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ABSTRACT

A GROUNDED AND CONTEXTUALIZED WEB OF CONCEPTS ON A
HUMANOID ROBOT

Çelikkanat, Hande

Ph.D., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Sinan Kalkan

Co-Supervisor : Assoc. Prof. Dr. Erol Şahin

September 2015, 140 pages

In this thesis, we propose a formalization for a densely connected representation of
concepts and their contexts on a humanoid robot platform. Although concepts have
been studied implicitly and explicitly in numerous studies before, our study is unique
in placing the relatedness of concepts to the center: We hypothesize that a concept
is fully meaningful only when considered in relation to the other concepts. Thus,
we propose a novel densely connected web of concepts, and show how utilizing the
relatedness of concepts can take cognition one step forward from the conventional ap-
proach that treats them individually. Then we use this densely connected framework
for determining the context of encountered scenes. Although unanimously accepted
as one of the pillars of cognition, our study is the first attempt to provide a dedicated
and general formalization of context in a robotics setting. We follow a developmental
approach in which the robot determines the existing contexts in its environment in an
unsupervised manner, associates seen objects and whole scenes with these contexts
as appropriate, and further utilizes this extracted contextual information in reasoning
and planning. As required by the developmental paradigm, the programmer’s input
to the robot in terms of informational bias is kept at a minimum, and the robot is
expected to deduce the important characteristics of the environment itself, such as
the number of contexts hidden in its environment, if and when to introduce another
context to its world model, and how these contexts probabilistically give rise to the
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related concepts in this world.

Keywords: Concepts, Concept Web, Context, Conceptualization, Symbol-Grounding,
Developmental Robotics, Cognitive Robotics
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ÖZ

İNSANSI ROBOTLAR İÇİN TEMELLENDİRİLMİŞ VE BAĞLAMSAL BİR
KAVRAM AĞI

Çelikkanat, Hande

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Sinan Kalkan

Ortak Tez Yöneticisi : Doç. Dr. Erol Şahin

Eylül 2015 , 140 sayfa

Bu tezde, bir insansı robot platformunda kavramların (concepts) bir ağ formasyonu
kullanılarak temsil edilmesini ve ilgili bağlamlarının (contexts) çıkarılmasını destek-
leyen bir formalizasyon önermekteyiz. Literatürde kavramlama yetisinin doğrudan ya
da dolaylı olarak incelendiği çok sayıda çalışma bulunsa da, bu, kavramların birbir-
leriyle olan bağlantılarına odaklanan ilk çalışmadır: Temel hipotezimiz, bir kavramın
ancak diğer kavramlarla ilişki içinde ele alındığında tam olarak anlam kazanacağı
yönündedir. Bu hipotezden yola çıkarak, tezin ilk kısmında, kavramları temsil etmek
için yoğun bağlantılı (densely connected) bir kavram ağı önermekte, sonrasında ise bu
yaklaşımın, kavramları birbirinden bağımsız olarak işlemeye kıyasla sunduğu avan-
tajları göstermekteyiz. Tezin ikinci kısmında ise, bu yoğun bağlantılı kavram ağını,
robotun karşılaştığı ortamlarda bağlamı tespit etmek için bir temel olarak kullanmak-
tayız. Bağlamın çeşitli bilişsel yetilerdeki etkin rolü neredeyse evrensel olarak kabul
edilse de, bu çalışma, robotlarda bağlamı genel anlamıyla, önceden belirlenmiş uy-
gulama senaryolarına kısıtlı kalmadan formalize etmeye yönelik ilk çalışmadır. Ge-
lişimsel robotik yaklaşımına uygun olarak, robotun ortamındaki bağlamları eğiticisiz
(unsupervised) bir şekilde, kendi kendine keşfetmesi, karşılaştığı nesneleri ve sahne-
leri bu bağlamlarla ilişkilendirmesi ve keşfettiği bağlamsal bilgiyi kendi akıl yürüt-
mesini ve davranışını yönlendirecek şekilde kullanabilmesi sağlanmıştır. Gelişimsel
yaklaşımın gerekleri doğrultusunca, programcının robota beslediği hazır bilgi girdisi

vii



en düşük seviyede tutulmakta ve robotun, ortamın önemli karakteristiklerini, örneğin
ortamda gizli bağlam sayısını, dünya modeline yeni bir bağlamın ne zaman eklenmesi
gerektiğini ve bağlamların kavramlarla olasılıksal olarak nasıl ilişkili olduğunu kendi
kendine keşfetmesi beklenmektedir.

Anahtar Kelimeler: Kavramlar, Kavram Ağı, Bağlam, Kavramlama, Sembol Temel-
lendirme, Gelişimsel Robotik, Bilişsel Robotik
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Ekin Eroğul, an enigma, an idol, the very first ‘charisma: 4’ entity most people have
seen, but first and foremost and forever, my friend. For showing me how there is a
world bigger than your intimidations. How interesting the wide world really is. For
teaching me how one is stronger than their fears, interdependences, doubts. For being
one of the strongest, cleverest, most determined, most loyal people I’ve ever known.
To Mari Fukaumi, my friend, my soul-mate from the other end of the world. Who
took my loneliness away and gave me her limitless love instead. Who made Japan my
second home, and myself a little Japanese at the end. A modern day samurai, who
can take on all the struggles of the world with courage, grace, and grit. To dearest
Marina Wimmer and Nicolas Pugeault, for making their home my home. Making
me a part of their lives. Long I have traveled, and yet I fail to understand how these
two warmest, most giving, most loyal hearts could happen to find each other. The
loving mom and dad, the no-nonsense scientists, they defy the stereotypes that one is
either a “heart-person” or a “mind-person”. And to Aurélie, welcome to us! To Frank
Guerin, whose heart remains as pure and untarnished in this selfish era as science
should ever be. With thanks for many eye-opening conversations, wise guidance,
incessant idealism, many laughs, and more importantly reminding me why we are all
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CHAPTER 1

INTRODUCTION

An “exchange of ideas” with a 5-year-old is always interesting. This little kid, who

was not in this world only a couple of years ago, not only understands you perfectly,

but he is also sure to surprise you with one or two very well aimed comments on

life, truth, or yourself in particular. What is it that these little creatures are capable

of, and yet our most “artificially intelligent” robots are clueless at? How do they

progress from “Hey what is this? It is a plane!” to logical talk, commentary, irony,

and intentional lying? Somehow they not only soak up a plethora of new concepts

every day, but also rapidly form countless connections between them - until eventually

they have a perfect world model in their minds that identically replicates the rules and

relations of the outer world. No later than they meet with a new concept, they connect

it with what they already know, which will, in the long term, give rise to context in

their minds, and prevent them, for instance, from swearing in the presence of their

mother, unless of course in case of dire emergency.

We learn concepts, as well as the contexts that they frequently occur in, very early

in life, and mostly do not consciously realize our dependence on our ability to con-

ceptualize, or contextualize, any more. Yet, we depend on these internalized con-

texts for numerous things, for understanding which categories a novel object falls

into, for planning how we can perform a certain goal with it, for reasoning how it

fits within our world. Concepts even shape our language by guiding how we think:

Nouns occur because they represent groups that are important enough in life for us

to attend to, adjectives lead us to care about some properties of objects, such as be-

ing yellow or shiny, more than being made-up-of-a-single-type-of-atoms or not. By
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deciding what is important and what is not, concepts also drive our categorization,

which Lakoff emphasized as, very elegantly, in his paper titled “Women, Fire, and

Dangerous Things” [1];

“Categorization is not a matter to be taken lightly. There is nothing more

basic than categorization to our thought, perception, action and speech

[...] Whenever we intentionally perform any kind of action, say some-

thing as mundane as writing with a pencil, hammering with a hammer,

or ironing clothes, we are using categories [...] Without the ability to

categorize, we could not function at all.”

There are no doubt many facets of conceptualization as a cognitive facility, which

possibly include the forming of new concepts in our minds, the statistically and

probably-also-socially guided decision of what comprise a distinct concept and what

do not, how these concepts are structurally represented in our minds, how we place a

first-time seen object among the countless concepts we have acquired for years, how

concepts are held in relation to each other, how we learn about and utilize these re-

lations, and how these relations lead the emergence of different contexts in our life

with time. The questions are endless, but so are also the possibilities: We stand to

enormous gain, theoretically and practically, of the study of such a comprehensive

subject.

In this thesis, we make an initial attempt at a formalization of concepts and context in

robots. Concepts, for sure, have been studied implicitly or explicitly numerous times

before, in robotics or elsewhere, but we share the viewpoint of Deacon [2], and place

the relatedness of concepts to the very center of our formalization. Indeed, he claims,

primates are able to learn certain concepts as well, but humans are unique in learning

them in relation to each other, connecting every symbol in a great map of symbols,

being therefore able to manipulate them at will, and truly utilize their power. Con-

text, on the other hand, to the best of our knowledge, in spite of being intuitively one

of the cornerstones of cognition, has never been tackled formally and with adequate

generality before in a robotics work. It has been worked on, for instance, in Natu-

ral Language Processing domain for making sense of text documents (e.g., [3]), in

psychology for explaining automated behavior (e.g., [4]), or in computer vision for

2



Perception

Chair 

La
n

gu
ag

e A
ctio

n

Sit
behavior

Lift
behavior

Classroom

Office

Table 

Lamp

Living Room

Chair 
features

“Classroom”

“Chair”

Classroom 
features

(a) Existing cognitive systems

Chair La
n

gu
ag

e A
ctio

n

Sit
behavior

Lift
behavior

Table 
Lamp

Chair 
features

Perception

“Table”

“Chair”

Lamp 
features

(b) The proposed concept web

Perception

Chair 

La
n

gu
ag

e A
ctio

n

Sit
behaviour

Lift
behaviour

ClassroomOffice

Table Lamp

Living Room

“Chair”

Chair 
features

(c) The proposed context model that

is linked to the active concepts in the

concept web

Figure 1.1: (a) Existing cognitive systems have concepts which have links to percep-

tual features and motor actions which were programmed by a designer or trained in

context-free environments. (b) The concept web model without context: A densely

connected concept web connecting perception, action and language; however, there

is no notion of context in this model. (c) We propose a system that learns in context

the links between concepts and sensorimotor primitives, based on the statistics of its

interactions in real-life environments. For clarity, only a few links and concepts are

shown.

facilitating object recognition [5], but it has not been shown if and how a robot can

grow developmentally while at the same time acquiring and utilizing different con-

texts, much like a human child would do. In this thesis, we make the first systematic

attempt at such a robot with a formal understanding of grounded and contextualized

concepts represented as a densely connected web.

1.1 Contributions of this Thesis

Our contributions in this thesis can be collected under two general headers:

• Development of a densely connected web of concepts

– We propose a novel densely connected web representation of concepts,

which can exploit relatedness of different concepts to facilitate reasoning.

The idea of grounding concepts is well-researched in the literature (Figure

1.1a), however, the proposal of grounding them together and in relation
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to each other is novel to our work (Figure 1.1b). We use a Markov Ran-

dom Field as the basis of our representation. This model is able to use

statistically gathered a priori information about co-occurrences of con-

cepts in order to correct its initially naive interpretations of objects. This

part of the contribution has been done in collaboration with Güner

Orhan. [6]

– We postulate that spatial relations, corresponding to prepositions in the

language, need to be represented as bona fide concepts themselves in our

web, and be considered similarly in relation to the other concepts. For

representing the unidirectional, ordered nature of the spatial relations, we

propose a hybrid variant of the standard Markov Random Field model.

– Taking advantage of the addition of spatial concepts into the framework,

we show how whole scenes can be represented in the system, through ac-

tivating separate instantiations of the concept web for each object, which

are then connected to each other via the spatial concepts. Since our con-

cept web is associative in nature, we need such a distinction of instan-

tiations for effective representation of possibly-semantically-conflicting

objects present in the scene at the same time.

• Formalization of context over this web of concepts

– On this connected web of concepts, we develop a novel framework for

contextual interpretation of the scenes (Figure 1.1c). The robot is able to

deduce the contexts of scenes, and of individual objects existing in these

scenes, using statistical properties of the scenes it has encountered in its

lifetime. We propose a novel, online extension to the Latent Dirichlet

Allocation methodology, so that the robot is able to learn detecting the

contexts developmentally.

– We provide an explicit formalization for context. To the best of our knowl-

edge, this is the first time that context is tackled with systematically, or

modeled per se, as a separate entity but also in direct relation with other

conceptual entities, in a robotics scenario.

– The robot is then able to feedback this contextual information to the more

primitive concept web layer, thereby guiding the reasoning in the concept
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web according to context. It is also able shape and prune its planning

according to contextual information, achieving significant computational

efficiency.

These contributions have been disseminated as the following papers:

Journal papers:

• Hande Çelikkanat, Güner Orhan, Nicolas Pugeault, Frank Guerin, Erol Şahin,

and Sinan Kalkan, Learning Context on a Humanoid Robot using Incremental

Latent Dirichlet Allocation, accepted for publication by IEEE Transactions on

Autonomous Mental Development, 2015.

• Hande Çelikkanat, Güner Orhan, and Sinan Kalkan, A Probabilistic Web of

Concepts on a Humanoid Robot, IEEE Transactions on Autonomous Mental

Development, vol: 7, no: 2, pp.92-106, 2015.

Conference papers:

• Hande Çelikkanat, Erol Şahin, and Sinan Kalkan, Integrating Spatial Con-

cepts into a Probabilistic Concept Web, IEEE International Conference on Ad-

vanced Robotics (ICAR), 2015.

• Hande Çelikkanat, Güner Orhan, Erol Şahin, and Sinan Kalkan, İnsansı Robot-

lar için Olasılıksal Bir Kavram Ağı, Türkiye Robotbilim Konferansı (TORK),

2015 (submitted).

• Hande Çelikkanat, Güner Orhan, Nicolas Pugeault, Frank Guerin, Erol Şahin,

and Sinan Kalkan, Learning and Using Context on a Humanoid Robot Us-

ing Latent Dirichlet Allocation, IEEE Joint Conference on Development and

Learning and on Epigenetic Robotics (ICDL-Epirob), pp.201-207, 2014.

• Hande Çelikkanat, Güner Orhan, Nicolas Pugeault, Frank Guerin, Erol Şahin,

and Sinan Kalkan, İnsansı Robotlarda Bağlamın Öğrenilmesi, Türkiye Robot-

bilim Konferansı (TORK), 2014.
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1.2 Outline of the Thesis

The outline of the thesis is as follows:

Chapter 2 presents the literature and state-of-the-art knowledge on concepts and con-

text, in terms of their structural representation in humans as well as in other robotics

and computational studies.

Chapter 3 introduces the iCub humanoid robot platform that we work on. This section

also details our data set, the specific concepts that we use in this work, the process of

data collection, and the representation of the feature vectors of the objects.

Chapter 4 introduces our concept web formulation, explains how it is learned from the

training set, and inference is later conducted on it, and presents results that demon-

strate the superiority of such a connected approach as compared to an individual-

concepts view.

Chapter 5 advances this concept web by proposing a holistic scene representation, via

instantiations of the concept web for individual objects, and spatial concepts connect-

ing them.

Chapter 6 builds the idea of context on top of the concept web, describes an unsuper-

vised method to extract contextual information, and shows how this information can

later be fed back to the concept web to guide reasoning. This chapter also presents

performance increase results in object recognition, scene interpretation, and planning

scenarios when under contextual guidance. Moreover, the benefits of using the con-

cept web formulation as the basis are investigated.

Chapter 7 discusses various important features and design choices within the pro-

posed model, and concludes with ideas for future work.
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CHAPTER 2

ON CONCEPTUALIZATION AND CONTEXT

We begin this chapter by surveying the literature on conceptualization. This is a very

broad subject, indeed one of the pillars of rational thought, and therefore has been

studied from various points of views. From a vast literature, we try to summarize

the works that are most relevant to our approach, combining the rich background of

psychological, neurological, computational, and robotics works together. We follow

this discussion with the idea of context, talking about its implications in different

areas of life and science. Finally, we summarize our contributions in this thesis, in

relation to the existing findings and the literature.

2.1 Concepts

A concept is “a representation that allow us to make sense of the world by enabling

us to categorize the continuous high-dimensional sensorimotor space” [6]. How does

this representation first form in our minds? How can the formation of one concept

facilitate the formation of other concepts, once it is securely internalized? More

technically, how is it, structurally, represented in our minds? If we were to understand

the exact structural mechanisms of its representations in humans, then perhaps we

could try to mimic a similar representation for our robots, try to be inspired from

it for the sake of obtaining more robust, more flexible reasoning in artificial minds.

This section presents the current literature in philosophy, psychology, neuroscience,

and robotics, that tries to provide some answers, albeit in progress rather than definite

and finalized, to these questions.

7



2.1.1 Theories of Concepts

Given the fundamental and central place of concepts in our thought, maybe it is not

surprising to trace back the questions on the nature of conceptualization to the Ancient

Greeks. Indeed, in the dawn of philosophy, we see the explicit efforts to place the

roots, development, and mechanisms of conceptual thought in the human mind.

In Plato’s dialogues, we see Socrates arguing that knowledge comes from inside,

rather than from outside. In this sense, he claims that we remember, rather than learn

knowledge, that it is divine, not humane. Plato builds on this view in his thesis of

ideas: That the world we live in is not the real one, but an image of a perfect world,

a world of “ideas”. Human souls, which originally belonged to this perfect world,

still remember it and yearn for it. When they see a bird, or a tree, they recognize it

because these things remind them of the perfect bird, the perfect tree. Therefore there

is no learning, just remembering, with a sense of nostalgia, of archetypes or concepts,

too absolute and ideal that everyday instances of them can never duplicate, but only

weakly imitate.

Aristotle, on the other hand, firmly protests against this idea. An experimentalist to

the core, he argues that it is not that we are born with some ideas of concepts in our

minds. It is the opposite, we are born with empty minds, and form our concepts as

we encounter their exemplars one by one: When we see a couple of trees, we form

a rough idea of a tree; when we encounter a thousand, we then have a very solid

tree theory. He also forms a Hylomorphism theory, in which he divides the forms

of substances into substantial and accidental forms. Substantial forms are the essen-

tial properties, i.e., essences, of a substance, they define what makes the substance.

The accidental forms, on the other hand, are non-vital, those can change and show

variance, without causing the substance to become another substance.

The discussion was naturally not limited to ancient Greece. Many scientists have

likewise pondered on the elusive origin and the exact representation of concepts in

our minds. The following main theories have thus emerged as a result of centuries of

philosophical and empirical work:

• The Classical (Rule-based) View: According to the classical view, each con-
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cept is describable with a strict rule. Memberships of instances are decided

according to their being compatible or not with this rule, resulting in a crisp yes

or no answer (see, e.g., [7]). The following, for instance, may be used as a rule

for defining the concept BIRD:

has-wings(obj) ∧ flies(obj) ∧ lays-eggs(obj) ∧ has-beak(obj) ∧ · · ·
(2.1)

Sparrow obviously satisfies this rule, and is therefore an instance of the BIRD

concept. However, this view is now generally accepted to have certain short-

comings, the most prominent of which being its inability to distinguish between

typical and non-typical instances of a concept [8]. Take for instance, a very non-

typical bird, the penguin, which does not fly, and therefore violates one of the

core criteria of the rule. Yet the penguin is still a bird, albeit a marginal one. It

is therefore plausible, even common, that instances can be partially compatible

with the rules, a situation that is completely disregarded by this view.

• The Prototype View: In this view, the concepts are defined by their proto-

types (e.g., [9]). The prototype of a concept describes how a perfect member of

the category should look like, by combining hypothetical “ideal” features. The

membership of an instance is then decided by comparing its features with that

of the prototype. Memberships are not crisp, so an exemplar with a high simi-

larity to the prototype might be deemed a very typical member of the concept,

while an instance with only marginal likeliness can still be allowed as a non-

typical member. (See also [10] for an interesting geometrical interpretation of

this view.)

• The Exemplar View: The exemplar view holds that concepts are composed

of a collection of previously encountered exemplars, retained in memory for

future reference. Incoming instances are compared against this exemplar set

of the concept, to check for membership. Note that more commonly occurring

exemplars will naturally with a higher frequency in this representation, and

therefore will serve to distinguish typical members from non-typical members

by a number of vote. Meanwhile, non-typical members can still be represented

and accepted by a less number of exemplars. The BIRD concept, for instance,

is expected to be represented by many flying bird instances, and a small number
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of non-flying ones.

All of these views have their positive and negative points, see for instance [11] for

a review. Evidence supporting each of these claims have indeed been put forward

separately, so it is not possible, as of yet, to converge on a single optimal conceptual

representation theory, discarding all others. Furthermore, given the high centrality of

conceptualization to our thinking, it is quite possible that different strategies are be-

ing employed at different tasks [12], which may as well imply an underlying hybrid

representation [13]. An important computational model combining these different

strategies is Learning Vector Quantization [14], in which concepts are held by proto-

types which are updated online via incoming examplars.

2.1.2 Grounding Concepts

A major question related to conceptualization is how we manage to make sense of

concepts, and how we can ever share them. Harnad points out in his seminal work [15]

that any agent that is merely capable of symbol manipulation might be communicat-

ing with us to a certain degree, however it will have no internal understanding of

these symbols. Called the “symbol grounding problem”, this coins one of the main

problems of implementing concepts in an artificial agent: How can we build an intel-

ligence that can not only talk, but also understand what it is talking about?

Barsalou’s pioneering Perceptual Symbol Systems hypothesis [16] suggests that per-

ceptual input may be triggering bottom-up activation in sensorimotor cortices, which

are then partially reactivated through top-down mechanisms over the association cor-

tices to simulate these perceptual symbols. These distributed and yet connected cor-

tices can then work together to implement a basic conceptual system, out of which

emerges conceptualization and categorization.

The famous robotics counterpart of the answer is the embodiment of the agent (e.g.,

[17–28]). A robot, which is not only an intangible mind, but which instead has a body

in the world, can understand the world in terms of its own interactions: A soft object

is one you can squeeze, and squeezing is an action that changes the form of a soft

object, but not of a hard one. Therefore, sensorimotor experiences can form the basis
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of the the internal meanings we attribute to concepts.

Steels’ Recruitment Theory of Language [29] approaches the problem from a func-

tional view point. The proposed hypothesis replaces the idea of a dedicated, evolved

language “module”, with a dynamic, agent-based development of linguistic abilities,

through “piggybacking” over previously evolved, more primitive cognitive functions.

The specific cognitive modules that prove efficient for developing communication

abilities, by providing the linguistic power, may be selected by the agent and kept

through developmental stages. In this sense, any region that contributes to the forma-

tion of concepts, thereby facilitating interpersonal communication, could be utilized.

Perhaps the most obvious candidates, in line with the above theory, would be the

primary sensory and motor cortices.

How then a community converges on a common language, with common names for

specific concepts? Cangelosi [30] draws attention to the “double function” of lan-

guage, making the distinction between the communicative function of the language

between social agents, versus the cognitive facilitation of language within an indi-

vidual’s own reasoning. With his collaborators, they demonstrate how a shared,

grounded lexicon can emerge among a group of agents that struggle to forage in a

challenging world [31,32]. In the course of developing this mode of communication,

they necessarily ground the labels on their own sensorimotor experiences. More-

over, these conceptualizations can be transferred from a teacher to a student. Sim-

ilarly, Steels [33] demonstrates how playing a collaborative naming game between

the agents can simulate the cultural transfer of language between agents, when they

aim to maximize communicative success in order to “win” in the game. Belpeame

and Morse [34], in an attempt to explain how young children learn concepts, compare

cross-situational learning of concepts with socially guided learning, to show both are

feasible, but social learning is even more efficient. Finally, Cangelosi and Riga [18]

discusses how symbol grounding for basic actions can later be transferred to more

complicated, higher-order actions. All these works support that symbol grounding

need not be strictly individual or on word-basis only: Grounded symbols can be effi-

ciently transferred between agents and concepts, and in fact, it is more efficient to do

so, rather than grounding every single concept individually.
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Figure 2.1: The “connected” concepts representation we propose in this thesis.

Semantically related concepts are linked together with connections. They are also

grounded in perception, action, and language. White color indicates “active” con-

cepts, blue color indicates inactive ones, see Chapter 4 for details. Adapted from [6]

c©2015 IEEE.

From a different point of view, Hashimoto and Masumi [35] show how concepts can

be modeled as attractors in a dynamical system. The transitions between the attrac-

tors then naturally corresponds to the manipulation of these symbols during language

use. (An interesting finding is that their model did not emerge any regularities in the

transitions, therefore this system has not developed an explicit “syntax”.)

Grounded conceptualization of “nouns” and “adjectives”, which may be considered

as “object classes” and “object properties”, has received its rightful attention in liter-

ature, for instance see [36, 37]; however an organized attempt towards the conceptu-

alization, and especially generalization, of actions into verbs is rather recent. Kalkan

et al. [38] and Rudolph et al. [39], propose that behaviors can be defined and sub-

sequently generalized in terms of their effects. Via the effects, we may arrive at a

generalization over a rather continuous space of actions: Take, for instance, the be-
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havior of “passing the salt”, which can be performed using either the left or the right

hand, employing either a power or a precision grasp. Nevertheless, the same goal

is achieved in all of these scenarios, irrespective of the actual physical movement,

therefore resulting in the realization of the same verb concept.

As we have detailed above, physical grounding is a well-researched solution for de-

veloping concepts in artificial agents, however the general approach is to ground each

concept separately. In this thesis, we would like to go one step further, by propos-

ing to ground concepts together via connecting them to not only their perception,

action, or language counterparts, but also to other “semantically similar” concepts.

In this sense, a “cup” and a “plate” are semantically similar, since both tend to exist

in kitchens, and co-occur together often in eating situations. Similarly, a cup is usu-

ally short, round, and hard, so these properties are also intrinsically related to the cup

concept (Figure 2.1). We continue this discussion further in Section 2.2.

2.1.3 Spatial Concepts

A perhaps more advanced question is, how do we conceptualize spatial relations be-

tween objects? An understanding of spatial relations of objects in the world is crucial

to everyday actions, not only we communicate with each other using them (“Give

me the cup on the table.”), but we also plan subconsciously using these relations all

the time (e.g., pouring the milk into the pot in order to be able to warm it on the

oven). There is unmistakable evidence collected proving that our parietal cortices

are active constantly in order to detect these abundant relations non-stop (see, for in-

stance, [40–42]). Arguably, the only way we could have survived as animals is by

carrying an accurate spatial model of the world in our minds: We can close our eyes

at any moment and recount the relative positions of the objects around us to an as-

tounding accuracy - “I am sitting at a chair standing in front of a table, on which there

are two cups, one red and one yellow, a number of books stacked on top of each other

standing next to a calendar, which is to the left of the monitor”. But in addition to

this instantaneous and automatic spatial modeling, we also have a virtually perfect

intuitive understanding of the spatial concepts as dictated by the laws of physics: We

know we cannot (easily) stand on a basketball because it is round, we understand we
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can place a book beneath the monitor in order to raise it, but not an orange, and so on.

Therefore there is more to spatial relations than basic world-modeling: A spatial con-

cept is just like any other concept in that it is most meaningful only when considered

in relation to the other concepts in our mind.

We argue that prepositional spatial relations should also be regarded as concepts in a

web of concepts, in relation to other concepts, just like a noun or adjective concepts.

However, since they are binary and directed in nature (since, e.g., a ball can stand on

a box, but not vice versa, since the ball is round, therefore the spatial relations have

order), we present a Hybrid Markov Random Field model, which is a variant of the

Markov Random Field-based concept web model [6], enhanced to include directed

connections between spatially-related graph nodes.

How to represent spatial concepts have necessarily attracted much attention in robotics,

either from a cognitive point of view, in order to understand and implement their

human-like development, or from a pragmatic, utilitarian point of view, in order to

endow robots with cleverer acting abilities in the real world. Kuipers [43] had both

of these goals in mind, proposing a multi-layered cognitive map called the Spatial

Semantic Hierarchy, which can represent the real world in hierarchical levels as in-

formation continues to flow, which integrate eventually into flexible semantic rep-

resentations. A seminal work on the psychology of spatial conceptualization was

conducted by Landau and Jackendorf [44], who argued that people do not take into

account every detail when extracting spatial relations, instead relying on approxima-

tions. For instance, languages commonly provide only the crude descriptions of “in”

and “not in” for the important conceptual relation of containment, but there is no

detailed propositions describing, for instance, “being in a round object”, or “being

inside and also in contact with the inner surface of an object”, etc. Instead, they point

out, languages tend to elaborate on nouns, while abstracting over useless details of

spatial concepts.

The closest point of view to the one followed in this thesis is raised by Coventry, Gar-

rod, and colleagues, who propose that spatial concepts are as much about functional-

ity and knowledge about conventional usage, as they are about geometrical relations.

For instance, asking subjects to describe the location of a protective object (e.g., an
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Figure 2.2: The interference of perceived functionality on the interpretation of the

spatial prepositions, experiments by Coventry et al. [45]. When the object with a

canonical functional usage, i.e., the umbrella that is supposed to protect the man from

the rain, is in a position that is able to carry out this functionality, people are more

likely to say that the man is under the umbrella (middle row). On the contrary, when

the object is perceived as ineffective to perform its functionality (bottom row), people

do not judge the man as under the umbrella anymore, but rather, as below it. Figure

taken from [45].

umbrella) with respect to a reference object (e.g., a man) [45] showed that people

were more likely to describe the man as under the umbrella if it was perceived as

effective in protecting the man from the rain (Figure 2.2). Conversely, the description

of the man as being below the umbrella was more affected by relative geometrical

orientation of the man and the umbrella. Therefore, functional and geometric states

can differentially effect the interpretations of above/under vs. over/below. Similarly,

Coventry et al. [46–49], as well as Garrod et al. [50, 51], conducted detailed experi-

ments depicting that, when interpreting the containment relation, people make heavy

use of the understanding of functionality, and related a-priori knowledge: A ball in
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(a)

(b) (c)

Figure 2.3: The interference of everyday knowledge with the interpretation of spatial

relations, experiments by Coventry et al. [46, 47]. (a) Although the object is at the

same location with respect to the bowl in both figures, people are likely to judge it in

the bowl only in the left figure, where the object indirectly “touches” the bowl via the

other objects in between. (b) Although both the bowl (left) and the jug (right) are full

to the same amount, people are likely to judge the oranges on the left as in the bowl,

while the apples on the right as out of the jug. Coventry et al. hypothesize that this

difference is due to the canonical usage of the jugs to hold liquids, which can then

physically be fulled only until the rim. The bowl, on the other hand, is commonly

used to hold solid objects. Therefore, people have in their minds a larger canonical

containment range for the bowl, as compared to the jug (c). Figures taken from [47].

contact with the inner surface of a bowl is in the bowl, even if this is “indirect” con-

tact, whereas without contact, the same ball at the same location is not considered in

the bowl (Figure 2.3a). Similarly, when too many oranges are stacked in a bowl so

that some are overflowing from above the bowl, people still judge these oranges as

inside the bowl (Figure 2.3b). However, when the same scenario is performed with

a jug instead of a bowl, they do not judge the oranges as inside the jug. Coventry et

al. [46,48] explain this behavior by mentioning the regular usage of bowls with solid

items, which can overflow the bowl but still remain in place, versus the regular usage

of jugs with liquids, that spills out in a similar scenario. Therefore, they conclude that
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people have a larger space of containment idea for bowls, which effectively extends

their range. (Figure 2.3c) Once again, the a priori intuition of the rules of physics,

meddles with our conceptualization.

Trying to apply the principles of spatial labeling to Human-Robot Interaction, Fis-

cher [52] investigated the variables affecting people’s choice of spatial instructions

when interacting with a robot. Stopp et al. [53] studied how a robot can anchor

verbal spatial descriptions to its physical environment, thus grounding them, propos-

ing a compositional variant of spatial potential fields. Gold et al. [54] showed how

prepositions, together with pronouns, can be extracted and represented as word trees,

depending on entropy and information gain metrics applied on the physical envi-

ronment. Moratz and Tenbrink [55] developed a system for iterative interpreting of

projective relations in human-robot interaction scenarios, in order to enable mutual

identification of objects in the environment between the robot and the human partner.

Roy et al. [56] proposed that a physical simulation-based mental world model can be

employed for allowing a robot to shift between his own perspective (“my left”) and

that of the human partner’s (“your left”).

Van de Weghe and colleagues [57, 58] pointed out the qualitative (as compared to

quantitative) nature of spatial representations in humans, for example describing some-

thing crudely as “on the right” rather than as “at θ◦ to the right”, and proposed Quali-

tative Trajectory Calculus (QTC) as a qualitative formalization of the relative motions

of two agents. Such a generalized and qualitative representation naturally allows fo-

cusing on the core aspects of the spatial interactions, instead of getting lost in quan-

titative descriptive details of motions. Hanheide, Bellotto and Van de Weghe then

showed how such a representation could be used in a naturalistic manner in robots, for

instance for comparing and modeling behaviors of humans to guide the robots, and

providing the common understanding for human-robot spatial interactions [59–61].

Dealing with the reverse problem, Iliopoulos et al. [62] showed that it is also possible

to inverse-map qualitative QTC descriptions back into trajectories that satisfy them.

Yi et al. [63] propose a topological-semantic distance map, which considers the “spa-

tial contexts” of objects and robots (e.g., robot on the left of X, X is in front of Y, etc.)

using a probabilistic Bayesian model, which similarly allows qualitative descriptions

of environments, in order to allow building more flexible spatial representations.
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Figure 2.4: The representation of spatial concepts in our system, as bona fide con-

cepts themselves, that connect other noun, adjective, and verb concepts but are also

flexible and subject to refining and reconsideration through the integration of knowl-

edge coming from neighboring concepts. White color indicates “active” concepts,

see Chapter 4. Adapted from [67] c©2015 IEEE.

Investigating the formation of spatial concepts, Golland et al. [64] showed that, when

trying to minimize the risk of miscommunication between two collaborative agents,

discovering descriptive spatial labels is more effective than sticking with pre-determined

labels. Inspired by this result, Guadarrama et al. [65] proposed a system to learn

spatial prepositions and object representations simultaneously, combining strategies

of template matching, syntactic parsing, and probabilistic analysis. Tellex et al. [66]

showcased a robotic forklift scenario, to be controlled by natural language commands,

as a testbed for language grounding, in which they try to learn the parameters for a

probabilistic graphical model from a corpus of commands.

Out of the existing modeling studies, the most relevant to our approach is of Anand

et al. [68], who used spatial relations between noun concepts to guide a visual search

via contextual information, using a Markov Random Field. In their work, each object

part corresponds to a node in MRF, and detected spatial relations between the parts

are used to connect the nodes to each other. Hard-coded, rule-based spatial relations

such as “on top of”, “in front of” are then integrated into the model as edge potentials

to improve the accuracy. A similar approach is also taken by Misra et al. [69], who
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assume simple geometric relations between objects to define contexts. Our approach

is different in that the spatial prepositional relations are themselves concepts that link

other noun, adjective, and verb concepts that are related to the objects. Therefore,

the spatial concepts are subject to reasoning and reconsidering: Instead of assum-

ing perfect geometrical perception of the spatial configuration, our system is able to

incorporate a priori knowledge about the world into its assessment of the spatial con-

cepts. This hypothesis is in line with the psychological experiments of Coventry et

al. [46–49] and Garrod et al. [50,51], who point out to the significant level of interplay

between everyday world knowledge and the interpretation of spatial relationships be-

tween objects. Figure 2.4 provides an overview of the modeling of spatial concepts

in our system.

2.2 Structural Representation of Concepts

What are the exact cortical mechanisms that hold concepts in the human brain? And

how are these mechanisms are replicated to date in artificial agents? In this section,

we try to present the literature related to the findings and models about the structural

representation of conceptualization.

2.2.1 Structural Representation in Humans

What are the insights we currently have regarding the structural representation of con-

cepts in the human brain? Where and how are the concepts held, where and how are

they connected to each other? There are two main hypotheses on the exact mecha-

nism of conceptual representation in the brain, on both of which, interestingly, strong

arguments have been proposed. The two hypotheses are the distributed representation

and the localist representation hypotheses.

The initial proposal of the distributed representation hypothesis is owing to Wer-

nicke and Meynert (see [70] and [71] for detailed discussions). Their proposal is that

concepts are made of modality-specific engrams, which reside in their corresponding

primary sensory or motor cortices. Since they are fully connected, any hint of the

concept, by its name, sound, or taste, would activate the whole web, rapidly calling
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into attention holistic knowledge about the concept.

The popularity of this hypothesis is not arbitrary: There exists significant support-

ive neuroimaging evidence in favor of it. Goldberg et al. [72] and Kellenbach et

al. [73] demonstrated modality-specific cortical activations during semantic retrieval

and decision-making tasks. Goldberg et al. [72] showed how (1) accessing tactile in-

formation activates somatosensory, motor, and premotor cortical areas, (2) flavor in-

formation retrieval activates orbitofrontal region, (3) visual information retrieval acti-

vates ventral temporal cortex, and finally, (4) auditory information retrieval activates

superior temporal sulcus. Kellenbach et al. [73] similarly demonstrated increased

posterior inferior temporal activation for color-related decisions, posterior superior

temporal gyrus activation for sound-related decisions, and right medial parietal cor-

tex activation for size-related decisions. Similar results have also been obtained re-

lated to conceptualization of actions. In his famous work, Pulvermuller demonstrated

that motor and premotor cortices activate somatotopically during purely linguistic us-

age of action words, specifically tongue-related, peri-sylvian area activating for the

word “lick”, finger-related, lateral area for “pick”, and foot-related, dorsal area for

“kick” [74–76], Figure 2.5. The detection of such somatotopy is especially impor-

tant, since it hints a systematic co-activation of these motor areas respectively for

each category of verbs. Chao and Martin [77] similarly conducted a tool viewing-

and-naming task, which causes selective activation in left ventral premotor, as well as

left posterior parietal cortices. The importance of these findings are better appreciated

when we acknowledge that grasping a tool for using it is an integral part of the tool

concept: Therefore, spatial and motor areas must be highly relevant to the semantics

of the tool.

Recently, support for the concepts-as-combinations-of-concepts hypothesis has also

come from a pioneering study of Mitchell et al. [78], which proposes a paradigm shift

in neuroimaging: That it is possible to be predictive about neuroimaging research. In

this study, Mitchell et al. show that the fMRI activations for complex words, such

as celery, can be predicted by superposing previously known fMRI activations for a

set of 25 basic nouns, including for instance eat, taste, see, hear, smell, manipulate,

touch, say, and move. Apparently, these activations can simply be added together to

achieve the expected activation of the complex word. What is especially striking is
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Figure 2.5: The somatotopic activation of the premotor cortex to the words “pick”,

“lick”, and “kick”, compared to the motor areas that actually activate while perform-

ing picking (hand-related), kicking (foot-related), and licking (mouth-related) actions.

Figure taken from [75].

that the multiplicative weight of each simple word’s activation pattern in the whole

sum can be taken simply as this word’s co-occurrence with the target word in a large

text corpus. Literally, every simple concept is related to the complex concept as

much as they co-occur. O’Toole et al. [79] also find that object categories, such as

chairs, faces, houses, etc., which have common visual attributes (e.g., different types

of chairs), are represented by “shared neural structures” in the ventral temporal cortex,

supporting a “feature-based representation of objects”.

Given the large amount of supportive findings, it is not surprising to see in the lit-

erature a plethora of theories that regard the representational basis of concepts as a

connected-web-of-cortical-areas (See for instance Pulvermuller [74], Damasio [80],

Bryson [26], and Deacon [2]). Note that this theory can elegantly integrate initial

physical experience, subsequent memory retrieval, and even high-level reasoning.

The reader should also note the strong relevance with the theories of Barsalou [16]

and Steels [29].

The evidence supporting the distributed representation hypothesis is very strong, and

in fact could be deemed decisive, if not for the rivaling and equally, if not more, strong

evidence supporting the exact opposite, the localist representation hypothesis. Note
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Figure 2.6: The single neuron that fires selectively to Luke Skywalker, whether pre-

sented visually, as a text string, or in audio modality, while also firing for a picture of

Yoda [101]. This neuron is therefore showing selective activation to the encapsulating

Star Wars concept, regardless of the specific modality or detail of the presented cue,

providing support for the single concept cells hypothesis. Figure taken from [101].

that it had already been well-researched that specific concepts are being recognized

through dedicated cortical areas in the brain [81], the most clearly identified ones in-

cluding the human face [82–88], human body parts [89–91], outdoor scenes [92, 93],

and body movements [94, 95]. However, much more conclusive evidence came from

single-cell recordings, performed both in animals, and via intracranial recordings of

human epilepsy patients (for a comprehensive survey, see [96]). It has been shown

that there are single cells in Medial Temporal Lobe (MTL), the so-called concept

cells, which are highly concept specific, and fire when the subject is presented with a

“concept”, regardless of the specific visual pose or visual context: Specifically, neu-

rons have been identified which fire selectively when the subject is shown a picture of

a certain category (i.e., a face, animal, house, scene, famous person, car) as opposed

to visuals of a different category [97, 98]. Interestingly, of the “face-selective” cells

in the work of Fried et al. [97], most also fired selectively according to the gender,

emotional expression, and novelty of the face. Kawasaki et al. [99] similarly identi-

fied neurons in the human cingulate cortex that are selective for one emotion class.

Gothard et al. [100] found cells in the monkey amygdala, which responded selectively

to monkey faces, human faces, and objects.

Even more strikingly, Quian Quiroga and colleagues [102] could identify cells, again
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in MTL, that fire to the photos of Jennifer Aniston, and to that of Jennifer Aniston

only, instead of any random face. These cells showed equally strong activation ir-

respective of the exact pose or the context in the picture, and very interestingly also

activated slightly to the photos of Lisa Kudrow, who co-starred with Jennifer Aniston

in the popular TV show, Friends. A similar finding was also recorded for a neuron that

fires selectively to “Luke Skywalker”, but also to Yoda (Figure 2.6). In subsequent

studies, Quian Quiroga and colleagues [101, 103] demonstrated quite convergent re-

sults to this end, locating cells that fire for (1) photos of “Saddam Husein”, as well as

to his name as pronounced from a computer, and (2) to photos of Halle Berry, even

when she was masked as the “cat woman”, to the visualized string “Halle Berry”, and

again to the pronunciation of the name. Suthana and Fried [104] could localize a neu-

ron that fires selectively to the Sydney Opera House. (Interestingly, this neuron also

fired for the Bahai Temple in India, which the patient in the study verbally reported

confusing with the Sydney Opera House.)

These “concept cells” naturally drew huge interest, and were investigated under var-

ious conditions: Lin et al. [105] showed the existance of “nest” cells in mouse hip-

pocampus, which fire when the mouse encounters a potential nest, irrelevant of its

exact shape, structure, size, or material. The only identified factor in this study was

the perceived functionality of the nest: The cells selectively fired to nests that are

potentially usable, for instance, with an unblocked entrance. Yoshida and Mori [106]

located odor-category specific cells in the olfactory cortex, that are able distinguish

between food types, say, between a watermelon and a grape. Sugase et al. [107]

demonstrated how the time evolution of such concept cells matters: They showed

that the firing pattern of a concept cell can start by discriminating between gross

classes, say between human and monkey faces, and become more specific in time to

provide more detailed information, in the work discriminating between identity of the

face, or its emotional expression. Hung et al. [108] were able to read the seen objects

identity, as well as category, from a small population of 100 neurons in the macaque

Inferior Temporal Cortex. These neurons were also highly correlated with the con-

sciousness of having seen a concept: When Kreiman et al. [109] and Quian Quiroga

et al. [110] flashed photos of concepts in a difficult-to-perceive paradigm, they found

out that these cells fired only when the subjects were consciously aware of what they
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saw. Recently, Roy [96] presented a very in-depth literature survey on the subject, as

well as discussing in detail the potential computational and biological advantages on

having indeed local, concept-specific centers in the brain, instead of merely relying

on a widespread distributed representation.

With ample support for the both opposing views, there is certainly great need for fur-

ther investigation and theories. Recently though, a number of studies emerged, which

may possibly provide a synthesis of these two opposite antitheses [71, 111–113].

What they pointedly try to determine is whether this “cortical web” of primary cor-

tices is enough to represent a concept, or if there is a dedicated region that orches-

trates the combination of these low-level cortical activations into the coherent con-

cept meaning. (Damasio [80] and Damasio et al. [114] also hint a similar idea when

they mention high-level, amodal convergence zones, from which the time-locked ac-

tivation in primary cortices is orchestrated.) Lambon Ralph [71] and Patterson et

al. [111] conduct lesion and neuroimaging studies of Semantic Dementia (SD), in

which the semantic knowledge is selectively and progressively lost, while the other

cognitive abilities remain intact. Patterson et al. in [111] recounts a striking anec-

dote: “When we asked one of our patients to name a picture of a zebra, she replied:

‘It’s a horse, ain’t it?’ Then, pointing to the stripes, she added, ‘But what are these

funny things for?’” In semantic dementia, the primary cortices and their association

areas are intact, therefore the patient can classify the picture as a horse-like animal.

What’s more, she can successfully detect the stripes visually. However, the concept

of a zebra is lost, therefore she converges on the next close concept (horse) that is

still available. Another example is a patient (who is competent in all other cognitive

facilities) asking, “What are those things?” to a herd of sheep. This unusual form of

dementia is associated with degeneration in the Anterior Temporal Lobe (ATL) (for

instance, [115–117]. Kellenbach et al. [73] also interestingly recount unexpected ac-

tivation in ATL during a semantic task, which was not a specific region-of-interest in

their study, but whose activation is actually meaningfully accountable by this hypoth-

esis).

Lambon Ralph [71] and Patterson et al. [111] then propose the ATL-as-a-“semantic

hub” hypothesis, in which they propose that ATL may be the region that connects the

widespread cortical webs into meaningful entities, corresponding to concepts. They
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suggest that the often complex and nonlinear boundaries of concepts might require

such a “hub”: After all, although concepts are indeed collections of features, these

features usually bind together in nonlinear and complex fashions. Lambon Ralph et

al. [113] suggests that the extra ATL layer might indeed have a functionality that

is similar to that of the hidden layer’s in a multi-layer neural network. A single-

layer neural network can only bind together linear features, and is therefore unable to

represent certain functions. Incorporating even a single additional layer allows gen-

erating potentially any function. The progressive nature of semantic dementia also

allows testing this hypothesis explicitly: Working with mild and severe semantic de-

mentia patients, Lambon Ralph [71] and Patterson et al. [111] show that, patients

with mild dementia have a tendency to make under- and over-generalizations when

categorizing rather non-canonical entities (camels with humps, pumpkins as vegeta-

bles, etc.) These mistakes are become more prominent in severe semantic dementia,

where patients cannot remember object features that are not prototypical of their cat-

egory: They may, for instance, draw ducks with four legs, as typical of the animal

category [111], failing to make an exception for the duck sub-concept.

In a recent and paradigm-wise pioneering study, Huth et al. even proposed that

the representation of thousands of known entities could be spread on the cortex as

a continuous semantic space. The main hypothesis of this work is that since vir-

tually (tens of) thousands of items are recognizable by humans, it is more likely and

space-efficient to find these representations as a continuous semantic map, rather than

individually in a non-topographic manner. Conducting a pioneering principal com-

ponent analysis of the semantic space of 1705 action and object categories used as

stimulus, they are able to show that identified principle components correlate with

the voxel activation map - meaning that the activation of these concepts in the cortical

map follows a semantic spatial distribution. Still, these results are similarly debatable,

see for instance [101] for arguments in favor of a non-topographic conceptual orga-

nization, for instance reporting how Halle Berry and Mother Teresa are found to be

represented by neighboring neurons. And yet there is the common point that both of

these figures are humans, and famous humans as well. Quian Quiroga et al. [101] also

theorizes that concepts are held in sparse cell assemblies rather than in single cells,

and semantically connected concepts may share some cells in their assemblies, which

25



can also be a factor to consider when evaluating these results. To sum it all, there are

numerous interesting findings, whose degree of compatibility with each other varies,

suggesting that conceptualization is a very complex cognitive function with a non-

trivial structural representation mechanism, and which will certainly promote more

in-depth investigations in the future.

2.2.2 Structural Representation in Robotics

Concepts and their representation have inspired numerous computational and robotics

studies as well, some of which trying to unveil the mystery by presenting testable

models, while others mainly aiming to solve the perennial learning and adaptation

challenge in robots. One of the most organized attempts of formalizing concepts for

robotics use came in the form of a knowledge processing framework, KNOWROB,

proposed by Tenorth and Beetz [118, 119], Figure 2.7. Their main point was to de-

velop a system which can process information efficiently as humans do in real life: By

filling in the gaps in conversation with background knowledge. The system can con-

nect to external information sources, such as the Internet or dedicated databases, and

possesses manipulators with which it can utilize accessed unformatted information

in various tasks freely. Information is kept unformatted (“virtual”) until it is needed,

and then can be searched freely for associations. Concepts in KNOWROB can be

objects, actions, events, or places, and are organized in a hierarchical manner with

more specific concepts inheriting from more general ones. Multiple inheritance is al-

lowed, which enriches membership definitions. Actions are defined as recipes, events

as change of states, and all of these are inherited from a general “thing” entity, which

is the common ancestor of all nodes (object, action, event, or place) in the ontology.

Later on, this system has been extended by Palmia [120] with the aim of mutual un-

derstanding and cooperation between multiple robots. Another notable example is

Tamosiunaite et al.’s [121] utilization of syntactic bootstrapping [122] for the robot

to learn, from conversations with humans and online images depicting events, what

actions can be used on what kind of objects, effectively generalizing objects with re-

spect to actions in the process. This approach allows the robots to conduct flexible

reasoning on huge amounts of data acquired from the Internet, as well as to perform

error handling and/or guide the supervisor by asking questions if necessary.
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Figure 2.7: The KNOWROB system proposed by Tenorth and Beetz [118]. Every-

thing in the world, be it an object, action, or event, is a part of a (tree-structured) on-

tology, and derives from the most general class of “Thing”. Figure taken from [118].

On the other side of the fence, there are studies which aim to close the gap with what

we know of human cognition. Baxter et al. [123] propose a connected developmental

architecture of conceptual memory (Figure 2.8). The membership of instances to con-

cepts are defined in terms of Euclidean distance of all features to concept prototypes.

They also learn associative links between different feature spaces in a developmental

manner, reminiscent of Hebbian learning. (However, these associative links connect

only different modalities of the same concept, and not different but semantically re-

lated concepts.) In yet another attempt to bring together different modalities, Morse

et al. [124] use that the “body” of an agent as a “hub” to connect the visual, au-

ditory, and spatial information, enabling the grounding of concepts such as red and

cup. [37, 125–127] use the formalization of affordances to ground actions.

Another prevalent approach for conceptual representation in robotics is assuming that
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Figure 2.8: The associative web of conceptual memory proposed by Baxter et al.

[123]. Different modalities of the same concept are connected together with asso-

ciative links. The information about which modalities are included in a concept are

learned from the zoo database of UCI Machine Learning Repository . Figure taken

from Baxter et al. [123]

concept formation occurs in an incremental manner in the form of a hierarchical

structure; i.e., a hierarchical representation is assumed of concepts [128–131]. In

this hierarchy, upper concepts represent the general concepts, whereas lower or ter-

minal concepts refer to the specific properties or instances. The connections imply

is-a type relations between concepts. Instances can be placed into lower or termi-

nal nodes. The tree structure of the hierarchy also provides an option for branching.

Top-down classification of instances depends on selecting the best branch or a set of

branches to go deeper in a tree, similar to Quinlan’s decision tree approach [132].

One of the earliest attempts is the Elementary Perceiver And Memorizer (EPAM)

model [128, 129], which holds nodes with attribute-value pairs in a tree structure.

Each edge coming out of a node represents a certain value for a comparison criteria.

Leaf nodes correspond to specific images of instances. EPAM makes a distinction be-

tween classification and prediction tasks as two different processes. This model has

later been extended by UNIversal MEMory (UNIMEM) [130] to include confidence

and feature frequency statistics, nominal values and images in non-terminal nodes.

COBWEB [131] has been inspired by these models, as well as CYRUS [133], and

introduced an evaluation function which rewards intra-class similarity and inter-class

dissimilarity. Finally, CLASSIT [129] enhanced COBWEB by including mean and
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standard deviation values for attributes. The common point in all these hierarchical

methods is that they use the hill-climbing search method and each concept node has

their own attribute-value pairs.

The general missing point in all these works is the lack of a global structure of asso-

ciativity. Connected together are only modalities of concepts, or concepts stemming

from the same ancestor, such as “cup” as a container, and “glass” as a container.

On the contrary, none of these models present a feature of long-distance associativ-

ity between seemingly different, but semantically related concepts, such as “water”

and “glass” should be related by means of “drinking” action. Moreover, the concepts

these studies are generally not grounded: They rely on either ontologies or Internet-

based information, or a hand-designed set of features. Therefore, they lack a major

extendibility from a developmental point of view [25]. Figures 1.1a and 1.1b contrasts

our proposal with the existing systems visually.

2.3 Context

Why is context important? We as humans should know perfectly well, given the fact

that we use it shamelessly. Context determines how we walk [4], how we talk [134],

how we think [135,136]. Basically, even if we would like to, it is virtually impossible

to get rid of the context in our minds when assessing things, that is why humans are

so prone to famous cognitive biases such as stereotyping [137], the halo effect [138],

the primacy effect [139], and the framing effect [140]. Barsalou [141–143] notes:

“...[C]oncepts are not typically processed in isolation but are typically

situated in background settings, events and introspections. When repre-

senting bicycle, for example, people do not represent a bicycle in isola-

tion but represent it in relevant situations [...] [P]eople situate concepts

for the following reason: if the brain attempts to simulate a perceptual ex-

perience when representing a concept, it should typically simulate a situ-

ation, because situations are intrinsic in perception. At any given moment

in perception, people perceive the immediate space around them, includ-

ing agents, objects and events present. Even when people focus attention
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on a particular entity or event in perception, they continue to perceive

the background situation - the situation does not disappear.” (Quotation

belongs to [141].)

2.3.1 Context in Robotics

Robotics has achieved significant success in terms of both theory and applications in

the past five decades [144]; however, research involving context has focused on the

environmental aspect only, e.g., in scene interpretation [5], urban search for rescue

tasks [145], home security [146] and elderly people’s living environments [147], ob-

ject recognition in daily activities [68, 148], and trying to fulfill possibly incomplete

natural language instructions of humans [69].

Kim et al. [149] propose an architecture for facilitating contextual reasoning among

network-based service agents, however they resort to a tuple-based, naive context

representation, in which they assume perfect knowledge of ungrounded, high-level

information. For instance, the age information is assumed to be part of a context

regarding a human. Types of information related to various contexts are connected

assumed to be a priori designed by the programmer, and is therefore not flexible or

adaptable. Due to these reasons, this study rather represents an attempt towards a

context representation at a more structured environment with high reliability.

Wibisono et al. [150] aim at a highly specific application of contextual information,

namely vehicle-to-vehicle environments and autonomous driving. Contexts of Low-

risk, Conflict, and High-risk situations are pre-defined and are tried to be identi-

fied, which would rather guide the behavior of the autonomous vehicle. There are

assumed to be again pre-defined context-attribute values, including the existence

of lane-change behavior, following-distance with the neighboring car, existence of

emergency-braking, and so on, all of which reading are also augmented with con-

fidence values. These readings are combined according to their confidence values

and the resulting risk-context is deduced. As mentioned above, this is again an in-

terpretation of context for a highly specific environment, which could not be trivially

transferred to another domain.
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Wang et al. [151] proposes using OWL web ontology language, for devising contex-

tual information on a knowledge base of 300 objects. They assume that every object

has been fully analyzed through the ontology, and every relevant information about

the object has been extracted, i.e., that the function, shape, location, tasks, etc. of the

object has already been identified perfectly. They use these attributes of the objects to

detect the context. Their results are presented on simulated knowledge only, and has

not been validated on a real robotics scenario. The most important restriction is the

assumption of the ontology, and the dependence on the perfect identification of object

attributes with respect to the ontology, which again restricts the proposed system to a

very structured and well-defined environment.

As mentioned above, Yi et al. [63] use the idea of a “spatial context”, such as nearby(

object, robot), left-front(object, robot), in order to qualitatively describe localizations

and to build a topological-semantic distance map. However, this work is again re-

stricted to a single domain (spatial localization), in which the spatial context is de-

scribed by hand-coded relations (“left”, “right”, “front”, etc).

The works of Mastrogiovanni et al. [152] and Padowitz et al. [153] are more relevant

to our work in terms of aiming for a more general formalism of context. The main

aim in both of these works is to provide a formalization of context on which multi-

ple agents can contribute at the same time, improving each other’s guesses. However,

both of these works again resort to a rule-based, crisp-logical formalization of context

(defined as conjunctions of predicates), which suffers from the same disadvantages

that we listed for the rule-based concept theories above in Section 2.1.1, namely an

inflexible representation in which all-or-nothing membership is required, forcing ei-

ther 100% existence of a context or none, as required by the rule defining the context.

Moreover, the contexts that can possibly exist in the world are assumed to have been

perfectly identified by the programmer a priori, who should also perfectly define the

conjunctional rules describing possible contextual states. These rules are assumed

to be static. Therefore, the agent does not have a real understanding of the possi-

ble context, but is merely responsible with comparing certain attribute-value readings

with the predefined rules, while also considering other agents’ interpretations. The

main contribution of Mastrogiovanni et al. [152] is the incorporation of a temporal

domain, they extend the logic-based representation to include time, and therefore can
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define, for instance, precedence relations between events (i.e., Event A has happened

before event B), and can reason on when a contextual state starts and when it ends.

Padowitz et al. [153], on the other hand, introduces a geometrical interpretation of

context, in which the contextual state is a point in a multi-dimensional space, where

the dimensions correspond to the attributes that affect the context. They also define

the context as a weighted combination of these attributes, thereby allowing some at-

tributes to be more central, or possibly defining the context themselves. On such a

multi-dimensional space, they then identify hyper-volumes, which correspond to the

states of the attributes that are consistent with given contexts. The main point of both

works is to provide a collaborative reasoning environment, in which they can merge

highly uncertain information coming from different agents, arriving to a system that

is capable of performing well in an unstructured environment. However, they depend

hugely on the assumption of the possible “contexts” being known by the programmer,

and being encoded by stable rules, thereby resulting in non-adaptive frameworks. For

a detailed review of the above robotics works, the reader is referred to [154].

Anand et al.’s work [68] stands out from the robotics point of view, for, although

not proposing a formalized account of context, still making use of contextual cues

in a semantic search and labeling application. They likewise use a graphical model

to represent visual features and shape cues, which they augment with the geometric

context information, such as monitors being usually found on-top-of a table, chairs

next-to a table, etc. They show that learning and using where object is most likely

to be found is beneficial for later searches of the object, as well as interpreting given

scenes. Therefore, in their work, the notion of “context” is strictly limited to geomet-

rical context, with spatial relations assumed to be perfectly sensed. Misra et al. [69]

is also similar to our approach for utilizing a graphical model. Their main aim is

to detect prerequisites in possibly ambiguous commands issued by a human partner.

They treat context as multiple-choice values of the states of known objects in the en-

vironment (i.e., microwave door is closed or open), and check the desired states of

these objects before attempting to perform commands, for instance, the refrigerator

door might need to be in the open state, before the robot may be able to take the milk

out. These “contexts”, on the other hand, are restricted to previously defined states of

previously defined objects, rendering this model rather more suitable to highly struc-
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tured and static environments, and requiring very specific domain knowledge from

the programmer.

2.3.2 Context in Related Fields

Although context has not been studied either formally or with adequate generality in

a robotics domain, it has stimulated significant thought in a variety of other disci-

plines, a fact not surprising given the abundant implications of the topic. The field

that is most obviously interested in context is perhaps the study of language, in which

there exists virtually universal agreement on its importance. Natural languages are in-

herently ambiguous, and contextual information is vital in disambiguating the mean-

ing [155–158]. Coventry et al. [45–48, 158] and Garrod et al. [50, 51], that spatial

prepositions are as related to functional context as they are simple geometrical rela-

tions. In psychology, similarly, there seems to be universal recognition of the vital-

ity of context. Schank and Abelson [159] proposed the importance of “scripts” for

reasoning about common situations in daily life: When in a restaurant, for exam-

ple, we know that we can find nearby a menu, dishes, a waiter, a chef, and so on.

This idea has motivated the creation of formal ontologies later on. Moreover, con-

text has a clear effect on affordance perception, where the perceptions of affordances

are affected when objects embedded in certain scenes (e.g., [160]) or surrounded by

specific objects (e.g., [161–163]). As mentioned above, Barsalou drew attention to

the explicit need for understanding and situating of concepts in the context of other

concepts [141, 143]. Planning in humans, as well, being a complicated and time-

consuming ability [164–166], is shown to be tremendously facilitated with contextual

awareness [167–170].

Although potentially most obvious, language and psychology are not the only fields

recognizing the importance of context, though. In their seminal paper [171] Bieder-

man et al. showed that visual recognition of objects were highly facilitated when

perceived in environments that are conceptually relevant. In fact, context seemed

to have a dominant effect in visual object recognition, for instance as showcased by

Bar [5], in which people can judge a visually identical object as either a hairdryer or a

drill, depending only on the visual context (Figure 2.9). Driven with the same hypoth-
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Figure 2.9: The effect on visual context on object recognition. Note how two visually

identical items can be judged as both a hairdryer (on the left) and a drill (on the right).

Figure taken from [5]. Best viewed in color.

esis, Torralba [172] proposed a Bayesian model of object detection based on context,

exploiting the strong regularities on the statistical correlations of low-level features of

both the object and the scene, and demonstrating emergent effects of object priming,

context driven attention, and automatic scale-selection effects on this model. Rabi-

novich et al. [173] propose using context of visual scenes as a post-processing cue to

enhance categorization performance. This is done by incorporating contextual infor-

mation into a Conditional Random Field, which then enforces semantic constraints.

Marszalek et al. [174] demonstrated how contextual information between actions and

their typical settings can be learned, and this exploiting this correlation improves the

detection performance of both actions and also scenes.

Even in AI, which has been ambivalent with the notion of context traditionally, Mc-

Carthy [175] proposed the “rectification” of context in classical AI, and argued that

AI needs to revise its point of view by putting the notion of a context to the center

stage. he argues that intelligent machines “must construct or choose a limited context

containing a suitable theory whose predicates and functions connect to the machine’s

inputs and outputs in an appropriate way” [176].

2.3.3 Structural Representation of Context

Acknowledging the importance of contextual information in object and scene recog-

nition, Bar [5] tries to identify the relevant structural mechanisms in the brain that
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enable the extraction and utilization of this context. Apparently, context can be ex-

tracted with surprising rapidness in the visual stream [177]: People can “understand”

visual scenes as early as 100 ms [178, 179], and even gather semantic conceptual

information from very short exposures of 80 ms [180]. Bar [5] proposes a low vs.

high spatial frequencies hypothesis for this rapid processing: According to his pro-

posal, the global cues, encoded within the low frequency band in the view might be

processed first and very rapidly, providing essential quick assessment of the context.

Afterwards, attention might be turning towards the high frequency features, which

can give detailed information about the scene in exchange of greater computational

cost.

Another attribute of contextual processing is that it commonly does not need a de-

liberate attention or awareness. Apparently, it can be processed and learned implic-

itly [181–183], and in spite of the absence of attention [184].

Bar [5] argues that context is related to associative processing (a hypothesis that is

central to this thesis, as well), and is therefore related to the cortical areas in the

brain that are known to deal with associative information: namely medial temporal

lobe (MTL), which includes the hippocampus, parahippocampal cortex (PHC), the

perirhinal cortex, and the enthorhinal cortex. In addition, there is abundant evidence

on the participation of a certain area in the PHC, called the parahippocampal place

area (PPA for short), in the processing of topographic and spatial information - which

is significantly related to the contextual information. There is also evident relation

between contextual processing and the famous N400 signal [185], which is a strong

negative response in the event-related potential of the brain at the 400 ms mark from

the onset of the input, in case the input is contextually incongruent. Therefore, the

N400 response signals the detection of inconsistency with context, or in other words,

“senseless sentences”. This response is given not only to verbal input, but also to

visual input [186]. There has been recordings of prefrontal cortex (PFC) activation in

studies of the N400 response [187–189], which was also sychnorized in time with and

is therefore possibly related to the activation in MTL [190,191]. Finally, retrosplenial

cortex (RSC) was found to be included in the processing of highly contextual spatial

information, such as environmental landmarks [192–194]. In conclusion, given the

evidence above, Bar [5] argues for the possible contribution of the parahippocam-
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pal (PHC), prefrontal (PFC), and retrosplenial (RSC) cortices in the processing of

contextual information.

In spite of the piecemeal attempts for a contextual representation in robotics and else-

where as mentioned above, to the best of our knowledge, there is not yet a systematic

study of formalizing context from a developmental robotics point of view, where the

robot discovers and then makes use of general contextual cues as it tries to discover its

world. Moreover, in general, context studies do not comply with the developmental

paradigms, instead depending heavily on the programmer’s background knowledge

on what constitutes a context, in general how many contexts exists in the world, and

so on. In this thesis, we try to tackle these problems by proposing a fully develop-

mental formalization of context for a robotic setting. In line with the hypotheses of

Yeh and Barsalou [143] as well as Bar [5] and many others mentioned above, we

assume that “visual objects are contextually related if they tend to co-occur in our

environment” [5], and through quantitative experiments prove the feasibility of this

hypothesis, and how it can quantitatively improve object recognition. Figure 1.1c

depicts the proposed model of context visually.

36



CHAPTER 3

THE EXPERIMENTAL SETUP

Figure 3.1: Experimental setup including the iCub robot platform and the Kinect

RGB-D depth camera. [Adapted from [195] c©2015 IEEE.]

We conduct our experiments using iCub humanoid robot platform (Figure 3.1). It

has 53 joints (DoF), six for head, 16 for each arm, three for torso, six for each leg.

It also has tactile sensors in each fingertip to detect the degree of grasping an object

and gather the relevant information about the hardness of it. Although iCub has two

cameras, we utilize Kinect camera to get 3D information due to the calibration related

problems. We have also external microphone to record the sound of objects.
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(a) Balls (b) Boxes (c) Cylinders

(d) Cups (e) Tools (f) Plates

Figure 3.2: The noun concepts used in this study, and the associated objects. [Adapted

from [6] c©2015 IEEE.]

3.1 Object Set

We have in total 60 objects, arbitrarily divided into a training (45 objects) and a testing

set (15 objects). The training objects are classified with respect to their adjective

categories (A = {hard × soft, noisy × silent, tall × short, thin × thick, round ×
edgy}) and noun categories (N = {box, ball, cylinder, cup, plate, tool}). The grouped

objects with respect to noun and adjective categories can be seen in Figures 3.2 and

3.3, respectively. In addition, we have a set of 13 verb (behavior) categories (V =push

left, push right, push forward, push backward, move left, move right, move forward,

move backward, grasp, knock down, throw, drop, and shake). iCub performs all or

the partial set of behaviors on objects. We also define 6 spatial relationships that can

exist between any two objects (S = {on, below, left of, right of, in front of, behind})

Each object in a noun category has its own adjectives, which shows the general char-

acteristic of that noun category. For instance, all the objects which are classified as

“box” are “edgy”, that is, there is strong correlation between them. The strength

of the correlation, i.e. the co-occurrence information, between adjective and noun

categories can be seen in Table 3.1.
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(a) Hard (b) Noisy (c) Tall (d) Thin (e) Round

(f) Soft (g) Silent (h) Short (i) Thick (j) Edgy

Figure 3.3: The adjective concepts used in this study, and the associated objects.

[Adapted from [6] c©2015 IEEE.]

Table 3.1: The frequencies of instances in the dataset in which specified noun and
adjective pairs co-occur together (out of 60 objects in the dataset).

Hard Soft Noisy Silent Tall Short Thin Thick Round Edgy

Box 2 14 2 14 0 16 0 16 0 16
Ball 3 7 7 3 0 10 1 9 10 0
Cylinder 14 0 5 9 10 4 9 5 14 0
Cup 11 0 1 10 0 11 0 11 11 0
Tool 5 0 5 0 5 0 0 5 5 0
Plate 4 0 0 4 4 0 0 4 4 0

3.2 Behaviors

In our experiments, we have 13 behaviors (V) in total. To extract the relevant infor-

mation over objects, iCub interacts with them by applying these behaviors. Although

iCub can theoretically perform any one of these behaviors on each object, there is

a limitation. Since plates and cups are fragile, we prevent iCub from performing

“drop”, “shake”, “throw” and “knock down” behaviors on these type of objects. The

applicable behaviors for objects with respect to their noun categories are shown in

Table 3.2. Moreover, iCub can grasp all kinds of objects. it extracts all information

for different modalities as the “grasp” behavior also includes the “shake” behavior,

also. We have also two types of grasp, top and side grasps. The selection depends

on the height and the depth of an object. If height is relatively more than depth, then

iCub grasps an object from side, otherwise, it directly grasps from top. This selection

is hard-coded.
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Table 3.2: Possible applicable set of behaviors with respect to object categories.
X ∈ {Left, Right, Forward, Backward}; A: Applicable; N/A: Not-Applicable

Push-X Move-X Drop Grasp Shake Knock Down Throw
Box A A A A A A A
Ball A A A A A A A

Cylinder A A A A A A A
Cup A A N/A A N/A N/A N/A
Tool A A A A A A A
Plate A A N/A A N/A N/A N/A

Table 3.3: The audio, haptic and visual features extracted from the interactions of the
robot.

Feature Type Feature Position
Position:(x, y, z) 1-3
Object dimensions:(width, height, depth) 4-6

Visual (ev) Normal zenith histogram bins 7-26
Normal azimuth histogram bins 27-46
Shape index histogram bins 47-66

Audio (ea) 13 bins of MFCC (max - min) 67-79
Change for index finger 80
Min values for index finger 81

Haptic (eh) Max values for index finger 82
Mean for index finger 83
Variance for index finger 84
Standard deviation for index finger 85
Change for index finger 86
Min values for index finger 87

Proprioceptive (ep) Max values for index finger 88
Mean for index finger 89
Variance for index finger 90
Standard deviation for index finger 91

3.3 Features and Data Collection

As we have mentioned in Section 3.2, we have multi-modal learning method, consist-

ing of visual, auditory, haptic and proprioceptive information. Each of this informa-

tion are kept as a set of features of our feature vector. The features that are extracted

form each object is shown in Table 3.3.

The first 66 features are related the visual features (ev) of an object including dif-

ferent properties. The visual features are the most crucial set of features, affecting

the quality of the learning the concepts and prediction of the categories. Therefore,

the extracted features have to represent the characteristic properties of an object. For
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instance, a “cup” has to be placed with appropriate orientation such that the handle

of it must be clearly discerned, since the one of the most prominent property that

discriminate a “cup” from a “cylinder” is its handle. The first six features carry the

information about the place and the dimensional properties of an object in world. The

following 40 features are the histogram bins for azimuth (20-bin) and zenith (20-bin)

angles of normal vectors. The normal vectors are extracted for all points, forming an

object. The last 20 features are the histogram bins of the shape index information [?].

Shape index value is calculated as:

S =
K1 +K2

K1 −K2

, (3.1)

where K1 and K2 is the maximum and minimum principal curvatures, respectively.

This set of features tells the surface property of an object, such as plane, saddle. etc.

All of the visual features are extracted using Point Cloud Library (PCL) [196]. It is

widely used in many studies requiring three dimensional information.

The following 13 features consist of auditory features (ea) to determine whether an

object has internal sound. We use MFCC (Mel-Frequency Cepstrum Coefficients)

on the raw audio file. After executing the MFCC algorithm, we obtain a set of 13-

features vector, varying with respect to the duration of the recording. To combine the

relevant audio information into one vector, the maximum and minimum values are

subtracted for each column.

Haptic and proprioceptive features (eh and ep) are obtained using only the index finger

of iCub. The other finger are used for the sake of convenient grasping operation.

Haptic and proprioceptive values are collected throughout the action. As was the

case in the auditory feature extraction, we also apply some statistical calculations

on this set of values to obtain relevant information. The final and the initial values

of instantaneous sensor reading for haptic and proprioceptive data are subtracted in

column-wise and stored as features, Moreover, the minimum and maximum values

are stored. The other features are directly extracted by finding the mean, variance,

and the standard deviation of sensor value for index finger.

We have two types of feature vectors, namely entity and effect. The former one in-

cludes the clues about the adjective and noun categories of an object, whereas the

latter one tells the information about applied behavior to an object. The entity feature
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Figure 3.4: Extraction of entity features and effect visual features. ev and e′v are the

visual features of an object before and after a behavior is applied. f = e′v − ev is

the effect visual feature. e is the multi-modal feature incorporating visual, haptic,

proprioceptive, and audio information. [Adapted from [6] c©2015 IEEE.]

vector consists of all features belonging to all modalities (ev + ea + eh + ep), and

extracted by following the below steps:

1. We put an object on the table, and iCub looks at it to extract visual features (ev).

2. iCub starts to grasp the object while storing the haptic and proprioceptive fea-

tures (eh and ep).

3. After grasping the object, iCub shakes it to collect auditory features (ea)

4. iCub stops shaking and grasping; and finalizes collecting haptic, propriocep-

tive, and auditory features.

5. The final visual features (e′v) are collected.

The effect features only includes the visual information. As previously mentioned,

they tell the verb of an action. Therefore, we collect visual features before and after
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the behavior, and subtract the final features (e′v) from the initial features (ev), which

is depicted in Figure 3.4.
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CHAPTER 4

THE CONCEPT WEB

In this thesis, we propose a densely connected web representation for concepts (Fig-

ure 4.1). The proposed architecture is a Markov Random Field, whose structure of

connectedness is learned from the training data. A newly encountered object is then

examined in this web for association with known concepts. This part of the thesis

has been conducted in collaboration with Güner Orhan, and disseminated in IEEE

Transactions on Autonomous Mental Development [6].

4.1 Individual Concepts

First we describe how we conceptualize noun, adjective and verb categories, and how

they can be used individually to predict the concepts of new instances.

4.1.1 Conceptualization of a Category

We define concepts by their prototypes (see Section 2.1 for theories of concepts)

following our previous work on prototype-based conceptualization of verbs, nouns

and adjectives [38, 197]. In this approach, given a category of exemplars where each

exemplar is represented by a fixed-length feature vector, we look at the distribution

of features in each single dimensionality. When we look at the mean and variance

of each dimension of the features extracted for the exemplars in a category, there are

four possible cases in general:

1. Its mean value over all instances is high compared to the means of other fea-
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Concept
Web

Perception

Features

c1

c2 c4

c5c3

Figure 4.1: The schematic presentation of the concept web, which connected related

concepts to each other and to their counterparts in the language, action, and perception

spaces. Information can flow in from the perception space, through a feature extrac-

tion mid-level, or from the language and action spaces as well. A number of nodes are

randomly illustrated with white color to exemplify active concepts. [Adapted from [6]

c©2015 IEEE.]

tures, then we can deduce that this feature dimension correlates positively for

this category, and therefore labeled with a ‘+’ sign in the prototype.

2. If the mean value is small, and variance is again small, then this feature category

is negatively correlated, and labeled with a ‘-’.

3. If the variance of the feature is too high to be meaningful, then this feature

category cannot represent our category. Therefore, it is labeled as ‘*’ meaning

highly variant and inconsistent.

4. For behaviors only, the fourth case includes features that show no change before

and after the application of the behavior. This case is marked with a ‘0’, and

used only for verb prototypes.

In effect, for the nouns and adjectives, dimensions marked with ‘+’ and ‘-’ symbols

refer to the characteristic properties of these concepts, which are independent of the

46



Algorithm 1: Derivation of a prototype from the exemplars of a category

[Adapted from [6, 38].]
for all concepts c ∈ C do

for all feature dimensions d do

Compute the mean µcd:

µcd =
1

N

∑
i∈I(c)

id, (4.1)

where I(c) is the set of training instances of concept c, with cardinality N = |I(c)|, and id is the

dth feature of instance i.

Compute the variance σ2
cd:

σ2
cd =

1

N

∑
i∈I(c)

(id − µcd)
2. (4.2)

end for

Concatenate µcd’s and σ2
cd’s to obtain the vectors µc and σ2

c .

end for

for all concepts c ∈ C do

Apply Robust Neural Growing Gas algorithm in µc × σ2
c space:

if c ∈ N ∪ A then

- Manually assign one of the labels ‘+’, ‘-’, or ‘*’ to the dimension d, considering the cluster that d

falls into:

if cluster is high on µ axis and low on σ2 axis then

assign ‘+’ to d

else if cluster is low on both µ and σ2 axes then

assign ‘-’ to d

else if cluster is high on σ2 axis then

assign ‘*’ to d

end if

else

- Manually assign one of the labels ‘+’, ‘-’, ‘*’, or ‘0’ to the dimension d, considering the cluster

that d falls into:

if cluster is high on µ axis and low on σ2 axis then

assign ‘+’ to d

else if cluster is low on both µ and σ2 axes then

assign ‘-’ to d

else if cluster is close to 0 on µ axis and low on σ2 axis then

assign ‘0’ to d

else if cluster is high on σ2 axis then

assign ‘*’ to d

end if

end if

end for
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behavior applied. On the other hand, ‘+’ and ‘-’ for the verb concepts which are

extracted from the visual effect features (f) refer to the characteristically changed

properties of objects through the associated behaviors, such as increased x-position

after a push (forward) behavior.

To obtain the prototypes for each category, first the objects and the effects of the

interactions are labeled with noun, adjective and verb labels using cross-situational

learning. Then, on each category, we use the Robust Growing Neural Gas (RGNG)

algorithm [198] for clustering every feature dimension into one of ‘+’, ‘-’, ‘*’, ‘0’

classes. The exact procedure is depicted in Algorithm 1, which is applied on e in

the case of nouns and adjectives, and f in the case of verbs. Eventually, we obtain 29

prototypes, one prototype for each category or concept: 6 for nouns, 10 for adjectives,

and 13 for verbs (for push and move behaviors, a separate prototype is obtained for

each possible argument, due to different features being relevant in each case). The

resulting prototypes are shown in Table 4.1. The process is visually explained in

Figure 4.2.

4.1.2 Category Prediction from Features Only

The prediction procedure takes as input the above prototypes of concepts and the

feature vector (e or f) of a new object or an interaction (for the sake of clarity, in

the remainder of this subsection, the methodology will be described for an object

although the same procedures are applied for both). For evaluating membership for

a concept, only meaningful features (labeled with ‘+’, ‘-’ or ‘0’ in the corresponding

prototype) are considered. On these meaningful dimensions, an Euclidean distance

to the mean values of the concept’s prototype is calculated as follows:

D(c, o) =
1

|Rc \ R?
c |

∑
i∈Rc\R?

c

ieo − iµc, (4.3)

where o is the new object;R?
c is the set of indices that are ‘*’-signed (i.e., inconsistent)

for concept c; eio is the ith feature of test object o, and µc is the mean feature vector of

objects in concept c.

D(c, o) is the closeness of the new object to the selected concept. We can convert it
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Figure 4.2: Schematic visualization of the extraction of a concept prototype. If a fea-

ture has a consistently high contribution, marked with a high mean and low variance

distribution, it is indicated with a ‘+’ sign. Those with a consistently low contribu-

tion, marked with a low mean and low variance distribution, are assigned a ‘-’ sign,

whereas those with a high variance are marked with a ‘*’ to indicate inconsistent

contribution. Sample features are illustrated for the hard concept. [Adapted from [6]

c©2015 IEEE.]

into a probability estimate as follows:

sperc(c, o) =

∏
r∈C\{c}D(r, o)∑

r∈C

(∏
rt∈C\{r}D(rt, o)

) , (4.4)

where C is the set of possible group of concepts. These groups can be nouns (N

= {box, ball, cylinder, cup, tool, plate}), adjective pairs (e.g., Apair ∈ A = {hard,

soft}), and verbs (V = {push left, push right, push forward, push backward, move left,

move right, move forward, move backward, grasp, knock down, throw, drop, shake}),

separately. Equation 4.4 defines the probability that a new instance o belongs to a

concept c. Note that sperc(·, ·) is based only on the features extracted from the instance

and it does not use the co-occurrences between concepts.
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4.2 A Probabilistic Web of Concepts

In the previous section, we described the conceptualization of individual categories.

In this section, we present how we represent the concept web in a probabilistic model,

namely, Markov Random Field. Each node of the constructed Markov Random Field

corresponds to a concept (noun, adjective, verb, or superordinate) in our web.

4.2.1 Building a Web from Individual Concepts

Let us call C be the set of all concepts; i.e., C = N∪A∪V, the concatenation of noun,

adjective and verb concepts. Let us denoteW to be the concept web constructed from

the interactions of the robot. The web W can be represented as a graph G(C,E),

where each c ∈ C is treated as a node in W .

The edges in the web E are established based on the co-occurrences of the concepts.

Namely, an edge between concept ci and cj (i.e., E(ci, cj)) is placed in the web if

concepts ci and cj have co-occurred in an interaction. The web constructed from the

interactions is provided in Figure 4.3.

scooc(c1, c2) =

∣∣Sc2
c1

∣∣
|Sc1|

. (4.5)

4.2.2 Concept Web as a Markov Random Field

Markov Random Field (MRF) [200] is a probabilistic graphical model widely used

for defining constraints on and between entities in a problem. The entities are repre-

sented as nodes and the constraints between the entities are incorporated by the edges

connecting them. MRF follows the Markovian property that only conditions the state

of a node only on the neighboring nodes (Figure 4.4a). Due to these representational

constraints, all probabilistic functions are defined over maximal cliques. A clique is

a subset of nodes that are connected to each other directly, and a maximal clique is a

clique with the highest number of nodes possible (Figure 4.4b).
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Figure 4.3: A snapshot of the concept web iCub has constructed. Connections be-

tween related concepts are denoted with gray links. Noun concepts are indicated

with red, adjective concepts with blue, verb concepts with green, and superordi-

nate concepts with cyan. The graph is created using Ubigraph graph visualization

library [199]. [Adapted from [6] c©2015 IEEE. Best viewed in color.]

MRF effectively models the following joint probability distribution:

P (ω) ..=
1

Z
exp(−U(ω)), (4.6)

where ω is a possible configuration of the web W , and U(ω) is the energy function of

the MRF given a configuration ω, calculated as:

U(ω) ..= Udata(ω) + Usmooth(ω)

..=
∑
c∈ω

ψc(c) +
∑
K∈K

ψK (K, ω),
(4.7)

with K denoting the set of all cliques, c is the set of all active concepts in the given

configuration ω, and ψc is the potential of each active concept c, defined by:

ψc(c) ..= D (c,x) , (4.8)
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(a) A 2d Markov Random Field (b) A maximal clique in a

MRF with 5 nodes

Figure 4.4: (a) A sample 2D Markov Random Field. The Markovian property holds

in Markov Random Fields, by which a random variable (i.e., the black node), given its

immediate neighbors (the gray nodes), is independent of all other random variables.

(b) A maximal clique (with 3 nodes) is indicated in an MRF with 5 nodes.

with o being the current observation, and D (c, o) its distance to the active concept c

(Equation 4.3). ψK(K, ω) is the potential of clique K in configuration ω:

ψK(K, ω) ..= VK(xK) ..=
∑
xi∈xK

|val(xi)− E(xi|xK−i)| (4.9)

where VK(xK) is defined as an (abused) shorthand notation for the potential of a clique

node consisting of active variables xK, xi is the ith variable in the clique, xK−i are

the variables in the clique excluding the ith variable, val(xi) is the current value

assignment of the variable xi, |.| is the absolute value function, E(.) is the expected

value function, and E(xi|xK−i) is the expected value of the ith variable given the

values of the remaining variables in the clique. ψK(K, ω) therefore tries to minimize

the difference between the values of the clique variables and their expected values

given the rest of the variables in the clique. Z denotes the partition function:

Z ..=
∑
ω∈Ω

exp

(
−
∑
c∈ω

ψc(c)−
∑
K∈K

ψK (K, ω)

)
, (4.10)

where Ω is the set of all possible configurations, and K is the set of all cliques. Figure

4.5 visualizes the concept and clique potentials schematically.

4.2.3 Belief Propagation in MRF

The potential values in MRF model demonstrate the correlation between two con-

nected nodes. In belief propagation methods, this correlation is thought as a message
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input

concept 
nodes�K

�C

Figure 4.5: A schematic represensation of MRF modeling of the concept web. Initial

predictions about the concepts are used to initialize concept node probability val-

ues. Conformance to initially predicted values are maintained by minimizing the sum

of unary potential functions ψC . Meanwhile, clique potentials are initialized from

the cooccurence information from the training data, and conformance to the cooc-

curence information is maintained through minimizing the sum of clique potentials

ψK . [Adapted from [6] c©2015 IEEE.]

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔

Figure 4.6: Sample Markov Random Field chain of variable nodes

from one node to the an adjacent one. To demonstrate belief propagation, let us cal-

culate the marginal probability distribution over a node (x3) for the MRF in Figure

4.6:

p(x3) =
1

Z

∑
x2

ψ(x2, x3)
∑
x1

ψ(x1, x2)
∑
x4

ψ(x3, x4)

∑
x5

ψ(x4, x5)
∑
x6

ψ(x5, x6). (4.11)

If we treat the terms in Equation 4.11 as messages from the adjacent nodes of query

node x3, then we can re-formulate it, merging these messages as follows:

p(x3) =
1

Z

[∑
x1,x2

2∏
i=1

ψ(xi, xi+1)

]
.

[ ∑
x4,x5,x6

5∏
i=3

ψ(xi, xi+1)

]
,

p(x3) =
1

Z
µx2(x3)µx4(x3), (4.12)

where µx2(x3) is the message to x3 from x2, and µx4(x3) is the message for x3 from

x4.
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Figure 4.7: The conversion of a MRF graph as a factor graph, as input to the Loopy

Belief Propagation. [Adapted from [6] c©2015 IEEE.]

𝒙𝟏
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𝒙𝟏, 𝒙𝟐, 𝒙𝟑
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Figure 4.8: Divided subtrees of the graph in Figure 4.7. [Adapted from [6] c©2015

IEEE.]

4.2.4 Inferences in Concept Web Using Loopy Belief Propagation

Our concept web W is a cyclic graph by definition, and therefore, making exact

inferences given observations is not possible. For such problems, approximate solu-

tions are used, and a widely-used method for this task is Loopy Belief Propagation

(LBP) [201], which iteratively updates the influence of one variable (i.e., concept) on

another until convergence. The influence of one variable on another is called message,

and this process is called message passing.

LBP re-factorizes the graph into separator nodes and clique nodes - see Figure 4.7 for

an example. Clique nodes are shown as elliptic nodes, whereas separator nodes are

symbolized with square nodes. Separator nodes are in fact the concepts in the web

whereas the clique nodes represent the potential of a clique as a single node.
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Message passing procedure in LBP differs in many ways when compared with stan-

dard belief propagation. For instance, the graph is divided into sub-trees each of

which includes one clique node and connected separator nodes to it (Figure 4.8). Af-

ter extracting the subtrees, LBP performs the following until convergence:

1. Update Clique Potentials: Updating the clique potentials can be thought as

message passing from connected separator node to the clique node. Therefore,

we can compute the new potentials by multiplying the potentials of separator

nodes with the previous value of potentials in the clique node:

V∗K(xK) = VK(xK)
∏

xm∈ne(xK)

φm(xm), (4.13)

where xK is the set of variables in clique nodeK, VK(xK) is the previous poten-

tial of the clique node, and V∗K(xK) is its updated potential.

2. Update Separator Potentials: After updating the clique potentials, we apply

the message passing in the reverse direction. This time, updating the separator

potentials is different from updating the clique potentials in that the message

from the updated clique node to any one of the connected separator nodes is

calculated by summation of the potentials of the clique nodes except the sepa-

rator node:

µK∗→xm(xm) =
∑

xn∈xK\xm

V∗K(xn). (4.14)

If the potential of separator node xm is updated previously, the new potential

value is the multiplication of the previous potential of node with the division of

new message from clique node to the previous one:

φ∗s(xm) = φs(xm)
µK∗→xm(xm)

µK→xm(xm)
. (4.15)

Otherwise, it is directly set to the new value:

φ∗s(xm) = φs(xm)µK∗→xm(xm). (4.16)

where φs(xm) is the previous potential of the separator node xm, and φ∗s(xm) is

the updated potential.

3. Iteration: The previous two steps are iterated for all clique nodes and their

separator nodes until the change in the potentials is less than a threshold.
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Figure 4.9: Schematic presentation of Scenario 1. iCub is presented with a cup and

expected to predict the type and properties of the object, as well as what kind of

behaviors can be applied on this object. ML: Move Left, MR: Move Right, MB: Move

Backward, MF: Move Forward, PL: Push Left, PR: Push Right, PB: Push Backward,

PF: Push Forward. [Adapted from [6] c©2015 IEEE. Best viewed in color.]

4.3 Experiments and Results

The concept web built from the interactions of iCub is provided in Figure 4.3. In

the rest of the section, we demonstrate how this concept web can be helpful for a

humanoid robot in three different scenarios: (i) a scenario where the relevant concepts

in the web are activated based on perception of an object, (ii) a scenario where the

relevant concepts in the web are activated based on a partial perception of an object,

with an intended action in mind, and (iii) a scenario where the activation is due to

only an intended action in mind, without any specific object singled out.

4.3.1 Scenario 1: Perception-driven activation of concepts in the web

In this scenario, iCub is presented with an object, allowed to interact freely with it,

and expected to guess what kind of an object it is. It needs to guess both the type of the

object (the noun), and its properties (the adjectives). Furthermore, iCub is expected
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to predict the verbs (the behaviors) that are possibly applicable on the object.

On perceiving the object, iCub first records its visual data through Kinect, then grasps

the object to collect haptic, proprioceptive and auditory data. The related features are

combined in the entity feature vector e, and compared against the previously extracted

prototypes of nouns and adjectives in order to determine the categories of the ob-

ject. These predictions gives us an a priori guess about the membership probabilities.

These a priori probabilities are in turn used to initialize the activations of the nodes

in the concept web (Note that the concept web architecture, i.e., the connections be-

tween the nodes and their joint probabilities, have been determined previously using

the training data). Nodes of the unobserved concepts are initialized to 0.5 probability

in an unbiased manner. Afterwards the concept web is allowed to propagate its acti-

vations. Once convergence is achieved, we expect iCub to (1) refine its initial guesses

about the noun and adjective categories of the object, possibly correcting wrong ones,

and (2) determine which behaviors are applicable to the object, by propagating acti-

vation through the noun and adjective concepts to connected verb concepts.

A sample scenario is presented in Figure 4.9. A cup is presented to iCub in this case,

which iCub correctly detects as a cup, and as being round, short, hard, silent, and

thick. It also predicts that it can apply the grasp behavior on the object, as well as

move and push behaviors. The rest of the behaviors (knock down, shake, throw and

drop) are not found applicable on the object.

This scenario depicts the activation of the concept web in a similar fashion to the

canonical neurons in the F5 area of monkey brain [202–204]. These “visiomotor”

neurons are known to fire selectively to certain actions, as well as to the presentation

of an object to which this action can be potentially applied. This raw recognition of

possible action (without necessary recognition of the object per se) has been accepted

as one of the neurological mechanisms of affordances. The context web approach

also results in a similar predictive activations in the conceptual representations of the

applicable behaviors.

We now apply this scenario systematically to present quantitative results in Table

4.2. Six arbitrarily selected objects, one from each noun category, are presented to

the iCub, which is then expected to guess its noun category and adjective categories,
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and the applicable behaviors. To demonstrate the effectiveness of the approach, the

predictions made using the concept web are compared to the prototype-only initial

predictions, as well as to that of Support Vector Machines, and Support Vector Ma-

chines enhanced with ReliefF [205] feature selection. 6 SVMs are trained separately

for both the ReliefF and the no-ReliefF cases, among which 5 of them chooses be-

tween one of two dichotomous adjectives (hard vs. soft, edgy vs. round), and one

is responsible with selecting a noun concept (ball vs. box vs. cup vs. cylinder vs.

plate vs. tool). Both SVM and SVM+ReliefF cases achieved more than 90% training

accuracy, with the exception of the no-ReliefF noisy vs. silent case with a training

accuracy of 82%. In the ReliefF feature selection case, features with weights > 0.1

are accepted, out of a range of [−1, 1].

Table 4.2 shows that the concept web predictions are significantly enhanced for both

the nouns and the adjectives, as compared to the baseline methods. It is able to cor-

rect the wrong predictions of the baselines; whereas for already correctly predicted

cases, the prediction confidences are increased. This result is in line with our previous

analysis in [28,206], in which we conclude that an approach which cannot utilize the

dependency information between concepts, such as the SVM, SVM+ReliefF, and in-

dividual prototypes approaches, would significantly be outperformed by those which

can. Therefore, the effectiveness of the web-based approach is directly due to its

ability of capturing second-order conceptual relations, which is ignored by the other

methods.

4.3.2 Scenario 2: Interaction-driven activation of concepts in the web

In the second scenario (Figure 4.10), the human partner not only presents iCub with

an unknown object, but also commands a single, certain action to be performed. This

time, the activation spreads to the concept web from two different entry points.

In the first path, iCub looks at the object, and collects its visual features in a partial

entity feature vector (composed of features [1-67]). Since it is not allowed to grasp

the object to investigate it (grasping may not be the required action), haptic, proprio-

ceptive, or auditory features are not available perceptually. This partial entity feature

vector (ev is compared against the noun and adjective prototypes to predict the cor-
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Figure 4.10: Schematic presentation of Scenario 2. iCub is presented with a ball, and

is expected to guess its properties, as well as applying the push behavior on it. It

predicts the category and the properties of the object correctly, even though it is not

allowed to touch the object beforehand, and is therefore unaware of its proprioceptive,

haptic (soft), and auditory (silent) properties beforehand. PL: Push Left, PR: Push

Right, PB: Push Backward, PF: Push Forward. [Adapted from [6] c©2015 IEEE. Best

viewed in color.]

responding categories for the object. These predictions are used in turn to activate

related concepts in the web. Meanwhile, over a second path, the issued command

word (e.g., grasp, push left, etc.) activates the necessary verb concept through the

language space. When the concept web is allowed to propagate activation, knowl-

edge (belief) oscillates between the verb concept and the initially predicted noun and

adjective concepts until convergence.

In Figure 4.10, an example scenario is shown in which iCub is given a ball, and told to

apply a “push” behavior on it. Although initially the haptic and auditory information

are not available to iCub, these concepts are also active in the converged concept web.

The quantitative predictions with and without the concept web are depicted in Table

4.3.
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Table 4.3: The predictions as corrected by the activation on the concept web, when

there is no direct perceptual access to certain features of the object. The iCub is

not allowed to grasp the ball object, and therefore makes initial predictions using

only the available visual features (columns 2 and 3). The visual parts of the concept

prototypes (i.e., features [1-67]) are used for this comparison. This initial activations

are then allowed to spread on the concept web, which converges to the significantly

more accurate a posteriori predictions displayed in columns 4 and 5. The haptic and

audio predictions are corrected through the spreading of activation. Columns 8 and

9: Concept web estimations. Parentheses: Prediction confidences. Bold text: Correct

decisions. Stroked text: Wrong decisions. [Adapted from [6] c©2015 IEEE.]

Object
Without Concept Web With Concept Web

Nouns Adjectives Nouns Adjectives

ball (37%)

box (14%)

cup (12%)

cylinder (14%)

plate (11%)

tool (12%)

edgy (37%) round (63%)

hard (45%) soft (55%)

noisy (54%) silent(46%)

short (59%) tall (41%)

thick (54%) thin (46 %)

ball (100%)

box (0%)

cup (0%)

cylinder (0%)

plate (0%)

tool (0%)

edgy (0%) round (100%)

hard (100%) soft (0%)

noisy (0%) silent(100%)

short (100%) tall (0%)

thick (100%) thin (0 %)

4.3.3 Scenario 3: Action-driven activation of concepts in the web

The final scenario demonstrates how iCub is commanded to perform a certain action

in an environment populated with multiple objects (Figure 4.11). The command does

not specify on which object to apply the behavior, therefore iCub must itself choose

the appropriate object on which to act. Here we must remember that certain behaviors

cannot be applied to all objects. Therefore, activation must not spread from these verb

concepts to inappropriate noun types. After convergence, iCub will pick up a properly

activated noun to act upon. If there are more than one appropriate objects, a random

decision will be made among them.

The entry point of activation in this scenario is from the commanded verb concept. In

the sample case in Figure 4.11, iCub is presented with three objects: a cup, a plate,

and a ball. It is then commanded to apply drop behavior. Since drop verb is not

connected to cup and plate nouns, activation cannot spread to cup and plate. On the

other hand, ball noun is activated through its connection to drop. As a result, iCub
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Perception

Short

Thick

Soft

Grasp

Silent

Edgy

Move

Knock

Drop

Throw

Push

ShakeCylinder

Cup

Tool

Plate

Round

Thick

Knock 

Down

Tall

Noisy

“Knock”

Hard

“Drop”

“Move”

“Grasp”

“Push”

“Shake”

Box

Figure 4.11: Schematic representation of Scenario 3. The sample box, cup, and plate

objects are given to the system and knock down behavior is commanded to iCub.

iCub selects any one of these objects if the commanded behavior is applicable. In this

scenario, the box object is selected and its activated concepts are shown. The action

space and verb concepts are contoured with green, whereas blue and orange colors

represent the noun and adjective categories for the object, respectively. The gray and

smaller fonts show inactive concepts in the web, while bigger fonts and colored nodes

represent activated concepts. There are other concepts that are not shown for clarity.

[Adapted from [6] c©2015 IEEE. Best viewed in color.]

decides to apply the action to this object. Table 4.4 presents quantitative selection

percentages for two sample cases.

This scenario serves as a proof of concept that behaviors can activate related noun

concepts, but not unrelated ones. This kind of “reverse” activation spreading can

guide the robot’s actions in the world.

4.4 Summary

In this part, we have discussed how a connected representation of concepts can con-

tribute cognition, and why such a representation would be more biologically plausi-
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Table 4.4: The selection of objects to which sample commands are applicable. The

selection is performed by the spreading activation on the web, which disperses to the

related verb concepts as well. throw verb concept activates selectively non-cup and

non-plate objects. Selection confidences are indicated in parentheses. Images depict

RGB-D images from the Kinect sensor. [Adapted from [6] c©2015 IEEE. Best viewed

in color.]

Command Scene Existing Objects Selected Objects

“throw” box (100%)

cup (25%)

box (25%)

yellow plate (25%)

red plate (25%)

“push”

box (16.67%) box (16.67%)

green cup (16.67%) green cup (16.67%)

white cup (16.67%) white cup (16.67%)

yellow plate (16.67%) yellow plate (16.67%)

red plate (16.67%) red plate (16.67%)

ball (16.67%) ball (16.67%)

ble. Analyzing the existing studies in computational modeling has showed the current

lack of such a model. Therefore, we have proposed a Markov Random Field based,

connected concept web model, that is grounded on the co-occurrences of concepts

from the interactions of the robot. We have showed that in spite of the highly cyclic

nature of the resulting graph, we can effectively conduct inference on it using Loopy

Belief Propagation, as widely performed in the literature.

We demonstrated that, given an observation of an object, our robot can activate in

its “brain” the relevant noun concepts, adjective concepts, verb concepts (describing

what behaviors can be applied on the object) as well as the words that can be used

for the object. Moreover, given an interaction on an object or in fact, an interaction

without an object (that would normally take an object), the robot can activate the

necessary concepts in the web as well. Being linked to language, perception and

motor (action) spaces, the concept web allows activation of relevant information from
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and to any modality. Moreover, we showed that such a web allows the robot to make

a better interpretation of the environment. By using the co-occurrences from other

concepts, the results demonstrate that wrongly predicted concepts can be corrected,

and confidences of correct predictions can be increased.
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CHAPTER 5

SPATIAL CONCEPTS AND THE REPRESENTATION OF

WHOLE SCENES

The concept web we described in the previous chapter provides a biologically plau-

sible and computationally robust scheme for conceptualization. However, it is also

lacking in important parts. The first is the lack of spatial relations, which results in a

deficiency of representing scenes with multiple objects. Such lack of spatial knowl-

edge is potentially crucial, for instance, in planning. In addition, the concept web

is composed of fully associative links, which enforces all active concepts to be se-

mantically linked to each other. This is problematic for instance when there are more

than one objects in the world, since a single concept web is unable to represent a ball

(which is round) cannot be active together with a box (which is edgy) at the same

time.

We rectify these limitations with two improvements: (1) The capability to repre-

sent spatial relations, and (2) instantiating the concept web separately for individual

objects. Combining these two features, the concept web can effectively represent

whole scenes seamlessly. Our working hypothesis is that prepositional spatial rela-

tions should also be regarded as bona fide concepts themselves, in relation to other

concepts, just like a regular noun or adjective concept. Given their binary and di-

rected nature (since, e.g., a ball can stand on a box, but not vice versa, since the ball

is round, thus the spatial relations have order), we propose a Hybrid Markov Ran-

dom Field variant, with directed connections between spatially-related nodes. These

contributions has been published in the proceedings of International Conference on

Advanced Robotics (ICAR) 2015 [67].
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Concept Web

Perception

Features

Box

Tall
Round

Short
Cup Right Silent Plate

Soft

Ball
NoisyLeft

Knock

Push
“Box”

“Round”

“Short”

Figure 5.1: The concept web combining concept web instantiations of perceived

objects, and their spatial relations. Shaded areas correspond to concept webs of the

individual objects. These are fed by the extracted features of the objects, as well as

by the language and action planes. The spatial relations between the objects combine

these individual object representations, and are fed by the relative and the individual

features of the two objects, and again by the language and action planes. [Adapted

from [67] c©2015 IEEE.]

5.1 Data Collection and Feature Extraction

For developing the spatial concepts (S = {on, below, left, right, in front of, behind}),

binary features also are collected from couples of objects in the scene during training

and testing. Following Landau and Jackendorf [44] and Golland et al. [64], we em-

ploy binary projective features between two objects, which define the relative x, y, z

positions of the two objects with respect to each other (Table 5.1). The projective

features are adequate for the projective spatial concepts we deal with in this study.

It should be noted that for developing other spatial concepts, such as {in, out, near,

far}, that we do not include in this study, other specialized topological and proximity

features, such as the containment and relative distance features would be beneficial,

as mentioned in [64].
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Table 5.1: The features used for extracting spatial concepts, including (1) binary
projective features extracted from two objects in relation to each other, and (2) the
individual visual features of the two objects. [Adapted from [67] c©2015 IEEE.]

Feature Type Feature Position
Relative x position 1

Projective (eproj) Relative y position 2
Relative z position 3
Object dimensions:(width, height, depth) 4-6

Visual - Object 1 (e1
v) Normal zenith histogram bins 7-26

Normal azimuth histogram bins 27-46
Shape index histogram bins 47-66
Object dimensions:(width, height, depth) 67-69

Visual - Object 2 (e2
v) Normal zenith histogram bins 70-89

Normal azimuth histogram bins 90-109
Shape index histogram bins 110-129

5.2 Representing Spatial Concepts with Prototypes

Spatial concepts are binary, and are calculated from couples of objects. Therefore,

first of all, spatial prototype includes the binary projective features eproj , extracted

from the relative positioning of the two objects. Moreover, they also contain implicit

relation between the shape of the objects and the physically possible spatial positions:

It is difficult to balance something on top a round object, therefore the on and below

relations have semantic ties to the object shapes. Therefore, visual features of the two

objects e1
v and e2

v are also included in the prototypes. The resulting prototypes are

of length 129. The features used for the prototypes are given in Table 5.1, and the

complete spatial prototypes extracted are depicted in Table 5.2.

5.3 Hybrid Markov Random Field

The standard Markov Random field is an undirected graph, which is suitable for our

representation of noun, adjective, and verb concepts. However, the spatial concepts

require a different scheme. That is because these spatial concepts are directed in na-

ture: When object-1 is on the left of object-2, object-2 is not on the left of object-1,

but on the right of it. Therefore, we propose a variant of Markov Random Field repre-

sentation, which we call the Hybrid Markov Random Field, to model such relations.
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Figure 5.2: Extraction of directed cliques in a hybrid Markov Random Field, and

which is converted into a factor graph with two clique nodes. [Adapted from [67]

c©2015 IEEE.]

Figure 5.2 depicts a hybrid Markov Random Field schematically, as compared to

the standard undirected Markov Random Field (Figure 4.7). The difference is in

encoding a directed connection via two separate clique nodes in the factor graph. The

first clique node denotes information flow in one direction (from concept x1 to x2 in

the figure), and the second clique node denotes information flowing in the opposite

direction (from concept x1 to x2 here). The potentials of the two clique nodes are

calculated separately, resulting in two “Left” concepts here, each one representing

Left of one of the related two objects.

5.4 Scene Representation

The representation of an encountered scene in the system is handled in two levels

(Figure 5.1). On the one side, the attention of the system focuses on each object, and

extracts a concept web of the related concepts with the object - this is akin to creat-

ing instantiations of previously learned concepts for representing the specific object.

Object-specific concept web instantiations are modeled using standard (undirected)

Markov Random Field representation, since as shown in [6], undirected connections

are not only intuitive but also effective in capturing co-dependence between noun,

adjective, and verb concepts semantically related together. The rationale for con-

sidering objects one by one is capturing human-like reasoning: Humans are able to

understand and reason on single objects situated in an environment, that is, the iden-

tity of the object is easily extracted and generates its own related concept activations.
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Simultaneously still, the whole scene is considered together, and spatial relations be-

tween couples of objects are analyzed, by additional MRF links created between the

concept webs of each object. The hybrid Markov Random Field representation is used

for modeling the spatial relations due to their directed nature. Moreover, the spatial

relations are modeled between the noun components of the object representations,

since it is natural for humans to address unnamed objects by their nouns, instead of

their adjectives, since nouns are more discriminative in communication (e.g., “Pass

me the cup next to the kettle”, instead of “Pass me the small noisy object next to the

tall object.”).

5.5 Experiments and Results

We demonstrate the extended concept web model and the effectiveness of represent-

ing spatial relations in a concept web via three different scenarios: (1) Semantic in-

terpretation of an encountered scene as activations in the concept web, (2) correction

of wrong predictions through the co-occurrence information coded in the concept

web, and (3) using spatial relations to guide object search for human-robot interac-

tion. The training set is composed of 600 arbitrary binary formations of the training

objects, which are designed with a priori information: For instance, since it is very

difficult to balance an object over a ball, “X-ON-BALL" combination does not exist

in the training set, and therefore not represented in the concept web. On the other

hand, any object can be found to the left of another object, which resulted in a large

number of “X-LEFT-Y" formations.

5.5.1 Scene Interpretation

The interpretation of a sample scene through the proposed system is depicted in Table

5.3. In the 3D scene view acquired by the Kinect, there are two cups, two balls, and

one box. iCub attends to all the objects in the scene one by one and extracts their

concept webs. Then it examines their spatial relations in the hybrid MRF, resulting in

the presented concepts.

Systematically, we have run the system on 5 different world views with 3 to 6 objects
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Table 5.3: A sample scenario of scene interpretation. Some of the extracted relations
for the presented 3D view are indicated. [Adapted from [67] c©2015 IEEE. Best
viewed in color.]

Scene Extracted Relations
A ball on a box
A box below a ball
A ball on the right of a cup
A cup on the left of a ball
A ball in front of a cup
A cup behind a ball
A box on the left of a cup
A cup on the right of a box
A cup on the right of a cup
A cup on the left of a cup
...

in the scene at one moment, resulting in 37 binary relations between them. In this

setup, the system has achieved a noun concept detection rate of 95.2% and a spatial

relation detection rate of 91.8% (Table 5.5).

5.5.2 Correcting Wrong Interpretations

The main strength of a probabilistic concept web is keeping a priori information about

the world, whether due to physical laws, or canonical object utilizations of everyday

life. Our expectations guide our reasoning hugely in every day life, even when our

sensors may fail. In the second scenario, we show how the concept web may fulfill a

similar function for iCub.

In the scene in Table 5.4, the situation of ball A with respect to ball B is slightly

ambiguous: The initial predictions using only the prototypes deduce ball A can be

on ball B, on the right of it, and also in front of it. Since the items are too close to

each other, the contribution of the (noisy) relative-x/y/z distance predictions becomes

minimal in the calculation of the concept-wise Euclidean distances (Equation 4.3),

resulting the initial predictions become too close to each other and end up as non-

distinctive. In fact, ball A is on another box that is on the right of ball B. Indeed

it is not possible to stack balls on top of each other, since they tend to roll easily.

Therefore, there is no “BALL-ON-BALL” example in the training set, and such a
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Table 5.4: A sample scenario of correcting wrong interpretations of spatial relations.
Prediction confidences with and without concept web are indicated. The spatial esti-
mation of ball A is corrected through the concept web. Bold text: Correct decisions.
Stroked text: Wrong decisions. [Adapted from [67] c©2015 IEEE. Best viewed in
color.]

Scene Spatial Relations
Without With
Concept Concept

Web Web

Ball A on ball B 18% 0%
Ball A below ball B 15% 0%
Ball A left of ball B 15% 0%

Ball A right of ball B 18% 100%
Ball A in front of ball B 18% 0%

Ball A behind ball B 16% 0%

Table 5.5: Accuracies of concept web estimations of the noun concepts and spatial
relations in the scene, and the accuracies of spatial-direction based human-robot com-
munication. [Adapted from [67] c©2015 IEEE. Best viewed in color.]

Noun Concept Spatial Relation Communication
Detection Accuracy Detection Accuracy Accuracy

95.2% 91.8% 96%

clique has not formed in the hybrid MRF. On the contrary, a large number of “BALL-

RIGHT-BALL” instances has formed this clique structure, biasing the concept web

towards dismissing the wrong “BALL-ON-BALL” prediction, in favor of the “BALL-

RIGHT-BALL” prediction.

5.5.3 Human-Robot Interaction

In the final scenario, we try to communicate with iCub using spatial descriptions.

iCub instantaneously evaluates any encountered scene, extracting concept webs of

the objects and the spatial relations. Then, the human partner tries to guide iCub to

certain object(s) using one of the following patterns:

Fixed Noun - Fixed Relation - Fixed Noun: Examples are BALL-ON-BOX, CUP-

BEHIND-CUP, etc. A sample query is “The cup that is behind the box.”
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Table 5.6: A sample scenario of human-robot interaction based on spatial-directions.

Objects found by iCub in response to sample queries on the given 3D scene are indi-

cated. [Adapted from [67] c©2015 IEEE. Best viewed in color.]

Scene Queries Found Objects

Object(s) on the right of the box? Cup D

Object(s) behind the box? No such object

Object(s) on the box? Ball A

Box is on the right of what? Cup C

Box is in front of what? None

Box is below of what? Ball A

Cup that is behind the box? No such object

Cup that is on another object? No such object

Cup that is on the right of Cup D (to the

another object? right of ball A,

box E, and cup C)

Ball that is behind the box? No such object

Ball that is on the box? Ball A

Variable - Fixed Relation - Fixed Noun: Examples are X-LEFT-BOX, X-RIGHT-

CUP, etc. A sample query is “Object that is on the left of the box.”

Fixed Noun - Fixed Relation - Variable: Examples are BALL-BE-HIND-X, PLATE-

LEFT-X, etc. A query is “The box is on the right of which object(s)?”

Through the language space, commanded concepts are allowed to stay active in the

hybrid MRF level, while the separator node activations of the not-mentioned concepts

are reset. Since the hybrid MRF is directional, the separator node activations are reset

according to whether the fixed noun(s) in the command are in the first or second

noun position. The whole system is then allowed to reiterate until convergence, at

the end of which only the concepts that are relevant to both the visual scene and

the command remain active. A sample case is presented in Table 5.6. Tests of 100

queries performed over 5 real-world scenes demonstrated a performance of 94% for

this scenario (Table 5.5).
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5.6 Summary

In this part, we proposed a method for integrating prepositional spatial concepts into

the concept web model. We have also showed how whole scenes can be represented

using these spatial relations. For capturing the inherently directed nature of the spatial

concepts, we extended the standard Markov Random Field model to a hybrid MRF

variant, which can have both undirected and directed relations between concepts. In

several scenarios, we demonstrated that iCub can extract a concept-based representa-

tion of a scene and use the concepts for various reasoning tasks.
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CHAPTER 6

A FORMALISM AND COMPUTATIONAL MODEL FOR

CONTEXT

In our framework, context is defined as emerging from set of concepts that the robot

perceives from its immediate environment. We use Latent Dirichlet Allocation (LDA)

to detect the latent (unobserved) context of each encountered scene, as well as the in-

dividual contexts of the concepts that comprise the scene. The concepts that exist in

an encountered scene are extracted through the robot’s interaction with the objects.

The robot makes an initial guess about the identity and the nature of each object,

thereby predicting the noun and adjectives that describe this entity. Any expectation

or command of an action is also added to this initial guess as a verb concept. These

individual guesses, however, are to some degree related to each other, for instance cer-

tain objects commonly have certain properties (cups being round and short), or certain

actions being not applicable on certain objects (dropping is not good for cups); there-

fore the individually predicted concepts are represented in a web structure to exploit

this relatedness. This web representation of the scene is finally used for determining

the context(s) of (1) the scene in general and (2) the objects individually in particular.

The detected context(s) are in turn used to guide the reasoning on the web of con-

cepts, thereby providing a feedback loop from a high-level cognitive function back to

a more primitive level of perception. In this chapter, we provide the details of each of

these steps.

This part of the thesis is partially published in [207] and accepted for publication

in [195].
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6.1 A Formalism of Context

Our postulate is that context is tightly related to concepts. When we see, e.g., an envi-

ronment with a sink, a dishwasher, and a table with cups and plates, we interpret the

setting as a “kitchen”. In this case, what triggers the interpretation of “kitchen”ness,

the kitchen context, is the concepts of sink, dishwasher, etc [143]. A context can be

triggered by object-related concepts (nouns, adjectives), as in this example, but also

by verb concepts (e.g., pouring), spatial concepts (e.g., cups being on the table), tem-

poral concepts (e.g., morning, noon) or social concepts (e.g., family, date). Let us

denote all these types of concepts by T and define T as follows:

T = {tnoun, tadj, tverb, tadverb, tspatial, ttemporal, tsocial}. (6.1)

Then, let us use Ct to denote the set of concepts of type t, with t ∈ T. From this

definition, it follows, for example, that the set of noun concepts, N, is the same set as

Ctnoun . Moreover, let the set of all concepts be denoted with
⋃
∀t∈TCt, and its power

set with P = P
(⋃
∀t∈TCt

)
.

The link between contexts and concepts might be of different types. For example,

there are certain concepts related to a context specifically, such that their existence in

a scene automatically invokes the related context. A dishwasher is a typical example,

whose activation alone is enough to activate the kitchen context. In other cases, a set

of concepts may need to be active together in order to invoke the context, such as

water and boiling, which separately do not necessarily invoke the kitchen idea, but

together do. This leads to the following definition:

Definition 1. There exist concept sets S ∈ P that sufficiently imply a context χk, that

is,

∃S (Active(S) =⇒ Active(χk)). (6.2)

These sets are minimal in that any proper subset of them does not necessarily trigger

context χk:

∀Ss ⊂ S (Ss 6=⇒ Active(χk)). (6.3)

We call any such set an enforcing concept set of context χk, since it enforces the

activation of context χk, and denote it with S+k. Since there are more than one such
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sets, let us use P+k to denote the set of all such sets:

P+k = {S | (Active(S) =⇒ Active(χk))} . (6.4)

Not all concepts trigger a context. There exist concept sets that are in conflict with

a specific context. A pool, for instance, is in conflict with the kitchen context. Such

conflicting concept sets enforce the activation of an alternative context as defined

below:

Definition 2. There may exist concept sets S ∈ P which are in conflict with context

χk, and therefore enforce the activation of an alternative context χk:

Active(S) =⇒ Active(χk), χk 6= χk. (6.5)

We call these conflicting concept sets of χk, and denote them with S−k. Since there

are more than one such sets, let us use P−k to denote the set of all such sets:

P−k = {S | Active(S) =⇒ Active(χk), χk 6= χk} . (6.6)

Real scenes might contain several contexts simultaneously. We may find ourselves

in a studio flat with a combined kitchen-living room. Or in an outdoor bar next to

a pool. In such cases, more than one context can be activated simultaneously in our

minds, with all the implications due, such as the possibility of preparing a drink in

the outdoor bar, together with the danger of falling into the pool. Therefore, contexts

are not mutually-exclusive. This kind of multiple contextual activation is possible if

enforcing concept sets of a context co-occur with its conflicting concept sets:

Property 1. If enforcing concept sets S+
k of a context χk co-occur with its conflicting

concept sets S−k , both χk and and alternative context χk are activated, χk due to S+
k ,

and χk due to S−k .

Definition 3. If at least two different contexts are active in a scene (Active(χk) ∧
Active(χk) ∧ k 6= k), the scene is called a mixed-context scene.

Not all concepts related to a context are enforcing in the sense given in Definition 1.

For instance, a cup concept is consistent, i.e., meaningful, in a kitchen context, but it

alone cannot trigger the kitchen context. It can as well exist in a living room context,
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or in an office context. However, when surrounded with a sink and a dishwasher,

a cup will also be thought as part of a kitchen context. This distinction yields the

following definition:

Definition 4. The remaining concept sets S ∈ P \ (S+k ∪S−k) do not enforce context

χk,

Active(S) 6=⇒ Active(χk), (6.7)

however, when considered together with enforcing sets S+
k , they are consistent with

the activation of context χk,

Active(S+
k ) ∧ Active(S) =⇒ Active(χk). (6.8)

We call these consistent concept sets of χk, and denote them with S∗k. Since there are

more than one such sets, let us use P∗k to denote the set of all such sets:

P∗k = P \ (P+k ∪ P−k). (6.9)

From the definitions of the different types of concept sets that might be related to a

context, we can now formally define a context as follows:

Definition 5. A context χk, indexed by k, is a latent variable, which becomes acti-

vated if an enforcing concept set S+k ∈ P+k is active.

In summary, we deduce that a context has three different relations with concepts: (1)

The set of enforcing sets of concepts, which necessarily invoke the activation of the

concept, (2) The set of consistent sets of concepts, which do not necessarily invoke its

activation, but are also meaningful in it and do not necessarily invoke the activation

of an alternative context either, and (3) The set of conflicting sets of concepts, which

are not meaningful in the context, and therefore necessarily invoke the activation of

an alternative context.

Any attempt for modeling context must therefore be able to incorporate these prop-

erties of context. We present such a modeling of context, using Latent Dirichlet

Allocation, which can explicitly handle all these properties.
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6.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [208] is a method for modeling topics of docu-

ments in large text corpora. Assuming a document d ∈ D is a set of words {w1, · · · , wN}
drawn from a fixed vocabulary (wi ∈ W, vocabulary size is |W|, |.| denotes set car-

dinality), LDA posits a finite mixture over a fixed set of topics {z1, · · · , zk} (zt ∈
Z, |Z| = K is the topic count). Then, a document can be described by its probabili-

ties of being related to each of these topics, P (zt|di). Meanwhile, a topic is modeled

by its probability of producing each word in the vocabulary, P (wj|zt). LDA aims to

infer these document and topic probability distributions, given a corpus D.

Being a generative model, LDA assumes that the corpus had previously been gener-

ated by choosing a Dirichlet prior α, and a K× |W|matrix, called β, that contains the

probabilities of each word given each topic, i.e., with entries βjk = P (wj|zt). Further-

more, it assumes that every document d ∈ D had been generated by first choosing a

probability distribution of topics for this document, θ ∼ Dir(α), followed by, for each

word location n in the document, choosing a topic zn ∼ Discrete(θ), and eventually

a word wn, given the chosen topic zn and the β matrix denoting P (wn|zn, β).

LDA effectively tries to estimate the unknown α and β parameters from the given

corpus, through which it is possible to infer any other parameter. This problem, how-

ever, is infamously intractable [208]. There are various solutions though, including

a variational inference method [208], a collapsed Gibbs sampling solution [3] and

collapsed variational inference approach [209]. The Gibbs sampling based solution

algorithm is summarized below:

Gibbs Sampling Algorithm for Solving LDA Introduced by Griffiths and Steyvers

[3], the Batch Gibbs Sampling Approach (Algorithm 2) is a “collapsed” method for

solving the LDA problem, because it integrates out the Dirichlet parameters and in-

stead directly samples the topic variables ~z = [z1, · · · , zN ] for every word position

n ∈ {1, · · · , N} . The algorithm starts by randomly assigning ~z, and then until con-

vergence samples the topic assignment zj for the word wj in document d, according
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Algorithm 2: Batch Gibbs sampling algorithm. [Adapted from [3, 210].]
initialize ~z = [z1, · · · zN ] randomly from the set {1, 2, · · ·K}
while not converged do

choose a word index j from {1, 2, · · ·N}
sample zj according to P (zj|~z\j, ~wN) (Equation 6.10)

end while

to the instantaneous state:

P (zj|~z\j, ~wN) ∝
n
wj

zj ,\j + ξ

nzj ,\j + |W|ξ
×
nd
zj ,\j + α

Nd
\j +Kα

, (6.10)

where (.)\j notation stands for all items excluding the currently considered index j,

therefore letting ~z\j: the vector of all topics except zj , ~wN : the vector of all words,

n
wj

zj ,\j: the number of times that word wj has been assigned to topic zj , except at index

j, nzj ,\j: the number of times that any word has been assigned to topic zj , except at

index j, nd
zj ,\j: the number of times that any word in document d has been assigned

to topic zj , Nd
\j: the total number of all words in document d except at index j, with

|W| denoting the size of the vocabulary set, and K denoting the topic count. The

approach assumes symmetric Dirichlet priors α and ξ, i.e., that they are vectors with

the same value in all entries. The α vs. ξ trade-off controls the compromise between

having few topics per document, vs. having few topics per word.

The strengths of LDA are two-fold: First, it is a generative model. There exists other

powerful, non-generative models for topic analysis (for instance, see [211]), how-

ever, being a generative model, LDA can assign probabilities to documents that have

not been seen before. Second, it allows non-strict memberships of words to topics:

A word may be generated by multiple topics, and according to which document it

occurs in, considering the topic probability distribution of the document, a different

topic might be assigned to the different occurrences of the word. As a robust, unsu-

pervised Bayesian method, it has been utilized recently in a variety of applications

ranging from detecting “hot topics” in science [3], to fraud detection [212], activ-

ity profiling [213], and identifying functional regulatory networks of miRNAs and

mRNAs [214]. Since the method provides the statistical tools for discovering hid-

den topics in unsupervised data, we propose that it can also be used for modeling

context. In fact, ours is not the first attempt to use LDA formulation in robotics:
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Table 6.1: The correspondence between the LDA terms and the notation used in this
work. [Adapted from [195] c©2015 IEEE.]

LDA Our Notation
document d ∈ D a single scene

(i.e., the set of active concepts in the scene)
corpus D all scenes encountered during training phase
word wi ∈W an active concept cact in the concept webs

(can be a noun, adjective, or verb: cact ∈ C = N ∪ A ∪ V)
topic a ‘context’, either Kitchen, Playroom, or Workshop

It has been utilized successfully for object categorization from multi-modal sensory

data [215–217], and for autonomous drive annotation [218]. However, our work is

the first attempt to use LDA for modeling context in robotics.

6.3 Modeling Contextual Information with LDA

We now describe how we model our robotics scenario within the Latent Dirichlet

Allocation framework. The components of our system correspond to the specific

LDA terms as follows (Table 6.1):

1. Each scene the robot encounters is represented as an LDA document. In our

concept web-based model, this scene/document is then a set of active concepts.

2. The sum of all the encountered scenes is analogous to the corpus D.

3. Each active concept cact in this scene corresponds to a wordwi in the document.

4. Finally, the “context”s that we are trying to discover correspond to the latent

topics of LDA.

Eventually, we try to associate each scene we encounter with its relevant context(s).

6.4 An Incremental and Online Version: Incremental-LDA

Since a robot operates in a dynamic world, it needs to be able to discover newly

emerging contexts with new interactions. To truly comply with developmental prin-

ciples, the robot not only needs to estimate itself the ideal number of contexts, but
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also to validate its own prediction continuously and revise and update it if necessary;

we cannot foresee this for it (for a very good discussion on what makes a system

developmental, see [25]).

One limitation of LDA is that it requires a fixed number of topics. This requirement

is characteristic of the parametric approaches, where the parameters of the solution

are defined a priori and do not change no matter how many training examples are

encountered. Although they are very widely used and successful in general (among

well-known examples are regression, Fisher’s discriminant analysis, Bayesian graph-

ical methods), the necessity of predefining parameters can be restrictive. In latent

feature models case, different methods have been proposed for dealing with an un-

known number of clusters, focusing specifically on Dirichlet-process and Bayesian

solutions [219–221]. Targeting specifically the LDA problem, Teh et al. [222] pro-

posed a Hierarchical Dirichlet Process framework which can start with infinitely

many possible topics, and settle on the likeliest number of topics itself. Wang et

al. [223] developed an online solution for this hierarchical setting.

Since the previously proposed variations are either batch or parametrically dependent

on the number of topics K, we enhance the original LDA methodology with a simple

mechanism that allows both online learning, and dynamic updating of the ideal K

value over time. This new variant, henceforth called Incremental-LDA, does not need

the number of contexts to have been predefined, starting instead with the most general

case of K = 1, and increasing the context count as necessary.

Incremental LDA Incremental-LDA (Algorithm 3) decides on K dynamically, start-

ing the with most general case, K = 1, and incrementing the context count as nec-

essary. For deciding when to increase K, we define and use Clow, the set of words

whose confidence values for contextual assignments are lower than a threshold value

τ . If there exists such words with low confidences, i.e., Clow 6= ∅, Incremental-LDA

attempts to increase their confidences by incrementing the context count.

K-Incremental Gibbs Sampling Standard batch Gibbs sampler due to Griffiths and

Steyvers [3] is not suitable for use with Incremental-LDA, because it needs to start

from scratch each time the context count K is incremented. The previous solution
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Algorithm 3: The proposed Incremental-LDA algorithm. [Adapted from [195]

c©2015 IEEE.]
initialize context count K ← 1.

for all encountered scenes do

run K-Incremental Gibbs sampler with K

while Clow 6= ∅ do

increment context count K ← K + 1

run K-Incremental Gibbs sampler with K

end while

output converged context assignments ~zN for the scene

end for

is forgotten completely, whereas parts of it would still be applicable. This is espe-

cially true for the parts of the previous solution that exhibited high enough confi-

dence. Therefore we introduce K-Incremental Gibbs Sampling (Algorithm 4) as an

incremental variant: When the context count is incremented to K, K-Incremental

Gibbs Sampling resumes its search from the previously converged solution for K− 1

contexts, conducting a local search in the close vicinity. This is done by retaining the

previous assignments of the high-confidence terms, while initializing low-confidence

terms (Clow) to the newest context id K. Effectively, the highly confident part of the

solution is reused. Note that for escaping possible local minima, a high-confidence

term can also be reassigned to the new context with a low probability δ � 1.

Algorithm 4: The K-Incremental Gibbs sampling approach we propose as a

companion to Incremental-LDA. [Adapted from [195] c©2015 IEEE.]
initialize ~zN from the previous solution for K − 1 contexts

∀ context t | ct ∈ Clow, initialize zt ← K

∀ context t′ | ct′ 6∈ Clow, reassign zt′ ← K with prob. δ � 1

while not converged do

choose a concept index j from {1, 2, · · ·N}
sample zj according to P (zj|~zN\j, ~wN) (Equation 6.10)

end while
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6.5 LDA versus the Requirements of Contextual Modeling

In Section 6.1, we provide an explicit formalization of context. We propose LDA for-

mulation is a particularly appropriate method for modeling this formalization, given

its following properties:

• Due to the probabilistic nature of LDA, it allows non-strict assignment of words

and documents to topics. For instance, if a certain word w occurs within the

vicinity of group A of words in one kind of document, and group B of words

in another, LDA can assign w to topic χA in the first case, and topic χB in the

second case. This scenario corresponds to consistent concepts in our formal-

ization, where w is consistent with both topics, with w ∈ P∗A ∧ w ∈ P∗B.

• If, on the other hand, a word w occurs within the vicinity of group C of words

only, it is strongly associated with topic χC , such that its probability of be-

longing to other topics Z \ χC diminishes to 0. This scenario corresponds to

enforcing concepts in the formalization, with w ∈ P+C .

• If a word w never occurs within the vicinity of group D, its probability of be-

longing to D approaches to 0. In this case, w is an conflicting concept of topic

χD, with w ∈ P−D.

• If two words wi ∈ P+A and wj ∈ P∗A occur in a document together, due to

the enforcing nature of wi and consistent nature of wj , LDA determines this

document as of topic χA. wi and wj themselves are also associated with topic

χA in this document.

• In contrast, if wi ∈ P+A and wm ∈ P−A occur in a document together, due to

the conflict of the enforcing nature of wi with conflicting nature of wm, LDA

assigns two topics to the document, both χA and χA, with A 6= A, χA due to wi

and χA due to wm. This is a common scenario in real life, where items related

to different topics can also be found together occasionally, which we called

above a mixed-context scenario. In such a case, wi is associated with topic χA

and wm is associated with topic χA.

• LDA works on the bag-of-words assumption that the order of the words in a
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document is not important, which is compatible with the unordered set formal-

ization of context. Indeed, concepts exist or do not exist in a scene, there is no

ordering between them. In other words, the probabilities of concepts are not de-

pendent on their order of appearance, in contrast to certain NLP scenarios. On

the other hand, it does take into account the cardinality of concepts, the more

instances of the same concept exists in a scene, the more strongly it affects the

context.

• As detailed above, LDA can be made to operate in an online and incremental

manner, which is consistent with our aim of lifelong development of robots in

a changing world.

6.6 Making Use of Context: Feeding the Contextual Information back to the

Concept Web

Since the system does not employ an attentional mechanism, it focuses on each object

in the scene one by one, identifying the concepts related to each one with a concept

web. The set of all these active concepts for all objects is then used for deducing the

context of the scene. After determining the context, the probabilities of concepts are

updated with the conditional likelihood of concepts in that context:

P (c)∗ = σ × P (c) + (1− σ)× P (c|χ), (6.11)

where c ∈ C = N ∪ A ∪ V is a concept, P (c) is the MRF-decided probability of

the concept c, χ is the context, P (c|χ) is the probability of the concept given the

context (decided by Incremental-LDA), and P (c)∗ is the updated value of the concept

probability. The whole system, which consists of (1) reiteration of the object concept

webs, (2) context deduction, and (3) probabilistic update of concept webs according

to the context, and (3) reiteration of MRF loop, is then repeated until the convergence

of the individual concept webs and context analysis.

σ in Equation 6.11 is responsible with regulating the strength of contextual feedback

in our world, with σ = 0 corresponding to using only contextual information, and

σ = 1 corresponding to pure concept web decision. An average log likelihood l̂ is

calculated over the test set as follows and depicted in Figure 6.1:

87



l̂ =
1

N |Cn+|

N∑
i=1

∑
c∈Cn+

logP (c|xn, σ), (6.12)

with N denoting the observation count, xn being the nth observation, Cn+ with cardi-

nality |Cn+| being the set of concepts related with the nth observation, and P (c|xn, σ)

denoting the probability of obtaining the related concept c given observation xn, un-

der the setting σ. The results estimate a reasonable interval between [0.4, 0.5]; from

this interval, we select σ as 0.5. Note that the convergence of l̂ for σ ≥ 0.7 corre-

sponds to the contextual feedback being too weak to affect concept web decision at

all, therefore the average log-likelihood does not vary in this region.

6.7 Entropy-Based Evaluation of the System

We define an entropy-based metric of disorder to evaluate the performance of the

system, with two terms:

H̃ = ρ×H(C|X) + (1− ρ)×H(X|S), (6.13)

where H(.) is the entropy function, C, X , S are random variables denoting concepts,

contexts, and scenes respectively, H(C|X) is the conditional entropy of concepts

given the context, H(X|S) is the conditional entropy of contexts given the scene, and

ρ is a parameter determining the relative importance of the two terms (set to 0.25 ex-

perimentally). These two terms stem from two possibly opposing targets: We would

like as few contexts as possible assigned to a scene, giving us more specific docu-

ments; and at the same time as few concepts as possible associated with a context. A

combination of the two terms is expected to give us the most specific contextualiza-

tion of the scene1.

6.8 Experiments and Results

We evaluate our framework and assumptions from three different aspects:

1 Similar multi-objective optimization of these two metrics can be found in the literature, for instance see [3].
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Figure 6.1: Average log likelihood l̂ for varying σ (Equation 6.11, σ = 0: Pure

contextual information, σ = 1: Pure concept web decision). The interval [0.4, 0.5] is

depicted as maximizing l̂. [Adapted from [195] c©2015 IEEE.]

1. We first test whether Incremental-LDA can determine the optimal number of

contexts; e.g., if it stops adding new contexts at the optimal point. We also

test if reusing partial solutions in K-Incremental Gibbs sampler leads to better

performance.

2. Then we compare extracting context directly from raw features of the scene,

against modeling it on top of the concept web.

3. Finally, we demonstrate how contextual information can improve reasoning, in

three different scenarios: (1) scene interpretation, (2) object recognition, and

(3) planning.

The training and test scenes in the experiments can belong to 3 different contexts

(Kitchen, Playroom, and Workshop). Unless explicitly mentioned, a scene is a pure

context scene, i.e., contains elements of a single context. A scene can also contain

elements from multiple contexts, in which case it is denoted as a mixed context scene.

For generating each scene in the set, a context is decided randomly and then the scene

is populated with randomly chosen objects that have the noun, adjective, and verb

attributes related to the selected context.
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Figure 6.2: A comparison of the entropy (H̃) evolution (Equation 6.13) of K-

Incremental Gibbs solver, versus the standard batch Gibbs solver. The K-Incremental

Gibbs solver is fed a partial solution for 2 contexts and then run for K = 3 contexts.

The batch Gibbs sampler is directly run for K = 3 contexts. [Adapted from [195]

c©2015 IEEE.]

6.8.1 Performance of Incremental-LDA and K-Incremental Gibbs Sampling

First, we analyze the dynamics of Incremental-LDA as: (1) the system encounters

more and more scenes, and (2) the number of contexts K is increased. In the first

case, we wish it to detect the correct context count as soon as possible, i.e., with the

smallest number of scenes possible. In the second case, we would like it to converge

on the correct number of contexts, which is K = 3 for our experimental scenario.

Figure 6.3 depicts two different evaluations of the outcome: The top two figures,

Figure 6.3(a) and (b) present the number of highly uncertain concepts (|Clow|) on

the y-axis. The bottom figures, Figure 6.3(c) and (d) demonstrate the change in the

combined entropy (H̃ , Equation 6.13), for the same scenarios. For both cases, lower

values are more desirable.

For each configuration, we use 10 test sets of |D| scenes with random contexts. The

number of encountered scenes in each test set, |D|, is one of the free variables. Each

scene d ∈ D is populated with 3-5 random objects of the randomly selected context.

In the figures, the mean and standard deviation values for the 10 test sets are indicated

with error bars.
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Figure 6.3(a) shows that, for test sets of varying scene counts, the system would

tend to increase the context count K until it reaches K = 3, at which point |Clow|
eventually hits 0. (Remember that while the set Clow is not empty, a new context will

be introduced in an attempt to reduce it, see Section 6.4.) For the trivial case of 1

scene, this is already the case with a single context (K = 1). This is expected, since a

single context is perfectly capable of describing a single scene. For the boundary case

of 2 scenes, 2 contexts seems to be enough. However for 3 and more scenes, it seems

that 3 contexts is necessary to clear out the set of uncertain concepts. Left to its own,

the system would naturally stop adding new contexts at this point, since |Clow| = 0

by now. However, for the sake of comparison in these graphs, the system is enforced

to try out the extra context counts of K ≥ 4. It should be noted that this behavior is

artificial, and as shown by Figure 6.3(a), the preferred context count by the system is

K = 3, where |Clow| = 0 for the nontrivial scene counts of |D| ≥ 3.

Figure 6.3(b) depicts the very same results from a different point of view, with the

encountered scene counts |D| on the x-axis this time. Here it is also visible that

context counts of 1 and 2 are not enough for maintaining |Clow| = 0 for more scenes

that 2. (While K = 1 is enough for a single scene, and K = 2 is enough for 2

scenes.) 3 and more contexts are effective in keeping |Clow| = 0 for any number of

scenes. However, as mentioned above, K = 3 being the first setting that achieves

|Clow| = 0, the system opts to maintain K = 3 naturally, and the extra values K ≥ 4

are obtained by artificially forcing the system to increase its context count, for the

sake of comparison.

For proving the sanity of the behavior, we also have a look at the system dynamics

by considering the entropy change in these scenarios, using the combined entropy H̃

developed in Section 6.7. Figures 6.3(c) and (d) depict the change in entropy of the

system for the exact scenarios discussed above. In Figure 6.3(c), we show how the

entropy of the system changes as K is increased in the system, note again that the

values K ≥ 4 are not natural but artificially forced. The minimum values of entropy

are encountered at K = 1 context for a single scene (|D| = 1), at K = 2 contexts for

2 scenes, and at K = 4 contexts for any non-trivial scene count |D| ≥ 3. It can be

seen that, if the system is artificially forced to increase the context count K beyond

that, the entropy actually increases, which is not desired. Therefore, the proposed
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Figure 6.3: The effect of encountered scene counts and varying context counts K.

Note that Incremental-LDA would itself stop at K = 3, however we force increasing

K for the sake of comparison. (a) Effect of increasing K on the number of uncertain

concepts, |Clow|, for varying number of scenes. By K = 3 contexts |Clow| diminishes

to 0, therefore Incremental-LDA would stop adding new contexts at this point. (b)

Effect of encountered scenes on the number of uncertain concepts, |Clow|, for different

context counts. (c) Effect of increasingK on the entropy of the system, H̃ , for varying

number of scenes. (d) Effect of encountered scenes on the entropy of the system, H̃ ,

for different context counts. In all the experiments, 10 test sets of |D| scenes each are

used. The mean values for the 10 test sets are plotted, while the standard deviations

are indicated with error bars. In (b) and (d), the x-axis is in log-scale. [Adapted

from [195] c©2015 IEEE. Best viewed in color.]
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method, which increases the context count only until |Clow| diminishes to 0, stopping

therefore at K = 3, is also effective at correctly catching the minimum entropy point

of the system, again at K = 3 (for the non-trivial case |D| ≥ 3).

Finally, Figure 6.3(d) demonstrates the same results, this time by displaying the vary-

ing scene count |D| on the x-axis. It is possible to see that, for non-trivial scene counts

of |D| ≥ 3, if 3 or more contexts are used (K ≥ 3), the system is able to converge

to the minimum entropy value of the setting as soon as it has encountered |D| = 3

scenes, which is an optimistic result that shows the system is able to converge quickly.

Again comparing the possible K settings, we see that, except for the trivial settings

of |D| ∈ {1, 2}, K = 3 results in the lowest possible entropy values, as expected.

Next, we compare the performance of K-Incremental Gibbs sampling with batch

Gibbs sampling. The question is whether reusing the previous partial solution leads

to faster convergence times for K-Incremental Gibbs sampler. Our test set includes

100 scenes.

Figure 6.2 presents the results over this test set that conform with our expectations:

Using a partial solution for 2 contexts, K-Incremental Gibbs sampler converges faster

compared to the batch solver. We measure the convergence of the system in terms of

its entropy2.

Note that K-Incremental Gibbs Sampling is fundamentally a variant of the standard

Gibbs sampler employing an informed initialization, which has been successful in

various challenging problems with very high number of contexts (topics), e.g., in [3],

which extracts≈ 300 “hot” scientific topics over 28,154 abstracts published in PNAS

between 1991 and 2001. Therefore, in spite of the physical limitations on the data

set used in this study, resulting in a modest number of concepts and contexts, it is

reasonable to expect that K-Incremental Gibbs sampler will also be able to scale up

for a high number of contexts as well.

2 Also note that the entropy value eventually reached by the two solvers is indeed the expected minimum
entropy value for these environmental conditions.
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LDA on Raw Features
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Figure 6.4: The performances of LDA over raw features only, versus of LDA over

MRF-based concept web, presented as prediction accuracies scaled to [0,1]. Pre-

sented values are the predicted likelihoods of “correct contexts” in each correspond-

ing case. For evaluation, the ground truth data of the expected contexts were extracted

via supervision. α and ξ are the trade-off parameters from Equation 6.10. (a) Using

only the raw features as input to LDA, for varying discretization bin counts and in-

creasing numbers of encountered scenes (α = 0.1, ξ = 0.1). (b) Using only the

raw features as input to LDA, for varying settings of α and ξ (50 scenes, 10 bins).

(c) Using the concept web as input to LDA, for increasing numbers of encountered

scenes. (α = 0.1, ξ = 0.1. Discretization is not necessary, therefore the result vector

is 1-dimensional.) (d) Using the concept web as input to LDA, for varying settings of

α and ξ (50 scenes). [Adapted from [195] c©2015 IEEE. Best viewed in color.]
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6.8.2 Context from the Concept Web against Context from Raw Features

Next we evaluate how useful the concept web is in guiding contextualization. Figure

6.4 shows the comparison of LDA on concept web versus LDA on raw-features-only.

First, we contrast how the two schemes fare in case of insufficient scene encounters.

Concurrently, we also investigate to what degree the discretization of the raw-features

is necessary, if at all. In the second type of tests, we conduct a grid parameter search

in the LDA space, to decide the best parameter settings for the two algorithms, as

well as their sensitivity level to the changes in these parameters. Note that these two

sets of experiments must be thought of in unison, in the sense that we have iteratively

updated the parameters used in one set according to the best results of the other set,

therefore we hope to present meaningful results in both sets. In the figures, we present

the predicted likelihoods assigned by these algorithms to the contexts that we “know”

to be true. The correct contexts have been decided through supervision for evaluation

purposes only.

Figure 6.4(a) versus Figure 6.4(b) depicts the results of the first set, i.e., the effects of

scene count and discretization (with the trade-off parameters α and ξ from Equation

6.10 both set to 0.1) An important result that pops out is that the raw-features approach

needs 50 scenes to settle on a meaningful partitioning, while the concept web method

manages to converge with an impressive speed at as few as 3-5 scenes. Even at 50

scenes, the raw-features approach needs to be supported by coarse discretization of

the features (i.e., being divided into 10 bins at most), since LDA is unable to locate

statistically significant co-occurrences otherwise. For other settings, the decisions of

the raw-features approach are at chance level: 33.3% for a 3-way decision.

Figures 6.4(c) and 6.4(d), on the other hand, present the results of the grid search in

the α-ξ space (with 50 scenes, 10-bins of discretization). Once again, we see that

LDA-on-raw-features is more fragile against parameter changes, while the concept

web method proves robust under most settings. Indeed, even for the worst parameter

settings, notice that the concept-web case provides confidences of over 50%, which

are sufficient for correct decision making, and are well over the chance level of 33.3%.

The results confirm that learning context from concepts is better than learning them
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from raw features in two aspects: (i) Learning converges faster, and is therefore more

reliable even after as few as 3-5 scene encounters, and (ii) It is less sensitive to the

model parameters, which increases the robustness of learning without needing a care-

ful tuning of parameters.

6.8.3 Using Context, Part 1: Making Sense of Pure- and Mixed-Context Envi-

ronments

Now we demonstrate how our context model can be utilized in reasoning and decision

making. The first scenario is designed for assessing how successful our model is in

recognizing contexts of scenes. The robot encounters six different scenes, three of

which are composed of items of a single context, and the remaining three of multi-

ple contexts. Table 6.2 demonstrates the predicted context(s), showing that the robot

can distinguish between pure and mixed-context scenes correctly, and decide on the

correct components in case of a mixed-context scene. These results are important,

because they demonstrate that our interpretation of the scene context is correct, re-

gardless of the scene being composed of a single context or multiple contexts. There-

fore, we obtain justification for our next step of using this contextual interpretation

for guiding reasoning in other cognitive tasks.

6.8.4 Using Context, Part 2: Object Recognition in Context

The second scenario considers the effect of context on object recognition. Table 6.3

demonstrates the recognition results for seven sample objects that are either (i) indi-

vidually perceived (columns 2-3), (ii) assessed in an individual concept web (columns

4-5), or (iii) evaluated in context3 (columns 7-8).

The results show that concept web itself can correct certain mistakes of the perception-

only assessment, while also boosting confidences of guesses to 100% certainty. How-

ever, it is not flawless and is also prone, albeit in a lesser amount, to errors (see the 2nd

and 3rd rows in the table). In such cases, it is especially difficult to correct these er-

rors, due to the initial high confidence associated with them. Contextual information
3 The objects are given in pure-context environments, for the sake of easy analysis.
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Figure 6.5: The combined results of object recognition in context, over all 15 objects

in the test set. The prediction accuracies over all determined noun and adjective

concepts, using (i) only perceptual features, (ii) the concept web, and (iii) contextual

information are compared. In the plot, the red lines denote the median values, the

boxes denote the data that fall between the 25th and 75th percentiles, the whiskers

cover the extreme data that are not outliers, and stars indicate the outliers. [Adapted

from [195] c©2015 IEEE.]
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Figure 6.6: The performance of the individual prototype-based predictions, versus

context enhanced concept web predictions, under artificially added noise, presented

as prediction accuracies scaled to [0,1]. The noise probability denotes the probability

of artificial noise being added to each single concept, via reversing its prototype-

predicted probability from p% to reversed to (100 − p)%. σ refers to the trade-

off parameter in Equation 6.11. [Adapted from [195] c©2015 IEEE. Best viewed in

color.]
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can be beneficial in these settings.

Remembering our fundamental assumption that related objects occur together in con-

text (which allowed us to develop an LDA-based model in the first place), the system

can use context to revise and correct its previous judgments. The loop of (a) context

deduction, (b) probabilistic update of concept web, and (c) reiteration of MRF, as

described in Section 6.6 and Equation 6.11, is utilized for refining predictions in con-

text. Combined results for all 15 test objects are demonstrated in Figure 6.5, which

also show an improvement of performance for the context-guided recognition.

In all these results, however, the individual predictions made solely using prototypes

are quite good already, thereby making it difficult to adequately estimate the benefits

of using context. Hence we have conducted an additional set of experiments, depicted

in Figure 6.6, under artificial noise specifically added to the prototype predictions. An

average of the prediction accuracies (scaled to [0, 1]) over 15 sets of experiments are

shown. For each set of experiments, a noise probability is determined in the range

[10%, 90%], and each concept’s prototype-predicted probability p% is reversed to

(100−p)% with the specified noise probability. The σ trade-off parameter of Equation

6.11 is varied in the range [0.1, 0.9]. Figure 6.6 demonstrates that the system is quite

resilient under increasing artificial noise: Combining information from many sources

all of which contributes to the contextual analysis, the system is able to detect the

context correctly and thereby correct individual wrong predictions using the majority

vote.

6.8.5 Using Context, Part 3: Planning in Context

Finally, we show how contextual information can be useful in a planning task. It

is known that humans hugely rely on contextual information for planning their ac-

tions [224], possibly due to a severely restricted working memory capacity [225,226],

which results in efficient day-to-day planning, but maybe less-than-favorable perfor-

mances in chess. The robots would also benefit from similar contextual guidance in

planning.

To show how context can be used similarly in a robotic planning scenario, we provide
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Figure 6.7: Pruning of forward planning trees by integrating contextual information.

(a) iCub’s workspace. (b) First planning scenario. iCub is expected to move a cup

from position 8 to position 5. Since pushing and knocking actions are dangerous

in the kitchen context, these nodes are pruned without further expansion. Pruned

branches are indicated with crosses. (c) Second scenario. iCub must bring a ball from

position 7 to 1. Pushes are pruned, since pushing a ball causes it to roll down from the

table. PX: Push left/right/forward/backward, MX: Move left/right/forward/backward,

KD: Knock down, SH: Shake, TH: Throw, DP: Drop, G: Grasp. [Adapted from [195]

c©2015 IEEE.]

two simple situations as proof-of-concept: The robot has to move two objects over

a table (Figure 6.7(a)) from an initial to a goal position. Since the robot has learned

the effect features of behaviors on training objects, it is theoretically able to expand

a planning tree starting from the initial state and expanding behavior nodes until the

goal condition is reached. These scenarios are simulated; however, the decisions of

the robot are based on real world data: The robot plans according to the expected

results of actions as learned by the verb prototypes. Although it does not physically

move to perform the plan, theoretically the plans are executable. In other words, we

are interested not in the physical success of the plans, but in the computational effi-

ciency of producing these plans. We use the breadth-first forward planning approach

depicted in Algorithm 5.
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Algorithm 5: Breadth-first forward planning with context-dependent pruning.

[Adapted from [195] c©2015 IEEE.]
if goal position pg = initial position pi then

return empty plan []

end if

QUEUE← [[b1], ... , [bI]], ∀bi ∈ BA, BA: the set of applicable behaviors in the

current context

while QUEUE is not empty do

pop PLAN from QUEUE

- Predict the outcome of the behaviors in the PLAN:

current position pc← initial position pi

for all behavior bi in PLAN do

update current position: pc← bi[pc]

end for

- Check whether we have reached the goal:

if current position pc = goal position pg then

return PLAN

end if

- Add possible behaviors in the current context as alternative plans:

for all behavior bj ∈ BA do

if next position due to bj (pn← bj[pc]) is within table boundaries then

push PLAN.append([bj]) to QUEUE

end if

end for

end while

return empty plan []
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In the first scenario, Figure 6.7(b), the robot is asked to move a cup from position 8 to

position 5. This goal can be achieved with three consecutive move right actions in

our setting. A fully-expanded tree, therefore, would consist of three levels, and with a

branching factor of 13, it will consist of 130+131+132+133 = 2380 nodes. However,

given the contextual information of the scene, which is the Kitchen context, the robot

can refrain from expanding the inappropriate behaviors in a Kitchen4, leaving only the

move left, move right, move forward, move backward and grasp as possible actions to

be expanded. Such an elimination gives a drastic reduction in the size of the planning

tree, resulting in 50 + 51 + 52 + 53 = 156 nodes instead of 2380.

Figure 6.7(c) shows another scenario in the Playroom context. This time, the robot

refrains from applying the push actions on associated objects, since balls, which are

also in this context, tend to roll down and fall from the table when pushed. Therefore,

the push nodes are pruned, leaving 90 + 91 + 92 + 93 = 820 nodes in the tree. We use

a breadth-first forward planning scheme subject to context-dependent pruning.

Figure 6.8 compares un-pruned and pruned node counts for 10000 random scenarios

in the move-over-the-table scenario presented above, presented for the three contexts

4 Assuming we do not want to, for instance, shake a full cup.
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Figure 6.8: The node counts of unpruned vs. pruned planning trees of 10000 random

scenarios, grouped by their contexts. The Kitchen context is subject to more pruning,

as expected, due to a large number of NA behaviors. The Workshop context, on the

other hand, is not subject to any pruning, since all behaviors are potentially applicable.

In the plot, the boxes denote the data that fall between the 25th and 75th percentiles,

and stars indicate the outliers. [Adapted from [195] c©2015 IEEE.]
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separately. Each scenario is prepared by randomly determining a context, as well as

initial and goal positions on the table environment, and then asking the robot to plan a

behavior sequence from the initial to the goal position in this contextual background.

Note that the amount of node reduction in these experiments depend on the randomly

chosen target position. If the goal position is very close to the initial position, then

relatively little reduction is possible, since the height of the planning tree will already

be fairly shallow even in the unpruned case. However, if the random target is chosen

sufficiently far from the initial position, which would normally require a very deep

and wide planning tree, significant pruning is possible. The outliers in the graph

correspond to such points. Note that the amount of pruning in the Kitchen case is

greater than the Playroom case, since potentially greater number of actions are non-

applicable in the Kitchen case. In the Workshop case, where all actions are applicable,

there are no possible reductions.

The reductions shown here are only provided as proof-of-concepts, but it is clear how

important it is for a robot to learn to prune its search trees in a real world setting. For

a very limited robot of a small, or maybe even intermediate set of actions, consider-

ing each action for every situation might be an option, but for any robot who aims to

operate in the real world, the actions will be so varied and planning chains will nec-

essarily be so long that even most basic reductions (i.e., no need to consider opening

the kitchen door for heating a glass of milk) will be of critical importance.

6.8.6 Running Time Performance of the System

The whole system is able to work close to real-time: 10 test runs with non-optimized

code on a standard desktop PC (i5 core, 8GB RAM) provided an average running

time of 209.82ms± 3.38ms for the detection of context with Incremental LDA, and

1395.22ms± 15.31ms for the convergence of the concept web.

6.9 Summary

In this part, we proposed a method for formalizing, learning, and using context. For

modeling context, we employed and extended Latent Dirichlet Allocation (LDA), a
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widely-used topic model in the computational linguistics literature. Unlike the exist-

ing applications of LDA in robotics for, e.g., word learning, where LDA is directly

applied onto low-level sensorimotor data, we were motivated by the concept web hy-

potheses in humans and its computational advantages to apply LDA onto a concept

web model that we developed in our previous work using Markov Random Fields.

We demonstrated the following important aspects:

• In an unsupervised fashion, the robot can learn context even if the number of

contexts is not given. By using an online version of the Gibbs sampler proposed

in the article, the robot can work online to process new observations and can

tackle new contexts. By a systematic analysis, we show that the model finds

the correct number of contexts in different settings.

• The robot can use the learned contexts to improve its performance in cognitive

tasks. In the article, we showed this aspect for object recognition and planning.

• Finally we show how learning context over a web of abstracted concepts is

easier and provides better performance for an LDA-based architecture, which

deals with the sensorimotor complexity of real world better than raw features

themselves.
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CHAPTER 7

CONCLUSION

In this thesis, we have addressed an important problem in cognitive systems, that of

modeling a concept web in a similar fashion to us, humans. The web is constructed

based on the co-occurrences of concepts from the interactions of the robot, and mod-

eled using Markov Random Fields. Since the resulting web is a cyclic graph, infer-

ences are made using Loopy Belief Propagation, as is widely done in the literature.

We have demonstrated that, given an observation of an object, our robot can activate in

its “brain” the relevant noun concepts, adjective concepts, verb concepts (describing

what behaviors can be applied on the object) as well as the words that can be used

for the object. Moreover, given an interaction on an object or in fact, an interaction

without an object (that would normally take an object), the robot can activate the

necessary concepts in the web as well. Being linked to language, perception and

motor (action) spaces, the concept web allows activation of relevant information from

and to any modality. As we reviewed in detail in Section 2.2.1, such a concept web is

very much in line with findings from neuroscience.

Moreover, we showed that such a web allows the robot to make a better interpreta-

tion of the environment. By using the co-occurrences from other concepts, wrongly

predicted concepts can be corrected, and confidences of correct predictions can be

increased.

We have also showed how a humanoid robot can model, learn and use context. For

modeling context, we employed and extended Latent Dirichlet Allocation (LDA), a

widely-used topic model in the computational linguistics literature. Unlike the exist-
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ing applications of LDA in robotics for, e.g., word learning, where LDA is directly

applied onto low-level sensorimotor data, we were motivated by the concept web hy-

potheses in humans and its computational advantages to apply LDA onto a concept

web model that we developed in our previous work using Markov Random Fields.

We demonstrated the robot can learn context in an unsupervised manner, even if the

number of contexts is not given. By using an online version of the Gibbs sampler

proposed in the article, the robot can work online to process new observations and

can tackle new contexts. By a systematic analysis, we show that the model finds the

correct number of contexts in different settings.

We have further demonstrated how the robot can use the learned contexts to improve

its performance in cognitive tasks. We have selected the object recognition and plan-

ning tasks for showcasing this ability.

Finally we show how learning context over a web of abstracted concepts is easier

and provides better performance for an LDA-based architecture, which deals with the

sensorimotor complexity of real world better than raw features themselves.

7.1 Discussion

There are naturally many design choices in any architecture of reasonable size. The

distinguishing features of the presented model are:

• Basing the conceptualization on a graph-like structure, in which every concept

is connected to all other related ones, as compared to a tree structure with only

parent-child connections

• Representing spatial concepts as nodes in the concept web, rather than simple

links connecting other nodes

• Building contextual understanding on top of the concept web

• Aiming for a lifelong and developmental learning of context

• Proposing a context-based pruning for real-time planning
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Below, we discuss these features in the light of the state-of-the-art findings.

7.1.1 A Web of Concepts

There are several ontology-based studies in the literature, e.g. [118–120, 151], where

concepts are represented in tree-structures. These ontologies are effective in repre-

senting structured information partially, but there are many missing semantic links

that are pragmatic and useful for us, humans. For instance, “cup” and “glass” would

be related, coming from a single ancestor, which might be “container”. However,

“cup” and ”coffee” will not be connected in such a tree-shaped representation. Yet,

the cup-and-coffee connection is very real for us. Whenever we want some coffee,

the first thing we will be looking for will be a cup - without a cup, coffee is not

drinkable. Similarly, the connection between “cup” and “coffee” leads also to a third

concept, namely that of “drinking” affordance. And to many more as well, coffee

and cup together afford “waking up” when it is “early” in the morning, “chit chat”

when “together with friends”, or “nausea” when one’s stomach is “empty”. Often

times, these are not strictly structural, but rather functional and pragmatic links that

enable us to behave rapidly and efficiently in the real world. Therefore, we posit that

it is important to represent these multitude of connections efficiently and natively. As

hypothesized by Bar [5], we also build our system on the observation that commonly

co-occurring concepts are generally linked. Thus, we propose a densely-connected

web structure that enables efficient spreading of information is of primary importance

for adequately representing our understanding of the world.

7.1.2 Spatial Concepts as Nodes

Another feature of our system is regarding the spatial relations, or prepositional con-

cepts, as nodes themselves within the graph. Representing spatial concepts as nodes

is synonymous with making them first-order members of the graph. They are simi-

lar to the noun, adjective, and verb concepts in that (1) They are initialized to naive

predictions, (2) but then iterated over and regulated according to other perceived con-

cepts, (3) all the while regulating the activations of the other concepts themselves.
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This approach of representing spatial relations as first-order concepts is more in line

with the proposals of Coventry et al. [46–49] and Garrod et al. [50,51], rather than for

instance Anand et al. [68] and Misra et al. [69], in that spatial relations are viewed as

complex and prone to personal and functional interpretation, rather than being fully

defined by simple geometric relations. The support for our hypothesis is the fact that

humans also accumulate significant physical understanding of the world, which they

implicitly and perpetually use for assessing the scene. The real world is an incredibly

consistent place in terms of physical rules, that is why detecting and reusing physical

patterns is a feasible shortcut. As demonstrated by the above studies, this absolute

reliance on learned patterns of physicality manifest itself explicitly even in our lan-

guage use. We therefore propose that spatial concepts deserve to be explicit nodes in

our densely-connected web structure, being distilled themselves from a rich physical

understanding and carrying experience-based connections to other concepts.

7.1.3 Basing Context on the Concept Web

We base our context representation on the proposed densely-connected concept web.

Our motivation comes from the hypothesis that human cognition is mostly based on

concepts [1, 2], and that concepts commonly occurring together is what gives rise to

the context [5, 143] (also see [78] for statistical relations of concepts directly affect-

ing cortical representations). This approach also boasts computational advantages:

In Chapter 4, we have showed how concept web enables a superior performance of

object recognition and conceptualization as compared to a raw-feature based scheme.

In Chapter 6, we go on to conduct an explicit evaluation of the concept-web based

formulation against raw-features based modeling, which provides further evidence

regarding the benefits of utilizing structured information from the concept web. We

demonstrate how the concept web provides better performance with significantly

fewer training examples, as well as reduced sensitivity against system parameters.

These advantages are due to its abstraction capability: The real world presents an

overwhelming amount of complex information, which needs some structure to be im-

posed before statistically significant relations can be discovered. This is argued to be

the driving reason of conceptualization in humans as well (e.g., [1,2,8,227–231], for

a slightly different but interesting argument, see also [232].)
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7.1.4 Lifelong and Developmental Learning in Robots

Lifelong learning in robots (e.g., [233]) aims to overcome important limitations that

prevent the robots from operating in real-life environments: Specifically, [233] warns

that (1) a human designer cannot always accurately predict the robot’s world, (2) even

if such a prediction were possible, a corresponding model would be tedious, possibly

infeasible to hand-code, and (3) even if such a model were to be constructed, planning

on it would likely be intractable except in severely restricted cases [164, 165]. [22,

25, 30–32, 234–238] envision a paradigm shift as the solution: The robots need to

go through a prolonged developmental phase [237], in which they will discover the

world through their own interactions, and as they gradually encounter more complex

problems [235, 238], they adapt their previous knowledge to gain new insight [239].

There are two facets vital to this paradigm: First, learning can never end [233]: The

robot needs to gain knowledge in an incremental manner, building more complex

skills on previously gained ones. Otherwise, the real world would simply be too

complex to learn. Second, the developer can never know [25, 240]: It is not possible

to predict the numerous environments a robot can encounter with. Therefore, as [240]

mentions, an artificial system has to have the means of checking its own knowledge

constantly. Any priori bias hard-coded by the designer can become false at any time,

for instance, assuming a sensory or motor failure of the robot. [25] outlines a road-

map by suggesting that each and every assumption of a robot must be made explicit,

so that it will have a chance of verifying these assumptions in a constantly changing

environment. We try to adopt this guideline, by endowing the robot with a means of

checking its own context model in a changing environment. Not only do we want

it to discover the “correct” setting of contexts, but we also want it to monitor this

knowledge continuously. Should a new context appear in its world, it will then be

able to react accordingly.

7.1.5 Planning in the Real World

Bylander [164] and Chapman [165] show that planning is intractable in the general

sense, unless it is restricted severely, for instance, to propositional planning with

strictly positive preconditions and exactly one postcondition. Such restricted cases
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can be defined to reduce the planning problem to a polynomial-time subset; however,

small deviations make the problem intractable again: e.g., the NP-hard problem of al-

lowing two postconditions along with one precondition, or the NP-complete problem

of one strictly positive postcondition along with one precondition. As Bylander [164]

and Hendler [166] note, it is difficult to describe any interesting world in proposi-

tional logic, let alone such restrictions for the sake of tractability. We have to find

a workaround. We propose that this workaround can be, and for humans is, con-

text [167–170].

Also supporting our hypothesis is the work of Siegler and colleagues, e.g., [241], who,

from a developmental point of view, stresses how important context is in helping chil-

dren choose which skill or problem solving strategy to apply in a certain situation. So

important is this process of choosing, he claims, that the question is not “whether chil-

dren ‘have’ a concept or strategy or theory at a given age”, but it is rather “the set of

conceptualizations and strategies and theories that children know and the mechanisms

by which they choose among them” [241] (emphasis added).

7.2 Limitations and Future Work

Overall, we provide promising results that a learning scheme which includes back-

ground information, instead of leaving it out, is feasible and useful for a robot when

dealing with the real world. Our work can be extended in several directions.

The experiments were performed on real objects, although the settings are not realis-

tic. This limitation was due to the interaction capabilities of iCub: iCub cannot walk

and is confined to a table-top environment. Moreover, due to its delicate hands and

the limited precision of the touch sensors on the hands, the range of objects that can

be interacted with was limited to light-weight and convex objects. This also restricted

us in the varieties of contexts. However, LDA is shown to scale up extremely well

in natural language processing settings, where it could be tested with huge corpora

(e.g., [3, 208]) as well in a number of other complicated real-life scenarios includ-

ing functional miRNA–mRNA regulatory modules identification [214] and fraud de-

tection [212]; therefore, we believe that our framework will scale well in realistic
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robotics settings. For quantitatively evaluating the system’s robustness against larger

and noisier datasets, though, a sensitivity analysis needs to be conducted systemat-

ically. In particular, the amount of complexity, which can be added to the system

without significantly disturbing its performance, needs to be identified. The more in-

sensitive to increasing complexity the system is, the more robust it will prove to be

in real life situations. During such a sensitivity analysis, the system can also be more

precisely evaluated by a combination of success/fail metrics, such as precision/recall

graphics, in order to quantitatively distinguish the tendency to false negatives from

false positives.

In Incremental-LDA, we assumed that the number of contexts can only increase in

the environment, and therefore it is not necessary to check if the context count K

can go down. We observe similar assumptions in the literature, e.g., [222], where the

number of topics can only increase in time. We believe that there is no reason for a

biological cognitive agent to remove learned contexts from its system; although they

might be merged as new contexts or split into sub-contexts, the only case where the

number of contexts might decrease is when the agent forgets learned associations.

It should also be noted that, although our current concept web is composed of noun,

adjective, and verb concepts, a cognitive model should include spatial, temporal, ad-

verb, and social concepts as well. With the incorporation of these types of concepts

in our concept web, contexts related to their semantics will also be able to manifest

themselves in our model.

Moreover, a more realistic model would need to account for super-ordinate, or “higher-

order” concepts as well, such as “animal”, or “utensil”. Similarly, there can be “sub-

ordinate” concepts, such as “terrier dog”, or “cup with a handle”. Currently, the

concept web is designed to include a single level, called the basic level or concep-

tualization [242]. Incorporating a hierarchical conceptualization mechanism which

takes other concepts as its input would extend this single level, and allow a richer

semantic structure.

For the addition of such hierarchical organization, the links within the concept web

need to be extended to have different types. There are currently two explicit link types

in the system: There are undirected, fully associative links between the related con-
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cept instantiations, associated with an object, and directed links between the objects

and spatial relations. However, there can be more types: A fully grown concept web

needs to be able to represent is-a and has-a type relations as well, which will enrich

the semantics, by allowing a hierarchical organization of the concepts.

Moreover, a similar hierarchical organization would also be beneficial for the con-

textual modeling. Contexts can be hierarchical as well, there can be super-concepts

or sub-concepts, known contexts can split in time into more specific ones as more

experience is gained, or previously separate contexts can merge into one. Therefore,

the contextual representation would also benefit from a hierarchical extension.

Another requirement that is currently missing from the system is temporal knowledge.

The dimension of temporality needs to be introduced, which will serve to distinguish

between different scenes. In addition, old information might be reconsidered in time

under the light of new evidence, provided that the system has an explicit understand-

ing of the passing time.

Although we have strived for online and fully-unsupervised discovering the contexts,

a similar flexibility is ultimately necessary for the discovery of the concepts as well:

Currently we are employing a supervised learning scheme of previously determined

concepts, which is not very feasible from a developmental point of view. Finally, our

proof-of-concept results should be investigated in real-time scenarios: Since there

is reason to believe that context can be advantageous in recognition and planning

scenarios, it should be able to ease the tasks in more real-life settings, possibly with

more contexts, more realistic objects, and more complicated tasks. Such real-life

settings may even be too difficult to operate at all without contextual aid, and will

naturally demonstrate the benefits of using context more clearly.

In such an online setting, it would also be more naturalistic to start with a fully con-

nected concept web, and let the system learn and evolve its own connection weights

with experience in an online manner, instead of imposing to the web the required

list of connections through a batch set of examples. The current version of the con-

cept web learns offline, during a specially designated training time. At the end of this

period, it emerges with a set of connectedness rules, which are crystallized in the con-

cept web, not to be modified afterwards. Instead, a more naturalistic setting would
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be the lifelong learning and adaptation of connections. Take a infant, for instance,

who beings her life with the idea that everything is gnaw-able, only to discover when

she grows up that somethings are better off not being gnawed. Moreover, the current

concept web has the notion of binary connections: Two concepts are either connected

to each other, or not. However, more flexible, possibly condition-dependent connec-

tions could also be more consistent with the idea of contextual interpretation. Cup

and throw, for instance, might be connected in the playroom context, consisting of

plastic cups, and unconnected in the kitchen context with “real” cups.

Finally, it is without doubt that in this study, we have merely scratched the surface

of the possible effects of context. There remains so much to be investigated. An

interesting direction, for instance, is how context naturally affects the perception of

certain adjectives, whose meanings can be extremely flexible. The adjective big, for

instance, can be used to describe a house, a football stadium, or the universe, or even

the human heart, in different contexts. Thus, we cannot say that big has a certain,

fixed meaning; it simply means vastly different scales in different contexts, and we

are very well capable of figuring out the right connotation. Other adjectives, on the

other hand, can be rather independent of the context; take sticky, for example, or

brittle. Finally, there are also certain adjectives that seem to have enforcing bonds

with certain contexts: A toy in a playroom had better not be sharp, or it can be

dangerous. When we hear of a toy described as sharp, such as a sharp pirate sword,

we immediately reason it to be mock-sharpness: Literal sharpness is banned from the

playroom. This flexible interplay between the adjectives and context seems to be a

crucial part of their understanding, after all, one which needs further investigation.

Moreover, the susceptibility to context-dependent interpretations is not restricted to

adjective concepts. We have already shown proof-of-concept results of the context-

dependent pruning of irrelevant actions, for the sake of “real-time” planning. How-

ever, the effect of context on action selection goes much further than that. As pointed

out by Siegler and colleagues [241], there is a developmental step between children

leaning a skill as-is, and their internalizing the skill so much that they can adapt it to

the necessities of the context. The stirring motion, which is initially learned with a

toy spoon, can as well be transferred to mixing mud with a twig. Context can easily

arise different affordances of objects, or trigger the transfer of previously internalized

115



skills for completely different goals. Even from these observations only, it is obvious

that we are still a long way from a complete utilization of context.

Our results demonstrate promising potential on the path to competent understanding

of conceptualization and context. Further work will continue to bring more light,

until the time when these mysterious cognitive faculties will hopefully be understood

decently, and imitated successfully.
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nouns and adjectives. In 2013 IEEE Third Joint International Conference on
Development and Learning and Epigenetic Robotics (ICDL), pages 1–6, Aug
2013.

[198] A. Kai Qin and Ponnuthurai N. Suganthan. Robust growing neural gas algo-
rithm with application in cluster analysis. Neural Networks, 17(8-9):1135–
1148, 2004.

[199] Todd Veldhuizen. Ubigraph: Free dynamic graph visualization software, 2007.

[200] Ross Kindermann, James Laurie Snell, et al. Markov random fields and
their applications, volume 1. American Mathematical Society Providence, RI,
1980.

[201] Almero Gouws. A Python implementation of graphical models. PhD thesis,
Stellenbosch: University of Stellenbosch, 2010.

[202] Akira Murata, Luciano Fadiga, Leonardo Fogassi, Vittorio Gallese, Vassilis
Raos, and Giacomo Rizzolatti. Object representation in the ventral premotor
cortex (area f5) of the monkey. Journal of Neurophysiology, 78(4):2226–2230,
1997.

[203] Giacomo Rizzolatti and Luciano Fadiga. Grasping objects and grasping action
meanings: the dual role of monkey rostroventral premotor cortex (area f5).
Sensory Guidance of Movement, 218:81–103, 1998.

[204] Luciano Fadiga, Leonardo Fogassi, Vittorio Gallese, and Giacomo Rizzolatti.
Visuomotor neurons: Ambiguity of the discharge or ‘motor’perception? Inter-
national journal of psychophysiology, 35(2):165–177, 2000.

132



[205] Igor Kononenko. Estimating attributes: analysis and extensions of relief. In
Machine Learning: ECML-94, pages 171–182. Springer, 1994.

[206] Ahmet Can Bulut. A multinomial prototype-based learning algorithm. Mas-
ter’s thesis, Middle East Technical University, 2014.

[207] Hande Çelikkanat, Güner Orhan, Nicolas Pugeault, Frank Guerin, Erol Şahin,
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Seçimi: Alakalı Öznitelik Analizi (ing. Using Slowness Principle for Feature

Selection: Relevant Feature Analysis), Proceedings of IEEE 22. Sinyal İşleme

ve İletişim Uygulamaları Kurultayı, 2014.

• Ali Emre Turgut, Fatih Gökçe, Hande Çelikkanat, Levent Bayındır, and Erol
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