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ABSTRACT

TIME SERIES ANALYSIS AND FORECASTING ELECTRICITY PRICES
IN TURKEY

Zakeri, Seyed Amir Hamed
M.S., Department of Statistics

Supervisor : Assist. Prof. Dr. Ceylan Yozgatlıgil

Co-Supervisor : Assoc. Prof. Dr. Ömür Uğur

December 2015, 83 pages

Due to the liberalization of the electricity market, prices are now determined
based on contracts on regulated markets and their behavior is mainly driven
by constant supply and demand forces. Power producers and consumers need
accurate price forecasting tools in a competitive market. Price forecasts give
important information for producers and consumers to plan bidding strategies
to maximize their benefits and utilities. Analysis of hourly electricity prices in
Turkey is challenging due to the existence of multiple seasonality. In this study,
we construct a time series model and obtain short-term forecasts of hourly elec-
tricity prices using multiple regression method. We used lagged price values,
demand as the exogenous variable and dummy variebles for Saturdays and Sun-
days to capture the seasonality in the price

Keywords: Electricity Price Forecasting, Time Series, ARMAX, GARCH
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ÖZ

ZAMAN SERISI ANALIZI VE TÜRKIYE’DE ELEKTRIK FIYAT TAHMINI

Zakeri, Seyed Amir Hamed
Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Ceylan Yozgatlıgil

Ortak Tez Yöneticisi : Doç. Dr. Ömür Uğur

Aralık 2015 , 83 sayfa

Elektrik piyasalarındaki liberalleşme sonucunda, elektrik fiyatları normal piyasa
fiyatları üstündeki sözleşmelerle belirlenmektedir ve piyasa hareketleri arz ve
taleplerine göre hareket etmektedir. Rekabetçi piyasalar, elektrik üreticileri ve
kullanıcılarını elektrik fiyatlarının doğru öngörmeye itmektedir. Fiyat öngörü-
leri üretici ve tüketicilere elektrik kullanımı ve açık arttırmalarda önemli bilgiler
sunmaktadır. Türkiyedeki saatlik elektrik fiyatlarının belirlenmesi, serinin bir-
den fazla mevsimellellik içermesi nedeniyle zorlayıcıdır. Bu çalışmada, saatlik
elektrik fiyatlarının modellenmesi ve kısa dönemli öngörülerin elde edilmesi plan-
lanmaktadır.

Anahtar Kelimeler: Elektrik Fiyat Tahmini, Zaman Serileri, ARMAX, GARCH
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CHAPTER 1

INTRODUCTION

1.1 Liberalization of Electricity Market

Since 1980, reforms have spread to different facets of the economy in the world,
from air transportation and banking to ports, railroads and even food services
and communication. The aim of all these efforts is to reduce and replace the
government control with the free market. Many people believe that liberalization
brings about significant benefits to the consumers; however there is no consensus
on that.

By early 1990, most of the major economies had plans to initiate such a reform
in the electricity market. Reforms were based on the three principle of the “stan-
dard textbook model”. The first principle advocates separation of generation,
transmission, distribution and marketing functions of electricity. That is, these
activities do not have a monopolistic nature and instead of the government,
can be performed by firms on a competitive basis. The second principle states
that those firms could be privatized. It was believed that private companies
are more efficient and have better management systems. The third principle
advocates establishment of authoritative institutions to oversee the operation
of market players and protect public interest. On 1982, Chile first applied the
model on its electricity market and then some European countries such as the
UK, Norway, Sweden and Finland started the reform.

In a liberalized market electricity prices is determined by contracts on regular
markets. In this market, there is no possibility for arbitrage. The fluctuation of
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supply depends on the demand. That is, when the demand increases or decrease,
supply will also increase or decrease.

Electricity as a commodity has a unique feature. It is inelastic, that is, it cannot
be stored. However, demand shows considerable variability and great weather
and business cycle dependence. Some accidents such as power plant outages
and transmission grid unreliability add to the complexity and reduce the pre-
dictability. Therefore, the resulting spot prices exhibit strong seasonality at the
annual, weekly and daily levels, as well as mean reversion, very high volatil-
ity and abrupt, short-lived and generally unanticipated extreme price changes
known as spikes or jumps. These characteristics make modeling and forecasting
electricity price very challenging and academically interesting.

The literature on electricity price forecasting have different aims and use different
methodologies based on the temporal horizon of the study. For the profitability
analysis and power planning, long run horizons are studied, whereas, to get a
forecast distribution for the price, medium run is studies are carried out. The
evaluation of derivatives is based on the spot prices determined by the market.

There are a number of classifications of the methods for electricity price model-
ing. Weron (2014) classified these methods into five categories as follows:

• Multi-agent models: These models, simulate the system and its players
(companies and agents) and built the price process through matching sup-
ply and demand.

• Fundamental models: These models explain the price behavior by model-
ing the effect of economical and physical variables on the price.

• Reduced-form models: These models describe the statistical properties of
electricity prices over time, in order to evaluate the derivatives and for risk
management.

• Statistical models: These models are used in load forecasting or imple-
mentations of econometric models in the power market.

• Computational intelligence models: These models combine elements of

2



learning, evolution and fuzziness to create approaches that are capable of
adapting to complex dynamic systems.

Many studies in the literature use hybrid methods for modeling and price fore-
casting by combining techniques from two or more of the groups listed above.
Figure 1.1 from [118] illustrates these models with their sub-branches.

Figure 1.1: Taxonomy of electricity price modeling approaches.

It is almost globally accepted that privatization will increase efficiency and de-
crease the cost of electricity for end users. Although in the only published study,
[51] showed that the privatization of electricity distribution companies in Turkey
has not yielded the expected results within the first four years of implementation.
However, it does not invalidate the liberalization and its benefits for consumers.
As the process is going on, the trading companies involved are increasingly in
need of accurate price forecasts.

In Turkey, there have not been extensive studies on electricity price. Most of
the previous studies were focused on modeling the demand, and there is a lot of
room for improvements. Therefore, to further explore the topic, we decided to
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study electricity prices in Turkey using more advanced methods.

For this purpose, we used ARX and GARCH statistical methods to model elec-
tricity prices. We used 2-year hourly historical data from 2012 to 2014 for
electricity spot price and demand. We used an autoregressive model with de-
mand as the exogenous variable, and dummy variables for weekends to handle
seasonality.

Before getting into the the details of our modeling, we review the current state
of Turkish Electricity Market.

1.2 Turkish Electricity Market

After World War I, Turkey started rebuilding its damaged country. Since the
financial resources were scarce, it was not possible to invest in the electricity
sector and most of electricity was supplied by the foreign private companies
such as German, Italian, Hungarian, and Belgian companies. On 1963, the
Ministry of Energy and Natural Resources (MENR) of Turkey was founded and
the Turkish Electricity Authority (TEK) was established on 1970. TEK took
charge of all the electricity activities and responsibilities except the distribution
in Turkey. Since 1980, when an export oriented strategy was adopted, various
restructuring models were introduced to attract the investors. On 1984, the
monopoly power of TEK was removed, so that other private entities can invest
and engage in all the electricity activities, including generation, transmission,
and distribution.

Since 1984, several financial models were tested in order to attract investment
in electricity sector, but they all failed until 2001, when Electricity Market
Law (EML) was ratified. The aim of the law was to establish a transparent
and competitive electricity market which financially benefits the end users. On
1993 TEK was split into two separate entities, Turkish Electricity Generation
Transmission Company (TEAS) which was in charge of generation and trans-
mission activities, and the Turkish Electricity Distribution Company (TEDAS)
responsible for distribution and retail sale activities. As a consequence of the

4



EML, TEDAS was further split into three entities, namely; EUAS, TEIAS, and
TETAS which were responsible for generation, transmission and trading activ-
ities respectively. Energy Market Regulatory Authority was also established to
supervise the activities of market participant as a consequence of EML.

The reform brought significant changes to the monopolistic electricity system of
Turkey. The new market is based on bilateral contracts and a complementary
residual balancing mechanism. All the electricity generated should be traded
either directly or indirectly in the market. TEIAS is responsible for the balancing
and settlement market and all the electricity generators above 20MW should
submit bids and offers to TEIAS. The balancing mechanism has two phases; the
first phase is Day-Ahead scheduling which is done by TEIAS who also sets the
hourly prices for the next day. The second phase is the within the day and real-
time bid and offer acceptances by TEIAS to meet the fluctuations in supply and
demand. When there is a bid, TEIAS settles the trade by using system marginal
prices, offer/bid prices and system imbalance price. System imbalance price is
the weighted average of hourly system marginal prices within the particular
settlement period. There are three settlement periods, namely day, peak and
night periods. For each period calculations are carried out monthly and market
participants are charged based on their trading and imbalance positions. [9].

Currently, electricity is either traded by bilateral contracts or in the balancing
and settlement market. Generators can be categorized into five groups as illus-
trated in Figure 1.2 from [19]. The first group is EUAS, the biggest state owned
electricity generator, and it subsidiaries, affiliates, partnerships, and portfolio
generation groups. On aggregate, this group produces 44.4% of total electricity
in Turkish market as of 26 June 2012. The second group includes private gener-
ator who have build-operate (BO), build-operate-transfer (BOT), or transfer of
operational rights (TOOR) contracts with government. This group which do not
compete in the market, generate 17% of total electricity in Turkey and sell it to
TETAS. The third group is the independent power generators with 32.8% share
of the total. The forth group includes autoproducers or self-generators with a
5.8% share of the total. The last group includes small, unlicensed renewable or
micro-cogeneration generators who are able to trade in the market through dis-
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tribution companies. However, it is expected that these small companies soon
become part of the Turkish electricity industry [19].

Figure 1.2: Breakdown of Turkish Electricity Market.

For a detailed review of the electricity market in Turkey and assessment of its
current state, one can refer to [19], [18], [24], [4], [9], and [48].
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Weron in a recent publication [118] reviewed most of major literature on elec-
tricity price forecasting (EPF) from 1989 to 2013. He performed both a bib-
liometrics analysis and a critical review of the publications. Therefore, for the
sake of simplicity and to avoid redundancy, we will review the highlights of his
work and focus on documents published after 2013 till October 2015.

2.2 Bibliometrics Analysis

A bibliometrics analysis is a quantitative analysis of the literature. However, a
critical review is a qualitative analysis. For the bibliometrics analysis, we used
Scopus database that is a very popular and well-structured database. Weron
used WoS and Scopus databases, but as WoS is a subset of Scopus, and Scopus
has a much more user-friendly interface, we limit our review to publications only
found by Scopus.

Figure 2.1 from [118] indicates the number of articles and conference papers
published from 1989 till 2013. As there were few publications before 2000,
the cumulative sum is used for illustrations. The number of publications was
increasing until 2009/2010 but decreased as the conference papers declined.

Most of the articles, as classified by Scopus, were categorized in decreasing order

7



Figure 2.1: Number of publications by year.
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as engineering or energy, computer science, mathematics, business, management
& accounting and economics, econometrics & finance. As we can see in Figure 2.2
from [118], of the ten most popular journals, IEEE Transactions on Power Sys-
tems is the most popular one, which has almost equal number of publication on
EPF using Neural Networks, Time Series, and other methods.

Figure 2.2: Classification by subjects in major journals.

Our bibliometric review reveals that there have been 64 and 44 publications on
EPF in 2014 and 2015 respectively. We used the built-in keyword TITLE-ABS-
KEY to query Scopus database and limited the results by publication year. This
query will search for “electricity price forecasting” in the titles, abstracts and
keywords of all publications issued since January 2014 to November 2015. Then,
the results were refined by inspecting each entry and filtering irrelevant ones.

Among all the publication released in this period, 62% were journal articles,
27.8% were conference papers, 7.4% were articles in the press and 2.8% were
reviews. Moreover, based on Scopus, most of the publications were categorized
in energy, engineering and computer science fields. Not surprisingly, the Journal
of Energy Economics had the most number of papers, followed by International
Journal of Electrical Power and Energy Systems and the Journal of Energy
Conversion and Management. See Figure 2.3 and 2.4.

Furthermore, China and India, with 17 and 15 publications respectively, had the

9



Figure 2.3: Type of publications since 2014.

Figure 2.4: Classification of publications by sector.
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most contribution to the field. Meanwhile, Turkey with four publications is the
12th in the ranking, see figure 2.5. Finally, Weron with seven publications and
the most number of citations was the most active researcher in the field.

Figure 2.5: Number of publications by country.

2.3 Critical Analysis

2.3.1 Studies on EPF in the World

The first major article on EPF appears to be [16]. The author reviewed some of
the main issues and techniques related to forecasting of daily loads and prices in
competitive markets. He concluded that “forecasting of loads and prices are mu-
tually intertwined activities and that game theory and the economic perspective
cannot be an accurate basis for daily forecast”. He suggests methods that use
separate models for each load period (variable segmentation), neural network
techniques for modeling nonlinear behavior, and forecast combinations.

In a discussion article [7] author explains the need for short-term price forecasts,
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reviews problems related to EPF, and puts forward proposals to such predictions.
They argue that “time series techniques (AR, ARIMA, GARCH) are usually
successful only in the areas where the frequency of the data is low, such as
weekly patterns”. They advocate the use of artificial intelligence and hybrid
approaches that are “capable of tracking the hard nonlinear behaviors of hourly
load and especially price signals”.

One of the best studies on EPF may be considered to be [119]. In this study,
twelve time series models for forecasting short-term spot price in auction type
electricity market were compared. They used, AR model with its extensions,
spike preprocessed, threshold model and semiparametric autoregressions as well
as mean reverting jump diffusion models. They used the hourly spot price
and system-wide loads for California and a series of hourly spot prices and air
temperature for Nordic market. They found out that models which use system
load as the exogenous variable usually have better performance compared to pure
price models. However, when temperature is used as the exogenous variable,
price model does not outperform the pure price model. They also found out
that in general, semiparametric models have better point and interval forecasts
than other model. Specifically, these model can perform well under diverse
market conditions.

A survey article [2] reviews 47 time series and neural network papers published
between 1997 and 2006. It concludes that “there is no systematic evidence
of out-performance of one model over the other models on a consistent basis,
which may be attributed to the substantial differences in price developments in
different power markets”. In a more recent article [3], the same authors classify
EPF models as three categories, namely heuristics, simulations, and statistical
model. The latter includes time series and artificial intelligence models.

A recent survey article [28] reviews neural networks, support vector machines,
three class of time series models namely ARMA, ARMAX, and GARCH, and
functional principal component analysis (FPCA) models for EPF. The authors
suggest using multivariate factor models and especially robust FPCA, which is
proved to have a better performance than both the standard FPCA and an AR
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model whose mean value varies by time in a limited forecasting study.

In one of the chapters of Wiley Encyclopedia of Electrical and Electronics
Engineering, Martos and Conejo review time series model for short-term and
medium-term electricity price forecasting. For day-ahead predictions, they fo-
cus on ARIMA and seasonal ARIMA models, and for medium-term horizons
they use vector ARIMA and unobserved component models.

In [20], authors examine the structural approach for electricity modeling, and
emphasize its advantages compared to traditional reduced-form models. They
study several recent articles and recommend a structural framework for spot
prices, which encompasses demand, capacity and fuel prices.

Authors of [43] suggest the use of Realized GARCH models for estimating the
volatility of daily price in the EPEX power markets. They argue that “the model
specifications extract the volatility-related information from realized measures,
which improves the in-sample fit of the data”. Furthermore, “the evidence on
the out-of-sample predictability reinforces the value of the specifications as the
forecast quality is improved over the benchmark EGARCH model under eight
conventional criteria”.

In a comparative study [31], authors compared the prediction performances of
three models; a discrete-time univariate econometric model (ARMA-GARCH)
and two computational intelligence models, namely Neural Networks and Sup-
port Vector Machines. They found out that the Support Vector Machine method-
ology gives a better forecasting accuracy for price time series, closely followed
by the econometric technique.

In a study on Italian Power Exchange market [23], authors propose an econo-
metric model for short-term forecasting of the daily single national price of
electricity. They use constants, regressors, moving averages, weekly and sea-
sonal dummies, autoregressive and heteroskedastic variables. Their results show
a significant decrease in error of short-term forecasts in comparison with linear
least squares method which was conventionally used in the literature.

Authors in [34] studied the use of univariate time series models for modeling
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electricity prices in Leipzig Power Exchange. The found out that when each
hour of the day is modeled separately, the performance of the model forecast
is better compared to models for the whole time series data. Also they found
out that, modeling spikes using a simple probabilistic process leads to better
forecasting abilities of the models.

In [75], authors apply a method similar to [119] on the Nord Pool hourly day-
ahead price. They used Nordic demand and Danish wind power as the exogenous
variables. Also, they modeled the price across all hours in their analysis period
rather than a single hour of a day.

In [83] authors set up different time series and assessed their short-term forecast-
ing power in the electricity spot market. They used AR, ARX, ARX-GARCH,
TARX, and Markov regime-switching models to model electricity spot price in
the California Power Exchange. They also found the point and interval forecast
for their model. They concluded that (i) nonlinear models outperform the linear
model and (ii) additional GARCH component generally decreases the efficiency
of point forecasting.

Authors of [15] studied the use of ARIMA, ARIMA-EGARCH and ARIMA-
EGARCH-M models for modeling hourly electricity prices in Midwest Inde-
pendent System Operator (MISO). They concluded that “no model outperform
the others in terms of in-sample forecasting performance. However, ARIMA-
EGARCH-M model outperforms the other models in terms of out-of-sample
forecasting performance”.

In [10], authors compared an ARMAX model with Gradient Boosting Regression
which is a new technique. They showed that a multi-model approach has better
performance in terms of error metrics. They also argued that “Gradient Boosting
can deal with seasonality and autocorrelation out-of-the-box and achieve lower
rate of normalized mean absolute error on real-world data”.

In [46], authors propose another approach for modeling electricity.Their model
combined several univariate and multivariate time series methods which repre-
sent the energy produced with clean energies, such as wind and hydro. They
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finally argued that their model is the optimal model compared to other studies.

In a similar study [130], authors introduce an econometric model for hourly elec-
tricity prices of the European Power Exchange and incorporate features such as
renewable energies. They call it a VAR-TARCH model with wind power, solar
power and load as influences on time series. They used an efficient iteratively
reweighed lasso approach for estimation and claim that their model outper-
formed several existing models.

2.3.2 Studies on EPF in Turkey

Although, the literature on EPF is very diverse and active, there are few studies
on this topic in Turkey. So far, most of the studies on Turkish market has
been focused on modeling the demand. Furthermore, they mostly used Neural
Networks for modeling and statistical methods are not studied in depth. The
following paragraphs explain some of studies on EPF in Turkey.

In [109], authors modeled electricity price in Turkish electricity market using
ARIMA model and feed forward neural network model. They compared the
performance of both models and concluded that it is possible to forecast weekly
electricity price with and average error rate of 8.5%. In another study [12], the
same authors examined the effect of historical prices and loads, calendar data,
weather conditions and currencies on short-term EPF in Turkish electricity mar-
ket. They tested the combinations of feature subsets on the feed forward neural
network forecast model, and find out that “the best feature subset combination
is calendar data, historical prices and load prediction”.

In another study [70], authors studied the use of artificial neural networks and
proper artificial neural network configurations for price modeling. They exam-
ine various sets of parameters and network topologies to find the best suitable
configuration. They finally compare their model with a time series model.

The overall analysis of the publications reveals that the literature on EPF is
almost saturated by statistical modeling techniques, although to the best of our
knowledge, there is not enough studies on Turkish electricity market. Moreover,
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there is an increasing interest in using artificial intelligence methods (Neural
Networks, Support Vector Machines, Wavelet Transforms, Machine Learning
Techniques, etc.) and hybrid methods. Considering the importance of the accu-
rate modeling and forecasting for market participants and to extent the studies
on EPF in Turkey, we decided to study application of statistical methods for
EPF in Turkish electricity market.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

Electricity is an inelastic commodity, that is, it cannot be stored. This unique
feature makes price series have some unique characteristics. These series exhibit
daily, weekly and annual seasonality. They also have extreme values, called
spikes. These characteristics make modeling such series rather difficult.

The statistical models to forecast the current electricity price usually use a com-
bination of previous price together with the current and/or previous values of
some exogenous factors. These factors are usually consumption and productions
or weather variables. There have been numerous studies on the most important
factors. But, it is not possible to generate a universal formula for all markets,
since each market has its own characteristics and behaves differently. There
are two general categories for these models, namely the additive and multiplica-
tive models. The additive model use summation of the variables to generate
forecasts, while in the multiplicative model, the final result is obtained by mul-
tiplication of variables.

Statistical models are attractive, because they have some physical interpretation
so that the end user can easily understand them. However, they also have some
limitations in modeling nonlinear behavior of the variables.
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3.2 Pre-processing the data

Before starting the modeling, it is usually useful to process the data. The aim
of the pre-processing is usually to make the data easier to model. In the case of
electricity prices, this process includes finding the outliers and dealing with them
using standard techniques. Hawkins (1980) defined outlier as “ an observation
which deviates so much from the other observations as to arouse suspicions that
it was generated by a different mechanism”.

Since identification of the spikes has a significant effect on model estimation,
they should carefully be treated before modeling. In the literature spikes are
defined as values that surpass a specific threshold for a short period of time. But
there is no consensus on either the threshold value or the time period. There are
a number of methods introduced in the literature for outlier detection. Authors
in [60] studied various techniques for treatment of spikes in the electricity price
series and compared their effect on the estimation of model parameters. Some
of the methods they used are:

• Fixed price threshold: In this method, when the price exceeds some prede-
fined threshold it is considered as a spike.

• Variable price threshold: In this method, a certain percentage of the ex-
treme values (highest or lowest) are considered as outliers.

• Fixed Price Change Threshold In this method, when the change in the
price exceed some specific threshold, the value is considered as spike.

• Variable price change threshold: In this method, when the price exceeds
three times the standard deviation, it is considered as spike and is removed
from the data. This procedure continue recursively until all the spikes are
identified and removed from the data.

For a complete review of these methods refer to [60]. There are also a number
of R packages to deal with outliers, namely; {outlier}, {extremevalues} and etc.
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3.3 Statistical Model for EPF

As explained in the first Chapter, statistical methods to model electricity prices,
as discussed by [118], are categorized into 5 types:

• Similar day and exponential smoothing methods,

• Regression models,

• AR-type time series models,

• ARX-type time series models,

• Heteroskedasticity and GARCH-type models.

In the following, each method is briefly explained and some studies on their
application are introduced.

3.3.1 Similar day and exponential smoothing methods

In this rather simple and popular method, a forecast is based on the similar days
and hours in the past. That is we have to look for the similar days, which have
the same characteristics in the historical data and take them as the forecast for
future. The similar characteristics include similar day of the week, day of the
year, holiday type, and weather or consumption figures. It is also possible to
use a linear combination or regression of several similar days instead of a single
day.

In [85] authors proposed a naive test to examine the accuracy of the models
based on the similarities of the days. They argued that a Monday, Saturday
and Sunday are similar to the respective days of the previous weeks. A Tuesday
is similar to the previous Monday and the same rule applies for Wednesdays,
Thursdays and Fridays. They argued that models that are not well calibrated
would fail to pass this test.

Exponential Smoothing is another simple method for forecasting. It is mostly
used for load forecasting, however there are some studies using this method
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for EPF as well [108]. In this method the prediction is constructed from an
exponentially weighted average of past observations:

X̂t = St = α ·Xt + (1− α) · S(t−1) (3.1)

In this formula the smoothed value St is the weighted average of the previous
observations, where the weights decrease exponentially depending on the value of
parameter α ∈ (0, 1). It is also possible to add a seasonal and trend component
to the formula. [37, 47, 58] can be referred to for the application of this method
on EPF.

3.3.2 Regression Models

In regression analysis we study the relationship between variable. It includes
many modeling and analyzing techniques which try to estimate the relationship
between a dependent variable and some independent variables called regressors.
They help us understand the behavior of the dependent variable when only one
of the independent variables changes and the others are held fixed. Multiple
regression is based on the least squares method. In this method, the best fit to
the data is obtained by minimizing the sum-of-squares of the difference between
the observed and the predicted values. The relationship between variables is
usually assumed to be linear in multiple regression. Whereas, in a nonlinear
regression this relationship is nonlinear. A linear regression can be formulated
as:

Pt = BtXt + ϵt = b1X
(1)
t + · · ·+ bkX

(k)
t + ϵt, (3.2)

where B is a 1 × k vector of constant coefficients, Xt is the k × 1 vector of
regressors, and ϵt is the error term. The regressors are chosen from the variables,
which are believed to be correlated to the electricity price Pt. In this case, we
use Maximum Likelihood method for estimation.

In the case that price driver effects evolve continuously, we have a time-varying
regression (TVR) as:

Pt = BtXt + ϵt = b1,tX
(1)
t + · · ·+ bk,tX

(k)
t + ϵt, (3.3)
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where Bt is now a 1×k vector of time-varying coefficients. TVR model parame-
ters can be estimated using state space methods and Kalman filter, as discussed
by [40].

Despite many other alternatives, regression methods are still one the most pop-
ular methods in EPF. However, they are usually combined with other methods
to get a better forecast. [33, 63, 66, 71] are some examples for application of
this approach in EPF.

3.3.3 AR-type and ARX-type time series models

AR-type time series models

AutoRegressive Moving Average or ARMA(p, q) model is the standard time se-
ries model that takes into account the random nature and time correlations of
the phenomenon under study. The current value of Xt is expressed by an au-
toregressive (AR) part that includes p past values of Xt and a moving average
(MA) part that consist of q past values of the noise.

ϕ(B)Xt = θ(B)ϵt. (3.4)

Here B is the backward shift operator, that is, BhXt = Xt−h and ϕ(B) =

1− ϕ1B − · · · − ϕpB
p, similarly, θ(B) = 1 + θ1B + · · ·+ θqB

q where ϕ1, · · · , ϕp

and θ1, · · · , θq are coefficients of AR and MA polynomials respectively. Finally,
ϵt is a white noise (i.i.d noise) with zero mean and finite variance, which is often
denoted as WN(0, σ2). If q = 0 the model is autoregressive AR(p) and if p = 0

it is Moving Average MA(q).

In the ARMA modeling, we assume that the data is weakly stationary, and if it
is not, transformation is needed. A simple way to make a non-stationary series
to stationary one is differencing. The resulting model is called Autoregressive
Integrated Moving Average or ARIMA(p, d, q). This model assumes d times
differencing before estimating p and q, and can be written as:

ϕ(B)∇dXt = θ(B)ϵt, (3.5)
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where ∇Xt = (1− B)Xt is a lag-1 differencing operator, and h-lag differencing
can be defined as ∇hXt = (1−Bh)Xt = Xt−Xt−h. Sometimes the simple differ-
encing is not enough to make the series stationary and a differencing with longer
lags is required. These models are called Seasonal ARIMA or SARIMA. The
general notation for such models is ARIMA(p, d, q) × (P,D,Q)s. The (p, d, q)

and (P,D,Q)s represent the order of the nonseasonal and seasonal parts respec-
tively, and s is the lag of the seasonal part. The mathematical notation for such
a models is:

ϕ(B)Φ(Bs)∇d∇D
s Xt = θ(B)Θ(Bs)ϵt, (3.6)

By taking X̃t = ∇d∇D
s Xt, we can simply convert a SARIMA model to ARMA.

Therefore, the estimation process for both ARIMA and SARIMA models are
analogous to that of an ARMA process. That is, firstly we have to do model
identification to find the order of the model and then model estimation, which
is estimating the coefficients using standard methods such as least squares or
maximum likelihood estimation. After finding the right ARMA-type model,
forecasting can be carried out using Durbin-Levinson algorithm. The details of
this procedure is explained in classical time series analysis textbooks.

There are many studies that used ARMA and its variants for EPF. [33, 34, 83]
are some examples of such studies.

ARX-type time series models

The ARMA process that was formulated by (3.4) only used the previous values
of price and the error to forecast the future. However, there are some external
factors that influence electricity price as well. These external factors are called
exogenous variables and they are usually load and consumption or weather data.

The models that incorporate these variables are often called time series with
exogenous variable. Therefore, ARX, ARMAX, ARIMAX, SARIMAX are gen-
eralized versions of AR, ARMA, ARIMA, and SARIMA models respectively.
The ARX-type models are called regression models in the literature as well.

The mechanism for incorporating the exogenous variables into ARMA-type
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model is straightforward. For example, in the ARMAX model, the current value
of the spot price Xt is expressed in terms of its past values and the previous
value of the noise, together with the present and past values of the exogenous
variable(s). The AutoRegressive Moving Average model with exogenous variables
V 1, . . . , V (k) or ARMAX(p, q, r1, . . . , rk), is formulated as:

ϕ(B)Xt = θ(B)ϵt +
k∑

i=1

ψi(B)V
(i)
t , (3.7)

where ri are the orders of the exogenous factors, where i = 1, . . . , k and ψi(B) =

ψi
0 + ψi

1B + · · ·+ ψi
ri
Bri with ψi

j as coefficients.

The transfer function of the ARMAX model is therefore:

Xt =
θ(B)

ϕ(B)
ϵt +

k∑
i=1

ψ̃i(B)V
(i)
t (3.8)

We can use the least squares method for estimation of ARX models. In this
method the difference of the square of the right-hand side and the left-hand
side of the equation (3.7) is minimized. For calibration of the model, we can use
maximum likelihood technique. In this method, we try to minimize the difference
between the model outputs and the observed values by selecting the right model
parameters. In addition to these methods, there are other methods what can be
used for estimation and calibration.

Time series models with exogenous variables have been extensively used in EPF.
For example [33, 75, 83, 85, 119] are some of these studies.

3.3.4 Threshold Autoregressive Models

There are generally two class of regime-switching models. One is the model that
the regime is determined by an observable variable, and the other is the model
that the regime is determined by an unobservable variable. In the former, the
regimes have already occurred in the past, however, in the latter, we can never
be sure whether the regime change has occurred or not.

Threshold Autoregressive (TAR) models are the most important models of the
first class. They were first introduced by Tong and Lim [52] and assume spe-
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cific values for the observable variable vt relative to a threshold value T . The
formulation of these models is as follows:

ϕ1(B)XtI(vt≤T ) + ϕ2(B)XtI(vt>T ) = ϵt, (3.9)

where
ϕi(B) = 1− ϕi,1B − · · · − ϕi,pB

p,
i = 1, 2,
B is the backward shift operator,
I(.) denotes the indicator function, and
Xt is the spot electricity price.

It is possible to have more than two regimes, the formulation of such a model is
as follows:

ϕ1(B)XtI(vt≤T1) + ϕ2(B)XtI(T1<vt≤T2) + · · ·

+ ϕn(B)XtI(Tn−1<vt≤Tn) + ϕn+1(B)XtI(Tn<vt) = ϵt, (3.10)

and
i = 1, 2, . . . , n+ 1,
Furthermore, it is possible to add exogenous variable(s) to the TAR model to
make a TARX model.

When the threshold variable is taken as the lagged value of the price, the re-
sulting model is called Self Exciting TAR (SETAR) model. This model can be
modified to allow gradual transition between regimes, and resulting in a Smooth
Transition AR(STAR) model. Logistic function as a popular choice for the
transition function is expressed as:

G(Xt−d; γ, T ) = [1 + exp{−γ(Xt−d − T )}]−1, (3.11)

where d is the lag and γ determines the smoothness of the transition. This
model is known as the Logistic STAR(LSTAR) model.

For a review of studies on EPF using TAR models, one can refer to [30, 55, 83,
94, 95].
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3.3.5 Heteroskedasticity and GARCH-type models

In conventional econometric models, the variance of the disturbance term is
assumed to be constant. However, in many cases, such as electricity prices,
the time series exhibit periods of unusually large volatility, followed by period
of relative tranquility. In such circumstances, the assumption of a constant
variance (homoskedasticity) is inappropriate.

The Autoregressive Conditional Heteroskedastic (ARCH) model, introduced by
Engle (1982), was the first model to address this issue. In this model, the
conditional variance of the time series {Xt} is represented by an autoregressive
process, which is a weighted sum of squared preceding observations:

ϵ̂t
2 = α0 + α1ϵ̂

2
t−1 + α2ϵ̂

2
t−2 + · · ·+ αq ϵ̂

2
t−q + vt, (3.12)

where vt is a white-noise process.

There are many possible application of ARCH models since the residuals in
(3.12) can come from an autoregression, an ARMA model, or a standard regres-
sion model.

Since the conditional variance are best estimated simultaneously using max-
imum likelihood techniques, and it is better to specify vt as a multiplicative
disturbance, we can reformulate (3.12) to:

ϵt = vt

√
α0 + α1ϵ2t−1 (3.13)

where vt is a white-noise process such that σ2
v = 1, vt and ϵt−1 are independent

of each other, and α0 and α1 are constants such that α0 > 0 and 0 ≤ α1 ≤ 1.

Bollerslev (1986) extended Engle’s original work by developing a technique that
allows the conditional variance to be an ARMA process. If we let the process
be such that:

ϵt = vt
√
ht,

where σ2
v = 1,

ht = α0 +

q∑
i=1

αiϵ
2
t−i +

p∑
i=1

βih
2
t−i, (3.14)
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Since {vt} is a white-noise process, the conditional and unconditional means of
ϵt are equal to zero. The conditional variance of ϵt is the ARMA process given
by the expression ht in (3.14).

The generalized ARCH(p, q) model, called GARCH(p, q), allows for both
autoregressive and moving average components in the heteroskedastic variance.
The benefit of a GARCH model is that, an ARCH model may have a more
parsimonious GARCH(p, q) representation that is much easier to identify and
estimate. This is particularly true since all the coefficients in the (3.14) must
be positive. Moreover, to ensure that the variance is finite, all roots of the
characteristic functions in (3.14) must lie inside the unit circle. Clearly, the
more parsimonious model will entail fewer coefficient restrictions.

The key feature of GARCH models is that the conditional variance of the dis-
turbances of the {Xt} sequence constitutes an ARMA process. Hence, it is
expected that the squared residuals from a fitted ARMA model should display
this characteristic pattern.

That is, if there is conditional heteroskedasticity, the correlogram of the squared
residuals should be suggestive of such a process. The algorithm to construct the
correlogram of the squared residuals is as follows:

Step 1: Estimate the {Yt} sequencing using the “best fitting” ARMA model
(or regression model) and obtain the squares of the fitted errors {ϵ2t}. Also
calculate the sample variance of the residuals σ̂2 defined as

σ̂2 =
T∑
t=1

ϵ̂2t/T ,

where T = number of residuals

Step 2: Calculate and plot the sample autocorrelations of the squared residuals
as:

ρi =

∑T
t=i+1 (ϵ̂

2
t − σ̂2)(ϵ̂2t−i − σ̂2)∑T
t=1 (ϵ̂

2
t − σ̂2)

,

Step 3: In large samples, the standard deviation of ρi can be approximated by
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T−0.5. Individual values of ρi that are significantly different from zero are
indicative of GARCH errors. Ljung-Box Q-Statistics can be used to test
for groups of significant coefficients. The statistic

Q = T (T + 2)
n∑

i=1

ρ2i /(T − i),

has an asymptotic χ2 distribution with n degrees of freedom if the {ϵ2t}
sequence is serially uncorrelated. Rejecting the null hypothesis that the
{ϵ2t} are serially uncorrelated is equivalent to rejecting the null hypothesis
of no ARCH or GARCH errors. In practice we consider values of n up to
T/4.

In fact, the identification and estimation of GARCH models are analogous to
that of (S)AR(IMA) models; Maximum Likelihood (ML) is the preferred al-
gorithm. By itself, the GARCH model is not attractive for short-term EPF;
however, when they are coupled with an AR-type model, it presents an inter-
esting alternative; the (S)AR(IMA)-GARCH model, where the residuals of the
regression part are modeled further with a GARCH process.

Although electricity prices exhibit heteroskedasticity, the GARCH models are
not always as successful as expected. Some studies on application of such models
in EPF include [38, 64, 69].

3.4 Model Selection Criteria

There is not always a single model that can describe the relative behavior of the
data. So, we need to choose the best model. As George Box said, “All models
are wrong, but some are useful”. With that in mind, we try to find the model
that best approximates the reality. That is the model that minimizes the loss of
information. Kullback and Leibler (1951) developed a measure called Kullback-
Leibler information to address this issue. On 1973 Akaike recommended to use
Kulback and Leibler information for model selection. He established an infor-
mation criteria based on maximum likelihood to estimate the Kulback-Liebler

27



information. His measure called the Akaike information criteria is defined as:

AIC = −2 log(L) + 2K, (3.15)

Where K is the number of estimated parameters in the model, and L is the like-
lihood of the model. Schwarz (1978) derived the Bayesian information criteria
as:

BIC = −2 log(L) +K log(n), (3.16)

where n is the number of observations or the sample size, K is the number of
parameter to estimate. As AIC and BIC measure the loss of information in the
model, for selecting the best model, one should find the value of AIC or BIC
for all the models and select the model with the minimum value of AIC or BIC
respectively.

In this study, we only use the AIC and BIC for selecting the best model. How-
ever, there are other criteria and methods which can be used for model selection.
For a detailed explanation of the model selection process and the other criteria
and methods refer to [17] and [131].

3.5 Model Performance Measures

When we find the best model, we can forecast the future. If we denote yt as the
observation at time t and ft as the forecast value at time t, then et = ft − yt is
the forecast error at time t. Also, we define Mean(yt) = 1

n

∑n
i=1 yt, for simplicity

of the formulas.

There are a number of accuracy measures to assess the forecast. Some are
scaled dependent measures. These measures are useful when comparing different
models applied to the same data set. Some examples of such measures are:

• Mean Squared Error (MSE) = Mean(e2t )

• Root Mean Squared Error (RMSE) =
√
MSE

• Mean Absolute Error (MAE) = Mean(|et|),
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Some other measures are based on percentage errors. The percentage error is
calculated as pt = 100et/yt. The advantage of these measures is that they are
independent of the scale. So they can be used across different data sets. Some
examples of these measures are:

• Mean Absolute Percentage Error (MPE) = Mean(pt),

• Mean Absolute Percentage Error (MAPE) = Mean(|pt|),

• Root Mean Square Percentage Error (RMSPE) =
√

Mean(pt2),

There are other types of forecast accuracy measures as well. For a more complete
explanation and discussion on these measures one can refer to [57].
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CHAPTER 4

ANALYSIS

4.1 Data Description

In this study, we used the hourly electricity demand (in MWh) and price (in
TL/MWh) of Turkey with permission from the authorities at Enerji Piyasaları
İşletme A.Ş.(EPİAŞ)1. We used the data from 1st January 2012 to 11 June
2014. This time period is equivalent to 21,432 hours. We divided the data
into a training set and a test set. The training set constitutes the data from 1
January 2012 to 1 January 2014, which is about 81.86% of the total data and
the remaining part was used the test set. We built our models in the training
set and then tested them on the test set. Tables 4.1 provides some descriptive
statistics for the whole price data.

Table4.1: Summary Statistics for Price (TL/MWh)

Min Max Range Median Mean Var Std.Dev
0 2,000 2,000 152 151.048 2,433.101 49.32

There are some interesting facts about the data. Firstly, the minimum price of
electricity is zero, which suggest that at some point, it was traded for free. This
unusual phenomenon is another characteristic of electricity markets. Since elec-
tricity can not be stored, when the supply exceeds the demand, it should be sold
in the market for free. Secondly, the variance of the price is very high compared
to its mean and the median. This is another characteristic of electricity prices
which is called high volatility.

1 https://www.epias.com.tr/index.php
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4.2 Exploratory Data Analysis

Figure 4.1 shows the hourly plot of price from 1 January 2012 to 11 June 2014.
As we can see there are some very sharp spikes. The huge spike in the beginning
of the data is the price on 13 February 2012, when the price reached the max-
imum of 2,000 TL/MWh at noon. We could not find any explanation for this
incident, but it was most probably due to an unexpected cutoff in electricity
supply at that time.

Figure 4.1: Hourly Price (1 Jan 2012 - 11 Jun 2014).

The spikes in the data, bring some difficulties in modeling. Some researchers
simply filter out the spikes and use the rest of the data for modeling. Some
others pre-process the data so that the outliers or the spike would not be so
sharp. It is also possible to use different models for the spiky region and the
normal region (regime switching models). For an study on application of various
techniques for pre-processing the spikes in electricity prices, one can refer to [60].
In our study, we first used the original data (without any pre-processing) and
built the model based on that data. Then we processed the data and applied
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the model on the new dataset and compared the forecast accuracy of the two
approaches.

4.3 Pre-processing spikes

In order to detect the outliers in the price, we took the 99.7% confidence interval
for the price as the acceptable limit and assumed the values outside this limit as
outlier. If we assume the mean value of price as M and the standard deviation
of the price as S, then the 99.7% confidence interval is equivalent to M ± 3 · S.
In practice, starting with the first observation in the data, we check whether the
price is out of the confidence interval or not. If so, it is considered as an outlier
and subsequently replaced with the price value at the boundary of the interval.
Note that, the standard deviation should be recalculated each time an outlier is
detected. Since after replacement of outliers with smaller values, the standard
deviation will decrease.

Figure 4.2 illustrates outliers in the price. There are some spikes located in the
middle of the price series, other than those huge ones previously shown in Figure
4.1.

After replacing the outliers with corresponding boundary value according to the
procedure outlined above, we get the spike processed price series which is plotted
in Figure 4.3. It may look that the price series has become more spiky after the
outlier treatment. However, this is not true, as in Figure 4.1 the spikes were
only invisible due to the range of Y-axis. The summary statistics for the price
after spike treatment are given in Table 4.2.

Table4.2: Summary statistics for spike processed price (TL/MWh)

Min Max Range Median Mean Var Std.Dev
10 299 289 152 150.3 1436.66 37.90

The exogenous variables for modeling price is different for each country. Some
countries use temperature, some others use demand and a few countries use other
economic measures for this purpose. According to a study that was done on

33



Figure 4.2: Spikes in the price series

Figure 4.3: Spike processed price plot
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2012 by Kamil Demirberk in his Masters thesis, the relation between electricity
price and temperature is not significant and therefore temperature should not
be considered as a regressor in modeling of electricity prices in Turkey. As we
will show in the following section, demand has a significant effect on electricity
prices in Turkey and should be considered as exogenous variable in regression.

Figure 4.4: Hourly plot of demand.

Figure 4.4 shows the plot of demand for the whole time period and for a 4-week
time window. There are three apparent seasonal patterns in the plot, namely
daily, weekly and yearly seasonality.

4.4 Modeling

We briefly explained the statistical models used in the literature for EPF in
Chapter 3. In this study, we modeled the price using the regression method. In
this model, we used the lagged values of price as the regressors, demand as the
exogenous variable, and dummy variables for Saturdays and Sundays to handle
seasonality.
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In general, the steps in building a time series model can be summarized as:

1. Perform exploratory data analysis to look for abnormalities in the data,

2. Pre-process or transform the data where necessary,

3. If the data is non-stationary, make it stationary by taking the difference
of the data,

4. Examine the autocorrelation function (ACF) and partial autocorrelation
function (PACF) plots of the data for model identification,

5. Check the model recursively by plotting the ACF plot of the residuals
and do portmanteau tests on the residuals for model estimation. (Use
Information Criteria to find the best model)

6. If the residuals are not white noise, remodel the data or if there is het-
eroskedasticity, use GARCH models,

7. Perform model diagnostics tests by:

• Jarque-Bera Normality Test for checking normality of errors,

• Durbin-Watson and Ljung-Box tests for checking serial correlation,

• Breusch-Pagan test for checking heteroskedasticity,

8. If the tests pass, calculate the forecasts.

9. Check the forecast accuracy

4.4.1 An ARX-type model for Price

We used the original price data, that is data without any treatment on the spikes,
to build our models. Then we processed the spikes and applied the initial model
on the new price and compared the accuracy of the forecast.

As we saw in Figure 4.1, price has a non-stationary series, since the variance of
the price is not constant over time. This implies that we may need to difference
the series to make it stationary. The statistical tests for regular and seasonal

36



unit roots also suggest the existence of one regular unit root for both the price
and demand series. However, since differencing results in loss of information,
and also it leads to dealing with cointegration in the series and vector correction
modeling, we preferred not to use differencing and leave it for future studies.

To build an autoregressive model we need to find the significant lags of price
as the regressors. For this purpose we used the ACF and PACF plots of the
price series. As we can see in Figure 4.5, both ACF and PACF have a decaying
oscillating behavior that suggest an ARMA(p, q) model for the price. However,
as there is multiple seasonality in the price, namely daily, weekly and yearly
seasonality, a simple ARMA(p, q) model is not a good model for price.

Figure 4.5: ACF and PACF plot of price.

After numerous modeling attempts, we finally came up with (4.1) as the best
regression model for price.

Pt = α0 + α1Pt−1 + α2Pt−2 + α3Pt−3 + α4Pt−4 + α5Pt−5 + α18Pt−18+

α24Pt−24 + α36Pt−36 + α48Pt−48 + α72Pt−72 + α168Pt−168

+Xt +Dsat +Dsun + ut (4.1)
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where:
Pt : is the current value of price,
Pt−i : is the i-th lagged price value,
Xt : is the demand as the exogenous variable of the model,
Dsat and Dsun are the dummy variables for Saturday and Sunday, and
ut : is the error term.

In order to choose the right set of dummies to handle seasonality we first put
dummy variables for all days of a week in the model. Then by trial and error, we
removed the insignificant days and ended up with only Saturdays and Sundays to
handle seasonality. We also tested using multiple sine and cosine functions with
various periods as regressors, however, neither of those terms had a significant
contribution to our model and subsequently were removed.

The estimated values for model parameters and the significant level of each
parameter is given in Table 4.4. Table 4.3 shows the descriptive statistics for
the residuals of the model. The maximum value of the residual is 1,250.86
which indicates that the model was not able to capture the spikes in the price.
It should also be noted that the value of Adjusted R-squared is 0.9795, which is
an indicator for the good performance of the model.

Table4.3: Descriptive statistic for residuals

Min 1Q Median 3Q Max
-428.85 -7.68 -0.50 6.28 1,250.86

The best model is the model which has the least number of parameters and can
finely predict the real data. The latter phrase means that the best model is
the one that has white noise residuals. However, as mentioned in Table 4.3 the
residuals of the model have high variability and does not look like a white noise.
So, we tried to model the residuals using regression and came up with (4.2) as
the best model for residuals.

ut = β0 + β1ut−1 + β2ut−2 + β3ut−3 + β6ut−6 + β24ut−24

+β48ut−48 + β72ut−72 + β96ut−96 + β168ut−168 + vt (4.2)
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Table4.4: Model Parameter Estimation

Regressors Estimate Std.Error t-value Pr(>|t|) Sig. Level
Pt−1 9.062e-01 7.687e-03 117.886 < 2e-16 ***
Pt−2 -2.724e-01 1.027e-02 -26.523 < 2e-16 ***
Pt−3 2.335e-01 1.032e-02 22.631 < 2e-16 ***
Pt−4 -8.510e-02 1.027e-02 -8.284 < 2e-16 ***
Pt−5 -5.978e-02 7.030e-03 -8.503 < 2e-16 ***
Pt−18 2.719e-02 3.234e-03 8.407 < 2e-16 ***
Pt−24 4.842e-02 4.460e-03 10.857 < 2e-16 ***
Pt−48 8.415e-02 4.311e-03 19.519 < 2e-16 ***
Pt−72 4.176e-02 4.370e-03 9.556 < 2e-16 ***
Pt−168 4.124e-02 4.115e-03 10.021 < 2e-16 ***
Xt 2.356e-04 3.465e-05 6.798 1.10e-11 ***
Dsat -2.196e+00 5.027e-01 -4.368 1.26e-05 ***
Dsun -6.049e+00 5.117e-01 -11.822 < 2e-16 ***

To be a good model, the residuals (vt) of (4.2) should look like a white noise. In
other words, the ACF plot of the residual should not have any significant lags
and all the values of autocorrelation should lie inside the white noise bounds.
Figure 4.6 shows the ACF and PACF plots for the residuals. It is clear from the
graphs that the model is not sufficient.

The normality tests on the residual (p-value<2.2e-16) also confirms the inade-
quacy of the model. Figure 4.7 shows the Q-Q plot of the residuals (vt). As we
can see, the plot has heavy tails, which is another indicator for non-normality
of the errors.

Furthermore, Breusch–Godfrey test for serial correlation (p-value<2.2e-16) also
rejects the null hypothesisH0 of uncorrelated errors. And Breusch-Pagan test for
heteroskedasticity (p-value<2.2e-16), rejects the null hypothesis of homoskedas-
ticity and proves the existence of heteroskedasticity in the data. These findings
can also be proved by looking at the significant lags in the ACF and PACF plot
of residuals.

To model the variability in the data we need to use a GARCH model. We built
various GARCH models according to the significant lags in ACF and PACF plots
of the residuals. The best model was chosen based on the AIC and BIC criteria
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Figure 4.6: ACF and PACF of vt

Figure 4.7: Q-Q plot of the vt.
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and also the ACF plot of the squared standardized residuals. As explained in
Section 3.4, model selection criteria, the best model is the one which has the
minimum AIC and BIC values and also has the least number of parameters.
The ACF plot of the squared standardized residuals should look like a white
noise when the model fits the data. In this study we built the GARCH mod-
els presented in Table 4.5 for the residuals (ut). After examining each model,
ARMA(8,8)GARCH(24,1) was chosen as the best model. It should be noted
that choosing the model only based on AIC and BIC would lead us to choose
ARMA(24,24)GARCH(24,1), but this model has too many parameters that were
not making a big difference. Also, the model did not have a white noise ACF
plot for squared standardized residuals.

Table4.5: Information Criteria for models

Model AIC BIC
ARMA(24,24)GARCH(24,1) 7.463061 7.492131
ARMA(24,4)GARCH(24,1) 7.563173 7.584593
ARMA(5,4)GARCH(24,1) 7.745489 7.759642
ARMA(24,24)GARCH(1,1) 7.554887 7.575159
ARMA(8,8)GARCH(24,1) 7.721317 7.738147
ARMA(7,7)GARCH(24,1) 7.728746 7.744811

The ACF plot of the square standardized residuals for the selected model behave
normally as shown in Figure 4.8. In this figure the plots in the first row are for
the residuals and those in the second row are for the standardized residuals. In
each row, the first column is the plot of the residuals, the second is the ACF
plot and the third is the ACF for the squared valued of residuals.

After identifying the GARCH model we need to incorporate the GARCH effect
of the residuals into the original model for the price (4.1). For this purpose
we simply refit (4.1) to the data and put the weights of the regression equal
to the inverse of the conditional variance of the selected GARCH model. Note
that, since the residuals of the model were not normally distributed, as shown in
Figure 4.7, we assumed a Student t-distribution for the conditional distribution
in the regression. For a more detailed explanation of this approach refer to [96].
When we refit the model using this approach, the Adjusted R-squared value of
the refitted model becomes 0.9964.
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Figure 4.8: ACF plots of squared standardized residuals

4.5 Forecasting

For forecasting the price, we first need to forecast the demand. Since demand is
one of the components in the price model. Although in this study we have the
values of demand for the training and the test set, however in reality we do not
know the exact values for demand.

4.5.1 Forecasting Demand

We applied two methods to forecast the demand, namely Double Seasonal Holt-
Winters modeling, and ARIMA modeling. For the first model we used a pro-
cedure called dshw() from package {Forecast} in R and the second model was
built using the auto.arima() procedure in the same package. For a detailed
explanation of these procedure an interested reader can refer to [56]. In the
following subsections we explain the outcome of forecasting demand using each
of these methods.
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4.5.1.1 Forecasting using dshw()

Since there is multi-seasonality in demand series, we decided to use a model
considering this behavior. Double Seasonal Holt-Winter method, one of the
exponential smoothing methods, covers this characteristics of the data. Taylor
on 2003 developed Double Seasonal Holt-Winters method. This method uses
two seasonal cycles where the shorter cycles repeats itself inside the longer one.
If we let m1 and m2 as the periods of the short and the long cycles in this
method, then:

yt = lt−1 + bt−1 + s
(1)
t−m1

+ s
(2)
t−m2

+ ϵt, (4.3)

lt = lt−1 + bt−1 + αϵt, (4.4)

bt = bt−1 + βϵt, (4.5)

s
(1)
t = s

(1)
t−m1

+ γ1ϵt, (4.6)

s
(2)
t = s

(2)
t−m2

+ γ2ϵt, (4.7)

where ϵt~NID(0, σ2) and γ1 and γ2 are the smoothing parts for seasonal com-
ponents. Such a model is called a DS(m1,m2) model with the seasonal cycles
as:

c
(1)
t = (s

(1)
t , s

(1)
t−1, . . . , s

(1)
t−m1+1)

′, (4.8)

c
(2)
t = (s

(2)
t , s

(2)
t−1, . . . , s

(2)
t−m2+1)

′. (4.9)

In this model, we set two seasonality periods. The first period was set to 24
for daily and the second one to 168 for weekly seasonality. The procedure
automatically estimates the parameter of the model using least squares method
and does the forecast for h steps ahead.

Figure 4.9 illustrates the graph for demand. In this graph, both the actual values
of demand (in dash line), and the forecast values are plotted for two weeks ahead.
As we can see, the forecast are only good for the first day and after that the
forecast values are always less that the actual ones. However, it should be noted
that, the seasonal pattern in the forecast is similar to the pattern in demand.

The goodness of fit for this model is presented in Table 4.6 and the forecast
accuracy measures are given in Table 4.7.
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Figure 4.9: Plot of demand forecast using dshw() procedure

Table4.6: Accuracy measure for demand model

ME RMSE MAE MPE MAPE MASE
-8.065 340.885 239.682 -0.038 0.876 0.246

Table4.7: Demand forecast accuracy measures using dshw()

ME RMSE MAE MPE MAPE
-483.622 1931.417 1506.25 -2.34 6.188

4.5.1.2 Forecasting using auto.arima()

It is also possible to model a series using auto.arima() procedure in package
{Forecast}. Using this method for demand data, we found an ARIMA(24,1,1)
model. The accuracy measure for this model are shown in Table 4.8.

Table4.8: Demand accuracy measures for predicted values vs. actual value for
ARIMA(24,1,1) model

ME RMSE MAE MPE MAPE MASE
0.23 636.89 336.30 -Inf Inf 0.34
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Table 4.9 shows the accuracy measures of demand forecast for one day ahead.

Table4.9: Demand forecast accuracy measures for ARIMA(24,1,1) model

ME RMSE MAE MPE MAPE MASE
-1,725.23 3,389.89 2,701.64 -7.35 11.02 11.023457

Figure 4.10: Demand forecast for ARIMA(24,1,1) model

Comparing the accuracy of demand forecast using the two methods, we realize
that the demand forecast using dshw()method is slightly better than the forecast
using auto.arima() method. Therefore, for calculation of price forecast we used
the result of dshw(). This finding can also be visually inspected by comparing
4.10 and 4.9.

4.5.2 Forecasting Price

The predicted values of the price and the actual prices have a correlation of
0.965. This can be seen in the plot of the actual price values (Dashed line) and
the predicted ones in Figures 4.11, 4.12 and 4.13. It can be said that the model
behavior is acceptable where there are no high jumps or spikes in the price.
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However the model fails to fully capture the spikes. Table 4.10 indicates the
accuracy measures of the model.

Table4.10: Model Accuracy Measures

Measure Description Value
ME Mean Error 0.60
RMSE Root Mean Squared Error 22.56
MAE Mean Absolute Error 10.59
MPE Mean Percentage Error -488.49
MAPE Mean Absolute Percentage Error 495.47
COR Correlation between Price and Prediction 0.965

Figure 4.11: Daily comparison of actual versus predicted price values

To assess the behavior of a model in future we need to forecast the data and check
the forecast accuracy. After forecasting the exogenous variable in the model
(demand), we can forecast the price. For this purpose we used the predict()
function in package {stats} in R, and set h to 24, for one day ahead prediction,
and then plotted the forecast values.

We used both of our demand forecasts and compared the resulting price forecast
together. The accuracy measure given in Table 4.11 indicate that the price
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Figure 4.12: Weekly comparison of actual versus predicted price values

Figure 4.13: Monthly comparison of actual versus predicted price values

47



forecast does not change significantly when we use different forecast for demand.
This is due to the small estimate value for demand parameter in the model. So
we chose the forecast obtained using double seasonal Holt-Winters model as our
main forecast.

Table4.11: Accuracy measures for the two price forecast

ME RMSE MAE MPE MAPE
-0.197 0.282 0.224 -0.111 0.126

Figure 4.14 shows the plot of predicted price values versus the actual values for
the first day in the test set. As we can see, the predicted values are close to the
actual values for this particular day where there is no spikes. However, as we
mentioned in Table 4.10, due to the existence of spikes, the accuracy measures
for the model are bigger than these values.

Figure 4.14: Price forecast for one day ahead (The first day in the test set)

Table4.12: Price forecast Accuracy Measures for one day ahead

ME RMSE MAE MPE MAPE
-0.8872706 8.6182022 5.8491320 -0.7326048 3.6207281
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Finally, we ran the analysis again using the spike processed data and followed
all the modeling steps. But, we could not get better forecast. This is due to
the fact that, spikes have a significant effect on model parameter estimation.
Therefore, when we process the spikes, a new model should be constructed for
the new data. Obviously the new price data will have less volatility and therefore
it would be easier to fit a model to it. It may also be possible to use standard
ARIMA models or other conventional modeling approaches. However, doing so
is beyond the scope of this study and is left for future studies.
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CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

The liberalization of electricity market in Turkey started on 2001 and the market
became fully liberalized on 2013. In such a market, an accurate price forecast
is fundamental to market participants. However, since the Turkish liberalized
electricity market is young, there are not enough studies on forecasting the elec-
tricity prices when compared to the industrial countries. Therefore, we decided
to work on using statistical models for modeling and forecasting electricity prices
in Turkey

In Chapter one, we introduced the idea of liberalization in electricity market
and it benefits for consumers, then we discussed the state of electricity market
in Turkey briefly. In Chapter two, we reviewed the major literature on EPF
in the World and in Turkey. This helped us figure out the current trends in
modeling and find the gap in Turkey. To the best of our knowledge, there
have not been enough studies on EPF in Turkey in general, and studies using
statistical modeling techniques are specifically rare. Subsequently, we decided
to work on using statistical modeling techniques in EPF in Turkey. In Chapter
three we briefly introduced the main statistical methods used for EPF in the
literature and explained the criteria for selecting the best model and forecast
accuracy measures.

In Chapter four we focused on modeling the price. We first split the data set
into two separate sets, namely the training set and the test set. The models
were build based on the training set and were tested on the test set. Before
starting to model the price, we pre-processed the spikes. Our approach was to
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replace all the values outside 99.7% confidence limit by the boundary value of
interval. For this purpose, we calculated mean plus three times standard of the
price and the upper limit and mean minus three times standard deviation of the
price as the lower limit. Starting with the first entry, we calculated the limit for
all the entries in price series and replaced the value where necessary. We first
built our models based on the original series, and then used that model on the
spike processed series.

For modeling, we used an ARX type model for the price. Since there was multi-
ple seasonality in the price series, we decided to use a regression model instead
of SARIMA models. In this model, lagged values of the price were used as re-
gressors to make the autoregressive part. The lags were chosen according the the
ACF and PACF plots of the price. We used the demand as exogenous variable,
and dummy variables for the weekends (Saturdays and Sundays) to handle the
seasonality. It should be noted that, we did not do differencing on the price. Do-
ing so, leads us to deal with cointegration and vector correction modeling. The
diagnostic tests on the model proved existence of heteroskedasticity in the price.
So we modeled the residuals of the model using a ARMA(8,8)GARCH(24,1)
model and then incorporated this effect on the initial model. By adding the
GARCH part we were able to simulate price movements mostly in the steady
state, and to some extent in the spiky regions.

There are always room for improvements. In the follow-up studies, one can
build the model on the spikes processed series, and even use differencing to
make the series stationary. There are many variation of GARCH modeling,
such as EGARCH or TGARCH models. The use of these models can also be
studied in the context of electricity price modeling. However, as concluded in
Chapter two, the main trend in EPF in the world is to use hybrids methods. In
these methods, different modeling approaches are used to model price. Artificial
intelligence techniques, such as neural networks and support vector machines
can be combined with statistical techniques to simulate various characteristics
of electricity prices. To the best of our knowledge, there have not been studies
using hybrid methods on Turkey’s data. So in future researchers may consider
these approaches as well.
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APPENDIX A

R CODES

# Installing required packages and reading the data -----------------------

setwd("/Users/apple/Google Drive/Thesis/Code")

install.packages("lmtest")

require("lmtest")

install.packages("TSA")

require(TSA)

install.packages("pastecs") # to use stat.desc() method for good descriptive statistic

require("pastecs")

install.packages("forecast")

require("forecast")

install.packages("fGarch")

require(fGarch)

install.packages("stat")

require(stat)

data <- read.table("price-demand.csv", header=TRUE, sep=",")

price <- data[,3]

price[price==0] <- 0.01

plot(price, type="l",col="blue", xlab="Time (Hour)", ylab="Price (TL/MWh)")

lprice <- log(price)

plot(lprice, type="l",col="darkgreen", xlab="Time (Hour)", ylab="Log Price")

stat.desc(price)
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new.par <- par(mfrow=c(2,1))

demand <- data[,4]

plot(demand, type="l",col="brown",

xlab="Time by Year", xaxt="n", ylab="Demand")

axis(side = 1, at = c(0, 8781,17545),

labels = c("1 Jan 2012","1 Jan 2013", "1 Jan 2014"))

plot(demand, type="l",col="brown",

xlab="Time by Week", ylab="Demand", xaxt = "n",

xlim=c(1,672))

axis(side = 1, at = c(0, 168, 336, 504, 672),

labels = c("1 Jan 2012","8 Jan 2012", "15 Jan 2012",

"22 Jan 2012", "29 Jan 2012"))

stat.desc(demand)

# Outlier detection -------------------------------------------------------

#removing the one 3*std greather than the mean

spikes <- rep(NA,length(price))

count = 0

pprice <- price

for(i in 1:length(pprice)){

M = mean(pprice)

S = sd(pprice) # calculate standard deviation

UL = M+3*S # upper limit

DL = M-3*S # lower limit

if(pprice[i]>= UL)

{

count = count + 1

spikes[i]=pprice[i]

pprice[i]= UL

}

if(pprice[i]<= DL)

{
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count = count + 1

spikes[i]=pprice[i]

pprice[i]= DL

}

}

stat.desc(pprice)

# plot of the spikes

plot(spikes, ylab="Price (TL/MWh)", xlab="Time (hour)", main="Spikes in the Price")

# plot of the pre-processed price

plot(pprice, type="l",col="darkgreen", ylab="Price (TL/MWh)", xlab="Time (hour)",

main="Spikes Processed Price")

# price <- pprice

# Creating Dummy Variables ----------------------------------------------

dates <- ISOdatetime(2012,1,1,0,0,0)+1:(length(price))*60*60

df = data.frame(dates)

df$day <- weekdays(as.Date(df$dates))

# maximum lag we need for modeling

maxlag <- 336

L <- length(price)-maxlag

d.sat <- rep(NA,L)

for(i in 1:L)

{

if(df$day[i]=="Saturday")

d.sat[i]<-1

else

d.sat[i]<-0

}

d.sun <- rep(NA,L)

for(i in 1:L)

{

if(df$day[i]=="Sunday")
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d.sun[i]<-1

else

d.sun[i]<-0

}

d.mon <- rep(NA,L)

for(i in 1:L)

{

if(df$day[i]=="Monday")

d.mon[i]<-1

else

d.mon[i]<-0

}

d.tue <- rep(NA,L)

for(i in 1:L)

{

if(df$day[i]=="Tuesday")

d.tue[i]<-1

else

d.tue[i]<-0

}

d.wed <- rep(NA,L)

for(i in 1:L)

{

if(df$day[i]=="Wednesday")

d.wed[i]<-1

else

d.wed[i]<-0

}

d.thu <- rep(NA,L)

for(i in 1:L)

{

if(df$day[i]=="Thursday")

d.thu[i]<-1
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else

d.thu[i]<-0

}

d.fri <- rep(NA,L)

for(i in 1:L)

{

if(df$day[i]=="Friday")

d.fri[i]<-1

else

d.fri[i]<-0

}

# find and create minimum price of yesterday

mins <- rep(NA, L)

i <- 1

while(i<=L){

mins[i:(i+23)] <- min(price[i:(i+23)])

i <- i+24

}

# finding the mean price of yesterday

means <- rep(NA, L)

i <- 1

while(i<=L){

means[i:(i+23)] <- mean(price[i:(i+23)])

i <- i+24

}

# Creating a data frame for regressors ------------------------------------

x <- data.frame(cbind(as.ts(price),lag(price,k=-1),lag(price,k=-2),

lag(price,k=-3), lag(price,k=-4),lag(price,k=-5),

lag(price,k=-18),lag(price,k=-24), lag(price,k=-36),

lag(price,k=-48),lag(price,k=-72),lag(price,k=-168),

lag(price,k=-maxlag),lag(mins,k=-24), lag(means,k=-24),
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lag(demand,k=-maxlag),lag(d.mon,k=-maxlag),

lag(d.tue,k=-maxlag),lag(d.wed,k=-maxlag),lag(d.thu,k=-maxlag),

lag(d.fri,k=-maxlag),lag(d.sat,k=-maxlag),lag(d.sun,k=-maxlag)))

colnames(x) <- c("t","t1","t2","t3","t4","t5","t18","t24","t36","t48",

"t72","t168","t336","pmins","pmeans","dmnd"

,"d_mon","d_tue","d_wed","d_thu","d_fri","d_sat","d_sun")

xs <- x[maxlag+1:(length(price)-2*maxlag),]

attach(xs)

# length(xs$t)

# modeling the price ------------------------------------------------------

model1 <- lm(t ~ -1 + t1 + t24 + t48 + t168 + t336 + dmnd + pmins +

d_mon + d_tue + d_wed + d_fri + d_sat + d_sun)

summary(model1)

model2 <- lm(t ~ -1 + t1 + t24 + t48 + t168 + dmnd + pmins +

d_mon + d_tue + d_wed + d_fri + d_sat + d_sun)

summary(model2)

model3 <- lm(t ~ -1 + t24 + t48 + t168 + t336 + dmnd + pmins +

d_mon + d_tue + d_wed + d_fri + d_sat + d_sun)

summary(model3)

model4 <- lm(t ~ -1 + t24 + t48 + t168 + dmnd + pmins +

d_mon + d_tue + d_wed + d_fri + d_sat + d_sun)

summary(model4)

model5 <- lm(t ~ -1 + t24 + t48 + t168 + dmnd + pmins +

d_mon + d_tue + d_wed + d_thu + d_fri + d_sat + d_sun)

summary(model5)

model6 <- lm(t ~ -1 + t1 + t24 + t48 + t168 + dmnd + pmins +
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d_mon + d_sat + d_sun)

summary(model6)

model7 <- lm(t ~ -1 + t1 + t2 + t3 + t4 + t5 + t18 + t24 + t36 +

t48 + t72 + t168 +

dmnd + pmins + d_mon + d_tue + d_wed + d_fri + d_sat + d_sun)

summary(model7)

model8 <- lm(t ~ -1 + t1 + t2 + t3 + t4 + t5 + t18 + t24 +

t48 + t72 + t168 + dmnd +

d_sat + d_sun)

summary(model8)

model <- model8

accuracy(model)

# normality test and q-q plot for residuals

# tests for serial correlation

bgtest(model)

dwtest(model)

# tests for heteroscedasticity

bptest(model)

# Modeling Residuals ------------------------------------------------------

res <- resid(model)

plot(res,type="l")

ndiffs(res)

par(mfrow=c(2,1))

acf(res, lag.max=500)

pacf(res, lag.max=500)

# modeling residuls of the residuals

rr <- data.frame(cbind(as.ts(res),lag(res,k=-1),lag(res,k=-2),lag(res,k=-3),

lag(res,k=-4),lag(res,k=-5),lag(res,k=-6),lag(res,k=-7),
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lag(res,k=-12),lag(res,k=-24),lag(res,k=-25),lag(res,k=-40),

lag(res,k=-45),lag(res,k=-46),lag(res,k=-48),lag(res,k=-72),

lag(res,k=-96),lag(res,k=-168)))

colnames(rr) <- c("r","r1","r2","r3","r4","r5","r6","r7","r12","r24","r25",

"r40","r45","r46","r48","r72","r96","r168")

resmaxlag <- 168

rs <- rr[resmaxlag+1:(length(rr$r)-2*resmaxlag),]

length(rs$r)

attach(rs)

model.res1 <- lm(r ~ r1 + r4 + r24)

summary(model.res1)

model.res2 <- lm(r ~ r1 + r24 + r48)

summary(model.res2)

model.res3 <- lm(r ~ r1 + r4 + r5 + r24 + r48)

summary(model.res3)

model.res4 <- lm(r ~ r1 + r2 + r3 + r4 + r5 + r6 + r7 + r24 + r48)

summary(model.res4)

model.res5 <- lm(r ~ -1 + r1 + r2 + r3 + r6 + r24 + r48 + r72 + r96 + r168)

summary(model.res5)

model.res6 <- lm(r ~ -1 + r1 + r2 + r3 + r5 + r6 + r12+ r24 + r25 + r45 +

r46+ r40 + r48 + r72)

summary(model.res6)

rmodel <- model.res5

rres <- resid(rmodel)

plot(rres, type="l")

acf(rres, main="Vt")

# q-q plot of residuals

par(mfrow=c(1,1))

qqnorm(rres)

qqline(rres)

# tests for serial correlation
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bgtest(rmodel)

dwtest(rmodel)

# tests for heteroscedasticity

bptest(rmodel)

# ARMA(24,24)GARCH(24,1) --------------------------------------------------

garch.model1 = garchFit(formula= ~arma(24,24) + garch(24,1),

res, cond.dist = "std", trace=FALSE)

summary(garch.model1)

garch.model1@fit$matcoef

res1 = residuals(garch.model1)

res1_std = res1 / garch.model1@sigma.t

par(mfrow=c(2,3))

plot(res1)

acf(res1,lag=100)

acf(res1^2,lag=100)

plot(res1_std)

acf(res1_std,lag=100)

acf(res1_std^2,lag=100)

fit1 <- lm(formula = t ~ -1 + t1 + t2 + t3 + t4 + t5 + t18 + t24 +

t48 + t72 + t168 + dmnd +

d_sat + d_sun, weights = 1/garch.model1@sigma.t^2)

summary(fit1)

accuracy(fit1)

preds1 <- predict(fit1)

# ARMA(24,4)GARCH(24,1) ---------------------------------------------------

garch.model2 = garchFit(formula= ~arma(24,4) + garch(24,1), res,

cond.dist = "std", trace=FALSE)
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summary(garch.model2)

garch.model2@fit$matcoef

res2 = residuals(garch.model2)

res2_std = res2 / garch.model2@sigma.t

par(mfrow=c(2,3))

plot(res2)

acf(res2,lag=100)

acf(res2^2,lag=100)

plot(res2_std)

acf(res2_std,lag=100)

acf(res2_std^2,lag=100)

fit2 <- lm(formula = t ~ -1 + t1 + t2 + t3 + t4 + t5 + t18 + t24 +

t48 + t72 + t168 + dmnd +

d_sat + d_sun, weights = 1/garch.model2@sigma.t^2)

summary(fit2)

accuracy(fit2)

preds2 <- predict(fit2)

# ARMA(5,4)GARCH(24,1) -----------------------------------------------------

garch.model3 = garchFit(formula= ~arma(5,4) + garch(24,1), res,

cond.dist = "std", trace=FALSE)

summary(garch.model3)

garch.model3@fit$matcoef

res3 = residuals(garch.model3)

res3_std = res3 / garch.model3@sigma.t

par(mfrow=c(2,3))

plot(res3)

acf(res3,lag=100)

acf(res3^2,lag=100)

plot(res3_std)

acf(res3_std,lag=100)
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acf(res3_std^2,lag=100, main="ARMA(5,4)GARCH(24,1)")

fit3 <- lm(formula = t ~ -1 + t1 + t2 + t3 + t4 + t5 + t18 + t24 +

t48 + t72 + t168 + dmnd +

d_sat + d_sun, weights = 1/garch.model3@sigma.t^2)

summary(fit3)

accuracy(fit3)

preds3 <- predict(fit3)

# ARMA(24,24)GARCH(1,1) ---------------------------------------------------

garch.model4 = garchFit(formula= ~arma(24,24) + garch(1,1), res,

cond.dist = "std", trace=FALSE)

summary(garch.model4)

garch.model4@fit$matcoef

res4 = residuals(garch.model4)

res4_std = res4 / garch.model4@sigma.t

par(mfrow=c(2,3))

plot(res4)

acf(res4,lag=100)

acf(res4^2,lag=100)

plot(res4_std)

acf(res4_std,lag=100)

acf(res4_std^2,lag=100)

fit4 <- lm(formula = t ~ -1 + t1 + t2 + t3 + t4 + t5 + t18 + t24 +

t48 + t72 + t168 + dmnd +

d_sat + d_sun, weights = 1/garch.model4@sigma.t^2)

summary(fit4)

accuracy(fit4)

preds4 <- predict(fit4)
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# ARMA(8,8)GARCH(24,1) ----------------------------------------------------

garch.model5 = garchFit(formula= ~arma(8,8) + garch(24,1), res,

cond.dist = "std", trace=FALSE)

summary(garch.model5)

garch.model5@fit$matcoef

res5 = residuals(garch.model5)

res5_std = res5 / garch.model5@sigma.t

par(mfrow=c(2,3))

plot(res5, type="l")

acf(res5,lag=100)

acf(res5^2,lag=100)

plot(res5_std, type="l")

acf(res5_std,lag=100)

acf(res5_std^2,lag=100)

# ARMA(7,7)GARCH(24,1) modeling -------------------------------------------

garch.model6 = garchFit(formula= ~arma(7,7) + garch(24,1),

res, cond.dist = "std", trace=FALSE)

summary(garch.model6)

garch.model6@fit$matcoef

res6 = residuals(garch.model6)

res6_std = res6 / garch.model6@sigma.t

par(mfrow=c(2,3))

plot(res6, type="l")

acf(res6,lag=100)

acf(res6^2,lag=100)

plot(res6_std, type="l")

acf(res6_std,lag=100)

acf(res6_std^2,lag=100)

# ARMA(5,2)GARCH(24,1) modeling -------------------------------------------
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garch.model7 = garchFit(formula= ~arma(5,2) + garch(24,1),

res, cond.dist = "std", trace=FALSE)

summary(garch.model7)

garch.model7@fit$matcoef

res7 = residuals(garch.model7)

res7_std = res7 / garch.model7@sigma.t

par(mfrow=c(2,3))

plot(res7, type="l")

acf(res7,lag=100)

acf(res7^2,lag=100)

plot(res7_std, type="l")

acf(res7_std,lag=100)

acf(res7_std^2,lag=100)

# ARMA(1,1)GARCH(24,1) modeling -------------------------------------------

garch.model8 = garchFit(formula= ~arma(1,1) + garch(24,1),

res, cond.dist = "std", trace=FALSE)

summary(garch.model8)

garch.model8@fit$matcoef

res8 = residuals(garch.model8)

res8_std = res8 / garch.model8@sigma.t

par(mfrow=c(2,3))

plot(res8, type="l")

acf(res8,lag=100)

acf(res8^2,lag=100)

plot(res8_std, type="l")

acf(res8_std,lag=100)

acf(res8_std^2,lag=100)

# ARMA(1,1)GARCH(1,1) modeling --------------------------------------------
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garch.model9 = garchFit(formula= ~arma(1,1) + garch(1,1),

res, cond.dist = "std", trace=FALSE)

summary(garch.model9)

garch.model9@fit$matcoef

res9 = residuals(garch.model9)

res9_std = res9 / garch.model9@sigma.t

par(mfrow=c(2,3))

plot(res9, type="l")

acf(res9,lag=100)

acf(res9^2,lag=100)

plot(res9_std, type="l")

acf(res9_std,lag=100)

acf(res9_std^2,lag=100)

# ARMA(1,1)GARCH(1,0) modeling --------------------------------------------

garch.model10 = garchFit(formula= ~arma(1,1) + garch(1,0),

res, cond.dist = "std", trace=FALSE)

summary(garch.model10)

garch.model10@fit$matcoef

res10 = residuals(garch.model10)

res10_std = res10 / garch.model10@sigma.t

par(mfrow=c(2,3))

plot(res10, type="l")

acf(res10,lag=100)

acf(res10^2,lag=100)

plot(res10_std, type="l")

acf(res10_std,lag=100)

acf(res10_std^2,lag=100)

# refitting the model -----------------------------------------------------

fit5 <- lm(formula = t ~ -1 + t1 + t2 + t3 + t4 + t5 + t18 + t24 +
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t48 + t72 + t168 + dmnd + d_sat + d_sun,

weights = 1/garch.model5@sigma.t^2)

summary(fit5)

accuracy(fit5)

preds5 <- predict(fit5)

# Plotting the Predicted values ------------------------------------------

price1 <- price[(maxlag):length(price)]

par(mfrow=c(1,1))

plot(price1, xlim=c(1001,1024),ylim=c(0,300),

xaxp=c(0,length(preds5),length(preds5)/1),

type="l", xlab="Time (hour)", ylab="Price (TL/MWh)", lty=2)

lines(preds5, col="blue")

abline(h=mean(price1), col = "gray10", lty = 3)

legend("topright",c("Actual Price","Predicted Price"),

lty=c(2,1), col=c("black","blue"),lwd=c(1.5,2.5),

cex=0.85, inset=0.02,text.width=3, bty="o", xjust=0, seg.len=2)

plot(price1, xlim=c(1001,1168),ylim=c(0,300),

xaxp=c(0,length(preds5),length(preds5)/24),

type="l", xlab="Time (hour)", ylab="Price (TL/MWh)", lty=2)

lines(preds5, col="blue")

abline(h=mean(price1), col = "gray10", lty = 3)

legend("topright",c("Actual Price","Predicted Price"),

lty=c(2,1), col=c("black","blue"),lwd=c(1.5,2.5),

cex=0.85, inset=0.02,text.width=20, bty="o", xjust=0, seg.len=2)

xaxp1 <- c(0,length(preds5)-length(preds5)%%168,

(length(preds5)-length(preds5)%%168)/168)

plot(price1, xlim=c(1001,1672),ylim=c(0,300),
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xaxp=xaxp1, type="l", xlab="Time (hour)", ylab="Price (TL/MWh)", lty=2)

lines(preds5, col="blue")

abline(h=mean(price1), col = "gray10", lty = 3)

legend("topright",c("Actual Price","Predicted Price"),

lty=c(2,1), col=c("black","blue"),lwd=c(1.5,2.5),

cex=0.85, inset=0.02, text.width=70,bty="o", xjust=0, seg.len=2)

# Forecasting Demand ------------------------------------------------------

# subsetting the demand into training and test sets

demand <- data[,4]

demand.t <- demand[1:17544]

# using ets() method

demand.fit.ets <- ets(demand.t, model="ZZZ", damped=NULL, alpha=NULL,

beta=NULL, gamma=NULL,

phi=NULL, additive.only=FALSE, lambda=NULL,

lower=c(rep(0.0001,3), 0.8), upper=c(rep(0.9999,3),0.98),

opt.crit=c("lik","amse","mse","sigma","mae"), nmse=3,

bounds=c("both","usual","admissible"),

ic=c("aic","aicc","bic"), restrict=TRUE)

f.demand.ets <- forecast.ets(demand.fit.ets,h=24*1)

plot(f.demand.ets, xlim=c(17520,17544+24*1), xaxp=c(17520,17520+24*2,2),

ylab="Demand (MWh)", xlab="Time (hour)")

abline(v=17544, lty=2)

lines(demand, lty=2, type="l")

# using auto.arima() method

demand.fit.autoarima <- auto.arima(demand.t, d=NA, D=NA, max.p=24, max.q=24,

max.P=2, max.Q=2, max.order=25, start.p=2, start.q=2,

start.P=1, start.Q=1, stationary=FALSE, seasonal=TRUE,

ic=c("aicc","aic", "bic"), stepwise=FALSE, trace=FALSE,

approximation=(length(demand.t)>100 | frequency(demand.t)>12), xreg=NULL,

test=c("kpss","adf","pp"), seasonal.test=c("ocsb","ch"),
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allowdrift=TRUE, lambda=NULL, parallel=TRUE, num.cores=NULL)

f.demand.fit.autoarima <- forecast(demand.fit.autoarima,h=24)

length(f.demand.fit.autoarima)

length(f.demand.fit.autoarima$mean)

accuracy(f.demand.fit.autoarima$mean, demand[17545:17568])

cor(f.demand.fit.autoarima$mean, demand[17545:17568])

plot(f.demand.fit.autoarima,

xlim=c(17520,17544+24*1), xaxp=c(17520,17520+24*2,2),

ylab="Demand (MWh)", xlab="Time (hour)")

abline(v=17544, lty=2)

lines(demand, lty=2, type="l")

summary(demand.fit.autoarima)

accuracy(demand.fit.autoarima)

old.par <- par()

plot(f.demand.fit.autoarima2, xlim=c(17544,17544+24*7),

xaxp=c(17544,17544+24*7,7),

ylab="Demand (MWh)", xlab="Time (hour)")

abline(v=17544, lty=6)

lines(demand, lty=2, type="l")

legend("bottomright",legend=c("Actual Demand", "Forecasted Demand"),

col=c("black","blue"),lty=c(2,1),lwd=c(1,2),ncol=2,xpd=NA,bty="n",inset=0)

f.demand.fit.autoarima2 <- forecast(demand.fit.autoarima,h=24*7)

# using double seasonal holt-winter method

plot(demand.t,type="l")

demand.t[demand.t==0] <- mean(demand.t) # replace zero in demand with mean of demand
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f.demand.holt <- dshw(demand.t,period1=24,period2=168)

names(f.demand.holt)

# f.demand.holt$model

# c(17544,17544+336,14)

plot(ts(f.demand.holt$mean), ylim=c(15000,40000), xaxp=c(0,336,14),lwd=2,

col="blue", ylab="Demand (MWh)", xlab="Time (hour)")

lines(ts(demand[17545:(17544+336)]),lty=2)

legend("bottomright",legend=c("Actual Demand", "Forecasted Demand"),

col=c("black","blue"),lty=c(2,1),lwd=c(1,2),ncol=2,xpd=NA,bty="n",inset=0)

accuracy(f.demand.holt)

accuracy(f.demand.holt$mean[1:24], demand[(17544+1):(17544+24)])

# Forecasting price -------------------------------------------------------

# fist we need to replace the demand values with its forecast

new.x <- data.frame(cbind(as.ts(price),lag(price,k=-1),lag(price,k=-2),

lag(price,k=-3), lag(price,k=-4),lag(price,k=-5),

lag(price,k=-18),lag(price,k=-24), lag(price,k=-36),

lag(price,k=-48),lag(price,k=-72),lag(price,k=-168),

lag(price,k=-maxlag),lag(mins,k=-24), lag(means,k=-24),

lag(demand,k=-maxlag),lag(d.mon,k=-maxlag),

lag(d.tue,k=-maxlag),lag(d.wed,k=-maxlag),lag(d.thu,k=-maxlag),

lag(d.fri,k=-maxlag),lag(d.sat,k=-maxlag),lag(d.sun,k=-maxlag)))

colnames(new.x) <- c("t","t1","t2","t3","t4","t5","t18","t24","t36","t48",

"t72","t168","t336","pmins","pmeans","dmnd"

,"d_mon","d_tue","d_wed","d_thu","d_fri","d_sat","d_sun")

new.xs <- new.x[maxlag+1:(length(price)-2*maxlag),]

length(fitted(f.demand.fit.autoarima))

length(dmnd)
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# use auto.arima forecast for demand and predict price

new.xs$dmnd[17545:17568] <- f.demand.fit.autoarima$mean

length(fitted(f.demand.fit.autoarima))

new.xxs <-new.xs[(17544+1):(17544+24),]

# predicting 24 step ahead forecast after replacing demand with its forecast

f.price <- predict(fit5,24,newdata=new.xxs)

f.price$fit

summary(f.price)

accuracy(f.price$fit, new.xxs$t)

# use double seasonal holt winter forecast for demand and predict price

new.xs$dmnd[17545:17568] <- f.demand.holt$mean[1:24]

new.xxs <-new.xs[(17544+1):(17544+24),]

# predicting 24 step ahead forecast after replacing demand with its forecast

f.price2 <- predict(fit5,24,newdata=new.xxs)

f.price2$fit

summary(f.price2)

accuracy(f.price2$fit, new.xxs$t)

# comparing accuracy of the two forecasts for price

accuracy(f.price$fit, f.price2$fit)

# Plotting price forecast for one day ahead ------------------------------------------------

# use demand forecast by auto.arima

plot(f.price2$fit, ylim=c(0,300), xaxp = c(0,24,24),

main="Price forecast for one day ahead",

type="l", col="blue", xlab="Time (hour)", ylab="Price (TL/MWh)", lty=1)

lines(new.xxs$t, lty=2)

#lines(f.price$fit, lty=5, col="red")

legend("topright",c("Forecast Price","Actual Price"),

lty=c(1,2), col=c("blue","black"),lwd=c(2.5,2.5),

cex=0.85, inset=0.02,bty="o", xjust=0, seg.len=2)
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