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Director, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Ali Devin Sezer
Head of Department, Financial Mathematics

Assoc. Prof. Dr. A. Sevtap Selçuk-Kestel
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Department of Insurance and Risk Management, Başkent Univer-
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ABSTRACT

CONSTANT PROPORTION PORTFOLIO INSURANCE IN
DEFINED-CONTRIBUTION PENSION PLAN MANAGEMENT

Temoçin, Büşra Zeynep

Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. A. Sevtap Selçuk-Kestel

Co-Supervisor : Prof. Dr. Ralf Korn

December 2015, 94 pages

In this thesis, various portfolio insurance strategies are designed and proposed for port-
folio management of defined-contribution type pension plans. These type of plans
consist of consecutive and defined premium payments which are invested in financial
markets and lead to a benefit that will be collected at the retirement. Since the benefi-
ciary faces all of the financial risk throughout the plan, a capital protection mechanism
is needed in such retirement systems. The main contribution of the present research
is to formulate this problem using different portfolio insurance methods with the aim
of providing a minimum guarantee on the portfolio value under the assumption of
stochastic floor processes. More specifically, various versions of Constant Proportion
Portfolio Insurance (CPPI) method with distinctive floor processes are developed in
different markets and with certain trading constraints. Modifying the classical dynam-
ics of CPPI for the pension fund framework, the portfolio efficiencies of these newly
introduced strategies are analyzed in continuous- and discrete-time trading markets.

In a market with continuous-time trading, two distinctive CPPI strategies are intro-
duced. With the aim of eliminating the discontinuities resulting from the contribution
payments, a replication strategy is carried out and a continuous-time environment is
achieved. Through a detailed sensitivity analysis and terminal wealth distributions il-
lustrated by Monte Carlo simulations, portfolio performances are studied. To ensure
that there is no bias in the comparison, optimal CPPI-multiplier for each guarantee
framework is obtained via using a classical stochastic control approach. Showing that
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critical risks (such as cash-lock risk and gap-risk) can arise once one steps outside of
continuous-time environment, the need of modeling in a more realistic market with
discrete-time trading is addressed.

Considering the problem in a discrete-time trading setting, additional path-dependent
CPPI strategies are proposed imposing certain trading constraints. In these strategies,
the floor processes are designed to vary randomly based on the performance of the
portfolio with the aim of capturing cash-lock and gap risks. In addition to sensitivity
analysis conducted, risk analysis is carried out via computing the local risk measures;
cash-lock probability, expected shortfall (ESF) and shortfall probability. Portfolio per-
formances of these proposed strategies are then discussed through calibration of risk
measures.

Keywords : CPPI, DC pension plans, Stochastic optimal control, Portfolio insurance,
Risk measures
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ÖZ

BELİRLENMİŞ KATKI PAYI ESASLI EMEKLİLİK PLANLARININ SABİT
ORANLI PORTFÖY SİGORTASI METODU İLE YÖNETİMİ

Temoçin, Büşra Zeynep

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. A. Sevtap Selçuk-Kestel

Ortak Tez Yöneticisi : Prof. Dr. Ralf Korn

Aralık 2015, 94 sayfa

Bu tezde, belirlenmiş katkı payı esaslı emeklilik sistemlerinde porftöy yönetimi prob-
lemi için çeşitli pörtfoy sigortası stratejileri önerilmiştir. Bu tip sistemlerde, emeklilik
anında kazanılmış olan tazminat miktarı portföy performansına bağlıdır ve düzenli
yapılan prim ödemeleri ile artar. Prim miktarlarının stokastik dinamiğe sahip olduğu
varsayımı altında problem, portföye minimum garanti atamak amacıyla farklı portföy
sigortası metotları ile modellenmiştir. Özel olarak, Sabit Oranlı Portföy Sigortası
(SOPS) metodunun çeşitli versiyonları farklı garanti süreçleri ve alım-satım işlemi
kısıtları altında önerilmiştir. SOPS metodunun klasik dinamikleri, emeklilik sistemi
çerçevesinde değiştirilerek bu yeni tanıtılmış stratejiler için portföy verimliliği analiz
edilmiştir. Öncelikle, önerilen iki yeni SOPS stratejisi dinamik tahsisatın mümkün
olduğu sürekli-zaman alım-satımı varsayımı altında çalışılmıştır. Daha sonra portföy
verimlilikleri duyarlılık analizi ve Monte Carlo simulasyonları ile elde edilmiş tazmi-
nat dağılımları kullanılarak karşılaştırılmıştır. Karşılaştırmada bir yanlılık olmaması
amacıyla, optimal kontrol problemi çözülmüş ve önerilen garanti süreçleri için SOPS-
çarpanı bulunmuştur. Sürekli-zaman varsayımından çıkıldığı anda kritik risklerin or-
taya çıktığı gösterilmiş ve kesikli-zaman alım-satımı ile modellenmiş daha gerçekçi
bir markette problem ele alınmıştır.

Kesikli-zaman alım-satımı çerçevesinde, yol-bağımlı SOPS stratejileri alım-satım kısıtları
dayatılarak önerilmiştir. Bu stratejilerdeki garanti süreçleri, nakit-hapsi ve açık verme
risklerine karşı korunma sağlamaları amacıyla, portföyün performansına bağlı olarak
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rassal biçimde değişecek şekilde tasarlanmıştır. Yapılan duyarlılık analizine ek olarak,
lokal ve global risk ölçüleri olan nakit-hapsi olasılığı, beklenen açık miktarı ve açık
verme olasılığı hesaplanmıştır. Bu risk ölçülerinin kalibrasyonuna dayanılarak, önerilen
stratejilerin portföy performansları değerlendirilmiştir.

Anahtar Kelimeler : SOPS, Belirlenmiş Katkı esaslı emeklilik sistemleri, Stokastik
optimal kontrol, Portföy sigortası, Risk ölçüleri
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CHAPTER 1

Introduction

1.1 Motivation and Literature Review

Defined-contribution type pension funds can be considered as a form of savings where
external contribution payments constitute the principal amount of the portfolio wealth.
These are saving plans in which a certain amount of money is regularly set aside by
the plan participant. These payments then are invested in financial markets and accu-
mulate to a benefit which is collected with the returns at retirement. Being a part of
the mandatory pension system, they are the main source to finance retirement in many
countries and are becoming more common in other countries where the participation
is still on a voluntary basis. As a result of this rapid growth, pension systems have
become a popular subject for researchers in recent years. Although pension systems
are created to increase financial life quality by providing income after retirement, there
are many risks associated with these systems. The uncertainty linked to the retirement
income and the fact that the pension participant/beneficiary is directly exposed to the
financial risk of the plan portfolio, raise the importance of pension fund modelling.
Especially, a downside-protection against market conditions has become a prominent
need in this context. With the aim of developing the mathematical theory for these kind
of protection schemes, the present thesis is devoted to study and design a set portfolio
insurance strategies in defined contribution (DC) type pension funds.

Pension plans include many stochastic components which are set to be deterministic
for simplicity in practice. However, the uncertainty in these components is not pre-
dictable and therefore cannot be captured by deterministic approaches. Especially, the
risk on the future benefits of a defined-contribution pension fund is more significant
as savings are solely dependent on market movements. For a general overview on the
development in the pension funds modelling, see [23]. Towards reducing the impact
of this market/investment risk, several protection methods have been introduced in the
literature from different aspects of pension modeling. Booth and Yakoubov [15] were
among the first to study the management of investment risk for defined-contribution
pension schemes. Their work provided preferable allocation decisions based on per-
formance analysis. Boulier et al. [18] also studied defined-contribution plans where
a guarantee is given on the benefits. In his work, contribution rate was assumed to
be continuous and deterministic whereas interest rate was modeled stochastically by
Vasicek model. The guarantee was then defined as a function of the contribution and
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interest rate. The optimal portfolio was found by formulating and solving Merton’s
portfolio problem with the objective function being the difference between the termi-
nal wealth and the guarantee. Battocchio and Menoncin [7] solved the portfolio prob-
lem maximizing the expected utility of terminal wealth in a complete financial market
for DC pension funds with stochastic interest rate. A detailed study on the classical
stochastic optimal control problem under stochastic interest rates is presented by Korn
and Kraft [37]. The authors solve the maximization problem of the utility of termi-
nal by proving a verification theorem in the absence of usual Lipschitz assumptions.
Cairns et al. [20, 21] presented studies on asset-allocation strategies for DC plans in
the presence of salary and interest rate risk. Introducing a new form of terminal utility
function which uses final salary as a numeraire, they made performance comparisons
of the optimal strategy with other reference strategies. Their results suggested that the
optimal strategy enhances the welfare of beneficiaries more than the other strategies.

A popular example for downside protection strategies in the literature is Constant Pro-
portion Portfolio Insurance (CPPI). The CPPI is a dynamic portfolio insurance strategy
that aims to protect the investor against adverse market movements by guaranteeing an
initially specified fixed amount of money at the end of the investment horizon [10].
The methodology is firstly introduced by Perold and Sharpe [41] for fixed-income in-
struments, and later by Black and Jones [11] for equity instruments. For a detailed
detailed dissertation on the subject, see [33]. With the main objective of providing a
floor to the value of savings, the optimal control problem is formulated in a different
way in CPPI framework. Instead of a classical maximization of expected utility of the
terminal wealth, the difference between the assumed floor and the portfolio value is
maximized as the objective function. Trading is done continuously and the guaran-
tee/floor is assumed to be constant in the classical CPPI.

While providing a simple and tractable setting for portfolio insurance, the continuous
rebalancing assumption of classical CPPI fails to suggest a realistic perspective. This
strict assumption avoids most of the risks which are critical for long-term investments
and are present in real financial markets. The two major problem that arise in prac-
tice for CPPI portfolios are the so-called cash-lock phenomenon and gap-risk. The
cash-lock is the situation when the portfolio wealth ends up fully invested in the risk-
free asset without the chance to recover. Balder and Mahayni [5] computed cash-lock
probabilities for certain portfolio insurance strategies including classical CPPI under
continuous-time, and presented the performance comparison results.

The other prominent risk which threatens a CPPI portfolio is the gap-risk. This is the
probability of portfolio value falling below the floor level and failing to guarantee the
desired amount at maturity. This risk is measured by Expected Shortfall (ESF) which
is computed based on the shortfall probabilities. Balder et al. [4] studied the problem
under a discrete-time trading assumption and presented risk measures used to quantify
the gap-risk for a CPPI with fixed-growth floor. The literature also includes hedging
strategies with artificial assets to model jumps and price gap-risk. In [46], Tankov
introduces the so-called exotic gap options to hedge against gap events, or jumps in a
Lévy-type framework.

Other threatening situations occur in cases of major increases or decreases in the mar-
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ket. In the case of a market rise, the floor might become insignificant comparing to
the portfolio value. Since this eventuality may create a high potential loss and prevent
from taking advantage of the market rise, a modification is needed in the floor. The
main problem here is that although portfolio value increases significantly, the potential
loss also accelerates as long as floor remains low. Similarly, in the case of a rapid
market decrease, the portfolio value might approach to floor. This would prevent the
participation in future rises and limit the potential gain. Certain mechanisms to cope
with these problems were given in [19] under-discrete time trading assuming a floor
that grows at a constant rate. These mechanisms are designed to automatically manip-
ulate the floor once these situations emerge. For an alternative approach of variable
floors, see the paper of Ameur and Prigent [2].

The literature on application of CPPI in defined-contribution pension fund manage-
ment is limited due to the discontinuous and complicated structure of pension systems
especially in the presence of imposed stochastic dynamics. Therefore, this thesis is
mainly focused to present, study and develop the applications of CPPI in defined-
contribution pension plans and to investigate the above-mentioned risks under both
continuous- and discrete-time trading. The main novelty of the thesis compared to
existing literature, comes from the introduction of various floor processes with differ-
ent characteristics. Unlike the classical CPPI where the investor selects a certain fixed
floor which he/she does not want the portfolio value fall under, the floor processes pro-
posed have stochastic dynamics with path-dependent structures. Applying this kind
of a portfolio insurance strategy to pension funds raises further investment risks since
the horizon is usually much longer than a typical financial investment. Towards the
management of these risks, another contribution of the present thesis is the analysis
of the cash-lock and gap-risk through computation of risk measures and proposal of
appropriate hedging strategies.

1.2 Aim of the Thesis

In this thesis, various portfolio insurance strategies are designed and proposed for
defined-contribution pension funds from a theoretical and technical point of view. The
main aim is to provide a minimum guarantee on the terminal wealth that the benefi-
ciary collects at the retirement. More specifically, various guarantee concepts for the
CPPI are proposed under both continuous- and discrete-trading assumptions impos-
ing trading restrictions. Therefore, the problem is considered in both complete and
incomplete markets having path dependent or independent structures. Since in a DC
pension plan the wealth is enhanced by consecutive payments, which is assumed to
be stochastic for all cases, the problem itself contains discrete dynamics. Therefore
the problem is considered in two different markets with continuous- and discrete-time
trading assumptions.

The steps of the research carried out is summarized as follows: First, two CPPI strate-
gies are introduced under continuous-time trading having different random dynamics.
Two distinctive floor/guarantee processes are defined where the main assumption is
that the guarantee at retirement will be equal to summation of the time value of con-

3



tribution payments made by the plan participant. The labor income is modeled as
stochastic process and contributions assumed to be a proportion of this income. The
discontinuity coming from the incoming contribution payments is eliminated via pric-
ing and short-selling the claim of future premiums. This way, the incoming payments
are treated as if they were already a part of the portfolio. In the newly constructed
continuous environment, the floor processes are defined as; net present value (NPV)
floor being time zero value of the future payments claim and random floor being the
time value of past and future payments. To ensure that there is no bias in the compari-
son, the optimal CPPI-multiplier is obtained for each guarantee framework via using a
classical stochastic control approach. Through terminal wealth distributions and sensi-
tivity analyses, performances of both strategies are compared portfolio efficiencies are
discussed.

To further analyze the risks that are avoided under continuous-trading and to study the
appropriate hedging methods, the same problem is handled in a more realistic setting
with discrete-time trading, as a second step. Redefining the NPV and random floors in
a way that they preserve their discrete structure and considering a new path-dependent
set of floors, cash-lock and gap-risks are addressed and the relevant risk measures
are computed. Previously defined floors are modified to current framework and other
path-dependent variable floor CPPIs are given. Starting with the initial contribution,
the random floor, in this case is, enhanced with each payment made at the fixed dates.
Specific variable CPPI strategies such as constrained CPPI, Ratchet CPPI and Margin
CPPI with Ratchet effect are studied. Here, constrained CPPI involves a strict con-
straint on the exposure to limit excessive borrowing whereas ratchet floor decreases
the risk of overgrowing cushion. Margin effect, lastly, minimizes the cash-lock risk
by decreasing the floor at a minimum level. Since the framework considered does not
have enough initial margin to decrease the floor without manipulating the end guaran-
tee, a modification is suggested in the mechanism. With a detailed sensitivity analysis
the effectiveness of each strategy is discussed and comparisons are made. Risks of
the proposed CPPIs are analyzed and quantified through risk measures and sensitivity
analyses.

Contributions of the present thesis are many-fold in the aspects of DC pension plans
and CPPI scheme. These are can be specified as;

• application of CPPI in DC plans

• introduction of new CPPI strategies with floors having stochastic dynamics in a
continuous-time trading market

• design of path-dependent CPPI strategies in a discrete-time trading environment
and computation of risk measures.

1.3 Plan of the thesis

In the next chapter, general information on the pension plans is presented. A brief
summary on different types of pension funds is given with an emphasis on defined-
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contribution (DC) plans and application of portfolio insurance in these systems is dis-
cussed. In Chapter 2, an overview of the classical CPPI methodology is given. The
continuous dynamics of the strategy are presented and prominent risks associated with
a CPPI strategy is addressed. Chapter 3 presents the adaptation of the classical CPPI
for DC pension systems. The replication of the claim of future payable contributions
is given along with the newly introduced guarantee types. Optimal control problem is
then formulated for these CPPI strategies and the solution is obtained via dynamic pro-
gramming. To measure the effect of model parameters on the terminal wealth for each
strategy a sensitivity analysis is given in the numerical results section. Moreover, port-
folio efficiency comparison is presented based on terminal wealth distributions. Lastly,
cash-lock phenomenon and gap-risks are illustrated with a numerical example and the
need for a discrete-time trading modeling is discussed. In Chapter 4, CPPI under
discrete-time trading and various CPPI strategies are given. Comparison of strategies
based on the computed risk measures is presented in Section 4.4 and numerical results
are given in Section 4.5. Finally, Chapter 5 summarizes the work carried in the thesis
with a discussion on future research ideas.
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CHAPTER 2

Preliminaries

2.1 Pension Plans

Pension funds have become an important subject of research in recent years. Since
the life expectancy have increased in the last decades, ensuring an acceptable level
of financial-life quality at later ages has become a major economic issue and a need
to construct a pension system that maintains economic efficiency with a low risk has
emerged.

Pension funds are savings systems, where cash inflows –in the form of contributions
or benefits based on the pension type– enter into the wealth dynamics of the fund. We
can divide them in two works keeping a collective perspective, where the modelling is
handled from the point of view of the pension issuer by collecting all of the pension-
ers’ accounts into one pool. Among many others, some prominent studies for these
kind of systems are present in [16, 17, 21, 40]. In the individual perspective, pension
account of each plan participant is treated separately. We concentrate on the latter case
approaching from the pensioner’s point of view. Among many others, some papers on
DC pension fund management are [15, 34, 35, 39]. Stochastic optimal control prob-
lems in the context of DC funds are presented in [13, 26, 28]. Detailed information
and a general overview of the economic issues related to pension funds can be found in
[3, 12, 23]. Essentially, the pension plans with individual perspective are categorized
into two types as follows:

• Defined-benefit (DB) plans, where a specific benefit that will be payable at re-
tirement is identified in advance. The contributions are then determined in order
to guarantee that the fund stays in balance. In these systems, the financial risks
are beared by the sponsor of the plan.

• Defined-contribution (DC) plans, where the contributions are defined and the
benefit is random being dependent on the performance of the pension fund/ port-
folio. The contribution amount typically is either a percentage of an participant’s
labor income or a specific amount. In this case, the financial risks are charged to
the plan participants.

Although defined-benefit plans have been more common in the past due to their safe
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structure from the participant’s standpoint, in the last decades most of the plans have
been designed based on defined contributions. In this thesis, defined-contribution type
plans are considered. The management of this type of funds consists of two phases: ac-
cumulation phase and decumulation phase. In the decumulation phase, the problem of
distributing the accumulated funds after retirement is considered. Among many others,
some papers dealing with the decumulation phase funds are [1, 8, 14, 22]. The liter-
ature on pension fund management for accumulation phase is based on models where
the contributions are collected in the account of the participant during the working life
and benefit is paid at retirement. The aim is to study pre-retirement fund evolution
reducing the risk charged to the participant. Since in DC plans the benefits are not de-
termined and therefore the participant is directly exposed to the risk, a very important
issue is to provide a minimum guarantee for the fund. This minimum guarantee is a
lower bound for the wealth payable to the participants in retirement, so it provides a
downside protection against the investment risk. Another important issue to take into
consideration when working on DC-type pension funds is that these systems can be
constrained, by law, to evolve above a certain level, which is the so called solvency
level. The minimum guarantee and the solvency level restrictions result in a portfo-
lio allocation where a substantial part of the wealth is invested in the riskless asset.
This is, on the other hand, not desirable for long-term as it will suppress the potential
gains from a possible market increase. Although the guarantee would be met under the
given solvency conditions, the benefit at the retirement would be at its minimum with
a return on the risk-free interest rate level. Therefore, new plans should be designed
which protect the participant from downside risk by guaranteeing an amount while
making it possible to benefit from climbing markets. In [20] optimal portfolio problem
is solved under continuous-time trading for DC pension funds under stochastic interest
rate and salary assumptions and in the absence of a guarantee scheme. Similarly, in
[7] Battocchio and Menoncin work in the same setting with a further assumption of
stochastic inflation rate and give explicit closed form solutions for the optimal port-
folio. For discrete-time trading, the same problem is solved in [29, 30] by dynamic
programming principle and backward induction assuming constant salary.

Another problem emerging in portfolio protection/insurance is the determination of
guarantee amount that will be paid at the retirement. Here, it should be noted that
the fund wealth is composed of the contribution payments (or premiums) made by the
participant and return of the portfolio constituted from these payments. Therefore, it is
also very critical to take into account the stochasticity from the payments which also
put another randomness on the benefit.
To respond this need, the main aim here is to design a protected portfolio scheme for
DC pension funds which takes into account the randomness yielding from the contri-
bution amounts and also able to guarantee at least the accumulated amount of wealth.

2.1.1 Portfolio Insurance in DC Pension Plans

Plans providing a protection scheme at retirement are introduced in [18] in a continuous-
time trading market with stochastic interest rate and assuming a deterministic contri-
bution process. In this setup, the market consists of the riskless asset, a risky asset and
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a rolling-horizon bond. The plan guarantees a minimal annuity and pays a determin-
istic minimum stream of benefits from the retirement until the death date which also
assumed to be deterministic. The maximization problem of the expected power utility
from the terminal wealth is solved. In [24] the problem is handled under stochastic
interest rate and contribution flow where the difference between the final wealth and
the minimum guarantee is paid to the participant at retirement, and the rest is collected
by the manager. A more general setting is presented in [25] with volatility also having
stochastic dynamics. The optimal portfolio problem is solved from the manager’s per-
spective via martingale methods. In the discrete-time trading framework, [42] consid-
ers the optimization problem where the fund is protected by a deterministic minimum
guarantee. The participant makes a single lump-sum deposit at the beginning and the
difference between the solvency level and the wealth is invested in the riskless asset.

2.2 Constant Proportion Portfolio Insurance

Portfolio insurance methods are designed to enable the investor to limit downside risk
while allowing some participation in upside markets. These methods protect a given
percentage of the initial capital by providing a guarantee at maturity. This is a desirable
feature mostly in falling markets and for investments with long horizons. Two promi-
nent portfolio insurance methods in literature are the Option Based Portfolio Insurance
(OBPI) and the Constant Proportion Portfolio Insurance (CPPI). In the present thesis,
the latter is studied. A CPPI is a popular dynamic portfolio insurance strategy which
aims to protect the investor against adverse market movements by guaranteeing at least
an initially specified (typically) fixed amount of money at the retirement date. The
method is firstly introduced for fixed-income securities by Perold and Sharpe in [41]
and later extended for equities by Black and Jones with a borrowing limit assumption
[11]. Further developed in [10], the standard method which is called classical CPPI
promises a floor value for the wealth at each time and uses a simplified strategy to
allocate assets dynamically over time. The instant allocation is made based on the dif-
ference between the portfolio value and the floor. This introduced difference process
is called the cushion and is denoted by C. The cushion process hence is defined as
the difference between the current portfolio value V and the floor which is denoted by
Y . The investor starts by setting a guarantee level as to the lowest acceptable value for
the portfolio. Then, she computes the cushion and determines the amount allocated to
the risky asset by multiplying the cushion with a predetermined multiplier. Both the
floor and the multiplier are exogenous inputs to the model representing investor’s risk
tolerance. The total amount allocated into the risky asset is known as the exposure.
The remaining funds are invested in the risk-free asset.
A higher multiplier value allows the investor to participate more in the stock market
representing a low risk averseness. This would make it possible to take advantage of
an increase in the market. However, it would also mean that the portfolio will approach
the floor faster in case of a sustained decrease in stock prices. Since the exposure is a
function of the cushion, it approaches to zero when cushion also approaches to zero.
This prevents portfolio value from falling below the floor process. Portfolio value will
fall below the floor only in the case where there is a sudden sharp drop in the market
before the investor has an opportunity to trade.
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An important point to note is that the floor process Y must be hedgeable and the ex-
plicit form of the corresponding hedging strategy should be computable. Otherwise,
corresponding allocation would be unknown and the portfolio insurance would fail.
Before explaining the classical CPPI method, some basic definitions are given next.

Definition 2.1. A self-financing portfolio is a portfolio with no inflow or withdrawal
of money. In other words, the purchase of a new portfolio must be financed solely by
selling assets already in the portfolio.

A common assumption in finance according to the following definition is that the mar-
ket is free of arbitrage.

Definition 2.2. An arbitrage possibility is a self-financing portfolio h such that initial
value of the portfolio is zero, that is V h(0) = 0, but

V h(T ) ≥ 0 and P (V h(T ) > 0) > 0

with probability one. We say that the market is arbitrage-free if there are no arbitrage
possibilities.

Lastly, the replicating (hedging) portfolio is defined as it will be used in the next sec-
tions.

Definition 2.3. A contingent claim X can be replicated or equivalently is hedgeable,
if there exists a self-financing portfolio h such that

V h(T ) = X.

Here, h is called the replicating (hedging) portfolio.

2.2.1 Classical CPPI

The CPPI method, as described in [10], manages a portfolio dynamically so that it
evolves above a floor Y (t) at any time t. The value of the floor process represents
dynamically insured amount at each time. The market considered is a Black-Scholes
market with two assets; a money market account B and a stock (or a stock index) S
whose price dynamics are given by

dB(t) = rB(t)dt, (2.1)

and
dS(t)

S(t)
= µSdt+ σSdW (t), S(0) = S0. (2.2)

Here, W is a Brownian motion defined on the complete probability space (Ω,F,P)
endowed with the filtration {Ft}t∈[0,T ]. The parameters µs and σs are real constants
with σs > 0, and the risk-free rate r is also assumed to be constant. The floor which
serves as a lower bound for the portfolio is assumed to grow with the risk-free rate,
having the following dynamics
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dY (t) = rY (t)dt. (2.3)

The initial floor Y (0) is clearly less than the initial portfolio value which is denoted
by V (0). According to the strategy, the desire of the investor is to have at least a
portfolio value of V (0) at the retirement, that is, she does not want to have any capital
losses. As a risk-free asset is present in the market, in which she can invest the floor
completely, to achieve this goal she would only need an initial capital of Y (0) =
V (0)e−rT at time t = 0. Therefore, the investor can risk the excess amount V (0)−Y (0)
without any probability of not meeting the final payoff. This excess amount is called
the cushion value and is denoted by C(0) at time t = 0. Since in the classical CPPI,
continuous trading is possible, she can react the market movements immediately. With
the possibility of moving the funds from risky asset to risk-free asset instantly, the
investor participate in the stock market in accordance with her risk averseness. The
cushion is defined as

C(t) = V (t)− Y (t), (2.4)

and the exposure, which is the amount invested in risky asset, is given as e(t) = mC(t)
at any time t. Different values of m changes the nature of the portfolio immensely and
the interesting scenario arises when m >> 1, that is, when the risk profile is less risk
averse. In this case, as a result of leverage effect, the portfolio becomes more prone to
market movements and although it is bounded below by the floor, the portfolio might
crash through the guarantee level in case of a sudden drop. In the discrete-time trading
case, which will be discussed in the next sections, investor cannot trade instantly and
faces a much higher risk of the portfolio falling under the floor before the next trading
time. Considering their dynamics given in (2.4) and (2.3), it is obvious that B and Y
has the following relation

dB(t)

B(t)
=
dY (t)

Y (t)
. (2.5)

Lemma 2.1 ([10]). The cushion process in classical CPPI is the unique solution of the
following SDE

dC(t) = C(t) ((m (µS − r) + r) dt+mσSdW (t)) (2.6)

and is given by

C(t) = C(0)e(r−
1
2
m2σ2

S)t+m(µS−r)t+mσSW (t) (2.7)

where C(0) = V (0)− Y (0).

Proof. The change in the value of a self-financing portfolio derives from the change of
asset values and amounts invested in them. This relation is given by
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dV (t) = e(t)
dS(t)

S(t)
+ (V (t)− e(t)) dB(t)

B(t)
(2.8)

By the definition of C, (2.8) and (2.5), the dynamics of the cushion are obtained as
follows

dC(t) = d (V (t)− Y (t))

= e(t)
dS(t)

S(t)
+ (V (t)− e(t)) dB(t)

B(t)
− dY (t)

= e(t)
dS(t)

S(t)
+ (V (t)− e(t)− Y (t))

dB(t)

B(t)

= mC(t)
dS(t)

S(t)
+ C(t) (1−m)

dB(t)

B(t)

= C(t) ((m (µS − r) + r) dt+mσSdW (t)) .

By Itô formula the solution of the above SDE is simply found as

C(t) = C(0)e(r−
1
2
m2σ2

S)t+m(µS−r)t+mσSW (t),

which proves the existence. For the proof of uniqueness of the solution, see [36].

There are some distinctive risks associated with a CPPI strategy which do not exist
for other investment schemes. The most prominent ones are the cash-lock risk and the
gap-risk which are discussed below. In following chapters these risks will be studied
under different market assumptions.

2.2.2 Cash-lock risk

One of the most important risks that arises for a CPPI portfolio manager in a discrete-
time trading market is the so-called cash-lock phenomenon, i.e. the effect that due to
losses only the lower bound for the guarantees can be realized via riskless investment
from a particular time onwards. This is the situation when the portfolio wealth ends
up fully invested in the risk-free asset without the chance to recover. Since a cash-
locked position prevents any participation a rising market, it is considered as a crucial
risk for investments with long horizons. Once the exposure drops to zero it stays there
until the end of the investment period. In continuous-time, however, this risk is not a
major concern as dynamic trading is possible and investor can quickly shift the funds
as the cushion approaches to zero. Therefore, this risk is mostly studied in markets
with discrete-time trading, which will also be considered in this thesis. However, in
a framework where floor interference is possible, this problem can be prevented by
adjusting the floor downwards according to market conditions.
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2.2.3 Gap risk

Gap-risk is another major risk that a portfolio manager faces while managing a CPPI
portfolio. It is essentially the probability of portfolio value crashing through the floor,
that is, going below the floor resulting in a negative gap. This situation arises when the
wealth is heavily invested in stocks and the fund manager does not have enough time
to rebalance the portfolio in the case of a sudden market drop. Since this might cause
failure in meeting the guaranteed amount at the end of the plan, it is crucial to quantify
and hedge this “gap risk”.

The risks explained above will be illustrated and analyzed in the following chapters
in detail for different market assumptions. For quantitative analysis purposes, asso-
ciated risk measures will be computed and calibrations will be presented. Moreover,
mechanisms for hedging these risks will be introduced.
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CHAPTER 3

CPPI in Pension Plans under Continuous-Time Trading

Considering a defined-contribution plan, in this section our aim is to attain a guaran-
tee on the pension fund under continuous-time trading. With this aim, two different
floor processes are introduced having deterministic and stochastic dynamics. The time
horizon for the fund management is assumed to be [0, T ] where time t = 0 is the en-
trance date to the plan and T is the date of retirement. We consider regularly made
contribution payments (i.e. monthly/yearly) which are defined as proportions of the
contributor’s labor income. Furthermore, this income is defined to be a stochastic pro-
cess reflecting the risks of financial market. These CPPI strategies are the special cases
of classical CPPI given in Chapter 2.2 which are introduced into DC pension plan
management. In the next sections, the market setting is described along with the two
proposed floor processes.

3.1 The market model

To keep the setting simple, a continuous-time securities market is considered including
a money market account B and a stock (or a stock index) S with price dynamics given
by

dB(t) = rB(t)dt, (3.1)
dS(t)

S(t)
= µSdt+ σSdW (t), S(0) = S0. (3.2)

Here, W is a Brownian motion defined on the complete probability space (Ω,F,P)
endowed with the filtration {Ft}t∈[0,T ]; and µs, σs are real constants with σs > 0,
where the interest rate r is assumed to be constant.

An important feature of our Black-Scholes market setting is that it is complete, that is,
sufficiently integrable Ft-measurable random variables can be replicated by suitable
self-financing trading strategies. In a complete market there exists a unique equivalent
martingale measure Q under which the unique price of a contingent claim can be cal-
culated as an expectation [44]. Incompleteness arises in a market when the sources of
randomness are more than the number of assets available.
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3.2 Defined-Contribution modelling

We assume that each beneficiary contributes a constant proportion, γ, of his/her labor
income at fixed time instants ti ∈ [0, T ] and the pension plan involves an ongoing
stream of contribution payments. The realistic modeling of labor income can be very
difficult as there are many stochastic factors such as disability, mortality and economic
or political crises. Therefore, to be able to reflect this randomness, we suppose that the
labor income L(t) is a stochastic process satisfying the following stochastic differential
equation

dL(t)

L(t)
= µLdt+ σLdW (t), L(0) = L0, (3.3)

where µL and σL are assumed to be real constants. The labor income at time t is thus
given as

L(t) = L(0)e(µL−σ
2
L/2)t+σLW (t) (3.4)

assuming t0 = 0 and tn = T . Under this setting, each contribution γ(ti) has the form

γ(ti) = γL(ti), (3.5)

with the dynamics

dγ(t) = γdL(t)

given that t ∈ (ti, ti+1) for i = 0, 1, 2..., n.

It is important to note that thanks to market completeness, the future contributions
given by (3.5) can be fully hedged. Hence, a replicating portfolio exists for the stream
of future contribution payments. This stream can be viewed as a claim and a unique
price can be assigned under the risk-neutral measure. While handling the portfolio
allocation, this replication will be used in different ways. This section describes the
specific CPPI strategies with the introduced floors.

3.3 Replicating Portfolio

In order to price the claim of future contributions, the measure should be changed
from the real-world probability measure P to the unique risk-neutral measure Q. By
Girsanov’s theorem [44], the risk-neutral dynamics of L(t) is given by
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dL(t)

L(t)
= (µL − σLθ) dt+ σLdW̃ (t), (3.6)

where

θ =
µs − r
σS

is the market price of risk and W̃ is the Brownian motion under Q.

Let Z(t) denote the time-t price of the stream of future contributions payable between
time t and T . Then, the price is defined as the summation of discounted future pay-
ments and is given by

Z(t) := EQ

[∑
i:ti≥t

e−r(ti−t)γ(ti)

∣∣∣∣∣Ft
]
. (3.7)

We thus in particular also include the possible contribution exactly at time t.

Proposition 3.1. The time-t price of the claim of future contributions is given by

Z(t) = γL(t)g(t), (3.8)

where g(t) =
∑

i:ti≥t e
(µL−r−θσL)(ti−t) for t ∈ [0, T ] and i = 0, 1, 2..., n..

Proof. By Itô’s formula, the solution of the SDE given in (3.6) is given by

L(ti) = L(t)e(µL−σLθ−σ
2
L/2)(ti−t)+σL(W̃ (ti)−W̃ (t)) (3.9)

at any time ti > t. Substituting (3.9) in (3.7),

Z(t) = EQ

[∑
i:ti≥t

e−r(ti−t)γ(ti)

∣∣∣∣∣Ft
]

= γEQ

[∑
i:ti≥t

e−r(ti−t)L(t)e(µL−σLθ−σ
2
L/2)(ti−t)+σL(W̃ (ti)−W̃ (t))

∣∣∣∣∣Ft
]
.

Since L(t) is Ft-measurable, it follows that
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Z(t) = γL(t)EQ

[∑
i:ti≥t

e(µL−r−σLθ−σ
2
L/2)(ti−t)+σL(W̃ (ti)−W̃ (t))

]
= γL(t)

∑
i:ti≥t

e(µL−r−σLθ−σ
2
L/2)(ti−t)EQ

[
eσL(W̃ (ti)−W̃ (t))

]
.

The last expectation is the moment generating function of N (0, ti − t), thus

EQ
[
eσL(W̃ (ti)−W̃ (t))

]
= e

1
2
σ2
L(ti−t).

Substituting this last relation into definition of Z(t), it holds

Z(t) = γL(t)
∑
i:ti≥t

e(µL−r−σLθ−σ
2
L/2)(ti−t)e

1
2
σ2
L(ti−t)

= γL(t)
∑
i:ti≥t

e(µL−r−σLθ)(ti−t).

Using the notation

g(t) =
∑
i:ti≥t

e(µL−r−σLθ)(ti−t),

it is concluded that

Z(t) = γL(t)g(t);

this proves the proposition.

Hence, by Proposition 3.1, the exact value of the claim Z(t) is known and it can be
hedged using the assets in the market. One can then short-sell this claim at time zero
and collect its value Z(0). This way, instead of waiting for the contributions to come
in, the price can be directly invested into the pension plan. The replicating portfolio is
then neutralized by the incoming future payments and the future payments are be con-
sidered as if they were already a part of the assets in the portfolio. Thus, following this
strategy makes the wealth process independent from the future inflows and introduces
a continuous setting by eliminating the discontinuity coming from the payments.

To obtain the explicit form of the replicating portfolio, first the dynamics of Z(t)
should be examined. By (3.7), the risk-neutral dynamics of Z(t) between disconti-
nuity points ti (i = 0, 1, 2, ..., n) is given as

18



dZ(t)

Z(t)
= rdt+ σLdW̃ (t) (3.10)

whereas under P it satisfies

dZ(t)

Z(t)
= (r + σLθ) dt+ σLdW (t). (3.11)

Again, these dynamics only hold for t ∈ (ti, ti+1). At payment times, on the other
hand, the differential does not exist and the process evolution is given by

Z(ti
+) = Z(ti)− γ(ti),

for i = 0, 1, 2, ..., n. Hence, Z(t) has discontinuous dynamics at times ti.

To prove thatZ is hedgeable, the relevant replicating portfolio should be identified. For
this, a self-financing trading strategy ϕ = (ϕB, ϕS, ϕZ) is considered where ϕB, ϕS
and ϕZ denote the number of units held from the respective asset with ϕZ = −1.
Assuming that ϕ̄ = (ϕB, ϕS) is a hedging strategy for the Z, the following holds

dV ϕ(t) = ϕB(t)dB(t) + ϕS(t)dS(t)− dZ(t)

= (ϕBrB + ϕSSµS − Z (r + σLθ)) dt+ (ϕSSσS − ZσL) dW.

Equating the diffusion terms and the drift terms to zero, the numbers of assets are
obtained as

ϕS(t) =
Z

S

σL
σS

and ϕB(t) =
Z

B

(
1− σL

σS

)
.

Note in particular that due to the form of ϕB(t) the pair ϕ̄ = (ϕB, ϕS) is indeed self-
financing.

By short-selling the replicating portfolio ϕ̄ the beneficiary collects the amount

Z(0) = γL(0)g(0)

at time t = 0 which is the initial value of the pension portfolio. This of course is
significantly higher than just the initial premium of γ(0) = γL(0). However, it can be
indeed argued that the future contributions to the fund might be at risk due to a possible
unemployment of the contributor. One can then at least value and replicate the future
payments that are ensured by the working contract of the contributor. As the future
contributions are now neutralized by the payment inflow to the replicating portfolio,
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the (personal) wealth process of the beneficiary invested into the fund stays continuous
also over the contribution payment times.

3.4 Different Guarantee Types in the classical CPPI Framework

In this section, various types of guarantees/floors are introduced on which the CPPI
strategies are based. They vary from being based on the actual value of the labor
process and updated past guarantees – which are then themselves stochastic processes
– to completely specified guarantees that are based on the initial net present value of
the premium stream.

3.4.1 Deterministic (Net present value) floor

The guarantee in classical CPPI is an initially fixed amount of money Ȳ paid at matu-
rity. As a consequence, by arbitrage considerations, the floor level Y (t) at time t that
is necessary for this guarantee equals

Y (t) = e−r(T−t)Ȳ (3.12)

with Y (T ) = Ȳ . Note further that – again for arbitrage reasons – it should hold

Ȳ ≤ V (0)erT , (3.13)

i.e. Y (0) < V (0). Having fixed the guarantee, one next chooses the investment which
is described by the multiplier of the cushion. For this, the cushion process C(t) is
introduced as the difference between the actual value of the DC fund and the floor, that
is

C(t) = V (t)− Y (t)

as in (2.4). In a CPPI strategy one then always invests a multiple mC(t) (with m ≥ 0,
often m >> 1) into the stock and the remaining money into the bond. Note that the
investor can now vary both the multiplier m and the guarantee level Ȳ . Of course, a
higher guarantee level will typically decrease the mean of the final value. We will get
back to the optimal choice of the multiplier later.

In the current work, a special case of deterministic floor called net present value (NPV)
floor is defined by setting the initial floor value equal to the net present value of the
future contributions. The floor process is assumed to grow at the risk-free rate r. Let
Y (0) denote the net present value of the future contributions at time 0, then Y (0) is

20



simply the price of the replicating portfolio of future contributions satisfying Y (0) ≤
V (0). The guaranteed amount at time T is thus

Ȳ = Y (0)erT (3.14)

whereas at any time t, Ȳ = Y (0)ert holds. The following relation is obtained from
Proposition 3.1,

Y (0) = cγL(0)g(0)

where c is a constant representing the proportion of the initial wealth that will be guar-
anteed. If there are no further contributions to the fund then the choice of a multiplier
m for the cushion process leads to the following result (see [10]):

Proposition 3.2. Given an initial capital of V (0) and a CPPI multiplier m ≥ 0, it
holds

dC(t) = C(t) ((m (µS − r) + r) dt+mσSdW (t)) ,

V (T ) = Ȳ +
(
V (0)− e−rT Ȳ

)
e(r+m(µS−r)− 1

2
m2σ2

S)T+mσSW (T ),

E (V (T )) = Ȳ +
(
V (0)− e−rT Ȳ

)
e(r+m(µS−r))T

for t ∈ [0, T ].

Proof. The portfolio value satisfies the following

dV (t) = e(t)
dS(t)

S(t)
+ (V (t)− e(t)) dB(t)

B(t)
. (3.15)

Then, by using the definition of C, Y and the relation given above, it follows

dC(t) = d (V (t)− Y (t))

= C(t) ((m (µS − r) + r) dt+mσSdW (t)) .

Moreover, the terminal wealth V (T ) is defined as the summation of guarantee at time
T and the excess return earned from investing in the initial cushion in stock market.
Since the initial cushion is given as

C(0) =
(
V (0)− e−rT Ȳ

)
e(r+m(µS−r)− 1

2
m2σ2

S)T+mσSW (T ),

it holds that
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V (T ) = Ȳ +
(
V (0)− e−rT Ȳ

)
e(r+m(µS−r)− 1

2
m2σ2

S)T+mσSW (T ).

Computing the expectation of V (T ) applying the moment generating function defini-
tion of Normal distribution completes the proof.

Wealth dynamics. It is clear that the portfolio value satisfies

dV (t) = e(t)
dS(t)

S(t)
+ (V (t)− e(t)) dB(t)

B(t)
. (3.16)

Using the dynamics of the cushion and the assets, it is found that

dV (t) = dC(t) + dY (t)

= C(t) ((m (µS − r) + r) dt+mσSdW (t)) + rY (t)dt

= (m (µS − r)C(t) + rV (t)) +mC(t)σSdW (t).

Next, the dynamics of the random floor is examined when it is defined based on future
contributions.

3.4.2 Random floor

The second floor introduced has stochastic dynamics and is called random floor. In
this CPPI setting, the aim of the present thesis is to ensure that a fraction of all past
and future contributions will be guaranteed until retirement. More precisely, let γ(ti)
be the guaranteed fraction of the contribution payment at any time ti ∈ [0, T ], i.e.

γ(ti) = cγ(ti) (3.17)

for some real constant 0 < c < 1 and i = 0, 1, 2, ..., n. Then for any time t, the pay-
ments made in the past will be carried over to present time and the future contributions
will be included to the guarantee/floor process after discounting to time t. Denoting
the floor value at time t by Y (t), the floor process is defined as the summation of time-t
values of the contributions γ(ti) for i = 0, 1, 2, ..., n, i.e.

Y (t) :=
∑

i:0≤ti<t

er(t−ti)γ(ti) + EQ

[∑
i:ti≥t

e−r(t−ti)γ(ti)

∣∣∣∣∣Ft
]
. (3.18)

Applying Itô’s formula to Y , the risk neutral dynamics are found as follows

dY (t) = rY (t)dt+ cσLZ(t)dW̃ (t) (3.19)
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with Z(t) as given in (3.7). Under the real-world measure P, Y (t) then satisfies

dY (t) = (rY (t) + cσLθZ(t)) dt+ cσLZ(t)dW (t). (3.20)

Similar to what has been done in Section 3.3, now the aim is to show that this newly
defined floor process is hedgeable (or replicable). Otherwise, the CPPI strategy would
not work because it would not be possible to mimic its behavior using the assets and
therefore, it would be impossible to always evolve above the floor. So, next it is shown
that a replication strategy exists for Y (t) which is given in (3.18). We consider a self-
financing hedging strategy π̄ = (πB, πS) where πB and πS denote the number of units
held from the respective asset. Treating Y as a portfolio and choosing ϕY = −1, it
holds

dV π(t) = πB(t)dB(t) + πS(t)dS(t)− dY (t)

= (πBrB + πSSµS − rY − cσLθZ(t)) dt+ (πSSσS − cσLZ) dW.

Equating the diffusion terms and the drift terms to zero, the replicating portfolio π̄ is
obtained as

πS(t) =
Z(t)

S(t)

cσL
σS

and πB(t) =
1

B(t)

(
Y (t)− Z(t)

cσL
σS

)
.

Wealth dynamics. The portfolio should be allocated in such a way that it is able
to mimic the floor while staying always above it. To achieve this, the asset exposure
should include the fraction coming from the replicating strategy (πS) and the exposure
of CPPI, that is mC(t). The total amount invested in the stock index is therefore given
by

e(t) := mC(t) + ΠS(t)S(t), (3.21)

where the remaining funds are invested in the bond. According to this allocation,
inserting the asset dynamics into (3.16), the CPPI value process is given as

dV (t) =

(
C(t) (m (µS − r) + r) + cZ(t)

σL
σS

(µS − r) + rY (t)

)
dt

+ (mC(t)σS + cZ(t)σL) dW (t) (3.22)

with the initial value V (0) = Z(0).

It is required that the portfolio value process always evolves above the guarantee pro-
cess, i.e.

V (t) ≥ Y (t), ∀t ∈ [0, T ].

Then, with the condition 0 < c < 1, it holds
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γ(0)L(0)g(0) > γL(0)g(0),

that is,
V (0) > Y (0).

Therefore, the cushion value at time zero is positive. Using the definition of the cushion
(2.4), and the dynamics of V (t) and Y (t) as derived above, the SDE of the cushion is
found as follows

dC(t) = C(t) ((m (µS − r) + r) dt+mσSdW (t)) . (3.23)

With this form of the cushion it is particularly obtained:

Proposition 3.3. In case of the random floor Y (t) of the form given in (3.18), following
a conventional CPPI strategy leads to

V (T ) = Y (T ) + (V (0)− Y (0))e(r+m(µS−r)− 1
2
m2σ2

S)T+mσSW (T ), (3.24)

Y (T ) =
∑

i:0≤ti≤T

er(T−ti)γ(ti), (3.25)

Y (0) = γL(0)
∑
i:0≤ti

e(µL−r−θσL)ti , (3.26)

E (Y (T )) = γL(0)
∑

i:0≤ti≤T

erT+(µL−r)ti =: ȲT , (3.27)

E (V (T )) = ȲT + (V (0)− Y (0)) e(r+m(µS−r))T (3.28)

for i = 0, 1, 2, ..., n.

Proof. By definition (3.18), it is clear that

Y (T ) =
∑

i:0≤ti<T

er(T−ti)γ(ti).

Taking the expectation of Y (T ) using the dynamics given in (3.3) and (3.17) yields

E (Y (T )) =
∑

i:0≤ti<T

er(T−ti)E (γ(ti)) , (3.29)

= γL(0)
∑

i:0≤ti≤T

erT+(µL−r)ti . (3.30)

(3.31)

The terminal wealth V (T ) is guarantee at maturity with the excess return earned from
investing in the initial cushion in stock market. Therefore it is found that
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V (T ) = Y (T ) + (V (0)− Y (0))e(r+m(µS−r)− 1
2
m2σ2

S)T+mσSW (T )

Computing the expectation of V (T ) and using the moment generating function of Nor-
mal distribution completes the proof.

Note that the cushion process C has the same dynamics under both floor assumptions.
Therefore, the optimal control problem formulated is valid for both cases which will
be presented in the next section.

3.5 Optimal Control Problem

In this section, the optimal multiplier choice problem is examined by formulating an
optimal control problem and using the methodology given in [38]. For more detailed
information, the general theory of optimal control in finance is given in [45]. The prob-
lem is the optimization of the cushion process over the control variable m. Therefore,
the objective function is not directly related to the form of the floor, so the solution is
valid for both cases given in Section 3.4. As the labor income L(t) does not introduce
any additional randomness, a one-dimensional control problem is solved where C is
taken as the state variable. The utility function u(·) is assumed to be of constant rel-
ative risk aversion type. For the functional J : [0, T ] × R → R, the optimal control
problem is formulated as

J(t, C(t)) = max
m∈A

E [u(C(T ))] , (3.32)

s.t. J(T,C(T )) = u(C(T ))

with A being the set of admissible controls m : [0, T ] → R i.e. progressively mea-
surable square integrable random variables such that C(T ) is almost surely positive.
Hence, the problem is stated as

max
m∈A(0,C0)

(
Jt + C (m (µS − r) + r) JC +

1

2
C2m2σ2

SJCC

)
= 0, (3.33)

where it is denoted that Jt ≡ ∂J/∂t, JC ≡ ∂J/∂C and JCC ≡ ∂2J/∂2C. Differenti-
ating the HJB equation given by (3.33) with respect to m yields

C (µS − r) JC + C2mσ2
SJCC = 0. (3.34)

Using (3.34) the HJB equation is reformulated as
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Jt −
1

2
C2m2σ2

SJCC + CrJC = 0, (3.35)

which holds simultaneously with (3.34). Considering the ansatz

J(t, C) =

{
C1−η

1−η h(t) if η > 0, η 6= 1

log(C)h(t) if η = 1
(3.36)

for the value function, the candidate for the optimal solution is obtained as follows:

m∗ =
µS − r
σ2
Sη

. (3.37)

Here the parameter η > 0 represents the risk aversion level. Inserting the ansatz and
the candidate solution given by (3.37) into (3.35) the ordinary differential equation is
obtained

h′ + ρh = 0 (3.38)

where

ρ =
1

2

(µS − r) 2

σ2
Sη

(1− η) + r (1− η) .

The function h is immediately found as

h(t) = eρ(T−t). (3.39)

As the exponential term of the value function is positive, J is strictly concave. There-
fore, m∗ is a maximizer.
In the next subsection, it is shown that m∗ is also an optimal solution for the problem
(3.32), i.e. the verification theorem is proved.

3.5.1 Verification of the solution

To provide the relation between the solution of the PDE and the optimal control prob-
lem, the Theorem given in [36] is used. Consider a controlled process with an SDE of
the form

dX(t) = µ(t,X(t), u(t))dt+ σ(t,X(t), u(t))dW (t). (3.40)
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The notations for the theorem are as follows: for n, d ∈ N let Q := [t0, t1) × Rn with
0 ≤ t0 < t1 < ∞, Q := [t0, t1] × Rn and U ⊂ Rd. Further, let the coefficients of the
process (3.40) satisfy Lipschitz and growth conditions for some constant T .

Theorem 3.4. Let G ∈ C1,2 (Q) ∩ C
(
Q
)

with |G(t, x)| ≤ K
(

1 + |x|k
)

for some
suitable constants K > 0, k ∈ N, be a solution to the Hamilton-Jacobi-Bellman
equation:

sup
u∈U

(AuG(t, x) + L(t, x, u)) = 0, (t, x) ∈ Q (3.41)

G(t, x) = Ψ(t, x), (t, x) ∈ ∂Q (3.42)

Then,

1. G(t, x) ≤ J(t, x;u) for all (t, x) ∈ Q and u(·) ∈ A(t, x).

2. If for all (t, x) ∈ Q there exists a u∗(·) ∈ A(t, x) with

u∗(s) ∈ arg max
u∈U

(AuG(s,X∗(s)) + L(s,X∗(s), u))

for all s ∈ [t, τ ], where X∗(s) is the controlled process corresponding to u∗(·),
then it is obtained

G(t, x) = V (t, x) = J(t, x;u∗).

In particular, u∗(t) is an optimal control and G(t,x) coincides with the value
function.

Proof. It is clear that our HJB equation has the same form as in Theorem 3.4. There-
fore, to be able to apply the theorem, as a first step it should be proved that the optimal
solution given by (3.37) is admissible. Then, as the second step, the proof of the fol-
lowing inequality should be given

E

(
sup
t∈[0,T ]

|J(t, C)|n
)
<∞ holds for real n ≥ 1. (3.43)

Step 1 : To investigate the admissibility of m∗, the definition from [36] is given next.

Definition 3.1. (Definition 5.15 p. 225, [36]) Let (Ω,F,P) endowed with the filtra-
tion {Ft}t∈[0,T ] be a probability space. A U -valued progressively measurable process
u(t), t ∈ [t0, t1] is an admissible control if for all values x ∈ Rn the stochastic dif-
ferential equation (3.40) with initial condition X(t0) = x possesses a unique solution
{X(t)}t∈[t0,t1] and if it holds

E
(∫ t1

t0

|u(s)|k ds
)
<∞ (3.44)
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and
E
(
‖X(·)‖k

)
<∞ (3.45)

for all k ∈ N.

As m∗ is found to be a constant, it is bounded and inequality (3.44) holds. Moreover,
the solution of our controlled process given in (3.23) is found as

C(t) = C0e

(
m(µS−r)+r−

m2σ2S
2

)
t+mσSW (t)

.

Therefore, uniqueness of the solution is proved as well as the following inequality

E
(
‖C(t)‖k

)
= C2

0e
2

(
m(µS−r)+r+

m2σ2S
2

)
t
<∞. (3.46)

Hence, the control m∗ is admissible.

Step 2 : By (3.46), it holds

E

(
sup
t∈[0,T ]

|J(t, C)|n
)

= E

(
sup
t∈[0,T ]

∣∣∣∣C1−η

1− η
h(t)

∣∣∣∣
)
,

with h(t) given as in (3.39). As C(t) is bounded by (3.46), it is obtained that

E

(
sup
t∈[0,T ]

∣∣∣∣C1−η

1− η
h(t)

∣∣∣∣
)
<∞,

which completes the proof. Therefore, the solution m∗ is the optimal control for our
optimal control problem (3.32).

3.6 Risk Measures and Comparison of Strategies

In this section, gap and cash-lock risks are analyzed for the CPPI strategies considered
under continuous-time trading. Some of these risks mostly arise under discrete-time
trading assumption due to the inability of instant trading. However, they can also occur
in a market with continuous-trading when there is a sudden drop in the market. There-
fore, their occurrence is first discussed in continuous-time trading setting by comput-
ing respective risk measures. After obtaining the risk measures, a numerical example
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is presented and the effectiveness of the CPPI strategies with NPV and random floor
are discussed.

3.6.1 Cash-lock Risk

As described in Section 2.2.2, cash-lock phenomenon occurs when the total wealth gets
locked up invested in the risk-free asset and stays there until the retirement. This means
that at some point during the plan, the cushion becomes zero and does not recover
until the retirement due to zero asset exposure. This is not possible in continuous-
time trading as the portfolio manager will react instantly and prevent the cushion to
approach zero. This is also justified by the continuous dynamics of the cushion which
is given as a geometric Brownian motion (gBM) for both floors as in (3.23).

Definition 3.2. (Cash-lock probability) For the period (t, τ), the cash-lock probability
P CL
t,τ denotes the probability that the proportion of the risky asset at τ is equal to zero

given that it is equal to ζ at t, i.e.

P CL
t,τ := P

(
mC(τ)

V (τ)
= 0

∣∣∣ mC(t)

V (t)
= ζ

)
. (3.47)

Therefore, such a probability P CL
t,τ is zero for continuous-time CPPI with both NPV

and random floors. However, this is only valid for an artificial continuous-time mar-
ket, that is the probability is non-zero in markets where dynamic trading is not possible.
To illustrate the cash-lock phenomenon in a discrete-trading setting that a path is simu-
lated via Monte Carlo simulation where time is discretized according to Euler method.
In this simulation, despite the fact that a very fine grid is used for the timeline, the
inability of instant trading caused a cash-locked position in a decreasing market gen-
erated specifically. Figure 3.1 shows the cash-lock phenomenon which is impossible
in continuous-time, but has a positive probability in a discrete-trading setting which is
encountered in the implementation due to time discretization. Here, η is the risk aver-
sion parameter of the utility function and c is the guarantee rate as defined in (3.17).
One can see from the figure that, once the market goes down the portfolio approaches
to floor very quickly and cushion gets closer to zero before the investor has time to
reallocate the wealth. Therefore, the total wealth gets invested in cash asset/bond and
evolves as the floor until retirement yielding no excess gains. This is an important risk
for settings with discrete trading and it should hedged by designing complicated CPPI
strategies which is able to vary based on the market. This is the second aim of the
present study and it is handled in Chapter 4.
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Figure 3.1: Cash-locked portfolios with different floors

3.6.2 Gap Risk

Another problem associated with dynamic portfolio insurance strategies such as CPPI
is the gap-risk which is described in Section 2.2.2. Gap-risk is the risk of failing to
achieve the guarantee at the retirement with probability one. This shortfall probability
is caused by the incompleteness of the market due to certain imposed restrictions.

Definition 3.3. (Shortfall Probability) The shortfall probability P SF denotes the proba-
bility that the final value of the CPPI strategy is less than the guaranteed amount Y (T ),
i.e.

P SF := P (C(T ) < 0).

Again, with continuous trading, it is impossible for the cushion to be negative at any
time during the investment period. This can also be seen very clearly from the dynam-
ics of the cushion which is given in (3.2) and (3.23) for both floors. Since the cushion
is Geometric Brownian motion, it is non-negative.

30



Since, these are major risks and are present in real financial markets, they are revisited
in Chapter 4 under a discrete trading environment.

3.7 Numerical Results

To illustrate the behavior of CPPI portfolios under different floor assumptions pre-
sented, some numerical examples are given in this section. The set of input parameters
is given in Table 3.1. Except the labor income drift µL, the parameters are selected
arbitrarily as their size have a small effect on the comparison of final wealths. The
drift µL is specifically set at a value higher than the risk-free rate with the purpose of
reflecting realistic income levels. Throughout the section this parameter set is used in
numerical results, unless stated otherwise. All numerical calculations are carried out
via MATLAB.

Table 3.1: Assumed values for parameters under continuous-time trading setting

Interest rate, r 0.05
Stock parameters

Drift, µS 0.12
Volatility, σS 0.2

Labor income parameters
Drift, µL 0.06
Volatility, σL 0.09

Guarantee rate, c 0.8
Risk aversion parameter, η 2
Contribution rate, γ 0.1

Figures 3.2 and 3.3 correspond to the evolution of the optimal portfolios with different
floors under varying guarantee rate, c. We see that the portfolio becomes closer to the
floor as c increases and almost mimics it when c → 1. This is an anticipated situation
as the gains are expected to decrease when a high proportion of the portfolio value
is guaranteed. Moreover, the perfect hedging in the random floor case can be clearly
observed from Figure 3.3.
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Figure 3.2: CPPI with NPV floor for η = 2

Figures 3.4 and 3.5 show the differing behavior of the portfolio value for varying risk
aversion levels. It can be seen from both figures that, for increasing risk aversion the
portfolio demonstrates a more robust behavior with decreasing gains. This is not a
surprising result as the stock exposure and the parameter η are inversely proportional.
Moreover, the main comparison between the strategies with two different floors leads
us to the fact that the NPV floor CPPI strategy promises lower gains as expected.
However, it is important to stress that setting the final guarantee value equal to the net
present value of the future payments is still a better option compared to the case where
the beneficiary decides about the guarantee amount. The reason is that in the NPV
floor CPPI, the randomness in the future labor income is taken into account and the
beneficiary most likely will fail to do so.

Generally, the portfolio value for each case evolves above the floor level emphasizing
the efficiency of both of the approaches.
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Figure 3.3: CPPI with random floor for η = 2
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Figure 3.4: CPPI with NPV floor for c = 0.8
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Figure 3.5: CPPI with random floor for c = 0.8
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Table 3.2: Distributional properties of CPPI portfolio with random and NPV floor
under certain parameter values

Parameter Value Terminal Wealth (NPV) Terminal Wealth (Random)

E(VT ) σ2(VT ) CV (VT ) E(VT ) σ2(VT ) CV (VT )

σS

0.1 1.7299 0.1054 0.1877 4.4465 0.6211 0.1772
0.2 1.7038 0.1047 0.1899 2.1211 0.6074 0.3674
0.4 1.6508 0.0100 0.0606 1.8710 0.2635 0.2744

µS

0.06 1.7033 0.0007 0.0155 1.7599 0.1870 0.2457
0.12 1.7281 0.1212 0.2015 2.1764 0.7004 0.3845
0.24 22.170 3789.5 2.7767 23.389 3840.1 2.6495

σL

0.045 1.8587 0.1083 0.1711 2.0732 0.2841 0.2571
0.09 1.7230 0.1104 0.1928 2.1696 0.6373 0.3680
0.18 1.4764 0.0946 0.2083 2.4353 2.5760 0.6591

µL

0.03 1.4554 0.0711 0.1832 1.8098 0.4270 0.3611
0.06 1.7240 0.1140 0.1958 2.1712 0.6522 0.3720
0.1 2.1470 0.1646 0.1890 2.7045 0.9752 0.3651

η

0.6 3.0874 36.008 1.9436 3.5150 39.658 1.7916
2 1.7096 0.0949 0.1802 2.1373 0.5829 0.3572
6 1.5330 0.0044 0.0433 1.9606 0.2752 0.2676
20 1.4857 0.0003 0.0117 1.9134 0.2261 0.2485

c

0.7 1.8410 0.2573 0.2755 2.2194 0.8544 0.4165
0.8 1.7259 0.1121 0.1940 2.1756 0.6512 0.3709
0.9 1.5867 0.0247 0.0990 2.0589 0.4598 0.3293
0.99 1.4793 0.0002 0.0096 1.9954 0.3492 0.2961

γ
0.05 0.8607 0.0264 0.1888 1.0820 0.1583 0.3677
0.1 1.7088 0.0933 0.1788 2.1357 0.5752 0.3551
0.2 3.4370 0.4169 0.1879 4.3175 2.4601 0.3633

Table 3.2 shows the impacts of changing the value of one parameter while holding
other parameters at the values in Table 3.1 for sensitivity test. A rise in the stock drift
increases the expected terminal wealth for both cases with a substantial rise of the
variance. Also as expected, increasing stock volatility decreases the mean of terminal
wealth. One important point to notice is that, while labor income volatility directly
affects the wealth under random floor assumption, it is almost irrelevant for the NPV
floor case. Again, this is not surprising due the fact that the evolution of random floor
depends on σL as presented in (3.20). Moreover, for increasing values of η i.e. higher
levels of risk aversion, mean and variance decreases for both cases. More specifi-
cally, for η > 2 there is a sharp decrease in wealth mean and variance. This is the
result of holding a very low-risk portfolio due to high risk aversion level. Since invest-
ment in risky asset will be smaller for higher η, a break point between η = 0.6 and
η = 2 may not exist at which the mean drops suddenly. Instead, the mean decreases
steadily but at a faster level between 0.6 < η < 2. This is expected as the portfolio
will heavily consist risk-free asset for high values of η. Another prominent impact
reflected by the table concerns the guaranteed proportion c and the contribution rate γ.
While increasing c decreases the portfolio performance, rising contribution rate η also
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increases wealth. These findings are also supported by coefficient of variation (CV)
results. Overall, random terminal wealth yields higher volatility compared to NPV.
The increase in variation is also observed when the parameter values tend to rise. An
unexpected spread-mean ratio is attained when the σS = 0.2 in case of random ter-
minal wealth which yields the highest volatility. Another remark is for the case when
η < 1 the volatility is recognizably high as the risk appetite increase.
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Figure 3.6: Evolution of the floors when market goes down

In Figure 3.6, floor evolutions are compared when market goes down for different
values of µL. From the figure, it is seen that the random floor crashes through the
NPV floor after the downtrend starts and decreases steadily with the market due to
its mimicking dynamics. The NPV floor, on the other hand, remains unaffected by
market conditions and continues to grow with the interest rate. It should be noted that
even for higher values of labor trend, µL, the random floor fails to recover and ends up
below the deterministic floor. Overall, when both strategies are compared, it is clear
that the CPPI with random floor almost always performs better than the NPV floor
CPPI in terms of higher returns. However, Figure 3.6 shows that both strategies can be
considered as optimal for different investment expectations. While participants who
would like to be in a hedged position should prefer CPPI with NPV floor, those who

37



would like to go with the market should hold CPPI with random floor.
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Figure 3.7: Terminal wealth densities of CPPI porfolios under certain parameter values

Finally, Figure 3.7 sharply illustrates the influence of floor choice. As the NPV floor
exposes the terminal wealth to be accumulated around smaller returns with high fre-
quency and short tail skewed to right. However, random floor extends to larger values
justifying the high volatility in terminal wealth. These findings show that the random
floor CPPI promises higher benefits to the participants with a larger variance in com-
parison to the NPV case. However, recalling that this benefit is protected by the im-
posed floor, the large variance only reflects the probability of having a terminal wealth
equal to the level of floor at retirement time. Since this terminal floor (or wealth, for
this scenario) consists of the guaranteed proportion of the contribution payments, the
worst case scenario does not include any further losses. On the other hand, the NPV
floor CPPI provides a more stable wealth profile with lowest wealth being yielded
around a certain level. This result is due to the deterministic dynamics of the NPV
floor. Since the floor grows at a constant rate, the cushion also displays a less volatile
evolution while still having stochastic dynamics. In the light of these findings, it can
be concluded that conservative participants can be directed to NPV floor towards more
robust returns whereas less risk averse participants should prefer the other strategy. Re-
gardless of the minimal risk aversion differences, it can be concluded that the random
floor is superior to the NPV floor CPPI.
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CHAPTER 4

CPPI in Pension Plans under Discrete-Time Trading

In this chapter, the problem of portfolio insurance for DC funds is handled under
discrete-time trading assumption. The market dynamics are assumed to be continu-
ous with the same assets as given in Section 3.1.

4.1 The market model

Assuming that the market is comprised of a bond and a stock with the same dynam-
ics as given in (3.1) and (3.2), one important distinction that arises for this market is
incompleteness. Since perfect hedging is not possible in a discrete-time trading envi-
ronment, the considered market becomes incomplete.

4.2 Defined-Contribution modelling

Similar to the setting given in Section 3.2, the participant is assumed to contribute a
constant proportion γ of his labor income. The dynamics of this income and the con-
tribution rate as presented in (3.3) and (3.5), respectively. Since in this case the market
is not complete, these future contributions cannot be replicated. This incompleteness
problem will be handled via designing variable floors which are introduced in the next
sections.

4.3 CPPI under Discrete-Time Trading

In this section, a discrete-time version of the classical CPPI is studied in the context of
DC pension plans and describe the general discrete dynamics. The general setting is
similar to that of Balder, Brandl & Mahayni [4], however as a distinction, the problem
is formulated in the presence of consecutive random contribution payments into wealth
at fixed times. Since instant rebalancing is not possible under discrete-time trading, the
major risks of cash-lock and gap risk are present, which are described in Section 3.6.
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Moreover, due to the inflow of regular payments into the portfolio value, the CPPI port-
folio is not self-financing. After giving the discrete CPPI model, more specific CPPI
strategies are introduced and study their path-dependent structures. In this discrete-
time framework, it is assumed that the trading is done immediately after the contribu-
tion payment γ(ti) at time ti ∈ [0, T ] for i = 0, 1, ..., n − 1. Let τ = {t0, t1, ..., tn}
be the set of fixed payment dates. Once the trading is done at time ti, the number of
shares held in the risky asset is constant until the next trading date, that is over the
time period (ti, ti+1]. Instead of considering invested fractions of wealth, which may
change between rebalancing times, the number of assets are taken into account at time
t and denote it by φ = (α, β). Here, α and β are the number of units of the stock index
and the bond, respectively. Next, the discrete-time CPPI strategy is defined, as in [4].

Definition 4.1 ([4]). A strategy φ = (α, β) is called simple discrete-time CPPI if for
t ∈ (tk, tk+1] and k = 0, .., n− 1

αt = max

{
e(tk)

Stk
, 0

}
, βt =

Vtk − αtStk
Btk

. (4.1)

It is important to note that due to the infeasibility of instant rebalancing, the cushion
may become temporarily negative. To prevent the negative asset exposure caused by
the negative cushion, a constraint on the number of risky asset is imposed as given in
(4.1). Let the CPPI strategy held at time tk be represented by φtk = (αtk , βtk), then the
value process of the DC pension portfolio under discrete-time is given by

Vt(φtk) =

{
αtkSt + βtkBt, t ∈ (tk, tk+1)

αtkStk+1
+ βtkBtk+1

+ γ(tk+1), t = tk+1

. (4.2)

The premium payment γ(tk+1) which will be invested into assets an instant later at
time t+k+1, incurs a jump in the portfolio value at tk+1. That is,

V (tk+1)(φtk) = V (t−k+1)(φtk) + γ(tk+1)

= V (t+k+1)(φtk+1
),

where φtk+1
is the portfolio held after the rebalancing at time tk+1, for all k = 0, 1, ..., n−

1. An additional assumption made is the limited borrowing. Imposing the constraint

e(t) = min{mC(t), V (t)} (4.3)

unlimited borrowing is prevented for all strategies to be introduced. Another novelty
of the present study comes from the implementation the CPPI strategy, under various
floor assumptions. Unlike the classical CPPI where the investor selects a certain fixed
floor which he/she does not want the portfolio value fall below, different stochastic
floor processes are studied along with floors with path-dependent structures.
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4.3.1 Various CPPI strategies under Discrete-Time Trading

This section presents floor variants under discrete-time trading and the analysis of cor-
responding CPPI strategies. First, two specific floor processes are introduced; net
present value and random floor. After deriving their dynamics, more specific strate-
gies are studied with path-dependent structures in following sections.

4.3.1.1 CPPI with NPV floor

The first floor introduced is the net present value (NPV) which is first described for
a continuous setting in Section 4.3.1.1. In the CPPI strategy with the NPV floor, the
initial floor is set to be the discounted value of the future contributions instead of fixing
a constant guarantee amount for time T . This initial floor, denoted by Ȳ , is assumed
to grow at the risk-free rate r until maturity date. To understand the dynamics of this
deterministic floor, the expectation of future payments are computed next. Let Z(t)
denote the market price at time t of the stream of future contributions payable between
time t and T . Then have,

Z(t) := EP∗

[∑
i:ti≥t

e−r(ti−t)γ(ti)

∣∣∣∣∣Ft
]

= γL(t)g(t), (4.4)

with g(t) =
∑

i:ti≥t e
(µL−r−θσL)(ti−t). Here P∗ is the equivalent martingale measure

used for arbitrage free pricing (for more information on the notion of arbitrage free
pricing, see [31] and [32]). The dynamics of L(t) under this martingale measure is
given by

dL(t)

L(t)
= (µL − σLθ) dt+ σLdW (t),

where θ = µs−r
σS

is the market price of risk and W is the Brownian motion under P∗. In
particular including the possible contribution exactly at time t in Z(t), the dynamics
of Z(t) is obtained as

dZ(t)

Z(t)
= rdt+ σLdW (t)

whereas under P it satisfies

dZ(t)

Z(t)
= (r + σLθ) dt+ σLdW (t). (4.5)

Next, a remark regarding to the replication of the process Z(t) is given.

41



Remark. At payment times ti, the differential does not exist and the process evolution
is given by

Z(ti) = Z(ti
+) + γ(ti),

for i = 0, 1, 2, ..., n. Z(t) is correlated with the assets in the market, it can be hedged
perfectly between payment times.

By (4.4), NPV floor at time T can be defined as

Y := Y (0)erT ,

and at time t as

Y (t) = Y (0)ert, (4.6)

where Y (0) = ρZ(0). Here, ρ represents a constant guaranteed fraction of the total
amount of contributions. In the numerical analyses, it is assumed that 0.5 < ρ < 1
while testing the effectiveness and practical convenience of the portfolios with different
values of ρ. From (4.2), the dynamics wealth process are given as follows

V (t) =

{
mC(tk)

St
Stk

+ (V (tk)−mC(tk))
Bt
Btk

, C(tk) > 0

V (tk)
Bt
Btk

, C(tk) ≤ 0
(4.7)

for t ∈ (tk, tk+1), and

V (t) =

mC(tk)
Stk+1

Stk
+ (V (tk)−mC(tk))

Btk+1

Btk
+ γ(tk+1), C(tk) > 0

V (tk)
Btk+1

Btk
+ γ(tk+1), C(tk) ≤ 0

(4.8)

for t = tk+1. Using (4.8) and (4.6), the cushion at time t ∈ (tk, tk+1) is derived as
follows:

C(t) =

{
C(tk)

(
m St

Stk
+ (1−m)er(t−tk)

)
, C(tk) > 0

C(tk)e
r(t−tk), C(tk) ≤ 0

(4.9)

with

C(tk+1) = C(t−k+1) + γ(tk+1), (4.10)
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for all k = 0, ..., n − 1. One should note from the dynamics (4.7) - (4.9) that to stay
always above the floor, one has to set m ≤ 1. Otherwise, there is a non-zero proba-
bility of negative cushion in a decreasing financial market. The fact that the cushion
process becomes negative only temporarily is one of the major differences between
our framework and the classical CPPI. With the help of the contribution inflows, the
portfolio has the chance to recover and attain a positive cushion again after a negative
surplus.

4.3.1.2 CPPI with random-growth floor

In this DC pension setting, the randomness that labor income process plays an impor-
tant role in the evolution of portfolio. Since the contribution payments are made into
the portfolio wealth at fixed times, it is in fact logical to increase the floor process also
by the same increments for insurance. Therefore, the second floor that is introduced is
the random-growth floor which does not only grow at the risk-free rate between inter-
payment times, but also makes jumps at the consecutive payment times as the value
process does. For the sake of flexibility in gains, a fraction of each contribution is guar-
anteed, similar to what has been done in the NPV floor case. More precisely, for each
payment γ(ti) made at time ti ∈ [0, T ], cγ(ti) is included in the floor for some real
constant 0 < c < 1. Therefore, jumps occurring in the floor process are also fractions
of the inflows made into wealth.

The present thesis defines the random-growth floor (which we will shortly address
as random floor from now on) to be the summation of the time-value of paid contribu-
tions. The payments are made at fixed trading dates ti ∈ [0, T ] and the accumulated
amount grows at the risk-free rate r between payment times. The guarantee at time t
is then defined as

Y (t) =


k∑
i=0

er(t−ti)cγ(ti), t ∈ (tk, tk+1)

Y (t−k+1) + cγ(tk+1), t = tk+1

. (4.11)

Hence, between payment dates Y (t) has the dynamics

dY (t) = rY (t)dt, Y (0) = γ(0)

and

Y (t) = Y (t−) + γ(t) (4.12)

for t = tk, ∀k = 0, 1, ..., n. By (4.11) and (4.12), Y can be given as
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Y (t) =

{
er(t−tk)Y (tk), t ∈ (tk, tk+1)

Y (t−k+1) + γ(tk+1), t = tk+1

. (4.13)

From (4.2), the wealth process is given as,

V (t) =

{
mC(tk)

St
Stk

+ (V (tk)−mC(tk))
Bt
Btk

, C(tk) > 0

V (tk)
Bt
Btk

, C(tk) ≤ 0
, (4.14)

for t ∈ (tk, tk+1), and

V (t) =

mC(tk)
Stk+1

Stk
+ (V (tk)−mC(tk))

Btk+1

Btk
+ γ(tk+1), C(tk) > 0

V (tk)
Btk+1

Btk
+ γ(tk+1), C(tk) ≤ 0

(4.15)

for t = tk+1.

As the cushion is defined by C(t) = V (t)− Y (t), for all t, it satisfies

C(tk) = Vt−k
(φtk) + γ(tk)− Y (t−k )− cγ(tk)

= C(t−k ) + (1− c)γ(tk), (4.16)

for every k = 0, 1, ..., n. Relation (4.16) implies that for c = 1 the cushion process has
no discontinuity at payment times, i.e.

C(t) = C(t−), ∀t ∈ [0, T ]. (4.17)

This is due to the fact that the floor is increased by the full contribution amount at
each payment time when c = 1. From (4.13), we derive the cushion dynamics for
t ∈ (tk, tk+1) as follows:

C(t) =

{
C(tk)

(
m St

Stk
+ (1−m)er(t−tk)

)
, C(tk) > 0

C(tk)e
r(t−tk), C(tk) ≤ 0

(4.18)

with

C(tk+1) = C(t−k+1) + (1− c)γ(tk+1), (4.19)
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for all k = 0, ..., n− 1. Again from the dynamics (4.14), (4.15) and (4.18) one should
note that it should be m ≤ 1, for the value process to always evolve above the floor.
Otherwise, the cushion may become negative when there is a sudden market drop. The
CPPI strategies introduced so far possess some prominent weaknesses in real markets.
One potential problem from the performance standpoint arises when market climbs.
When risky asset prices rise yielding an increasing portfolio value as well, the floor
might become insignificant threatening the gains. Another risk emerges when the
cushion becomes so small. In this case, the total wealth faces the danger of being
fully invested in the risk-free asset and staying below the floor until maturity. Further-
more, since in practice rebalancements are done at discrete times rather than continu-
ously, there is a risk of cushion becoming negative between two rebalancement dates.
To overcome these problems, some CPPI modifications are suggested by Boulier and
Kanniganti in [19]. These modified strategies introduce some mechanisms which en-
able the floor to vary based on strong market conditions and results in a path-dependent
structure. The current work extends these modified CPPI strategies to DC setting with
growing floor and makes performance comparisons. Next, these path-dependent CPPI
strategies are studied in DC pension plan setting.

4.3.1.3 CPPI strategies with variable floors

This section introduces a new structured CPPI for DC funds. As pension funds are
long-term investments, the phenomena of floor becoming insignificant or being very
close to portfolio value can both occur during the investment period. Therefore, a
variant form of the classical CPPI is needed which is able to prevent these risks and
but still insure the desired guarantee. The basic idea is to combine the ratchet effect and
margin method in one strategy. The dynamics of the floor in the combined strategy is
given as the combination of the equations (4.24) and (4.27) with the constraints (4.29)
and (4.26). Based on the obtained dynamics of various CPPI strategies, a comparison
their performance can be done using relevant risk measures. For all path-dependent
floor cases, the plan participant makes periodical contribution payments during the
time he/she stays in the plan, as described in Section 4.3.

Constrained CPPI. In this strategy, there is a stronger constraint on the exposure
compared to (4.3). The restriction is given as 0 < e(t) < pV (t) for some real constant
p > 0 with the exposure having the following relation

e(t) = min{mC(t), pV (t)} (4.20)

where the floor process is as given in (4.13). Here, the asset units have to be rede-
termined based on the exposure at each time. Therefore, instead of using the uncon-
strained exposure as in (4.1), it is now obtained

αt = max

{
e(tk)

Stk
, 0

}
, βt =

Vtk − αtStk
Btk

(4.21)
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with e(t) as given by (4.20).

Ratchet strategy. The basic idea of the ratchet strategy is to increase the floor when
market rises and floor threatens to become insignificant by adding the excess cush-
ion. With the realistic constraint (4.20) on the exposure, the absolute value of excess
cushion is given by

mC(t)− pV (t)

m
= C(t)− p

m
V (t). (4.22)

This excess cushion is put on the floor when

mC(t) > pV (t), (4.23)

resulting the new floor and exposure,

Y new(t) = Y (t) +

(
mC(t)− pV (t)

m

)
(4.24)

=
(

1− p

m

)
V (t) (4.25)

with the new exposure being the minimum given in (4.20). By increasing the floor and
lowering the risk of a greater loss when market decreases, ratchet strategy increases the
level of protection. However, the cushion might become so small in this case, causing
a cash-lock position. An additional mechanism should be employed for this problem
which is given next.

Margin strategy with ratchet effect. To avoid the problem where the exposure ap-
proaches to zero creating a cash-lock situation, one method is to decrease the floor
when this happens. In the classical CPPI, this can be done by artificially augmenting
the initial floor by some margin amount and adjusting the floor using this margin, as
suggested in [19]. If it is the case that initial exposure is too high, the initial floor is
then set at a higher value and the margin is used later when the floor falls too low.
Thus, if e(0) is too high, the initial floor is augmented by margin M0 as follows:

Y new(0) = Y (0) +M0.

The idea is to adjust the floor downward when exposure hits a predetermined lower
bound e∗(t) where M0 grows at the risk-free rate r. A fraction of the remaining margin
is used every time the exposure hits a fraction of the current lower bound e∗(t). Thus,
if
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e(t) < e∗(t) =
e(t)

ε
(4.26)

the new floor will be

Y new(t) = Y (t)− Mt

ε
(4.27)

with new margin being

M new
t =

(ε− 1)

ε
Mt, (4.28)

and the new exposure being

enew(t) = m(V (t)− Y new(t)). (4.29)

Here, it is a key issue to determine the lower bound e∗(t) for increased efficiency. To
be able to provide an insight on this lower bound choice problem, this thesis analyzes
the effect of ε with a sensitivity analysis and discuss the results in Section 4.5. Another
weakness of the margin strategy suggested in [19] is that; in a strongly declining market
the margin might diminish the floor in time and cause a failure to meet the guaranteed
amount. Apart from the diminishing floor risk, another issue is that the mechanism
can not be directly applied to our framework as our initial exposure can never be high
enough to make the mechanism work. The initial exposure is given by

e(0) = m (V (0)− Y (0))

= m(1− c)γ(0).

Namely, the initial margin suggested for our approach would be so small that it would
fail to decrease the floor low enough to keep the cushion positive. An alternative
approach for us would be to use an independent deterministic process as a margin pro-
cess. However, this approach would also include the risk of declining floor. Taking
these facts into consideration, the margin approach is adjusted in a way that the dimin-
ishing floor problem is solved and the margin is capable of bringing the floor down,
effectively. The mechanism is adopted so that every time condition (4.23) is satis-
fied and the floor is increased with the ratchet effect, the margin is reset to a certain
percentage of the exposure at that time. The new exposure thereby is redefined as

enew(t) = (1− h)pV (t) (4.30)

and the new margin is
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M new(t) = hpV (t) (4.31)

where 0 < h < 1 is the percentage of exposure put in the new margin.

4.4 Risk Measures and Comparison of Strategies

In this section, some risk measures of the considered CPPI strategies are computed
and analyzed. Besides making a comparison of different floor cases, the main re-
sult is a comparison between financial positions taken at the beginning of the pension
plan. With this aim, the portfolio performance is examined when a replicating port-
folio for the future contributions is short sold. In calculation of the risk measures to
be presented, the probability of the sum of log-normal random variables is encoun-
tered. While closed-form expression of a log-normal sum probability density function
is unknown, there exist well-known analytical approximation methods in the literature
[6, 27]. The present work employs the method of Fenton-Wilkinson, approximating
the log-normal sum by a single log-normal random variable, and use moments to deter-
mine the parameters of the new log-normal distribution, as often done in pricing Asian
and basket options. See Appendix A for details of the method. The exact values for
the pre-event probabilities are found and more complicated post-event probabilities ap-
proximated as will be explained in the subsections. After obtaining the risk measures,
a numerical example is presented and the effectiveness of CPPI strategies with NPV
and random floor is discussed.

4.4.1 Cash-lock Risk

The considered pension framework includes consecutive payments into the fund at
fixed times. These inflows which change the portfolio allocation drastically in turn
serves as a recoverer from a possible cash-locked position. Because of the path-
dependent structure of the strategy, the cash-lock probability analysis has to be carried
out for each period, i.e. for inter-payment times. Therefore, local dynamics are exam-
ined first. Next, the definition of local cash-lock probability for the interval (tk, tk+1]
is given.

Definition 4.2. (Local cash-lock probability) For the period (tk, tk+1], the ζ-ξ cash-
lock probability P CLζ,ξ

tk,tk+1
denotes the probability that the proportion of the risky asset at

tk+1 is less than ξ given that it is equal to ζ at tk, i.e.

P
CLζ,ξ
tk,tk+1

:= P

(
mC(tk+1)

V (tk+1)
≤ ξ

∣∣∣ mC(tk)

V (tk)
= ζ

)
, (4.32)

for any k = 0, ..., n− 1.
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Notice that when cushion becomes negative, the fraction of the portfolio value which is
invested in the risky asset also becomes negative. This violates the general continuous-
time definition of a cash-lock probability where ζ usually satisfies 0 ≤ ζ ≤ 1. The
main reason of this violation is the discrete-time trading assumption. For the case ζ >
0 the portfolio includes risky asset, therefore calculation of the probability becomes
complicated. Because of the inflow payments made into the wealth, the cash-lock
probability is considered for two different cases. The first case is when the payment at
time tk+1 has not come in yet and and the second is when it has been paid an instant
ago. Since these incoming payments include an external randomness, the derivation of
cash-lock probability becomes complex for the latter case. The cash-lock probability
in the first case can be considered as an upper bound for the local cash-lock probability.
This upper-bound probability is defined as

P
CLζ,ξ
tk,t

−
k+1

:= P

(
mC(t−k+1)

V (t−k+1)
≤ ξ

∣∣∣ mC(tk)

V (tk)
= ζ

)
. (4.33)

Namely, assuming that the payment at the beginning has already been made and the one
end of the period has not come in yet, the cash-lock probability for inter-payment times
is found. It is clear that for ζ < 0, this upper bound is 1 as CPPI forbid any investment
in risky asset for the specific period. Therefore, the probability (4.33) provides some
insight only for the case ζ > 0. The dynamics of the strategy, as given in (4.1), does
not allow investment in risky asset at time tk+1 if C(tk) < 0. Therefore, for this case,
cash-lock happens if the incoming payment fails to make the cushion positive. For
this, we compute various (upper bound for the) cash-lock probabilities.

4.4.1.1 Cash-lock Risk for NPV floor CPPI

This section analyzes cash-lock risk for NPV floor CPPI.

Proposition 4.1. (Upper bound of local cash-lock probability) For ξ ≥ 0, an upper
bound for ζ-ξ cash-lock probability in NPV floor CPPI is given by

P
CLζ,ξ
tk,t

−
k+1

= Φ

 ln
(

ξ(m−ζ)
mζ(m−ξ) −

1−m
m

)
− (µS − r −

σ2
S

2
)T
n

σS
√
T/n

 (4.34)

for ζ > 0, and

P
CLζ,ξ
tk,t

−
k+1

= 1

for ζ ≤ 0 with k = 0, ..., n − 1. Here, Φ is the cumulative distribution function of
standard normal distribution.
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Proof. First, we find the cash-lock probability for ζ > 0. By (4.9) and (4.8), we have
the following pre-payment dynamics

C(t−k+1) = C(tk)

(
m
S(tk+1)

S(tk)
+ (1−m)er(tk+1−tk)

)
V (t−k+1) = mC(tk)

S(tk+1)

S(tk)
+ (V (tk)−mC(tk)) e

r(tk+1−tk).

Inserting these relations into the definition of upper bound cash-lock probability, as
given in (4.33), leads to following equations:

P
CLζ,ξ
tk,t

−
k+1

= P

 mC(tk)
(
mS(tk+1)

S(tk)
+ (1−m)er(tk+1−tk)

)
mC(tk)

S(tk+1)

S(tk)
+ (V (tk)−mC(tk)) er(tk+1−tk)

≤ ξ
∣∣∣ mC(tk)

V (tk)
= ζ


= P

(
C(tk)(m− ξ)

(
m
S(tk+1)

S(tk)
+ (1−m)er

T
n

)
≤ Y (tk)e

r T
n ξ
∣∣∣ C(tk) =

ζY (tk)

m− ζ

)
= P

(
ζY (tk)

m− ζ
(m− ξ)

(
m
S(tk+1)

S(tk)
+ (1−m)er

T
n

)
≤ Y (tk)e

r T
n ξ

)
= P

(
S(tk+1)

S(tk)
≤ ξer

T
n (m− ζ)

mζ(m− ξ)
− (1−m)er

T
n

m

)
.

Taking logarithm of both sides inside the last probability, it follows that

P
CLζ,ξ
tk,t

−
k+1

= P

(
(µS −

σ2
S

2
)
T

n
+ σS(W (tk+1)−W (tk))

≤ r
T

n
+ ln

(
ξ(m− ζ)

ζ(m− ξ)m
− 1−m

m

))
= P

(
W (tk+1)−W (tk) ≤

1

σS

(
ln

(
ξ(m− ζ)

ζ(m− ξ)m
− 1−m

m

)
−(µS − r −

σ2
S

2
)
T

n

))
.

Since Brownian increments have normal distribution, i.e. W (tk+1)−W (tk) ∼ N (0, T/n),
we have
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P
CLζ,ξ
tk,t

−
k+1

= Φ

(
1

σS
T
n

(
ln

(
ξ(m− ζ)

ζ(m− ξ)m
− 1−m

m

)
− (µS − r −

σ2
S

2
)
T

n

))

which completes the proof for ζ > 0. It is clear that the upper bound for cash-lock
probability is equal to 1 for ζ ≤ 0.

Next proposition gives the local cash-lock probability for NPV floor CPPI.

Proposition 4.2. (Local cash-lock probability) For ξ ≥ 0, the ζ-ξ cash-lock probability
in NPV floor CPPI is given by

P
CLζ,ξ
tk,tk+1

= Φ

 ln
(

Y (tk)m(ξ−ζ)
γ(tk)(m−ξ)(m−ζ)

)
− (µL − r −

σ2
L

2
)T
n

σL
√
T/n

 (4.35)

for ζ ≤ 0, and

P
CLζ,ξ
tk,tk+1

∼= Φ

 ln

(
d(tk)
√
h(a(tk),b(tk))

f2(a(tk),b(tk))

)
√

ln
(
h(a(tk),b(tk))
f2(a(tk),b(tk))

)
 (4.36)

for ζ > 0 where f and g are functions on R2 defined as

f(x, y) := xe
1
2
σ2
S
T
n + ye

1
2
σ2
L
T
n

h(x, y) := x2e2σ
2
S
T
n + y2e2σ

2
L
T
n + 2xye

1
2
(σ2
S+σ

2
L)

T
n

with

a(tk) = Y (tk)ζm
(m− ξ)
m− ζ

e(µS−
σ2S
2
)T
n

b(tk) = γ(tk)(m− ξ)e(µL−
σ2L
2
)T
n

d(tk) = Y (tk)e
r T
n

(
ξ − ζ(m− ξ)(1−m)

m− ζ

)

for k = 0, ..., n−1. Here, Φ is the cumulative distribution function of standard normal
distribution.
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Proof. In the first part of the proof, where we assume ζ > 0, we use the approximation
method of Fenton and Wilkinson (see [27]). From (4.10), the post-payment dynamics
are given by

C(tk+1) = C(tk)

(
m
S(tk+1)

S(tk)
+ (1−m)er(tk+1−tk)

)
+ γ(tk+1)

V (tk+1) = mC(tk)
S(tk+1)

S(tk)
+ (V (tk)−mC(tk)) e

r(tk+1−tk) + γ(tk+1).

Substituting these relations into the definition (4.32), we obtain

P
CLζ,ξ
tk,tk+1

= P

 mC(tk)
(
mS(tk+1)

S(tk)
+ (1−m)er

T
n

)
+ γ(tk+1)

mC(tk)
S(tk+1)

S(tk)
+ (V (tk)−mC(tk)) e

r T
n + γ(tk+1)

≤ ξ
∣∣∣ C(tk) =

ζY (tk)

m− ζ

)
.

The inequality inside the above probability can be rearranged as

C(tk)

(
m(m− ξ)S(tk+1)

S(tk)
+ (m− ξ)(1−m)er

T
n

)
≤ (ξ −m)γ(tk+1) + ξY (tk)e

r T
n .

Including given information C(tk) = ζY (tk)
m−ζ into the inequality yields the following

probability

P
CLζ,ξ
tk,tk+1

= P

(
ζY (tk)

m− ζ

[
m(m− ξ)S(tk+1)

S(tk)
+ (m− ξ)(1−m)er

T
n

]
−ξY (tk)e

r T
n ≤ (ξ −m)γ(tk)e

(µL−
σ2L
2
)T
n eσL(W (tk+1)−W (tk))

)
= P

(
ζm(m− ξ)Y (tk)

m− ζ
e(µS−

σ2S
2
)T
n eσS(W (tk+1)−W (tk))

+(m− ξ)γ(tk)e
(µL−

σ2L
2
)T
n eσL(W (tk+1)−W (tk))

≤ Y (tk)e
r T
n

(
ξ − (1−m)(m− ξ)ζ

m− ζ

))

Here, denoting the random variables in the probability as x1 = e(µS−
σ2S
2
)T
n and x2 =

e(µL−
σ2L
2
)T
n , it is clear that x1 ∼ LN (0, σ2

S
T
n

) and x2 ∼ LN (0, σ2
L
T
n

), i.e. x1 and x2
have lognormal distribution. Making the notations
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a(tk) = Y (tk)ζm
(m− ξ)
m− ζ

e(µS−
σ2S
2
)T
n

b(tk) = γ(tk)(m− ξ)e(µL−
σ2L
2
)T
n

d(tk) = Y (tk)e
r T
n

(
ξ − ζ(m− ξ)(1−m)

m− ζ

)
,

the searched probability takes the form

P (a(tk)x1 + b(tk)x2 ≤ d(tk)).

Inside the probability, is summation of two lognormal random variables. Since this
sum does not have explicit distribution, to calculate this probability is approximated
via using Fenton-Wilkinson method, which is described in Appendix A. Letting X̄ =
a(tk)x1 + b(tk)x2, by FW method, it holds that

X̄ = eX with X ∼ N (µX , σ
2
X).

Therefore, it also holds X̄ ∼ LN (µX , σ
2
X) Using the set of equations given by A.4,

the mean and variance of the approximated distribution are obtained as

µ2
X = ln

(
(ae

1
2
σ2
S
T
n + be

1
2
σ2
L
T
n )2

(a2e2σ
2
S
T
n + b2e2σ

2
L
T
n + 2abe

1
2
(σ2
S+σ

2
L)

T
n )2

)

σ2
X = ln

(
a2e2σ

2
S
T
n + b2e2σ

2
L
T
n + 2abe

1
2
(σ2
S+σ

2
L)

T
n

(ae
1
2
σ2
S
T
n + be

1
2
σ2
L
T
n )2

)
.

The objective probability is then approximated as follows

P (a(tk)x1 + b(tk)x2 ≤ d(tk)) ∼= P
(
X̄ ≤ d(tk)

)
= P

(
eX ≤ d(tk)

)
= P (X ≤ ln (d(tk)))

= P

(
X − µX
σX

≤ ln (d(tk))− µX
σX

)
= Φ

(
ln (d(tk))− µX

σX

)
,

where N is the cumulative distribution function of standard normal distribution. By
imposing the notation
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f(x, y) := xe
1
2
σ2
S
T
n + ye

1
2
σ2
L
T
n

h(x, y) := x2e2σ
2
S
T
n + y2e2σ

2
L
T
n + 2xye

1
2
(σ2
S+σ

2
L)

T
n ,

it is found that

P (a(tk)x1 + b(tk)x2 ≤ d(tk)) ∼= Φ

 ln

(
d(tk)
√
h(a(tk),b(tk))

f2(a(tk),b(tk))

)
√
ln
(
h(a(tk),b(tk))
f2(a(tk),b(tk))

)


which concludes the first part of the proof.
Assuming ζ ≤ 0, the probability is given as

P
CLζ,ξ
tk,tk+1

= P

(
mC(tk)e

r T
n + γ(tk+1)

V (tk)e
r T
n + γ(tk+1)

≤ ξ
∣∣∣ C(tk) =

ζY (tk)

m− ζ

)

= P

(
(C(tk)(m− ξ)− ξY (tk)) e

r T
n ≤ (ξ −m)γ(tk+1)

∣∣∣ C(tk) =
ζY (tk)

m− ζ

)
= P

(
(m− ξ)γL(tk)e

(µL−
σ2L
2
)T
n
+σL(W (tk+1)−W (tk)) ≤

(
ξ − ζ(m− ξ)

m− ζ

)
Y (tk)e

r T
n

)

= P

(µL −
σ2
L

2
)
T

n
+ σL(W (tk+1)−W (tk)) ≤ ln


(
ξ − ζ(m−ξ)

m−ζ

)
Y (tk)e

r T
n

(m− ξ)γ(tk)


= P

W (tk+1)−W (tk) ≤
ln
(

m(ξ−ζ)Y (tk)
(m−ζ)(m−ξ)γ(tk)

− (µL − r −
σ2
L

2
)T
n

)
σL


= Φ

 ln
(

m(ξ−ζ)Y (tk)
(m−ζ)(m−ξ)γ(tk)

− (µL − r −
σ2
L

2
)T
n

)
σL

√
T
n

 ,

which completes the second part of the proof.

Notice that for the case ζ > 0, both the cushion and the portfolio value include the
risky asset return, as is given by the Equations (4.7), (4.8) and (4.9). Since the cash-
lock probability does not have an explicit solution for this case due to existence of
multiple randomnesses, we derive the upper bound probability which is given in the
following proposition.
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4.4.1.2 Cash-lock Risk for random floor CPPI

In the next propositions cash-lock and upper bound probabilities are given for the dif-
ferent cases of ζ in random floor CPPI.

Proposition 4.3. (Upper bound of local cash-lock probability) For ξ ≥ 0, an upper
bound for ζ-ξ cash-lock probability in random floor CPPI is given by

P
CLζ,ξ
tk,t

−
k+1

= Φ

 ln
(

ξ(m−ζ)
mζ(m−ξ) −

1−m
m

)
− (µS − r −

σ2
S

2
)T
n

σS
√
T/n

 (4.37)

for ζ > 0, and
P

CLζ,ξ
tk,t

−
k+1

= 1

for ζ ≤ 0 with k = 0, ..., n − 1. Here, Φ is the cumulative distribution function of
standard normal distribution.

Proof. First, we find the cash-lock probability for ζ > 0. By 4.15 and 4.16, we have
the following pre-payment dynamics

C(t−k+1) = C(tk)

(
m
S(tk+1)

S(tk)
+ (1−m)er(tk+1−tk)

)
V (t−k+1) = mC(tk)

S(tk+1)

S(tk)
+ (V (tk)−mC(tk)) e

r(tk+1−tk).

Substituting these relations into the definition of upper bound cash-lock probability, as
given in 4.33, leads to following.

P
CLζ,ξ
tk,t

−
k+1

= P

 mC(tk)
(
mS(tk+1)

S(tk)
+ (1−m)er(tk+1−tk)

)
mC(tk)

S(tk+1)

S(tk)
+ (V (tk)−mC(tk)) er(tk+1−tk)

≤ ξ
∣∣∣ mC(tk)

V (tk)
= ζ


= P

(
C(tk)(m− ξ)

(
m
S(tk+1)

S(tk)
+ (1−m)er

T
n

)
≤ Y (tk)e

r T
n ξ
∣∣∣ C(tk) =

ζY (tk)

m− ζ

)
= P

(
ζY (tk)

m− ζ
(m− ξ)

(
m
S(tk+1)

S(tk)
+ (1−m)er

T
n

)
≤ Y (tk)e

r T
n ξ

)
= P

(
S(tk+1)

S(tk)
≤ ξer

T
n (m− ζ)

mζ(m− ξ)
− (1−m)er

T
n

m

)
.
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Taking logarithm of both sides inside the last probability, it follows that

P
CLζ,ξ
tk,t

−
k+1

= P

(
(µS −

σ2
S

2
)
T

n
+ σS(W (tk+1)−W (tk))

≤ r
T

n
+ ln

(
ξ(m− ζ)

ζ(m− ξ)m
− 1−m

m

))
= P

(
W (tk+1)−W (tk) ≤

1

σS

(
ln

(
ξ(m− ζ)

ζ(m− ξ)m
− 1−m

m

)
−

(µS − r −
σ2
S

2
)
T

n

))
.

Since Brownian increments have normal distribution, i.e. W (tk+1)−W (tk) ∼ N (0, T/n),
we have

P
CLζ,ξ
tk,t

−
k+1

= Φ

(
1

σS
T
n

(
ln

(
ξ(m− ζ)

ζ(m− ξ)m
− 1−m

m

)
− (µS − r −

σ2
S

2
)
T

n

))

which completes the proof for ζ > 0. It is clear that the upper bound for cash-lock
probability is equal to 1 for ζ ≤ 0.

Proposition 4.4. (Local cash-lock probability) For ξ ≥ 0, the ζ-ξ cash-lock probability
in random floor CPPI is given by

P
CLζ,ξ
tk,tk+1

= Φ

 ln
(

Y (tk)m(ξ−ζ)
γ(tk)(m−ζ)(m(1−c)−ξ)

)
− (µL − r −

σ2
L

2
)T
n

σL
√
T/n

 (4.38)

for ζ ≤ 0, and

P
CLζ,ξ
tk,tk+1

∼= Φ

 ln

(
d(tk)
√
h(a(tk),b(tk))

f2(a(tk),b(tk))

)
√

ln
(
h(a(tk),b(tk))

f2(a(tk),b(tk))

)
 (4.39)

for ζ > 0 with b(tk) = (1− c)b(tk) and k = 0, ..., n− 1. Here, the functions f , g and
b(tk) are the same as in Proposition 4.2, and Φ is the cumulative distribution function
of standard normal distribution.

Proof. First part of the proof is for ζ > 0. From 4.19, the post-payment dynamics are
given by
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C(tk+1) = C(tk)

(
m
S(tk+1)

S(tk)
+ (1−m)er(tk+1−tk)

)
+ (1− c)γ(tk+1)

V (tk+1) = mC(tk)
S(tk+1)

S(tk)
+ (V (tk)−mC(tk)) e

r(tk+1−tk) + γ(tk+1).

Substituting these relations into the definition 4.32, we obtain

P
CLζ,ξ
tk,tk+1

= P

mC(tk)
(
mS(tk+1)

S(tk)
+ (1−m)er

T
n

)
+ (1− c)γ(tk+1)

mC(tk)
S(tk+1)

S(tk)
+ (V (tk)−mC(tk)) e

r T
n + γ(tk+1)

≤ ξ
∣∣∣ C(tk) =

ζY (tk)

m− ζ

)
.

The inequality inside the above probability can be rearranged as

C(tk)

(
m(m− ξ)S(tk+1)

S(tk)
+ (m− ξ)(1−m)er

T
n

)
≤ (ξ −m(1− c))γ(tk+1) + ξY (tk)e

r T
n .

Including given information C(tk) = ζY (tk)
m−ζ into the inequality yields the following

probability

P
CLζ,ξ
tk,tk+1

= P

(
ζY (tk)

m− ζ

[
m(m− ξ)S(tk+1)

S(tk)
+ (m− ξ)(1−m)er

T
n

]
−ξY (tk)e

r T
n ≤ (ξ −m(1− c))γ(tk)e

(µL−
σ2L
2
)T
n eσL(W (tk+1)−W (tk))

)
= P

(
ζm(m− ξ)Y (tk)

m− ζ
e(µS−

σ2S
2
)T
n eσS(W (tk+1)−W (tk))

+(m(1− c)− ξ)γ(tk)e
(µL−

σ2L
2
)T
n eσL(W (tk+1)−W (tk))

≤ Y (tk)e
r T
n

(
ξ − (1−m)(m− ξ)ζ

m− ζ

))

Here, denoting the random variables in the probability as x1 = e(µS−
σ2S
2
)T
n and x2 =

e(µL−
σ2L
2
)T
n , it is clear that x1 ∼ LN (0, σ2

S
T
n

) and x2 ∼ LN (0, σ2
L
T
n

), i.e. x1 and x2
have lognormal distribution. Making the notations
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b(tk) = (1− c)b(tk)

where a(tk) and b(tk) are as given in Proposition 4.2. Then the objective probability is
rewritten as

P (a(tk)x1 + b(tk)x2 ≤ d(tk)).

Letting X̄ = a(tk)x1 + b(tk)x2, by FW method, it holds that

X̄ = eX with X ∼ N (µX , σ
2
X).

Therefore, it also holds X̄ ∼ LN (µX , σ
2
X) Using the set of equations given by (A.4),

the mean and variance of the approximated distribution are obtained as
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)
.

In a similar way to proof of Proposition 4.2 The objective probability is then approxi-
mated as follows

P
(
a(tk)x1 + b(tk)x2 ≤ d(tk)

) ∼= Φ

(
ln (d(tk))− µX

σX

)
.

By imposing the notations f(x, y) and h(x, y) given as in Proposition 4.2, it is found
that

P
(
a(tk)x1 + b(tk)x2 ≤ d(tk)

) ∼= Φ

 ln

(
d(tk)
√
h(a(tk),b(tk))

f2(a(tk),b(tk))

)
√

ln
(
h(a(tk),b(tk))

f2(a(tk),b(tk))

)


which concludes the first part of the proof. Assuming ζ ≤ 0, the probability is given
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as

P
CLζ,ξ
tk,tk+1

= P

(
mC(tk)e

r T
n + (1− c)γ(tk+1)

V (tk)e
r T
n + γ(tk+1)

≤ ξ
∣∣∣ C(tk) =

ζY (tk)

m− ζ

)

= P

(
(C(tk)(m− ξ)− ξY (tk)) e

r T
n ≤ (ξ −m(1− c))γ(tk+1)

∣∣∣ C(tk) =
ζY (tk)

m− ζ

)
= P

(
(m(1− c)− ξ)γL(tk)e

(µL−
σ2L
2
)T
n
+σL(W (tk+1)−W (tk))

≤
(
ξ − ζ(m− ξ)

m− ζ

)
Y (tk)e

r T
n

)

= P

(µL −
σ2
L

2
)
T

n
+ σL(W (tk+1)−W (tk)) ≤ ln


(
ξ − ζ(m−ξ)

m−ζ

)
Y (tk)e

r T
n

(m(1− c)− ξ)γ(tk)


= P

W (tk+1)−W (tk) ≤
ln
(

m(ξ−ζ)Y (tk)
(m−ζ)(m(1−c)−ξ)γ(tk)

− (µL − r −
σ2
L

2
)T
n

)
σL


= Φ

 ln
(

m(ξ−ζ)Y (tk)
(m−ζ)(m(1−c)−ξ)γ(tk)

− (µL − r −
σ2
L

2
)T
n

)
σL

√
T
n

 ,

which completes the second part of the proof.

Notice that for the case ζ > 0, both the cushion and the portfolio value include the risky
asset return, as is given by the Equations (4.7), (4.8) and (4.9). Since the cash-lock
probability does not have an explicit solution for this case due to existence of multiple
randomnesses, the upper bound probability is derived in the following proposition.

4.4.2 Gap Risk

This section analyzes the gap risk. To determine the effectiveness of each CPPI strat-
egy discussed above, this thesis studies risk measures shortfall probability and ex-
pected shortfall alongside expected terminal wealth and its standard deviation. Basi-
cally, gap risk is the probability of a fall in the portfolio value so sharp that it falls
below the floor between two re-balancing dates. In worst possible scenario, the CPPI
portfolio falls below the floor before manager could re-balance and capital protection
fails. The higher the value of multiplier m, the higher would be the gap risk. The value
1/m is often referred to as the gap size which refers to the maximum loss that could be
sustained between two re-balancing dates before the portfolio value crashes through
the floor.
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4.4.2.1 Gap risk for NPV floor CPPI

The shortfall probability is the probability of the final wealth being less than the guar-
anteed amount.

Definition 4.3. (Shortfall Probability) The shortfall probability P SF denotes the proba-
bility that the final value of the CPPI strategy is less than the guaranteed amount Y (T ),
i.e.

P SF := P (C(T ) < 0).

The local shortfall probability P LSF is the probability that the cushion is negative after
one time step, given the cushion is non-negative before, that is

P LSF := P (C(tk+1) < 0
∣∣∣ C(tk) > 0).

It is important to note that by local shortfall probability for period (tk, tk+1), we de-
scribe the probability of cushion becoming negative between times tk and tk+1. Thus,
the case where cushion becomes negative after time tk and recovers back before time
tk+1 is excluded as this case does not affect the cushion dynamics that will prevail
for the following period. Moreover, we carry out the analysis for two different time
instants; at time tk+1 when the contribution payment has been made and at an instant
before time tk+1 where the payment has not come in yet. Denoting the latter probability
as

P LSF := P (C(t−k+1) < 0
∣∣∣ C(tk) > 0),

the following proposition is given.

Proposition 4.5. (Local shortfall probability) The local shortfall probability at time
t−k+1 in NPV floor CPPI is given by

P LSF

tk,t
−
k+1

= Φ (d) (4.40)

where d =
ln(m−1

m )−(µS−r−
σ2S
2
)T
n

σS
√
T/n

.

At time tk+1, that is, after the payment has been made, the approximate probability is
given as
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P LSF
tk,tk+1

∼= Φ

 ln

(
er
T
n (m−1

m )
√
h(ã(tk),̃b(tk))

f2(ã(tk),̃b(tk))

)
√

ln
(
h(ã(tk),̃b(tk))

f2(ã(tk),̃b(tk))

)
 , (4.41)

with ã(tk) = e(µS−
σ2S
2
)T
n and b̃(tk) = e(µL−

σ2L
2
)T
n

γ(tk)
mC(tk)

for k = 0, ..., n − 1. Here the
functions f , g and b(tk) are the same as in Proposition 4.2, and Φ is the cumulative
distribution function of standard normal distribution.

Proof. In the first part of the proof, probability at time t−k+1 is calculated (that is before
the payment comes in).

P LSF

tk,t
−
k+1

= P (C(t−k+1) < 0
∣∣∣ C(tk) > 0)

= P

(
C(tk)

(
m
S(tk+1)

S(tk)
+ (1−m)er(tk+1−tk)

))
= P

(
S(tk+1)

S(tk)
<
m− 1

m
er

T
n

)
= P

(
e(µS−r−σ

2
S/2)Tn+σS(W (tk+1−W (tk)) <

m− 1

m

)
= P

(
W (T/n) <

1

σS

(
ln

(
m− 1

m

)
−
(
µS − r − σ2

S/2
)))

where W (T/n) ∼ N (0, T/n). Therefore the probability is obtained as

P LSF

tk,t
−
k+1

= P

(
W (T/n)√

T/n
<

1

σS
√
T/n

(
ln

(
m− 1

m

)
−
(
µS − r − σ2

S/2
)))

= Φ

(
1

σS
√
T/n

(
ln

(
m− 1

m

)
−
(
µS − r − σ2

S/2
)))

.

For the second part of the proof, probability at time tk+1, i.e. after-payment probability
will be obtained. Using the cushion dynamics at payment date, the probability is given
as
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P LSF
tk,tk+1

= P

(
C(tk)

(
m
S(tk+1)

S(tk)
+ (1−m)er(tk+1−tk) + γ(tk+1)

)
< 0

∣∣∣ C(tk) > 0

)
= P

(
S(tk+1)

S(tk)
+
γ(tk+1)

mC(tk)
<
m− 1

m
er

T
n

∣∣∣ C(tk) > 0

)
= P

(
e(µS−σ

2
S/2)Tn eσS(W (tk+1)−W (tk)) + e(

µL−σ2
L/2)Tn+ln

(
γ(tk)

mC(tk)

)

eσL(W (tk+1)−W (tk)) <
m− 1

m
er

T
n

)
.

With the notation ã(tk) = e(µS−
σ2S
2
)T
n and b̃(tk) = e(µL−

σ2L
2
)T
n

γ(tk)
mC(tk)

, and assuming
random variables x1 ∼ N (0, σ2

S
T
n

) and x2 ∼ N (0, σ2
L
T
n

), the probability is represented
as

P

(
ã(tk)e

x1 + b̃(tk)e
x2 <

m− 1

m
er

T
n

)
.

Approximating the summation inside the probability with another lognormal random
variable X̄ based on Fenton-Wilkinson method, it holds that X̄ = eX with X ∼
N (µX , σ

2
X). Then by FW method, the distributional properties are found as

µX = ln

 f 2(ã(tk), b̃(tk))√
h(ã(tk), b̃(tk))


σ2
X = ln

(
h(ã(tk), b̃(tk))

f 2(ã(tk), b̃(tk))

)
.

where f(x, y) and h(x, y) are as defined in Proposition 4.2. The probability is then
calculated as follows

P

(
ã(tk)e

x1 + b̃(tk)e
x2 <

m− 1

m
er

T
n

)
∼= Φ

(
ln(m−1

m
)er

T
n − µX

σ2
X

)

= Φ

 ln

(
er
T
n (m−1

m )
√
h(ã(tk),̃b(tk))

f2(ã(tk),̃b(tk))

)
√

ln
(
h(ã(tk),̃b(tk))

f2(ã(tk),̃b(tk))

)
 .

This completes the proof.
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Proposition 4.6. The shortfall probability is given as

P SF = 1−
n−1∏
k=0

(
1− P LSF

tk,tk+1

)
(4.42)

for k = 0, ..., n− 1.

Proof. The proof follows from the definitions of shortfall and local shortfall probabil-
ities.

The expected shortfall, on the other hand, measures the amount that is lost if a shortfall
occurs.
Definition 4.4. (Expected Shortfall) The expected shortfall (ESF) is the amount which
is lost if a shortfall occurs, i.e.

ESF := E
(
−C(T )

∣∣∣ C(T ) < 0
)
.

Considering the path-dependent structure of the proposed strategies, localized version
of ESF is defined and denoted by ESFL.
Definition 4.5. (Local Expected Shortfall) The local expected shortfall at time t−k+1 is
given as

ESFL
t−k+1

= E
(
−C(t−k+1)

∣∣∣ C(t−k+1) < 0
)
. (4.43)

Next, ESFL for NPV floor CPPI is given for the period (tk, tk+1).
Proposition 4.7. (Local Expected shortfall) The local expected shortfall at time t−k+1

in NPV floor CPPI is given by

ESFL
t−k+1

=


−C(tk)F1

P LSF

tk,t
−
k+1

, C(tk) > 0

−C(tk)e
r T
n , C(tk) ≤ 0

(4.44)

At time tk+1, that is, taking the end of period payment into account, we find the ap-
proximate ESFL is as follows

ESFL
tk+1

∼=


−C(tk)F2 − eµL

T
n Φ
(
d̃− σL

√
T
n

)
P LSF
tk,tk+1

, C(tk) > 0

−C(tk)e
r T
n −

γ(tk)e
µL

T
n Φ
(
d̄− σL

√
T
n

)
Φ(d̄)

, C(tk) ≤ 0

(4.45)

63



where

F1 = meµS
T
n Φ

(
d− σS

√
T

n

)
+ (1−m)er

T
nP LSF

tk,t
−
k+1

F2 = meµS
T
n Φ

(
d̃− σS

√
T

n

)
+ (1−m)er

T
nP LSF

tk,tk+1

with

d̄ =
ln
(
−C(tk)

γ(tk)

)
−
(
µL − r −

σ2
L

2

)
T
n

σL

√
T
n

d̃ =

ln

(
er
T
n (m−1

m )
√
h(ã,̃b)

f2(ã,̃b)

)
√

ln
(
h(ã,̃b)

f2(ã,̃b)

) ,

and d is given as in Proposition 4.5 for k = 0, 1, .., n − 1. Here, Φ is the cumulative
distribution function of standard normal distribution.

Proof. The proof will be done in four steps. First, the following event is defined to be
used in the further steps:

Ak :=

{
S(tk)

S(tk−1)
≥
(
m− 1

m

)
er

T
n

}
.

It is clear that Ak is the event of shortfall probability during the period (tk−1, tk) being
zero and the complement event is defined as

Ack :=

{
S(tk)

S(tk−1)
<

(
m− 1

m

)
er

T
n

}
.

In the first step, pre-payment ESF will be calculated for C(tk) > 0. By definition of
ESF, it holds
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ESFL
t−k+1

= E
(
−C(t−k+1)

∣∣∣ C(t−k+1) < 0
)

=
E
(
−C(t−k+1)1Ack+1

)
P (Ak+1c)

= −C(t−k )
E
(

(mS(tk+1)

S(tk)
+ (1−m)er(tk+1−tk))1Ack+1

)
P (Ak+1c)

Denote the expectation in the numerator as F1 and compute it as follows:

F1 = E
((

m
S(tk+1)

S(tk)
+ (1−m)er(tk+1−tk)

)
1Ack+1

)
= mE

(
S(tk+1)

S(tk)
1Ack+1

)
+ (1−m)er

T
nE
(
1Ack+1

)
= me(µS−σ

2
S/2)TnE

(
eσS(W (tk+1)−W (tk))

)
+ (1−m)er

T
nP LSF

tk,tk+1

The last equation is obtained by the relation

P LSF
tk,tk+1

= E
(
1Ack+1

)
which is clear once the definition of the event Ak+1 is considered. Since it holds that
W (tk+1)−W (tk) ∼ N (0, T/n), it can be written that W (tk+1)−W (tk) =

√
T/nZ

for Z ∼ N (0, 1).
Then the expectation in the last equation satisfies,

E
(
eσS
√
T/nZ

1Ack+1

)
=

∫
1Ac

k+1

eσSx
√
T/n 1

2π
e−

x2

2

=

∫ d

−∞
eσSx
√
T/n 1

2π
e−

x2

2

where d =
ln(m−1

m )−(µS−r−
σ2S
2
)T
n

σS
√
T/n

. Computing the integral, the following is obtained

E
(
eσS
√
T/nZ

1Ack+1

)
= e

1
2
σST/nΦ(d− σS

√
T/n).

Substituting this relation in F1, the expected shortfall is found as

65



ESFL
t−k+1

=
−C(tk)F1

P LSF
tk,tk+1

where

F1 = meµs
T
n Φ(d− σS

√
T/n) + (1−m)er

T
nP LSF

tk,tk+1
.

In the second part of the proof it is assumed that C(tk) ≤ 0. The computation of ESF
for case is much simpler since the cushion C(tk) is only invested in risk-free asset after
time tk. Therefore, it holds that

ESFL
t−k+1

= E
(
−C(tk)e

r T
n

∣∣∣ C(t−k+1) < 0
)

= E
(
−C(tk)e

r T
n

)
= −C(tk)e

r T
n .

In the next parts, post-payment ESFs will be calculated for cases of C(tk). For this,
again new notation is introduced. First, the following events are defined

Bk :=

{
e(µS−

σ2S
2
)T
n
+σS(W (tk+1)−W (tk)) +

γ(tk)

mC(tk)
e(µL−

σ2L
2
)T
n
+σL(W (tk+1)−W (tk))

<
(m− 1)er

T
n

m

}

Assuming C(tk) > 0, the ESF is computed as

ESFL
tk+1

=
E (−C(tk+1)1Bk)

P (Bk)
.

The expectation in the numerator is equal to

E (−C(tk+1)1Bk) = E
(
−
(
C(tk)

(
S(tk+1)

S(tk)
+ (1−m)er

T
n

)
+ γ(tk+1)

)
1Bk

)
= −C(tk)

(
mE

(
S(tk+1)

S(tk)
1Bk

)
+ (1−m)er

T
nP (Bk)

)
− E (γ(tk+1)1Bk) .
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Here, by definition

P LSF
tk,tk+1

= E (1Bk) .

To compute the expectations in ESFL
tk+1

, we again approximate the sum of lognormal
random variables by FW method and obtain

E (γ(tk+1)1Bk) = eµL
T
n Φ(d̃− σS

√
T/n)

where

d̃ =

ln

(
er
T
n (m−1

m )
√
h(ã,̃b)

f2(ã,̃b)

)
√
ln
(
h(ã,̃b)

f2(ã,̃b)

) .

Then, by further computations similar the first part of the proof, it is obtained that

E
(
S(tk+1)

S(tk)
1Bk

)
= eµS

T
n Φ(d̃− σS

√
T/n), (4.46)

and ESF is found as

ESFL
tk+1

=
−C(tk)F2 − eµL

T
n Φ
(
d̃− σL

√
T
n

)
P LSF
tk,tk+1

where

F2 = meµS
T
n Φ

(
d̃− σS

√
T

n

)
+ (1−m)er

T
nP LSF

tk,tk+1
.

Finally, post-payment EFS for the case C(tk) ≤ 0 is found as

ESFL
tk+1

=
E
((
−C(tk)e

r T
n − γ(tk+1)

)
1Bk

)
P (Bk)

.

Similarly, the expectation is obtained follows by computing the integral and ESF is
calculated as

67



ESFL
tk+1

= −C(tk)e
r T
n −

γ(tk)e
µL

T
n Φ
(
d̄− σL

√
T
n

)
Φ(d̄)

where

d̄ =
ln
(
−C(tk)

γ(tk)

)
−
(
µL − r −

σ2
L

2

)
T
n

σL

√
T
n

.

4.4.2.2 Gap Risk for Random floor CPPI

Note that, as the next payment is not included in the calculations, the local shortfall
probability at time t−k+1 for random floor case is the same as in NPV floor case.

Proposition 4.8. (Local shortfall probability) The local shortfall probability at time
t−k+1 in random floor CPPI is the same as in NPV case

P
LSF

t−k ,tk+1
= Φ

(
ln
(
m−1
m

)
− (µS − r −

σ2
S

2
)T
n

σS
√
T/n

)
. (4.47)

At time tk+1, that is, after the payment has been made, the approximate probability is
given as

P
LSF

tk,tk+1

∼= Φ

 ln

(
er
T
n (m−1

m )
√
h(ã(tk),b̂(tk))

f2(ã(tk),b̂(tk))

)
√

ln
(
h(ã(tk),b̂(tk))

f2(ã(tk),b̂(tk))

)
 , (4.48)

with b̂(tk) = (1−c)̃b(tk). Here the functions f , g and b(tk) are the same as in Proposi-
tion 4.2, and Φ is the cumulative distribution function of standard normal distribution..

Proof. The first part of the proof can be done the same way as in Proposition 4.5. For
the after payment probability P

LSF

tk,tk+1
, it holds
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P
LSF

tk,tk+1
= P

(
C(tk)

(
m
S(tk+1)

S(tk)
+ (1−m)er(tk+1−tk) + (1− c)γ(tk+1)

)
< 0

∣∣∣ C(tk) > 0

)
= P

(
S(tk+1)

S(tk)
+

(1− c)γ(tk+1)

mC(tk)
<
m− 1

m
er

T
n

∣∣∣ C(tk) > 0

)
= P

(
e(µS−σ

2
S/2)Tn eσS(W (tk+1)−W (tk)) + e(

µL−σ2
L/2)Tn+ln

(
(1−c)γ(tk)
mC(tk)

)

×eσL(W (tk+1)−W (tk)) <
m− 1

m
er

T
n

)
.

Therefore, using the notation b̂(tk) = (1 − c)̃b(tk) for any k = 1, 2, .., n − 1 and
applying Fenton-Wilkinson approximation as in Proposition 4.5, it is obtained that

P
LSF

tk,tk+1

∼= Φ

 ln

(
er
T
n (m−1

m )
√
h(ã(tk),b̂(tk))

f2(ã(tk),b̂(tk))

)
√

ln
(
h(ã(tk),b̂(tk))

f2(ã(tk),b̂(tk))

)
 . (4.49)

Following proposition gives ESFL in random floor case for the period (tk, tk+1).

Proposition 4.9. (Local Expected shortfall) The local expected shortfall at time t−k+1

in random floor CPPI is given by

ESF
L

t−k+1
=


−C(tk)F1

P
LSF

tk,t
−
k+1

, C(tk) > 0

−C(tk)e
r T
n , C(tk) ≤ 0

(4.50)

At time tk+1, that is, taking the end of period payment into account, we find the ap-
proximate ESFL is as follows

ESF
L

tk+1

∼=



−C(tk)F2 − (1− c)eµL Tn Φ(d̃− σL
√

T
n

)

P
LSF

tk,tk+1

, C(tk) > 0

−C(tk)e
r T
n −

(1− c)γ(tk)e
µL

T
n Φ(d̄− σL

√
T
n

)

Φ(d̄)
, C(tk) ≤ 0

(4.51)

where
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F1 = meµS
T
n Φ

(
d− σS

√
T

n

)
+ (1−m)er

T
nP

LSF

tk,t
−
k+1

F2 = meµS
T
n Φ

(
d̃− σS

√
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)
+ (1−m)er

T
nP

LSF

tk,tk+1

with

d̃ =

ln

(
er
T
n (m−1

m )
√
h(ã,b̂)

f2(ã,b̂)

)
√

ln
(
h(ã,b̂)

f2(ã,b̂)

)

and d̄, b̂(tk) are as defined in Propositions 4.7 and 4.8. Here, Φ is the cumulative
distribution function of standard normal distribution.

Proof. Proof is obtained in a similar way to Proposition 4.7. Here, as a distinction, one
needs to define the events in accordance to random floor CPPI dynamics as follows:

Ak :=

{
S(tk)

S(tk−1)
+ γ(tk) ≥

(
m− 1

m

)
er

T
n

}
Bk :=

{
e(µS−

σ2S
2
)T
n
+σS(W (tk+1)−W (tk)) +

(1− c)γ(tk)

mC(tk)
e(µL−

σ2L
2
)T
n
+σL(W (tk+1)−W (tk))

<
(m− 1)er

T
n

m

}

Then, using the before and after payment shortfall probabilities given Proposition 4.8
and carrying out the same calculations of Proposition 4.7, it can be shown that

ESF
L

t−k+1
=


−C(tk)F1

P
LSF

tk,t
−
k+1

, C(tk) > 0

−C(tk)e
r T
n , C(tk) ≤ 0

(4.52)

and
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ESF
L

tk+1

∼=



−C(tk)F2 − (1− c)eµL Tn Φ(d̃− σL
√

T
n

)

P
LSF

tk,tk+1

, C(tk) > 0

−C(tk)e
r T
n −

(1− c)γ(tk)e
µL

T
n Φ(d̄− σL

√
T
n

)

Φ(d̄)
, C(tk) ≤ 0

(4.53)

for any k = 0, 1, ...n− 1.

As mentioned in Section 4.3.1, the CPPI strategies considered in the present thesis are
path-dependent. Since this dependent structure prevents tractability, the only possible
computable risk measures represent local dynamics. Therefore, the best way to study
the evolution of calculated measures is to illustrate them through trajectories. The
specific considered trajectory is presented in Figure 4.1.
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Figure 4.1: A trajectory for the parameters under a certain parameter set

Figures 4.2 - 4.4 reflect realizations of cash-lock probability, shortfall probability and
expected shortfall for the same trajectory and for differing multiplier values.
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Figure 4.2: Local cash-lock probabilities for a given trajectory

The regular inflows provide a great protection against cash-lock and this effect can be
clearly seen in Figure 4.2. Even for a very high multiplier value of 15, the maximum
probability is bounded above. For the NPV floor CPPI, the probabilities are equal to 1
for the period when the cushion is negative indicating a high risk of being close to the
floor and decrease drastically as the portfolio value recovers.
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Figure 4.3: Local shortfall probabilities for a given trajectory

The behavior of increasing shortfall probability for higher multipliers is reflected in
Figure 4.3. The displayed irregularity is again a result of the transition of the portfolio
from being in loss to recovery. As shortfall probability quantifies risk based on the
distance of portfolio value and the floor through trajectory, as the portfolio touches the
floor and cushion becomes zero, the probability suddenly jumps to unity. This touching
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time can also be observed from the Figure 4.1 where the timeline consists of the fixed
payment dates. It is important to note that once the portfolio begins to evolve above
the floor, the shortfall probabilities resemble to those of random floor CPPI as their
dynamics are the same for C(t) > 0.
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Figure 4.4: Local expected shortfall values for a given trajectory

Lastly, Figure 4.4 displays the direct relation between the multiplier and the expected
shortfall supporting the result of shortfall probability. Note that, at the time when
NPV portfolio touches the floor and cushion becomes zero, the ESF also becomes
zero. Another important point is that in all cases presented above, the probabilities
are bounded above. This happens because of the assumption which prevents unlimited
borrowing. Even in a bullish market as ours, the maximum exposure is limited to V
which also puts an upper bound on the shortfall risk.

4.5 Numerical Results

To illustrate the behavior of various CPPI strategies discussed throughout the thesis,
some numerical examples are given in this section. The set of input parameters is given
in Table 4.1. Throughout this section the given parameter set will be used in numerical
calculations, unless stated otherwise. All numerical computations are carried out via
MATLAB.
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Table 4.1: Assumed values for the parameters under discrete-time trading model

Interest rate, r 0.05
Stock parameters

Drift, µS 0.12
Volatility, σS 0.2

Labor income parameters
Drift, µL 0.06
Volatility, σL 0.09

Guarantee rate, c 0.8
Risk aversion parameter, η 2
Contribution rate, γ 0.1
Lower bound coefficient, ε 0.25
Multiplier, m 2
Margin parameter, h 0.05
Constraint parameter, p 0.5
Time horizon of pension plan, T 20

Table 4.2 and 4.3 present the sensitivities of the moments of terminal wealth to un-
der varying parameters for different CPPI schemes. When the values in Table 4.2 are
compared horizontally, it is seen that there is a rough ordering between the means of
the five strategies. The random floor always gives the highest terminal wealth as well
as highest coefficient of variation (CV), as expected. This is a result of the less strict
constraint defined on the exposure. Since the whole wealth is allowed to be invested in
risky asset, the portfolio with the random floor climbs up in rising markets and takes
advantage of the increase in the stock. This investment freedom comes with a widely
dispersed sample of terminal wealths whose CV is the most sensitive to the increase
in its value. Even though such a high deviation is normally considered as a negative
indicator of performance, this is not the case for our framework. Since the guarantee
is always satisfied (except for the case of a very large m coupled with a sudden de-
crease in the market close to maturity), this upside risk is a sign of potential excessive
gains. The second highest wealth is provided by the Ratchet CPPI portfolio. As a nice
advantage of the ratchetings performed during the investment horizon which decrease
the cushion and the proportion of wealth at risk, the gains are protected throughout the
investment period. This is also supported by the lower standard deviation compared
to random and NPV floor strategies. The next best strategy in terms of high terminal
wealth is NPV floor CPPI. While yielding higher returns than margin and constrained
CPPI strategies, it has a very volatile profile. This is another expected result, as NPV
floor CPPI also has a weaker control mechanism on the exposure.
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Table 4.3: Coefficients of variation of CPPI portfolio with various path-dependent
floors under certain parameter values

Parameter Value Ratchet Margin Constrained Random NPV

CV (V T) CV (V T) CV (V T) CV (V T) CV (V T)

σS

0.1 0.465 0.317 0.322 0.477 0.441
0.2 0.737 0.446 0.467 0.815 0.601
0.3 0.963 0.541 0.622 1.203 0.743

µS

0.06 0.474 0.382 0.409 0.490 0.350
0.12 0.737 0.446 0.467 0.815 0.601
0.24 0.932 0.448 0.458 0.938 0.822

σL

0.05 0.646 0.345 0.369 0.721 0.364
0.09 0.737 0.446 0.467 0.815 0.601
0.18 0.962 0.694 0.704 1.051 0.981

µL

0.03 0.764 0.440 0.471 0.848 0.633
0.06 0.737 0.446 0.467 0.815 0.601
0.1 0.697 0.447 0.461 0.768 0.566

c
0.70 0.758 0.433 0.455 0.844 0.640
0.80 0.737 0.446 0.467 0.815 0.601
0.90 0.647 0.447 0.465 0.692 0.556

γ
0.05 0.737 0.446 0.467 0.815 0.601
0.1 0.737 0.446 0.467 0.815 0.601
0.20 0.737 0.446 0.467 0.815 0.601

m
2 0.737 0.446 0.467 0.815 0.601
6 0.553 0.326 0.460 0.883 0.662
10 0.437 0.292 0.461 0.886 0.673

ε
0.5 0.737 0.432 0.467 0.815 0.601
0.6 – 0.417 – – –
0.7 – 0.409 – – –

h
0.02 0.737 0.550 0.467 0.815 0.601
0.05 – 0.446 – – –
0.1 – 0.390 – – –

p
0.25 0.737 0.446 0.324 0.815 0.601
0.5 – – 0.467 – –
1 – – 0.815 – –

The reason that it is able to provide high returns is because the initial NPV floor, which
is the time zero value of the future contributions, grows deterministically being inde-
pendent from the incoming payments. Therefore, the floor starts at a much higher value
than the other floors which eventually pulls the portfolio above itself. A prominent risk
in this scenario is the probability of the participant withdrawing from the system. Since
the strategy needs some time to recover and provide gains by investing in the risky as-
set, early withdrawals is will bring loss. Considering this result with the risky structure
of the strategy, we can conclude that the NPV floor CPPI is profitable for those who
wish to stay in the system for a long time and can bear a possibly wide range for the
wealth at the end. As for constrained CPPI, the mean wealth values are lower than the
ones considered above and they come with a low dispersion. The outcome of the low
wealth and risk is due to the constrained mechanism which limits the exposure being
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invested in the risky asset and eventually prevents portfolio from taking advantage of
a possible rise in the market. While being very convenient for the risk averse investors
the constrained CPPI is also able to yield a reasonable return. Among those con-
strained CPPI yields the less reaction to increase in the parameters as the CV for each
case does not significantly increase. The last strategy is the margin strategy with the
ratchet effect. This strategy has the lowest risk because it possesses the most protec-
tive and varying floor. At times when the floor decreases to reduce the cash-lock risk,
the portfolio temporarily follows a downward trend. This indeed affects the profits in
the overall, resulting in a relatively lower wealth. However, the successive ratchetings
performed during the investment horizon guarantees the gains at each step decreasing
the volatility and providing more protection. While being in a competitive level with
the other floors, margin strategy offers a really small risk. Therefore, it is preferable
for the most conservative investors. It is also interesting to see the sensitivities on a
strategy basis. An increase in stock volatility decreases the terminal wealth while an
increase in the stock drift µS enhances the wealth for all strategies. As expected, higher
stock volatility σS increases final wealth’s standard deviation and increasing µS also
contributes the riskiness of the portfolio. Looking at the labor income parameters, it
is seen that while being a small change, a rise in the drift σL increases the mean and
standard deviation of the terminal wealth. The labor drift µL also has a positive ef-
fect on the moments. The guarantee parameter c is negatively proportional with the
mean and standard deviation, as it increases the floor resulting in smaller investment in
risky asset and promising lower profits. Since the money inflow into the fund enhances
with a high contribution parameter, this causes the moments to increase. A change in
multiplier has various effects on different strategies based on the dependency of their
constraints on multiplier m. The margin parameters ε and h only positively impact on
the margin strategy as they are not input parameters for other strategies. Lastly, for an
increase in the constraint parameter p, the moments also increase displaying a strong
positive sensitivity. It is also noted that the CV of all the strategies are insensitive to the
change in contribution rate γ and the CV decrease when the values of m and margin
parameters ε, h and p increase. Overall, the high standard deviations that Table 4.2
presents for each parameter set and strategy can seem very large. However, it should
be noted that these are upside standard deviations which only represent the upside risk.
This situation is not necessarily undesirable especially when we take into account the
fact that the guarantee is almost always satisfied. Another reason for this relatively
high deviation is the lengthiness of the investment horizon. Since DC pension plans
are long-term products, we conducted our numerical examples for T = 20 years which
gives the stock process enough time to climb very high in bullish markets as we assume
with µS ∈ {0.06, 0.12, 0.24}. To further investigate the standard deviations, we look at
the worst 10% of the terminal wealths from the sample of random floor strategy which
displays the highest deviation with the parameter set as given in Table 4.1. A much
lower mean of 45.94 with a small standard deviation 3.8824 suggests that the deviation
of the strategy is enhanced more due to some exceptionally large wealths rather than
an overall dispersion in the terminal wealths.
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Figure 4.5: A trajectory for m = 1
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Figure 4.6: A trajectory for m = 3

Figures 4.5 - 4.7 shows a particular trajectory of each strategy to illustrate the evolution
of the portfolio under different strategies. As it can be clearly seen, the NPV portfolio
recovers after sometime and begins to evolve above the floor requiring a certain amount
of time to be spent in the pension system. From the ratchet strategy, the floor follows
the portfolio value at the desired distance with help of artificial increases. In plot which
displays margin strategy the ratcheting and margin effects are observed which are used
to manipulate the floor to avoid cash-lock position while keeping the final guarantee as
intact as possible. This variability in floor is especially important when the investment
horizon is very long as in our case. Lastly, one can observe that while the random
floor strategy has a volatile profile, constrained strategy is more stable due to limited
exposure.
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Figure 4.7: A trajectory for m = 6
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Figure 4.8: Terminal wealth densities for the parameters under a certain parameter set

Tail properties and the distributional behavior of terminal wealth for each strategy il-
lustrated in Figure 4.8 verify the conclusions made for Table 4.2. Random floor and
ratchet resemble the same behavior and extend to higher values of wealth. Constrained
CPPI is the most conservative among others and short right tail indicates less volatil-
ity. The strategy offers poorer performance compared to others as a result of not being
able to benefit from rising markets. Margin strategy with ratchet effect follows con-
strained as second less risky one. Among all strategies NPV floor which resembles the
same variation pattern as the random floor yields the highest peak on moderate termi-
nal wealth values, yet pertaining the long right tail. Therefore, NPV floor CPPI can
be considered as a tolerable choice with a medium tail and moderately high profits for
participants who commit to stay in the pension plan long enough to let the portfolio
recover from initial negative status.
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CHAPTER 5

Conclusion

As defined-contribution type pension plans are becoming an essential part of the com-
pulsory pension systems in many countries, in this thesis various constant propor-
tion portfolio insurance (CPPI) strategies with different structures are introduced to
defined-contribution pension plans where each investor makes consecutive stochastic
payments based on their incomes. The labor income is modeled as stochastic pro-
cess and contributions assumed to be a proportion of this income. The discontinuity
coming from the incoming contribution payments is eliminated via pricing and short-
selling the claim of future premiums. Considering two different floor processes; one
being directly dependent on the stochastic contributions and the other being time zero
value of the future payments, the optimal portfolio problem is formulated and solved
under continuous-time trading. To ensure that there is no bias in the comparison, the
optimal CPPI-multiplier is obtained for each guarantee framework. Through terminal
wealth distributions and sensitivity analyses, performances of both strategies are com-
pared portfolio efficiencies are discussed. Performances of each strategy are compared
based on analytically computed risk measures and also through sensitivity analyses
based on Monte-Carlo simulations. Moreover, kernel densities are estimated for termi-
nal wealths which support the results of the sensitivity analysis. To further analyze the
prominent risks which are ignored under continuous-trading and to study the appro-
priate hedging methods, the same problem is considered under discrete-time trading.
Redefining the NPV and random floors in a way that they preserve their discrete struc-
ture and considering a new path-dependent set of floors, cash-lock and gap-risks are
addressed and the relevant risk measures are computed. Specific variable CPPI strate-
gies such as constrained CPPI, Ratchet CPPI and Margin CPPI with Ratchet effect
are studied. With a detailed sensitivity analysis the effectiveness of each strategy is
discussed and comparisons are made. Risks of the proposed CPPIs are analyzed and
quantified through risk measures and sensitivity analyses. This thesis have theoretical
and practical contributions, summarized below.

• By numerical illustrations, it is concluded that both strategies proposed for the
continuous-time trading market can be preferred according to participants’ ex-
pectations. While participants who would like to be in a hedged position should
prefer the CPPI with net present value (NPV) floor, those who would like to go
with the market should hold CPPI with random floor. Specifically, it is shown
that the terminal wealth of the random floor CPPI has a higher mean than the
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NPV floor strategy.

• For the analytically tractable strategies that are considered under the assumption
of discrete-time trading (NPV and random floor CPPI), it is found that random
floor performs better by providing not only higher terminal wealths with positive
upside deviation but also having lower local cash-lock and gap risks. This means
that the portfolio will evolve above the guarantee level with a low probability of
crashing through the floor. Also, with a lower cash-lock risk the portfolio has a
small probability of being locked in the riskless asset and a potential excess gain
at the retirement date.

• For the second set of variable floor CPPI strategies which includes also the first
two floors a detailed sensitivity analysis is conducted through Monte-Carlo sim-
ulations. The analysis shows that ratchet floor is superior to the other variable
floors due to the protection provided by the successive upwards adjustments per-
formed on the floor.

• For the constrained CPPI, which is the case of a realistic constraint on exposure,
the strategy loses the ability of taking advantage of increasing stock process and
reflects lower probabilities of high gains.

• The margin strategy offers little positive effect on the performance and inhibits
the effectiveness of ratchetings. The main issue is the very small initial margin
amount that we encounter. To solve this problem, the margin process is modified
and a new mechanism is proposed which creates small margins to be used later
out of the ratcheted values. Although this mechanism solves the diminishing
floor problem, it needs some ratchetings to be performed before any margin can
be played.

• The behavior of random and ratchet strategies resemble each other which promises
higher values of wealth. Constrained CPPI is the most conservative among oth-
ers as its short right tail indicates low volatility. Hence, the strategy offers poorer
performance as a result of not being able to benefit from rising markets. Margin
strategy with ratchet effect follows constrained as second less risky one. Among
all strategies NPV floor which resembles the same variation pattern as random
floor yields the highest peak on moderate terminal wealth values, yet pertaining
the long right tail. Therefore, NPV floor CPPI can be considered as a tolera-
ble choice with a medium tail and moderately high profits for participants who
commit to stay in the pension plan long enough to let the portfolio recover from
initial negative status.

As future study, an effective margin mechanism independent from the guaranteed
amount can be constructed. Moreover, jump dynamics can be introduced into the
modelling to successfully mimic possible drops between re-balancement times; corre-
sponding protection strategies can then be investigated. More general pension schemes
such as hybrid pension plans including both defined-contribution and defined-benefit
characteristics can be modeled with the approach presented in this thesis and are sub-
jects of further research. Two possible candidates are CPPI portfolios with variable

84



floors depending on the market conditions and analysis of strategies under discrete-
time trading. Application of the methodology to Turkish Individual Pension System to
determine how accurate the model captures the pattern and growth of the fund under
emerging financial markets.
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APPENDIX A

Fenton-Wilkinson Approximation Method.

Fenton and Wilkinson [27] estimate the probability density function of a sum of log-
normal random variables again using a log-normal distribution with the same mean and
variance. The Fenton-Wilkinson approximation (often referred to as the FW method) is
based on the assumption that the sum of independent log-normal random variables also
has log-normal distribution. The method is often used in pricing Asian and basket op-
tions, and for a wide range of parameters has been shown to yield sufficiently accurate
results compared to another pioneer method given in the literature, the Schwartz-Yeh
(SY) method [43], (see [9]).

Let X1, X2, ..., XN be N independent log-normally distributed random variables, i.e.
Xi ∼ LN (µi, σi) for i = 1, 2, ..., N . Then, each Xi can be written as Xi = exp(Yi)
where Yi ∼ N (µi, σi). The general closed form expressions of the probability densitiy
function and the cumulative densitiy function of the sum

N∑
i=1

Xi (A.1)

are not available. However, FW method suggests that this sum can be approximated
by a new log-normal random variable X ∼ LN (µ, σ), and the new distribution can
be specified by matching the moments of X and the sum. While computing the risk
measures presented in Section 4.4, we encounter the sum of two log-normal random
variables. To specify this approximation method for our case and to introduce some
further notation, we next present a simple special case.

Consider the summation aX1 + bX2 where Xi ∼ LN (µi, σi) for i = 1, 2, and a, b are
real constants. By FW method, we approximate this sum with a log-normal random
variable X = exp{Y } with Y ∼ N (µ, σ). Then, we have

E(X) = eµ+
1
2
σ2

E(X2) = e2µ+2σ2

.

(A.2)
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On the other hand, matching the moments yields

E(X) = aµ1 + bµ2

E(X2) = a2E(X2
1 ) + b2E(X2

2 ) + 2abµ1µ2.

(A.3)

Equations (A.2) and (A.3) leads to

µ = ln

(
(aµ1 + bµ2)

2

(a2E(X2
1 ) + b2E(X2

2 ) + 2abµ1µ2)
1
2

)

σ2 = ln

(
a2E(X2

1 ) + b2E(X2
2 ) + 2abµ1µ2

(aµ1 + bµ2)2

)
.

(A.4)
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