
AN INVESTIGATION ON BELIEF PROPAGATION DECODING OF
POLAR CODES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ORKUN DOĞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2015

Approval of the thesis:

AN INVESTIGATION ON BELIEF PROPAGATION DECODING OF
POLAR CODES

submitted by ORKUN DOĞAN in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Melek Diker Yücel
Supervisor, Electrical and Electronics Engineering Dep.

Examining Committee Members:

Prof. Dr. Yalçın Tanık
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Melek Diker Yücel
Electrical and Electronics Engineering Department, METU

Prof. Dr. Erdal Arıkan
Electrical and Electronics Engineering Department, BİLKENT

Prof. Dr. Ali Özgür Yılmaz
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Çağatay Candan
Electrical and Electronics Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ORKUN DOĞAN

Signature :

iv

ABSTRACT

AN INVESTIGATION ON BELIEF PROPAGATION DECODING OF
POLAR CODES

Doğan, Orkun

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Melek Diker Yücel

December 2015, 74 pages

Polar codes are provably symmetric capacity achieving codes for any given binary in-
put discrete memoryless channel, with low encoding and decoding complexities. Po-
lar codes introduced by Erdal Arıkan in 2009 are based on the channel polarization. N
binary channels are synthesized out of N copies of binary input discrete memoryless
channels, such that as N goes to infinity each of the synthesized channel’s capacity
goes to either 0 or 1; i.e., the channels are seen purely as noisy or noiseless channels.
These synthesized channels are called polarized since they go towards extremes; asN
goes to infinity,NI(W) of them are perfect andN(1−I(W)) of them are purely noisy
channels. One has to send data through the noiseless channels and send frozen bits,
which are known by the receiver as well, through purely noisy channels to achieve the
channel capacity. Arıkan proposed the Successive Cancellation (SC) decoding with
low complexity O(N logN), and also used the Belief Propagation (BP) decoding that
can perform better with the same complexity.

In this thesis, the encoding of polar codes by means of channel polarization is exam-
ined and BP decoding that employs round iterations is implemented on a factor graph
with log2N stages, for the binary erasure channel (BEC). Each round iteration starts
by forwarding only left messages from the encoder output to the input and proceeds
with only right messages from the input to the output. The number of round iterations
required for BP decoding of polar codes is determined by simulations. The perfor-

v

mance dependence of the BP decoding algorithm upon factor graphs, corresponding
number of frozen variables and related capacities of the synthesized information bit
channels are examined. In addition, the performance of BP decoding using multiple
factor graphs with log2N and (log2N)! parallel paths is compared to the case of single
factor graph decoding.

Keywords: Channel Polarization, Polar Codes, Reed Muller Codes, Belief Propaga-
tion, Factor Graph.

vi

ÖZ

KUTUPSAL KODLARIN İNANÇ YAYILIMI KOD ÇÖZÜMLEMESİ
ÜZERİNE ARAŞTIRMA

Doğan, Orkun

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Melek Diker Yücel

Aralık 2015, 74 sayfa

Kutupsal kodlar, hafızasız ikil girişli kanallar için simetrik kapasiteye ulaştığı kanıt-
lanan, kodlayıcısı ve kod çözücüsü düşük karmaşıklıkta kodlardır. Kutupsal kodlar
Erdal Arıkan tarafından 2009 yılında kanal kutuplaşmasına dayanılarak bulunmuştur.
Kanal kutuplaşması ile, hafızasız ikil girişli kanalın N kopyasından sentezlenen N ikil
kanalın kapasiteleri, N sonsuza giderken ya 0’a ya da 1’e gitmektedir, yani kanallar
ya tamamen gürültülü ya da tamamen gürültüsüz olarak görülmektedir. Sentezlenen
kanallar sınırlara doğru gittiğinden kutuplaşmış kanallar olarak adlandırılır. N son-
suza giderken bunların NI(W) tanesi mükemmel kanallar, N(1 − I(W)) tanesi ise
tamamen gürültülü kanallardır. Kanal kapasitesine ulaşmak için gürültüsüz kanallar-
dan bilgi gönderilirken, gürültülü kanallardan ise (alıcı tarafından da bilinen) donuk
ikiller gönderilmektedir. Arıkan O(N logN) düzeyinde düşük karmaşıklığa sahip Ar-
dışık Eleme kod çözümlemesini önerdi, ve aynı karmaşıklıkla daha iyi performans
gösteren İnanç Yayılımı kod çözümlemesini de kullandı.

Bu tezde, kutupsal kodların kanal kutuplaşması yardımıyla kodlanması incelenerek
döngüsel iterasyon kullanan İnanç Yayılımı kod çözümleyicisisi, log2N aşamalı fak-
tör grafiği üzerinde, ikili silinti kanalları için gerçeklenmiştir. İnanç Yayılımı çözüm-
lemesi için gereken döngüsel iterasyon sayısı benzetimlerle belirlenmis; algoritma
performansının faktör grafiklerine, ilgili donuk ikil sayılarına ve sentezlenen bilgi ikil
kanalı kapasitelerine bağımlılığı incelenmiştir. Ayrıca çoklu grafik kullanan İnanç Ya-

vii

yılımı çözümlemesinde log2N veya (log2N)! paralel kol olması durumuyla, tek faktör
grafikli çözümleme karşılaştırılmıştır.

Anahtar Kelimeler: Kanal Kutupsallaşması, Kutupsal Kodlar, Reed Muller Kodlar,
İnanç Yayılımı, Faktör Grafiği.

viii

To my family, friends and people who are reading this page

ix

ACKNOWLEDGMENTS

I’ve had the chance to work with more talented and intelligent people from each other
during my graduate studies. Thanks infinitely to everyone supporting me in my work
and social life throughout this process.

The largest contribution in my educational development belongs to Assoc. Prof.
Melek Diker Yücel, who has always supported me and transferred her knowledge
and experience to me. Because of all these supports and her smiling face, I heartily
indicate that it was an honor, pleasure and a big chance to work with her.

My close friends always supported me mentally and shared my distress. I don’t want
to give a name not to be ashamed for forgetting one of them. So, thanks to all of them
collectively.

My largest thanks are for my family, who have always worked for me to live a com-
fortable and healthy life. I can not thank enough to my dear family who have always
shown me the right way patiently, respected my decisions and loved me in the purest
sense.

I would like to acknowledge the Scientific and Technological Research Council of
Turkey (TÜBİTAK) BİDEB-2228 Scholarship Program for the support they have pro-
vided during the course of my graduate education.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Belief Propagation Decoding of Polar Codes 3

1.2 Aim and Organization of the Thesis 6

2 CHANNEL POLARIZATION . 9

2.1 Error Control Coding . 9

2.2 Channel Polarization . 11

2.3 Polar Encoding . 18

2.4 Polar Code Decoding . 22

xi

3 SIMULATION RESULTS . 29

3.1 Description of the Decoding Structure Used in Simulations . 30

3.1.1 Belief Propagation Decoding Algorithm 31

3.2 Decoder Structure and the Number of Frozen Variables for
the BP Decoding Algorithm 36

3.3 Choice of the Number of Iterations for the BP Decoding Al-
gorithm . 40

3.4 Dependence of Bit Channel Capacities on the Decoder Struc-
ture . 43

3.5 Performance Dependence of the BP Decoding Algorithm on
the Decoder Structure - Stage Order “1-...-n” versus “n-...-1” 46

3.6 Multiple Factor Graph BP Decoding with log2N and (log2N)!
Factor Graphs, and Two Proposals: Highest CS and Genie-
Chosen Factor Graph Sets 49

3.7 Performance Dependence on the Number of Frozen Vari-
ables and Capacity Sum . 53

3.8 Performance Comparison of Polar and Reed Muller Codes . . 56

4 CONCLUSION . 59

REFERENCES . 63

APPENDICES

A REQUIRED NUMBER OF ROUND ITERATIONS FOR THE BP
DECODER FOR N=128 & 512 . 67

B CORRELATION BETWEEN THE NUMBER OF FROZEN VARI-
ABLES AND THE CAPACITY SUMS 73

xii

LIST OF TABLES

TABLES

Table 2.1 Capacities of 8 channels synthesized from a BEC(ε) for N = 8. . . . 22

Table 3.1 An alternative way of displaying the frozen bits (0’s in the table)
corresponding to all factor graphs of the (8,4) polar code. 38

Table 3.2 For the (32,16) polar code, stage orders of the 12 diagrams having
44 frozen variables, whose input frozen bits are adjusted according to the
“5-4-3-2-1” diagram. 39

Table 3.3 Number of decoded codewords out of 1,000 received words of the
(32,16) polar code after each round iteration for the stage order 1-...-5 over
a BEC(ε). 41

Table 3.4 Number of decoded codewords out of 1,000 received words of the
(32,16) polar code after each round iteration for the stage order n-...-1 over
a BEC(ε). 42

Table 3.5 Number of round iterations needed for BP decoding of rate 1/2 polar
codes over a BEC(ε). 43

Table 3.6 Equal capacity sets of the (32,16) polar codes over a BEC(0.3125). . 45

Table 3.7 Decoded bit erasure probabilities of a (32,16) codes on a BEC(ε)
over 10,000 trials and up to 10 iterations of the BP algorithm. 46

Table 3.8 Decoded bit erasure probabilities of a(128,64) codes on a BEC(ε)
over 2,000 trials and up to 15 iterations of the BP algorithm. 46

Table 3.9 Decoded bit erasure probabilities of a (512,256) codes on a BEC(ε)
over 1,000 trials and up to 20 iterations of the BP algorithm. 47

Table 3.10 n = 6 cyclic diagrams and their performances for the (64,32) code
over 1,000 codewords each having 22 erasures. 50

Table 3.11 19 diagrams with the best 19 CS values for the (64,32) code over
1,000 codewords each having 22 erasures. 51

xiii

Table 3.12 5 diagrams that give the best performance for the (64,32) code over
1,000 codewords each having 22 erasures. 52

Table 3.13 The number of undecoded words out of 1,000 words (each with 22
erasures) in each simulation, with multiple factor graph BP decoding for
the (64,32) code. 52

Table 3.14 4 diagrams that give the best performance for the (64,32) code over
1,000 codewords each having 22 erasures. 53

Table 3.15 Performance of BP decoding (128,64) polar code with different fac-
tor graphs and (128,64) RM code over a BEC(0.35). 57

Table A.1 Number of decoded codewords out of 1,000 received words of the
(128,64) polar code after each round iteration for the stage order 1-...-n
over a BEC(ε). 68

Table A.2 Number of decoded codewords out of 1,000 received words of the
(128,64) polar code after each round iteration for the stage order n-...-1
over a BEC(ε). 69

Table A.3 Number of decoded codewords out of 1,000 received words of the
(512,256) polar code after each round iteration for the stage order 1-...-n
over a BEC(ε). 70

Table A.4 Number of decoded codewords out of 1,000 received words of the
(512,256) polar code after each round iteration for the stage order n-...-1
over a BEC(ε). 71

Table B.1 Distribution of equal-CS sets (each having 12 elements) for the
(32,16) code over a BEC(0.3125), expressed differently from Table 3.6. . . 73

Table B.2 Distribution of equal-CS sets (each having 4 elements) for the (64,32)
polar code over a BEC(0.34375). 74

Table B.3 Distribution of equal-CS sets (each having 2 elements) for the (128,64)
polar code over a BEC(0.35). 75

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Performance comparison of decoding schemes of polar code (solid
curves) and WiMax LDPC code (dashed curve)
(reproduced from [Tal and Vardy, 2011]). 3

Figure 2.1 Basic block diagram of a binary communication system. 10

Figure 2.2 Binary Discrete Memoryless Channel (B-DMC). 10

Figure 2.3 Binary Erasure Channel (BEC) and Binary Symmetric Channel
(BSC). 11

Figure 2.4 Channel combining. 12

Figure 2.5 The basic transformation of channel combining. 12

Figure 2.6 4- input, 4-output W4 channel. 13

Figure 2.7 Channel splitting. 14

Figure 2.8 W− channel after splitting. 15

Figure 2.9 W+ channel after splitting. 15

Figure 2.10 Channel splitting for N = 4. 16

Figure 2.11 Capacities of polarized channels for N = 32, 128, 512, 2048 over
a BEC(0.5). 19

Figure 2.12 Channel capacities for N = 8 over a BEC(0.5). 21

Figure 2.13 Encoding of (8,4) polar code with [1, 0, 1, 0] data bits. 21

Figure 2.14 Tanner graph of the H matrix of the (8,4) polar and RM codes. . . . 24

Figure 2.15 Factor graph representation of the H matrix of the (8,4) polar and
RM codes. 25

xv

Figure 2.16 Word error rate of SCL decoding
(reproduced from [Tal and Vardy, 2011]). 26

Figure 2.17 Performance comparison of decoding schemes of polar code and
WiMax LDPC code (reproduced from [Tal and Vardy, 2011]). 27

Figure 3.1 BP decoding diagram (or the factor graph) for an N = 8 code with
n = 3 stages and (n + 1)N = 32 variable nodes (where 6 filled nodes
correspond to the frozen variables of the diagram, 2 of them are generated
by the 4 input frozen bits of the (8,4) code). 30

Figure 3.2 BP process unit (subscripts I and O indicate the input and output,
i shows the stage, j and k show the rows of the diagram, L and R are the
left and right messages, t is the iteration number). 33

Figure 3.3 BP decoding diagram that shows the input and output variables of
each process unit in detail, for an N = 8 code with n = 3 stages. 35

Figure 3.4 Different decoding diagrams for the (8,4) polar code. 37

Figure 3.5 Distribution of 120 diagrams corresponding to the given number
of frozen variables for the (32,16) polar code. 39

Figure 3.6 Frozen variables (shown by 0’s) of the 5 cyclic diagrams for the
(32,16) polar code, corresponding to stage permutations 1-2-3-4-5, 2-3-4-
5-1, 3-4-5-1-2, 4-5-1-2-3 and 5-1-2-3-4 respectively. 40

Figure 3.7 Capacities of 2-1 stage order for a BEC(0.5). 44

Figure 3.8 Capacities of 1-2 stage order for a BEC(0.5). 44

Figure 3.9 Decoded bit erasure probabilities of (32,16) codes over a BEC(ε). . 47

Figure 3.10 Decoded bit erasure probabilities of (128,64) over a BEC(ε) codes. 48

Figure 3.11 Decoded bit erasure probabilities of (512,256) over a BEC(ε) codes. 48

Figure 3.12 Decoded bit erasure probabilities of (32,16), (128,64), (512,256)
codes over a BEC(ε). 48

Figure 3.13 Minimum, maximum and average number of undecoded words for
a (64,32) code over a BEC(0.34375). 54

Figure 3.14 Average number of undecoded words for a (64,32) code versus the
capacity sum over a BEC(0.34375). 55

Figure 3.15 Capacity sums over a BEC(0.34375) versus number of frozen vari-
ables for all stage orders of the (64,32) code. 55

xvi

Figure 3.16 Average capacity sums over a BEC(0.34375) versus number of
frozen variables for all stage orders of the (64,32) code. 56

xvii

LIST OF ABBREVIATIONS

B-DMC Binary-input Discrete Memoryless Channel

BEC(ε) Binary Erasure Channel with Erasure Probability ε

BEP Bit Erasure Probability

BER Bit Error Ratio

BP Belief Propagation

BSC Binary Symmetric Channel

CRC Cyclic Redundancy Check

CS Capacity Sum

FER Frame Error Ratio

FV Frozen variable

LDPC Low Density Parity Check Matrix

MAP Maximum A Posteriori

ML Maximum Likelihood

MPA Message Passing Algorithm

MS Min-Sum

PE Processing Element

RM Reed Muller

SC Successive Cancellation

SCL Successive Cancellation List

SMS Scaled Min-Sum

xviii

CHAPTER 1

INTRODUCTION

The main aim of a communication system is to transmit information from the source

to the destination reliably, through a noisy medium. As clarified in Shannon’s seminal

work [Shannon, 1948], a suitable coding method is required to achieve this purpose,

which adds redundancy to data in a clever way.

For channel coding schemes to approach the Shannon limit, known as the channel

capacity, the block length of the codeword at the encoder output needs to be large. As

computational resources have developed, it becomes feasible to use larger and larger

block lengths to approach the channel capacity. At the same time, corresponding

encoding and decoding algorithms should have low computational complexities for

practical applications.

The first algebraic codes developed were Hamming, Golay [Golay, 1949] and Reed-

Muller ([Reed, 1954], [Muller, 1954]) codes, followed by BCH codes

([Hocquenghem, 1959], [Bose and Ray-Chaudhuri, 1960]) and Reed-Solomon codes

[Reed and Solomon, 1960]. There are efficient decoding algorithms for all these al-

gebraic codes and they are used successfully in today’s CDs, DVDs and modems.

An improvement in performance was achieved with probabilistic decoding of code-

words, i.e., using the channel outputs directly in the decoding algorithm, instead of

giving hard decisions on symbols. Convolutional codes introduced by Elias

[Elias, 1955] were suitable for such decoding; and proposals of efficient but subop-

timum decoding algorithms like Viterbi [Viterbi, 1967] and BCJR [Bahl et al., 1974]

speeded up their practical use.

1

Low density parity-check (LDPC) codes constructed by Gallager [Gallager, 1962] to-

gether with a low-complexity iterative decoding algorithm were very powerful codes,

but this was not realized until 1995 because of the low computational resources

of 60’s. In 1995, MacKay and Neal found some codes having very good perfor-

mance with belief propagation (BP) decoding, based on sparse parity-check matrices

[MacKay and Neal, 1995]. Later, it was understood that these codes were a special

form of LDPC codes and the belief propagation decoding was equivalent to the prob-

abilistic decoding suggested by Gallager in 1962.

Turbo codes introduced by Berrou, Glavieux and Thitimajshima

also achieved performance close to channel capacity, using a decoder with linear

complexity [Berrou and Glavieux, 1996]. They are composed of two concatenated

convolutional codes, with an interleaver between them. Decoding uses the BCJR

algorithm iteratively in two branches, with mutual feedback from one to the other,

to help each other’s decisions. The original turbo code [Berrou and Glavieux, 1996]

performed as well as the best existing schemes of late 90’s, using half as much power.

Turbo codes and LDPC codes were unified under the framework of “codes on graphs”

by Wiberg, Loeliger and Kötter ([Wiberg et al., 1995], [Wiberg, 1996]). Within the

framework of “codes on graph”, their decoding algorithms simply turned out to be

different forms of the same algorithm. This framework also provided a useful bridge

between sparse graph codes and other fields like machine learning, statistical mechan-

ics and computer science [Korada, 2009].

Polar codes are linear block codes introduced by Arıkan that are based on channel

polarization; which consists of combining and splitting N copies of a given binary

channel suitably, so that the capacities of the polarized N new channels approach ei-

ther to 0 or 1 [Arıkan, 2009]. After polarization,K channels with the highest capacity

are used for transmission and the remaining N −K bits are frozen. The choice of the

frozen bits is not universal but it depends on the specific channel at hand.

Arıkan proves that polar codes achieve symmetric channel capacity with low encod-

ing and decoding complexity. He originally suggests the successive cancellation (SC)

decoding algorithm that has the complexity O(N logN) [Arıkan, 2009]. Korada ar-

gues that belief propagation (BP) decoding with the same complexity, O(N logN),

2

applied to polar codes gives better results, and this is expected since SC decoding can

be considered as a particular instance of BP decoding for the BEC [Korada, 2009].

He obtains the performance of the BP decoder as lying roughly half way between that

of the SC decoder and that of the MAP decoder.

On the other hand, the polar code performance close to the ML bound is achieved with

list decoding [Tal and Vardy, 2011] and simulations reveal that the (2048, 1008) polar

code with a 16-bit CRC using a list-of-32 decoder shows very similar performance to

the WiMAX (2304,1152) LDPC code, as shown in Figure 1.1 [Arıkan et al., 2015].

Figure 1.1: Performance comparison of decoding schemes of polar code (solid curves) and WiMax

LDPC code (dashed curve)

(reproduced from [Tal and Vardy, 2011]).

1.1 Belief Propagation Decoding of Polar Codes

Polar codes can be seen as a special case of Reed Muller (RM) codes

[Hussami et al., 2009] and basically, a few of the generator matrix rows differ for

(N,K) polar and RM codes, if N ≥ 32 [Arıkan, 2008]. Forney expressed RM

codes and their Belief Propagation (BP) decoding [Forney Jr, 2001]. Arıkan gave

experimental results on the performance of polar codes with BP decoding, show-

ing that polar codes have better bit error ratio (BER) performance than RM codes;

and the performance difference becomes more visible with increasing block length

[Arıkan, 2008].

3

Hussami, Korada and Urbanke show that the performance of BP decoding is better

than SC decoding [Hussami et al., 2009], and for a BEC(0.5) it lies roughly half way

between the SC and MAP decoders [Korada, 2009]. Korada also considers BP decod-

ing with multiple factor graphs, utilizing log2N parallel paths that are cyclic shifts of

each other. He argues that the performance improves significantly by using multiple

factor graphs, while the decoding complexity that increases linearly with the number

of factor graphs becomes O(N(logN)2) [Korada, 2009].

Eslami and Pishro-Nik investigate the stopping sets and the stopping distance for po-

lar codes under BP decoding. The bigger stopping distance yields to a better error

floor and it is shown in the paper that the stopping distance grows as O(
√
N) for

polar codes [Eslami and Pishro-Nik, 2010]. Although LDPC codes have better BER

performance and smaller encoding/decoding complexities, polar codes have better er-

ror floor. By using this error floor feature of polar codes, BP decoding with a guessing

algorithm is suggested. Usually, whenever the BP decoding algorihm fails, there re-

mains a few undecoded bits, although some of the erasures are filled correctly. In the

guessing algorithm, one of these undecoded bits is chosen and guessed randomly, and

the decoding continues with that guess until the decoding succeeds or reaches to the

maximum number of guesses. The simulation results with a (8192,4096) polar code

show that the guessing algorithm provides a magnitude of 2 improvement for the BEC

and an SNR gain of 0.3 dB for the Gaussian channel [Eslami and Pishro-Nik, 2010].

The girth, which is the shortest cycle in the Tanner graph of the code is also con-

sidered in the same paper. For N = 4 polar codes, the girth is 12 and because

of the recursive construction of larger block lengths from the small ones, all other

sizes of the polar code have the same girth. For LDPC codes 12 is a reasonable

girth size that is aimed at, so one may say that polar codes have a good size of girth

[Eslami and Pishro-Nik, 2010].

Eslami and Pishro-Nik give another method to improve the performance of polar

codes under BP decoding [Eslami and Pishro-Nik, 2013]. In this paper, they offer a

new rule to increase the stopping distance of the polar codes. For a (8192, 4096) po-

lar code, information bits with row weight smaller than 28 are replaced by frozen bits

with row weight larger than 28, starting from the smallest Bhattacharyya parameter.

4

With this new rule, the performance of the SC decoder decreases because the rule

forces the use of channels with smaller capacities. On the contrary, for BP decod-

ing the performance increases since channels with higher stopping distance are used.

Eslami and Pishro-Nik also suggest a concatenated polar - LDPC code to be used in

Optical Transport Networks, polar as the outer and LDPC as the inner code. Decod-

ing is performed with BP decoding for both polar and LDPC codes. This concate-

nated design performs significantly better than some existing coding schemes such as

RS(2720, 2550) and G.975.1 LDPC codes [Eslami and Pishro-Nik, 2013].

Guo, Qin, Fabregas and Siegel propose an enhanced concatenated polar code under

BP decoding [Guo et al., 2014]. As in [Eslami and Pishro-Nik, 2013], they use the

LDPC code as the outer code, and polar code as the inner code. In case of finite

length polar codes, channels don’t polarize perfectly. So, some intermediate channels

are used to transmit data. To prevent errors in these channels, they suggest to use

the good channels for the uncoded data, the bad channels for the frozen bits and

the intermediate channels for the coded data. Thus, these concatenated intermediate

channels become as well as good channels. For an N = 4096 polar code with

SNR = 4 dB, they obtain approximately 0.3 dB improvement in the frame error ratio

(FER).

Conventional BP decoding algorithm is not suitable for hardware implementation.

So, to avoid overflow, min-sum (MS) approximation is used in [Pamuk, 2011], but

this imposes some sacrifice from performance. Yuan and Parhi propose scaled min-

sum (SMS) BP decoding [Yuan and Parhi, 2014a]. By adding a scale like 0.9375, the

SMS algorithm improves the performance about 0.5 dB for a (1024,512) polar code.

Thus, SMS compensates the performance loss of the MS approximation.

Yuan and Parhi propose a hybrid decoding for polar codes, which is a combination

of BP and SC decoding methods [Yuan and Parhi, 2014b]. In the first step, BP de-

coding tries to decode the received word. If BP decoding cannot decode the word

successfully, SC decoding tries to decode the same word. The key part of this hybrid

decoding method is that if BP decoding fails to decode the word after the maximum

given number of iterations, it sends the de-noised word to SC decoding. It means that

the BP decoding algorithm decreases the noise with iterations and the input to the SC

5

decoding becomes less erased. The simulation results show that the hybrid decoding

has a performance advantage around 0.2 dB over BP decoding for all SNR values.

For low SNRs the latency difference is high between BP and hybrid decoders, but as

the SNR increases, the latency difference gets very small and it is reasonable to lose

that much from latency in return for the 0.2 dB performance gain.

Xu, Che and Choi propose an express journey for the BP decoding [Xu et al., 2015].

Their main idea is to simplify the operations by not visiting some variables and using

constituent codes in the factor graph that will not affect the decoding performance.

This idea makes the implementation of low energy decoders possible in hardware.

With this simplified decoding, the number of computations for the (1024,512) polar

code decreases by %60 at Eb/N0 = 3.5 dB. Xu, Che and Choi argue that although the

conventional BP decoders compute the left and right messages simultaneously, they

suggest first to calculate left messages only, while going to the left from the rightmost

to the leftmost of the factor graph; and then right messages only, while going to

the right from the leftmost to the rightmost. So, they define a round iteration as the

combination of all left messages followed by all of the right messages. The number of

computations does not change with this method but the number of iterations required

to decode the word successfully is reduced. For example for Eb/N0 = 3.5 dB and

(N,K) = (1024, 512), the average number of iterations decreases from 24 to 4.

This corresponds to %83 efficiency in the number of computations. By combining

both the simplified algorithm and the idea of round iteration, the average number of

operations for decoding decreases by %90. Simulation results [Xu et al., 2015] show

that the performance is improved significantly and becomes as good as scaled min-

sum (SMS) version of the BP algorithm [Yuan and Parhi, 2014a].

1.2 Aim and Organization of the Thesis

The purpose of this thesis is to examine polar codes, analyze their performance and

compare with Reed-Muller codes over the binary erasure channel (BEC), under belief

propagation (BP) decoding. Performance dependence of polar codes with respect to

parameters like i) the chosen factor graph (diagram), ii) corresponding number of

frozen bits, iii) the depth of frozen bits, iv) sum of capacities for the chosen (unfrozen)

6

input bits are investigated. Additionally, multiple factor graph BP decoding of polar

codes that uses (log2N) parallel paths is compared with the one that uses (log2N)!

parallel paths.

In Chapter 2, polar codes and the concept of channel polarization is reviewed. The en-

coding structure of polar codes, the choice of the generator matrix and frozen bits for

a given binary discrete memoryless channel, and decoding by successive cancellation

& belief propagation is explained.

In Chapter 3, some decoding simulations are presented for the binary erasure chan-

nel (BEC) and compared with similar results from the literature. Simulation results

related to the decoding of Reed-Muller, polar and adaptive polar codes by the BP

decoding algorithm are given. The structure of the implemented BP decoder is ex-

plained with emphasis on its discriminating feature of "to the leftmost with left/to the

rightmost with right messages" as in [Xu et al., 2015]. The choice of a decoding di-

agram that is also called a ‘factor graph’, corresponding frozen variables, the proper

choice for the minimum sufficient number of BP iterations, the correlation between

bit channel capacities and the number of frozen variables are discussed. The perfor-

mance of the BP decoder is found for two extreme versions of the single factor graph

case; and also for multiple factor graph decoding with log2N cyclic diagrams as in

[Korada, 2009], [Hussami et al., 2009], and with all possible (log2N)! diagrams.

Chapter 4 summarizes and discusses the conclusions of this work.

7

8

CHAPTER 2

CHANNEL POLARIZATION

In this chapter, we review the idea of the channel polarization and polar codes pre-

sented by Arıkan [Arıkan, 2009]. First, some basic information about error control

coding is given in Section 2.1. Section 2.2 summarizes how the synthesized channels

polarize after combining and splittingN copies of a binary-input discrete memoryless

channel, as N gets larger. The capacities of the channels synthesized from a binary

erasure channel with erasure probability 0.5 are computed for N = 4. In Section 2.3,

we describe the encoding structure of polar codes, the choice of the generator matrix

and frozen bits for a given binary discrete memoryless channel. Finally in Section

2.4, the successive cancellation (SC) and belief propagation (BP) decoding methods

for polar codes are explained briefly.

2.1 Error Control Coding

Error control coding is a branch of communication that deals with reliable transmis-

sion of information over noisy channels while using power and bandwidth resources

efficiently. Figure 2.1 depicts an extremely simplified model for a binary communi-

cation system, in which the encoder and decoder serve the purpose of error control

coding. The information U is encoded and sent through a binary-input discrete mem-

oryless channel (B-DMC). At the receiver end, it is decoded as Û with the ultimate

purpose that Û = U .

Most of the commonly used codes are linear codes. A linear block code is a subspace

of a vector space; so, any linear combination of its elements (codewords) is also a

9

Figure 2.1: Basic block diagram of a binary communication system.

codeword. K symbols (bits for binary codes) of information are mapped onto a vector

of length N , where K < N , to obtain an (N,K) linear code with rate, R = K/N .

For an (N,K) code, the number of redundant symbols is N −K. One is interested

in the minimum amount of redundancy (or maximum R) that can achieve error-free

communications.

Claude E. Shannon’s Capacity Theorem [Shannon, 1948] states that error-free trans-

mission is possible as long as the transmitter does not exceed the channel’s capacity

C; i.e., if R ≤ C, the probability of error can reach 0 as N goes to infinity.

Figure 2.2: Binary Discrete Memoryless Channel (B-DMC).

Considering the binary discrete memoryless channel W : X → Y in Figure 2.2,

where X = {0, 1} is the input, Y is the output and W (y|x) is the channel transition

probability for x ∈ X and y ∈ Y , the symmetric capacity of the B-DMC is

I(W) ,
1

2

∑
y∈Y

∑
x∈X

W (y|x)log
W (y|x)

1
2
W (y|0) + 1

2
W (y|1)

. (2.1)

Another important parameter for a B-DMC is measure of reliability Z(W) (2.2),

called as the Bhattacharyya parameter . Z(W) is an upper bound for the probability

of maximum likelihood (ML) decision error [Arıkan, 2009].

Z(W) ,
∑
y∈Y

√
W (y|0)W (y|1) (2.2)

10

Two of the most common and simple binary discrete memoryless channel models

used in coding and information theory are the binary erasure channel (BEC) and the

binary symmetric channel (BSC), which are given in Figure 2.3. For the binary era-

sure channel, each information bit is transmitted either correctly with probability 1−ε
or erased with probability ε. It is not possible to receive 1 while the information is

0 or vice versa. Such a channel with probability ε is abbreviated as BEC(ε). The

channel capacity (C) of the BEC(ε) is 1 − ε. On the other hand, the binary symmet-

ric channel transmit each information bit either correctly with probability 1 − p or

incorrectly with probability p. The channel capacity of the BSC is 1 − H(p), where

H(p) = −plogp− (1− p)log(1− p) is the binary entropy function.

Figure 2.3: Binary Erasure Channel (BEC) and Binary Symmetric Channel (BSC).

2.2 Channel Polarization

The main idea of the channel polarization is to construct N binary-input channels

(W
(i)
N : 1 ≤ i ≤ N) out of N independent binary-input discrete memoryless channels

W, such that as N goes large, the newly constructed channels polarize, i.e., the channel

capacity of each channel goes to extremes, either to 0 or 1. There are two phases for

channel polarization, i) channel combining and ii) channel splitting.

i) Channel Combining

In this phase, N copies of binary-input discrete memoryless channel W, are combined

recursively to produce a vector channel called WN , where N is the code length. As

seen in Figure 2.4, N independent channels are transformed into a channel with N

inputs and N outputs.

11

Figure 2.4: Channel combining.

In Figure 2.5, two independent B-DMC’s W are combined to create a new vector

channel of size 2, W2 : X 2 → Y2. This is the basic transformation used in channel

combining, and the recursion starts with this transformation.

Figure 2.5: The basic transformation of channel combining.

The transition probability of the vector channel W2 is

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2)W (y2|u2). (2.3)

The linear transform between vector U = (U1, U2) and X = (X1, X2) is a one-to-one

mapping, and if we take Ui’s as identically independent distributed (iid) then Xi’s are

also iid. So the following equation holds:

12

I(W2) = I(U1, U2;Y1, Y2) = I(X1, X2;Y1, Y2)

= I(X1;Y1) + I(X2;Y2) = 2I(W)
(2.4)

It is clear from (2.4) that, there is no loss in total channel capacity.

As mentioned before, channel combining is done recursively and the recursion starts

as shown in 2.5. In the second step of the recursion, 4-input, 4-output channel W4 is

combined by using 2 independent W2 channels as indicated in Figure 2.6.

Figure 2.6: 4- input, 4-output W4 channel.

The transition probability of this vector channel is

W4(y
4|u4) = W (y1|u1 ⊕ u2⊕ u3⊕ u4)W (y2|u3 ⊕ u4)W (y3|u2 ⊕ u4)W (y4|u4)

= W2(y1, y2|u1 ⊕ u2, u3 ⊕ u4)W2(y3, y4|u2, u4).

(2.5)

Channel combining of N input vector channel WN : XN → YN is done recursively

in log2N steps and the transition probability is given as

WN(y
N |uN) = WN/2(y

N/2|uNo ⊕ uNe)WN/2(y
N
N/2+1|uNe), (2.6)

where uNo = {u1, u3, u5, ..., uN−1} and uNe = {u2, u4, u6, ..., uN}. More details about

channel combining can be found in [Arıkan, 2009].

13

ii) Channel Splitting

In the second phase of the channel polarization, the vector channel that is combined

fromN manyW ’s as explained in the previous section is split intoN binary channels

as seen in Figure 2.7. After this phase, polarized channels W (i)
N are obtained.

Figure 2.7: Channel splitting.

Channel splitting can be explained starting from the basic transformation given in

Figure 2.5. There are 2 inputs, U1 and U2, so there will be 2 binary channels after

splitting. The mutual information of W2 channel is I(U1, U2;Y1, Y2), and by using

the chain rule of mutual information it can be split into two terms as

2I(W) = I(U1, U2;Y1, Y2) = I(U1;Y1, Y2) + I(U2;Y1, Y2, U1). (2.7)

One can define a channel with the input U1 and the outputs Y1, Y2, while considering

U2 as random. The mutual information of this channel is I(U1;Y1, Y2)), the first term

on the right hand side of (2.7). The corresponding channel is W (1)
2 : X → Y2, given

in Figure 2.8, which is called W−. The transition probability of this channel is

W
(1)
2 (y1, y2|u1) =

1

2

∑
u2∈{0,1}

W (y1|u1 ⊕ u2)W (y2|u2). (2.8)

Another channel to be defined takes U2 as the input and Y1, Y2, U1 as the outputs. The

mutual information of this channel is I(U1;Y1, Y2, U1), that is the last term of (2.7).

14

Figure 2.8: W− channel after splitting.

The corresponding channel is W (2)
2 : X → Y2 × X , which is also called W+ 2.9.

The transition probability of this channel is given by

W
(2)
2 (y1, y2, u1|u2) =

1

2
W (y1|u1 ⊕ u2)W (y2|u2). (2.9)

Figure 2.9: W+ channel after splitting.

The mutual information of W+ channel can be written as

I(W+) = I(U2;Y1, Y2, U1) = H(U2)−H(U2|Y1, Y2, U1)

≥ H(U2)−H(U2|Y2) = I(U2;Y2) = I(W).
(2.10)

Using (2.7) and (2.10), one concludes that

I(W−) ≤ I(W) ≤ I(W+), (2.11)

15

with equality if and only if I(W) is at the extremes, 0 or 1.

It can be seen that, I(W−) and I(W+) are pushed to the extremes 0 and 1 while their

sum is still 2I(W). Polarizing starts at this point.

For N = 4, channel splitting can be seen graphically in Figure 2.10, where the same

thing for N = 2 is simply repeated. There are two W− and two W+ channels after

the first splitting. Two W− channels are split into W−− and W−+, and two W+

channels are split into W+− and W++ channels.

(a) Original N = 4 channel.

(b) First step of splitting. (c) Second step of splitting.

Figure 2.10: Channel splitting for N = 4.

In general, N binary input channels are split by using the chain rule of mutual infor-

mation

NI(W) = I(XN ;Y N)

= I(UN ;Y N)

=
N∑
i=1

I(Ui;Y
N , U i−1)

. (2.12)

These N channels are represented by W (i)
N : U → YN × U i−1, 1 ≤ i ≤ N . The

16

transition probabilities of these channels

W
(i)
N (yN1 , u

i−1
1 |ui) ,

∑
uNi+1∈XN−i

1

2N−1
WN(y

N
1 |uN1), (2.13)

where ui is the input and (yN1 , u
i−1
1) is the outputs of the W (i)

N channel.

Synthesized Channel Capacities After Combining and Splitting of a BEC

Now, we will show the computation of the synthesized channel capacities for a BEC,

W, with erasure probability ε = 0.5. First the capacities of W− and W+ will be

calculated. For the channel W− depicted in Figure 2.8, u1 = x1 + x2. Hence, to

estimate u1, both x1 and x2 are needed, they must not be erasures. So the erasure

probability of this channel is ε− = 1 − (1 − ε)2. For the channel W+ shown in

Figure 2.9, there are 2 observations, u2 = x2 and u2 = x1 + u1. To estimate u2,

only one of these observations is enough, and we assume that u1 is known from

the channel W−. So the erasure probability of the channel W+ is ε+ = ε2. For

ε = 0.5, ε− = 0.75 and ε− = 0.25.

To calculate the erasure probabilities of W−−,W−+,W+−,W++, we use the erasure

probabilities of W− and W+ found in the previous step. The erasure probability of

W−− is ε−− = 1 − (1 − ε−)2, the erasure probability of W−+ is ε−+ = (ε−)2, the

erasure probability of W+− is ε+− = 1 − (1 − ε+)2, and the erasure probability of

W++ is ε++ = (ε+)2. Hence erasure probabilities for ε = 0.5 are computed as

ε−− = 0.9375

ε−+ = 0.5625

ε+− = 0.4375

ε++ = 0.0625

.

For a BEC, W, with erasure probability ε, which is abbreviated as BEC(ε), the capacity

is I(W) = 1 − ε, so the capacities of the channels for N = 4, corresponding to the

erasure probabilities computed above are

17

I(W−−) = 0.0625

I(W−+) = 0.4375

I(W+−) = 0.5625

I(W++) = 0.9375

.

In Figure 2.11, capacities of the channels synthesized from a BEC(0.5) are calculated

for N = 32, 128, 512, 2048. One can see that as N grows large, the capacities of

channels reach to the extremes and the fraction of channels with average capacity

gets smaller. As N goes to infinity, the fraction of good channels and bad channels

will both be equal to 0.5 (since ε = 1 − ε = 0.5). The following theorem that

explains the behavior in Figure 2.11 is given by Arıkan and proven in the related

paper [Arıkan, 2009].

Theorem 1 For any B-DMC, while N goes to infinity, the synthesized channels po-

larize such that for any δ ∈ (0, 1), we have

lim
N→∞

Number of channels with I(W (i)
N)∈(1−δ,1]

N
= I(W) and

lim
N→∞

Number of channels with I(W (i)
N)∈[0,δ)

N
= 1− I(W).

This implies that as N goes to infinity, the capacity of each channel goes to either 0

or 1 precisely, and the fraction of channels with good capacity is I(W).

2.3 Polar Encoding

Polar codes are linear block codes, such that any linear combination of its codewords

is also a codeword. The main idea of polar coding is to send data over the W (i)
N

channels with I(W (i)
N) tending to 1, and freeze theW (i)

N channels with I(W (i)
N) is tend

to 0. Channel inputs satisfy

xN1 = uN1 F
⊗n, (2.14)

18

(a) N = 32 (b) N = 128

(c) N = 512 (d) N = 2048

Figure 2.11: Capacities of polarized channels for N = 32, 128, 512, 2048 over a BEC(0.5).

where n = log2N and F⊗n is the nth Kronecker power of F =
(
1 0
1 1

)
. The receiver

also knows which one of the W (i)
N channels are used for information bits and which

W
(i)
N channels are frozen.

Kronecker Power

nth Kronecker power of F is calculated according to formula F⊗n = F⊗n−1 ⊗ F .

Hence, with F =
(
1 0
1 1

)
for n = 2 one obtains

F⊗2 =

 F 0

F F

 =

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

 .

19

By using F⊗2 we find

F⊗3 =

 F⊗2 0

F⊗2 F⊗2

 =

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

.

Choosing the Information Bits

After channel combining and splitting operations, one obtains N channels with dif-

ferent capacities. To approach the Shannon capacity for large N , one must send data

over the channels with high capacity, and send frozen bits over those with low capac-

ity. To put it briefly, in order to design an (N,K) polar code for a given B-DMC,

one first needs to calculate the capacities of N binary channels synthesized from that

B-DMC, and order them according to their capacities. Then, the K channels with the

highest capacities are used to send data, i = [i1, i2, ..., iK], and the remaining N −K
channels are used to send frozen bits, known both by the sender and the receiver.

Generally these frozen bits are the 0 vector, f = [0, 0, ..., 0](N−K).

Usually, the erasure probability ε of the original binary erasure channel W is unknown

and set to 0.5. On the other hand, if a B-DMC W has known parameters (for instance

if the erasure probability ε of a BEC is known), the ranking of the computed capacities

may change. The corresponding code is called an adaptive polar code [Arıkan, 2008].

In order to explain the choice of the information and frozen bits of polar codes by

an example, we consider an (N,K) = (8, 4) polar code, which has 4 informa-

tion bits and 4 frozen bits. We first calculate the capacity of each channel synthe-

sized from a BEC(0.5) in a recursive manner starting with N = 2, and proceed-

ing with N = 4 and 8. In Figure 2.12, the capacities of bit channels are given

for a BEC(0.5). Secondly channels are sorted in descending order of capacities as

20

[U8, U7, U6, U4, U5, U3, U2, U1]. Hence data bits are sent from [U8, U7, U6, U4] and the

inputs corresponding to [U5, U3, U2, U1] are frozen.

Figure 2.12: Channel capacities for N = 8 over a BEC(0.5).

In Figure 2.13, considering a specific input, information bits [1, 0, 1, 0] are placed to

[U4, U6, U7, U8], and frozen bits [0, 0, 0, 0] to [U5, U3, U2, U1]. The input of the factor

graph becomes [0, 0, 0, 1, 0, 0, 1, 0]; N node values are found at each stage and finally,

N values of the codeword are computed at the output of the (log2N)th stage. So, the

complexity of encoding is N log2N .

Figure 2.13: Encoding of (8,4) polar code with [1, 0, 1, 0] data bits.

Interestingly, the (8,4) polar code designed for a BEC(0.5) is exactly the same as

the (8,4) Reed-Muller (RM) code. Moreover, for N = 8, the choice of frozen bits

remains the same for all erasure probabilities of the original channel W as can be

21

observed in Table 2.1 that tabulates the capacities of N = 8 channels synthesized

from a BEC(ε) for different values of ε. The equivalence between the polar and the

RM codes is also observed for N = 16. Difference in generator matrices starts for

higher blocklengths, such as the (32,16) codes, where the polar code replaces one of

the weight-8 basis vectors of the RM code by a weight-4 basis vector [Arıkan, 2008].

Table 2.1: Capacities of 8 channels synthesized from a BEC(ε) for N = 8.

Synthesized
channnel

ε=0.1 ε=0.2 ε=0.3 ε=0.4 ε=0.5 ε=0.6 ε=0.7 ε=0.8 ε=0.9

W−−− 0.43 0.17 0.06 0.02 0.00 0.00 0.00 0.00 0.00
W+−− 0.96 0.85 0.69 0.50 0.32 0.17 0.07 0.02 0.00
W−+− 0.93 0.76 0.55 0.35 0.19 0.09 0.03 0.01 0.00
W++− 1.00 1.00 0.98 0.95 0.88 0.76 0.58 0.35 0.12
W−−+ 0.88 0.65 0.42 0.24 0.12 0.05 0.02 0.00 0.00
W+−+ 1.00 0.99 0.97 0.91 0.81 0.65 0.45 0.24 0.07
W−++ 1.00 0.98 0.93 0.83 0.68 0.50 0.31 0.15 0.04
W+++ 1.00 1.00 1.00 1.00 1.00 0.98 0.94 0.83 0.57

2.4 Polar Code Decoding

There are several decoding methods for polar codes. ML decoding is the optimum

but it has very high computational complexity for large block lengths. Suboptimum

decoding methods are preferred in practice, whenever they have low complexities.

Iterative structure of the polar encoding diagram is also suitable for the implementa-

tion of low complexity decoders. Arıkan proposes the successive cancellation (SC)

decoding [Arıkan, 2009] for the polar codes.

Successive Cancellation Decoding

SC decoding is performed successively starting from u1 to uN . If ui is frozen then

there is nothing to compute. One fixes ûi to the frozen value, which is known by both

the sender and the receiver. Otherwise if ui is the information bit, one calculates the

following log likelihood ratio:

L
(i)
N (yN , ûi−1) = log

W
(i)
N (yN , ûi−1|0)

W
(i)
N (yN , ûi−1|1)

(2.15)

22

If the log likelihood ratio (2.15) is larger than zero ûi is estimated as 0, otherwise it is

estimated as 1.

ûi =

0 if L(i)
N ≥ 0

1 otherwise
(2.16)

As the encoding procedure, decoding is also recursive. To calculate LN values, LN/2

values are used. Recursion starts with L1, and that can be computed directly. More

detailed formulas for computing LN log likelihood ratios are

L
(2i−1)
N (yN , û2i−2) =

1 + L
(i)
N/2(y

N/2, û2i−2o ⊕ û2i−2e)L
(i)
N/2(y

N/2
N/2+1, û

2i−2
e)

L
(i)
N/2(y

N/2, û2i−2o ⊕ û2i−2e) + L
(i)
N/2(y

N/2
N/2+1, û

2i−2
e)

L
(2i)
N (yN , û2i) = L

(i)
N/2(y

N/2, û2i−2o ⊕ û2i−2e)1−2û2i−1L
(i)
N/2(y

N/2
N/2+1, û

2i−2
e)

. (2.17)

Let C(N) denote the complexity of the decoder for a length-N polar code. The N th

log likelihood ratio LN is computed by using 2 LN/2 log likelihood ratios with O(N)

computation complexity. Thus, the complexity of a length-N polar code is

C(N) = O(N) + 2C(N/2). (2.18)

This equation implies C(N) is of O(N logN) complexity for successive cancellation

decoding.

Belief Propagation Decoding

Polar codes can be seen as a generalization of Reed Muller (RM) codes

[Hussami et al., 2009]. The BP decoding algorithm, also known as the sum prod-

uct message passing algorithm [Pearl, 1988] can be used for RM codes by using the

factor graphs proposed by Forney [Forney Jr, 2001], and it can be applied to polar

codes as well.

23

Arıkan used the BP decoding to show the performance advantage of polar codes over

the RM codes [Arıkan, 2009]. Korada indicated that the performance of the BP de-

coding for polar codes is halfway between the MAP and SC decoding algorithms

[Korada, 2009]. As the SC decoding, the complexity of the BP decoding is also

O(N logN).

Belief propagation is a message passing algorithm (MPA) that is performed on graph-

ical representations. To explain by an example, we consider the parity check matrix

of the (8,4) polar and RM codes given as

H =

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

 .

The corresponding Tanner graph of the H matrix is given in Figure 2.14. Tanner

graph provides a representation of the H matrix and it is used for decoding. Tanner

graph is a bi-partite graph, with two types of nodes; variable nodes, shown in Figure

2.14 as ci and check nodes, shown as fi.

Figure 2.14: Tanner graph of the H matrix of the (8,4) polar and RM codes.

In the first step, all variable nodes send a message to the neighbor check nodes, The

message is the belief of the variable node’s being 1 or 0. In the second step, all check

nodes send their response messages to each of their neighbor variable nodes. These

messages are calculated by using the messages that are received from the neighbor

variable nodes. In the third step, variable nodes calculate their messages that will be

sent to check nodes by using the received messages from the neighbor check nodes.

24

Also all variable nodes update their estimated values by using the received messages.

If the estimated word satisfies the parity check equation, cHT = 0, or the maximum

number of iterations is performed, the algorithm is terminated; otherwise it goes back

to second step.

For polar codes, there is a short cycle of size 4 (so the girth is 4) in this Tanner

graph representation, corresponding to the path c1 → f1 → c2 → f2 → c1. These

short cycles are not desired since they degrade the decoding performance. Also high

density parity check matrices with many 1’s do not work for this algorithm. For f4

in Figure 2.14, there are 8 neighbor variable nodes, so if more than one of them are

incorrect, the decoding is prone to failure. Because of such reasons BP decoding of

polar codes with this kind of representation is not convenient.

A suitable factor graph for BP decoding is the one proposed by Arıkan [Arıkan, 2009]

and shown in Figure 2.15. This diagram is used for both encoding and decoding of

polar codes.

Figure 2.15: Factor graph representation of the H matrix of the (8,4) polar and RM codes.

With this representation one step message passing is divided into many stages. As

explained above, messages are sent between neighbor nodes. With this representation,

the number of variable nodes that are connected to each check node is decreased

significantly. Every check node has 2 or 3 neighbor variable nodes. Another problem

that is encountered for the Tanner graph representation is the size of the minimum

cycle, whics is increased from 4 to 12 [Eslami and Pishro-Nik, 2010], by means of

the factor graph with log2N stages.

25

More details about the belief propagation decoding algorithm that we implement is

given in Chapter 3.

Successive Cancellation List Decoding

Successive cancellation list (SCL) decoding [Tal and Vardy, 2011] is a generalization

of SC decoding that is proposed by Tal and Vardy. The main idea of list decoding is

to keep L (list size) decoding paths at each stage and to select the most likely word

from the list as output. As L increases, the performance improves but the complexity

of this decoding becomes O(LN logN).

In Figure 2.16, the performance of the (2048,1024) polar code for each L value is

given. Even for moderate L values, the performance is observed to approach to the

ML bound.

Figure 2.16: Word error rate of SCL decoding

(reproduced from [Tal and Vardy, 2011]).

It is also possible to do better than this improvement with a small change on the polar

code, while losing a small amount from rate. Tal and Vardy [Tal and Vardy, 2011]

propose to add a genie while choosing the word from the list. For an (N,K) polar

code there are K information bits. In the proposed method K−R of them is used for

data bits and R of them is used for the R-bit cyclic redundancy check (CRC) value

of data bits. Before choosing the word from the list, if there is at least one path with

a valid CRC, all other paths which have invalid CRC’s are eliminated, and the choice

26

is done on the remaining paths. If none of the paths has a correct CRC, most likely

path is picked while it is known that at least one bit is incorrect.

In Figure 2.17 (or in Figure 1.1), which we reproduce from [Tal and Vardy, 2011], the

performance comparison of the original polar code, different list decoding methods

and WiMax LDPC code is given. As can be seen, the performance improves fascinat-

ingly with a small loss in the rate caused by the CRC. The list size L = 32 and the

CRC is 16 bits long in Figure 2.17.

Figure 2.17: Performance comparison of decoding schemes of polar code and WiMax LDPC code

(reproduced from [Tal and Vardy, 2011]).

27

28

CHAPTER 3

SIMULATION RESULTS

In this chapter, we present our simulation results related to the decoding of

Reed-Muller, polar and adaptive polar codes by the belief propagation (BP) decoding

algorithm. In Section 3.1, we describe the structure of the BP decoder that we im-

plement, with emphasis on its discriminating feature of ‘to the leftmost with left/to

the rightmost with right messages’. We discuss the choice of a decoding diagram

that is also called a ‘factor graph’. In Section 3.2 we consider different factor graphs

(diagrams) for the same code, together with the corresponding frozen variables. Sec-

tion 3.3, discusses the choice of a proper value for the minimum sufficient number

of iterations for the BP decoding of polar codes and Section 3.4 explains the corre-

lation between bit channel capacities and the number of frozen variables. In Section

3.5, we compare the performance of the BP decoder for two extreme versions of the

factor graphs. We then investigate in Section 3.6, how the performance of the BP de-

coding algorithm is affected when multiple factor graph decoding is utilized instead

of a single factor graph, by simulating multiple factor graph decoding either with

log2N cyclic diagrams as in [Korada, 2009], [Hussami et al., 2009], or with all possi-

ble (log2N)! diagrams. We also consider two choices of multiple factor graph sets: 1)

with respect to the decreasing capacity sums (CS) of the information bit channels, 2)

a genie-aided subset of the first set. In Section 3.7, we discuss the dependence of the

performance on the number of frozen variables and capacity sums. Finally in Section

3.8, we present a brief comparison between the (128,64) RM and polar codes.

29

3.1 Description of the Decoding Structure Used in Simulations

In each simulation, after generating K random information bits and the corresponding

codeword of size N for the given code, we pass the codeword through an erasure

channel; i.e., erase each bit with a given erasure probability ε. K bits are generated

randomly as 0 or 1. The N -bit codeword is the product of K bits and the generator

matrix. The generated codeword is passed through a BEC(ε), by erasing or keeping

each bit after comparing a random number uniformly distributed between 0 and 1

with the required erasure probability ε. If this random number is smaller than ε, the

corresponding bit is erased.

We perform decoding on a diagram that consists of n = log2N cascaded stages as

shown in Figure 3.1 for n = 3, N = 8. Each stage of the diagram has N input and

N output variable nodes, where the output of the ith stage is the input of the (i + 1)th

stage. Hence, the number of all variable nodes is equal to (n + 1)N and operations

among variable nodes are performed at nN check nodes.

Figure 3.1: BP decoding diagram (or the factor graph) for an N = 8 code with n = 3 stages and

(n+ 1)N = 32 variable nodes (where 6 filled nodes correspond to the frozen variables of the

diagram, 2 of them are generated by the 4 input frozen bits of the (8,4) code).

Choosing a Diagram and Its Frozen Bits

For an (N,K) code withN = 2n, there are n! different valid diagrams. Each diagram

that consists of n stages may have a different number of frozen variables, derived from

30

the frozen bits at the input of the diagram.

After choosing a diagram corresponding to the given code, one should decide which

of the input nodes are the information bits. The remaining bits are called frozen bits.

Frozen bits of polar codes are chosen according to Arıkan’s rule given by (3.1) and

(3.2). The generator matrixGP (N,K) consists of rows chosen from F⊗n, where F⊗n

is the nth Kronecker power of F =
(
1 1
1 0

)
. The rows are chosen as follows:

(a) Calculate the zN = (z(N,1), z(N,2), ..., z(N,N)) vector according to:

z2k,j =

2zk,j − z2k,j if 1 ≤ j ≤ k

z2k,j−k if k + 1 ≤ j ≤ 2k
where z1,1 = 1/2 (3.1)

(b) Form a permutation

πN = (i1, i2, ..., iN) where zN,ij ≤ zN,ik ∀j < k (3.2)

(c) The rows of the generator matrix GP (N,K) are picked from the rows of F⊗n

with indices i1, i2, ...iK . Remaining rows of F⊗n correspond to the frozen bits.

3.1.1 Belief Propagation Decoding Algorithm

The belief propagation (BP) decoding algorithm that we have used in the simulations

can be summarized by 6 steps. Xu, Che and Choi interpret the 3rd and 4th steps

of the algorithm in the way that we do [Xu et al., 2015], and they claim that this

interpretation differs from the common version of the algorithm in the 3rd and 4th

steps. In our realization that is the same as the one in [Xu et al., 2015], each iteration

starting from the output nodes, first proceeds to the leftmost of the factor graph only

with left messages and then to the rightmost of the graph only with right messages,

rather than simultaneously computing the left and right messages at each stage and

then moving to the adjacent stage. The algorithm is composed of the following 6

steps:

1. Find the frozen variable nodes affected by frozen bits (the set of frozen vari-

able nodes cover all frozen bits at the input and additional nodes at succeeding

31

stages). Assign 0 to all frozen variables and 0.5 to all remaining variable nodes

of the diagram.

2. Set the output variable nodes of the last stage using 0’s or 1’s of the received

word, and fill in 0.5 for erasures.

3. Shift messages (variable node values) starting from the rightmost of the dia-

gram to the leftmost; i.e., from the output of the last stage to the input of the

first stage,

4. Shift messages from left to right; i.e., from the input of the first stage to the

output of the last stage.

5. If there is still an erasure at the output variable nodes, return to Step 3 until

the received word is successfully reached at the rightmost variable set, or the

maximum number of iterations are performed.

6. Stop.

Each step of the decoding algorithm can be further explained as follows:

Steps 1&2 - Frozen Variables & Setting the Received Word

A frozen variable is assigned to the value of 0 and remains as 0 till the end of the

algorithm (observe the filled nodes in Figure 3.1). Figure 3.2 depicts a process unit

(that is a detailed version of the z-shaped units in Figure 3.1 for n = 1, N = 2) of

the BP algorithm, where variable nodes and check nodes are denoted by circles and

rectangles respectively. The j th and kth output variables vO(i, j) and vO(i, k) of the

process unit shown in Figure 3.2 can be frozen or not depending on the following four

states of the j th and kth input variables vI(i, j) and vI(i, k).

(a) If vI(i, j) and vI(i, k) are frozen, then vO(i, j) and vO(i, k) are frozen.

(b) If only vI(i, k) is frozen, then only vO(i, k) is frozen.

(c) If only vI(i, j) is frozen, then none of vO(i, j) and vO(i, k) is frozen.

32

(d) If none of vI(i, j) and vI(i, k) is frozen, then none of vO(i, j) and vO(i, k) is

frozen.

Figure 3.2: BP process unit (subscripts I and O indicate the input and output, i shows the stage, j and

k show the rows of the diagram, L and R are the left and right messages, t is the iteration number).

0’s and 1’s of the received word are set to the rightmost variable nodes, with 1/2’s for

erasures.

Steps 3&4 – Shifting Messages from Right to Left & from Left to Right

Calling px(0) the probability that x equals 0, and px(1), the probability that x equals 1;

in the description of operations going towards the left side of the diagram,

px(0) = Lv(0) and px(1) = Lv(1); and the operations proceeding towards the right

side of the diagram use the notation px(0) = Rv(0) and px(1) = Rv(1). Natu-

rally, all these probabilities satisfy px(0) + px(1) = 1, Lv(0) + Lv(1) = 1 and

Rv(0) +Rv(1) = 1.

Two operations ⊗ and � between two probabilities are defined as:

(px ⊗ py)(0) = px(0)py(0) + px(1)py(1)

(px ⊗ py)(1) = px(0)py(1) + px(1)py(0)

(px � py)(0) = px(0)py(0)

(px � py)(1) = px(1)py(1)

(3.3)

Denoting the present and past values of the variable nodes by the superscripts t and

33

t − 1 respectively, operations on the BP process unit in Figure 3.2 towards left are

defined by

LtvI(i,j) = Lt−1vO(i,j) ⊗ [Lt−1vO(i,k) �R
t−1
vI(i,k)

]

LtvI(i,k) = [Rt−1
vI(i,j)

⊗ Lt−1vO(i,j)]� L
t−1
vO(i,k)

(3.4)

and those towards right are defined by:

Rt
vO(i,j) = Rt−1

vI(i,j)
⊗ [Lt−1vO(i,k) �R

t−1
vI(i,k)

]

Rt
vO(i,k) = [Rt−1

vI(i,j)
⊗ Lt−1vO(i,j)]�R

t−1
vI(i,k)

(3.5)

As the decoding starts, the received word is assigned to vO(n, j), j = 1, ..., N , shown

in Figure 3.3 (sketched for N = 8 and n = 3). Then left messages sent from vO(n, j)

to check nodes are calculated. For a BEC, the received bit, rw(i), is either 0, 1 or an

erased bit E. Corresponding initial probabilities are taken as:

L0
vO(n,j) =

0 if rw(i) = 1

1 if rw(i) = 0

0.5 if rw(i) = E

(3.6)

Iterations start by going from the rightmost to the leftmost variables and using (3.4),

then proceed by going from the leftmost to the rightmost variables and using (3.5). In

the first iteration there are plenty of unknown variable messages, L0
v∗(i,j)

and R0
v∗(i,j)

,

and they are all taken as 0.5.

Frozen variables in the factor graph both speed up and fasten belief propagation de-

coding. While the number of frozen variables increases, the number of the decoding

complexity decreases; because there are less sum and product operations while cal-

culating the frozen variables.

The following equations (3.7), (3.8) and (3.9) can be used according to if vI(i, j) or

vI(i, k) variables, that are given in Figure 3.2, are frozen.

34

Figure 3.3: BP decoding diagram that shows the input and output variables of each process unit in

detail, for an N = 8 code with n = 3 stages.

If vI(i, j) and vI(i, k) are both frozen:

LtvI(i,j)(1) = 0 and LtvI(i,j)(0) = 1

LtvI(i,k)(1) = 0 and LtvI(i,k)(0) = 1

Rt
vO(i,j)(1) = 0 and Rt

vO(i,j)(0) = 1

Rt
vO(i,k)(1) = 0 and Rt

vO(i,k)(0) = 1

(3.7)

If only vI(i+ 1, j) is frozen:

LtvI(i,j) = Lt−1vO(i,j)

LtvI(i,k)(1) = 0 and LtvI(i,k)(0) = 1

Rt
vO(i,j) = Rt−1

vI(i,j)

Rt
vO(i,k)(1) = 0 and Rt

vO(i,k)(0) = 1

(3.8)

35

If only vI(i, j) is frozen:

LtvI(i,j)(1) = 0 and LtvI(i,j)(0) = 1

LtvI(i,k) = Lt−1vO(i,j)L
t−1
vO(i,k)

Rt
vO(i,j) = Lt−1vO(i,k)R

t−1
vI(i,k)

Rt
vO(i,k) = Lt−1vO(i,j)R

t−1
vI(i,k)

(3.9)

We will discuss in Section 3.7 that the number of frozen bits may have a significant

effect also on the performance.

After each round iteration, which is composed of steps 3&4 in the BP decoding algo-

rithm, with our interpretation that to the leftmost with only left messages and to the

rightmost with only right messages, one arrives at vO(n, j) variables for j = 1, . . . , N .

These N variables form the decoded word at each iteration and it is checked to find

out if there remains any erasures. If all erasures are filled with 0’s and 1’s and one

obtains a codeword, decoding is finished. Sometimes a codeword cannot be obtained

until the given maximum number of iterations are performed.

Simulations for determining the minimum sufficient number of round iterations are

discussed in Section 3.3.

3.2 Decoder Structure and the Number of Frozen Variables for the BP Decod-

ing Algorithm

BP decoding algorithm for an (N,K) code can be implemented by using the BP pro-

cess unit depicted in Figure 3.2 in different decoder structures. There are n = log2N

stages, and by changing the order of stages, one can form n! different diagrams.

In Figure 3.4, we depict 3 of the 3! = 6 possible factor graphs for a (8,4) polar code,

and also indicate the corresponding frozen variables. Noting that Stage 1 in part (a)

has adders for adjacent bits and Stage 3 has adders for the most distant bits, we call

the corresponding regular decoder structure “1-2-3”; and name the permuted graphs

in parts (b) and (c) as “2-3-1” and “3-1-2” respectively.

36

(a) “1-2-3” diagram.

(b) “2-3-1” diagram. (c) “3-1-2” diagram.

Figure 3.4: Different decoding diagrams for the (8,4) polar code.

The frozen bits at the input are the same for all permutations; however, the frozen

variables that they affect within the diagram are different as shown by filled dots in

Figure 3.4. Since the frozen bits at the input stage are kept fixed, the total capacity of

N channels differs from one diagram to another, and the decoder performance varies

as will be discussed in Section 3.5.

In order to demonstrate the position and the number of the frozen variables more effi-

ciently for larger values of N , we generate Table 3.1 that shows all initial node values

of the factor graphs given in Figure 3.4 (and additionally, those of the remaining 3

graphs), where 0’s indicate the frozen variables and 1’s are used for the unfrozen bits.

Each diagram is displayed by four columns, where the first column indicates the input

and the fourth column shows the output variables. It can be seen in Figure 3.4 and

Table 3.1 that the number of frozen variables is 6 and it remains the same for all 6

graphs of the (8,4) codes. However, as N increases, the number of frozen variables

37

does not remain constant over possible factor graphs.

Table 3.1: An alternative way of displaying the frozen bits (0’s in the table) corresponding to all
factor graphs of the (8,4) polar code.

1-2-3 2-3-1 3-1-2
0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 0 1 1 1 0 1 1 1
0 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1-3-2 2-1-3 3-2-1
0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 0 1 1 1 0 1 1 1
0 1 1 1 0 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 0 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

For instance, considering the (32,16) polar code, there are n = 5 stages, so one can

form 5! = 120 different diagrams. Using the same definition for stages (i.e.; Stage 1

has adders for adjacent nodes, Stage 5 has adders for the most distant nodes), we have

arbitrarily chosen the reference diagram as “5-4-3-2-1”, and adjusted the input frozen

bits with respect to this reference diagram. In accordance with Korada’s multiple

factor graph decoding idea [Hussami et al., 2009], we have tried every permutation

and found the number of frozen variables for each of the 120 diagrams, by keeping

the 16 frozen bits at the input fixed. In Figure 3.5 we plot the distribution of the

120 diagrams for the (32,16) polar code versus the number of frozen variables; i.e.,

the number of diagrams corresponding to each possible number of frozen variables,

which is found to vary between 24 and 44 in steps of 4.

Figure 3.5 shows that there are 12 diagrams of the (32, 16) code with 44 frozen

variables. The stage orders corresponding to these 12 diagrams are given in Table 3.2.

In Section 3.4, it is stated that all of these 12 diagrams, with the fixed input frozen

bits chosen according to the “5-4-3-2-1” reference diagram, have the information bit

channels with the 16 highest capacities; therefore, all 12 these diagrams correspond

38

Figure 3.5: Distribution of 120 diagrams corresponding to the given number of frozen variables for

the (32,16) polar code.

to (32, 16) polar codes with properly chosen frozen bits.

Table 3.2: For the (32,16) polar code, stage orders of the 12 diagrams having 44 frozen variables,
whose input frozen bits are adjusted according to the “5-4-3-2-1” diagram.

Diagram Stage order
1 3 4 5 2 1
2 3 4 5 1 2
3 3 5 4 1 2
4 3 5 4 2 1
5 4 3 5 1 2
6 4 3 5 2 1
7 4 5 3 1 2
8 4 5 3 2 1
9 5 3 4 2 1

10 5 3 4 1 2
11 5 4 3 2 1
12 5 4 3 1 2

In Figure 3.6, we show the initial node values for the 5 cyclic permutations of 5

stages. Zeros are the frozen variables and ones are the information variables. First

diagram’s stage order is 1-2-3-4-5, and the successive ones are its cyclic rotations.

The numbers in the first row show the number of frozen variables for each stage. It can

be seen that the third diagram contains the maximum number of 44 frozen variables

(16+12+8+8). The corresponding stage order “3-4-5-1-2” is the second one among

the 12 diagrams given in Table 3.2.

As will be observed in Section 3.7, a diagram usually has better performance than the

39

Figure 3.6: Frozen variables (shown by 0’s) of the 5 cyclic diagrams for the (32,16) polar code,

corresponding to stage permutations 1-2-3-4-5, 2-3-4-5-1, 3-4-5-1-2, 4-5-1-2-3 and 5-1-2-3-4

respectively.

remaining diagrams with smaller number of frozen variables. However, before mea-

suring the performance by simulations, one should decide on the optimum number of

iterations required for BP decoding; which is the question that we try to answer in

Section 3.3.

3.3 Choice of the Number of Iterations for the BP Decoding Algorithm

Considering the 3rd and the 4th steps of the BP decoding algorithm given in Section

3.1.1 as a single round-iteration, we search for the optimum number of iterations

needed for BP decoding over a BEC(ε) with erasure probability ε. The number of

required iterations for a given code depends on the other parameters of the simulation,

and in order to determine the minimum sufficient number of iterations, we perform an

experiment as follows: For each given erasure probability up to ε = 0.5, we transmit

1,000 codewords for rate 1/2 codes, where N = 32, 128 and 512, using factor graphs

similar to Figure 3.1; i.e., having the stage order 1-...-5, which is chosen because it

contains the minimum number of frozen variables (24 for the (32,16) code, as shown

in the first 6 columns of Figure 3.6). We then repeat the experiment for the reference

stage order 5-...-1 that has the maximum number of 44 frozen variables for the (32,16)

40

code.

Table 3.3 shows the number of decoded codewords versus the iteration number for

the (32,16) code, having the stage order 1-...-5; where the last row is the number of

undecoded words after the decoding algorithm has reached the maximum number of

round iterations. Table 3.4 presents similar information, for the stage order 5-...-1.

Table 3.3: Number of decoded codewords out of 1,000 received words of the (32,16) polar code
after each round iteration for the stage order 1-...-5 over a BEC(ε).

HHH
HHHH

Iter.
number

ε
0.05 0.15 0.25 0.35 0.45

1 901 688 247 43 4
2 99 283 489 308 84
3 0 19 136 196 113
4 0 2 30 77 63
5 0 0 6 16 24
6 0 0 1 5 7
7 0 0 0 0 0
8 0 0 0 0 1
9 0 0 0 0 0

10 0 0 0 0 0
.
.
.

30 0 0 0 0 0
Number of
undecoded 0 8 91 355 703

words

From Table 3.3 one observes that all erasures of the 901 received words are corrected

at the first iteration for an ε = 0.05 and remaining 99 words are corrected at the

second iteration. So, there remains no word that is not corrected. If ε = 0.15, 688

codewords are decoded in the first iteration, 283 in the second iteration, 19 in the third

iteration and 2 in the fourth iteration. No received word is corrected after the fourth

iteration and there remains 8 undecoded words after 30 round iterations. That means

iterations after the fourth one are useless for ε = 0.15.

For the (32,16) polar code, and erasure probabilities up to 0.45, we observe that the

maximum value of iterations at which a codeword can be decoded by the diagram with

stage order 1-2-3-4-5 is 8. So, at all considered ε’s, setting the maximum number of

41

round iterations to 10 seems to be sufficient.

On the other hand, if the same experiment is repeated for the diagram with the ref-

erence stage order 5-...-1, we obtain the iteration numbers given in Table 3.4, which

are definitely smaller than those given in Table 3.3. All erasures of the 988 received

words are corrected at the first iteration for ε = 0.05 and remaining 12 words are

corrected at the second iteration. So, there remains no word that is not corrected. If

ε = 0.15, 915 received words are decoded in the first iteration, and 82 received words

at the second iteration. No received word is corrected after the second iteration and

there remains 3 undecoded words after 30 round iterations. It is clear that with the

stage order 5-...-1, the received words are decoded at earlier iterations than the stage

order 1-...-5. Similar observations are valid for other ε values (ε = 0.25, 0.35, 0.45).

Hence, one can say that the BP decoder of (32,16) code with the stage order 5-...-1,

needs smaller number of iterations than the stage order 1-...-5; and it is also more

successful in terms of the number of remaining undecoded words (last rows of Table

3.3 and 3.4).

Table 3.4: Number of decoded codewords out of 1,000 received words of the (32,16) polar code
after each round iteration for the stage order n-...-1 over a BEC(ε).

HHH
HHHH

Iter.
number

ε
0.05 0.15 0.25 0.35 0.45

1 988 915 637 276 63
2 12 82 305 432 241
3 0 0 17 69 120
4 0 0 2 9 19
5 0 0 0 2 8
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
.
.
.

30 0 0 0 0 0
Number of
undecoded 0 3 39 212 549

words

In Appendix A, Tables A.1 and A.2 give similar information for the (128, 64) codes,

42

and Tables A.3 and A.4 demonstrate the required number of iterations for the (512,256)

codes. As in the case of the (32,16) code, the stage order 1-...-n in Table A.1 and A.3

needs larger number of iterations and performs worse than the reference stage order

n-...-1 in Table A.2 and A.4.

To conclude this section, we collect the required number of BP iterations for the

mentioned three codes (N = 32, 128, 512) and two stage orders, 1-...-n and n-...-1,

in Table 3.5. Blank entry for the (512,256) polar code and ε = 0.45 shows that there

is no word decoded by the 1-...-n diagram at any iteration. We can say that for the

reference stage order n-...-1, it is sufficient to use 5, 10 and 15 round iterations for the

BP decoding of the (32,16), (128,64) and (512,256) polar codes, respectively.

Table 3.5: Number of round iterations needed for BP decoding of rate 1/2 polar codes over a BEC(ε).

Stage order
of the diagram

Erasure
probability ε

(32, 16)
polar code

(128, 64)
polar code

(512, 256)
polar code

1-...-n
0.25

6 10 15
n-...-1 4 5 5

1-...-n
0.35

6 13 20
n-...-1 5 8 9

1-...-n
0.45

8 12 -
n-...-1 5 9 15

3.4 Dependence of Bit Channel Capacities on the Decoder Structure

As mentioned in Chapter 2, every bit channel has its own capacity and this depends on

how it is connected to the original channel. In this section, we give a small example

for a polar code with N = 4. In Figure 3.7, the erasure probability of the original

binary erasure channels is ε = 0.5, so the channel capacity is 1 − 0.5 = 0.5. By

calculating the capacity of each channel stage by stage, the capacities of bit channels

are computed as in Figure 3.7.

Now, if the stage order is changed as in Figure 3.8, the capacities on every stage

change and the computed capacities of bit channels are as shown in Figure 3.8.

One can observe that the bit channel capacities from the input bits to theN output bits

are different in Figures 3.7 and 3.8, where the 2nd and the 3rd bit channels’ capacities

43

Figure 3.7: Capacities of 2-1 stage order for a BEC(0.5).

Figure 3.8: Capacities of 1-2 stage order for a BEC(0.5).

are switched. If one chooses the 2nd and the 4th inputs to send the data bits, according

to Figure 3.7 the capacity sum (CS) of the used channels is 0.5625 + 0.9375 = 1.5

and according to Figure 3.8, CS= 0.4375 + 0.9375 = 1.375. Hence, the sum of

the transmitted bit channel capacities is changed according to the chosen stage order.

In other words, to freeze the first and the second input bits is rational for the 2-1

diagram in Figure 3.7, but it is irrational for the 1-2 diagram in Figure 3.8. Since to

freeze a high-capacity channel is against the polar coding philosophy of transmission

over high-capacity bit channels, one can not say that the “1-2 diagram with frozen 1st

and 3th bits” is a suitably chosen graph for a polar code. On the other hand, freezing

the 1st and the 2nd bits of the 1-2 diagram in Figure 3.8 would make it completely

identical to the polar code given in Figure 3.7; i.e., to the 2-1 diagram with frozen 1st

and 3th bits.

[Korada, 2009] and [Hussami et al., 2009] consider multiple factor graph decoding

with log2N cyclic diagrams and report an improvement over single factor graph de-

coding. By the reasoning given above, keeping the input frozen bits (adjusted for a

specific diagram) fixed for all diagrams is expected to weaken the performance on

the average. However, multiple factor graph decoding chooses the best path among

many decoders; therefore, it promises an improvement at the expense of increased

complexity. Our aim is to investigate whether it is feasible to increase the number of

44

factor graphs to (log2N)! diagrams instead of the log2N cyclically rotated diagrams

used in [Korada, 2009] and [Hussami et al., 2009].

Before presenting our simulation results with (log2N)! factor graphs in Section 3.6,

some empirical evidence on the correlation of the capacity sums of the transmission

bit channels and the number of frozen variables may be useful.

As an example, for the (32,16) code, there are 5! = 120 different diagrams. These 120

diagrams all having the same 16 frozen bits (chosen with respect to the

5-4-3-2-1 diagram) can be gathered into 10 sets, each containing 12 diagrams with

equal CS (capacity sum) values found over a BEC(0.3125); as tabulated in Table 3.6.

For each number of frozen variables, FV, the last row of Table 3.6 indicates the aver-

age of the corresponding CS values, which is observed to decrease as FV decreases.

Table 3.6: Equal capacity sets of the (32,16) polar codes over a BEC(0.3125).

Set
Capacity Sum

(CS)

Number of diagrams in
the set with the number
of frozen variables (FV)

equal to
44 36 32 28 24

1 15.82 12
2 15.68 12
3 15.57 12
4 15.50 12
5 15.46 12
6 15.36 12
7 15.23 12
8 15.16 12
9 15.05 12
10 14.94 12
Average Capacity

for fixed FV
15.82 15.59 15.36 15.25 14.94

In another example, we observe similar positive correlation between the CS and FV

values of the (64,32) code (see Appendix B) over a BEC(0.34375), as emphasized in

Section 3.7. There is empirical as well as theoretical evidence indicating that both CS

and FV values of a factor graph are the main factors that affect the performance of

the BP decoder.

45

3.5 Performance Dependence of the BP Decoding Algorithm on the Decoder

Structure - Stage Order “1-...-n” versus “n-...-1”

In this section, our aim is to find the performance difference between two extreme

kinds of factor graphs, namely those with stage orders 1-2-...-n and n-...-2-1. As the

measure of performance, we compute the remaining bit erasure probabilities after

decoding.

Decodings with both 1-2-...-n and n-...-2-1 stage orders are simulated under the same

conditions. First we generate a codeword and pass that codeword through a given

BEC(ε). For both decodings, the codewords and erased bits are the same. Then the

BP algorithm tries to decode the erased word.

We compute the bit erasure probabilities for a (32,16) polar code over 10,000 trials

(erased codewords) using 10 round iterations at most, that are given in Table 3.7. The

5-...-2-1 diagram has 44 frozen variables, while the 1-2-...-5 diagram has 24 frozen

variables. The capacity sum of the 16 unfrozen channels is equal to 15.82 for the

5-...-2-1 and 14.94 for the 1-2-...-5 diagrams for a BEC(0.3125).

Table 3.7: Decoded bit erasure probabilities of a (32,16) codes on a BEC(ε) over 10,000 trials and up
to 10 iterations of the BP algorithm.

Code Type ε = 0.05 ε = 0.15 ε = 0.25 ε = 0.35 ε = 0.45

Polar (1-2-...-5) 0.00000 0.00217 0.02690 0.12323 0.30915
Polar (5-...-2-1) 0.00000 0.00069 0.00798 0.05584 0.19930

Table 3.8 gives the bit erasure probability performance of the (128,64) polar code

over 2,000 trials using up to 15 round iterations at the BP decoder. The 7-...-2-1

diagram has 274 frozen variables while 1-2-...-7 diagram has 162 frozen variables.

The capacity sum of the 64 unfrozen channels is equal to 61.66 for the 7-...-2-1 and

51.58 for the 1-2-...-7 diagrams for a BEC(0.45).

Table 3.8: Decoded bit erasure probabilities of a(128,64) codes on a BEC(ε) over 2,000 trials and up
to 15 iterations of the BP algorithm.

Code Type ε = 0.05 ε = 0.15 ε = 0.25 ε = 0.35 ε = 0.45

Polar (1-2-...-7) 0.00000 0.00151 0.05344 0.25140 0.43261
Polar (7-...-2-1) 0.00000 0.00000 0.00097 0.02096 0.19086

Finally, Table 3.9 gives the bit erasure probability performance of the (512, 256) polar

46

code over 1,000 trials and up to 20 BP iterations. The 9-...-2-1 diagram has 1422

frozen variables, while the 1-2-...-9 diagram has 666 frozen variables. The capacity

sum of the 256 unfrozen channels is equal to 251.68 for the 9-...-2-1 and 192.33 for

the 1-2-...-9 diagrams for a BEC(0.45).

Table 3.9: Decoded bit erasure probabilities of a (512,256) codes on a BEC(ε) over 1,000 trials and
up to 20 iterations of the BP algorithm.

Code Type ε = 0.05 ε = 0.15 ε = 0.25 ε = 0.35 ε = 0.45

Polar (1-2-...-9) 0.00000 0.00347 0.11889 0.33977 0.45005
Polar (9-...-2-1) 0.00000 0.00000 0.00003 0.00313 0.18507

Tables 3.7, 3.8 and 3.9 show that there is a significant difference between 1-2-...-n and

n-...-2-1 diagrams diagrams, since the frozen bits of the input are adjusted according

to the latter stage order. Superior performance of the latter diagram is related both to

the higher capacity sum (CS) and the higher number of frozen variables (FV).

Bit erasure probabilities (BEPs) found in the simulations described above are sketched

in Figures 3.9, 3.10 and 3.11 separately for the (32,16), (128, 64) and (512, 256) codes

respectively, and in Figure 3.12 all together. The best case to worst case BEP ratio

at a specific ε; i.e., “BEP for the n-...-1 stage order / BEP for the 1-...-n stage or-

der” increases rapidly as N gets large, for instance, for a BEC(0.25), this ratio is

0.02690/0.00798 = 3.37, 0.05344/0.00097 = 55, and 0.11889/0.00003 = 3963 for

the (32,16), (128,64) and (512,256) codes respectively.

Figure 3.9: Decoded bit erasure probabilities of (32,16) codes over a BEC(ε).

47

Figure 3.10: Decoded bit erasure probabilities of (128,64) over a BEC(ε) codes.

Figure 3.11: Decoded bit erasure probabilities of (512,256) over a BEC(ε) codes.

Figure 3.12: Decoded bit erasure probabilities of (32,16), (128,64), (512,256) codes over a BEC(ε).

48

3.6 Multiple Factor Graph BP Decoding with log2N and (log2N)! Factor Graphs,

and Two Proposals: Highest CS and Genie-Chosen Factor Graph Sets

In accordance with Korada’s multiple factor graph decoding idea

[Hussami et al., 2009], we have tried every permutation and found the number of

frozen variables and capacity sum (CS) for each of the 720 diagrams, by keeping

the 32 frozen bits at the input fixed.

Simulations are performed for a (64,32) polar code over a BEC(0.34375). 1,000

codewords are passed through the channel, by fixing the number of erasures to 22

for each word. The same channel realizations are used for every diagram to minimize

fluctuations that can be caused by erasure patterns.

Single Factor Graph BP Decoding

Our simulations show that the best performance of 76 undecoded words is achieved by

3 separate diagrams, which have the "6-5-4-3-2-1", "6-4-5-3-2-1" and

"4-6-5-3-2-1" stage orders. These 3 diagrams contain 88, 88 and 84 frozen vari-

ables and their CS values are 31.699, 31.699 and 31.613 respectively. The worst

performance belongs to "1-3-2-5-6-4" stage order with 434 undecoded words. The

corresponding diagram has 52 frozen variables and a CS value of 28.667. The com-

plexity corresponding to the single factor graph BP decoding is O(N(logN)).

Multiple Factor Graph BP Decoding with log2N Factor Graphs

In Table 3.10, the performances of 6 cyclic diagrams derived from the reference stage

order 6-...-1 are seen. Decoding with cyclic factor graphs is proposed by Hussami

and Korada in [Hussami et al., 2009] and [Korada, 2009]. "6-5-4-3-2-1" stage or-

der has the best performance with 76 undecoded words out of 1,000 erased words.

"2-1-6-5-4-3" stage order has the worst performance with 292 undecoded words.

Since the multiple factor graph decoder chooses the best result among 6 cyclic di-

agrams in each trial, there remains only 53 undecoded words out of 1,000; i.e., 23

more words are decoded in addition to the performance of the 6-5-4-3-2-1 diagram.

49

The complexity of this method is O(N(logN)2)

Table 3.10: n = 6 cyclic diagrams and their performances for the (64,32) code over 1,000
codewords each having 22 erasures.

Diagram CS
Number of

frozen
variables

Number of
undecoded

words

Number of
remaining
undecoded

words
6-5-4-3-2-1 31.699 88 76 76
5-4-3-2-1-6 30.064 80 99 75
4-3-2-1-6-5 29.525 68 172 70
3-2-1-6-5-4 29.267 60 298 64
2-1-6-5-4-3 29.828 56 292 55
1-6-5-4-3-2 30.412 68 261 53

Multiple Factor Graph BP Decoding with (log2N)! Factor Graphs

There are 6! = 720 different stage orders for N = 64. If the BP decoder performs on

every stage order corresponding to all factor graphs, and the best result is chosen at

each trial, the number of undecoded words can be decreased to 46. The complexity

of this method is O(N logN(logN)!), and this kind of complexity is not desired for

large block length codes.

Multiple Factor Graph BP Decoding with a Diagram from Each CS Set

For the (64,32) code and over BEC(0.34375), there are 180 different CS values in

720 different diagrams, with each CS value shared by 4 different diagrams (see Ap-

pendix B). Each diagram with the same CS value also has the same number of frozen

variables. Thus, the performances of the 4 diagrams within the equal-CS set are very

similar. If one randomly picks up 1 out of these 4 diagrams with equal CS values,

and uses multiple factor graph decoding; i.e., chooses the best of 180 results at each

trial, again there remains 46 undecoded words; that is the performance of the multiple

factor graph decoder with 180 factor graphs is the same as that of the decoder with

720 factor graphs. The complexity is reduced 4 times with respect to (log2N)! dia-

grams. However as the block length grows, the CS values start to differ a lot; i.e., for

N = 512 every stage order has a different CS value. So, grouping diagrams accord-

50

ing to their CS values may work for large block lengths, only when equal-CS sets are

replaced by close valued-CS sets with CS varying in small intervals.

Multiple Factor Graph Decoding with the Best Diagrams

Another method to improve the performance can be choosing the best diagrams. For

the (64,32) code, if one chooses the 19 diagrams with the highest CS values, the

performance can be as good as in the case of (log2N)! multiple factor graphs and

again, there remains 46 undecoded words. The chosen diagrams having the highest

CS values are given in Table 3.11. The complexity of this method is 19 times as much

as the single factor graph case, which ends up with 76 undecoded words.

Table 3.11: 19 diagrams with the best 19 CS values for the (64,32) code over 1,000 codewords each
having 22 erasures.

Diagram CS
Number of

frozen
variables

Number of
undecoded

words

Number of
remaining
undecoded

words
6-5-4-3-2-1 31.699 88 76 76
4-6-5-3-2-1 31.613 84 76 76
6-4-3-5-2-1 31.560 88 83 74
4-5-6-2-3-1 31.500 80 84 69
6-4-5-2-1-3 31.485 88 84 59
4-6-3-5-2-1 31.459 84 83 59
6-2-4-5-3-1 31.447 84 100 56
4-6-5-3-1-2 31.384 84 83 51
6-4-3-2-5-1 31.355 88 91 50
6-4-3-5-1-2 31.331 88 87 49
6-4-5-1-3-2 31.280 88 101 47
2-6-4-5-3-1 31.260 76 115 47
6-2-4-3-5-1 31.246 84 109 47
4-6-3-5-1-2 31.241 84 88 47
4-5-6-2-1-3 31.236 80 87 47
4-6-3-2-5-1 31.228 84 92 47
4-5-3-6-2-1 31.207 80 82 47
4-2-6-5-3-1 31.198 76 100 47
6-2-4-5-1-3 31.183 84 102 46

51

Multiple Factor Graph Decoding with Genie-Chosen Diagrams

If one can add a genie that uses some pre-trained criteria, while choosing the diagrams

to be used for decoding. The maximum performance can be achieved with lower

complexity; such that with 5 diagrams, the number of undecoded words is decreased

to 46. The chosen diagrams are shown in Table 3.12. The complexity of this method

is similar to Korada’s cyclic factor graph method, while it has a better performance..

Table 3.12: 5 diagrams that give the best performance for the (64,32) code over 1,000 codewords
each having 22 erasures.

Diagram CS
Number of

frozen
variables

Number of
undecoded

words

Number of
remaining
undecoded

words
6-2-4-5-3-1 31.447 84 100 100
6-4-3-2-5-1 31.355 88 91 75
6-4-3-5-1-2 31.331 88 87 53
6-4-5-1-3-2 31.280 88 101 47
6-2-4-5-1-3 31.183 84 102 46

In Table 3.13, we summarize all simulation results found above for a (64,32) code.

Table 3.13: The number of undecoded words out of 1,000 words (each with 22 erasures) in each
simulation, with multiple factor graph BP decoding for the (64,32) code.

Number of undecoded words

Method
6-5-4-3-2-1

diagram
n cyclic

diagrams
n!

diagrams

180 = n!/4

diagrams from
all CS sets

19 (or 13)
diagrams from
highest CS’s

5 (or 4)
chosen

diagrams
First

simulation
76 53 46 46 46 46

Second
simulation

90 54 44 45 45 45

Repeated Simulations with a Different Set of 1,000 Erased Words

A different set of 1,000 erasure patterns are generated to have an idea about the relia-

bility of the results given in Table 3.13. Again, 1,000 codewords of the (64,32) polar

code with 22 erasures in each codeword are fed to the BP decoder. For every diagram

the same 1,000 erased words are used, and frozen bits are chosen according to the

6-5-4-3-2-1 diagram. In the last row of Table 3.13 the number of undecoded words

52

are given for each case considered above. Korada’s cyclic factor graphs decrease the

number of undecoded words from 90 to 54. If all 720 diagrams are used, there re-

mains 44 undecoded words. If one chooses a random diagram from all CS values,

the number of undecoded words decreases to 45. This performance can be achieved

by 13 diagrams chosen from the largest CS values. Also, 4 diagrams that are chosen

on empirical evidence rather than systematically among 13 diagrams with the highest

CS, decrease the number of undecoded words to 45 as well. These 4 diagrams are

given in Table 3.14.

Table 3.14: 4 diagrams that give the best performance for the (64,32) code over 1,000 codewords
each having 22 erasures.

Diagram CS
Number of

frozen
variables

Number of
undecoded

words

Number of
remaining
undecoded

words
6-4-3-5-2-1 31.560 88 94 94
6-4-5-2-1-3 31.485 88 92 59
4-6-5-3-1-2 31.384 84 100 53
6-2-4-3-5-1 31.246 84 113 45

3.7 Performance Dependence on the Number of Frozen Variables and Capacity

Sum

In order to understand the performance dependence of the single factor graph BP

decoder on the number of frozen variables (FV) and the capacity sum (CS) of the

unfrozen paths, Figures 3.13 and 3.14 are plotted for 1,000 codewords of the (64,32)

code over BEC(0.34375).

There are 10 different values (88, 84, 80, ..., 52) for the number of frozen variables

corresponding to 720 diagrams for N = 64 (see Table B.2). Each given number of

frozen variables is possessed by a different number of diagrams. So, there are the

best, worst and average performances among the diagrams with the same number of

frozen variables. Figure 3.13 gives the performance dependence on the number of

frozen variables. As expected, the number of undecoded words decreases while the

number of frozen variables increases.

53

Figure 3.13: Minimum, maximum and average number of undecoded words for a (64,32) code over

a BEC(0.34375).

For the (64,32) code, there are 180 different CS values, and each equal-CS value

set contains 4 diagrams. Also, the number of frozen variables for all 4 diagrams in

the equal-CS value set is the same. Thus, the performances are very close for those

4 diagrams. In Figure 3.14, the average number of undecoded words is depicted.

Even though there are jumps in the figure, as the CS increases the average number

of undecoded words decreases as expected. "6-5-4-3-2-1" diagram has the largest CS

and the number of frozen variables, so it has the best performance corresponding to

the rightmost point of the curve.

In our simulations for N = 32, 64, 128, 512 and 1024, we have encountered many

instances, where the depth of the frozen variables on the factor graph has no effect

on the performance. For N = 32, the superior performance of one factor graph

over another can always be explained by either the higher number of frozen variables

(FV), or higher sum of capacities (CS) corresponding to all information bit channels.

However, for N = 64, one may confront a few odd cases, where neither CS, nor FV

can explain the performance difference. The depth of the frozen bits on the graph also

doesn’t give any consistent explanation in such cases. Anyhow, these odd instances

are quite rare, and the performance of a given factor graph is pretty much dependent

on its CS and FV values on the average. Figure 3.15 depicts all possible CS values

for each FV. The number of different CS values for each specific FV is as given in

54

Figure 3.14: Average number of undecoded words for a (64,32) code versus the capacity sum over a

BEC(0.34375).

Appendix B. In Figure 3.16, we plot the average CS values versus FV; and see almost

linear correlation between these parameters.

Figure 3.15: Capacity sums over a BEC(0.34375) versus number of frozen variables for all stage

orders of the (64,32) code.

55

Figure 3.16: Average capacity sums over a BEC(0.34375) versus number of frozen variables for all

stage orders of the (64,32) code.

3.8 Performance Comparison of Polar and Reed Muller Codes

Polar and Reed Muller codes can be characterized by the same factor graph repre-

sentation. The only difference between these two codes are the chosen channels for

sending the information and frozen bits.

Polar codes can be decoded with different factor graphs. As explained in Section 3.2,

the number of frozen variables and the depth of the frozen variables in the factor graph

are dependent on the stage order. Thus, BP decoding with different factor graphs has

differences in performance.

Reed Muller codes also can be decoded with different factor graphs, but every one

of the factor graphs has the same number of frozen variables; such that, two different

factor graphs have identically the same frozen variables, i.e., the places of the frozen

variables are the same. Thus, RM codes can be decoded on any factor graph. De-

coding with all factor graphs gives almost the same performance, while there may be

small performance differences caused by the special erasure patterns.

In Table 3.15, the number of frozen variables, the depth of the frozen variables and

the performance are given for the (128,64) polar and Reed Muller codes. 1,000 code-

words are transmitted over BEC(0.35). The same codeword and the same erasure

56

pattern is used for every diagram to minimize experimental fluctuations.

(128,64) Reed Muller code has 140 frozen variables, depth of 4 in the 7-stage graph

and 62.15 capacity sum value of chosen information bit channels. If compared with

the polar code, which has 210 frozen variables, depth 5 and CS 63.70, RM code

has greater number of undecoded words; and it has worse performance. Generally

speaking, polar codes have larger number of frozen variables and better performance

than RM codes.

Table 3.15: Performance of BP decoding (128,64) polar code with different factor graphs and
(128,64) RM code over a BEC(0.35).

Number of
frozen

variables

Depth of
the frozen
variables

Capacity
sum

Number of
Undecoded

words
7-6-5-4-3-2-1 210 5 63.70 163
7-6-4-5-3-2-1 210 5 63.70 162
Reed Muller 140 4 62.15 579

57

58

CHAPTER 4

CONCLUSION

In this thesis, we simulate BP decoding of polar codes with block length N , using

all possible factor graphs with log2N stages over binary erasure channels. We are

interested in the relation between parameters like CS and FV, and their effects on the

decoding performance. We define the capacity sum (CS) as the sum of all synthesized

channel capacities used for the transmission of the information bits (so capacities of

the N − K frozen channels are excluded) and the number of frozen variables (FV)

on the factor graph is defined as the sum of input frozen bits and those they generate

in the inner stages of the graph. We empirically detect a strong positive correlation

between CS and FV, as tabulated in Table 3.6 for the (32,16) code and plotted in

Figure 3.16 for the (64,32) code. We also observe that an increase in CS and/or FV

improves the performance of the BP decoder.

As for the BP decoding, we have considered the message directions in rather an un-

usual way as argued by [Xu et al., 2015], who have preferred the same unusual way.

Starting from the encoder output, we proceed with only the left messages to the left-

most of the factor graph, and after reaching there, we advance to the right with only

the right messages, until we reach to the rightmost end of the graph and complete the

cycle, also called a round iteration. In terms of the required round iterations, we have

found smaller iteration numbers than those seldomly declared in the literature (Arıkan

uses 60 iterations, whereas we find that 5-15 round iterations are sufficient for similar

codes). Although the statement of the algorithmic steps are the same everywhere,

[Xu et al., 2015] assert that common application of the BP algorithm on factor graphs

with log2N stages is to compute all left and right messages simultaneously and use

59

them before leaving any stage for the adjacent one. Our literature survey does not

make this detail clear. On the other hand, [Xu et al., 2015] pronounce an advantage

that we can agree on the assumption that other BP decoders use more iterations (all

we know is the 60 iterations mentioned above), and such a benefit speeds up the algo-

rithm. Another detail that we discover from the literature is that Korada uses the BP

algorithm in the direction of Z’s that form the factor graph, starting from the bottom.

Anyway, our BP decoding results for similar codes over the BEC are exactly the same

as in [Korada, 2009], showing that our decoders are equivalent.

There are (log2N)! factor graph representations and among all possible factor graphs,

if one chooses one graph and adjusts the input frozen bits of the polar encoder by

computing all synthesized channel capacities and then choosing the maximum K

capacities among N [Arıkan, 2009], the corresponding CSmax needs to be the maxi-

mum in the set of all possible CS’s for the given N and K. Now, if the factor graph

is changed by keeping the frozen bits fixed, CS decreases and the resulting decoder

structure is not optimum for polar code anymore. Still, different factor graphs are

used in the literature within the context of multiple factor graph decoding with par-

allel paths [Korada, 2009]. This idea is useful, because as shown in Section 3.6, the

performance of the BP decoder improves with multiple factor graph BP decoding. For

all of these factor graphs, in addition to different values of CS, the number of frozen

variables and the depth of the frozen variables in the factor graph are dependent on

the stage order. Thus, BP decoding with different factor graphs has differences in

performance.

In the light of the results given in Section 3.6, we do not recommend the use of

all (log2N)! multiple factor graphs, since it does not bring sufficient improvement to

account for the increased complexity fromO(N logN) of single factor graph decoding

to O(N logN(logN)!). Also, log2N cyclic factor graphs suggested by Korada does

not give the maximum performance improvement; because there are factor graphs in

the cyclic cluster with bad performance. "3-2-1-6-5-4", "2-1-6-5-4-3" and "1-6-5-4-

3-2" cyclic stage orders have small effects on decreasing the number of undecoded

words, whenever the frozen bits are adjusted according to the “6-5-4-3-2-1” diagram.

Pre-trained choice of suitable factor graphs seems to have some practical significance.

60

On the contrary of Korada’s cyclic idea, the stage orders with large CS and FV values

are used for BP decoding, whose multiple factor graphs are pre-chosen according to

some criteria. For our simulations given in Section 3.6, 19 (or 13) factor graphs which

are chosen according their CS values, i.e., the highest 19 (or 13) CS values, brings

improvement as much as (log2N)! multiple factor graphs. Moreover, 5 (or 4) factor

graphs chosen from 19 (or 13) factor graphs gives the same performance. By some

clever choice of factor graphs as explained, frame error ratio (FER) can be halved;

i.e., reduced from say 90/1000 to 45/1000 at an erasure probability of ε = 0.34375.

The computational complexity increases at reasonable costs, such that, 5 (or 4) times

the single factor graph decoding.

It is a future work to choose factor graphs that are used for multiple factor graph

decoding and to theoretically derive the relation between CS and FV parameters.

61

62

REFERENCES

[Arıkan, 2008] Arıkan, E. (2008). A performance comparison of polar codes and
reed-muller codes. IEEE Commun. Lett, 12(6):447–449.

[Arıkan, 2009] Arıkan, E. (2009). Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless channels. Infor-
mation Theory, IEEE Transactions on, 55(7):3051–3073.

[Arıkan et al., 2015] Arıkan, E., Lentmaier, M., Montorsi, G., Sayir, J., et al.
(2015). Challenges and some new directions in channel coding. arXiv preprint
arXiv:1504.03916.

[Bahl et al., 1974] Bahl, L., Cocke, J., Jelinek, F., and Raviv, J. (1974). 284 IEEE
Transacttons on Information Theory, March 1974.

[Berrou and Glavieux, 1996] Berrou, C. and Glavieux, A. (1996). Near optimum er-
ror correcting coding and decoding: Turbo-codes. Communications, IEEE Trans-
actions on, 44(10):1261–1271.

[Bose and Ray-Chaudhuri, 1960] Bose, R. C. and Ray-Chaudhuri, D. K. (1960). On
a class of error correcting binary group codes. Information and Control, 3(1):68–
79.

[Elias, 1955] Elias, P. (1955). Coding for noisy channels. In Proceedings of the
Institute of Radio Engineers, volume 43, pages 356–356.

[Eslami and Pishro-Nik, 2010] Eslami, A. and Pishro-Nik, H. (2010). On bit error
rate performance of polar codes in finite regime. In Communication, Control, and
Computing (Allerton), 2010 48th Annual Allerton Conference on, pages 188–194.
IEEE.

[Eslami and Pishro-Nik, 2013] Eslami, A. and Pishro-Nik, H. (2013). On finite-
length performance of polar codes: stopping sets, error floor, and concatenated
design. Communications, IEEE Transactions on, 61(3):919–929.

[Forney Jr, 2001] Forney Jr, G. D. (2001). Codes on graphs: normal realizations.
Information Theory, IEEE Transactions on, 47(2):520–548.

[Gallager, 1962] Gallager, R. G. (1962). Low-density parity-check codes. Informa-
tion Theory, IRE Transactions on, 8(1):21–28.

63

[Golay, 1949] Golay, M. J. (1949). Notes on digital coding. Proceedings of the
Institute of Radio Engineers, 37(6):657–657.

[Guo et al., 2014] Guo, J., Qin, M., Guillen i Fabregas, A., and Siegel, P. H. (2014).
Enhanced belief propagation decoding of polar codes through concatenation. In
Information Theory (ISIT), 2014 IEEE International Symposium on, pages 2987–
2991. IEEE.

[Hocquenghem, 1959] Hocquenghem, A. (1959). Codes correcteurs d’erreurs.
Chiffres (paris), 2(147-156):116.

[Hussami et al., 2009] Hussami, N., Korada, S. B., and Urbanke, R. (2009). Perfor-
mance of polar codes for channel and source coding. In Information Theory, 2009.
ISIT 2009. IEEE International Symposium on, pages 1488–1492. IEEE.

[Korada, 2009] Korada, S. B. (2009). Polar codes for channel and source coding.
PhD thesis, École Polytechnique Fédérale de Lausanne.

[MacKay and Neal, 1995] MacKay, D. J. and Neal, R. M. (1995). Good codes based
on very sparse matrices. In Cryptography and Coding, pages 100–111. Springer.

[Muller, 1954] Muller, D. E. (1954). Application of boolean algebra to switching
circuit design and to error detection. Electronic Computers, Transactions of the
IRE Professional Group on, (3):6–12.

[Pamuk, 2011] Pamuk, A. (2011). An FPGA implementation architecture for de-
coding of polar codes. In Wireless Communication Systems (ISWCS), 2011 8th
International Symposium on, pages 437–441. IEEE.

[Pearl, 1988] Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Net-
works of plausible reasoning. Morgan Kaufmann Publishers, Los Altos.

[Reed, 1954] Reed, I. (1954). A class of multiple-error-correcting codes and the
decoding scheme. Transactions of the IRE Professional Group on Information
Theory, 4(4):38–49.

[Reed and Solomon, 1960] Reed, I. S. and Solomon, G. (1960). Polynomial codes
over certain finite fields. Journal of the Society for Industrial and Applied Mathe-
matics, 8(2):300–304.

[Shannon, 1948] Shannon, C. (1948). A mathematical theory of communication.
Bell System Technical Journal, 27:379–423 and 623–656.

[Tal and Vardy, 2011] Tal, I. and Vardy, A. (2011). List decoding of polar codes. In
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on,
pages 1–5. IEEE.

64

[Viterbi, 1967] Viterbi, A. J. (1967). Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. Information Theory, IEEE Transac-
tions on, 13(2):260–269.

[Wiberg, 1996] Wiberg, N. (1996). Codes and decoding on general graphs. Cite-
seer.

[Wiberg et al., 1995] Wiberg, N., Loeliger, H.-A., and Kötter, R. (1995). Codes and
iterative decoding on general graphs. European Transactions on Telecommunica-
tions, 6(5):513–525.

[Xu et al., 2015] Xu, J., Che, T., and Choi, G. (2015). Xj-bp: Express journey belief
propagation decoding for polar codes. arXiv preprint arXiv:1504.06025.

[Yuan and Parhi, 2014a] Yuan, B. and Parhi, K. (2014a). Early stopping criteria for
energy-efficient low-latency belief-propagation polar code decoders. Signal Pro-
cessing, IEEE Transactions on, 62(24):6496–6506.

[Yuan and Parhi, 2014b] Yuan, B. and Parhi, K. K. (2014b). Algorithm and architec-
ture for hybrid decoding of polar codes. arXiv preprint arXiv:1411.7286.

65

66

APPENDIX A

REQUIRED NUMBER OF ROUND ITERATIONS FOR THE BP

DECODER FOR N=128 & 512

In Table A.1, we observe that the maximum value of iterations at which a codeword

is decoded is 13 at ε = 0.35. So, for the (128,64) polar code, the maximum number

of round iterations in the BP decoding algorithm can be fixed to 15 for the stage order

1-...-n. And from Table A.2, we can observe that 10 is sufficient for the maximum

number of round iterations for the stage order n-...-1.

For the (512, 256) polar code and erasure probabilities up to 0.35, Table A.3 shows

that there is no decoded codeword after the 20th iteration for the stage order

1-...-n. So, the maximum number of round iterations can be chosen as 20 for this

case. However, for the stage order n-...-1 given in Table A.4, there is no decoding

after 9th iteration up to ε = 0.35. Thus the maximum number of round iterations can

be fixed to 10 which is half of the chosen maximum number of round iterations value

of the stage order 1-...-n.

For ε = 0.45, the stage order 1-...-n can not decode any word at any iteration. So, it

is not possible to make comparison with the stage order n-...-1.

67

Table A.1: Number of decoded codewords out of 1,000 received words of the (128,64) polar code
after each round iteration for the stage order 1-...-n over a BEC(ε).

HHHH
HHH

Iter.
number

ε
0.05 0.15 0.25 0.35 0.45

1 871 24 0 0 0
2 128 588 29 0 0
3 1 323 200 5 0
4 0 48 263 21 0
5 0 7 146 46 0
6 0 1 62 45 0
7 0 2 28 41 1
8 0 0 15 24 2
9 0 0 3 19 2
10 0 0 2 13 1
11 0 0 0 5 2
12 0 0 0 5 2
13 0 0 0 2 0
14 0 0 0 0 0
15 0 0 0 0 0
.
.
.

30 0 0 0 0 0
Number of
undecoded 0 7 252 774 990

words

68

Table A.2: Number of decoded codewords out of 1,000 received words of the (128,64) polar code
after each round iteration for the stage order n-...-1 over a BEC(ε).

HHHH
HHH

Iter.
number

ε
0.05 0.15 0.25 0.35 0.45

1 989 495 31 0 0
2 11 488 584 78 0
3 0 16 344 406 25
4 0 0 28 275 91
5 0 0 5 70 104
6 0 0 0 14 44
7 0 0 0 6 16
8 0 0 0 3 3
9 0 0 0 0 2

10 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 0 0
.
.
.

30 0 0 0 0 0
Number of
undecoded 0 1 8 148 715

words

69

Table A.3: Number of decoded codewords out of 1,000 received words of the (512,256) polar code
after each round iteration for the stage order 1-...-n over a BEC(ε).

HHH
HHHH

Iter.
number

ε
0.05 0.15 0.25 0.35 0.45

1 65 0 0 0 0
2 891 0 0 0 0
3 44 75 0 0 0
4 0 424 0 0 0
5 0 330 2 0 0
6 0 105 32 0 0
7 0 33 55 0 0
8 0 6 74 0 0
9 0 1 53 0 0

10 0 2 51 0 0
11 0 0 32 0 0
12 0 0 29 0 0
13 0 0 16 1 0
14 0 0 9 0 0
15 0 0 3 2 0
16 0 0 0 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 1 0
20 0 0 0 1 0
21 0 0 0 0 0
22 0 0 0 0 0
.
.
.

30 0 0 0 0 0
Number of
undecoded 0 24 644 995 1000

words

70

Table A.4: Number of decoded codewords out of 1,000 received words of the (512,256) polar code
after each round iteration for the stage order n-...-1 over a BEC(ε).

HHH
HHHH

Iter.
number

ε
0.05 0.15 0.25 0.35 0.45

1 961 19 0 0 0
2 39 893 64 0 0
3 0 87 798 17 0
4 0 1 128 359 0
5 0 0 7 431 2
6 0 0 0 100 15
7 0 0 0 18 38
8 0 0 0 9 47
9 0 0 0 2 9

10 0 0 0 0 20
11 0 0 0 0 13
12 0 0 0 0 4
13 0 0 0 0 2
14 0 0 0 0 0
15 0 0 0 0 1
16 0 0 0 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
.
.
.

30 0 0 0 0 0
Number of
undecoded 0 0 3 64 849

words

71

72

APPENDIX B

CORRELATION BETWEEN THE NUMBER OF FROZEN

VARIABLES AND THE CAPACITY SUMS

In Section 3.4, we have given an example to show the positive correlation between

the number of frozen variables (FV) and the corresponding capacity sums (CS) of

the unfrozen paths of factor graphs, considering 5! = 120 different diagrams of the

(32,16) code. These 120 diagrams gather into 10 sets, each containing 12 diagrams

with equal CS values found over a BEC(0.3125); as tabulated in Table 3.6. We ob-

serve that as the number of FV decreases, the corresponding average CS value also

decreases.

In order to ease the presentation of the distribution of CS and FV values for a (64,32)

code, we first summarize the distribution of equal-CS sets given in Table 3.6 by a

simpler table for the (32,16) code, Table B.1.

Table B.1: Distribution of equal-CS sets (each having 12 elements) for the (32,16) code over a
BEC(0.3125), expressed differently from Table 3.6.

Number of
Frozen

Variables

Number of
Diagrams

Number of
Equal-CS Sets
(each having
12 elements)

Maximum
Capacity Sum

Minimum
Capacity Sum

44 12 1 15.82 15.82
36 24 2 15.68 15.50
32 36 3 15.57 15.16
28 36 3 15.46 15.05
24 12 1 14.94 14.94

We can then proceed with a similar table for the (64,32) code, namely Table B.2.

Close inspection of Table again indicates positive correlation between the CS and FV

values of the (64,32) codes over a BEC(0.34375), similar to the case of the (32,16)

73

code over BEC(0.3125). Total number of 6! = 720 factor graphs are grouped into

4-element sets with equal CS; hence, there are 180 different CS values which vary

in the interval [28.57,31.70]. The number of frozen variables, FV, takes 10 different

values in the interval [52,88] with steps of 4.

Table B.2: Distribution of equal-CS sets (each having 4 elements) for the (64,32) polar code over a
BEC(0.34375).

Number of
Frozen

Variables

Number of
Diagrams

Number of
Equal-CS Sets
(each having
4 elements)

Maximum
Capacity Sum

Minimum
Capacity Sum

88 48 12 31.70 30.53
84 84 21 31.61 30.13
80 48 12 31.50 29.82
76 96 24 31.26 29.68
72 84 21 31.11 29.58
68 84 21 30.69 29.16
64 96 24 30.59 29.01
60 48 12 30.44 28.77
56 84 21 30.11 28.66
52 48 12 29.74 28.57

In Table B.3 correlation between the CS and FV values of the (128,64) codes over

a BEC(0.35) is given. Total number of 7! = 5040 factor graphs are grouped into

2-element sets with equal CS which vary in the interval [55.88,63.77]. The number

of frozen variables takes 28 different values in the interval [98,210] with steps of 4

except 102. However, for RM code every factor graphs have 140 frozen variables and

62.15 capacity sum.

As N gets larger, the number of different CS values increases and the size of equal-

CS sets rapidly reduces to 1, instead of the 12 elements for the (32,16) and 4 elements

for the (64,32) code.

74

Table B.3: Distribution of equal-CS sets (each having 2 elements) for the (128,64) polar code over a
BEC(0.35).

Number of
Frozen

Variables

Number of
diagrams

Number of
Equal-CS Sets
(each having
2 elements)

Maximum
Capacity Sum

Minimum
Capacity Sum

210 72 36 63.70 60.49
206 72 36 63.63 60.38
202 120 60 63.57 60.15
198 96 48 63.51 60.41
194 192 96 63.45 60.12
190 120 60 63.37 59.96
186 264 132 63.15 59.29
182 168 84 62.83 58.77
178 192 96 62.45 58.63
174 144 72 62.33 58.13
170 336 168 62.11 58.12
166 168 84 61.63 58.10
162 288 144 61.77 57.68
158 120 60 61.71 57.42
154 288 144 61.58 57.48
150 48 24 61.01 57.39
146 456 228 61.42 57.25
142 120 60 61.30 57.29
138 384 192 61.07 56.78
134 96 48 61.13 56.95
130 312 156 60.86 56.47
126 48 24 57.97 56.51
122 288 144 59.82 56.24
118 144 72 59.56 56.62
114 96 48 58.98 56.63
110 96 48 59.03 56.24
106 192 96 58.94 55.95
98 120 60 57.70 55.88

75

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Belief Propagation Decoding of Polar Codes
	Aim and Organization of the Thesis

	CHANNEL POLARIZATION
	Error Control Coding
	Channel Polarization
	Polar Encoding
	Polar Code Decoding

	SIMULATION RESULTS
	Description of the Decoding Structure Used in Simulations
	Belief Propagation Decoding Algorithm

	Decoder Structure and the Number of Frozen Variables for the BP Decoding Algorithm
	Choice of the Number of Iterations for the BP Decoding Algorithm
	Dependence of Bit Channel Capacities on the Decoder Structure
	Performance Dependence of the BP Decoding Algorithm on the Decoder Structure - Stage Order “1-...-n” versus “n-...-1”
	Multiple Factor Graph BP Decoding with log2N and (log2N)! Factor Graphs, and Two Proposals: Highest CS and Genie-Chosen Factor Graph Sets
	Performance Dependence on the Number of Frozen Variables and Capacity Sum
	Performance Comparison of Polar and Reed Muller Codes

	CONCLUSION
	REFERENCES
	APPENDICES
	REQUIRED NUMBER OF ROUND ITERATIONS FOR THE BP DECODER FOR N=128 & 512
	CORRELATION BETWEEN THE NUMBER OF FROZEN VARIABLES AND THE CAPACITY SUMS

