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ABSTRACT

BIGDATA ANALYTICS ARCHITECTURES FOR HVAC ENERGY
OPTIMIZATION SYSTEMS

Poyraz, Doğan

M.S., Department of Computer Engineering

Supervisor : Dr. Cevat Şener

December 2015, 127 pages

Energy consumption affects both energy bills of the buildings and environment greatly.
Especially HVAC systems are the components that consume the most energy in com-
mercial or residential buildings. HVAC stands for heating, ventilating and air con-
ditioning systems in the buildings. In this thesis, data organization, retrieval and
processing needs of a HVAC energy optimization system (EOS) have been analyzed,
underlying technologies have been examined and architectural solutions have been
proposed in order to solve various problems that a HVAC EOS may encounter. This
research defines a HVAC EOS in a formal way, so that computer scientists can un-
derstand needs of energy domain, specifically HVAC EOS, easier. In addition, this
research describes technologies related to BigData and presents architectural exam-
ples so that it gives insight about how to solve BigData related problems in energy
domain.

In order to build a HVAC EOS, there are several steps throughout the flow of the data.
First one is the data stream that is between the sensors in the field and the system.
In this thesis, methods to manipulate these data streams are presented so that data
can be pre-processed before it is written to a database or a persistent medium. This
enables data to be processed much closer to real-time. The second step is continuous
processing of the persistent data for forecasting. This operation can be performed
in a distributed environment so that when data size is very large, processing power
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of the several nodes can be used and operation can be completed much faster. The
final step is the data visualization. In this step, a user of the system interacts with the
HVAC EOS and manually processes some of the data or query data and display it.
Again, depending on the data size, this operation can be performed in a distributed
environment or data can be stored in a small in-memory medium so that response was
returned to the user quickly.

Keywords: BigData, NoSQL, Scalable, Internet of Things, HVAC, Energy Optimiza-
tion
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ÖZ

HVAC ENERJİ OPTİMİZASYON SİSTEMLERİ İÇİN BÜYÜK VERİ ANALİZİ
MİMARİLERİ

Poyraz, Doğan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Cevat Şener

Aralık 2015 , 127 sayfa

Enerji tüketiminin hem faturalar hem de çevre üzerinde büyük etkileri vardır. Özel-
likle HVAC sistemleri ticari ve meskun binalarda en fazla enerji tüketen birimler-
dir. HVAC binalardaki ısıtma, havalandırma, ve iklimlendirme sistemlerine verilen
addır (İng. Heating, Ventillation, Air Conditioning). Bu tezde HVAC enerji optimi-
zasyon sistemlerinin (EOS) veri yapısı, erişimi ve işlemesi konusunda gereksinimleri
incelendi; bu gereksinimlere çözüm oluşturabilecek teknolojiler araştırıldı ve HVAC
enerji optimizasyon sistemlerinin karşılaştığı çeşitli problemleri çözmek için sistem
mimarileri önerildi. Bu tez bilgisayar bilimi ile uğraşan insanların enerji alanındaki
problemleri daha kolay anlaması amacıyla bir HVAC enerji optimizasyon sistemini ve
gereksinimlerimi yazılım diline uygun şekilde açıklar. Ek olarak, bu çalışma büyük
veri ile ilgili teknolojileri açıklar ve enerji alanındaki büyük veri kaynaklı sorunların
çözümü için mimari çözümleri sunar.

Bir HVAC enerji optimizasyon sisteminde veri akışı sırasında birkaç önemli adım bu-
lunur. İlk olarak sensörler ve sistem arasındaki yoğun veri akışı. Bu tezde, veri akışını
daha yoldayken işleyebilmeye yönelik teknoloji ve yöntemler anlatılmaktadır. Böy-
lece gelen veriler veritabanına yazılmadan önce gerekli kontrol ve işlemler yapılabi-
lir. Bu şekilde veri gerçek zamana en yakın şekilde işlenebilir. İkincı adım, tahminler
için verinin sürekli ve periyodik olarak işlenmesi. Bu işlem, veri boyutu çok büyükse
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dağıtık bir ortamda yapılabilir. Böylece işleme kümesi içindeki birçok noktanın veri
işleme gücü paralel olarak kullanılır ve işlem daha hızlı yapılabilir. Son adım verinin
görselleştirilmesi. Bu adımda, sistem kullanıcısı sistemle doğrudan etkileşime girerek
elle bazı hesaplamalar yaptırabilir, ya da bir miktar datayı seçip görüntülemek isteye-
bilir. Veri boyutuna bağlı olarak, bu işlem de dağıtık bir ortamda gerçekleştirilebilir
ya da tamamen bellekte çalışan bir veri saklama yöntemi ile kullanıcıya çok daha hızlı
tepki verilebilir.

Anahtar Kelimeler: Büyük Veri, NoSQL, Ölçeklenebilir, Nesnelerin İnterneti, HVAC,
Enerji Optimizasyonu
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CHAPTER 1

INTRODUCTION

Internet of Things (IoT), sometimes referred as internet of everything, refers to net-

worked interconnection of everyday objects, which are often equipped with ability

of generating data [41]. IoT concept increases interaction of networked devices with

different devices and human beings. Thanks to rapid advances in underlying tech-

nologies, IoT technology is spreading all over the world, in almost every aspect of

our lives. IoT allows us to collect data remotely from many devices deployed in the

field and control them through existing networking infrastructures.

Nodes in the IoT consist of a wide variety of devices. For example, automobiles with

built-in sensors, meteorological sensors, sensors of an army vehicle, security cameras

and so on. All of these devices collect data from the field and send them to different

servers. Considering all the data collecting devices all over the world, enormous

amount of data flows around the world.

According to Cisco, global mobile data traffic will reach 15.9 Exabyte per month or

190 Exabyte annually, increasing nearly 11-fold from 2013 to 2018 [21]. Handling

this amount of data is not possible with traditional storage and processing technolo-

gies. In addition, according to National Cable & Telecommunications Association

(NCTA), the number of active mobile devices around the world will be increasing

exponentially in the following years as can be seen in Figure 1.1 [16].

Energy domain is one of the largest subsets of IoT network. An IoT application in

energy domain is HVAC EOS. HVAC stands for heating, ventilating and air condition-

ing. It is the technology for maintaining indoor air quality by keeping the temperature

1



Figure 1.1: Increase in Number of Active Mobile Devices [16]

at a desired level and air clean by replacing air in any indoor space. According to U.S.

Department of Energy, HVAC systems consume the most energy in both residential

and commercial buildings [34] as can be seen on Figure 1.2. Therefore, by optimizing

the energy consumption of HVAC systems enormous amount of energy can be saved.

At this point, HVAC EOS comes into action. These systems are built on top of an

2



existing HVAC system. In order to sense and control the status of an HVAC system,

HVAC EOS uses several sensors and remote controllers, which create huge amount

of data flow that we can classify as BigData.

Figure 1.2: Energy Consumption of HVAC Systems [34]
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When data volume and flow rate is not very high, data can be handled easily with old

methods like RDBMSes. However, as these parameters increase, handling the data

gets harder and more expensive in terms of time and money. For an HVAC EOS,

several sensors are deployed in a floor in order to just collect data. If the system is

set up all around a city with one million population, it makes more than a few mil-

lions of sensors. In addition to data collection, there will also be nodes for controlling

the HVAC equipment remotely. Considering this amount of data generating compo-

nents, only the data collection rate and data amount will exceed performance limits

of traditional methods.

In order to implement and set up HVAC EOS in large scale, these problems need to

be solved properly. Moreover, as the energy needs of the world increase, optimizing

HVAC systems efficiently will save lots of energy and resources. Since HVAC EOS

operate on real-time data, they have strict operational and performance requirements.

In order to meet those requirements, problems caused by data volume and rate need

to be solved. Here are some of the challenges that are caused by huge data amount

and rate:

• In an HVAC EOS, there are several types of data-generating devices and each

device generates data in different format even if devices generate data for same

agent. Therefore, organizing this kind of data in a single table is not possible

with relational databases.

• Storing huge data volumes in RDBMSs cannot meet performance needs.

• Even if data are stored efficiently somehow; analyzing, processing and visual-

izing this huge data efficiently are other important problems.

We decided to focus on these problems and conduct this research because there was

no clear solution for a complete HVAC EOS in the literature. Contributions of this

thesis are in a few different topics. First, this thesis describes relation of HVAC EOS

and BigData technologies. Then, it defines data organization, retrieval and processing

needs, operational and performance requirements of an HVAC EOS system formally.

Finally, it proposes a final software architecture. In order to do these contributions,

first this thesis defines BigData and NoSQL technologies. Then, describes how they
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are related to the energy domain and HVAC EOS. After that, details of HVAC EOS is

expressed in a formal way. Tools and technologies that are used for BigData solutions

are analyzed in detail and some popular tools and frameworks are examined and com-

pared. These include NoSQL databases and distributed data processing frameworks.

Rather than focusing on high-level cloud structure or low-level architectural solu-

tions, we proposed several software architectures for different use-cases. After these

proposals, test results with different tools are presented. Depending on the results,

characteristics of tools are discussed. Moreover, which tool is better for what kind of

purposes is explained. Consequently, analysis of proposed architectures and tests are

discussed in detail and an optimal software architecture is proposed, considering the

requirements of the HVAC EOS.

Rest of the thesis is organized as follows: In Chapter 2, BigData and NoSQL are

defined. Then, technologies related to them are described with technical details. In

Chapter 3, previous researches related to this topic are presented. We analyzed what

previous studies achieved and what is missing in them. Then, in Chapter 4, a reference

HVAC EOS is described in detail. After presenting technologies and the system, in

Chapter 5, several software architectures were proposed for different needs of the de-

scribed HVAC EOS. Then, in Chapter 6, first the testing environments are described.

Next, several tests are performed with the tools used in 5. After the tests, results are

presented and they are discussed in detail. After discussing the results, according

to the results obtained, we illustrated an optimal software architecture. Finally, the

thesis is summarized and remaining works for the future are given in the conclusion

chapter (Chapter 7).

5



6



CHAPTER 2

BIGDATA FOR HVAC ENERGY OPTIMIZATION SYSTEMS

BigData is a term used for very large data sets. These sets are so large or complex

that traditional methods for storing and processing data are either inadequate or very

inefficient. All over the world, data sets are growing rapidly because the equipment

that generates digital data gets cheaper and data sources get widespread. These data

sources include information-sensing mobile devices, software logs, cameras, micro-

phones, RFID readers and wireless sensor networks [37].

Traditional RDBMSs and data processing and handling mechanisms often have dif-

ficulty in handling BigData. According to Adam Jacobs, the processing such huge

data sets requires "massively parallel software running on tens, hundreds, or even

thousands of servers" [28].

How much data are considered “BigData”? Answer of this question depends on who

is and answering and when. Currently, if a data set is over a few terabytes; it is clas-

sified as big data [38]. The size limit for big data is where a data set is so large that

it extends multiple storage units. Another parameter for the size limit is where tradi-

tional RDBMS technologies begin to have a hard time handling the data set. These

parameters depend on the technology of physical devices, of course. As technology

develops and devices get stronger, the limit gets higher but still there is a limit. At

some point, horizontal scaling is needed for better performance. BigData is often de-

scribed with its several Vs, which define characteristics of a data set. Here are some

of the important Vs that define BigData:

Volume, refers to the size of the gathered data. Considering the whole Web, enor-
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mous amount of data are generated and shared every day. Just on Facebook,

billions of new messages are sent and millions of new pictures are uploaded ev-

ery day. Storing and processing this much data are not possible with traditional

data storage and processing techniques. The big data technology enables us to

store and use this data with severing different techniques of data storage and

retrieval. For example, it stores parts of the data at different physical locations

and combines them with software when needed.

Velocity, means pace of generation of new data and movement of existing data be-

tween nodes. Thinking of the messages in Facebook, which is mentioned

above, we can have an idea how much data movement occurs.

Veracity, refers to accuracy of the data. While the gathered data amount increases,

lots of useless, corrupted or abnormal data are also generated. Thanks to the

new BigData technologies, we are able to handle and clean these unnecessary

data.

Variety, refers to different sources and types of data generated. In traditional sys-

tems, format of most of the data are predefined and fits into rectangular tables.

All rows of a table are in same structure and have same columns. However,

most of the world’s data are becoming unstructured like photos, messages, con-

versations, data from different sensors etc. Therefore, data does not fit into

predefined rectangular tables. A new column may arise anytime. Big data tech-

nology helps us to store and retrieve various data together.

Volatility, means for how long a data should be considered as valid and how long

it should be stored. Purging the unnecessary data will relieve the system as it

may save a lot of space.

Value, means business value of the data, not numeric value. Technology allows us

to cope with all other Vs of big data, however if we cannot use the data to

interpret something out of it or assign a meaning to it, those data are not good

for anything. Big data technologies are useful as long as we can extract a value

out of it, else those data are useless.

Variability, means inconsistencies of value or meaning of data at different times or

in different concepts. For example, if one is performing language processing,
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a word may define different things in different sentences. Or a numeric value

of a system may be classified ’very low’ in the morning and ’very high’ in the

evening. Therefore, in situations like this, data need to be classified depending

on its meaning, rather than its value.

Visualization, refers to visual representation of the collected big data or results ex-

tracted from it. Visualization is one of the key parts of decision making. With-

out a good visualization model, it would be very hard to interpret meaning of

the flowing data. Moreover, big data can be accessible only be visualizing it

properly. Raw big data cannot be read and understood.

Before moving to big data solutions, some concepts about traditional RDBMS and

NoSQL design needs to be clarified.

2.1 ACID Properties in Relational Databases

In computer science, ACID is an abbreviation used for a list of properties that assure

reliable processing of database transactions. These properties are present in most of

the traditional RDBMSs. Andreas Reuter and Theo Härder, called this property set

ACID in 1983 [27]. They defined these properties as following:

Atomicity: Each transaction has to be atomic. It means if a transaction is success-

ful, all parts of it is completed successfully; if any part of it fails, the entire

transaction fails and database content and state is left unmodified. An atomic

database must assure in every situation including software failures, hardware

failures, energy shortages etc. parts of a committed transaction is inseparable.

Consistency: At the end of each completed transaction, either successful or unsuc-

cessful, database is left in a valid state. Any operation in the database must

be valid according to all of the defined rules. These rules include constraints,

cascades, triggers, and any combination of these. This property does not assure

transaction validity. However, it assures that no application-level programming

errors violate defined database rules. Consistency property also ensures that
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any changes to values in an instance are consistent with changes to other values

in the same instance. There are four consistency levels [26]:

· Degree 0 - a transaction does not overwrite data updated by another user

or process ("dirty data") of other transactions.

· Degree 1 - degree 0 plus a transaction does not commit any write until it

completes all its writes (until the end of transaction).

· Degree 2 - degree 1 plus a transaction does not read dirty data from other

transactions.

· Degree 3 - degree 2 plus other transactions do not read dirty data before

the transaction commits.

Isolation: Any operation within a transaction is hidden from other transactions that

are running concurrently. Isolation is ensured by use of synchronization meth-

ods. Isolation property ensures that both concurrent and serial execution of

transactions results in the same system state. Depending on the implementation,

effects of an unsuccessful transaction might be invisible to other concurrent

transactions. The four consistency levels also define isolation level between

transactions.

Durability: Once a transaction is completed and its results are committed to the

database, the system guarantees that results of the transaction survive any mal-

functions and they are stored permanently. In order to survive through hardware

failures and power loss, transaction results must be stored in a persistent mem-

ory.

2.2 CAP Theorem

CAP theorem, also known as Brewer’s theorem, is first presented as a conjecture by

Eric Brewer at the 2000 Symposium on Principles of Distributed Computing (PODC).

In 2002, a formal proof was published and the conjecture was rendered as a theorem

by Seth Gilbert and Nancy Lynch [25]. However, it is not completely accepted as a

theorem and argued.
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Theorem states that a distributed system has three desirable properties, which are:

Consistency, means a read sees all previously completed writes and all nodes see the

same data at the same time.

Availability, means every read and write request receives a response about result of

the request, either a success response or failure response.

Partition tolerance, means system continues to provide guaranteed services and prop-

erties even if a partial network failure occurs and prevents some machines from

communicating each other or cause some messages to be lost on the way.

Figure 2.1: Graphical representation of CAP Theorem

The theorem states that a distributed computer system cannot provide all of the prop-

erties above simultaneously. This impossibility enforces choice of two out of three

CAP properties and leaves three viable design options: Consistency-Availability,

Consistency-Partition Tolerance and Availability-Partition Tolerance. Further consid-

eration shows Consistency-Availability is not a logical option. Because, if a system is
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not partition-tolerant, it will be forced to give up Consistency or Availability at some

point [25]. Therefore, a more modern interpretation of the theorem is: during a net-

work partition, a distributed system must choose either Consistency or Availability

[9]. Graphical representation of CAP theorem is shown in 2.1.

2.3 BASE Properties

BASE is an alternative property set and database model to ACID. Characteristic prop-

erty of BASE systems is they provide eventual consistency. BASE model is embraced

by NoSQL databases. BASE can be described as opposite of ACID. While ACID

forces consistency for every operation, BASE accepts database consistency to be in a

soft state. BASE is an abbreviation of following properties:

Basic Availability: This property states that service will be available even in the

presence of multiple failures among the system. There will be a response to

any request. That response could be failure to retrieve data but service is still

responds. Even if a malfunction disrupts access to some part of the data, it will

not cause a complete system failure.

Soft State: State of the system could change over time, even if there is no transaction

at the moment. System might be sending messages to nodes provide guaranteed

properties, such as eventual consistency.

Eventual Consistency: The system will eventually be in a consistent state once it

stops receiving input. Received data will propagate through whole system at

some point. However, there is no guarantee about when system will be consis-

tent, because it continues to receive input and does not check overall consis-

tency before moving on to processing the next input.

2.4 NoSQL for BigData

The word NoSQL is combination of two words: No and SQL. The term is usually in-

terpreted as “Not only SQL”. Some have proposed the term NonRel as an alternative.
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Basically, the term NoSQL implies that it is a technology that counters standard SQL

or traditional RDBMS logic. NoSQL refers to a class of products and technologies

about storage and manipulation of data, rather than a single product or technology.

Traditional RDBMSs have very solid place in most organizations. They meet the

needs of legacy applications and are enough to store and process organization-wise

data. However, as the data volume increases, mostly for massive web-scale and IoT

data, there emerge problems for RDBMSs. Companies begin to look for alternatives

to legacy systems in order to increase the performance beyond capabilities of exist-

ing systems or implement a cheaper solution. At this point, a new concept called

“BigData” rises and its solutions come in handy.

As the use of the Internet gets widespread, it began to be used in every area. Conse-

quently, overall data size flowing around the internet began to increase exponentially.

Here are some problems of huge data sets that is hard for RDBMSs to handle:

· An RDBMS stores relational data. Handling relationships of multiple massive-

sized tables is expensive.

· RDBMSs have predefined tables for data; however in the modern Internet and

IoT, there are very different types of data. If we create a table for each data

schema, we will need to handle lots of tables and their relations.

· An RDBMS sticks to ACID properties, namely meets only ‘Consistency’ prop-

erty of CAP theorem. RDBMSs are available as long as it can handle the traffic

but almost never susceptible to ‘Partition Tolerance’. This means an RDBMS

is only vertically scalable.

· When hierarchical storage is needed, an RDBMS cannot handle that kind of

data. Developer has to link them using relations among tables or rows.

· RDBMS data are hold and operations are executed in hard drive, which throttles

the performance when there are multiple operations occurring concurrently.

NoSQL technology aims to solve these problems, but also has a price of course. Here

are some situations where RDBMS is a better than a NoSQL database:
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· RDBMS technology has a long history. Therefore, it has greater commu-

nity and supported by greatest companies like Microsoft, IBM or Oracle. So

RDBMSs have better customer support while NoSQL systems are mostly sup-

ported by start-ups except a few exceptions.

· Most NoSQL data stores do not support an SQL-like language. Even if they

have, their functionality is not anywhere near traditional SQL. So RDBMS is

still better for query coding in query intensive environments.

· If we need to keep relations among different tables and query accordingly, it is

very easy to do with traditional SQL with join operations. Most of the NoSQL

data stores do not support join operations. Therefore, common data have to be

duplicated in all relevant rows.

· In high transaction based applications, RDBMSs are still better choice since

they focus and guarantee atomicity, consistency and integrity of the data.

· If any of the ACID properties are critical for the application, RDBMS is better

choice.

NoSQL databases aim to solve big data-related problems by providing different stor-

age and data retrieval mechanisms than traditional RDBMSs. Some of the mechanism

differences implemented by NoSQL databases:

· They do not use relational data model. They are specialized to store unstruc-

tured data while RDBMSs store structured data.

· By the nature of their design, NoSQL databases works very well on distributed

clusters. Moreover, adding and removing nodes to the system is very simple.

Eventually, more performance can be gained by adding nodes to the system.

Nodes can be cheap ones. With multiple cheap nodes, one can gain perfor-

mance more than a very expensive single node RDBMS, with much less total

cost.

· Data amount stored on an RDBMS is mainly depends on physical memory of

the system. On the other hand, NoSQL databases do not have such limits as
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they can be scaled horizontally. Total storage limit is total storage of nodes in

the cluster, and it can be increased and decreased easily.

· RDBMSs use fixed schema and data model. NoSQL databases have different

categories based on their data models. For example; key-value store, document

store, column-based data store. Appropriate one can be chosen for an applica-

tion.

· Most NoSQL databases have caching facility integrated. By caching data in

system memory, they boost input/output performance.

· NoSQL databases favor partition tolerance over consistency and atomicity. They

mostly stick to BASE model. Partition tolerance is not an option; it is present by

their nature. However, level of consistency and availability may change among

different products.

2.4.1 NoSQL Database Types

NoSQL databases are categorized depending on their data model. Here are the most

common ones:

2.4.1.1 Key-Value Stores:

Databases of this type use a map or dictionary-like data model. This is the simplest

model among others. Each data record is stored with a corresponding key that points

to actual value. Therefore, a key can exist at most once.

Key-value stores have different types depending on data management properties.

Some of them support storing the data in memory. Some others support ordering

of keys, allowing efficient query of a range of keys.

Key-value stores usually provide three basic operations:

· Get(key), returns value pointed by the key.
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· Put(key, value), inserts the key-value pair as a new record or overrides if key

exists.

· Delete(key), removes the entry associated with the key.

The most used examples of this category are Riak, Redis and DynamoDB:

Riak is a distributed NoSQL key-value store, written in Erlang. It provides mecha-

nisms for high availability, fault tolerance, operational simplicity, and scalabil-

ity [18]. It has both open source, enterprise and cloud storage version, which

are supported by Basho Technologies. It implements principles and techniques

from Amazon’s Dynamo paper. Riak is licensed with a freemium model.

Redis is an open source key-value store, which is currently sponsored by Pivotal

Software. It has bindings and libraries for lots of languages. Redis maps keys

to different types of values [17]. It supports abstract data types other than just

strings. For example lists of strings, sets of strings, hash tables with string keys

and string values. Redis holds the whole data in memory. In previous versions,

it has feature to store some of the data on the disk, however this feature is depre-

cated. It supports master-slave type of replication. A master node replicates the

data to several slave nodes. A slave node may be master to another slave. Redis

runs as a single threaded single process. Additionally, it provides expiration

mechanisms for keys.

DynamoDB is a fully managed key-value store service that is offered by Ama-

zon.com [13]. DynamoDB allows users to purchase throughput, rather than

storage like other Amazon.com services. DynamoDB offers Hadoop integra-

tion via Elastic MapReduce, which is another Amazon.com service. DynamoDB

can store and retrieve any amount of data and serve any level of traffic. It

spreads the data and the traffic over sufficient number of servers to handle re-

quested throughput and data amount. All data are stored on solid state disks

(SSDs) and automatically replicated across multiple physical locations. There

is almost no maintenance cost for DynamoDB, just throughput cost. When user

creates a table and specifies throughput, there is nothing else to do. Users do

not have to watch hardware, do the setup and configuration or worry for cluster
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scaling. There is no storage limit. DynamoDB scales itself according to the data

amount. For partitioning, consistent hashing is used. There is no master node

in DynamoDB. Replica synchronization is decentralized. Provides both strong

and eventual consistency. It is configurable for each query. Additional primary

keys can be defined. When retrieving data by primary key, retrieval is very fast

and speed almost always constant. When transferring data from DynamoDB to

a client, data are transferred in JSON form. Therefore, total number of trans-

ferred bytes for a query is size of JSON representation of the object returned,

which may be disadvantage in some situations. Because, as number of items

in a response increases, the transfer time also increases directly proportional.

It allows two types of primary keys to be defined: hash type primary key and

hash and range type primary key.

Hash type primary key: The primary key consists of only one attribute (col-

umn). An unordered hash index is built on the primary key attribute. A

unique hash key identifies each item. Only get operation is supported

while using this primary key.

Hash and range type primary key: The primary key consists of two attributes,

one is the hash attribute and the other is the range attribute. An unordered

index is built on the hash key and a sorted index is built on the range key.

An item is identified by these two attributes together. While using this

primary key, user can issue range queries based on range index.

DynamoDB supports secondary indexes as well. In addition to get and query

operations, there is another operation supported, scan operation. In scan opera-

tion, each item in the tables is visited and if it satisfies the provided condition,

it is returned.

2.4.1.2 Document Databases:

Documents databases stores data as ’document’s. A document may contain many

different key-value pairs, key-array pairs or nested documents. Data are encoded in

some standard format or encoding like XML, YAML, JSON or BSON. Contents of

the documents do not have to be structured in the same way.
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Documents in the database are accessed via a unique key that is associated with

the document. A document can be queried with this unique key like a simple key-

document lookup or based on their contents. Document databases keep attribute

meta-data to allow querying based on document contents.

The most common examples of this category are MongoDB and Apache CouchDB:

MongoDB is a document-oriented data store. It holds data in BSON format, which is

similar to JSON in dynamic schemas. MongoDB is free and open source [15].

It supports search by specific fields, range queries and regex searches. Queries

can return specific fields rather than whole document. Any field can be indexed

manually. It uses replica sets as replication strategy. Primary and secondary

replicas store the exactly same copy of the data. By default, primary replica

performs all reads and writes. When a primary replica fails, one of the sec-

ondary replicas is chosen as primary. Secondary replicas can perform read op-

eration, however in this situation data will be eventually consistent. JavaScript

functions can be used in queries. They are executed on database.

CouchDB is an open source document-based data store. It focuses on ease of use. It

stores data in JSON format, uses JavaScript as query language and MapReduce

and HTTP as API [3]. It implements ‘Multi-Version Concurrency Control’,

meaning conflicts are left to application to resolve. It provides document-level

ACID properties with eventual consistency.

2.4.1.3 Wide-Column Stores (Column-Based Databases):

These databases are optimized to store and process very large data sets distributed

over many machines. Column stores store the columns of data together, rather than

rows. This allows very quick access to any specific column in a row.

At higher level, each table holds key-row pairs and each row contains key-value pairs.

However, a key of a row can consist of multiple columns. Since the columns are

stored together, when only specific columns are needed, not all columns have to be

transferred. This method allows very fast access even if a row contains hundreds or

thousands of rows.
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Databases of this type are very useful for data sets that have very large and varying

number of columns. The most common examples of this category are Apache HBase

and Cassandra:

HBase is an open source data store written in Java. It implements the principles in

Google’s BigTable. It runs on HDFS and provides BigTable-like capabilities

for Hadoop [5]. The tables of HBase can be supplied to MapReduce tasks of

Hadoop as input or output. Row operations are atomic, with row-level lock-

ing and transactions. Data are partitioned by range. Multiple versions of data

are stored with timestamps, in order to resolve conflicts. Queries can be per-

formed by key lookups or MapReduce jobs. In CAP theorem, HBase covers

Consistency and Partition Tolerance properties.

Cassandra is an open source column-based data store. It can handle very large

datasets, provides high availability with no single point of failure and asyn-

chronous masterless replication [2]. Consistency level can be modified for each

query. Primary key can consist of multiple columns. The first column of the

primary key is used as partition key. Data are distributed among the cluster

according to the partition key. Rest of the columns of the primary key is used

as clustering key. In a partition, data are sorted and stored according to cluster-

ing keys. Any other column can be indexed separately from the primary key.

Every node in the cluster has the same role. Replication strategy and factor is

configurable. MapReduce is supported with Hadoop and Spark integrations.

Apache Pig and Apache Hive are also supported. Cassandra provides an SQL-

like query language called CQL (Cassandra Query Language). There is no

locking mechanism in Cassandra. The replicas are updated asynchronously. It

supports supercolumn concept, which is another level of column grouping. For

partitioning, consistent hashing is used. Any operation on a row is ‘atomic per

replica’. Depending on the load of servers in the cluster, nodes are moved on

the consistent hash ring in order to balance processing load of the nodes. Data

are persisted to local files instead of a distributed file system.
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2.4.1.4 Graph Stores:

Instead of a data model consisting of tables, rows and columns, a flexible graph model

is used. Data can be easily transformed by modifying connections in the graph.

· Graph stores use edges and nodes to represent and store the data.

· Nodes are organized according to their relationships with other nodes. The

relationships are represented by edges between nodes.

· Nodes and edges have defined properties.

Databases of this type are useful for storing graph like data. For example, network

topology, social relations and road maps.

The most common example of this category is Neo4J. This category is not suitable for

our case and operational scenarios. Therefore, this category is out the scope of this

research and there will not be detailed information, tests or evaluation about graph

stores.

2.4.2 Comparison of Selected Databases

During tests of this research, DynamoDB and Cassandra will be used for tests as del-

egates of their categories. DynamoDB is chosen for its ease of deployment and man-

agement. In addition, DynamoDB has direct and easy integration with other Amazon

Web Services products like Amazon EMR (Elastic Map-Reduce) and Apache Hive.

Cassandra is chosen between two most popular column-based databases: HBase and

Cassandra. Cassandra is preferred because it favors ’Availability’ and ’Partition

Tolerance’ while HBase favors ’Consistency’ and ’Partition Tolerance’. Moreover,

HBase has row-level locking for synchronization, which is an unwanted feature for

our case. In the example system described in 4, consistency is not as important as

availability since there is not any concurrent update operations on a single row, only

concurrent reads may occur and this does not affect data consistency. This section

will compare selected databases’ consistency and query possibilities provided to the

user.
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2.4.2.1 Consistency

Both of them offer configurable consistency levels. DynamoDB has two consistency

modes: eventual and strong consistency. In eventual consistency mode, the read data

may not be up to date or exist on all of the replicas. Therefore, user may receive out

of date data. In strong consistency mode, system waits for an answer from all of the

replicas before returning to the user. This guarantees that if a data record is written to

any of the replicas, that data will be retrieved. Cassandra has more consistency levels

that can be configured. These are:

ONE: Data must be written to or read from at least one replica node.

TWO: Data must be written to or read from at least two replica nodes.

THREE: Data must be written to or read from at least three replica nodes.

ALL: Data must be written to or read from all replica nodes in the cluster for that

partition.

EACH_QUORUM: Data must be written to or read from a quorum of replica nodes

in all data centers.

QUORUM: Data must be written to or read from a quorum of replica nodes.

LOCAL_QUORUM: Data must be written to or read from a quorum of replica

nodes in the same data center as the coordinator node. This mode avoids the

latency of inter-data center communication.

LOCAL_ONE: Data must be written to or read from at least one replica node in the

local data center.

ANY: This mode is available for write requests only. A write must be written to at

least one node. Even if all of the nodes for the given partition key are down,

write can still succeed after a hinted handoff has been written. Hinted handoff

is a mechanism for detecting nodes that are down and retrying the write request.

For both databases, these consistency levels can be configured for each request.
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2.4.2.2 Query Types

Dynamo supports two types of primary keys. Hash key or hash and range key to-

gether:

· Hash Type Primary Key: In this case the primary key is made of one attribute,

a hash attribute. DynamoDB builds an unordered hash index on this primary

key attribute.

· Hash and Range Type Primary Key: In this case, the primary key is made of two

attributes. The first attribute is the hash attribute and the second one is the range

attribute. DynamoDB builds an unordered hash index on the hash primary key

attribute and a sorted range index on the range primary key attribute.

Since DynamoDB is a key-value store, supported operations are relatively simple. It

supports three types of operations for data retrieval: Get, Query and Scan. The Query

operation enables user to query a table using the hash attribute and a range filter. If

the table has a secondary index, user can also Query the index using its key. One can

query only tables whose primary key is of hash-and-range type; also any secondary

index on such tables can be queried. If primary key is only hash type, only rows of

specific keys can be retrieved rather than querying multiple rows. This operation is

called Get. Query and Get is the most efficient way to retrieve items from a table

or a secondary index. DynamoDB also supports a Scan operation. This operation

reads every item in the table or secondary index and returns ones that satisfy the

given conditions. For large tables and secondary indexes, a Scan can consume a large

amount of resources. Scan operation is useful when retrieving very large amount of

items from the table or retrieving data by non-indexed attributes.

Cassandra uses an SQL-like language: CQL (Cassandra Query Language). Insert

queries are almost same as SQL except for a few syntactic differences. The differ-

ent part is select operation. Select supports basic operations of select in SQL like

specifying columns to select, retrieving count, etc. However, it does not support join

operations.
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Cassandra supports compound primary keys. First column of the compound key is

used as partition key and others are used as clustering key. Node of the data is decided

by partition key and ordering is performed by clustering keys. In order to query for

a compound key, user does not have to provide all of the key columns. However, in

order to query for a column, user has to provide key columns, which are before that

column in the primary key definition.

Partition key column supports only equality operation. In Cassandra, partitioner

classes are responsible for deciding what data is placed on which nodes in the cluster.

It is supported only if partitioner is an ordered one, but that type of partitioners are not

good for partitioning data equally over the cluster. Clustering key columns supports

=, <, >, <= and >= operations. ‘IN’ operation is supported wherever equality operator

is supported.

Cassandra has an “ALLOW FILTERING” operator. This operator is used to force

Cassandra to execute a query that may be expensive. These queries are only can be

executed by retrieving all of the rows and then scan them for the given condition. For

example if someone tries to query only for a range of values of a clustering column

(usually >, <, <= and >= operators) without providing a complete key, Cassandra

cannot retrieve them by their unique key. It has to retrieve all relevant rows and

scan them. If user knows what he/she is doing, ‘ALLOW FILTERING’ clause forces

Cassandra to execute the query.

2.4.3 Apache Hive for BigData Platforms

Data warehouse is a central system to integrate and access data from one or more

separate sources. Apache Hive is a data warehouse software designed for storing and

accessing data in BigData platforms. It enables querying and managing large data

sets residing in distributed storage [6]. It runs on a Hadoop cluster and it provides

following features:

· Mechanisms to work with different data sources.

· Access to files stored directly in HDFS.
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· Query execution via MapReduce.

Hive has a simple SQL-like query language called Hive-QL. This language also al-

lows programmers to plug in their custom mappers and reducers to perform complex

analyzes, that is not supported by built-in capabilities, on data. Hive can store data

either itself or define external tables to connect to other NoSQL data stores like Dy-

namoDB or Cassandra. If the connected database does not support an SQL-like lan-

guage or user is not familiar with it, Hive provides an easy language to user in order

to access data.

Hive is suitable in following situations:

· Data access operations which are not possible or takes very long time with

traditional methods.

· User wants to execute the query with map-reduce paradigm.

· User wants to implement custom mapper and reducer and process the data while

executing the query.

Since Hive runs on a Hadoop cluster, its operations include two-stage disk operations

and a lot of data movement is needed since data are distributed over HDFS. These

characteristics bring a lot of overhead. Therefore, if data amount is small, executing

it on Hive might bring large overhead instead of performance gain. Therefore, Hive

is suitable for processing huge data sets in background. For user interactions and

operations that need rapid response, it is better to use some other method.

2.4.4 BigData Processing

As described before, storing and processing BigData are very hard with traditional

technologies. In order to store big data, NoSQL technologies was defined before. In

this section, technologies for processing big data will be described.
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2.4.4.1 Batch Processing with Map-Reduce

MapReduce is a programming model designed for processing and generating large

data sets with a parallel and distributed algorithm that runs on a cluster [22]. Map and

reduce functions are commonly used in functional programming. Although their pur-

pose is not the same as MapReduce, they inspired the MapReduce model. In MapRe-

duce, the main improvement of these functions is scalability and fault-tolerance pro-

vided for applications that work on BigData by optimizing the execution engine. In

other words, this model will not result in faster execution if it is used in a single-

threaded environment or application.

MapReduce framework is composed of two main procedures that needs to be imple-

mented by the application: Map and Reduce procedures. Map procedure performs

initial filtering and sorting on key-value pairs that are provided as an input to the sys-

tem. Then, it sends it to associated reducer. Reduce procedure takes output of map

operation as input. It performs summary operation by processing the provided input.

MapReduce operation can be defined in three steps: Map, Shuffle and Reduce. With

intermediate details, we can describe the whole operation in seven steps [22]:

1. The MapReduce framework first splits the input files into M pieces (typically

16 MB to 64 MB, configurable via an optional parameter). Then, it starts copies

of the program distributed over the whole cluster.

2. One of the copies of the program is master. It assigns work to the other workers.

Between M map tasks and R reduce tasks, master picks idle workers and assigns

them a task to execute.

3. When a worker is assigned a map task, it reads the content of the input split as-

signed to that map task. It parses key-value pairs from the input data and passes

each pair to map function that is implemented by the user. Then, intermediate

key-value pairs are produced by the map function and they are buffered in the

memory.

4. Buffered intermediate pairs are written to the local disk periodically. They are

partitioned into R regions, which are decided by the partitioning function. The
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locations of the buffers on the local disk are sent to the master. Master knows

location of all of the pairs and forwards these locations to the workers when

assigning a reduce task.

The master node tries to distribute the tasks uniformly over the cluster for load-

balancing purposes. Otherwise, the whole operation might end up waiting for

specific slow reducers. A typical and simplest partition function is to hash the

key and use hash value modulo the number of reducers. The partition function

might be more complex. The key responsibility of the partition function is

uniform work distribution.

5. When master assigns a reduce task to a worker it passes location of data to be

processed. The worker reads the data from the local disk of the map worker.

When the whole data are read, the worker sorts it by the intermediate keys pro-

duced by the map worker. The sort operation is performed in order to group

the entries with the same key together. This step is called shuffle. Many dif-

ferent keys may be mapped to the same reduce task, that is why sort is needed.

Sorting is done using an external sort if data does not fit in the memory.

6. Then, the reduce worker begins to iterate over the sorted intermediate data. For

each unique key, the key and the corresponding set of values is passed to the

reduce function defined by the user. After each function call, output of the

reduce function is appended to an output file for each reduce partition.

7. When the entire map and reduce tasks have been completed, the master nodes

sends signal to the user program that executed the mapreduce call. Then, the

user program wakes up and continues to execution.

Graphical representation of MapReduce processing steps is given in Figure 2.2.MapRe-

duce frameworks may have different implementations. The most common frame-

works are Apache Hadoop and Apache Spark.

Apache Hadoop is an open-source MapReduce framework written in Java for dis-

tributed storage and processing of very large data sets on computer clusters [4].

Hadoop assumes hardware failures are very common and focuses on automatic han-

dling of such failures. Hadoop has two main components. The first one is storage
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Figure 2.2: Domain Engineering and Application Engineering [22]

part (HDFS) and the second one is processing part (MapReduce). Processing steps of

Hadoop are the same as the common MapReduce steps described above.

Apache Spark is another open-source framework for cluster computing [7]. While

Hadoop performs two-stage MapReduce operations on disk, Spark processes data

completely in main memory. Therefore, Spark provides a lot of performance gain for

certain applications. In some situations where data does not fit in main memory, Spark

can process some of the data on-disk. Unlike Hadoop, Spark does not write result of

every map task to the disk. Processed data stays in the memory until commanded

otherwise by the application. This difference is the main reason of speed difference

between Hadoop and Spark. Spark uses a cluster manager and distributed storage

system. Standalone mode (native Spark cluster), Hadoop YARN, and Apache Mesos

are supported for cluster management. For distributed storage, Spark provides HDFS,

Cassandra or Amazon S3 integration. Spark has SQL and Streaming components as

well. Spark SQL provides support for structured data and enables to connect to an

Apache Hive cluster and use it as data storage. Spark streaming module enables
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spark to process streaming data. It works by applying mini-batch operations over

incoming data in very small intervals. Thanks to this design, the code written for

batch operations can be used for stream analysis as well.

To summarize, the most important difference between Hadoop and Spark is Apache

Hadoop processes the data on a distributed HDFS, while Apache Spark imports data

into memory and performs processing completely in memory.

2.4.4.2 Stream Processing

Stream processing is a paradigm designed to automate the task of analyzing and act-

ing on real-time streaming data. Stream processing paradigm deals with data while it

is moving, before it has been persisted on a storage unit.

As the number of intelligent and data generating devices increase rapidly, data amount

sent to the servers and data flow speed increase dramatically. In the meantime, tech-

nology requires incoming data to be analyzed as it arrives, almost in real-time. Stream

processing frameworks enables us to do this kind of analysis.

In traditional computing, the data are first stored and indexed, then processed by

queries. Stream processing takes flowing data while it is on its way to the server and

applies analysis and transformations before it is written to the disk. Depending on

the result of each analysis, system might take an action almost in real time against

pre-defined situations.

Stream processing nodes can be configured to work like a pipeline or a single node.

Some nodes may take action depending on the characteristics of incoming data, while

some others transform data from one form to another. Output of a node may be input

to another node or it can be directly written to the disk. At the end of the pipeline, data

analysis is completed and data can be persisted on the disk. Here is a visualization of

data streaming pipeline:

Stream processing is suitable for applications with following characteristics:

· Computation intensity (high ratio of I/O operations)
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· Allowing parallel processing of data.

· Data are continuously fed from producers to consumers and data pipelining can

be applied to flowing data.

Figure 2.3: Domain Engineering and Application Engineering (adopted from [11])

Stream processing techniques are often applied to applications that process contin-

uously flowing time-series data. Today, this technique is applicable to almost every

industry, assuming as IoT technologies are going to develop rapidly and volume, va-

riety and velocity of the data will increase dramatically. Stream processing methods

are used widely in following industries where data flow is continuous: network moni-

toring, intelligence and surveillance, risk management, e-commerce, fraud detection,

pricing and analytics, market data management and many more.

The most famous and common stream processing tools are Apache Storm, Amazon

Kinesis and Apache Spark. Apache Spark is explained briefly in Section.2.4.4.1 as it

has both MapReduce and stream processing modules.

Apache Storm is a computation framework designed to work on a distributed clus-

ter [8]. Custom created ‘spouts’ and ‘bolts’ are used to define data sources and data

processors, respectively, in order to allow distributed processing of streaming data.

Topology of spouts and bolts is in the shape of a directed acyclic graph. Spouts and
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bolts are the vertices of the graph. Edges of the graph are named streams and they

carry data from one node to another. Spouts and bolts work together to create a data

transformation pipeline. A spout is source of streams. It reads data or generates some-

how and emits the data as a stream. A bolt can consume any number of streams. It

does some processing and then probably emits new streams. If a complex transforma-

tion needs multiple steps, each transformation is defined as a separate bolt and they

are pipelined. As data model, storm uses tuples. A tuple can be defined as a named

list of values. A field of a tuple can be any object. At higher level, storm can scale

to massive number of emitted messages per second. In order to scale up, only new

machines needs to be added to the cluster. Moreover, storm guarantees no data will

be lost. Anything enters the cluster gets processed. When a bolt processes a tuple, it

sends acknowledgement to its emitter.

Amazon Kinesis is a fully managed service for real-time processing of streaming

data at massive scale [1]. Interface of Kinesis is relatively simple. User purchases

throughput from Amazon and as long as the customer pays, requested performance is

provided. Data producers puts data into Kinesis. The base stream unit of Kinesis is

shards. Each shard provides fixed read/write throughput. Data are put into Kinesis by

partition keys. Partition keys determine which data will go into which shard. If there

is no partition key provided by producer, data goes into any shard. As data enters the

shard, a sequence number is assigned by Kinesis. This may be used by consumer to

determine the order of the data entering Kinesis. When reading data, readers read data

by partition numbers. So each consumers consume data of a single shard. Maximum

size of a single data unit can be 1 MB. There is no storage limit in Kinesis, just time

limit. Data does not stay forever, a consumer needs to process it before it is removed

from the stream. Data records are accessible for only 24 hours from the time they are

added to a stream.
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CHAPTER 3

LITERATURE REVIEW

A SmartGrid is an electrical grid that consists of various smart meters, renewable and

efficient energy resources. SmartGrid is operated and watched remotely by computer-

based systems. In domain of IoT and SmartGrid, a lot of researches have been done

and are being done. They are mostly focused on Cloud Computing frameworks and

their applications for Smart Grids. In this research, we will be studying HVAC EOS.

These systems are similar to Smart Grid applications at higher levels and they are a

subset of a Smart Grid. In both of them, there are large number of sensors deployed

in the field, large amount of data flows from these sensors and these data creates

the BigData. These data are analyzed for different purposes and using these data,

forecasting is performed about future. However, the difference is places of the sensors

and details of the analysis and forecasting algorithms. In Smart Grids, sensors are

deployed over the electric lines while in HVAC EOS they are installed on devices

running in a building. Smart Grid applications detect anomalies on the electric flow

while HVAC EOS applications detect over-consumption of devices of the building

and optimizes them. Therefore, a software architecture defined for a Smart Grid can

be applied to HVAC EOS with small modifications. Thus, Smart Grid studies in the

literature will be a reference for us along with HVAC and BigData related studies.

As a low level research, Sapna Tyagi et al. [40] studied a computing infrastructure for

IoT data processing. Her target area was architectural and major challenges of mas-

sive data generated by IoT. She first examines the characteristics of IoT data. Then,

present challenges of handling such large data sets. After analyzing the data, she de-

scribes some of the big data related technologies such as Apache Hadoop & NoSQL,
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Apache Hive, Apache Pig, and Apache Mahout. As the output of the study, she first

demonstrates the proposed data transformation model for incoming data. Then, she

proposes the main framework for managing the IoT data after transformations are

applied.

Zhiming Ding et al. [23], worked on a topic similar to Tyagi’s topic. He proposed

a Sea-Cloud-based Data Management mechanism. First, he analyzes the key chal-

lenges of managing the IoT data. Then, presents an overview of the SeaCloudDM ar-

chitecture and describe the database model. Different from the most of the IoT based

researches; he uses a relational database along with a key-value store. After that, he

describes data storage mechanism. Lastly, he discusses implementation issues and

performance evaluation of the system. He calls the data receiving and storing layer

as “sea-computing” since it works as counterpart of the “cloud computing”.

While previous researchers worked on low level characteristics of BigData, Li et al.

[30], proposed a higher level IoT data management solution called IOTMDB based on

NoSQL. She analyzed the IoT data characteristics and proposed the solution that sup-

ports storing massive and diverse data. She discussed storage strategies. Moreover,

she also analyzed and proposed data sharing mechanisms rather than just represent-

ing data. Finally, she studied index for stored data, query needs of an IoT system and

proposed query syntaxes accordingly.

Besides these researches, there are a lot of researchers focusing on higher level cloud

architecture design for Smart Grid applications. For example, Melike Yigit et al. [42]

worked on cloud computing systems and their application to the Smart Grids. First,

she focused on Smart Grid architecture and its applications. Then, she moved on to

the Cloud Computing architecture while discussing opportunities and challenges of

using Cloud Computing for Smart Grids. After the architecture, Cloud Computing is

introduced in terms of efficiency, security and usability for Smart Grid applications.

Technical and security analysis of Cloud Platforms’ are presented. Lastly, current

Smart Grid projects based on cloud services and open research issues are described.

According to her, some of the issues are: Security framework for SG applications,

Efficient Streaming with Clouds, Defining Communication Protocols and a Model

for Network Utilization and Timely Demand Response.
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As another research topic on Cloud Computing and Smart Grids, Sebnem Rusitschka

et al. [33], presented a data management model for Smart Grids. She first analyzed

popular Smart Grid use-cases. She stated that since most of the use-cases require

collaboration of organizations, network operators, energy service providers and end

users confidentiality and privacy in the design is at top priority. Then, based on the

use-cases, she proposes a data management model. She designs the model based on

the core characteristics of Cloud Computing such as distributed data management for

real-time data collection, parallel processing for real-time information access, and

omnipresent access.

Authors of [24] presented a Smart Grid information management paradigm using

Cloud Computing. They have analyzed gains of using Cloud Computing for informa-

tion management in Smart Grids. Then, they proposed a model to connect Smart Grid

and Cloud Computing domains. Finally, four application scenarios were presented.

Some researchers focused on capabilities of current Cloud Computing platforms and

their use-cases in Smart Grid domain. For example, Kenneth P. Birman et al. [20], an-

alyzed needs of the Smart Grid technology and capabilities of current Cloud Comput-

ing platforms. First, he presented needs of the Smart Grids with examples that show

large-scale computing has a key role in the smart power grid. Next, he described

the current state of the Cloud Computing and examined its abilities if it can fulfill

Smart Grids’ needs. Then, he discussed issues about using the cloud for building the

smart grid. He pointed advantages and disadvantages based on the current state of

the industry. He grouped smart grid computing into three categories and discussed

their needs. Those categories are: Applications with weak requirements, Real-time

applications, Applications with strong requirements. He pointed that today’s cloud

lacks the technology for the last category. Finally, he discussed a few specific and

important issues of cloud computing and smart grids and analyzed them deeper. As

a result, he introduced a problem: the gap between today’s cloud technology and real

needs of a Smart Grid. He leaves the solution to future work and presents a research

agenda.

These researches mostly focus on Smart Grid and Cloud integrations and capabilities

of cloud platforms for Smart Grid applications. About software perspective of Smart
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Grids, Yogesh Simmhan et al. [35] built a cloud-based software platform for data-

driven analytics and he shared his experiences. In the research, he described methods

he used for data ingestion, analyzing and forecasting. In the paper, he mostly focused

on detailed algorithms and implementation methods rather than used tools and how

the algorithms were applied to these tools.

In another research of Yogesh Simmhan et al. [36], they approached Smart Grid and

Cloud Computing from another view. While other researches focus on technical de-

tails, he analyzed security and privacy issues of Smart Grid architectures on different

cloud environments. He analyzed user, data, application and platform characteristics

that have effect on security and privacy of Smart Grid applications on Cloud Comput-

ing platforms. He classified the platforms according to their risk factors and presented

to the audience to reveal the risks.

In another research, researchers focused on sensor networks and energy analysis tools

on cloud. Authors of [32] studied the integration of an in-building sensor network

with a distributed Cloud environment. First, they described the development and use

of sensor clouds. Then, they examined EnergyPlus [14], which is a tool for run-

ning energy simulations. They expressed how to use Cloud Computing in order to

efficiently run and deploy EnergyPlus simulations and store its output. Finally, they

described how to build such a sensor cloud application using a CometCloud [10] im-

plementation that collects data from a real pilot building. While focusing on a single

building application, they generalized their application for similar scenarios.

Demand-Response systems are an important subsystem of Smart Grid systems. On

this topic, Authors of [29], proposed a cloud-based demand response (CDR) architec-

ture for fast response times in large scale systems. CDR supports data-centric com-

munication, publisher/subscriber and topic-based group communication rather than

master/slave communication in order to make the CDR secure, scalable and reliable.

They also proposed two distributed messaging algorithms. In the study, they first

described how does CDR satisfies the requirements of security, scalability and reli-

ability. Then, they discussed optimization algorithms for scalability, efficiency and

speed. Then, they proposed the two algorithms that improve the convergence speed

while keeping the messaging overhead the same.
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Aside from these high level architectural studies, there are several studies that work on

performances of NoSQL databases for BigData storage. For example, Rohan Narde

[31] studied and tested performances of several NoSQL databases. He set up differ-

ent levels workloads for NoSQL databases and tested some of the popular databases

under these workloads. In the end he presented the results.

In a similar study, Bogdan George Tudorica et al. [39] tested and compared NoSQL

databases from both qualitative and quantitative points of view. He presented features

of NoSQL databases, installation size measurements and performance measurements.

In the end, he presented test results.

All of the researches above seek solution to BigData storage and processing prob-

lems in a high architectural perspective or they describe or compare solutions for one

subsystem only. They define what kind of cloud can be used under what conditions,

analyze use-cases of cloud configurations, what type of components will be used at

what point and measure performance of databases only. However, they do not de-

scribe or define complete software solutions that provide functionality for all needs

of an HVAC EOS. None of them introduce a BigData management solution as a soft-

ware architecture. For example, some of the researches describe a cloud architecture

but do not mention which tools will be used and how they will be configured, or how

the database will be designed and optimized for different types of data sets. This re-

search aims to introduce an insight and propose a relatively low-level design and an

optimal software architecture for BigData management of HVAC energy optimization

systems.
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CHAPTER 4

A REFERENCE HVAC ENERGY OPTIMIZATION SYSTEM

This chapter will describe our reference HVAC energy optimization system in detail.

HVAC stands for heating, ventilation, and air conditioning. An HVAC energy opti-

mization system’s purpose is to determine the working parameters and scenarios of

the HVAC equipment in order to minimize the cost and maximize the efficiency. The

workflow of an HVAC energy optimization system is shown in Figure 4.1

Figure 4.1: Workflow of an HVAC EOS

An HVAC energy optimization system is a good example for a BigData system. It

collects data from lots of sensors, some of which collect data about the environment

and some others collect data about the devices running in a building. These sensors

generate the BigData of our system. This BigData has to be stored efficiently, so

this is the first challenge that the system encounters, and also a typical one for Big-

Data systems. After data is stored, it has to be queried and analyzed by concurrent
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processes. This processing is not performed easily and efficiently with traditional sys-

tems. Therefore, this is the second challenge that the system has to cope with. Again

this is also another typical challenge that BigData systems encounter. Consequently,

an HVAC energy optimization system is an appropriate reference for us to analyze

BigData.

In the following sections, high-level operational and performance requirements of the

system, details of data flow and detailed steps of data processing will be given. In

addition, data types used in an HVAC energy optimization system are defined.

4.1 Design Requirements

The architecture proposals of the system are going to be described in Chapter 5. How-

ever, interaction of the subcomponents with each other is already implemented and

depends on the tool, not the system design. However, the system has two points that

interacts with the outer world. The first one is the data visualization component, from

which user can interact with the system and display the data submit jobs. Communi-

cation of the client (user) and the system can be implemented in anyway. It may be

an XML or REST web service or even a socket. However, the other interaction point

of the system is not that flexible. The other point is the interface between the sensors

on the field and the HVAC EOS. Most of the sensors in the market communicates

through either MODBUS over TCP/IP or HTTP protocols. Therefore, the HVAC

EOS has to be able to communicate with both protocols in order to collect data from

the field.

4.2 System Attributes

We are going to discuss qualitative attributes of the system in three main topics:

Reliability of the System: The system has to display right data to the user 99% of

the time and do consumption and cost estimations correct up to 95% of the

time. The details of estimation operation is out of the scope of this thesis. It is

the job of the machine learning algorithms that run on the system.
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Availability of the System: The system has to respond to the user 100% of the time.

The result may have a few missing data from last few minutes since it will not

affect overall consumption and cost analysis too much. Moreover, the system

has to be able to collect data from sensors fast enough to not let any data to be

lost or overwritten by the sensor.

Security of the System: The system must not allow unauthorized access. In a cloud

environment, the cloud service provider has to guarantee this and in a local

cluster, system admin has to ensure that only authorized people can access the

data. In either case, details of the requirement is out of the scope of this thesis.

4.3 System Operation

This section will explain operations performed on the system and performance re-

quirements of them. In the further chapters, different system architectures will be

suggested for this system.

4.3.1 Operation 1: Static Building Energy Performance Simulation

This simulation is performed with EnergyPlus. EnergyPlus is an energy simulation

tool that enables building professionals to optimize the building design to use less

energy and water [14]. EnergyPlus calculates heating and cooling loads necessary to

maintain thermal control set-points and the energy consumption of HVAC equipment.

Program gives energy consumption and performance estimations as output.

As first step of the operation, the building is modeled with EnergyPlus simulation

tool. Inputs of the program are as follows:

· Weather conditions, including dry bulb temperature, relative humidity, global

horizontal radiation, wind speed, etc.

· Building structure characteristics, including shape, capacity, orientation, win-

dow/wall radio, fenestration/shading, building materials, thermal zones, etc.
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Figure 4.2: Inputs of EnergyPlus

· Occupants’ behaviors, such as number of occupants, their leaving and entering

time, thermal comfortable set points, ventilation, etc.

· Inner facilities and their schedules, like lighting and HVAC system, plug load.

Detailed inputs of EnergyPlus are shown in figure.4.2. After the simulation is com-

pleted, the program outputs energy consumption and performance predictions for the

building for different periods. These data will be stored in the database and will be

used in decision algorithms. Here is a simple pseudo-code of the operation performed

for static simulation:

1 f u n c t i o n s t a t i c S i m u l a t i o n {

2 b u i l d i n g D a t a = r e a d B u i l d i n g C h a r a c t e r i s t i c s ( )

3 w e a t h e r D a t a = r e a d W e a t h e r F o r e c a s t ( )

4 o c c u p a n t D a t a = r e a d O c c u p a n t D a t a ( )

5 d e v i c e D a t a = r e a d B u i l d i n g D e v i c e I n f o r m a t i o n ( )

6 s t a r t S t a t i c S i m u l a t i o n ( b u i l d i n g D a t a , wea the rDa ta ,

7 occupan tDa ta , d e v i c e D a t a )

8 }
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Use-case diagram for the operation is given in Figure 4.3 and sequence diagram is

given in Figure 4.4.

Figure 4.3: Use-Case Diagram for Static Simulation

Figure 4.4: Sequence Diagram for Static Simulation

Performance Needs For these operations there are no strict performance needs

since they are performed only once when building is first introduced to the system. A

typical simulation lasts for about 3 to 4 hours.

Performance Requirements of Queries Since this operation is performed only once

for each building, there are no strict performance requirements for queries. As all

of the required data is static information, there will be only read operations from

the database tables or data storage medium that store these data and queries will be
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performed fast enough. All of the four queries used in this operation shouldn’t last

more than 4 or 5 seconds.

4.3.2 Operation 2: Sensor Data Processing

After the simulation is performed, rest of the operations is based on the incoming

sensor data. These operations are performed continuously on predefined periods or

on user requests, different from the simulation.

4.3.2.1 Step 2-a: Data Preprocessing

The raw data are not ready for constructing forecasting model because some values

may be in wrong format. The data preprocessor receives various data streams from the

data aggregator and restructures them so that all the data fit the format required by the

Machine Learning prediction and business rule engine. The following preprocessing

tasks have to be performed on incoming data:

Fill missing data: The lack of some information may decrease the predictive effi-

ciency of the forecasting model. Recent data are scanned and the missing data

are filled by prediction.

Change data format: Data are collected every 5 minutes. So, an appropriate aggre-

gation function should be used to store aggregated data. For example, aggregate

data need to be stored aggregated hourly, daily and weekly.

Check data and system quality: In order to ensure that the machine learning sys-

tem is reliable all the time, the internal and external conditions, control ac-

tions, and the results of those actions should be evaluated using an automated

evaluator. The automated evaluation system receives data at multiple stages in

the system workflow. The evaluator employs intelligent real-time data quality

analysis components to quickly detect data anomalies (malfunctions of digi-

tal thermostats that interfere with temperature reading or introduce variances

from normal expected HVAC set-points) and gives feedback to building man-

agement, who can then respond appropriately.
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A visual representation of data flow is shown in Figure 4.5

Figure 4.5: Data Flow of a HVAC EOS

Here are the parameters and techniques of real-time analysis of data and system qual-

ity:

Thresholds: The thresholds define the normal working range of the specific data

points. If the data reading exceeds the thresholds at either the lower or up-

per bound, the data record will be flagged as anomalous and a corresponding

warning will be communicated back to the building operator.

Online Anomaly Detection Algorithm : Anomaly detection finds data instances that

are unusual and do not fit any established pattern. It concentrates on modeling

normal behavior in order to identify unusual data points. This system processes

the continuously updated data-streams to detect anomalies.
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Visualization: Visualization provides an easy way to obtain additional verification

of a data anomaly. This component is also a useful communication channel to

help building manager to understand where issues are arising.

Use-case diagram for the preprocessing operation is given in Figure 4.6 and sequence

diagram is given in Figure 4.7. In addition, here is the pseudo-code of the operations

for data preprocessing performed for each data unit.

1 f u n c t i o n p e r f o r m D a t a P r e p r o c e s s ( d a t a U n i t ) {

2 i s D a t a V a l i d = c h e c k D a t a V a l i d i t y ( )

3 i f ( i s D a t a V a l i d == f a l s e ) {

4 re turn

5 }

6

7 i s D a t a M i s s i n g = c h e c k I f D a t a M i s s i n g S i n c e L a s t D a t a R e c e i v e d ( )

8 i f ( i s D a t a M i s s i n g ) {

9 f i l l M i s s i n g D a t a W i t h P r e d i c t i o n s ( )

10 }

11

12 r e f o r m a t D a t a ( )

13 s a v e D a t a ( )

14 }

Figure 4.6: Use-Case Diagram for Data Preprocessing
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Figure 4.7: Sequence Diagram for Data Preprocessing

Performance Needs Any delay in this operation may lead to wrong or deficient cal-

culations in the system since the main data of the calculations pass from this opera-

tion. Therefore, each data packet has to be preprocessed in less than 100 milliseconds

after it enters the system.

Performance Requirements of Queries There is only one possible query in this

operation and even it might not exist depending on the processing methodology. Ac-

cording to the performance needs of this operation, if database is queried, it has to

return in less than 100 milliseconds.

4.3.2.2 Step 2-b: Watch Building Demand

Demand data of the building should be watched continuously in order to respond

rapid changes in energy demand of the building. This operation is performed by

taking some recent data into consideration, not only incoming data. First, the trend

of the consumption is calculated using the incoming data and recent data. Then,

decisions are made accordingly. Steps for this operation:
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· Retrieve last day’s demand data starting from work start time. Using this data,

estimate demand of the following 15 minutes.

· Retrieve demand estimation for next 15 minutes from energy plus output.

· Decide one of the two estimations and send appropriate commands to BMS.

These data retrieval operations do not have to be database queries. If data are pro-

cessed in the data stream, the summarized information about recent demand data can

be kept on processing nodes. Use-case diagram for watching building demand oper-

ation is given in Figure 4.8 and sequence diagram is given in Figure 4.9. Here is the

pseudo-code of operations for watching building demand:

1 f u n c t i o n watchBui ld ingDemand ( ) {

2 l as tDaysDemands = re t r i eveDemandDataOfLas tDayFromRea lDa ta ( )

3 r e a l E s t i m a t i o n s = d o E s t i m a t i o n s F o r N e x t 1 5 M i n s ( las tDaysDemands )

4 s i m E s t i m a t i o n s = r e t r i e v e E s t i m a t i o n s F r o m S t a t i c S i m u l a t i o n ( )

5

6 d e c i d e N e x t E s t i m a t i o n A n d T a k e A c t i o n ( r e a l E s t i m a t i o n s ,

7 s i m E s t i m a t i o n s )

8 }

Figure 4.8: Use-Case Diagram for Watching Building Demand

Performance Needs Data for this operation are received every 5 minutes. There-

fore, system needs to process and analyze demand data once every 5 minutes for each

building.
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Figure 4.9: Sequence Diagram for Watching Building Demand

Performance Requirements of Queries In this operation, only demand data of last

day are queried. Depending on the calculation methodology, data might be kept in

application with no need of query. Data size of one day is about 288 data records

for each sensor, which is quite low. Therefore, query needs to return in less than a

second. If it takes longer, it may point to a problem in the system.

4.3.2.3 Step 2-c: Alarms and Notifications

All other analyzes are performed on the incoming data. Besides these operations, user

of the system can define alarms and notifications to be triggered when a certain event

occurs. An alarm or a notification occurs mostly when a specific value is above or

under a defined threshold. Fast analysis and rapid notifications allow user to perform

some set of energy-efficient actions and increase overall awareness of the user. Here

is the pseudo-code of operations for Alarms and Notifications module:

1 f u n c t i o n checkAlarms ( d a t a U n i t ) {

2 a l a r m s D e f s = r e t r i e v e D e v i c e A l a r m D e f i n i t i o n s ( d a t a U n i t . g e t D e v i c e ( ) )
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3 f o r ( d e f i n a l a rmDefs ) {

4 i f ( c h e c k I f A l a r m T r i g g e r e d ( d a t a U n i t , d e f ) == t rue ) {

5 t r i g g e r A l a r m A n d S e n d N o t i f i c a t i o n ( d e f )

6 }

7 }

8 }

Use-case diagram for alarms and notifications is given in Figure 4.10 and sequence

diagram is given in Figure 4.11.

Figure 4.10: Use-Case Diagram for Alarms & Notifications

Figure 4.11: Sequence Diagram for Alarms & Notifications

Performance Needs Like data preprocessing operation, this one is also performed

for each data record that enters the system. For each incoming data record, alarm
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check needs to be completed in less than 100 milliseconds in order to inform the

user and take appropriate actions in the system since some alarms may be critical and

require immediate action.

Performance Requirements of Queries For a sensor, there can be at most four to

five alarm definitions typically. These alarms are either kept in the memory of the

application or queried from the database depending on the processing methodology.

If query is used, query has to return in less than 100 milliseconds.

4.3.2.4 Step 2-d: Forecasting

This operation’s purpose is to make predictions about building’s energy consumption

in near future by using the past data to learn behavior of the building.

In order to learn energy behavior of the building, the forecasting module needs to

learn three characteristics of the building. These are occupancy behavior, energy

consumption of the building in the recent past and in a longer past.

First, occupancy behavior of the building has to be learned. Inputs of this operation:

· A static schedule data of the building (working hours and days of the building).

· Real-time occupancy data from sensors to detect how many people are in the

building.

· Occupancy inputs from the BMS if there is one available.

Then, the forecasting module analyzes these inputs and learns the occupancy behavior

and trend of the building. Next step is learning the thermal behavior of the building

in recent past. Data set is kept small in this operation since thermal data may vary

greatly among seasons. Steps for this operation:

· Last three months’ air quality and comfort parameters are retrieved.

· HVAC equipment’s’ running schedules are retrieved for last three months.

49



· HVAC equipment’s’ energy consumption details are retrieved for last three

months.

· These parameters are analyzed together to learn how did the building perform

recently.

Next operation is to learn how the building performed in a wider history. Data set is

larger in this operation in order to learn how the building responds to the environmen-

tal and seasonal changes. Steps are:

· Retrieve last one year’s energy consumption for the building or device. Then,

process it and do estimation for oncoming consumption of the building or de-

vice using Machine Learning techniques.

· Retrieve last one year’s energy consumption data of the same day of the week

as day that estimation will be performed. Then, process it and do estimation

for oncoming consumption of the building or device using Machine Learning

techniques.

· Lastly, retrieve outputs of energy plus simulation and its estimation.

· Compare all these three estimations and decide one or combination of them.

The details of these analysis and machine learning algorithms are out of the scope of

this research.

Use-case diagram for consumption forecasting operation is given in Figure 4.12 and

sequence diagram is given in Figure 4.13. In addition, here is the pseudo-code of

operations for forecasting:

1 f u n c t i o n f o r e c a s t ( ) {

2 b u i l d i n g S c h e d u l e = r e t r i e v e B u i l d i n g S c h e d u l e ( )

3 occupancyData = r e t r i e v e O c c u p a n c y D a t a ( )

4

5 a i r P a r a m e t e r s 3 m = r e t r i e v e A i r P a r a m e t e r s O f L a s t 3 M o n t h s ( )

6 hvacRuntimeData3m = re t r ieveHVACRunt imeDataOfLas t3Months ( )

7 hvacConsumption3m = ret r ieveHVACConsumpt ionOfLast3Months ( )
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8

9 r e s u l t 3 m = ana lyze3mData ( b u i l d i n g S c h e d u l e , occupancyData ,

a i r P a r a m e t e r s 3 m , hvacRuntimeData3m , hvacConsumption3m )

10

11 a i r P a r a m e t e r s 1 y = r e t r i e v e A i r P a r a m e t e r s O f L a s t 1 Y e a r s ( )

12 hvacRunt imeData1y = re t r i eveHVACRunt imeDataOfLas t1Years ( )

13 hvacConsumpt ion1y = re t r i eveHVACConsumpt ionOfLas t1Years ( )

14 hvacConsumpt ion1ysd =

retr ieveHVACConsumptionOfLast1YearsSameDayOfWeek ( )

15

16 r e s u l t 1 y = a n a l y z e 1 y D a t a ( b u i l d i n g S c h e d u l e , occupancyData ,

17 a i r P a r a m e t e r s 1 y , hvacRunt imeData1y ,

18 hvacConsumption1y , hvacConsumpt ion1ysd )

19

20 s t a t i c S i m R e s u l t s = r e t r i e v e S t a t i c S i m u l a t i o n E s t i m a t i o n s N e x t 1 Y e a r ( )

21

22 a n a l y z e A n d D e c i d e F o r e c a s t ( r e s u l t 3 m , r e s u l t 1 y , s t a t i c S i m R e s u l t s )

23 }

Figure 4.12: Use-Case Diagram for Consumption Forecasting

In order to optimize the building control set-points, a mathematical model is devel-

oped. Then, historic building performance data of up to 3 months will be used in

order to identify each variable in this model.
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Figure 4.13: Sequence Diagram for Consumption Forecasting

Performance Needs This operation is performed 3 to 4 times a day for a single

building. This operation has to be completed as soon as possible since all further

calculations depend on the output of this operation. If this operation cannot complete

quickly, calculations are performed with out of data.
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Performance Requirements of Queries This operation requests at most data of last

one year. This query has to return in less than 6 seconds. If it takes longer, real-time

property of the system is hard to be maintained.

4.3.2.5 Step 2-e: BMS Optimization

For this operation, a supervisory control and optimization algorithm is used for HVAC

systems. This algorithm aims minimizing energy consumption and occupant thermal

discomfort. An accompanying mobile occupant comfort feedback tool is provided to

building inhabitants. Feedbacks from this tool are used as input to the optimization

algorithm and used in order to assess the impact of the optimized HVAC control

strategy, to fine-tune the standard comfort model used in the optimization process

and to inform users of the state of the HVAC system, such as when natural ventilation

or economy modes are active. It allows occupants to submit feedback on their thermal

comfort as well as satisfaction at any point.

The supervisory HVAC control and optimization system interfaces with the commer-

cial building management and control system to read required data from HVAC zones

and air handling units (AHUs) and to perform required control actions. It learns a

model that can be used to predict zone conditions and comfort levels using informa-

tion about HVAC power consumption and weather, which are used to discover the

optimal power consumption schedule throughout the day in order to balance cost, en-

ergy and emissions while maintaining comfort. The control module then overrides

zone or supply air set-points to balance the heating/cooling power supplied to each

zone and to track the best power profile from the optimization. The system learns a

model from historical data and uses weather forecasts and a given temperature set-

point to profile and predict building zone conditions and thermal comfort.

In order to summarize the operation, the inputs are:

· AHU operational and energy consumption parameters for last twelve days.

· Occupancy forecast of the current day and occupancy values of last twelve

days.
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Figure 4.14: Use-Case Diagram for BMS Optimization

· Energy consumption forecast of the current day for upcoming hours.

· Comfort dissatisfaction level feedback from the occupants of the building.

Using these inputs, the BMS optimization algorithm decides on temperature and pres-

sure set-points of AHU. It evaluates trade-offs between occupant satisfaction and en-

ergy costs and decide on values keeping a balance between these parameters. The

detail of the algorithm is out of the scope of this research. Use-case diagram for BMS

optimization is given in Figure 4.14 and sequence diagram is given in Figure 4.15.

Here are the pseudo-code of the operations for optimizing the BMS:

1 f u n c t i o n b m s O p t i m i z a t i o n ( ) {

2 hvacConsumpt ion = re t r ieveHVACConsumpt ionOfLas t12Days ( )

3 occupancyData = r e t r i e v e O c c u p a n c y D a t a O f L a s t 1 2 D a y s ( )

4 o c c u p a n c y E s t i m a t i o n = r e t r i e v e T o d a y s O c c u p a n c y E s t i m a t i o n ( )

5 h v a c E s t i m a t i o n s = re t r i eveHVACForecas tFo rToday ( )

6 c o m f o r t D i s s a t i s f a c t i o n =

r e t r i e v e O c c u p a n t D i s s a t i s f a c t i o n D a t a F o r T o d a y ( )

7

8 bmsCommand = analyzeAndDecideBMSAction ( hvacConsumption ,
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occupancyData , o c c u p a n c y E s t i m a t i o n , h v a c E s t i m a t i o n s ,

c o m f o r t D i s s a t i s f a c t i o n )

9 applyBMSCommand ( bmsCommand )

10 }

Figure 4.15: Sequence Diagram for BMS Optimization

Performance Needs Similar to the previous operation, this one is performed 4 to

5 times a day for a single building. This operation has to be completed as soon as

possible since all further calculations depend on the output of this operation. Until

this operation is completed, calculations are performed with out of data.

Performance Requirements of Queries This query has to return in less than 6 sec-

onds in order to maintain real-time feature of the system.
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4.4 Data Used for Operations

There are several data types and sources that will be used for energy optimization.

They will be described without deep details and specific structure. Each data unit

holds either numerical data or time-stamps.

Sensor Data: This data type is the largest data set in the system. There may be

various energy sensors deployed in a building. Even if the sensors sense the

same data, they might be from different vendors and their data format may not

be the same. Consequently, there will be data from lots of sensors and their

column numbers will differ.

As a typical property of optimization systems, each sensor collects and sends

data of last five minutes, every five minutes. Data may be cumulative or instan-

taneous depending on the type of the measured value.

Air Quality: This type of data are simpler than the sensor data table. It holds three

properties of the air at a certain time. They are temperature, humidity and CO2

concentration. Besides these three data, there is also a timestamp accompany-

ing these three numeric data.

Like the sensor data, this type of data are collected every five minutes. Data are

instantaneous.

Working Schedule: This data set is a static one. Working schedule of the building is

defined and updated manually in predefined periods. Working schedule means

daily working hours and workdays in a week. Mostly there are data for seven

days. If there is an exceptional day like national holidays, it is defined here as

well.

This data set is managed by the building energy operator.

Occupancy: Structure of this data set is similar to the air quality data. Data are

generated by occupancy data of the building at certain times. There are only

two numeric values for each data unit, timestamp and occupant number.

Like other dynamic data sets, data is gathered every five minutes. Data are

instantaneous.
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Price Tariff: This data set is another static one. These data are used to gather energy

prices. Prices may be different at various times of day. Price tariff data are used

to minimize the total energy cost. This data set has three values for each unit,

start time of a price tariff definition, end time of a price tariff definition and

price of the energy in that interval.

This data set is managed by the building energy operator or an automated sys-

tem that retrieves prices whenever they change. Data are instantaneous.
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CHAPTER 5

PROPOSED ARCHITECTURES

For the described energy optimization system, software architecture alternatives will

be proposed in this section. First few architectures can handle only small or moderate

amount of flowing data and their processing. However, as the sensor nodes in the sys-

tem increase, data amount and velocity may increase exponentially. In order to cope

with this amount of data, at the end, a completely scalable system will be proposed.

Each architecture-set introduces a missing feature or improves a feature of previous

architectures.

5.1 Architecture with only NoSQL Database and Data Processor

This is the simplest and the most straightforward scenario. Incoming data are directly

written into the database. Three alternative architectures will be proposed without

major architectural changes. Only interchangeable parts are tools.

Solutions in this section can handle large amount of data sources only if incoming

data are written directly to the database without any processing. The performance is

limited by performance of the node that retrieves and writes data.

5.1.1 System with Key-Value Store and Manual Data Processing

In Figure 5.1, a high level design of this proposal is visualized. In this architecture,

a key-value store is used as database. In particular, Amazon’s DynamoDB. While

creating tables to store sensor data, hash and range type primary key is used. A
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Figure 5.1: System Architecture with Key-Value Store and Manual Data Processing

unique sensor id is used as hash key in order to store data of same sensor together. As

the range part of the key, timestamp is used. In order to keep timestamp in a single

column, a string value created by concatenating of year, month, day, hour and minute

values. In order to be able to sort data by date, concatenation is done in stated order.

A data processor application retrieves data from database, performs analyzes and

processing. Afterwards it writes result of the processing back to the database and

takes appropriate actions, if necessary, on automation system. This application is an

implemented manually, it is not a commercial or open source application.

This architecture is suitable for a system with large number of data sources and small
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number of consumers or development purposes. As consumer number increases, this

system will begin to suffer from performance problems. Moreover, this system cannot

handle queries that run over very large data sets and return large amount of data. In

addition, data processing performance of this system is not high since processing is

performed on a single application. This system is not suitable when a database row

contains too much data because DynamoDB has an upper limit on row size. On the

other hand, this system has almost no maintenance cost since everything is managed

by Amazon as long as cost is paid. This may be a big plus if user does not want to

deal with database maintenance.

5.1.2 System with Key-Value Store and Distributed Data Processing

Figure 5.2: System Architecture with Key-Value Store and Distributed Data

Processing
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In Figure 5.2, a high level design of this proposal is visualized. The database part is

the same as previous architecture. Amazon’s DynamoDB is used as database. The

primary key of the table is hash and range type. A unique sensor id is hash key and

timestamp is the range part of the primary key. In order to keep timestamp, a string

is built from concatenation of year, month, day, hour and minute values, so that data

can be sorted by date.

In this architecture, data processor is not a user written application. A MapReduce

framework will be used. In particular, Apache Spark will be used. Data processor

is not a single node. It is a cluster of computers that run as Spark nodes. However,

still there has to be a node that submits works to the Spark cluster. A drawback

of this architecture is, Apache Spark does not have built-in integration or library for

DynamoDB integration since DynamoDB is proprietary service of Amazon and Spark

is open source. The work submitter node has to first get the information data from

DynamoDB. Then, it has to distribute the data over the Spark cluster. This operation

is done with ‘parallelize’ method in Spark. With this method call, any local data can

be distributed over the cluster. However, if the required data amount is too large,

this operation may be slow since there will be two time transmission of the whole

data. First, the whole data are retrieved from DynamoDB, then the whole data are

transmitted to the nodes.

This architecture is suitable for a system with large number of data sources and small

number consumers or development purposes. As consumer number increases, this

system will begin to suffer from performance problems. Moreover, this system cannot

handle queries that run over very large data sets and return large amount of data. Data

processing performance of this system is better than the previous solutions since there

is a Spark cluster performing the processing, not a single application. This system is

not suitable when a database row contains too much data because DynamoDB has

an upper limit on row size. On the other hand, this system has small amount of

maintenance cost since everything except Spark cluster is managed by Amazon as

long as cost is paid.
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Figure 5.3: System Architecture with Column-Based Store and Distributed Data

Processing

5.1.3 System with Column-Store and Distributed Data Processing

In Figure 5.3, a high level design of this proposal is visualized. In this architecture,

a column-based store will be used as database. In particular, Apache Cassandra is

chosen for this analysis. The primary key of the sensor data table consists of six

columns. The first one is id of the sensor and it will be used as partition key by

Cassandra. This key will be used as input of the consistent hash function used by

Cassandra in order to distribute data over the nodes. Rest of the columns of the

primary key will be columns related to date of the data and they will be used as
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clustering key. They are year, month, day, hour and minute columns, defined in this

order. These columns will be used the keep data sorted. The data will be sorted by

year first. Then, will be sorted by month, then by day and goes on like this. Since

Cassandra can handle columns very efficiently and allows more than one columns to

be used as clustering key, there is no need to merge date data into one column like we

did for DynamoDB.

As data processor, a user written program or a framework can be used. As Apache

Spark has built-in integration with Cassandra, it will be used rather than a manually

implemented application. Apache Spark runs on a cluster of computers, each of which

is a Spark worker. Different from the previous architecture, the work submitter node

does not have to retrieve the whole data from the database and distribute it over the

cluster. Instead, since Spark supports Cassandra data sources, each Spark worker

connects the database and retrieves the data of its own partition and processes them.

Thanks to this integration, one can bypass overhead of transmitting the whole data

more than one times over the cluster. Each Spark node processes its data and writes

the results itself.

This architecture is suitable for a system with moderate number of data sources. Data

consumers do not have to be very small since there is a Spark cluster processing the

data, which increases the data processing speed significantly. In this architecture,

different from Architecture 1.2, data to be processed may be larger. It will not have a

negative effect since Spark’s Cassandra integration will handle data retrieval and each

node will retrieve only the data that it will process. This system is more preferable

when a database row contains too much data since Cassandra does not store a row

as a whole. Therefore, a row can contain huge amount of data and columns. On the

other hand, this system has some maintenance cost since Cassandra is not a provided

service like DynamoDB. User has to handle the setup and maintenance.

All of these three architectures are relatively simple, there are only a few elements

in the system. Consequently, there are some missing functionalities. The first one is

data preprocessing. Often, the incoming data need to be processed somehow, in order

to check data validity or transform the data to some other form. In order to achieve

this functionality, there has to be additional elements in the system. The second
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functionality is there is no mechanism for fast retrieval of the data of the recent past.

This functionality is needed since there is often need to process recent data in order

to take rapid action for changing conditions. Querying the core database may be

unwanted because of speed and consistency reasons. For these purposes, additional

architectures will be proposed in following architectures.

5.2 Architecture with NoSQL Database, In-Memory Database and Data Pro-

cessor

In this architecture set, solutions for fast and consistent retrieval of recent data will

be proposed. As stated before, this is needed in order to process recent data to take

rapid actions according to the changes in incoming data. Three alternatives will be

proposed in this section. There is no major change between them, only specific com-

ponents will change.

Improvements in this set of architectures are mainly for the ‘Step 2-b, watching build-

ing demand’ operation defined in the reference energy optimization system.

5.2.1 System with Key-Value Store, In-Memory Database and Manual Data

Processing

In Figure 5.4, a high level design of this proposal is visualized. In this architecture, a

key-value store is used as database, specifically Amazon’s DynamoDB. Primary key

of the sensor data table is chosen as hash and range type. A unique sensor id is used

as hash key and timestamp is used as range key. In order to keep timestamp, a string

value created from concatenation of year, month, day, hour and minute values. In

order to be able to sort data by date, concatenation is done in stated order.

In addition to the main database, there is another key-value store in this architecture.

Its key property is it keeps the data in memory, not on disk. Any key-value store that

supports in-memory storage can be used here but Redis is proposed. It also has mech-

anism for data expiration, which perfectly fits purpose of this database in the system.

The key role of this database is to hold recent data flowing from sensors. Data are
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Figure 5.4: System Architecture with Key-Value Store, In-Memory Database and

Manual Data Processing

written to main database and this one in parallel. But the data in this database will ex-

pire after a pre-defined time. This time is chosen according to the oldest data needed

while performing near-real-time processing on recent data. If selected database pro-

vides this feature, data will be inserted with expiration time. Otherwise, user has to

implement a mechanism to remove data from the database when it expires.

A data processor application retrieves data from both databases. If it is performing a

long-term analysis, the main database will be used. While performing recurring short-

term analysis, the in-memory database will be used. After analysis is performed, the

result will be stored in the main database and appropriate actions will be taken on

automation system. No data is written to the in-memory database since the data in

this database are volatile. In this architecture, data processing application is written

manually.
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This architecture is suitable for a system with large number of data sources and mod-

erate number consumers or development purposes. As consumer number increases

too much, this system may suffer from performance problems. Moreover, this sys-

tem cannot handle queries that run over very large data sets and return large amount

of data. In addition, data processing performance of this system is not high since

processing is performed on a single application. This system is not suitable when

a database row contains too much data because DynamoDB has a limit on the size

of the data that can be stored in a row. This system has small amount maintenance

cost. Moreover, this architecture is more useful when there is a need for continuous

processing of small data sets thanks to the in-memory database.

5.2.2 System with Key-Value Store, In-Memory Database and Distributed Data

Processing

Figure 5.5: System Architecture with Key-Value Store, In-Memory Database and

Distributed Data Processing
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In Figure 5.5, a high level design of this proposal is visualized. In this architecture,

the database part is the same as previous architecture. Amazon’s DynamoDB is used

as database. The primary key of the table is hash and range type. A unique sensor

id is used as hash key in order to store data of same sensor together. As the range

part of the key, timestamp is used. In order to keep timestamp, a string value created

from concatenation of year, month, day, hour and minute values. Concatenation of

the values is done in stated order, in order to be able to sort data by date.

In addition to the main database, there is a parallel key-value store in this architec-

ture. Its key property is it keeps the data in memory, not on disk and enables user to

access recent data quickly. Any key-value store that supports in-memory storage can

be used here but Redis is proposed. It also has mechanism for data expiration which

perfectly fits purpose of this database in the system. The key role of this database is

to hold recent data flowing from sensors. Data are written to main database and the

in-memory database at the same time. But the data in this database will expire after

a pre-defined time. This time is chosen according to the oldest data needed while

performing near-real-time processing on recent data, in other words the oldest data

needed for ‘Step 2-b, watching the building demand’ operation. If selected database

provides this feature, data will be inserted with expiration time. Otherwise, an expi-

ration mechanism has to be implemented to remove data from the database when they

are no longer needed.

Data processor is not a user written application in this system. A MapReduce frame-

work will be used. As proposed in other architectures, Apache Spark will be used.

Data processor is not a single node. It is a cluster of computers that run as Spark

nodes. However, still there has to be a node that submits works to the Spark cluster.

Apache Spark does not have built-in integration or library for DynamoDB integration

since DynamoDB is proprietary service of Amazon and Spark is open source. As a

drawback of this architecture, the work submitter node has to first get the information

data from DynamoDB. Then, it has to distribute the data over the Spark cluster. This

can be achieved by ‘parallelize’ method in Spark. With this method call, any local

data can be distributed over the cluster. However, if the required data amount is too

large, this operation may be slow since there will be two time transmission of the

whole data. First, the whole data are retrieved from DynamoDB, then the whole data
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are transmitted to the nodes. The data distribution from the in-memory database will

not be a problem since the data amount is not very large there and data is retrieved

from in-memory database only when required data amount is small. After finishing

the data processing, the processor writes the result to the main database since data in

in-memory database is volatile and stored as an input for processing of recent data.

This architecture is suitable for a system with large number of data sources and mod-

erate number consumers. As consumer number increases too much, this system may

suffer from performance problems. Moreover, this system cannot handle queries that

run over very large data sets and return large amount of data. On the other hand,

data processing performance of this system is better than the previous architecture

since processing is performed by a Spark cluster. This system is not suitable when a

database row contains too much data because DynamoDB has an upper limit on the

size of the rows. This system has small amount of maintenance cost. This architec-

ture is more useful when there is a need for continuous processing of small data sets

in addition to the distributed processing power.

For continuous data processing from in-memory database, a small user written ap-

plication may be used in order to bypass overhead of network communication while

using Spark cluster. This method will be useful when data amount in in-memory

database is not very large. However, if data amount retrieved and processed from

the in-memory database gets larger as the system gets larger, the single application

system may suffer from performance problems. At that point, continuous processing

tasks should be passed to Spark cluster.

5.2.3 System with Column-Store, In-Memory Database and Distributed Data

Processing

In Figure 5.6, a high level design of this proposal is visualized. In this architecture,

a column-based store will be used as database. In particular, Apache Cassandra is

chosen for this particular analysis. The primary key of the sensor data table consists

of six columns. The first one is id of the sensor and it will be used as partition key

by Cassandra. This key will be used as input of the consistent hash function used

by Cassandra in order to distribute data over the cluster. Rest of the columns of
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Figure 5.6: System Architecture with Column-Based Store, In-Memory Database

and Distributed Data Processing

the primary key will be columns related to date of the data and they will be used

as clustering key, namely for keeping data sorted. They are year, month, day, hour

and minute columns, defined in this order. These columns will be used to keep data

sorted. The data will be sorted by year first. Then, will be sorted by month, then by

day and goes on like this. Since Cassandra can handle columns very efficiently and

allows more than one columns to be used as clustering key, there is no need to merge

date data into one column like we did in DynamoDB.

In addition to the main database, there is another key-value store in this architecture.

Its key property is it keeps the data in memory, not on disk. Any key-value store that

supports in-memory storage can be used here like Section.5.2.1 and Section.5.2.2. It

also has mechanism for data expiration, which perfectly fits purpose of this database

in the system. The key role of this database is to hold recent data flowing from

sensors. Data are written to main database and the in-memory database in parallel.

But the data in this database will expire after a pre-defined time. This time is chosen
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according to the oldest data needed while performing near-real-time processing on

recent data. Among the operations defined for HVAC EOS, mostly the ’Step 2-b,

watching building demand’ and ’Step 2-c, alarms & notifications’ operations require

near-real time processing. If selected database provides expiration time feature, data

will be inserted with expiration time. Otherwise, user has to implement a mechanism

to remove data from the database when they expire.

As data processor, a user written program or a framework can be used. As Apache

Spark has built-in integration with Cassandra, it will be used rather than a user writ-

ten application. Apache Spark runs on a cluster of computers, each of which is a

Spark worker. Different from the previous architecture, the work submitter node does

not have to retrieve the whole data from the database and distribute it over the clus-

ter. Instead, since Spark supports Cassandra to be used as data source, each Spark

worker connects the database and retrieves the data of its own partition and processes

them. Thanks to this integration, one can bypass overhead of transmitting the whole

data more than one times over the cluster, which is present in architectures that used

database does not have integration with Spark. Each Spark node processes its data

and writes the results itself. However, if Spark does not have built-in integration with

the in-memory database, the work submitter node may have to retrieve data from

in-memory database and distribute it over the cluster. Nonetheless, the data distribu-

tion from the in-memory database will not be a problem since the data amount is not

very large and data are retrieved from in-memory database only when required data

amount is small. After finishing the data processing, the processor writes the result to

the main database since data in in-memory database is volatile and stores only input

data for processing of recent data.

For continuous data processing from in-memory database, a small user written ap-

plication may be used in order to bypass overhead of network communication while

using Spark cluster. This method will be useful when data amount in in-memory

database is not very large. However, if data amount retrieved and processed from

the in-memory database gets larger as the system gets larger, the single application

system may suffer from performance problems. At that point, continuous processing

tasks should be passed to Spark cluster.
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This architecture is suitable for a system with moderate number of data sources. Data

consumers does not have to be very small since there is a Spark cluster processing

the data, which increases the data processing speed significantly. In this architecture,

different from the previous one, data to be processed may be larger. It will not have a

negative effect since Spark’s Cassandra integration will handle data retrieval and each

node will retrieve only the data that it will process. This system is more preferable

when a database row contains too much data since Cassandra does not store a row

as a whole. Therefore, a row can be enormous. On the other hand, this system has

moderate amount of maintenance cost since Cassandra is not an offered service like

DynamoDB. User has to handle the setup and maintenance. In addition, thanks to

the in-memory database, this architecture is more preferable when there is a need for

continuous processing of small data sets.

These three architectures does not bring major changes or upgrades to the ones in

Section.5.2. Instead, they focus on performance of the continuous processing needs

of systems. They aim to solve quick processing of data when there is no data-stream

processing feature in the system. This features enables quick processing of incom-

ing data for ‘watching building demand’ or ‘alarms & notifications module’. These

architectures are not suitable for very large systems. When data volume and velocity

gets too large, there will be performance problems while processing large amounts

of data from the in-memory database. After that point, parallel processing power of

Spark cluster will outperform single application processing of in-memory database

and in-memory database can be removed from the system.

5.3 Architecture with Data Warehouse

This set of architectures focuses on a system that stores very large data and also

queries large amounts of data. Moreover, solution proposals in this section will add

SQL-like query capabilities to NoSQL systems. For example, most NoSQL systems

does not support join operation. Using a data warehouse software, executing this kind

of queries will be possible and user will be able to do database operations by writing

SQL-like commands instead of writing different codes for different NoSQL systems.

72



There are four alternatives in this section. Three of them are experimental since the

framework support of those alternatives are still under development. All of these pro-

posals use Apache Hive as data warehouse that handles data access and/or processing.

As mentioned in Section.2.4.3, Hive is not suitable for user interactions and opera-

tions that need rapid response. Therefore, in addition to Hive cluster described in this

section, a parallel data processing solution can be run as described in Section.5.2 for

operations with smaller data set and require faster response.

5.3.1 System with Key-Value Store and Data Warehouse on Hadoop Cluster

Figure 5.7: System Architecture with Key-Value Store and Data Warehouse on

Hadoop Cluster
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In Figure 5.7, a high level design of this proposal is visualized. In this architecture, as

database, a key-value store is used. As proposed before, the system will be described

with Amazon’s DynamoDB. As primary key of the sensor data table, hash and range

type of primary key is used. A unique sensor id is used as hash key in order to store

data of same sensor together. As the range part of the key, timestamp is used. In

order to keep timestamp, a string value created from concatenation of year, month,

day, hour and minute values. In order to be able to sort data by date, concatenation is

done in stated order.

In addition to the main database, another key-value store may be used. Its key prop-

erty is it keeps the data in memory, not on disk. Any key-value store that supports

in-memory storage can be used here but Redis is proposed. This part of the architec-

ture is same as the ones explained in Section.5.2. However, since data size is assumed

to be very large in this solution, this additional database may not be very suitable. The

proposed data warehouse framework may perform better.

Data processor nodes do not have direct access to the database. Instead, there is a data

warehouse cluster in-between. Apache Hive is a de-facto software for data warehous-

ing on Hadoop, so solution will be described over it. Apache Hive allows users to

write SQL-like queries. It converts them to appropriate form for the database behind

Hive. Moreover, as default execution engine, it runs on a Hadoop cluster. There-

fore, it allows MapReduce style processing on very large data sets during queries. In

addition, it can perform complex query operations like join or filter very efficiently.

A data processor application or software will be in communication with Hive and

read/write data through it. Spark is default data processor of this solution proposal

since it supports use of Apache Hive as data source. If an in-memory database is used,

the data processor connects to it directly. Using Hadoop and HDFS for small amounts

of data will not be very efficient because of overhead of Hadoop and HDFS. They are

useful when data cannot be processed in traditional single-application methods. After

analysis is performed, the result will be stored in the main database through Hive and

appropriate actions will be taken on automation system.

This architecture is suitable for a system with large number of data sources and con-

sumers. Apache Hive can handle large number of concurrent access and query pro-
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cessing. Moreover, this system can handle queries that run over very large data sets

and return large amount of data. In addition, data processing performance of this

system is high since processing is performed on a Spark cluster. This system is not

suitable when a database row contains too much data because DynamoDB has a limit

on the size of the data that can be stored in a row. This system has high maintenance

cost since there are different clusters that need to be managed. This system should be

used when there is complex query needs on very large data sets. If queried data set is

not very large, the overhead of Hive will cause performance degradation rather than

an improvement.

5.3.2 System with Column-Store and Data Warehouse on Hadoop Cluster

In Figure 5.8, a high level design of this proposal is visualized. In this architecture,

a column-based store will be used as database. In particular, Apache Cassandra is

chosen for specific analysis. The primary key of the sensor data table consists of

six columns. The first one is id of the sensor and it will be used as partition key

by Cassandra. This key will be used as input of the consistent hash function used

by Cassandra in order to distribute data over the nodes. Rest of the columns of the

primary key is related to date of the data and they will be used as clustering key. They

are year, month, day, hour and minute columns, defined in this order. These columns

will be used the keep data sorted. The data will be sorted by year first, then month

and goes on. Since Cassandra can handle columns very efficiently and allows more

than one columns to be used as clustering key, there is no need to merge date data

into one column. As proposed in previous section, in addition to the main database,

an in-memory database may be used depending on the data volume and rate and user

choice.

Data processor nodes do not have direct access to the database. Instead, there is a

data warehouse cluster in-between. Apache Hive is de-facto software for data ware-

housing. Thus, solution will be described over it. Apache Hive allows users to write

SQL-like queries. It converts them to appropriate form for the database behind Hive.

Moreover, as default execution engine, it runs on a Hadoop cluster. Therefore, it al-

lows MapReduce style processing on very large data sets during queries. In addition,
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Figure 5.8: System Architecture with Column-Based Store and Data Warehouse on

Hadoop Cluster

it can perform complex query operations like join or filter very efficiently.

A data processor application or software will be in communication with Hive and

read/write data through it. Since Spark supports use of Apache Hive as data source,

Spark is default data processor of this solution proposal. If an in-memory database

is used, the data processor connects to it directly, because that database is used for

retrieving small amount of data. Using Hadoop and HDFS for small amounts of data

will not be very efficient because of their overhead. They are useful when data cannot

be processed in traditional single-application methods. After analysis is performed,

the result will be stored in the main database through Hive and appropriate actions
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will be taken on automation system.

This architecture is suitable for a system with large number of data sources. Data

consumer amount can be high since there is a Spark cluster processing the data and

it retrieves data through Hive. This system can handle complex queries that run over

very large data sets and return large amount of data thanks to Apache Hive. This

system is more preferable when a database row contains too much data since Cassan-

dra does not store a row as a whole and does not limit row size. On the other hand,

this system has high maintenance cost since Cassandra is an offered service like Dy-

namoDB and there other clusters to manage like Apache Hive and Spark. User has to

handle the setup and maintenance. This system should be used when there is complex

query needs on very large data sets. If queried data set is not very large, the overhead

of Hive will cause performance degradation rather than an improvement.

Since there is no official support for Hive and Cassandra integration, this architecture

is a theoretical proposal. There are a few libraries for the integration but they are not

stable and officially supported yet.

5.3.3 System with Key-Value Store and Data Warehouse on Spark Cluster

In Figure 5.9, a high level design of this proposal is visualized. In this architecture, as

database, a key-value store is used. As proposed before, the system will be described

with Amazon’s DynamoDB. Table properties are the same as in Section.5.3.1. An

additional in-memory database can be used for fast retrieval of small amount of recent

data as described in Section.5.3.1.

Data processor nodes do not have direct access to the database. Instead, there is

a data warehouse cluster in-between. Apache Hive is a de-facto software for data

warehousing. Thus, solution will be described using it. Apache Hive allows users to

write SQL-like queries. It converts them to appropriate form for the database behind

Hive. In this architecture, different from the architecture in Section.5.3.1, Hive will

be running on a Spark cluster as its execution engine. Therefore, it allows queries that

return very large data sets. If the queried data fit in total memory of the Spark cluster,

query will be processed much faster than Hadoop execution engine. In addition, by
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Figure 5.9: System Architecture with Key-Value Store and Data Warehouse on

Spark Cluster

making use of MapReduce style processing of data, it can perform complex query

operations like join or filter very efficiently.

A data processor application or software will be in communication with Hive and

read/write data through it. Since Spark supports use of Apache Hive as data source,

Spark is default data processor of this solution proposal. If there is an in-memory

database in the system, the data processor connects to it directly. After analysis is

performed, the result will be stored in the main database through Hive and appropriate

actions will be taken on automation system.
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This architecture is suitable for a system with large number of data sources and con-

sumers. Apache Hive can handle large number of concurrent access and query pro-

cessing. Moreover, this system can handle queries that run over very large data sets

and return large amount of data. In addition, data processing performance of this

system is high since processing is performed on a Spark cluster. This system is not

suitable when a database row contains too much data because DynamoDB has an up-

per limit on row size. This system should be used when there is complex query needs

on very large data sets. If queried data set is not very large, the overhead of Hive

will cause performance degradation rather than an improvement. Since the Hive’s

execution engine is Spark in this architecture, this system will perform when queried

data set is very large, but also small enough to fit in total main memory of the Spark

cluster.

This architecture is a theoretical proposal at the moment since the Spark execution

engine support for Apache Hive is still under development. It is developed by official

developers, so it will be supported completely and ready for tests in near future.

5.3.4 System with Column-Store and Data Warehouse on Spark Cluster

In Figure 5.10, a high level design of this proposal is visualized. In this architecture,

a column-based store will be used as database. In particular, Apache Cassandra is

chosen for specific analysis. Table properties are the same as in Section,5.3.2. An

additional in-memory database can be used for fast retrieval of small amount of recent

data as described in Section.5.3.2.

Data processor nodes do not have direct access to database. There is a data warehouse

cluster in-between. Apache Hive is going to be used as data warehouse. It allows

users to write SQL-like queries. It converts them to appropriate form for the database

behind Hive. In this architecture, different from the one in Section.5.3.2, Hive will

be running on a Spark cluster as its execution engine. Therefore, it allows queries

that return very large data sets. If the data that will be queried fits in total memory of

the Spark cluster, query will be processed much faster than Hadoop execution engine.

In addition, by making use of MapReduce style processing of data, it can perform

complex query operations like join or filter very efficiently.
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Figure 5.10: System Architecture with Column-Based Store and Data Warehouse on

Spark Cluster

A data processor application or software will be in communication with Hive and

read/write data through it. Since Spark supports use of Apache Hive as data source,

Spark is default data processor of this solution proposal. If there is an in-memory

database in the system, the data processor connects to it directly. The result will be

stored in the main database through Hive and appropriate actions will be taken on

automation system after analysis is performed on by Hive.

This architecture is suitable for a system with large of data sources. Data consumer

amount also can be high since there is a Spark cluster processing the data and it re-

trieves data through Hive. This system can handle complex queries that run over very
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large data sets and return large amount of data thanks to Apache Hive. This sys-

tem is more preferable when a database row contains too much data since Cassandra

does not limit row size. On the other hand, this system has high maintenance cost

since there are several clusters to manage. This system should be used when there

is complex query needs on very large data sets. If queried data set is not very large,

the overhead of Hive will cause performance degradation rather than improvement.

Since the Hive’s execution engine is Spark in this architecture, this system will per-

form when queried data set is very large, but also small enough to fit in total main

memory of the Spark cluster.

This architecture is also a theoretical proposal at the moment since the Spark execu-

tion engine support for Apache Hive is still under development. Since it is developed

by official developers, it will be supported completely and ready for tests in near

future.

This set of architectures focuses on performance of large queries on very large data

sets. Queries like this are used in operations like forecasting the future energy con-

sumption based on past data, as described in Section.4.3.2.4. In the example EOS, at

most data for one year is needed. However, the required data amount may change de-

pending on the algorithm or analysis. Data from multiple buildings or a whole region

may be needed in the future for different analyzes. Therefore, the system has to be

able to handle very large queries and process them.

5.4 Architecture with Data Stream Handler

In Figure 5.11 a high level design of this proposal is visualized. This architecture fo-

cuses on the processing of data during transmission before it is written to the database.

In all of the previous architectures, number of data sources was not very high and data

were written to the database directly without any processing performed. If data were

processed, it would bring overhead to the node that retrieves and writes the data and

some of the data might have been lost while waiting for node to process previous data.

The software architecture after the database can be like any of the previous architec-

tures. Nothing new will be introduced in that part. However, the suggested one was
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Figure 5.11: System Architecture with Data Stream Handler

shown in the diagram.

The incoming data are first written to the Amazon’s Kinesis service. Kinesis can

continuously capture and store terabytes of data per hour from hundreds of thousands

of sources. Then, a data preprocessor application, a single application or multiple

ones written by the user, retrieves data from this service and applies transformation

to data and processes them. Then, data are written to the database. If there is a need
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to take quick action on incoming data, the preprocessor can access to the automation

system. The processing needs that are not very urgent were left to the data processor,

which processes data in the database, in order not to slow down data preprocessing

pipeline. At some point, if incoming data velocity exceeds the preprocessing velocity

of the preprocessor node, data will not be lost. Data will wait in Kinesis stream until

they are retrieved. The preprocessor node will consume the remaining data when its

work load gets lighter.

This architecture can be applied to any architecture defined in sections 5.1, 5.2 or

5.3. This system allows preprocessing of incoming data up to some point without any

data loss. If velocity of incoming data exceeds the preprocessing speed and remains

constant, or all of the data analysis needs to be done in near-real time before writing

data to the database, then the next architecture proposal should be used for better

stream processing speed.

This data-stream processing solution can replace the in-memory database solution if it

can hold small amount data. This feature depends on the used framework. Moreover,

another important usage of this solution will be in ‘Step 2-c, alarms & notifications’

operations. A user-defined alarm can be triggered immediately before writing data to

any database. However, if there are a lot of preprocessing operations in multiple steps,

this system may suffer from performance problems when data velocity increases.

A solution to this problem is using a distributed data processing pipeline, which is

defined in Section.5.5.

5.5 Architecture with Data Stream Handler and Distributed Data Stream Pro-

cessor

In Figure 5.12, a high level design of this proposal is visualized. This architecture

focuses on the processing and transmission of data before they are written to the

database like in Section.5.4. Different from architecture, data stream will be pro-

cessed on a real-time distributed stream processing cluster. The architecture after the

database can be any of the previous architectures. Nothing new will be introduced in

that part. However, the suggested one was shown in the diagram.
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Figure 5.12: System Architecture with Data Stream Handler and Distributed Data

Stream Processor

The incoming data are first written to the Amazon’s Kinesis service. Kinesis can con-

tinuously capture and store terabytes of data per hour from hundreds of thousands of

sources. Different from the architecture in Section.5.4, data are processed by a dis-

tributed stream processing cluster instead of a single application. The most common

framework is Apache Storm and fits perfectly for applications that perform multiple

transformations and processing on incoming data. Storms data source, called spot in

Storm terminology, is Amazon Kinesis. Then, for each step of transformation or pro-

cessing, data are forwarded to the next worker node, called bolt in Storm terminology.

At the end of the Storm pipeline, data are written to the database. Since Storm works

84



on a cluster, its processing power is a lot more than a single application. Moreover,

Storm scales very easy and good by adding new nodes to the cluster. Thanks to these

two properties of Storm, all the processing and data checks that needed for a single

data unit can be performed in Storm’s pipeline, by assigning different operations on

each bolt. The data processor only performs analysis that requires large time-series

data sets. An example architectural diagram that shows how Kinesis and Storm works

is given in Figure 5.13

Apache Storm is used for data stream processing purpose. Data stream processing en-

ables data to be processed before they are written to disk. If this method was not used,

for each analysis, database would need to be queried. Thanks to this method, analyzes

and operations that do not rely on data from different sources can be performed dur-

ing the flow of the data from sensor to database. By this way, a huge burden is taken

away from the database. In a data stream processing cluster, very simple operations

are performed on each node and then data are forwarded to the next node. Here is not

the right place for complex processing. Therefore, performance of a data stream pro-

cessing cluster mostly depends on the configuration of the cluster and communication

delay between the nodes. After data are generated, they are immediately ready to be

processed by data stream processing cluster. This processing method is not about

processing of large data sets, it is about processing of single data units.

Figure 5.13: Amazon Kinesis and Apache Storm Working Together [19]

This architecture can be applied to any of the systems defined in sections 5.1, 5.2 or

5.3. Data processing speed is not limited like in Section.5.4 since stream-processing

component is scalable in this one. If data processing suffers from performance issues,

another node can be added to the cluster easily.
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As an improvement to the architecture in Section.5.4, this data streaming and dis-

tributed computing solution can handle preprocessing of any amount of data by ex-

panding the cluster. Moreover, multiple steps of data processing and transformation

can be defined so that each node performs only one operation.

This architecture can handle any amount of data load. Real-time stream-processing,

data storage, and data processing and analyzing components are all scalable ones.

However, this architecture needs several clusters. Therefore, initial hardware and

maintenance costs will be more than all of the previous architectures and will get

higher as clusters expand.
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CHAPTER 6

IMPLEMENTATION & TESTING

A typical IoT system has five main components. The first one is the network of things,

which is the data source of the system. IoT can be described as a cloud of sensors,

which generates data continuously. The second component is data storage compo-

nents. This is usually a NoSQL data store in BigData environments. Next component

is the data processor. Data processor uses the stored data to do technical analyzes and

sends commands or data to other two components. The fourth component is data visu-

alization component. It is used to visualize incoming data in a human-understandable

format. The last component is the management system, which manages a sensor net-

work, for example a building management system (BMS). These components and

communication and processing mechanisms between them are described in detail in

Chapter 5.

In order to design and implement such a system, we have proposed software archi-

tectures. Now, we are going to test internals of those software architecture proposals.

Using the results of these tests, we will be analyzing the architectures and tools to-

gether first to decide which architecture to select and then to decide which tool suits

better for our recommended architecture proposal.

Before this study, there were several studies that test performance of BigData and

NoSQL systems, for example the study in [31] and study in [39]. In study [39], re-

searchers performed tests with 120 million records and each record was 1 KB. During

the tests they performed only basic read/write/update operations. Narde conducted

tests with 50 million records and again each record was 1 KB [31]. The database

performances were tested and compared in terms of execution time of large amount
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of queries. In both studies, researchers just perform basic operations and they do not

express any query, table configurations and index details. Since we performed some

table and index configuration for our data format in previous chapter, these tests are

not enough for us. Moreover we do not know what type of queries they had executed.

Our queries are mostly interval based queries rather than simple 1-record insert/get

operations of previous tests. Therefore, we had to perform our tests with our configu-

rations and settings. Different from previous ones, our tests define data format, table

configuration and indexing in detail and give query details for the tests.

Besides the database subsystem, there is also a stream processing sub-system in our

proposed software architecture. About that subsystem, there is no specific condition

in our system. Stream processing frameworks do not care about the data format. They

just propagate data through nodes and execute given operation. In stream processing,

operations are very simple, so stream processors do not focus on processing power.

Therefore, performance of stream processing subsystem is about the system configu-

ration and the communication delay between nodes.

6.1 Components of Proposed Architectures to Test

Several architectures with different tools and structures were proposed. They have

mostly common components but in some of them there are additional ones. We will

pass over these components and clarify relations between different architecture pro-

posals.

Architecture with NoSQL Database and Data Processor: This is the most basic

architecture. It is described in detail in Section.5.1. There are two main com-

ponents. First one is the NoSQL database. Data from the IoT are collected and

stored here. The other component is data processor. This can be a single appli-

cation or a distributed data processing framework. Decision of data processor

depends on the system load.

The data storage component of this architecture is present in all of the architec-

tures and it is the core of the system since it handles the storage of the whole

data.
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Architecture with NoSQL Database, In-Memory Database and Data Processor:

This architecture is very similar to the first one, except for an additional com-

ponent. It is described in detail in Section.5.2. There is an in-memory database

that runs in parallel with the core NoSQL database. Data from the IoT flow to

both of them at the same time but in-memory one holds the data for very short

time in order to access recent data quickly.

Again in this architecture, NoSQL database is the common component among

the alternatives and it is the main database. Data processor component accesses

to both NoSQL and in-memory database, if present, at the same time and uses

in-memory one for only short-term processing.

Architecture with Data Warehouse: Again, this architecture improves the previ-

ous two ones by adding one more BigData component. It is described in detail

in Section.5.3. All of the components in previous architectures are present

in this one as well. There is a data warehouse as the new component and it

stands between the NoSQL database and data processor node. This component

adds capability of Hadoop based map-reduce style processing of data during

the query execution. This architecture is mostly suitable when queries contain

enormous amount of data since map-reduce paradigm has its own overhead and

is not efficient for small data-sets.

Other components of the system (NoSQL database, data processor, in-memory

database) are the same as previous architectures.

Architecture Data Stream Handler: This architecture deals with the flow of the

data towards the system. It is described in detail in Section.5.4. The data from

the IoT enter to data stream handler. This component controls data flow with

very high volume and rate. It can capture high volume of data before the system

so that no data packet is lost or unprocessed because of the non-homogenous

and high-rated data flow. This component delivers data to the NoSQL database

(and in-memory database if present). After the NoSQL database, rest of the

system is the same as previous architectures.

Architecture Distributed Data Stream Processor: This architecture aims process-

ing of the data on the fly, right after it is generated. It is described in detail in

Section.5.5. Again, overall system architecture does not change very much.
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There is a new component between the data stream handler and the database.

This components is called distributed data stream processor. Data are delivered

to this component instead of the database. Stream processor processes each

data unit and extracts data from them. Then, it decides either to send the data

to the database or discard them. Since this component can run in a distributed

environment, it can handle very large data volume and rate. After data leave

the stream processor, rest of the system is one of the first three architectures.

6.2 Test Scenarios

A subset and combination of the proposed tools will be tested and results will be pre-

sented. Testing and environment details will be described. We did not test all of the

architectures completely because, without a real up and running system, some of the

tests would not be realistic. For example, stream processing tests. Without real hard-

ware and distributed devices and sensors, performing tests in a local test environment

would not yield realistic results that help us to evaluate the architecture correctly for

real environment. In addition, evaluating stream processing is not simple, because

performance is mostly affected by system configuration and communication delay

due to the fact that expensive operations are not performed in this component. We

also did not test an architecture with data warehouse because our reference system

did not require queries with very large data. Since data amount is not that large,

results without data warehouse were fast enough and probably faster than data ware-

house. Data warehouses has their own map-reduce overhead, so there is no need to

introduce this overhead to our fast-enough system. Here are our test scenarios:

a. NoSQL Database tests

In this set of tests, two NoSQL databases, Cassandra and DynamoDB, are tested

for their multiple aspects: ease of installation and maintenance, data access meth-

ods they provide and data retrieval speed.

b. Data processing over NoSQL databases with small data sets

In this set of tests, the same databases are used. The examined feature in this part

is, databases’ performance for an IoT system like described in Chapter 4 chapter,
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rather than just basic query performance. In order to simulate the system, parallel

queries are executed on databases.

c. Integration with data processing frameworks

After performing tests of specific databases, their integration with data processing

frameworks are analyzed. Apache Spark is used as the data processing frame-

work.

d. Data processing over NoSQL databases with larger data set

After performing previous tests, additional tests are performed in order to bench-

mark data processing performance of selected data processing framework. For

this set of tests, firstly analysis is performed without any data processing frame-

work. Data are queried from the database and then mathematical operations are

applied. Then, a distributed data processing framework is used for same opera-

tion with two different configurations. In the first configuration, the data proces-

sor runs on a single node with four threads. In the second configuration, the data

processor runs on four different nodes in a distributed environment.

6.3 Test Environments

For testing, two separate environments are used for different tools and purposes.

6.3.1 Amazon Web Services

This environment is built on ‘Amazon Web Services (AWS)’. For DynamoDB, AWS

is a must. In addition to NoSQL service of Amazon, Elastic Compute Cloud (EC2)

service is used as well. For DynamoDB, users cannot specify technical details. Only

requested throughput can be specified. Only one table is used for sensor data. There

are two parameters that can be specified by user:

Primary Key: In this table, hash and range type of primary key is used. As hash key,

a unique sensor id is used. Thanks to this key, data of same hash key are kept

close. As the range key, a timestamp string is used. Timestamp string is created
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by concatenation of year, month, day, hour and minute values. In order to be

able to sort the data correctly by date, concatenation is done in stated order.

Throughput: Since performed tests mostly include read operations write throughput

is not important. Read throughput is set to 100 read capacity. This capacity

enables user to read 100 items from table every second. In none of the tests, the

consumed throughput reached 100. Therefore, we can assume that DynamoDB

worked at maximum performance, retrieval speed-wise.

The sensor data table was populated with data of 50 devices. There were two years

of data for each device and data are written with frequency of five minutes, meaning

for every five minutes, there is only one record for a single device.

Except throughput, another factor that affects data retrieval speed from DynamoDB

is network performance of the machine accessing to DynamoDB. Since DynamoDB

transfers items in JSON format, even the column names consume network capacity.

When performing tests from a local computer, DynamoDB responds fast but data

retrieval speed was very slow for large queries. Therefore, the test application was

deployed on an Amazon EC2 instance in same region with DynamoDB table. Rest

of the speed issues are about Amazon’s internal structure and cannot be seen and

modified from outside. The test application was deployed on an m3.xlarge type of

EC2 instance. Properties of an m3.xlarge instance are:

· Intel Xeon E5-2670 processor with four cores.

· 2 SSD based storage devices, each of which has 40GB capacity.

· 15 GB RAM.

· Network performance classified as ‘High’.

The test application has also a web interface. Tests are initiated from the web interface

and results are displayed there. Therefore, data transmission is only in Amazon’s own

system and performance measurements are performed for internal transmission only.

Then, only results are returned to the user by the web interface.
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6.3.2 Local Cluster

For this environment, a local BigData cluster at the department was used. The clus-

ter consists of four identical computers built for BigData processing. Each of the

computers has the following properties:

· 2 x Intel Xeon E5-2630v3 processor. Each processor has eight cores and a

computer has sixteen total cores.

· 128 GB memory. (8 x 16 GB).

· 40 Gbps Infiniband network connection.

On this cluster, a Cassandra cluster and a Spark cluster are installed. Only param-

eters of the tables that store BigData will be explained. Parameters for Cassandra

installation:

Primary Key: Primary key of the sensor data table has six columns. First column is

the sensor id, which is unique to each sensor. This column is used as hash key

like in DynamoDB. It is used to distribute data over the nodes. Cassandra stores

data with same hash key together. Therefore, queries that retrieve data of one

sensor are executed on a few nodes, rather than all nodes in the cluster. Rest of

the columns in the primary key are year, month, day, hour and minute columns.

These columns are used as clustering keys in order to store and retrieve the data

ordered, like in DynamoDB. However, different from DynamoDB, clustering

key does not have to be only one column. Data are sorted by the first clustering

column at first. Then, it is sorted by the second clustering column, then third

and so on.

Consistency: As described before, consistency is configurable for each query in

Cassandra. As default consistency level, ‘ONE’ is used. ‘ONE’ consistency

level means receiving response from one replica is enough to return response

to user.

As described in example scenarios, for each sensor, data come every five min-

utes. Duration of five minutes is more than enough for Cassandra to write data
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to every replica. Therefore, there is very tiny chance that user will get out-of-

date data or missing data. The worst-case scenario is that user does not get

the last inserted data for a sensor upon a request. This may be problem for data

preprocessing, watching building demand and alarm and notification-triggering

operations as described in Chapter 4, since these operations rely on the most re-

cent data. Using a data stream processing software before writing data to the

database can solve this problem. This way, in order to perform those opera-

tions, there is no need to query database. Data are analyzed while it is on its

way to the database.

When performing forecasting operations (Section.4.3.2.4), user has to query the

database for past data. The last inserted data can be missing here if forecasting

operation starts before data are propagated to all replicas. However, since there

are data of long time periods, only one missing data would not have a dramatic

effect on operation result.

Replication Factor: Replication factor is used as two in sensor data tables. This

means a data unit is written to two nodes. This way, data are backed up in two

nodes and if a node is too busy to return response, other node returns it. Since

there are only four computers in the cluster, setting the replication factor too

large may cause network congestion and affect the performance negatively.

For tests that connect to Cassandra directly, Java programming language on JVM

version 1.7 is used and test applications are run on Linux Ubuntu 14.04 operating

system.

The sensor data table on Cassandra was populated with data of 50 devices like just

like DynamoDB was populated in Section.6.3.1. There were two years of data for

each device and data are written with frequency of five minutes, meaning for every

five minutes, there is only one record for a single device.

For Spark cluster installation, no modification is made on Spark’s default configura-

tion. Only worker node IP addresses are entered. Spark cluster includes four nodes.

During tests, Spark is used in two different modes. In first mode, only one node is

used for processing with four threads. In second mode, there is no multi-threading.

Four nodes are used for processing in parallel instead of threads. These modes do not
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rely on cluster configuration. It is specified in test application when submitting the

job to tell the cluster how to execute the job. Scala programming language on JVM

version 1.7 is used for test applications that run on Spark. In order to use Spark and

Cassandra together, additional libraries are used as well. Test applications are run on

Linux Ubuntu 14.04 operating system.

6.4 Codes for Querying Databases

In this section, sample generic codes are introduced for querying databases together

with the explanation of their parameters. For different queries during tests, parameters

will be changed according to the test conditions (mostly date parameters). When

presenting test results, specific queries of the test will also be given.

6.4.1 DynamoDB Query Codes

In order to access DynamoDB, Amazon’s Java API is used during this study. Here is

an example Java code for querying a DynamoDB table:

1 DynamoDB dynamoDb = new DynamoDB ( new AmazonDynamoDBClient ( ) ) ;

2 Tab le t a b l e = dynamoDB . g e t T a b l e ( tableName ) ;

3 QuerySpec querySpec = new QuerySpec ( )

4 . withHashKey ( " d e v i c e I d " , d e v i c e I d )

5 . w i t h C o n s i s t e n t R e a d ( f a l s e ) . w i thRangeKeyCondi t ion (

6 new RangeKeyCondi t ion ( " t imes t amp " )

7 . be tween ( t i m e S t a r t , t imeEnd ) ) ;

8

9 I t e m C o l l e c t i o n <QueryOutcome > i t e m s = t a b l e . que ry ( querySpec ) ;

This code queries a table named ’tableName’. In the query conditions, deviceId is

used as hash key and timestamp is used as range key. These key types are described

in Section.2.4.1.1. ’deviceId’ is a single integer value identifying the device. ’times-

tamp’ is a string value representing the given date. For example, for the date ’2015

Aug 12 14:05’, the corresponding string value is ’201508121405’.
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6.4.2 Cassandra Query Codes

In order to access the Cassandra database, Java API is used. Queries are written

in CQL (Cassandra Query Language). Here is a simple Java code for querying a

Cassandra table:

1 que ry = " s e l e c t ∗ from s e n s o r D a t a where d e v i c e i d = ? and y e a r = ?

and month = ? and day = ? and hour = ? and min = ? " ;

2 s t a t e m e n t = s e s s i o n . p r e p a r e ( que ry ) ;

3 b o u n d S t a t e m e n t = new BoundSta tement ( s t a t e m e n t ) . b ind ( dev i ce , year ,

month , day , hour , min ) ;

This code queries a table named ’sensorData’ with device and time related parameters

(year, month, day, hour, minutes). All of these parameters are single integer values

representing the id of the device or parameters of the date given.

6.4.3 Apache Spark Query and Processing Codes

In order to connect to the Spark cluster, Java API is used again. Here is a Java code

that processes a Cassandra table via a Spark cluster:

1 CassandraJavaRDD <CassandraRow > cRdd = j a v a F u n c t i o n s ( s p a r k C o n t e x t ) .

c a s s a n d r a T a b l e ( " t e s t " , " s e n s o r D a t a " ) ;

2 cRdd = cRdd . where ( " d e v i c e I d =? " , d e v i c e ) . where ( " y e a r =? " , y e a r ) ;

3

4 JavaRDD<Double > rdd = cRdd . map ( new MapFunct ion ( ) ) ;

5

6 Double r e s u l t = rdd . r e d u c e ( new ReduceFunc t ion ( ) ) ;

This piece of code queries a table named ’sensorData’ in a keyspace named ’test’.

Parameters are id of the device and the year of the data set that will be processed.

Both of these parameters are simple integer values.
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6.5 Test Results

Tests were performed on both described environments separately. Results are pre-

sented in this section and then discussed all together.

6.5.1 NoSQL Database Analysis and Tests

In these tests, two NoSQL databases are tested as described in Section.6.2.a. These

tests are applicable to all of the architectures because core part of all of the architec-

tures are NoSQL database, as described in Section.6.1.

6.5.1.1 DynamoDB Analysis and Tests

DynamoDB is extremely easy to deploy. There is no installation required. With just

a few clicks, DynamoDB table is ready to be used in a few seconds. Besides ease of

installation, there is also no maintenance cost for DynamoDB. As long as user pays

for the desired throughput, everything about the database is handled by Amazon.

User can modify only throughput of the table after the creation. Even if the user

wants, Amazon does not allow user to access internals of DynamoDB. Consequently,

in terms of installation and maintenance, DynamoDB is extremely simple for the user.

DynamoDB supports three types of data access methods:

Get operation: This operation allows user to get a single item by specifying the

primary key. If the table uses only hash type of primary key, user has to provide

only the hash key. However, if the table uses hash and range type of primary

key, user has to provide both hash key and range key of the requested item.

Query operation: This operation allows user to request more than one item from

the database by specifying a condition. The user can specify the condition

on hash and range keys. For hash key, only equality operation can be used.

For range key, the user can provide conditional expressions using ‘equality’,

‘greater than’, ‘less than’, ‘greater than or equal’, ‘less than or equal’, ‘between’
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and ‘begins with’ operations. As the result of this operation, items that satisfy

the condition returned.

Scan operation: This operation reads all items in a table. By default it returns all

items and all of their columns. The user can specify ‘ProjectionExpression’

to request specific columns and a conditional expression to retrieve items that

satisfy the given condition. Scan operation is useful when most of the data in

the database will be requested and returned. Amazon’s API also supports par-

allel processing of Scan operation. Scan can be distributed on several threads

to iterate concurrently by the client application.

The next criterion is ease of coding a client. Here is a simple Java method that

queries a DynamoDB table.

1 p u b l i c vo id query ( S t r i n g tableName , S t r i n g primaryKey , I n t e g e r

pr imaryKeyValue , S t r i n g rangeKey , Long r a n g e K e y S t a r t , Long

rangeKeyEnd ) throws IOExcep t i on {

2 / / i n i t i a l i z a t i o n

3 AWSCredent ia l s a w s C r e d e n t i a l s = new P r o p e r t i e s C r e d e n t i a l s ( t h i s .

g e t C l a s s ( ) . g e t R es o u r c eA s S t r e a m ( " / A w s C r e d e n t i a l s . p r o p e r t i e s " ) ) ;

4 AmazonDynamoDBClient c l i e n t = new AmazonDynamoDBClient (

a w s C r e d e n t i a l s ) ;

5 c l i e n t . s e t R e g i o n ( Region . g e t R e g i o n ( Regions . US_WEST_2) ) ;

6 DynamoDB dynamoDB = new DynamoDB ( c l i e n t ) ;

7 / / end o f i n i t i a l i z a t i o n

8

9 Tab le t a b l e = dynamoDB . g e t T a b l e ( tableName ) ;

10

11 QuerySpec querySpec = new QuerySpec ( )

12 . withHashKey ( primaryKey , pr imaryKeyValue ) . w i t h C o n s i s t e n t R e a d (

f a l s e ) ;

13

14 querySpec = querySpec . wi thRangeKeyCond i t ion (

15 new RangeKeyCondi t ion ( rangeKey ) . be tween ( r a n g e K e y S t a r t ,

rangeKeyEnd ) ) ;

16

17 I t e m C o l l e c t i o n <QueryOutcome > i t e m s = t a b l e . que ry ( querySpec ) ;

18 I t e r a t o r <Item > i t e r a t o r = i t e m s . i t e r a t o r ( ) ;
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19

20 whi le ( i t e r a t o r . hasNext ( ) ) {

21 I t em i t em = i t e r a t o r . n e x t ( ) ;

22 / / p r o c e s s t h e i t e m

23 }

24 }

As it can be seen in the example code, it is not similar to traditional RDBMS client

codes. Still, it is pretty straightforward and simple.

Next, we will test performance of the databases. First parameter is how fast Dy-

namoDB can handle large number of separate insert and read operations. For this

part of the test, we will look at the study of Rohan Narde [31]. Details of these tests

were given in third paragraph of introduction of this chapter. Insertion times for spec-

ified amounts of data are given in Table 6.1. Data record read times are given in Table

6.2. These tests are performed by inserting and reading single data records without

caring about values.

Table 6.1: Data insertion performance of DynamoDB
Record Count 1000 10000 50000 100000 500000

Execution Time (seconds) 12.3 23.2 70.3 156.3 634

Table 6.2: Data read performance of DynamoDB
Record Count 1000 10000 50000 100000 500000

Execution Time (seconds) 3.7 14.3 45.3 90 561

The last part of the test is data retrieval speed. Different from the previous test, this

test was performed by querying different amounts of data and measuring response

times for a single query. Results are given in Table 6.3. The time values are given in

milliseconds.

Table 6.3: Execution time of a single query with different amounts of data on
DynamoDB

Data Collected in ... 1 year 3 months 1 month 1 week 1 day 5 mins
DynamoDB

Execution Time
3878 ms 900 ms 302 ms 74 ms 21 ms 20 ms

Here are codes for querying DynamoDB with different amounts of data:
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1-year Data Query:

1 QuerySpec querySpec = new QuerySpec ( )

2 . withHashKey ( " d e v i c e I d " , d e v i c e I d )

3 . w i t h C o n s i s t e n t R e a d ( f a l s e )

4 . w i thRangeKeyCondi t ion (

5 new RangeKeyCondi t ion ( " t imes t amp " )

6 . be tween ( " 201401010000 " , " 201501010000 " ) ) ;

7

8 I t e m C o l l e c t i o n <QueryOutcome > i t e m s = t a b l e . que ry ( querySpec ) ;

3-months Data Query:

1 QuerySpec querySpec = new QuerySpec ( )

2 . withHashKey ( " d e v i c e I d " , d e v i c e I d )

3 . w i t h C o n s i s t e n t R e a d ( f a l s e )

4 . w i thRangeKeyCondi t ion (

5 new RangeKeyCondi t ion ( " t imes t amp " )

6 . be tween ( " 201401010000 " , " 201504010000 " ) ) ;

7

8 I t e m C o l l e c t i o n <QueryOutcome > i t e m s = t a b l e . que ry ( querySpec ) ;

1-month Data Query:

1 QuerySpec querySpec = new QuerySpec ( )

2 . withHashKey ( " d e v i c e I d " , d e v i c e I d )

3 . w i t h C o n s i s t e n t R e a d ( f a l s e )

4 . w i thRangeKeyCondi t ion (

5 new RangeKeyCondi t ion ( " t imes t amp " )

6 . be tween ( " 201401010000 " , " 201502010000 " ) ) ;

7

8 I t e m C o l l e c t i o n <QueryOutcome > i t e m s = t a b l e . que ry ( querySpec ) ;
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1-week Data Query:

1 QuerySpec querySpec = new QuerySpec ( )

2 . withHashKey ( " d e v i c e I d " , d e v i c e I d )

3 . w i t h C o n s i s t e n t R e a d ( f a l s e )

4 . w i thRangeKeyCondi t ion (

5 new RangeKeyCondi t ion ( " t imes t amp " )

6 . be tween ( " 201401010000 " , " 201501080000 " ) ) ;

7

8 I t e m C o l l e c t i o n <QueryOutcome > i t e m s = t a b l e . que ry ( querySpec ) ;

1-day Data Query:

1 QuerySpec querySpec = new QuerySpec ( )

2 . withHashKey ( " d e v i c e I d " , d e v i c e I d )

3 . w i t h C o n s i s t e n t R e a d ( f a l s e )

4 . w i thRangeKeyCondi t ion (

5 new RangeKeyCondi t ion ( " t imes t amp " )

6 . be tween ( " 201401010000 " , " 201501020000 " ) ) ;

7

8 I t e m C o l l e c t i o n <QueryOutcome > i t e m s = t a b l e . que ry ( querySpec ) ;

Single Data Query:

1 QuerySpec querySpec = new QuerySpec ( )

2 . withHashKey ( " d e v i c e I d " , d e v i c e I d )

3 . w i t h C o n s i s t e n t R e a d ( f a l s e )

4 . w i thRangeKeyCondi t ion (

5 new RangeKeyCondi t ion ( " t imes t amp " )

6 . be tween ( " 201401010000 " , " 201501010005 " ) ) ;

7

8 I t e m C o l l e c t i o n <QueryOutcome > i t e m s = t a b l e . que ry ( querySpec ) ;

According to the results, response time of DynamoDB is directly proportional to

amount of the data returned. Since data are returned and transferred in JSON format,

101



as data amount increase, retrieval time also increases linearly.

6.5.1.2 Cassandra Analysis and Tests

Unlike DynamoDB, Cassandra requires substantial amount of effort for installation

and maintenance. It must be installed and configured on each node manually. It does

not require too much effort for a single node but if there are a lot of nodes, installation

will require relatively long time.

Cassandra comes with a tool named ‘nodetool’. This tool allows user to watch the

cluster, or a single node. User can send commands to the cluster or a single node like

‘flush data to disk’, ‘enable or disable gossip protocol’, ‘compact a column family’.

Thanks to this tool, user does not have to connect each node one by one in order to

handle maintenance tasks. Direct access or intervention is required only if a specific

node cannot be accessed by nodetool. Consequently, installation, configuration and

maintenance of a Cassandra cluster are not as simple as DynamoDB. However, there

are utilities that help user to manage the cluster.

For database access, Cassandra provides an SQL like language called CQL. Its syntax

is very similar to traditional SQL syntax. Moreover, it supports most of the operations

that SQL languages support; even the syntax is the same for most operations. How-

ever, a major difference is CQL does not support ‘JOIN’ operation. Other detailed

features are described in Section.2.4.2.2.

The next criterion to discuss is ease of coding a client program for Cassandra. Here

is a simple Java program that queries a Cassandra table:

1 p u b l i c vo id query ( i n t d e v i c e I d , i n t y e a r ) {

2 C l u s t e r c l u s t e r = C l u s t e r . b u i l d e r ( ) . a d d C o n t a c t P o i n t ( " hos t−a d d r e s s

" ) . b u i l d ( ) ;

3 S e s s i o n s e s s i o n = c l u s t e r . c o n n e c t ( " t e s t " ) ;

4 S t r i n g que ry = " s e l e c t ∗ from d a t a where d e v i c e i d = ? and y e a r =

? " ;

5 P r e p a r e d S t a t e m e n t s t a t e m e n t = s e s s i o n . p r e p a r e ( que ry ) ;

6 BoundSta tement b o u n d S t a t e m e n t = new BoundSta tement ( s t a t e m e n t ) .

b ind ( d e v i c e I d , y e a r ) ;
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7 R e s u l t S e t r e s u l t S e t = s e s s i o n . e x e c u t e ( b o u n d S t a t e m e n t ) ;

8 I t e r a t o r <Row> i t e r a t o r = r e s u l t S e t . i t e r a t o r ( ) ;

9

10 Row r ;

11 whi le ( i t e r a t o r . hasNext ( ) ) {

12 r = i t e r a t o r . n e x t ( ) ;

13 double consumpt ion = r . ge tDoub le ( " consumpt ion " ) ;

14 / / p r o c e s s t h e da ta

15 }

16 c l u s t e r . c l o s e ( ) ;

17 }

As it can be seen in example code, interacting with a Cassandra cluster is pretty

similar to traditional JDBC clients. Only the connection setup part has a few different

parameters and options. In short, a developer with some JDBC experience can easily

start coding a client for Cassandra.

Next thing to test is how fast Cassandra can handle large number of separate insert

and read operations. Again for this part of the test, we will look at the study of Rohan

Narde [31]. Details of these tests were given in third paragraph of introduction of this

chapter. Insertion times for specified amounts of data are given in Table 6.4. Read

times of data records are given in Table 6.5. These tests are performed by inserting

and reading single data records without caring about values.

Table 6.4: Data insertion performance of Cassandra
Record Count 1000 10000 50000 100000 500000

Execution Time (seconds) 3.2 12.7 22.2 55.9 230

Table 6.5: Data read performance of Cassandra
Record Count 1000 10000 50000 100000 500000

Execution Time (seconds) 2 6.2 22.3 51.3 301

The last and the most important part of the test is data retrieval speed. Different from

the previous test, this test was performed by querying different amounts of data and

measuring response times for a single query. Results are given in Table 6.6. The time

values are given in milliseconds.

According to the results, response time of Cassandra is proportional to amount of
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the data returned, but not very strictly proportional like DynamoDB since it does not

transfer data in a format like JSON.

Table 6.6: Execution times of a single query with different amounts of data on
Cassandra

Data Collected in ... 1 year 3 months 1 month 1 week 1 day 5 mins
Cassandra

Execution Time
1106 ms 320 ms 143 ms 57 ms 16 ms 20 ms

Here are codes for querying Cassandra with different amounts of data.

1-year Data Query:

1 que ry = " s e l e c t ∗ from s e n s o r D a t a where d e v i c e i d = ? and y e a r

= ? " ;

2 s t a t e m e n t = s e s s i o n . p r e p a r e ( que ry ) ;

3 b o u n d S t a t e m e n t = new BoundSta tement ( s t a t e m e n t ) . b ind ( dev i ce ,

2014) ;

3-months Data Query:

1 que ry = " s e l e c t ∗ from s e n s o r D a t a where d e v i c e i d = ? and y e a r

= ? and month >= ? and month < ? " ;

2 s t a t e m e n t = s e s s i o n . p r e p a r e ( que ry ) ;

3 b o u n d S t a t e m e n t = new BoundSta tement ( s t a t e m e n t ) . b ind ( dev i ce ,

2014 , 2 , 5 ) ;

1-month Data Query:

1 que ry = " s e l e c t ∗ from s e n s o r D a t a where d e v i c e i d = ? and y e a r

= ? and month = ? " ;

2 s t a t e m e n t = s e s s i o n . p r e p a r e ( que ry ) ;

3 b o u n d S t a t e m e n t = new BoundSta tement ( s t a t e m e n t ) . b ind ( dev i ce ,

2014 , 3 ) ;

104



1-week Data Query:

1 query = " s e l e c t ∗ from s e n s o r D a t a where d e v i c e i d = ? and y e a r

= ? and month = ? and day >= ? and day < ? " ;

2 s t a t e m e n t = s e s s i o n . p r e p a r e ( que ry ) ;

3 b o u n d S t a t e m e n t = new BoundSta tement ( s t a t e m e n t ) . b ind ( dev i ce ,

2014 , 4 , 5 , 12) ;

1-day Data Query:

1 query = " s e l e c t ∗ from s e n s o r D a t a where d e v i c e i d = ? and y e a r

= ? and month = ? and day = ? " ;

2 s t a t e m e n t = s e s s i o n . p r e p a r e ( que ry ) ;

3 b o u n d S t a t e m e n t = new BoundSta tement ( s t a t e m e n t ) . b ind ( dev i ce ,

2014 , 11 , 15) ;

Single Data Query:

1 query = " s e l e c t ∗ from s e n s o r D a t a where d e v i c e i d = ? and y e a r

= ? and month = ? and day = ? and hour = ? and min = ? " ;

2 s t a t e m e n t = s e s s i o n . p r e p a r e ( que ry ) ;

3 b o u n d S t a t e m e n t = new BoundSta tement ( s t a t e m e n t ) . b ind ( dev i ce ,

2014 , 2 , 5 , 13 , 55) ;

Overall analysis and comparison of the results are presented in Section.6.6.

6.5.2 Concurrent Data Processing Tests

We have performed these tests in order to measure performance of databases in a

multi-threaded and multi-process environment. During these tests, the same databases

are tested as described in Section.6.2.b. We executed concurrent queries with multiple

threads. All of these threads are independent from each other. Query parameters were

randomized, in other words none of the threads query same data. Codes for these
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queries are the same as the ones given in Section.6.5.1. Only difference is in this set

of tests, multiple threads execute same code simultaneously. Similar to the previous

test, this one is applicable to all of the architectures, since as described in Section.6.1,

all of the architectures have data processing component and this component is a must.

6.5.2.1 Data Processing Tests with DynamoDB and Multiple Clients

In these tests, DynamoDB is queried with ten threads to analyze how it responds to

simultaneous queries. Moreover, simple calculations are performed on returned data

by iterating over it, in order to simulate a data processing environment. Test applica-

tion is written in Java and deployed to Amazon servers as described in Section.6.3.1,

in order to minimize the network delay. In order to do measurements correct, query

threads are created first. Then, the counter and threads are started simultaneously.

After each thread had exited from processing the query and returned data, the counter

is stopped. Results of the tests are given in Table 6.7.

Table 6.7: Execution times of a query with 10 independent threads in parallel and
different amounts of data on DynamoDB

Data collected in ...
(data size per thread)

1 year 3 months 1 month 1 week 1 day 5 mins

DynamoDB
Execution Time

(10 threads)
- 31508 ms 745 ms 117 ms 31 ms 3 ms

Since even these results are not good enough to match performance needs of an HVAC

EOS, there is no need to perform further tests with higher workloads.

6.5.2.2 Data Processing Tests with Cassandra and Multiple Clients

In these tests, Cassandra is queried with ten threads first. Next, it is queried with

twenty threads to examine how it responds to different number of simultaneous queries.

In addition to queries, simple calculations are performed on returned data by iterating

over it one by one. Test application is written in Java and run on one of the nodes

in the cluster that is described in Section.6.3.2. In order to measure time correctly,

threads that will perform the query and processing are created first. Then, the counter
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and threads are started at the same time. After each thread had finished the query and

processing and had exited, the counter is stopped.

First, test is performed with ten threads. Results are presented in Table 6.8. Then, the

same test is performed with twenty threads. Results are given in Table 6.9.

Table 6.8: Execution times of a query with 10 independent threads in parallel and
different amounts of data on Cassandra

Data collected in ...
(data size per thread)

1 year 3 months 1 month 1 week 1 day 5 mins

Cassandra
Execution Time

(10 threads)
1810 ms 513 ms 249 ms 90 ms 34 ms 26 ms

Table 6.9: Execution times of a query with 20 independent threads in parallel and
different amounts of data on Cassandra

Data collected in ...
(data size per thread)

1 year 3 months 1 month 1 week 1 day 5 mins

Cassandra
Execution Time

(20 threads)
2030 ms 667 ms 250 ms 100 ms 42 ms 10 ms

6.5.3 Apache Spark Integration

In these tests, selected databases’ integration capabilities with distributed data pro-

cessing frameworks are analyzed. As described before, Apache Spark is used as data

processing framework. As database, DynamoDB and Cassandra are used. Again this

test is applicable to all of the architectures. Data processing component is present in

all of the architectures as described in Section.6.1. When data warehouse is used, it

handles data processing while executing query. Therefore, this test is applicable when

data warehouse is not used.

6.5.3.1 Data Processing Tests with Spark and DynamoDB

At the moment, Spark does not have internal integration support for DynamoDB.

DynamoDB is proprietary product of Amazon, not open source like Spark. There is a

few open source attempts to integrate Spark with DynamoDB but they are not stable
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yet. Without integration, there is a very inefficient method to process DynamoDB

data with Spark. First, user has to query database manually. After retrieving the

data, it has to be distributed over the Spark cluster using the ‘parallelize’ method of

Spark library. Parallelize method distributes the data and creates an RDD (Resilient

Distributed Dataset), which is source of all computation in Spark. Then, user can

perform any operation on the RDD.

This method is not feasible for two reasons. The first reason is data will be queried by

one application and then submitted to the Spark cluster for processing. By this way,

user cannot take advantage of possibility of parallel querying. Moreover, as parallel

computation load increases, there is a strong possibility that a network bottleneck

will arise on the computer that runs the application. The second reason is even if

application can retrieve data efficiently under high workloads, the retrieved data have

to be distributed over the Spark cluster. This causes another transmission of retrieved

data, which will put network in even more stress.

This integration is possible with a larger and Amazon-controlled cluster. For this

method we need to deploy an Amazon EMR cluster and connect it to a DynamoDB

table. Since we cannot manage internals of this cluster and a much larger cluster is

needed, that architecture is out of the scope of this research.

Since there is no internal DynamoDB support in Spark, the problems described above

will occur after system works for a while. Therefore, this scenario was not tested in

real environment.

6.5.3.2 Data Processing Tests with Spark and Cassandra

Spark has very stable Cassandra integration via external libraries. The most used one

is developed by Datastax [12], a commercial Cassandra service provider company.

Spark’s Cassandra connector library allows Cassandra tables to be treated as Spark

RDDs. By this way, each Spark worker node retrieves only the data that the worker

node is going to process. Data do not have to be transmitted to and from a single node

multiple times, like user has to do with DynamoDB.

In this test, Spark is connected directly with Cassandra table. Cassandra table is pop-
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ulated with sample data as described in Section.6.3.2. Multiple tests are performed

with different amounts of data. Except querying, some processing is also performed

on the retrieved data. Here are the time measurements of the tests.

Table 6.10: Execution times of a data analysis on Cassandra using Apache Spark
with different amounts of data

Data Collected in ... 1 year 3 months 1 month 1 week 1 day 5 mins
Spark Performance 1393 ms 568 ms 248 ms 126 ms 91 ms 10 ms

According to the results, with small amount of data, Spark brings some overhead com-

pared to tests in Section.6.5.1.2. However, as data amount increases, the performance

gap begins to diminish. Data of these tests were not enough to see what happens when

data size is much larger. In the next test, this condition will be examined.

Here is an example code for processing a Cassandra table with Spark:

1 CassandraJavaRDD <CassandraRow > cRdd = j a v a F u n c t i o n s ( s p a r k C o n t e x t )

2 . c a s s a n d r a T a b l e ( " t e s t " , " s e n s o r D a t a " ) ;

3 cRdd = cRdd . where ( " d e v i c e I d =? " , d e v i c e ) . where ( " y e a r =? " , 2014) ;

4

5 JavaRDD<Double > rdd = cRdd . map ( new MapFunct ion ( ) ) ;

6

7 Double r e s u l t = rdd . r e d u c e ( new ReduceFunc t ion ( ) ) ;

6.5.4 Data Processing Tests with Large Datasets

In previous test, results showed that with small amount of data, distributed processing

brings some overhead. During these tests, much larger data sets will be processed in

order to examine effects of distributed data processing frameworks. We have used

specific tools that can work together and integrated. Therefore, this test is for any

architecture described in Section.6.1 if Apache Cassandra and Spark are used. With-

out tools that can work together, data would be queried and distributed manually and

these operations bring a lot of data movement and overhead to the system.

This test will be conducted in three steps. Data always reside on Cassandra. First,

data will be retrieved by a client application and processing will be done in the ap-

plication manually. Then, data processing will be performed with Apache Spark with
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two different configurations. In the first configuration, Spark cluster consists of four

computers and processing is performed in four nodes concurrently. In second con-

figuration, there is only one Spark node but it processes data with four threads. Data

are processed by four nodes concurrently like in previous configuration, but this time

they are on the same computer.

In previous tests, the largest data set that was processed was a single device’s data

of one year. During this test, all of the data present in the table are used. In other

words, there are data of fifty devices. For each device there are data for two years.

This makes a hundred times more data than previous tests.

Table 6.11: Execution times of the processing of the whole database on Cassandra
with and without Apache Spark

Test Duration
Cassandra execution time 94052 ms

Spark with 4 nodes execution time 75932 ms
Spark with 1 node 4 threads execution time 71878 ms

According to the in results, distributed processing frameworks bring significant im-

provement to applications that process large amount data. However, they are not

beneficial for all systems; processed data size has to be over some threshold.

6.6 Comments on Results

In Table 6.12, summary of all tests are displayed. Comments on this table are given

in the following sections. In Table 6.13, proposed architectures and tests that are

related or applicable to them are given. In Table 6.14, proposed architectures and their

properties are given. Some of the items are marked with both positive and negative.

This means property depends on the tool choice. For example if DynamoDB is used

as NoSQL database, Apache Spark integration test is not applicable. However, if

Cassandra is used, then that test makes sense.
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6.6.1 Comments on NoSQL Database Analysis and Tests

According to results of first set of tests, both databases have its pros and cons. Three

criterions were examined during these tests: ease of installation and maintenance,

data access methods and ease of provided API and data retrieval speed.

As stated before, Cassandra requires some effort for installation and maintenance of

nodes in the cluster while DynamoDB requires almost no effort. DynamoDB handles

everything behind the curtains after user specifies desired throughput. Therefore,

DynamoDB is certain winner in terms of installation and maintenance effort.

In terms of provided operations, they provide similar operations. User can query both

databases by specifying conditions based on primary or secondary keys. DynamoDB

provides a different method to access data, scan operation. Scan operation is not

something to be used frequently since it searches a whole table record by record.

Therefore, none of the databases is superior to the other one in terms of provided

operations.

In terms of data access method, Cassandra provides a query language called ‘Cassan-

dra Query Language (CQL)’ while DynamoDB does not have something like that.

User has to write code in Java or some other language that Amazon supports. More-

over, Cassandra has a tool called ‘cqlsh’ which is a console application like MySQL

console client. Using cqlsh, users can query and modify tables and insert into tables

by writing simple CQL scripts. However, for DynamoDB, user has to write code or

use Amazon’s DynamoDB web interface. In terms of data access methods, Cassan-

dra is slightly easier to learn and develop since its tools and language is similar to

traditional ones.

For programming purposes, both databases provide simple API’s. User can start de-

velopment with very little exercise. However, since Cassandra has a separate lan-

guage for database operations, code of a Cassandra client is very similar to code of

a traditional RDBMS, which makes learning curve pretty gradual. In addition, since

queries are written in constant strings, it is easier to read and understand the code of

a Cassandra client. While both databases provide simple API’s, DynamoDB API has

a little steeper learning curve and code is a little harder to read than Cassandra API.
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As described in Section.6.5.1, according to Rohan Narde’s study, Cassandra can exe-

cute two times more read operations than DynamoDB in same time interval. In terms

of write performance, Cassandra executes about three times more operations in aver-

age. In his study, he did not analyze data format and do any configurations for a fixed

data format. In our tests, we have used time-series data and defined its format. In

addition, we have configured the database and its indexes accordingly. Consequently,

with a few data records, there is not much difference between two databases but as

data size increases, Cassandra is about three times faster with our configuration. As

we can see in Table 6.12, performance gap further increases as data size grows and

probably will be much more than only three times if we further increase data size.

Rohan Narde claims Cassandra is faster and we claim it can be even faster with cor-

rect configuration and our tests validate this. About data retrieval speed, Cassandra

is the clear winner according to tests. Still both of them have very good performance

for working with large amounts of data. In these tests, environments are configured

for best performance. We were able to deploy Cassandra to a local cluster. So we

were able to tune the system for higher Cassandra performance and even without any

tuning, communication delay was very low. For DynamoDB, we do not know how

things are handled in Amazon’s systems.

Except raw time measurements, response time of DynamoDB is directly proportional

to amount of the data returned while response time of Cassandra is not very strictly

proportional like DynamoDB. The most probable reason of this is DynamoDB trans-

fers data in JSON format. This has two main unwanted side effects. First one is there

are lots of redundant data transferred with each item, for example column names,

especially when transferred item count is large. Second side effect is each item con-

tains table metadata even if the table structure is fixed. Since Cassandra knows table

metadata even if some columns are not used, it can utilize transfer of this information.

All of the results are enough to fulfill performance requirements given in Chapter 4.

Results of this test can be used while designing any system that includes a NoSQL

database. All of our proposed architectures have NoSQL database as the storage

component (Section.6.1), therefore whatever architecture we choose, we are going to

keep these results in mind while deciding tools.
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6.6.2 Comments on Concurrent Data Processing Tests

DynamoDB and Cassandra are tested in an environment similar to a real energy track-

ing and optimization system. First, DynamoDB is queried with ten threads concur-

rently that perform simple processing on data. Then, Cassandra is queried with ten

threads and then twenty threads. DynamoDB was not tested with twenty threads since

performance of ten threads was enough to compare with Cassandra. These threads

are independent from each other and query same amount of data.

For Cassandra, there is not much performance difference between ten and twenty

threads. In both tests, measured duration is about twice the time of single-threaded

tests for each tested data amount.

For DynamoDB, results are not as linear as Cassandra. When data amount is small,

response time is almost the same as single-threaded DynamoDB tests. However, as

data amount increases, response time begins to increase very rapidly. When we had

executed queries exactly at the same time, DynamoDB had a hard time handling

requests efficiently and results are very high as we see in tables. Then, we introduced

a few milliseconds between each query execution and this time results were much

better but still worse than Cassandra. This anomaly is probably because of internal

request handling and request rate throttling but it is impossible for us to track the

problem.

Cassandra is faster in all tests, which may be because of running on a local clus-

ter. If we consider the increase rate in response times according to test results, when

database interactions include very small amount of data, DynamoDB’s performance

is more stable. Its performance in multi-threaded environment is very close to single-

threaded tests. When data sets are small, both databases meet the performance re-

quirements given in Chapter 4, but DynamoDB is slightly faster. When data amount

is larger, Cassandra is more stable and meets the performance requirements while

DynamoDB begins to suffer from performance and stability problems.

Results of this test can be used to design any system with NoSQL database. Our

architectures also use NoSQL database as storage and concurrent processing is a must

(Section.6.1). Thus, these results will guide us while designing our final architecture.
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6.6.3 Comments on Apache Spark Integration Tests

Apache Spark integration of the tested databases was examined and a few calculation

tests are performed. First, Spark was integrated with a Cassandra table and tests

were performed on data sets with different sizes. When data amount is small, adding

Spark to data processing stack brings a lot of overhead. As data amount increase, the

performance gap caused by Spark diminishes and results expressed in Section.6.5.3.2

show what happens when data size further increases.

DynamoDB does not have direct integration with Spark. It is possible to query data

from DynamoDB manually and distribute it over the Spark cluster for processing.

However, even query speed of DynamoDB is slower than Spark processing on Cas-

sandra. Moreover, this test would not be feasible to be used in a real working system

because of the reasons described in Section.6.5.3.1.

Results of this test will guide us while deciding which data processing method to

use. As described in Section.6.1, we can either use simple data processing applica-

tion or distributed BigData processing frameworks in all of the architectures. If data

warehouse is used in the system, it can handle distributed processing of data while

querying. Thus, there is no need to use Apache Spark with data warehouse. This

test is applicable only when no data warehouse is used in the system. According to

the test results, if underlying NoSQL database is Cassandra, Apache Spark can be

integrated easily. We are going to discuss impact of Spark on data processing on next

section.

6.6.4 Comments on Processing of Very Large Datasets

We have seen that Apache Spark brings overhead when data amount is small and

performance gap closes as data amount increase. In order to see Spark’s effect in

larger data sets, same tests were executed on the whole data residing on the database.

First, the whole data were processed without Spark. Then, same process was per-

formed with four Spark nodes. After that it was performed with one Spark node

running on four threads. According to the results, as data size gets larger, benefits of
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the Spark get much more than its overhead. It is clear that parallel processing power

of Spark saves significant amount of processing time for large data sets.

During the tests, Spark with one node and four threads performed slightly better than

Spark with four nodes. This is because of the network overhead introduced with

multiple nodes. Moreover, total data size was enough to be kept in memory; therefore,

all four threads can perform processing completely on memory of a single node. If

memory of a node was not enough to hold the whole data, Spark with four nodes

would perform better since more data can be processed in memory simultaneously.

Results of this test reveal impact of Apache Spark integration on data processing.

According to the Section.6.1, data processor is a critical component for all of the

architectures. We are going to consider these results while choosing data processing

component for recommended architecture.

6.7 Recommended System Architecture

After analyzing the test results, the recommended final system architecture is shown

in Figure 6.1.

Although the deployment and maintenance costs are higher, a local Cassandra cluster

was chosen as database for its speed and limitless data size. In-memory database is

not necessary for the final system since data size is very large and operations that are

related to user interactions are performed by in-memory data processing framework,

Apache Spark. In addition to Apache Spark, Apache Hive is used for operations that

are performed behind the curtains and process very large amounts of data. It is mostly

for data sets that do not fit in total memory of the Spark cluster. Data processor node

is responsible from map-reduce task submissions and communication between the

HVAC EOS and BMS.

Stream processing is used in the system because it takes a great burden from the

NoSQL database and data processor. Data preprocessing, watching building demand

and alarms & notifications operations are performed in stream processing pipeline. In

this pipeline, both Amazon Kinesis and Apache Storm were used. Amazon Kinesis is
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Figure 6.1: Recommended System Architecture

the first arrival point for the data. Data are stored there until a Storm worker retrieves

it. Kinesis is mainly used for storing large amount of data streams. If Kinesis was

not used, if at some point Storm cluster gets slower, data generated by the sensor may

be lost because a Storm worker could not retrieve them and data were overridden by

the sensor. Therefore, any data generated by the sensors are stored directly in Kinesis

without any processing. Then, Storm cluster performs preprocessing of the data, takes

immediate actions depending on the data if necessary and writes it into Cassandra.
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6.7.1 Operations Met by the Components of the Recommended System

In this section, we will present which modules of the final system is responsible from

the operations described in Section.4.3.

Static Building Energy Performance Simulation: As described in Section.4.3.1,

this operation is performed once for each building. Inputs of this operation are static

values therefore there is no BigData here. This operation is performed by the data

processor node in the final architecture.

Data Preprocessing: This operation is the first one in the pipeline that processes

the BigData. As described in Section.4.3.2.1, steps of this operation are independent

from past or future data. Therefore, each data packet can be processed individu-

ally. For this purpose, data stream processing pipeline (Amazon Kinesis and Apache

Storm) is used to handle this operation. Each data unit is processed one by one as it

propagates through the pipeline before it is written to the database. In terms of per-

formance, this operation depends on only propagation delay of data packets through

the network since there is no complex calculations or large data-sets at this point.

Watching Building Demand: This operation processes only recent (15 minutes)

demand data of a sensor or a set of sensors as described in Section.4.3.2.2. Therefore,

there is no need to query the database frequently and impose a large burden to the

database. These data can be processed in the data stream processing pipeline by

keeping only small amount of summary data about recent demand data. Current data

and summary of recent data are combined and analyzed together. Similar to previous

operation, in terms of performance, this operation depends on only propagation delay

of data packets through the network since there is no complex calculations or large

data-sets at this point of the system.

Forecasting: This operation requires large amount of past data as described in

Section.4.3.2.4, so it has to be performed by one of the map-reduce clusters. When

total data amount is not very large, Apache Spark is used for speed. In our reference
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EOS, the largest data set is one-year data of a sensor, which can fit easily in the

memory of a cluster of a few nodes. However, as system grows, larger analyzes

may be needed with much larger data-sets or there may be too many simultaneous

forecasting operations for different buildings. In situations like this, processing will

be performed on Apache Hadoop via data warehouse (Apache Hive) since it stores

data on disk during operations.

BMS Optimization: As described in Section.4.3.2.5, calculations in this operation

are similar to forecasting. Used data amount, input data types and processing algo-

rithm details differ slightly. Therefore, this operation is going to be performed at the

same point and same method with forecasting operation.

Alarms and Notifications: This operation has to be performed on each data packet

since its purpose is to notify the user immediately for predefined alarms as described

in Section.4.3.2.3. Operation style is similar to data preprocessing operation. There-

fore, this operation is also performed on data stream processing pipeline similar to

data preprocessing operation. For each data unit, alarm checks are going to be per-

formed and notifications are triggered when needed. In terms of performance, this

operation depends on only propagation delay of data packets through the network

since there is no complex calculations or large data-sets at this point of system.
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CHAPTER 7

CONCLUSION

Systems that produce BigData also produces several challenges because of the char-

acteristics of the data, like its volume, velocity or variety. Traditional data storage and

processing systems are mostly scalable vertically. However, this is very expensive af-

ter some point and hard to add more power because of hardware limits. This thesis

analyzes a BigData analytics system and proposes horizontally scalable solutions to

problems of BigData.

In this thesis, we have analyzed needs of a HVAC EOS, which is one of the important

areas of energy domain. Detailed description of its requirements and operations are

presented formally. Then, technologies that can be used to fulfill the requirements

were examined. After defining requirements, different software architectures were

recommended in order to fulfill various needs of the system. Then, some of the rec-

ommended tools were tested in different environments, one is a local cluster and the

other one is a cloud platform. Then, test results are shared, analyzed and comments

on the results are expressed. Finally, an optimal system architecture was proposed in

consideration of the test results and tool characteristics.

According to results, we arrived several conclusions in addition to the recommended

system architecture:

· A local cluster performs better than cloud environment when communication

speed is critical.

· Scaling a local cluster is harder and more expensive than cloud environment

since physical hardware need to be installed and maintained manually. Scal-

123



ing a cloud cluster is much easier since everything needed for expanding it is

provided by the cloud service provider.

· Maintaining a cloud-based cluster is much easier than maintaining a local one.

User only specifies the system properties (hardware and software needs) and

they are provided by the cloud service provider. However, in a local cluster,

user has to install and manage every hardware and software manually.

· Column-based NoSQL databases are more suitable for data with large item size.

· Integration of the databases with a distributed data processing framework in-

creases performance greatly when processed data amount is large.

· In order to respond quickly to rapid changes, data needs to be processed on the

fly, preferably with data stream processing techniques.

Results of the study enables us to identify needs of a system and choose a suitable

architecture. Moreover, the study gives a formal definition of a HVAC EOS, so that

operations of an IoT system are exemplified. In addition, pros and cons of architec-

tures are explained and related tools are tested and analyzed. With detailed definition

of BigData and NoSQL technologies, the thesis gives insight to BigData concepts.

There are a few points that can be improved on this thesis. First one is testing of the

tools and architectures in identical environments. During the tests, the environments

are configured for the best performance. One of the databases (DynamoDB) was

tested in cloud environment completely since it can be deployed only on Amazon’s

cloud. We might have received different results if tests were performed in identi-

cal environments. Second improvement would be constructing a testing environment

very similar to a real system and perform complete architecture tests on this environ-

ment. In this thesis, a few key tools of the architectures are tested and analyzed. The

proposed architectures should be installed and configured as described in the thesis

and then tests should be performed. As the last and the most important future work,

data anomaly detection and machine learning algorithms used in a HVAC EOS can

be studied. This thesis does not give any details of the algorithms used in the system.

Besides the BigData management, defining and optimizing these algorithms are other

important works to be done.
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