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DİNÇER ÖZCAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2015





Approval of the thesis:

GPU ACCELERATED RECTILINEAR STEINER TREE CONSTRUCTION
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ABSTRACT

GPU ACCELERATED RECTILINEAR STEINER TREE CONSTRUCTION

ÖZCAN, DİNÇER

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

December 2015, 82 pages

The Rectilinear Steiner Tree (RST) problem is one of the fundamental problems in
circuit design automation. The problem is to find the tree structure that connects all
points in the input set such that total tree length is minimized. In order to reduce the
total length, extra points, called Steiner points, are introduced to the tree. Since the
RST problem is NP-complete, developing heuristic algorithms which can produce
near optimal solutions is the primary approach to solve the problem. This thesis
accelerates the Modified RST algorithm through parallelizing and using a state of art
Graphics Processing Unit (GPU) platform. GPUs contain many computational units
and they can provide massive computational power. However, it is not trivial to map
an RST problem instance to GPU. In order to benefit from the resources of GPU, the
problem has to be parallelized and suitably implemented.

In this study, we thoroughly investigate two recent rectilinear Steiner tree algorithms,
RST and Modified RST, and identify parallel implementation opportunities. Modified
RST algorithm is speed oriented and has better performance especially on large prob-
lem instances. Moreover, it is suitable for paralel implementation. Thus, we propose
a paralel and scalable RST solution based on Modified RST algorithm, which paralel-
lizes the whole algortihm and utilizes GPU resources more efficiently. Computational
results for realistic applications and random generated benchmarks are presented to
evaluate our implementation. Significant speed up is observed especially for large
problem sizes.
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ÖZ

GPU HIZLANDIRMALI DOĞRULU STEINER AĞAÇ ÜRETİMİ

ÖZCAN, DİNÇER

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cüneyt F. Bazlamaçcı

Aralık 2015 , 82 sayfa

Doğrulu Steiner Ağaç problemi elektriksel tasarım otomasyon alanının temel prob-
lemlerinden birisidir.Problem, verilen nokta kümesindeki noktaları kullanarak en kısa
uzunluktaki ağaç yapısını bulmayı amaçlamaktadır. Bu amaçla ağaca Steiner noktası
adı verilen yeni noktalar eklenmektedir. Doğrulu Steiner ağaç problemi NP-tam ol-
duğu için yaklaşık çözüm veren algoritmalar ana çözüm yaklaşımı olarak görülmek-
tedir. Bu tez değiştirilmiş RST algoritmasının GPU platformlarında paralelleştirile-
rek hızlandırılmasını sağlamaktadır. GPU platformları çok sayıda işlemci çekirdeği
içermektedir ve GPU yüksek sayıda sayısal işlemi aynı anda gerçekleştirebilecek ye-
teneğe sahiptir. Ancak, GPU’nun kaynaklarının verimli kullanılabilmesi için doğrulu
Steiner ağaç problemi uygun şekilde paralelleştirilmelidir.

Bu çalışmada, öncelikli olarak iki güncel Steiner ağaç üretim yaklaşımı olan RST ve
Değiştirilmiş RST algoritmaları detaylı olarak incelenmiştir ve paralel uygulamaya
uygun adımları tespit edilmiştir. Değiştirilmiş RST algoritması hız temellidir ve özel-
likle büyük problem boyutlarında daha iyi performans elde etmektedir. Ayrıca, De-
ğiştirilmiş RST algoritması paralel uygulamalar için de uygundur. Bu sebeplerden
dolayı Değiştirilmiş RST yöntemi temel alınarak yeni bir paralel ve ölçeklenebilir
doğrulu Steiner ağaç algoritması önerilmiştir. Önerilen algoritma bütün çözüm adım-
larını paralelleştirmektedir ve GPU kaynaklarını verimli kullanmaktadır. Son olarak,
algoritmanın performansını değerlendirmek amacı ile gerçek uygulamalar ve rastlan-
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tısal üretilmiş test kümeleri için simulasyon sonuçları sunulmuştur, özellikle büyük
problem boyutları için önemli hızlanma değerleri gözlemlenmiştir.

Anahtar Kelimeler: Çizge Kuramı, Doğrulu Steiner Ağaç Problemi, GPGPU, CUDA
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CHAPTER 1 

 

 

1. INTRODUCTION 
 

 

 

The Steiner tree problem constructs a tree with minimum cost that spans a set of 

nodes in the region. The set of input nodes are called vertices or terminals and newly 

added nodes to tree to minimize the total cost are called Steiner points, named after 

Jakob Steiner, a Swiss mathematician. The history of the Steiner tree problem starts 

with Fermat (1601-1665) and there is still an ongoing interest in modern heuristic 

solutions.  

1.1. Overview 

The Steiner tree problem has wide usage areas in telecommunication network design 

and printed circuit board design including integrated circuit design. Due to its 

importance in VLSI design, there is a significant attraction recently to the solution of 

the Steiner minimal tree problem. In VLSI design, following the placement process, 

routing is an important step. During routing, the paths for net on chip layout are 

constructed to interconnect the pins of the circuit blocks. Although IC manufacturing 

technology has introduced important abilities for net routing, there is still a minimum 

length constraint for critical nets. To be precise, minimum total trace capacitance for 

critical nets can be obtained and the occupied circuit area can be reduced only by the 

use of shorter net interconnections. 

Only the vertical and horizontal lines can be used as wires between different pins in 

VLSI design. This special type of problem is called rectilinear Steiner tree problem 

(RST). The minimum length tree that spans all input terminals in rectilinear plane is 

called rectilinear minimum spanning tree (RMST). By introducing extra nodes, 

namely Steiner points, the total length of RMST can be reduced. Although there exist 

algorithms for finding the optimal solution of rectilinear Steiner minimal tree 

(RSMT) problem, it is NP-complete and there is no polynomial time solution. Hence, 
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there is much more interests in near-optimal solutions and several numbers of 

heuristic algorithms have been proposed for this problem. 

Nowadays, performance requirements of applications are continuously increasing 

and hence the industry is moving towards parallel computing. This trend also affects 

researchers in the graph theory community. Since 2000, the interest on sequential 

RSMT solution shrunk considerably. On the contrary, there is more effort on parallel 

solutions of the problem. The state-of-the-art RSMT algorithms may benefit from 

data parallelism advantage of GPUs to accomplish more efficient algorithms. 

1.2. Scope of the Thesis 

In this study, we propose a parallel approach for the rectilinear Steiner tree problem. 

We start our study with a literature review. First, we analyze optimal and near-

optimal RSMT solutions considering runtimes and solution qualities of the existing 

algorithms.  Among existing work, we have chosen Modified RST algorithm [1] as 

the basis of our study. Modified RST algorithm is a combination of Rectilinear 

Steiner Tree by Zhou [2] and Batched Greedy Algorithm (BGA) by Kahng [3]. 

Modified RST is suitable for instances having thousands of terminals. Moreover, 

most of its steps are suitable for parallel implementation.  

In our algorithm, as the initial phase of the algorithm, we keep Zhou’s rectilinear 

sparse graph generation approach. Sweep operation can be computed for different 

nodes and different regions, simultaneously. The sweep operations are distributed 

among GPU execution units and active set maintenance method is improved for 

suitable GPU implementation. Hence, using the parallel sweep-line algorithm, sparse 

graph is generated. However, we replace Kruskal’s [4] MST computation phase with 

Boruvka’s algorithm [5] since it is more advantageous for parallel implementation. 

Finally, similar to Modified RST, Borah’s edge substitution method [6] is employed 

for Steiner point computations and graph updates, which can be performed in parallel 

since each node-edge pair is independent from each other. A scalable parallel version 

of Borah’s algorithm is implemented. As our implementation environment, Nvidia 

GPUs and CUDA software platform is selected. The RST solution operations are 

mainly based on integer arithmetic. Since RST execution does not contain any 

floating point operations, its parallel implementation is expected to have a high gain 



3 
 

on a GPU which include more hardware resources for integer operations than 

floating point operations. 

1.3. Thesis Outline 

The thesis has been organized as follows: 

In Chapter 2, the problem definition of the Rectilinear Steiner Tree is stated and a 

brief history of it is given. Next, the exact and heuristic solutions are presented. The 

mainstream serial and parallel heuristic algorithms are discussed in this chapter. 

Furthermore, an overview of basic GPU structure and the use of a general purpose 

GPU are presented. 

In Chapter 3, the RST and Modified RST algorithms are given in detail. The 

algorithmic steps are explained and the differences of these two algorithms are 

discussed. 

In Chapter 4, details of our proposed parallel algorithm are explained. The 

amendments in Modified RST employed to make it more appropriate for our parallel 

implementation are clarified. Finally, our GPU implementation on CUDA platform is 

presented. 

In Chapter 5, a performance evaluation study of the implementation is performed and 

speed up values are presented for various benchmark problems including randomly 

generated large size cases. 

Chapter 6 summarizes and concludes the study indicating also possible future work. 
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CHAPTER 2 

 

 

2. BACKGROUND AND STATE-OF-THE-ART 
 

 

 

2.1. The Rectilinear Steiner Tree Problem 

The Steiner tree problem, or Steiner minimal tree problem, is a combinatorial 

optimization problem that deals with finding the shortest interconnect for a given set 

of pins, terminals or objects. Given a set P of n nodes, or vertices, the Steiner 

Minimal Tree (SMT) define a set S of Steiner points such that the minimum 

spanning tree cost over P ∪ S is minimized where the total cost is sum of lengths of 

all edges [7]. The SMT problem has similar characteristics with minimum spanning 

tree (MST) problem. The difference between MST and SMT is that SMT introduces 

extra intermediate vertices and edges to tree in order to reduce the length of spanning 

tree. The new vertices introduced are known as Steiner points or Steiner vertices. 

One can find many Steiner trees for a given set of input nodes [8]. 

In the literature, many different variants and generalizations of the Steiner tree 

problem has been examined. Some significant types can be listed as follows [9]: 

 Euclidean Steiner Tree Problem: Given a set P of n nodes in Euclidean plane, 

find a set S of Steiner points together with MST T for node set P ∪ S such 

that T has a minimum length in ℓ2 – norm. 

For nodes a(x1, y1) and b(x2, y2), the distance between these two nodes in ℓ2 – 

norm, can be calculated by d(a, b) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2  

 Rectilinear Steiner Tree Problem: Given a set P of n nodes in Euclidean 

plane, find a set S of Steiner points together with MST T for node set P ∪ S 

such that T has a minimum length in the ℓ1 – norm. 

For nodes a(x1, y1) and b(x2, y2), the distance between these two nodes in ℓ1 – 

norm, can be calculated by d(a, b) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| 
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 Directed Steiner tree problem: Given an initial directed graph G = (V, E), find 

a minimum cost tree in G that connects all terminal in V to a given root r. 

 Weighted Steiner tree problem: Given an initial undirected and weighted 

graph G = (V, E), find a spanning tree T in V such that the total weight of 

edges and vertices in T is minimum. 

2.1.1. History of Steiner Tree Problem 

The Steiner tree problem is named after mathematician Jakob Steiner (1796–1863). 

Steiner studied a problem about joining three villages by a system of roads having 

minimum total length. Steiner provided a systematic solution to the problem while 

covering its general case [10]. Although Steiner’s work on the solution is 

independent from his predecessors, he is not the first person who analyzed this 

problem. The work on this problem and its solutions goes much earlier than Steiner’s 

analysis. Pierre de Fermat (1601–1665) proposed this problem to Toricelli (1608–

1647). Toricelli solved this problem and passed it along his student Viviani (1622–

1703) who published his own solution and Toricelli’s solution in 1659. However, the 

earliest published discussion of Steiner tree problem can be found in a 1647 book by 

mathematician Cavallieri (1598–1647) [10]. 

2.1.2. The Rectilinear Steiner Tree Problem 

The Rectilinear Steiner tree problem, minimum Rectilinear Steiner tree problem 

(MRST) or Rectilinear Steiner minimum tree problem (RSMT), is a variation of 

geometric Steiner tree problem in the plane. In RSMT distances are calculated in the 

ℓ1 – norm. The formal definition of the problem can be stated as follow: 

 Given a set P of n nodes, or terminals, in the Euclidean plane, a Rectilinear 

Steiner tree of P, RST(P), is defined as a set of horizontal and vertical line segments 

which spans all nodes in P by using shortest network. A sample RSMT for a node set 

is given in Figure 2-1, the black nodes represent the input terminal set and white 

node represent the Steiner points added to decrease total length of the spanning tree. 

 

Figure 2-1: MST and RSMT in plane 
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The distance between pair of nodes a(x1, y1) and b(x2, y2) is calculated by the 

Manhattan or rectilinear distance: 

dist(a,b) =  ∆𝑥 −  ∆𝑦 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| 

In a rectilinear Steiner tree, Steiner points can be classified into three groups, 

specifically, corner point with degree 2, T-point with degree 3 and cross point with 

degree 4, where the degree is the number of vertical or horizontal line segments 

incident to a vertex.  

2.1.3. Basic Definitions 

A full rectilinear Steiner tree (FRST) is a RST and all of its terminal points are 

leaves.  Every Steiner tree can be decomposed into  some full Steiner trees and trees 

that are constructed after decomposition operation are called full components of the 

Steiner tree. By using two kinds of operation, namely, sliding and flipping, full 

components can be transformed into others [9]. An example of left slide operation is 

given in Figure 2-2 

 

Figure 2-2: Sliding Operation [9] 

Flipping operation is that two segments interconnecting at a corner are replaced with 

new ones where these two segments form a rectangle with new segments. Example 

flipping operation is shown in Figure 2-3. 

 

Figure 2-3: Flipping Operation [9] 

Equilateral point concept is used for Steiner tree reduction operations. Considering 

an equilateral triangle with line segment z0z1 as one of its sides, the third corner of 

the triangle, staying at the right side when looking from z0 towards z1, is referred as 

equilateral point. An example is given in Figure 2-4 where e1 denotes the equilateral 

point. 
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z0

z1

e1  

Figure 2-4: Equilateral Point 

Depending on the Steiner point addition methodologies, RSMT algorithms can be 

classified into two basic classes; namely, two-point connection strategy and three-

point connection strategy. Method that are based on two-point connection strategy 

use the principle of connecting a new Steiner point to the current tree via an essential 

path at each iteration. However, in a three-point connection strategy, at each 

iteration, a new terminal point is connected to two points already in the tree, which 

can be either terminal or Steiner points. Hence, for three point strategy, there is no 

need to maintain the connection from previous iteration since the connections 

between the two points already in the tree can be changed at the current iteration 

[16]. 

In this study, the minimum spanning tree over a node set P is denoted by MST(P) and 

the total cost of a minimum spanning tree is shown as cost(MST(P)). Given a set P of 

input nodes, a 1-Steiner point is defined as any node 𝑥 ∈ 𝑃 such that 𝑐𝑜𝑠𝑡(𝑀𝑆𝑇(𝑃 ∪

{𝑥})) is minimized. 

2.1.4. RSMT Algorithms 

Many recent research works on RSMT problem are based on the result of previous 

main works. Hannan is the first who investigated Steiner tree problem in rectilinear 

distance and proposed a solution for it in 1966. In [11], Hannan presented that for an 

input node set P, a RSMT can be constructed by selecting Steiner points from 

Hannan grid. Hannan grid of a finite node set P, H(P), can be obtained from the 

intersections of all vertical and horizontal lines through each node n in P. Hannan 

grid of a sample node set is displayed in Figure 2-5. For every node, vertical and 

horizontal lines are drawn through nodes and Steiner points are selected from the 

intersections of these lines. 
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Figure 2-5: Hannan Grid of a Node Set 

Although RSMT reduces the cost of the spanning tree, there is a relationship between 

the total length of the MST and RSMT. Hwang [12] proved that for any node set P, 

the performance ratio of SMT is limited by equation 2-1. 

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆 𝑹𝒂𝒕𝒊𝒐 = 𝑺𝒕𝒆𝒊𝒏𝒆𝒓 𝑹𝒂𝒕𝒊𝒐 =  
𝒄𝒐𝒔𝒕(𝑴𝑺𝑻(𝑷))

𝒄𝒐𝒔𝒕(𝑺𝑴𝑻(𝑷))
 ≤  

𝟑

𝟐
 ( 2-1 ) 

Hwang’s outcomes indicate that any Steiner tree solution, which improves upon an 

initial MST has a performance ratio of, at most,  
3

2
.  

RSMT problem has received significant attention from researcher; however, despite 

restricting the Steiner points to stay on Hannan grid, Garey and Johnson [13] proved 

that RSMT problem is NP-complete and there is no known polynomial time 

algorithm. Optimal solution can be found only for a few special cases. For instance, 

there exists a linear time solution when all nodes in P lie on the boundary of a 

rectangle. Hence, many heuristic algorithms have been suggested in the literature. 

2.1.4.1. Exact Algorithms of RSMT 

Whenever an exact algorithm is proposed to obtain the optimal solution of an NP-

complete problem, runtime is always exponential. However, if the problem size is 

small enough, some exact algorithms with exponential running time can be 

considered to be acceptable.  

Melzak [14] proposed the first exact algorithm in Euclidean plane in 1961. In 

Melzak’s algorithm, all full Steiner trees (FST) on n terminals are enumerated; 

afterwards, the positions of the Steiner points for each FST are optimized [15]. 

Reduction operation via equilateral points is applied for the optimization of the 

locations of Steiner points. Terminal pairs are replaced with an equilateral point 

where new equilateral point is considered as terminals and reduction operation is 

repeated. The runtime of Steiner points’ location optimization algorithm is 𝑂(2𝑛). 
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Winter [16] suggested an exact algorithm such that unlike Melzak’s algorithm, it 

enumerates equilateral points instead of FSTs. The algorithm consists of two phases. 

Initially, full components are computed sufficiently and then using dynamic 

programming or Branch and Bound, Steiner minimum tree is generated. Salowe and 

Warme [17] propose another two phase exact algorithm similar to Winter. At the first 

step, it generates full components, which are then concatenated in an optimal tree. 

The fastest exact algorithm in the literature is the GeoSteiner algorithm proposed by 

Warme, Winter and Zachariasen [16]. GeoSteiner algorithm follows the two phase 

approach of other exact Steiner minimal tree algorithms; however, it reduces the 

computations considerably by implicit instead of explicit enumeration of FSTs 

considering all subsets. At the early stages of the algorithm, groups of FSTs that do 

not satisfy necessary structural properties are eliminated.  

2.1.4.2. Heuristic Algorithms 

Since the Rectilinear Steiner tree problem is NP-complete, many heuristic algorithms 

have been proposed for the problem. This chapter is divided into three sections. In 

the first section, historically early algorithms have been explained because the results 

of these studies affect modern algorithms. Next, more recent ones are described; 

these algorithms are more efficient compared to basic algorithms. The first two 

sections deal with sequential algorithms; finally, parallel RST algorithms are 

reviewed in the last section. 

 Basic RSMT Algorithms 

Hannan [11] is the first approximation algorithm proposed as a solution to RSMT 

problem. It starts with sorting the input terminals in ascending order according to 

their x-coordinates and these points are included in the tree in this order. During the 

addition operation, a two-point connection strategy is used. Lee, Bose and Hwang 

[18] is the first heuristic based on three point connection strategy, which can be 

implemented in 𝑂(𝑛2) runtime. At the beginning of this algorithm, all three terminal 

points are formed and then shortest RSMT is generated using these points. It has an 

iterative approach and the closest terminal that is not in is added to the tree at each 

iteration.  Hwang’s algorithm [19] also deploys the three point strategy. However, 

compared to [18], it improves runtime complexity significantly to 𝑂(𝑛 log 𝑛). As 

was mentioned earlier, there exists a relationship between the quality of the solutions 
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of heuristic RSMT and MST algorithms. Therefore, Hwang starts the computation by 

constructing the MST in rectilinear distance. Then, it uses depth first search or breath 

first search to label the points in the MST. During labeling operation, nodes in P are 

ordered and then terminals are added to the tree in this order. The algorithm takes 

advantage of all benefits of the three-point connection strategy. Beasley’s algorithm 

[20] is based on three-point connection and four-point connection strategies. The 

algorithm has an iterative approach. Each iteration begins with constructing a 

rectilinear MST using Prim’s algorithm [21]. Steiner points are then computed using 

three-point or four-point connection strategies, afterwards, these Steiner points are 

included in the MST and the algorithm repeats itself. 

 Recent RSMT Algorithms 

The algorithms explained in Basic RSMT Algorithms chapter are historically earlier 

solutions to RSMT. Compared to recent algorithms, they have higher complexities 

and lower efficiencies. 

 The Iterated 1-Steiner (I1S) Approach 

Kahng and Robins [22] suggested one of the best performing heuristics in literature. 

I1S starts with computing the MST of a terminal set P and it searches for 1-Steiner 

points S such that: 

∆𝑀𝑆𝑇 = 𝑐𝑜𝑠𝑡(𝑀𝑆𝑇(𝑃)) − 𝑐𝑜𝑠𝑡(𝑀𝑆𝑇(𝑃 ∪ 𝑆))  > 0 

As shown in Figure 2-5, intersection points of all horizontal and vertical lines 

through nodes in P are found; in other words, the Hannan grid is constructed. After 

that, all Steiner point candidates are found. Let Steiner point candidate set for P is 

denoted by H(P), 1-Steiner point with respect to P is a node 𝑠 ∈ 𝐻(𝑃) that 

maximizes ∆𝑀𝑆𝑇(𝑃, 𝑠) > 0. I1S starts with input node set P and 𝑆(𝑃) =  ∅ of 

Steiner points added to tree, it recurrently finds a 1-Steiner point x for 𝑃 ∪ 𝑆 and sets 

𝑆 ← 𝑆 ∪  {𝑥} as long as addition of x decreases the cost of the tree. The algorithm 

terminates when there is no 1-Steiner point x such that ∆𝑀𝑆𝑇(𝑃, 𝑥) > 0 [7]. Figure 

2-6 illustrates an example of I1S algorithm. 
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Figure 2-6: Execution of Iterated 1-Steiner Algorithm 

In order to find a 1-Steiner point, it is required to generate an MST over |𝑃 ∪  𝑆| + 1 

nodes for each of the 𝑂(𝑛2) members of Steiner point candidates and the minimum 

cost candidate is selected. Next, the MST is computed in 𝑂(𝑛 log 𝑛) time [7]. Hence, 

runtime is  𝑂(𝑛3 log 𝑛) to find a single 1-Steiner point. Therefore, I1S algorithm 

cannot be used for instances having thousands of terminals; on the contrary, it is 

provably optimal for 4 or less nodes [23]. 

 Batched 1-Steiner (B1S) Algorithm 

Since computational expenses of finding a 1-Steiner point I1S is high, a batched 

variant of this algorithm is proposed [22]. In this algorithm, at every round of 

computation, as many independent 1-Steiner points as possible are added to the tree. 

Steiner point candidates x and y are independent from each other, if including a new 

Steiner point in the tree does not reduce the potential gain of the other candidate. 

This definition can be formulized as follows: 

∆𝑀𝑆𝑇(𝑃 ∪ {𝑥}) +  ∆𝑀𝑆𝑇(𝑃 ∪ {𝑦})  ≤  ∆𝑀𝑆𝑇(𝑃 ∪ {𝑥}  ∪  {𝑦})  

where ∆𝑀𝑆𝑇(𝑃 ∪  𝑆) = max (0, 𝑀𝑆𝑇(𝑃) − 𝑀𝑆𝑇(𝑃 ∪ 𝑆) ) and a node x can be 

Steiner point candidate only if ∆𝑀𝑆𝑇(𝑃 ∪  {𝑥}) > 0. 

B1S greedily adds an independent 1-Steiner point to the tree at every round and it 

terminates when no 1-Steiner point can be added. B1S requires  𝑂(𝑛2 log 𝑛) runtime 

for each round. 

Both I1S and B1S algorithms are suitable for parallelization since each compute unit 

in a parallel hardware can compute cost reductions in MST for different Steiner point 

candidates, and hence, a better performance can be obtained using a parallel 

implementation. 
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 Zelikovsky Heuristic Algorithm 

The quality of an approximation algorithm is measured by its performance ratio, 

which is defined as the ratio of the length of RSMT found over optimal length. 

Hwang [12] has shown this ratio to be at most 
3

2
 if RSMT found is the MST. 

Zelikovsky [24] worked on the quality of the RSMT and proposed a new algorithm 

with better performance. Zelikovsky’s algorithm achieves  
11

8
  RSMT to MST 

performance ratio obtained in 𝑂(𝑛3) time. 

The algorithm starts with MST and computes optimal Steiner trees for small subsets 

of the terminals iteratively. Then, these small subtrees are added to the current tree. 

Three terminals are included in one subset and it is called a triple. The algorithm 

iteratively introduces new points as part of a triple and then constructs the new MST 

for this new set of points. 

 Borah’s Edge Substitution Algorithm  

Borah [6] proposed an edge based heuristic that has better runtime complexity than 

the previous algorithms. Using sophisticated data structures, 𝑂(𝑛 log 𝑛) runtime has 

been achieved.  

The algorithm connects a node to nearest point on the rectilinear tree edge and it 

removes the longest edge formed in the tree. At the beginning of the algorithm, MST 

is computed on input terminal set using Prim’s algorithm [21] in 𝑂(𝑛2) time. Next, 

for each edge, the nodes that can be connected are searched and node-edge pairs are 

generated in recursive manner. During this operation, all nodes that are visible from 

the edge under computation are found and connection of each such node to the edge 

under study is considered where an edge is visible from a node if the line segment 

that joins them does not intersect any obstacles like another edge. The longest edge 

in formed cycle is searched and gain is calculated in this way for every pair. An 

example is given in Figure 2-7. For edge e1, node n4 is visible. Node n4 is then 

considered to be connected to the nearest point on e1, which is s1. As a result of this, a 

cycle is formed from edges e1, e2, e3 and ex. Assume that the longest edge in the cycle 

is e2, the gain for (n4, e1) pair is then calculated as follows: 

𝑔𝑎𝑖𝑛(𝑛4, 𝑒1) =  |𝑒2| −  |𝑒𝑥| 
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Figure 2-7: Borah’s Edge Substitution Method 

To obtain visibility information, a special sweep-line method is used. All visible 

nodes from an edge are computed and then the node with the largest gain is selected. 

Thus, a node-edge pair is formed. Finally, node-edge pairs are sorted with respect to 

their gains and starting from the largest, graph updates are applied to the tree. 

 Batched Greedy Algorithm 

Kahng, Mandoiu and Zelikovsky [3] suggested a highly scalable approximation 

algorithm for RSMT problem. Previous algorithms such as Iterated 1-Steiner 

algorithm are not suitable to be used with thousands of terminals. Kahng [3] in 2003 

stated that Batched Greedy Algorithm (BGA) were able to generate rectilinear 

Steiner tree from 34k terminals in less than 25 seconds where Borah’s algorithm [6] 

required more than 86 minutes. BGA has 𝑂(𝑛 𝑙𝑜𝑔2 𝑛) runtime complexity for n 

terminals. Moreover, although, BGA improves runtime significantly, the quality of 

the solution is still comparable with previous algorithms. 

Scalable BGA algorithm combines Zelikovsky’s greedy triple contraction algorithm 

[24] with Batched 1-Steiner algorithm. BGA applies the batched approach of B1S 

[22], yet it relaxes the greedy rule used in computing triples in order to reduce 

runtime. It proposes a divide-and-conquer method to compute triples and a new 

linear data structure to search the longest edge in the formed cycles. 

To begin with, BGA constructs a spanning graph on the terminal set. For each node, 

the region is divided into 8 partitions and the node is connected to the nearest 

neighbor in each partition as shown in Figure 2-8. Guibas-Stolfi’s [25] north-east 

nearest neighbor method is used to obtain nearest points in each octant. 
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Figure 2-8: BGA Sparse Graph 

After the generation of sparse graph, MST is computed on this sparse graph using 

Kruskal’s algorithm [4]. Next, triples are generated for the MST edges where each 

triple consists of three terminals and contains one Steiner point candidate. When a 

Steiner point is included in the MST, a cycle is formed as explained for other 

algorithms. BGA constructs two arrays called parent and edge, which are used to 

detect the longest edge in the cycle. The generation of these arrays is embedded in 

the MST computations. According to the longest edges, the gain for each triple is 

calculated and starting from the largest gain, each Steiner point update is applied to 

the tree one by one. 

 Rectilinear Steiner Tree (RST) Algorithm 

Zhou’s RST algorithm [25] is similar to BGA algorithm but it aims to obtain a better 

runtime performance than the Iterated 1-Steiner algorithm without sacrificing 

solution quality. RST is based on Borah’s edge substitution method and Borah’s [6] 

method is improved with Zhou’s spanning graph algorithm [26]. RST has 𝑂(𝑛 log 𝑛) 

runtime complexity and requires 𝑂(𝑛) memory space. 

RST starts with the construction of spanning graph for the input terminal set similar 

to BGA. Zhou’s [26] sweep line algorithm is employed to compute a sparse graph. 

The area is divided into 8 regions for each terminal node and, at each octant, a 

special sweep process is applied. Each terminal is connected to its nearest neighbor 

in every octant following the sweep line operation. Afterwards, the MST is 

constructed on the sparse graph using Kruskal’s algorithm. On the MST, Borah’s 

edge substitution method is applied. Since geometrical proximity information is 

obtained during spanning graph construction operation, no further computation is 

required for visibility detection. The longest edges in the cycles are found with 
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Tarjan’s offline search algorithm [27]. A binary search tree is used for Tarjan’s 

offline search queries and it is constructed during the MST computations. 

 Parallel RSMT Algorithms 

Since 2000, the amount of interest in sequential solution of the RSMT problem has 

decreased significantly. However, there is now much more effort in the parallel 

solution of the problem. With a parallel implementation, the computing power of 

hardware can be exploited more efficiently. In this chapter, an overview of parallel 

approaches to rectilinear Steiner tree problem will be given. 

 Parallel Iterated 1-Steiner Algorithm 

I1S algorithm is based on Hannan grid, which initially computes MST and finds the 

best possible Steiner point from Hannan grid and then includes it in the tree. The 

operation terminates when there is no further improvement. I1S algorithm is very 

suitable for parallelization and Barrere [28] suggested an efficient parallel 

implementation of it. The gain of each Steiner point can be calculated independently. 

Therefore, 𝑂(𝑛2) Steiner points are distributed among p processors. Each processor 

computes the gains of Steiner points in its own set and sends the best candidate to a 

master processor. The master processor sorts these best candidates and applies the 

one with the highest gain. This operation continues until no improving candidate can 

be found. 

 Parallel Steiner Tree Heuristic for Macro Cell Routing 

Fober and Grewal [29] proposed a two phase parallel algorithm for quick 

construction of a high quality Steiner tree to route multi-terminal nets. At the first 

phase of the algorithm, a single Steiner tree is constructed by using a special 

heuristic, called Shrubbery. Shrubbery simultaneously grows individual shortest path 

trees rooted at every terminal vertex to construct an initial Steiner tree. A modified 

version of Dijkstra’s shortest path algorithm is used to grow the tree. In the second 

phase, multiple instances of local search are applied in parallel to create a pool of 

dissimilar and high quality trees. 

Parallel implementation in [29] achieved near-linear speed up in relation to the 

number of processors, where the communication overhead for parallel work is 

insignificant to computational time required. Moreover, highly dissimilar trees can 

be generated in small runtimes. 
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 Distributed Modified RST Algorithm 

RST algorithm has parallel steps in nature; hence, distributed modified RST 

algorithm [1] aims at taking advantage of these parallel steps. The algorithm is 

proposed for distributed memory systems.  

The algorithm is called modified RST because it improves RST runtime by changing 

longest edge detection phase with BGA algorithm, since Tarjan’s offline search 

algorithm used in RST has an iterative approach. Modified RST algorithm keeps the 

general flow of RST algorithm; however, during MST computations, instead of using 

a binary search tree as the main data structure, parent-edge arrays are generated and 

longest edge queries are computed using these arrays. 

The algorithm applies master-slave model where there is a master processor that 

distributes computations uniformly to slave processors. Assuming that there are n 

slave processors, the region is divided into n sub-regions and each slave processor 

makes the nearest neighbor connections for the terminals lying in its own sub-region. 

Next, the MST is computed on the generated sparse graph sequentially using 

Kruskal’s algorithm. Lastly, least common ancestor queries for node-edge pair 

generations are divided into n and each slave works on the queries independently. 

Average results obtained in [1] are shown in Table 2-1. 

Table 2-1: Average Results for Distributed RST [1] 

 

Analyzing Table 2-1, we can state that the meaningful speed-up is achieved for the 

1000k terminals; however, although algorithm runs in O(n log n) time and speedup is 

achieved for more processors, the algorithm is not scalable. 
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 Parallel Obstacle Avoiding Rectilinear Steiner Tree Construction 

Chow, Li, Young and Sham [30] presented a heuristic based on maze routing to 

solve obstacle avoiding rectilinear Steiner minimal tree (OARSMT) problem. In 

[30], a parallel implementation of the algorithm is also presented. The algorithm is 

applied to GPUs using CUDA software design platform. 

Chow’s algorithm starts with defining shortest path regions between pin pairs. The 

shortest path region (SPR) is defined as the union of all candidate points of the 

shortest path between two pins. After obtaining SPR information, the algorithm 

develops a maze routing method over the escape graphs proposed by Ganly and 

Cohoon [31]. 

Chow practices a different propagation and backtracking approach than traditional 

maze routing based methods. On the Hannan grid, the distances of Steiner point 

candidates from each pin are calculated. This operation is suitable for parallel 

implementation and this computation is done on GPU. Moreover, after parallel 

propagation and backtracking, shortest paths between pins are computed in parallel. 

 

2.2. Graphics Processing Unit (GPU) 

In recent years, the computation needs of most applications are increasing constantly 

and hence industry is shifting towards parallel computing. GPUs are playing a 

significant role in the transition to parallel computing.  

Originally GPU is an electronic hardware designed to manipulate and alter the 

memory to accelerate the creation of images. The term GPU was popularized by 

Nvidia in 1999 [32]. Today, GPUs are used in many areas, such as personal 

computers, mobile phones, workstations and embedded systems. Modern GPUs can 

efficiently handle computer graphics and perform high performance image 

processing. A GPU has a highly parallel structure compared to a central processing 

unit. A performance comparison of CPU and GPU is given in Figure 2-9.  
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Figure 2-9: Performance Gap between CPU and GPU [30] 

The general purpose CPU hardware is optimized for sequential operation. A CPU has 

a sophisticated control logic, which allows instructions of the same thread to execute 

in parallel or out of order. In the meantime, it maintains the sequential execution 

appearance. Moreover, CPUs have large volumes of cache memories to reduce data 

access time. Both of these features do not affect the peak speed given in Figure 2-9. 

GPUs have small caches and simpler control logic compared to CPU; nevertheless, 

they contain larger number of smaller cores. The CPU and GPU architecture 

comparison is illustrated in Figure 2-10. 

 

Figure 2-10: CPU and GPU Architecture [30] 
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2.2.1. Compute Unified Device Architecture (CUDA) 

Compute Unified Device Architecture is a parallel computing platform and 

application programming interface for GPUs developed by Nvidia. CUDA allows 

developers to use appropriate graphic processing units for general purpose 

computing; it is a C based programming language with some extensions. The CUDA 

provides a software structure that gives direct access to GPU’s parallel computational 

elements [32]. 

A CUDA program contains some number of phases, which are executed on either 

CPU, called host or on GPU, called device. The program phases that do not contain 

data parallelism are executed on host, CPU, and phases with data parallelism are 

executed on device, GPU. The data parallelism is the simultaneous execution of 

multiple cores on different parts of the data. 

Typical execution of a CUDA program is given in Figure 2-11. Execution starts on 

CPU. When a GPU function called Kernel is launched, execution moves to device. 

 

Figure 2-11: Execution of CUDA Program [30] 

In a GPU kernel, a large number of threads are generated to benefit from data 

parallelism.  All threads generated by a kernel after a launch is called grid. In Figure 

2-11, executing two grids of threads are shown and the grid structure is given in 

Figure 2-12. Each thread shown in Figure 2-12 can execute in any order relative to 

other threads. All threads in a grid execute the same kernel function. 
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Figure 2-12: Threads in Grid for a Kernel [30] 
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CHAPTER 3 

 

 

3. MODIFIED RST ALGORITHM 
 

 

 

3.1. The Rectilinear Steiner Tree (RST) Algorithm 

Zhou’s RST algorithm [2] is a minimum spanning tree based heuristic approach.  It 

uses Borah’s edge substitution method [6] as basis and improves it with Zhou’s 

minimum spanning tree solution [26]. The complexity of this algorithm is O(n log n) 

and the storage requirement is O(n) where n is the number of nodes. The 

implementation of the algorithm is easier compared to other heuristic algorithms. 

Although the RST algorithm only focuses on the rectilinear distances, the idea 

behind the RST is valid for Euclidean distances, too. The basic algorithm flow is 

given in Figure 3-1. 
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edge still exists

Return MST

 

Figure 3-1: RST Algorithm Flow 

3.1.1. Sparse Graph Construction 

The Sparse Graph is used to compute MST, which is the backbone of RST algorithm, 

the MST algorithm works on the sparse graph constructed at the first step. In order to 

be able to form the sparse graph Zhou’s spanning graph algorithm [26] was chosen.  

3.1.1.1. Spanning Graph 

Spanning graph is a connected graph; every node is reachable from every other node, 

with no cycles. According to Zhou, a graph with V number of nodes and E number 

of edges is called spanning graph if it contains a spanning tree [26]. A graph can 

have many possible spanning trees, yet all spanning trees have V vertices and V-1 

edges. An example of a connected graph and its possible two spanning trees are 

given in Figure 3-2. The minimum spanning tree may not be unique for a given set of 

nodes. Zhou in [26] defines a new class of spanning tree called strong spanning tree. 
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That is, if spanning tree includes all minimum spanning trees for the given set of 

nodes, it is called strong spanning tree.  

 

Figure 3-2: Connected Graph and Its Spanning Graphs 

Minimum spanning tree algorithms such as Prim [21] and Kruskal [4] usually applies 

two properties, namely, cut property and cycle property in order to decide to include 

or to exclude an edge in the minimum spanning tree.  

Cut property states that for a minimum spanning tree T in a connected graph G(V,E), 

let X ⊆ T and S ⊂ V, there is no edge in X that crosses between S and (V − S). Let e 

be a minimum weight edge among the edges crossing between S and (V − S), then X 

∪ {e} ⊆ T where T is a MST in G(V,E). An example of cut property is given in 

Figure 3-3.  

The second property, cycle property, states that for any cycle in the graph, if the 

weight of edge e is larger than the weights of all other edges in the cycle, then edge e 

cannot belong to MST. 

 

Figure 3-3: The Cut Property for Minimum Spanning Problem [33] 
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3.1.1.2. Rectilinear Spanning Graph Construction 

Zhou’s rectilinear spanning graph construction algorithm starts with the division of 

the plane to equal regions around each node; that is, from each node p, the plane is 

partitioned into eight octal regions as given in Figure 3-4. 

 

Figure 3-4: Octal Partition and Equal Distance Nodes [26] 

Using the terminology given in Robins [34], the uniqueness property is defined as 

follows: For a given node p, a region partition R has the uniqueness property with 

respect to node p if for every pair of nodes x, y ∈ R,  ||xy|| < max(||px||, ||py||). 

For a node p in the given node set, each octal partition has uniqueness property with 

respect to node s. Example case for R1 partition is given in Figure 3-5. 

 

Figure 3-5: Uniqueness Property for R1 

The points, which have p in their R1, must obey the following inequalities: 

      x ≤  xp                        ( 3-1 ) 

x – y > xp – yp 



27 
 

Considering Figure 3-5, there are two points u and w in R1 where xw ≥ xu and yw ≥ yu. 

Then the rectilinear distance between points is 

||pw|| = ||pu|| + ||uw|| > ||uw|| 

For the case, xw ≥ xu and yw ≤ yu: 

||uw|| = |xu – xw| + |yu – yw| 

    = xw – xu + yu – yw 

    = (xw – yw) + yu – xu 

    < (xp – yp) + yu – xp 

    = yu – yp 

    ≤ xu – xp + yu – yp 

    = ||pw|| 

Thus, we can state that R1 partition has uniqueness property with respect to point p. 

Since all eight partitions are symmetric, all partitions given in Figure 3-4 have 

uniqueness property with respect to point p. 

Considering the cycle for the point set p, u and w given in Figure 3-5, depending on 

the cycle property, only the point with the minimum rectilinear distance from p is 

connected to p. In addition, the uniqueness property states that                              

||uw|| < max(||up||, ||wp||). Therefore, we only need to consider edges from a point p to 

its closest neighbors in each octant. Sparse graph is going to be constructed based on 

this fact, each point given in the initial set will be connected to its closest neighbor in 

each octant and MST algorithm will compute on this sparse graph. 

Octal partitioning approach has another property that is worth pointing out. The 

contour of equidistant points from p forms a line segment in each region. In first and 

third quadrant, R1, R2, R5 and R6, these line segments are described by an equation in 

the form of x + y = c; in second and fourth quadrants, R3, R4, R7 and R8, they are 

captured by an equation in the form of x – y = c. 

Zhou’s algorithm [3] starts with finding all nearest neighbor candidate points in a 

specified octant for a given point p. A sweep-line algorithm is constructed on all 

points according to their non-decreasing x + y or x – y values. Sweep operation for 

the right half of the plane is given in Figure 3-6. 
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Figure 3-6: Sweep Operation [26] 

For R1 region, a sweep-line algorithm is applied according to (x + y) values of the 

points. During the sweep operation, an active set is maintained. This active set 

consists of points whose nearest neighbor in R1 region still to be discovered. When a 

point p is processed, entire set of nearest point candidates, which have p in their R1 

regions, are found. Let’s assume a point w is such a point, since the points in the 

active set are in non-decreasing (x + y) order, we can say that p is the nearest point in 

R1 for w. Hence, edge pw is added to spanning graph and point s is deleted from 

active set. After computing those points, p is added to active set at the end. Each 

point given in the initial set is added and deleted at most once from the active set. 

The fundamental aim of the sweep-line algorithm is to find, for a point p, the subset 

of active points such that p is in their R1 regions. 

To find the subset of points in the active set, which have p in their R1 partition, we 

can start with finding the point with the largest x value since x ≤  xp, then advance in 

the search until x – y becomes smaller than xp – yp. In order to manage the active set, 

a priority search tree is organized. For this data structure, the deletion and insertion 

operations take O(log n) time and the query operation takes O(log n + k) time where 

k is the number of objects within the search range. Thus, the total time for the whole 

sweep operation is O(n log n). Since all eight octants are symmetric, and they can be 

processed in the similar way as in R1, the running time of the algorithm is O(n log n). 

During the sweep operation, a point is deleted from the active set if a point in R1 

region is found; therefore, no point in the active set can be in R1 region of another 

point in the set. This feature of the algorithm makes it easy to implement, since, 
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priority search tree depends on managing a balanced structure for fast query times 

and rebalancing the tree is challenging for a dynamic input set. 

For R2 region, sweep-line algorithm works for non-decreasing x + y values; however, 

R2 neighbor candidates are evaluated according to the following inequalities: 

       y < yp                     ( 3-2 ) 

  y – x ≥ yp – xp 

According to equation (3-2), active set can be sorted with respect to y values of the 

given points, and point can be computed by decreasing order y until y – x becomes 

smaller than yp – xp. 

For R3 and R4 regions, active set is constructed according to non-decreasing order on 

x – y. In order to decide R3 neighbors, inequalities given in equation (3-3) are used: 

     y ≥ yp     ( 3-3 ) 

x + y < xp + yp 

While processing R3 neighbors, we can start from the point with the smallest y value 

considering equation (3-3) and continuing the search operation until x + y value gets 

smaller than xp + yp value. 

The points in the active set should obey inequalities given in equation (3-4) to 

become R4 neighbor of p: 

     x < xp     ( 3-4 ) 

x + y ≥ xp + yp 

As stated in equation (3-4), we can order active set in non-decreasing order of x and 

start from the point with the largest x value and extend the R4 region nearest point 

search until x + y becomes smaller than xp + yp. 

When we analyze the results of the sweep-line algorithm, we state that for given two 

points p and u in the plane, point p is in R1 region of point u if and only if u is in the 

R5 region of p. Based on this observation, we can conclude that after completing the 

sweep process, there is no need to run the algorithm for R5 region, since all edges 

needed in this phase are already connected. The example case is shown in Figure 3-7, 

while searching for points that have p in their R1 regions, we find two points in the 

active set, namely, w and u. Therefore, w and u are in the R5 region of p where    

||wu|| < max(||pu||, ||pw||) and p is connected to the nearest active point. 
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Figure 3-7: The Nearest Point in R5 Region 

3.1.2. Minimum Spanning Tree Construction 

A minimum spanning tree can be defined as a connected weighted spanning tree 

which has the minimum weight among all spanning trees. There are two classic MST 

algorithms, Prim’s [21] and Kruskal’s [4]. With the use of disjoint set operations in 

Kruskal [4], the minimum spanning tree computations and longest edge 

computations for each node-edge pair can be unified. Hence, because of this ability 

to unify two computations, Kruskal’s algorithm has been chosen to construct MST 

instead of Prim’s in this thesis. While constructing the MST for the given node set, a 

binary search tree should be organized for the least common ancestor queries.  

Kruskal’s algorithm builds the MST in the form of a forest. At the beginning of the 

algorithm, each vertex is considered to be a separate tree in the forest. The algorithm 

sorts the edges according to their weights and then starting with the edge with the 

least cost, connects any two trees in the forest if both end points of the edge does not 

belong to same tree. Kruskal is a greedy algorithm. At each step of the computation, 

edge with larger cost is added to graph.  

Given V (number of vertices) and E (number of edges), the running time of Kruskal 

is O(E log E), or equivalently O(E log V). 

3.1.3. Edge Based Heuristic 

In order to achieve a fast running time heuristic algorithm, Zhou [2] selected the edge 

substitution method of Borah [6] as the basis. Borah’s algorithm can achieve O(n2) 

running time with simple implementation using conventional data structures, it has 

O(n log n) asymptotic run time complexity when it is implemented with 

sophisticated data structures. 
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Borah’s edge based heuristic algorithm considers connecting a vertex to the nearest 

point on the closest rectilinear tree edge and removing the longest edge on the 

formed cycle. Consider the tree given in Figure 3-8 in which the edges are shown, for 

the sake of clarity, in Euclidian form although all the distances are in ℓ1 – norm 

(rectilinear metric). Point a is connected to closest edge which is e1, and hence a loop 

is forms between points a, b, c and d. Assuming that e2 is the longest edge in the 

formed cycle, the following modifications in tree should be make: 

I. Add Steiner point p to tree 

II. Remove edge e1 and longest edge in loop e2 

III. Add edge connecting p to a 

IV. Add edge connecting p to h 

V. Add edge connecting h to d 

 

Figure 3-8: Borah's Edge-Based Graph Update 

The new node added to the tree is called Steiner point and the addition of this Steiner 

point requires a modification in the existing tree edges. Following the modification, 

the initial graph becomes a spanning tree with an extra node. The reduction in the 

cost of whole spanning tree, called gain, is given in equation (3-5). 

  Gain = length(e2) – length(a, p)  (3-5 ) 

= ||bc|| – ||ap|| 

During the edge substitution process, Borah’s algorithm computes all possible node-

edge pairs with positive gain and applies as many edge modifications as possible to 

initial tree. The main flow of the algorithm is given in Figure 3-9. Once an edge is 

participated an update operation, it is replaced and no longer exists for the algorithm. 

In Figure 3-8, edge e1 may be connected to several Steiner points other than p; 

however, only one case can be applied to graph, since after graph update edge e1 
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does not exist anymore. Hence, the pair with maximum gain for given edges should 

be computed and reported at the end.  

Start with MST

Run a recursive algorithm, like depth first search, 

for each tree edge to compute (node,edge) pair 

with maximum gain for that edge

Sort  O(n) pairs assuming one pair for each edge

Apply O(n) updates on the MST

 

Kruskal’s algortihm is used to 

obtain MST

 

Operation takes O(n) run time for 

each edge; hence, this step takes 

O(n2) time

 

With Quicksort, worst case 

running time is O(n2)

 

Requires O(n) run time

The algorithm can be 

repeated more than once
 

Figure 3-9: Borah's Edge-Based Heuristic Flow 

In one iteration, Borah’s Edge Based Heuristic algorithm computes all possible node-

edge pairs with positive gain before applying the modifications to tree, the graph is 

fixed for this step; hence, this algorithm works in batched mode. For the next step, 

before applying updates, the both edges going to be updated are checked; if both of 

the edges do not exist in the tree, update is not applied.   

The algorithm can be repeated more than once and at each time further 

improvements can be applied; however, according to [6], three iterations are 

adequate in most cases. Rarely, fourth iteration may be required. The experiment 

results of Borah are given in Table 3-1. 
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Table 3-1: Improvements for Different Number of Iterations of Algorithm [6] 

 

The Edge Substitution Heuristic given in Figure 3-9 has O(n2) running time; 

however, in [6], possible implementations to reach O( n log n) running time has been 

discussed. These implementations are based on the observation that every node 

doesn’t need to be considered for every edge as pair.  

When we examine Figure 3-10, we observe that nodes a and b can be connected to 

edge e1; nonetheless, nodes g and k cannot be connected to e1 due to edges e2 and e3. 

Edge e2 is blocking node k and edge e3 is blocking node g. By considering this tree 

structure, we can state that e1 is visible from a and b, similarly e3 is visible from h. In 

the meantime, e1 is not visible from g and k. As a result, it is clear that a node can be 

connected to an edge during node-edge pair updates only if it is visible to that edge.  

 

Figure 3-10: Node Visibility 

In Figure 3-10, edge e1 is visible to nodes a and b from its left and d and j from its 

right. Moreover, e2, e3, e4 and e5 are neighbor edges of e1. The nodes other than the 

ones connected to neighbor edges are blocked by the neighbor edges, for instance, g 

and k. Based on this fact, we can state that the visible nodes from an edge should be 

connected to its neighbor edges. Since a point cannot be connected to a non-visible 
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edge, there is no need to consider those edges during computation. In [35], it is 

proved that the degree of any vertex in a rectilinear minimum spanning tree is at 

most 8; moreover, at most 6 of these edges are non-degenerate which means that the 

end points of the edges do not lie on the same horizontal or vertical line. Only non-

degenerate edges are meaningful for Steiner point computations; hence, edge-pair 

couples can be computed in O(n) time for a node and O(n) run time for whole graph. 

Borah [6] suggested a sweep-line algorithm to overcome edge visibility problem. 

However, the first step of RST algorithm is spanning graph construction and since 

each node is connected to its nearest neighbors, the geometrical proximity 

information about the nodes and edge is embedded in this spanning graph. In [2], it is 

specified that, if a point is connected to one end of the MST edge in the spanning 

graph, then the edge is generally visible to that point in MST.  In Figure 3-11, MST 

contains edge ab, it is clear that region Ra does not contain any nodes since the edge 

is included in MST and if node p is connected to a in the spanning graph, it can be 

concluded that there are no nodes in Rp and hence ab is visible to node p. 

Consequently, Zhou’s algorithm uses spanning graph to generate node-edge 

candidate pairs and there is no need to apply Borah’s sweep-line algorithm to obtain 

node-edge visibility information. 

 

Figure 3-11: Visibility Information 

There is no direct relation between spanning graph connection information and 

visibility. For some cases, even though node is not connected to MST edge end point, 

the edge is still visible from that node. An example is given in Figure 3-12; even 

though node p is not connected to node a in spanning graph due to node c, the edge 

ab is visible from p and can be included in node-edge pair computations.  
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For Zhou’s algorithm, for each edge in the MST, only the neighbors of end points are 

computed to form node-edge pairs with that edge. Although, this can cause 

degradation in the quality of final Steiner tree, the results are still better than the 

similar algorithms and O(n) run time has been achieved. 

 

Figure 3-12: Visibility of an Edge from a Non-Neighbor Point 

3.1.4. Longest Edge Detection 

When a Steiner point is added to MST, a cycle is formed in the MST. For instance, in 

Figure 3-8, if point p is added to tree, the cycle shown in Figure 3-13 is formed and 

hence the longest edge in this cycle should be deleted. In RST, longest edge 

detection task is computed in two steps, that is, binary tree construction and least 

common ancestor queries. At the beginning of the computation, a binary tree is 

constructed respecting the weights of edges and longest edge search operation is 

applied on the binary tree. 

 

Figure 3-13: Loop Formed After Steiner Point Addition 
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3.1.4.1. Merging Binary Tree 

The binary tree constructed is used for longest edge detection queries. The 

connection information of tree is converted into a binary tree where the points are 

represented with leaves and the edges are represented with internal nodes. An 

example MST and its binary search tree are given in Figure 3-14. The binary tree is 

generated considering the weights of edge. The least common ancestor (LCA) of two 

tree nodes is defined as the ancestor in tree that is located farthest from the root. In 

RST, LCA of two points in binary tree is going to be the longest edge between them. 

For example, the longest edge between point a and e is bd; in the meantime, bd is the 

least common ancestor node in binary tree for these two points.  

 

Figure 3-14: Binary Search Tree for the Given Tree 

In RST, the MST construction from spanning tree is achieved using Kruskal’s 

algorithm. This algorithm sorts the edges in line with their weights and processes 

each edge individually. The edge is included in the tree if both end points belong to 

different disjoint sets otherwise; the edge is left out from the MST. So as to 

accomplish efficient longest edge detection operation for each node-edge pair, binary 

search tree generation process is embedded into Kruskal’s algorithm. During the 

MST computations, when an edge is included in the MST, a node with two children 

is created in binary tree. The node represents the edge created and the children of it 

represent the nodes connected by that edge. In RST, for the longest edge search, 

Tarjan’s offline search algorithm is applied. 

3.1.4.2. LCA Algorithm 

Having the merging binary tree at hand, the next thing to do is searching longest 

edges in cycles formed. Tarjan’s Offline Least Common Ancestor [27] algorithm is 

selected for this purpose. Using Tarjan’s algorithm longest edge for each node-edge 

pair is computed and then the gain is calculated. Unlike other LCA data structures, in 
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Tarjan’s algorithm, all pairs of binary tree nodes for which LCA is desired must be 

specified in advance; that is, prior to providing the first answer, the entire request 

sequence can be seen. Hence, the problem is offline [27]. 

Post order traversal is performed for the algorithm. The pair list is examined to 

decide whether any ancestor computations are to be performed before returning from 

processing a node. For instance, assuming u is the current node and (u, v) is in the 

pair list and recursive call to node v is completed, then there is adequate information 

to determine LCA of node u and v.  

In Figure 3-15, a binary tree is given where a recursive call to node D is about to 

finish. The nodes enclosed by dashed lines have been visited and those node share 

the same group name and anchor where anchor is the node on the current access path 

that is closest to visited node. For example, node p’s anchor is A and q’s anchor is B. 

The nodes like r that are not marked are unanchored. When all its descendants are 

processed, a node is marked. Shaded nodes represent the nodes visited by a recursive 

call. For Figure 3-15, all recursive calls other than for the node on the path to D have 

been completed.  

 

Figure 3-15: The Nearest Common Ancestor Problem [10] 

Considering Figure 3-15, suppose the (D, v) is in the pair list, there can be three cases 

which are: 

a) If v is unmarked, the information to compute LCA (D, v) is missing and 

hence it cannot be computed.  

b) v is marked but not in D’s subtree, so LCA (D, v) is v’s archor 

c) v is in D’s subtree, hence LCA (D, v) is D 
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The basic version of Tarjan’s algorithm applies the union-find data structure. 

Therefore, unlike other LCA algorithms, its run time can be more than constant time 

per operation if the number of pairs of nodes is comparable with the number of 

nodes. 

3.2. Modified RST Algorithm 

Modified RST algorithm [12] is based on Zhou’s RST algorithm. It enhances RST by 

replacing some parts of it with Kahng’s BGA algorithm [3]. BGA and RST 

algorithms have similar approaches for the solution of Rectilinear Steiner tree 

construction problem. Both algorithms start with spanning graph and apply MST 

algorithm on it. The comparison of these two algorithms is given in Figure 3-16. 

Start with initial 
point set

Guibas-Stolfi Algorithm[13]

Kruskal’s Algorithm[5] for MST 
computations

Construct Parent-Edge Arrays of 
HPG algortihm for longest edge 

detection

Generate Triples

Sort Point-Edge Pairs according to 
their Gains

Starting from highest gain add 
Steiner point to tree if the both 

edges are unmarked

Return MST

 

MST computations

 

Compute Steiner point 

candidates

 

Apply suitable tree 

updates and Steiner points

RST BGA

Start with initial 
point set

Zhou’s Spanning Graph 
Algorithm[3]

Kruskal’s Algorithm[5] for MST 
computations

Construct a Binary Search Tree for 
longest edge detection

Apply Borah’s edge substitution 
method to obtain point-edge pairs

Sort Point-Edge Pairs according to 
their Gains

Starting from highest gain add 
Steiner point to tree if the edge 

still exists

Return MST

 

Sparse Graph 

Construction

 

Figure 3-16: The Comparison of BGA and RST algorithms 
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3.2.1. Batched Greedy Algorithm 

3.2.1.1. Sparse Graph Construction 

Like RST algorithm, BGA starts the operation with sparse graph construction; 

however, it applies to Guibas-Stolfi [25] algorithm. Guibas-Stolfi divide region to 

eight partitions and each point is connected to its nearest R1 neighbor, north-east 

neighbor. The nodes in each octant are mapped to R1 partition and they are computed 

for this partition.  

Guibas-Stolfi algorithm computes north-east nearest neighbors for a node set in O(n 

log n) run time. The algorithm starts with sorting the nodes according to their x 

coordinates and the x value that divides nodes into left and right half is found. For 

nearest neighbor computations, tree pointers are used, specifically, left, right and 

min. Pointer left moves down in the sorted list of left half nodes in decreasing y 

values. The other two pointers move down at the right half plane in decreasing y 

again. Pointers move in only one direction, they do not back up. During the 

downward movement, pointer right always stays at nodes with larger y values than 

pointer left and pointer min keeps the nearest node to left in the right half. 

left

min

right

 

Figure 3-17: Guibas-Stolfi Pointer Position 

During the movement of pointer right, three possibilities can occur, these are: 

i. The node pointed by right has higher y value than left but further than min, 

pointers are not altered 

ii. The node pointed by right has higher y value than left and closer than min, 

min is equalized to right 

iii. The node pointed by right has smaller y value than left, for this condition, the 

min is set as nearest north-east neighbor of left and left is moved down 
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By following the steps given, nearest neighbors for R1 regions are found and same 

procedure is applied for each octant. 

3.2.1.2. MST Construction 

Kruskal’s algorithm [4] is used for MST construction. The detail of Kruskal’s 

algorithm is given in chapter 3.1.2. In RST algorithm, binary search tree construction 

for least common ancestor queries is embedded in this computation; however, BGA 

algorithm does not use binary search tree for longest edge detection, instead, it 

applies hierarchical greedy pre-processing algorithm for this purpose. HGP algorithm 

creates two arrays, namely, parent and edge in at most 2n-1 steps where n is the 

number of terminals. These two arrays are used to obtain the longest edge in a cycle 

formed after addition of a Steiner point. 

HGP algorithm has a recursive approach; initially, it searches the cheapest outgoing 

edge for each node. For a node u, the cheapest edge is directed away from u and its 

index is saved in edge(u). After this operation, some of the edges become bidirected 

or unidirected and some of the edges remain undirected. An example is given in 

Figure 3-18, in which edges ab, de and hg become bidirected, edge bc becomes 

unidirected and be and eg remain undirected, after the first iteration of HGP,.  
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Figure 3-18: Edge Directions after First Run of HGP 

In this directed graph, nodes connected to bidirected and unidirected edges are 

attached to each other and form subgraphs, called component K. HGP collapses these 

components into a single node q; then parent(u) is set for every u ∈ K. There can be 

at most n/2 nodes created, since each subgraph has at least one bidirected edge. The 

node collapsing process is repeated until all trees collapse to a single node. The result 

of the first iteration of the tree given in Figure 3-18 is shown in Figure 3-19. After 

HGP iteration, the connected nodes collapses to a single node, that is, nodes a, b and 

c collapse to node x, node c and d collapses to y, lastly, node g and h collapses to z. 
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The parent and edge arrays of tree in Figure 3-19 is given below: 

edge    = { ab, ab, bc, de, de, gh, gh, NIL, NIL, NIL, NIL, NIL, NIL} 

parent = {  x,   x,  x,  y,   y,   z,   z,   NIL, NIL, NIL, NIL, NIL, NIL} 
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Figure 3-19: The Node Collapsing After HGP Iteration 

Analyzing the details of HGP, we can state that the edge cost between components 

increases after each iteration. Moreover, if two nodes u and v are in the same 

component, the edge with maximum cost can be found from max{edge(u), edge(v)}. 

For instance, in Figure 3-19, nodes a and c are in component x and the longest edge 

between them can be calculated by max{edge(a), edge(c)} where edge(a) = ab and 

edge(c) = bc. If two nodes u and v are in different components, namely K and K’, in 

order to compute the longest edge between u and v, the maximum cost edge of 

component T should be found, where T is the component K and K’ components 

collapses to a single node. 

3.2.1.3. Triple Generation 

Triple is defined as the optimal Steiner tree for a set of three nodes. Repeatedly, all 

possible triples are found and for the triple with the largest positive gain, the edges of 

the triple are discarded and nodes are connected to Steiner point. 

 

Figure 3-20: Triple Contradiction [3] 
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The triples are classified according to their position in region. There are four types of 

triples which are north-west, north-east, south-west and south-east. A triple can be 

classified as north-west if the diagonal terminal is in north-west quadrant of center. 

After triple classification, nodes are sorted according to their (x+y) or (x-y) values, 

and an algorithm similar to Guibas-Stolfi is applied to determine Steiner points. 

 

Figure 3-21: Triple Types 

3.2.1.4. Graph Update 

Once the all possible triples are computed, the next step is the graph updates. Starting 

from the triple with highest gain, the Steiner point is added to tree and the longest 

edges in the cycles formed are discarded from MST.  

At the beginning of the operation, all edges are unmarked. If both edges in a triple 

are unmarked, this update can be applied to tree and those edges are deleted. 

Moreover, the longest edge in the cycle is computed through parent and edge arrays. 

3.2.2. Modified RST Algorithm Flow 

Modified RST algorithm focuses on the total runtime of the Rectilinear Steiner Tree 

construction solution and hence it tries to increase the speed of the algorithm. BGA 

and RST algorithms consist of phases with iterative and recursive approaches. 

Recursive operations require storing the data from previous step and reloading it, 

moreover, they may cause overflow problems especially for large data sets. Thus, 

recursive algorithms are not desired for speed oriented solutions. 

The Modifies RST algorithm flow is given in Figure 3-22. In the initial phase of the 

algorithm, RST generates sparse graph using special sweep method iteratively; 

however, BGA implements a recursive approach; therefore, RST is considered as 

advantageous to use. The longest edge detection algorithm of RST is based on 

Tarjan’s offline search algorithm, for this purpose a binary search tree is constructed 
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during MST computations. Unlike HGP used in BGA, Tarjan’s offline search 

algorithm is recursive and hence it is not preferred, in Modified RST algorithm, HGP 

algorithm is used to detect longest edges in formed cycles. Last of all, for Steiner 

point candidates, triples are formed and added to MST in BGA with a recursive 

attitude. In RST, neighbors in spanning graph is computed as node-edge pair, that’s 

why it is considered more effective and practiced in Modified RST algorithm.  

Start with initial 
point set

Generate Sparse Graph using
Zhou’s Spanning Graph Algorithm[3]

Kruskal’s Algorithm[5] for MST computations

Construct Parent-Edge Arrays of HPG algortihm for 
longest edge detection

Apply Borah’s edge substitution method to obtain 
point-edge pairs

Sort Point-Edge Pairs according to their Gains

Starting from highest gain add Steiner point to tree 
if the edge still exists

Return MST
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Both RST and BGA 

implement same algorithm
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RST approach is kept, yet 

BGA approach is applied 

for longest edge detection

 

Figure 3-22: Modified RST Algorithm Flow 
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CHAPTER 4 

 

 

4. GPU IMPLEMENTATION OF MODIFIED RST ALGORITHM 

 

 

 

Modern IC designs contain billions of transistors and their complexities increases 

continuously. Practical industrial methods require rectilinear routing of nets with tens 

of thousands of terminals; moreover, several hundreds of thousands of electrically 

equivalent points are connected to each other. Such a problem size consumes 

significant routing resource in the layout and minimizing the total length becomes an 

important problem [3]. Although most of the electrical design automation tools 

implements sequential algorithms [30], there is a growing interest in parallel 

approaches.  

In this thesis, we have chosen Modified RST algorithm to work on because it has a 

speed-oriented approach and has better performance compared to most Steiner tree 

algorithms. There is a distributed version of Modified RST [1], which works on 

clusters of computers having large inter-communication costs. The implementation 

in [1] is not scalable and it is only partially parallel. This thesis aims to parallelize the 

whole algorithm phases and aims to obtain a scalable algorithm having a better 

runtime. 

Even though some steps are needed to be replaced, most of the Modified RST 

algorithm phases are suitable for parallel implementation. The revised version of the 

Modified RST algorithm is shown in Figure 4-1. For the first phase of the algorithm, 

i.e., sparse graph generation, Zhou’s spanning graph algorithm is preferred because 

sweep operation can be applied to each octant independently and active set can be 

partitioned into small subsets using geometrical proximity information. The next step 

is to obtain MST on the sparse graph. Modified RST algorithm applied Kruskal’s 

algorithm [4] for this purpose; however, Kruskal needs a sequential operation since 

each time minimum cost edge has to be searched in the whole tree to be included in 
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the MST. We, therefore, suggest using Boruvka’s MST algorithm [5] because it 

consists of independent disjoint set find and union operations. Moreover, the longest 

edge detection solution is kept since the parent-edge array generation method of 

Modified RST is very similar to Boruvka’s algorithm and hence it becomes easier to 

compute these arrays by modifying this phase. Finally, Borah’s edge substitution 

method is to be practiced in the parallel approach similar to the sequential one. Since 

Borah considers only neighbor points as candidates, the region can be partitioned and 

the algorithm can be applied to each partition at the same time. 

Start with initial 
point set

Generate Sparse Graph using
Zhou’s Spanning Graph 

Algorithm[3]

Boruvka’s Algorithm[5] for MST 
computations

Construct Parent-Edge Arrays of 
HGP algorithm for longest edge 

detection

Apply Borah’s edge substitution 
[4] method to obtain point-edge 

pairs

Sort Point-Edge Pairs according to 
their Gains

Starting from highest gain add 
Steiner point to tree if the edge 

still exists

Return MST

 

MST computations

 

Compute Steiner point 

candidates

 

Apply suitable tree 

updates and Steiner points

Modified RST GPU Implementation

Start with initial 
point set

Generate Sparse Graph using
Zhou’s Spanning Graph 

Algorithm[3]

Kruskal’s Algorithm[5] for MST 
computations

Construct Parent-Edge Arrays of 
HGP algorithm for longest edge 

detection

Apply Borah’s edge substitution 
[4] method to obtain point-edge 

pairs

Sort Point-Edge Pairs according to 
their Gains

Starting from highest gain add 
Steiner point to tree if the edge 

still exists

Return MST

 

Sparse Graph 

Construction

 

Figure 4-1: GPU Implementation of Modified RST Algorithm 
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4.1. Sparse Graph Construction 

The details of Sparse Graph generation algorithm are given in Chapter 3.1.1. Zhou’s 

algorithm divides the region into 8 partitions and sweeps each octant till finding the 

nearest neighbor. Since running the algorithm for the first four partitions is enough, 

sweep process is not going to be applied on R5, R6, R7 and R8.  

The nearest neighbor search algorithm runs independently for each octant and hence 

the search operations in R1, R2, R3 and R4 regions will run simultaneously as long as 

there is available hardware resource.  

The search computations in R1 and R2 partitions start with sorting the input data set 

according to nodes’ (x +y) values. For parallel implementation of sort computations, 

segmented scan primitives given in [36] is to be used. The input array is divided into 

segments and sort operation runs on each segment concurrently. Segmented scan is 

suitable for quicksort since communication between threads in the algorithm is 

within a single segment only. The algorithm starts with choosing the first element of 

each segment as pivot and then the elements in the segment are compared with the 

pivot. While comparing the input with the pivot, both “greater than pivot” and 

“greater than or equal to pivot” conditions can be used. If the input is smaller than 

the pivot, it is moved to the head of the segment and if it is larger than the pivot, it is 

moved to the end of the segment. At this step each segment is divided into two 

subsets and the operation continues until the output is sorted. It is checked against a 

global reduction after each step. A small example of GPU quicksort implementation 

is given in Figure 4-2. 
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n1 n2 n3 n4 n6 n7 n8 n9
...

 

Node Array

 

5 2 6 3 7 n7 n8 n9

Segment 1

...

 

Input Set consists of 

(x+y) values of nodes

 

Segment 2

5 5 5 5 5 ...

 

I

II (x7+y7) (x7+y7) (x7+y7) 
First element is selected as pivot 

and distributed across the segment

f t f t f ...

 

III
Compare input with pivot

input > pivot

5 2 3 6 7 ...

 

IV Split and segment the result

5 5 5 6 6 ...

 

V Distribute the pivot

t f f t t ...

 

VI
Compare input with pivot

input ≥ pivot

2 3 5 6 7 ...

 

Split and segment the result

and sorting is completed
 

Figure 4-2: Parallel Quicksort Implementation Example 

The next step of Zhou’s sparse graph algorithm is to run the sweep line algorithm. 

For this purpose, space is divided into equal partitions and computations are done on 

each partition separately. A sample partitioning of space into five regions is given in 

Figure 4-3. Since left-most and right-most nodes are known, starting from these 

nodes, the plane is to be divided into equal partitions. During this partitioning of the 

plane, it is assumed that each partition contains the same number of nodes. Trial and 

error method will be used to determine how many partitions are going to be used 

during simulations. 

P3 P4 P5P2P1

 

Figure 4-3: Partitioning the Space for Sweepline Algorithm 

After dividing the whole plane into partitions, each CUDA core maintains an active 

set and computes the R1 neighbors of the nodes contained in that partition. In order to 

decide whether a node is in R1 region or not, equation given in equation (4-1) is 
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applied. For R2 neighbors, the same algorithmic steps are followed; however, to 

classify a node whether it is in R2 region or not, inequalities given in equation (4-2) 

are applied. 

R3 and R4 nearest neighbor search operations begin with sorting input vertex set 

according to (x-y) and sweep operation is then computed on this sorted array. For 

sorting, parallel quicksort algorithm is used. Afterwards, the plane is divided into 

sub-regions and each CUDA core computes R3 and R4 neighbors for its own sub-

region. 

The search operation for R1, R2, R3 and R4 is to be computed simultaneously as long 

as there is available hardware resource. In our system, we have 384 CUDA cores, 

which mean 384 computations can run at the same time. The usage of GPU with 

more cores should increase performance considerably without changing any 

algorithmic steps in the implementation. 

4.2. Minimum Spanning Tree Construction 

Modified RST algorithm implements Kruskal’s algorithm to be able to obtain MST 

from the sparse graph. Kruskal starts with sorting edges according to their weights 

and then adds the edge with the least cost to MST if both end points of the edge do 

not belong to the same tree. This behavior of Kruskal requires a sequential operation, 

i.e., for each iteration, the forest structure should be examined and then after the 

addition of edge, the forest should be updated. Furthermore, parent-edge array 

construction steps are embedded in the generation of MST; however, this kind of 

array construction can cause long query times. Hence, because of this sequential 

behavior, we do not prefer Kruskal in our MST computations.  

MST problem has an irregular structure; thus, it is suitable for sequential 

implementations. The existing sequential algorithms such as Prim or Kruskal are 

efficient to use; however, industrial applications require more scalable solutions 

because input terminal sets are getting bigger and bigger every day. Therefore, there 

is a growing interest in the parallel solution for the MST problem. There are a couple 

of parallel algorithms for the MST such as [37], [38], [39] and [40]. Most of these 

algorithms are based on Boruvka [5] due to its parallel nature.  

In our GPU implementation of RSMT algorithm, we propose Boruvka’s MST 

solution instead of Kruskal and our implementation becomes similar to [38]. 
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4.2.1. Boruvka’s MST Algorithm 

Otokar Boruvka suggested its MST algorithm to construct an efficient electricity 

network in 1926. This is a greedy algorithm based on union and find operations. The 

basic flow of Boruvka’s algorithm is given in Figure 4-4. At the beginning of the 

algorithm, each node in the spanning graph forms a disjoint set and then “find” 

operation is applied, where the minimum cost edges outgoing from nodes are 

searched. The minimum cost edge is directed from the node to its neighbor. After 

this operation, bidirected, unidirected and undirected edges are generated in the 

graph. The nodes of bidirected and unidirected edges are merged into a single 

component. This search and merge operation continues till spanning graph collapses 

to a single component, this final component representing the MST of input data set. 

Unlike Kruskal’s algorithm, Boruvka’s algorithm proceeds in an unordered pattern.  

Form a disjoint set from each node

Each node represents a component

For the edge with arcs, if addition 

of the edge does not cause cycle, 

merge those two components

Start with Spares Graph

Find the minimum cost edge of each 

component and place arcs to these 

edges which is pointing neigbor 

component

Is there only 

single 

component

No

Return MST

Yes

 

Figure 4-4: Boruvka’s Algorithm Flow 

A MST construction process on sample spanning graph is given in Figure 4-5. 

Initially, each node is defined as a separate disjoint set. Afterwards, the minimum 

cost edges for these disjoint sets are found and arcs placed on these edges. As a result 

of first iteration, there exists 2 bidirected, 3 unidirected and 5 undirected edges. 
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Nodes at the end points of these edges are merged into a single component, node a, 

b, e and g forms a component and nodes d, e and f forms another component. Then, 

the algorithm repeats itself by searching outgoing edges of new components. 
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Figure 4-5: Boruvka Algorithm on an Example 

4.2.2. Parallel Boruvka Implementation 

Our parallel Boruvka implementation is similar to [38]. In addition to MST 

computations; we generate parent-edge arrays for the longest edge detection problem 

during this operation.  

The algorithm starts with defining disjoint sets from each node; these disjoint sets 

could be called as components. A unique component id is assigned to each node. The 

nodes and their weights are stored in one array and the edges generated after sparse 

graph construction is stored in another array (Figure 4-6). In addition to node indexes 

and their weights, node array contains pointers to edge array, which shows the 

partition of elements the node is connected [38]. For the minimum cost edge search 

operation the segmented scan given in [36] is to be used and hence a flag array is 

needed to be able to specify the segments of the edge array. In edge array, each 

segment represents edge connections of a single node. For instance, in Figure 4-6, 

node n1 is connected to edge e1, e2 and e3, node n2 is connected to edge e2 and e6. In 

the edge array, e1, e2 and e3 is the segment of node n1; in addition, edges e2 and e6 is 

the segment of node n2. To be able to specify each segment, the first element of the 

segment in the flag array is set to ‘1’ and the rest of the segment is set to ‘0’. 



52 
 

w1 w2 w3 w4 w6 w7 w8 w9
...

e1 e3 e4 e2 e6 e7 e4 e9 e10 e14
...

 

 

Weight Array

Edge Array

f1 f3 f4 f2 f6 f7 f4 f9 f10 f14
...

 

Flag for Edge 
Operations

1 0 0 1 0 1 1 0 0 0  

Segment of n1  Segment of n2 

n1 n2 n3 n4 n6 n7 n8 n9
...

 

Node Array

 

Figure 4-6: The Graph Structure 

The minimum cost edge of each node is computed using segmented scan algorithm 

and the result is stored in a new array, called NWE; nevertheless, only the edge that 

does not cause cycles will be included in the MST. In other words, the end points of 

the edge are controlled, if both end points belong to the same component, the edge is 

not included in the tree. For cycle detection, a successor array is generated to hold 

the outgoing vertices from node v to node u. The NWE array is used to construct the 

successor array. In the successor array, the nodes that obey S(S(u)) = u condition 

forms cycles and related edges are discarded from MST. Successor array creation for 

the graph in Figure 4-5 is illustrated in Figure 4-7. For the next iteration, the first 

element in the node array is selected as representative for each subset and successor 

of each node is updated according to this information. 
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Array

 

Figure 4-7: Successor Array Structure 

Once an appropriate edge is found, it is added to MST and two disjoints sets (or 

components) at the end points of this edge are merged. The components are split 

according to their component ids and the new component ids assigned to each node 

that participates in merge operation. In the meantime, edge array is sorted with 

respect to new component numbers and flag array is reorganized to reflect new 

boundaries of segments. 
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In order to ease computations of the next iteration, some edge list is arranged during 

the merge operation. The edge list is reduced such that the edges that lie between 

same components are discarded from the list. Hence, search computation does not 

deal with these edges. Moreover, the end points of the edges are updated considering 

the new component ids and the successor array is updated and set to S(u) = S(S(u)). 

As was stated earlier, parent-edge array for the longest edge detection problem is 

constructed in this step. The array generation of BGA algorithm is very similar to 

Boruvka’s algorithm, thus, these arrays are generated without any overhead. The 

smallest weight node obtained for each component at the beginning of this step can 

be used as edge(u) and the new component id after merge operation can be used as 

parent for that node, parent(u). For instance, in Figure 4-5, after the first iteration, 

parent and edge arrays become as follows: 

nodes  = { a, b, c, d, e, f, g} 

edge    = { ab, ab, bc, de, ef, ef, bg, NIL, NIL, NIL, NIL, NIL, NIL} 

parent = {  x,   x,  x,  y,   y,   y,   x,   NIL, NIL, NIL, NIL, NIL, NIL} 

4.3. Edge Substitution 

In the Modified RST algorithm, Borah’s edge substitution method is used in order to 

generate Steiner point candidates. For each edge, the neighbors of the edge end 

points are considered as possible node-edge pairs and their gains are calculated if a 

corresponding cycle does not occur for that node-edge pair. Since node-edge pairs 

are computed only for neighbor nodes of the edge’s end points, we can use the 

geometrical proximity information obtained from sparse graph operations and 

compute gains in parallel.  

As a result of the MST computations, the set of edges, which are included in MST is 

obtained and they are stored in an array. This array is segmented among CUDA cores 

of GPU uniformly and each core computes the node-edge pairs for its segment. Each 

core has access to parent-edge arrays constructed during MST computations, and 

these arrays are used to detect longest edges in the cycles formed. A sparse graph and 

its MST tree are given in Figure 4-8. Assuming that there are four GPU cores 

available, the edge array is divided into 4 segments and each core computes node-

edge pairs, separately. For example, core1 works on segment1 and it searches 

available Steiner points for edges “ab” and “bc”. The candidate nodes are selected 
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from sparse graph neighbors. For edge ab, nodes c, d, e, f, g and h; for edge “bc”, 

nodes a, d, e, f, g and h are candidates. In the meantime, core2 computes node-edge 

pairs for segment2, that is, edge “bd” and edge “de”. Nodes a, c, e, f and g are 

computed for edge “bd”. 
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Sparse Graph
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RectilinearMinimum 
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Edge Array = { ab, bc, bd, de, ef, eg, ag, gh}

   

I II III IV  

Figure 4-8: Segmented Borah’s Edge Substitution 

Afterwards, gain is calculated for each candidate point and the point with the highest 

gain is chosen for the target edge. An example can be depicted in Figure 4-9, where, 

for edge ag, two possible Steiner points are discovered.  

a

c

d

e

b

h

g

f

g

Steiner point1

Steiner point2

 

Figure 4-9: Steiner Point Candidates 

Gain calculations begin with the detection of the longest edge in the cycle. For 

Steiner point2, a cycle is created between nodes a, b, c and sp2. Using parent-edge 

arrays, a search operation is conducted and longest edge in the loop is accessed. 

Subsequently, the gains for node-edge pairs are calculated. Assuming that the longest 

edge is edge gh for loop1 and edge bc for loop2, the calculations for Figure 4-9 is 

given in equation ( 4-1 ) and ( 4-2 ). 

gain(Steiner point1) = ||g,h|| - ||h, sp1|| ( 4-2 ) 

gain(Steiner point2)   = ||b,c|| - ||c, sp2|| ( 4-3 ) 
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Following these calculations, the point with the highest gain is selected and the 

corresponding node-edge pair is generated. The node-edge pair, longest edge in cycle 

and their gain are kept in arrays as shown in Figure 4-10. Each core updates the 

related part of these arrays after its computations and hence all data is stored in a 

single array. If a point with positive gain for an edge is not found, it is marked as 

NIL. 

 

Edge Array = { ab, bc, bd, de, ef, eg, ag, gh}

   

I II III IV

Pair Point Array = { e, a, e, NIL, g, d, c, NIL}

Longest Edge = { bd, ab, de, NIL, eg, de, bc, NIL }

Gain Array = { g1, g2, g3, NIL, g5, g6, g7, NIL }
 

Figure 4-10: Point-Edge Pairs and Their Gains 

During simulations, edge array will be divided into 64, 128, 256 and 512 segments 

and the performance will be evaluated. Although, for each division, significant run 

time improvement is expected, the best choice for our case is going to be obtained 

after some experiments.  

4.4. Graph Update 

The last step of the implementation is the amendment of the graph. The gains 

obtained from Borah’s edge substitution method are stored unorderly in the gain 

array. This array is sorted with parallel quicksort algorithm in descending order and 

starting from highest gain the Steiner points are added to the tree sequentially. 

Meanwhile, for each edge, a flag is maintained to decide whether it is involved in an 

update operation or not. The flags are set to true at the beginning of the update action 

and when an edge is deleted during the graph update, the edge’s flag is 

complemented to false. If the edge’s flag is false, the Steiner point for this point-edge 

pair is skipped and is not included in the tree. 
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CHAPTER 5 

 

 

5. PERFORMANCE ANALYSIS 

 

 

 

In this chapter, the GPU implementation and analysis results of the Rectilinear 

Steiner Tree problem solution is presented. Time measurements for sequential and 

parallel solutions are explained and the achieved speed up values for each input 

terminal set is discussed. 

5.1. Implementation Environment 

Our sequential algorithm is implemented for CPU in C language. For sequential 

implementation, Microsoft Visual Studio 2010 on Windows 8.1 is selected as 

software development environment. The brief specification information of CPU 

hardware is given in Table 5-1. 

Table 5-1: CPU Hardware Specifications 

Processor Model Intel i7 U Series 

Number of Cores 2 

Number of Threads 4 

Processor Base Frequency 2 GHz 

Max Turbo Frequency 3.1 GHz 

Installed Memory 8 GB 

Instruction Set 64 Bit 

Passmark Benchmark Result 3942 

 

The parallel algorithm is implemented using C language with CUDA extensions. 

CUDA toolkit 6.0 is used for parallel code development environment. The GPU 

hardware specifications are given in Table 5-2. 
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Table 5-2: GPU Hardware Specifications 

Device Model Nvidia GeForce 840M 

GPU Architecture Maxwell 

CUDA Capability 5.0 

Number of CUDA Cores 384 

Number of Multiprocessors 3 

Total Amount of Global Memory 4 GB 

GPU Clock Rate 1.12 GHz 

Memory Clock Frequency 900 MHz 

Memory Bandwidth 16 GB/s 

5.1.1. CPU and GPU Performance Comparison 

Our implementation environment consists of two processing elements. The first one 

is Central Processing Unit, which is usually used for general purpose applications. 

CPU is optimized to improve the performance of serial applications. A CPU core 

executes the instructions of the same thread in parallel or out of order. It contains 

complex control logic such as branch prediction, data prefetching and out of order 

execution and large caches. However, there are some limitations about CPU 

performance, for instance, its operation clock frequency is fixed around 3 GHz due to 

power consumption issues and its memory bandwidth is low. Therefore, recent CPUs 

have multiple cores to execute multiple threads at the same time.  

The theoretical speed up and the number of processors relation is defined by 

Amdahl’s law. Amdahl’s law can be stated as Eq.5-1 where T(n) is the total runtime 

with n cores and S is the total runtime of serial portion of the application. The speed 

up of an algorithm improves  with the increase in the number of cores and it is 

limited by the serial portion of the application. 

                                    𝑇(𝑛) = 𝑆 +  
𝑇(1) −𝑆

𝑛
                       ( 5.1 ) 

As shown in Figure 5-1, an application consists of a serial and a parallelizable 

portion. The parallelizable portion is distributed across some number of cores and 

speed up increases in accordance with the number of cores.  
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Figure 5-1: Serial and Parallel Portions of an Application 

Although our system contains a CPU with two cores, we implemented an optimized 

single thread version of Rectilinear Steiner Tree problem. After observing the 

theoretical speed up values given in Figure 5-2, we can conclude that multi thread 

CPU implementation cannot obtain enough speed up values to overcome GPU 

implementation.  

 

Figure 5-2: Theoretical Speed Up According to Amdahl’s Law [48] 

Amdahl’s law neglects inter processor communication overhead and memory 

latencies. When we consider high memory bandwidth and memory latency hiding 

features of GPU, we can state that multi thread CPU implementation does not affect 

our speed up measurements significantly; hence, we decided to run our experiments 

for single thread CPU implementation. 
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5.2. Simulation Results 

The test plan of our implementations consists of using two sets of problem instances. 

Initially, we generated random test points that are uniformly distributed in the region 

where the number of input terminals range from 1.000 to 1.000.000. Next, a set of 

VLSI test cases, which are extracted from recent industrial designs will be used [41]. 

There are 8 test instances in this set and the input size varies from 337 to 34.728. By 

using these VLSI benchmarks, we were able to observe the experimental results of 

our algorithm on realistic applications. 

5.2.1. Random Test Points 

5.2.1.1 Data set 

To evaluate our algorithm, first, we implemented it sequentially for CPU and then in 

parallel for GPU. We used GeoSteiner 5.0 software, which can be found in [46], to 

generate the random node sets. The number of nodes for these benchmarks scales 

from 1.000 to 1.000.000. For each benchmark, ten different random node sets are 

generated and the average of the speed up values of these different node sets is 

reported in this study. The nodes are uniformly distributed in the region.  

5.2.1.2 GPU Implementation Optimization 

Performance tuning is an important issue in CUDA programming. A key decision for 

this purpose in CUDA is the thread structure. Thread size and shape of a kernel can 

affect the overall algorithm performance significantly.  

One of the basic principles to achieve good performance is to keep all execution 

units in the device as busy as possible. If the algorithm implemented is poorly 

balanced across the existing multiprocessors, it delivers suboptimal performance. 

Hence, we tried to maximize hardware utilization by arranging the thread and block 

sizes in our algorithm efficiently. The most common and intuitive effort for this 

purpose is occupancy. Occupancy is defined as the ratio of the active warps per 

multiprocessor to the maximum number of possible active warps. Although higher 

occupancy does not always achieves higher performances, low occupancy causes 

memory latencies resulting in performance degradation.  

After implementing our GPU algorithm, we applied CUDA occupancy calculator 

provided by Nvidia [49]. The impact of block size on the occupancy for R1 neighbor 

search operation is given in Figure 5-3.  Our time measurements are consistent with 
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Figure 5-3; however, we did not observe significant variations in kernel time 

between block sizes 256, 512 and 1024. Hence, we kept block size parameter as 512 

in our simulations. 

 

Figure 5-3: Impact of Varying Block Size on Occupancy 

5.2.1.3 Experimental Results 

RST simulations have been performed on ten test cases for each node set size and the 

average runtimes are given in Figure 5-4 and in Table 5-3. The runtime 

measurements have less than or equal to 5% error margin with 90% confidence 

interval.  
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Figure 5-4: Total Runtime of RST Algorithm on CPU and GPU 

 

 

Table 5-3: Total Runtime of the Algorithm 

Number of Nodes  CPU time (ms) GPU time (ms) 

1.000 27.77 30.01 

10.000 112.11 91.40 

50.000 665.68 342.90 

100.000 1855.10 620.09 

500.000 6241.39 1662.38 

1.000.000 22936.72 2905.40 

 

The overall improvement in runtime can be seen in Figure 5-5. The Speed-Up values 

given in Figure 5-5 have less than or equal to 5% error margin with 90% confidence 

interval and they are obtained using Eq. 5-2. 

𝑺𝒑𝒆𝒆𝒅 𝑼𝒑 =  
𝑻𝒐𝒕𝒂𝒍 𝑪𝑷𝑼 𝑹𝒖𝒏𝒕𝒊𝒎𝒆

𝑻𝒐𝒕𝒂𝒍 𝑮𝑷𝑼 𝑹𝒖𝒏𝒕𝒊𝒎𝒆
 ( 5-2 ) 
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Figure 5-5: Average Speed-Up of the GPU implementation 

Our GPU algorithm shows a reasonable improvement over the CPU implementation 

and a promising strong scaling. During our study, we proved that up to 7.89x 

performance increase in total algorithm time could be achieved with our GPU 

implementation compared to CPU implementation. We achieved a significant 

runtime improvement for all data set sizes except 1000 nodes. Working with larger 

data sets such as 1.000.000 nodes rather than smaller ones results in much better 

speed up.  

Speed up of our parallel implementation increases with the input set size as shown in 

Figure 5-5. There are a couple of reasons why performance gap increases with the 

data size. First, GPU is composed of hundreds of execution units and it can handle 

thousands of threads simultaneously; as a result, it can perform the same operation 

over and over very quickly for huge data. However, CPU is composed of only a few 

cores; therefore, it can handle only a few application threads at a time. Therefore, 

when the total number of threads increases, due to the sequential nature of the CPU, 

GPU outperforms on our algorithm. Next, since a large number of blocks and threads 

run concurrently on GPU and it has a large memory bandwidth, it is more tolerant to 

memory latencies than CPU. Moreover, GPU contains on-chip shared memory, 

which is much faster than local or global memory. It is allocated for each thread 

block independently, so all the threads in the block can access the same shared 

memory. Use of this shared memory facilitates such a high performance by making 

neighboring node in the data array instantly available for computation, for instance, 



64 
 

in neighbor search or sorting. Consequently, GPU has a special memory architecture, 

which is suitable for parallel operations and performance gain increases on large data 

sets. Lastly, at the beginning of the execution, the input data set is copied from CPU 

memory to GPU memory, where copying data from/to GPU memory is a 

comparatively slow activity; meaning that, in addition to the application execution 

time, an extra memory overhead is added to the total runtime. This memory overhead 

increases proportionally with the data size; nevertheless, the CPU execution time has 

an exponential increase trend as was shown in Figure 5-4. Thus, the impact of 

memory overhead decreases for large data size and overall performance still 

increases with the increasing data size. 

Speed up is not observed only for the first data set, which is the smallest of all. The 

first reason for this result is the memory overhead, data copying process to GPU 

local memory is a slow operation and hence it deteriorates the performance 

significantly especially for small data sets. Next, CPU cores are optimized for 

sequential serial processing, they run at higher frequencies compared to GPU and 

they are faster in terms of the instruction per cycle perspective. Although GPU has a 

large number of execution units, these units operate with a lower clock frequency 

and their hardware architecture is much simpler compared to CPU. Hence, for small 

data sizes, performance gain obtained from GPU parallel architecture is not sufficient 

to overcome CPU performance. 

As was explained in Chapter 4, our improved version of Modified RST algorithm 

consists of three major blocks, namely, rectilinear sparse graph construction, 

minimum spanning tree construction and Steiner point operations. The average 

runtimes of these algorithm blocks for largest three data sizes are shown in Figure 

5-6. Moreover, the ratio of the runtime of each sub-block to total runtime for these 

benchmark cases is given in Figure 5-7.  

By analyzing Figure 5-6 and Figure 5-7, we can conclude that MST construction is 

approximately 25% of the total runtime for all data set sizes. Rectilinear sparse graph 

generation block takes more time compared to other blocks for small data sizes like 

1.000 nodes. However, for large data sizes, the time spent for Steiner point operation 

such as Steiner candidate search and tree update is more dominant than the RSG and 

MST constructions.  
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Figure 5-6: Average Runtimes of RST Algorithm Blocks 

 

 

Figure 5-7: Runtime Ratio of RST Algorithm Blocks 

Average speed up values for RST steps is illustrated in Figure 5-8. We improved 

total runtimes of each sub block for almost every data set. Only for the smallest data 

set, speed up is less than one.  
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Figure 5-8: The Average Speed-Up of the RST Algorithm Blocks 

The larger the data set size, the higher the achieved speedup as expected. The highest 

speed up of 11.2x is accomplished for the MST algorithm. Following Boruvka’s 

MST construction algorithm, with parallel implementation of RSG construction 

algorithm, 9.8x speedup is obtained. Finally, up to 6.7x speed up is achieved for the 

Steiner point operations block. Since the Steiner point operation runtime is higher 

compared to other algorithm blocks, Steiner point block has more influence on the 

overall performance of the algorithm. 

In order to decrease the total length of the Rectilinear Steiner Tree and increase the 

quality of the solution, the Steiner point search algorithm is repeated more than once 

and after each pass the tree is updated. This repetitive sequential structure of this 

block is one of the main reasons why higher speed up is not obtained in Steiner point 

operations in comparison to MST construction. 

5.2.1.4 Algorithm Performance 

The quality of the RST algorithm is measured as the total improvement by the 

algorithm in the length of the MST. Eq.5-3 is used improvement calculations.  

𝑻𝒐𝒕𝒂𝒍 𝑳𝒆𝒏𝒈𝒉𝒕 𝑰𝒎𝒑𝒓𝒐𝒗𝒆𝒎𝒆𝒏𝒕 % =  
𝑳𝒆𝒏𝒈𝒉𝒕 𝒐𝒇 𝑴𝑺𝑻−𝑳𝒆𝒏𝒈𝒉𝒕 𝒐𝒇 𝑹𝑺𝑻

𝑳𝒆𝒏𝒈𝒉𝒕 𝒐𝒇 𝑴𝑺𝑻
 × 𝟏𝟎𝟎      ( 5-3 ) 

MST length improvements by our methods are given in Figure 5-9. 
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Figure 5-9: Steiner Tree Length Improvement over the MST 

Even for small data sets, significant length improvements have been obtained. Since 

the nodes are distributed uniformly in the region, total length improvements are close 

to each other for all benchmarks. 

Length improvement for GPU implementation is slightly lower than the sequential 

CPU implementation. In order to be able to take advantage of parallel features of 

GPU hardware, we have applied some optimizations in our code to increase memory 

access bandwidth and to improve thread parallelism; thus, we did not obtain exactly 

the same length reduction in our parallel implementation. However, since this 

difference is acceptably small, we did not attempt to increase the improvement level 

further for the GPU implementation. 

Improved version of the modified RST algorithm proposed in this study achieves a 

similar performance in comparison to RST and Modified RST algorithms found in 

the literature. The comparison of our implementations, namely, sequential CPU and 

parallel GPU, with other algorithms is given in Table 5-4. Therefore, we show that 

using our algorithm significant speed up can be accomplished without deteriorating 

the algorithm’s quality wise performance. 
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Table 5-4: Length Improvements in the Literature 

Input Size RST [1] Modified RST [1] CPU GPU 

10.000 10.43% 10.42% 10.36% 10.36% 

50.000 10.43% 10.43% 10.29% 10.26% 

100.000 10.45% 10.45% 10.43% 10.41% 

500.000 - 10.44% 10.39% 10.38% 

1.000.000 - 10.45% 10.35% 10.33% 

 

5.2.2 VLSI Test Instances 

Following our initial experiments, we evaluated our implementation on some real 

world problems, and for this purpose, used VLSI test instances. In order to make a 

fair performance comparison, we obtained the executable files of RST and Modified 

RST algorithm in [1] and obtained time measurements on the same platform on 

which we run our current implementations.  

5.2.2.1 Data set 

There are eight test instances in this set and the input size varies from 337 to 34.728 

nodes. The input sizes of the instances and performance results of the algorithms in 

the literature can be seen from Table 5-5. The data sets of VLSI instances are taken 

from [3]. 

Table 5-5: Comparison of RSMT Algorithms on VLSI Instances [3] 
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5.2.2.2 GPU Optimization 

The shared memory usage, the register usage and the kernel structure for VLSI test 

cases are also the same as random cases. Consequently, the performance tuning 

solution explained in Chapter 5.2.1.2 is found to be valid for this case, too. We did 

not observe significant time measurement differences for block sizes 256, 512 and 

1024 and hence we selected blocks size to be 256 threads for this benchmark set. 

5.2.2.3 Experimental Results 

Time measurements for VLSI test cases are illustrated in Figure 5-10. Results 

obtained from implementations given in [1] are represented as RST and Modified 

RST bars, our sequential and parallel implementations are represented as CPU and 

GPU, respectively. 

 

Figure 5-10: Total Runtime of RST Algorithm on CPU and GPU 

Overall runtime of our sequential implementation is higher than the Modified RST 

algorithm. The difference between these two algorithms is mainly due to their MST 

computations. We have chosen Boruvka’s algorithm as the MST construction 

solution instead of Kruskal’s algorithm in this work. Although Boruvka’s algorithm 

is very suitable for parallel operation, it deteriorates the sequential runtime 

performance.  

The speed up obtained for VLSI cases are given in Figure 5-11. Our parallel 

algorithm accomplishes noteworthy speed up for all instances other than the first 
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two. Unavoidably, the performance of the CPU implementation is better than GPU 

implementation for small data set sizes. However, when data set size becomes large, 

GPU implementation outperforms CPU implementation. Starting from the 1944 node 

case, significant speed up values are observed.  

 

Figure 5-11: The Speed-Up of the GPU implementation 

For the largest data set, highest speed up of 1.78x is achieved. Although this speed 

up is relatively smaller than the highest speed up for random cases, it is still not 

negligible. In real world applications, for example a CAD tool might be attempting to 

connect the terminals of a large number of nets such as ground, power or some other 

signals during the auto routing process. Therefore, more than one RST run 

corresponding to each net can be required to solve the auto routing problem.  

The runtimes of RST blocks for eight VLSI test instances are shown in Figure 5-12. 

Moreover, the ratio of the runtime of each sub-block to total runtime for VLSI test 

cases are given in Figure 5-13 and Figure 5-14 and results similar to random cases 

have been observed. MST construction time is approximately 25% of the total 

runtime irrespective of the number of nodes in the benchmark. For small data sizes, 

this value is slightly higher than large data sets. As illustrated in Figure 5-13, RSG 

block consumes more time than the other two blocks for small data sizes. 

Nevertheless, Steiner point operations sub block becomes more dominant in overall 

runtime as seen in Figure 5-14. 
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Figure 5-12: Runtimes of RST Algorithm Blocks on VLSI Test Cases 

 

 

Figure 5-13: The Runtime Ratio for Small Data Sets 
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Figure 5-14: The Runtime Ratio for Large Data Sets 

The speed ups measured for each sub block is shown in Figure 5-15. It is observed 

that speed up is achieved for each block apart from the first two smallest size 

benchmarks. 

 

Figure 5-15: The Speed-Up of the RST Algorithm Blocks 
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Even for small data sizes such as 1944 and 2437 node cases speed up is possible for 

each algorithm block, proving that our algorithm is taking advantage of parallel 

execution opportunities successfully.  

Highest speed up, 2x, is observed for MST construction for VLSI test instances. 

Although speed up depends on the size of the instance, the characteristics of the 

instance may also affect the performance significantly. For instance, for 2767 and 

2437 node cases, the achieved speed up of larger node size case is slightly lower than 

the smaller node size case. Although most of the algorithm steps of the RST solution 

are implemented parallelly, it still contains some inevitable sequential operations. 

For instance, longest edge detection between two nodes requires sequential parent 

edge array search process or the nearest neighbor search operation requires serial 

active set operations. The increase in the runtime of these sequential operations 

degrades the GPU performance. Therefore, in some benchmark instances, due to the 

distribution of the node in the plane or the structure of the parent edge arrays, the 

overall speed of the parallel solution gets worse. 

5.2.2.4 Algorithm Performance 

The quality of our algorithm is evaluated as the length improvement in Rectilinear 

Steiner tree in comparison to the corresponding MST. The length improvement for 

VLSI test cases is shown in Figure 5-16. 

 

Figure 5-16: Steiner Tree Length Improvement for VLSI Test Instances 
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The same length improvements with RST and modified RST algorithms have been 

accomplished for our sequential implementation. The length improvement of our 

GPU implementation is slightly lower than our sequential implementation due to 

parallel programming optimizations. Nonetheless, the difference in the improvement 

is insignificant. As a conclusion, we demonstrated that with the implementation of 

our algorithm significant speed up can be also accomplished without deteriorating 

the algorithm performance on VLSI instances. 
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CHAPTER 6 

 

 

6. CONCLUSION 

 

 

 

The Steiner tree problem is a fundamental problem in network and VLSI design 

areas. It aims to generate the minimum total length tree that spans all the input 

terminals plus some possible additional nodes called Steiner points. If the distances 

are calculated in rectilinear plane, the problem is called Rectilinear Steiner Tree 

problem. For this case, the tree edges are restricted to horizontal and vertical lines, 

for which VLSI circuit routing is an important example of this type of the problem.  

Although it is important to obtain an optimum solution for RSMT problem, it is NP-

complete and there is no polynomial time exact solution for it. Known exact 

algorithms have long runtimes and they can only work on small set of terminals. As a 

result, finding an optimum solution for modern day industry size problems is 

impossible. There is more interest in heuristic solutions of the problem. In this study, 

we propose a heuristic solution approach that can be used in modern computer aided 

design (CAD) tools. 

Among the modern RSMT heuristic algorithms, two of them are distinctive from 

others, namely BGA by Kahng [3] and RST by Zhou [2]. These two algorithms 

produce high quality results in reasonable time and achieve minimal runtime 

complexity. Meanwhile, they can be applied on instances with tens of thousands of 

terminals, which make them suitable for modern day applications. Modified RST 

algorithm [1] was proposed earlier by combining these two algorithms to generate a 

more efficient method. Modified RST algorithm is based on RST; however, RST’s 

recursive steps are replaced with BGA’s iterative steps.  

We have chosen Modified RST as the basis of our parallel algorithm because it has 

better runtime in comparison to other algorithms without sacrificing the quality of 

the solution. Modified RST can work on instances with large number of terminals; 
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hence, we can achieve significant speed-up for such problem sizes with a proper 

parallel implementation due to GPUs massively data parallel structure. Moreover, 

most sub-steps of the modified RST are quite suitable for parallelization. Some 

modifications on the algorithm have been made in order to obtain better performance 

results. For instance, MST computation method is replaced with Boruvka’s algorithm 

because of its parallel nature; thus, we accomplished 11.2x speed up for the MST 

computations. 

The main contribution of this study is to propose a new parallel solution that can 

provide a RSMT in a time efficient way. Our algorithm achieves significant speed up 

in comparison to sequential methods in the literature without deteriorating the quality 

of the solution. With the advances in the chip industry, the number of nets in a design 

will grow and it can easily reach to tens of millions. Hence, there is a great demand 

in time efficient RSMT solutions. With the use of our parallel algorithm, problems 

with having a large number of input terminals can be solved in significantly shorter 

times in comparison to present methods. Furthermore, we provided an approach, 

which can achieve speed up for almost all data sizes; therefore, any RSMT problem 

instance can be solved faster with our algorithm. 

Nowadays, every computer platform contains graphics hardware. The CAD tools or 

real world applications can take advantage of the speed up provided by our algorithm 

without a need to use an extra hardware resource. Hence, our implementation 

provides a cost efficient solution for the RSMT problem. 

Our GPU implementation can be further improved in terms of total runtime. In RST 

flow, we replaced MST construction step and achieved important speed ups. 

However, in overall runtime of the algorithm, Steiner point operations block has 

more influence on the overall runtime than the other blocks. Hence, speed up 

obtained for RSMT is less than the speed ups obtained for RSG and MST 

constructions. As future work, Borah’s edge substitution method can be replaced 

with another suitable approach and overall performance of the parallel algorithm can 

further be improved significantly. 

Modern VLSI designs may contain obstacles in the layout such as IP blocks or pre 

routed nets. Adopting these obstacles to RSMT problem is also an important 

challenge. Routing large number of nets among thousands of obstacles may become 
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the new constraint of the CAD tools. Therefore, as future work, our parallel solution 

can be adapted to solve RSMT in the presence of obstacles. 
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