is
1: 2 2 < 0.
w(@,0) = 4 x+y._03
0; otherwise

We first solve by uniform mesh using linear DG elements withsimsizesAz =
Ay = 1/32 and the time step size it = 1 x 1072, Similar to 1D case, advective AC

73



t=0 t=0.2

15 15
1 — 1
S5 0.5 > 05
0 0
N R —|
0% 0 5 0% 0 5
X X
t=0.3 t=0.45
15 : 15 :
1 1
3 05 3 05
0 0
05 : 05 :
%5 0 5 5 0 5
X X

Figure 4.6: Example4.5.2: Solutions with non—-monotongah¢ondition

x10"

Mass Error
1
o
o

1
[

0 01 02 03 04
t

Figure 4.7: Example_4.5.2: Solution profile (left) and masergright)
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does not have droplet breakup as shown in Figure 4.8, tops Btasservation is also
satisfied as shown in Figure 4.8, bottom. However, the smiatshow some unphysical
oscillations (see Figuie 4.110, left). We have applied treesmdaptive algorithm with
the prescribed tolerancesol” = 1 x 1073, stol® = 1 x 10~¢ and uniform time step

sizeAt = 1 x 1073, The adaptive mesh at tim¥é = 0.06 is shown in Figur€ 419, left.

It can be clearly seen in Figuke 4.9, right, that refinemeui/sening of the adaptive
algorithm works well and spurious oscillations disappedfigurd 4.1D, right.

t=0 t=0.06
1 1
04
08
05
03
06
>
02
04
-0.5
02 0.1

'11 05 0 05 1
X

Mass Error
LA~] <-] £

2

% oo o 0.?3 004 005 006

Figure 4.8: Example_4.5.3: Uniform solutions at initial dfitthl times (top) for ex-
panding flow and mass error plot (bottom)

Then, we consider the same problem with the square initial da

w(z,0) = 1, -03<z,y<0.3
"7 10; otherwise

The uniform and adaptive solutions at final titme 0.06 are given in Figure4.11, top,

which shows the effectiveness of our adaptive algorithntatt be seen from Figure

[4.11, bottom right, that initially the mesh is refined, aftard the mesh is coarsened
non-monotonically around the internal layer.

75



DoFs:; 19512 S

o

2.5

<
DoFs

15

0'JO 001 002 003 004 005 006

X {

Figure 4.9: Example4.3.3: Adaptive mesh at final tilme 0.06 (left) and evolutions
of DoFs (right) for expanding flow

DoFs: 24576 DoFs: 19512

Figure 4.10: Example_4.3.3: Uniform (left) and adaptivelit) solutions at final time
t = 0.06 for expanding flow

4.5.4 2D advective non—local AC equation: sheer flow

Now, we test the sheering flow case. We consider 2D adveatindatal AC equation
[56] in the domain = [—1,1] x [—1,1] for 0 < ¢ < 0.06 with diffusion constant
e = 0.01 andvy = 100. The initial condition is

u(z,0) = 1, =01<z,y<0.1
"7 10; otherwise

We solve using linear DG elements on uniform mesh with meastsgixz = Ay =
1/32 and time step size is taken &8¢ = 1 x 1073, It can be easily seen in Figure
[4.12, top, that advective AC does not have droplet breakupe fiass conservation
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DoFs: 24576 DoFs: 11808

DoFs: 11808 S0

15

DoFs
—

0.5¢

Yoo om 0.?3 004 005 006

Figure 4.11: Example 4.3.3: (Top) Uniform (left) and ade@{iright) solutions at final
time ¢t = 0.06, (Bottom) adaptive mesh (left) at final timte= 0.06 and evolution of
DoFs (right) for expanding flow with square initial data

is satisfied which is seen in Figure 4.12, bottom. Howeverdthave been internal
layers in the solution. We have applied space adaptivitprélyn to handle these
unphysical oscillations with tolerancesol® = 1 x 1072, stol® = 1 x 107% and time
step sizeAt = 1 x 1073, as well. The adaptive mesh at tiriie= 0.06 is given in
Figure[4.1B, left. In Figure4.14, it is shown that all theittations are damped out
by adaptive algorithm using less DoFs compared to the unifmne. When we take
smaller diffusion parameter as= 0.001 and the other parameters are the same, the
accuracy of the adaptive algorithm can be seen clearly iarEig.I5. In contrast to the
expanding flow, the grids are refined monotonically arouredititernal layer (Figure

[4.13, right).
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0 001 002 o.p3 0.04 005 0.06

Figure 4.12: Example 4.3.4: Uniform solutions at initiatidimal times (top) and mass
error plot (bottom) for sheer flow with= 0.01

DoFs: 12132 x10°

X 0 0.01 0.02 0.03 004 005 0.06
t

Figure 4.13: Example 4.5.4: Adaptive mesh at final time 0.06 (left) and evolution
of DoFs (right) for sheer flow witla = 0.01
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DoFs: 24576 DoFs: 12132

Yy -1 1 X Yy -1 1 X

Figure 4.14: Example_4.3.4: Uniform (left) and adaptivelit) solutions at final time
t = 0.06 for sheer flow withe = 0.01

DoFs: 48492

y -1 -1 X

Figure 4.15: Examplie 4.5.4: Adaptive mesh (left) and ademolution (right) at final
time ¢ = 0.06 for sheer flow withe = 0.001
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CHAPTER 5

CONCLUSION

In this thesis, we have studied AC and CH equations modeliagpttase separation
in material sciences. Both equations are considered for argkadlass of problems
with constant and degenerate mobility, convex double-amtl non-convex logarith-
mic free energy functions. AC and CH equations have gradientstructure with the
energy decreasing property. We have applied the SIPG methtyge of discontinu-
ous Galerkin methods, as an effective space discretizégmmique for both models.
The SIPG method is combined with the energy stable time iategs implicit Euler
and AVF methods in order to capture the gradient flow strectdirAC and CH equa-
tions. We gave the proofs of energy decreasing propertyeofutly discrete solutions
for both equations. Numerical results demonstrate theeamence of time integra-
tors with the structure of both equation. The presence ofeffective diffusivity e
leads to multiple time scale of the dynamics of both equati®his is handled by
the SIPG space discretization being an alternate to thekwelivn stabilized contin-
uous Galerkin methods such as streamline upwind Petrogridal(SUPG) method.
The nonlinear terms were accurately integrated using atandewton method arising
from the discrete system of stationary equations. The gn#ggreasing property of
implicit Euler and AVF methods for both AC and CH equations @mwgeneral form
is confirmed by several numerical examples.

We have also considered advective AC equation modeling tbyelet breakup phe-
nomenon of an incompressible material with another consgskesfluid. The AC and
CH equations are first discretized in space by the SIPG metimdthe resulting large
systems of ODEs are integrated using the implicit Euler avid lethods which corre-
sponds to method of lines. On the other hand, the advectiveqd@tion is discretized
first in time by implicit Euler method which produces a seqreeaf semilinear elliptic
equations, which is known as Rothe’s method. At each time stegpace adaptive
version of the SIPG method is used to discretize the serailialiptic equations. Us-
ing this space adaptive version of the SIPG method, we hawersthat the internal
layers are resolved accurately for convection dominatetlpms as an alternate to
the shock/discontinuity capturing techniques in the ditere. The adaptivity tool is
based on the residual-based a posteriori error estimaiiban, we have also proven
the a posteriori error bounds for stationary semilineaptd! equations at each time
step. Numerical results demonstrate that the space adaggerithm resolves well
the multiscale dynamics of the advective AC equation foragxjing and contracting
velocity fields.
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Extension of the methods to more realistic three dimens$idGaand CH equations,

advective AC equation might be the major topic of a futurekvédso the development
of an efficient time—space adaptive method would be corsttar future studies to
resolve the multiscale dynamics of AC and CH equations andcitve AC equation.

Since the formation of the steady state solutions takes @ tiome which makes the
computation expensive, a model order reduction techniguédde also considered
for a future work.

As a further study, numerical solution of Navier Stokes A@ &H equations might
also be considered as different versions of advective AQtsau
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