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ABSTRACT 
 
 

LQG/LTR, H-INFINITY AND MU ROBUST CONTROLLERS DESIGN 
FOR LINE OF SIGHT STABILIZATION 

 
 

Baskın, Mehmet 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Kemal Leblebicioğlu 

December 2015, 164 pages 

 
 

Line of sight stabilization against various disturbances is an essential property of 

gimbaled vision systems mounted on mobile platforms. As the vision systems are 

designed to function at longer operating ranges with relatively narrow field of views, the 

expectations from stabilization loops have increased in recent years. 

In order to design a good stabilization loop, high gain compensation is required. While 

satisfying high loop gains for disturbance attenuation, it is also required to satisfy 

sufficient loop stability. Structural resonances and model uncertainties put strict 

restrictions on achievable stabilization loop bandwidth for gimbaled vision systems. For 

that reason, satisfying high stabilization performance under modeling errors requires 

utilization of robust control methods. 

In this thesis, robust controller design in LQG/LTR, H-infinity and Mu frameworks is 

described for a two-axis gimbal. First, the modeling errors are found by investigating the 

locally linearized models under different conditions. Next, the performance indices and 

weights are determined by considering the allowable stabilization error and possible 

platform disturbance profile. Then generalized plants are obtained by using the nominal 

model and corresponding weights for three different design methods. Using these 

generalized plants, LQG/LTR, H-infinity and Mu controllers are synthesized. Stabilities 

and performances of the three designs are investigated in detail. After that, comparison 

of the controllers is made by investigating the robustness of corresponding closed loops. 
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The thesis work is finished with the experimental studies and performances to validate 

the designed robust controllers. 

 

Keywords: LQG/LTR, H-infinity, Mu-synthesis, robust control, line of sight 

stabilization  
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BAKIŞ HATTI STABİLİZASYONU İÇİN LQG/LTR, H-SONSUZ VE MU 
GÜRBÜZ DENETLEYİCİLERİNİN TASARIMI 
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Tez Yöneticisi: Prof. Dr. Kemal Leblebicioğlu 
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Bakış hattı stabilizasyonunun çeşitli bozucu etkilere karşı sağlanması hareketli 

platformlara yerleştirilen gimballi görüntüleme sistemleri için gerekli bir özelliktir. Son 

yıllarda görüntüleme sistemlerinin daha uzun mesafelerde daha dar bakış açıları ile 

çalışacak şekilde tasarlanmasıyla stabilizasyon döngülerinden beklentiler artmıştır. 

İyi bir stabilizasyon döngüsü tasarlamak için yüksek kazançlı denetleyici gereklidir. 

Bozucu etkileri bastırmak için yüksek döngü kazançları sağlanırken aynı zamanda 

yeterli kararlılığı da sağlamak gereklidir. Gimballi görüntüleme sistemlerinde yapısal 

rezonanslar ve model belirsizlikleri ulaşılabilecek döngü bant genişliğine sıkı bir sınır 

koymaktadır. Bu nedenle modelleme hataları altında yüksek stabilizasyon performansı 

sağlamak için gürbüz denetim yöntemlerini kullanmak gereklidir. 

Bu tezde iki eksenli gimbal için gürbüz denetleyicilerin tasarlanması, LQG/LTR,          

H-sonsuz ve Mu denetleyicileri çerçevesinde anlatılmıştır. İlk olarak modelleme hataları, 

değişik koşullar altında lokal olarak doğrusallaştırılmış modellerin incelenmesi ile 

bulunmuştur. Daha sonra performans göstergeleri ve ağırlıkları izin verilen stabilizasyon 

hatası ve olası bozucu etki profili düşünülerek belirlenmiştir. Üç farklı yöntem için 

genelleştirilmiş sistemler nominal model ve bulunan ağırlıklar kullanılarak elde 

edilmişlerdir. Bu genel sistemler kullanılarak LQG/LTR, H-sonsuz ve Mu denetleyicileri 

sentezlenmiştir. Üç tasarım için kararlılıklar ve performanslar detaylı olarak 

incelenmiştir. Daha sonra üç denetleyicinin karşılaştırılması kapalı çevrimlerin 

vii 
 



 

gürbüzlükleri incelenerek yapılmıştır. Tez çalışması tasarlanan gürbüz denetleyicilerin 

geçerliliğini incelemek için deneysel çalışmalar ve performanslar ile bitirilmiştir. 

 

Anahtar Kelimeler: LQG/LTR, H-sonsuz, Mu-sentezi, gürbüz kontrol, bakış hattı 

stabilizasyonu   
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1. Problem Definition 

A vector drawn from an observer to an object being observed is defined as line of sight 

(LOS) in literature. LOS control on the other hand deals with the problem of maintaining 

a sensor’s aim point along the line of sight. The LOS error between the aim point and the 

target results from the kinematics between the target and platform, as well as the 

platform motion disturbances. So, for any pointing and tracking systems mounted on 

mobile platforms, there is need of some mechanism to isolate the camera, laser or any 

other sensor from platform motions. The LOS control problem deals with this 

phenomenon.  

The LOS control problem can be divided into two parts. The first part is called tracking 

and it is related with the sensor to target kinematics. The tracking problem is usually 

solved by using a servo loop around the sensor. The second problem is named as 

disturbance rejection and it is related with the isolation of the sensor from the 

disturbances created by platform motions. It is defined as LOS stabilization problem, and 

it is solved by closing a servo loop around an inertial sensor [1]. In this thesis, only the 

LOS stabilization problem is discussed. 

Use of multi-axis gimbals in pointing and tracking system to direct the LOS is a 

common way. The camera or sensor is usually mounted on a multi-axis gimbal, which 

is an electromechanical structure that provides rotary motion of the sensor aim point. 

During the operation of the pointing and tracking system, the LOS is disturbed by the 

platform motions and vibrations. These movements are sensed by inertial rate sensors 

or gyros, and they are minimized by the designed feedback control loops.  

The typical servo control structure for LOS control is shown in Fig. 1. The inner LOS 

stabilization loop uses gyro to sense the motions relative to inertial frame.  
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Figure 1: LOS control structure  

 
 
 
The rate compensator uses this angular rate information as a feedback and creates 

torques with motors. By doing that, the angular jitter created by platform motions, noises 

and disturbance torques (frictions, imbalances and others) is minimized [1, 2].  

In order to design a good stabilization loop, high gain compensation is required. While 

satisfying high loop gains for disturbance attenuation, it is also required to satisfy 

sufficient loop stability. Structural resonances and model uncertainties put strict 

restrictions on achievable stabilization loop bandwidth for gimbaled vision systems. For 

that reason, satisfying high stabilization performance under modeling errors requires 

utilization of robust control methods. 

Since the tracking and pointing performances are directly related to inner stabilization 

loop, in this thesis designing a stabilization loop for a two-axis gimbal will be discussed.  

1.2. Previous Research 

Generally in the past, classical controller with PI and lead lag compensators is used in 

stabilization loops [1, 2]. However, these classical control techniques are iterative 

processes and they usually take very long time to find satisfactory results. Moreover, 

considering optimality point of view, these techniques are insufficient. Also, in recent 

years, different techniques are applied to improve the stabilization loop performance. 

The applications of linear quadratic methods can be found in [3-6]. Moreover, the ¥ 

methods are discussed in [7, 8]. However, lots of control designs are made only for a 

nominal model. In most of the reported designs, there is no analysis done for the 

performance change under the model perturbations or modeling errors. In other words, 

the control design looking sufficient for nominal plant may be insufficient under some 
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model perturbations. In reality, all the models include some modeling errors due to 

unmodeled dynamics.  In gimbal applications, the uncertainty of the actuators, some 

unmodeled dynamics in high frequencies, rate gyro sensor delay, structural resonances 

and nonlinear friction in the model are typical source of the model perturbations. 

Considering these facts, it requires utilization of robust control methods for good 

stabilization performance. There are also robust control methods used for the LOS 

stabilization [9, 10]. However, the designs that claim robustness are either insufficient 

to prove their claim or they lack of some experimental data to validate them. 

1.3. Contributions of Research 

In this thesis, design of robust line of sight controller in the LQG/LTR, ¥ and μ 

frameworks is reported. All three designs use a similar loop shaping idea for the 

controller design.  

In many LQG/LTR based designs, the desired loop shape is tried to be reached by 

adjusting the weighting matrices or changing the intensities of process and 

measurement noises. However, this method is iterative and usually takes time to reach 

the successful results. If the cost function of the loop transfer recovery (LTR) is 

considered, it is seen that there is a better way to obtain the desired loop shape [11]. 

When the original plant is augmented with transfer matrix which reflects the 

disturbance power spectrum, LTR tries to shape the sensitivity at the plant output. 

Since this method is uncommon, utilization of this technique is valuable. 

On the other hand, ¥ and μ-synthesis designs are treated in mixed sensitivity 

methodology [12, 13]. Even if these methods are mostly used by control designers, they 

differ from the other reported designs. In the previous research, the uncertainty modeling 

is made by using generic facts. For example, by accepting that the uncertainty is small at 

low frequency region and increases at high frequencies, one selects a corresponding 

transfer matrix. However, finding exact values of uncertainties by using experimental 

data is unusual. In this thesis, the uncertainties are determined by using experimental 

data.  

Similarly, in the previous works the performance determination using experimental data 

is not common. In this aspect, performance weight determination is obtained by looking 

at the experimental disturbance profile. By considering the requirements on output error 
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due to measured disturbance profile, the corresponding performance weights are derived. 

In the same manner, the control weight selection is made by keeping the actuators away 

from saturation due to the known disturbance profile. 

Moreover, in most designs the robustness is only examined by looking at only theoretical 

results. Considering this fact, the robustness of the controllers is evaluated by looking at 

both theoretical and experimental results. 

Next, the comparison of the LQG/LTR, ¥ and μ controllers is made both theoretically 

and experimentally. The comparison of these three techniques which shares the similar 

loop shaping idea is rare. In this aspect, it is a considerable contribution.  

Please observe that the electromechanical systems are nonlinear in nature. However, 

local linearization of a nonlinear model at different input levels gives much information 

about the system. In this thesis, locally linearized models are assumed to be perturbations 

of actual nonlinear model, and the nonlinear model is represented by this linear model 

set. In other words, the robust control of these linear models corresponds to the robust 

control of the actual nonlinear model. In this aspect, this idea is valuable. 

1.4. Outline of the Thesis 

The remainder of the thesis can be outlined as below: 

Chapter 2 explains the background of robust control theory. 2 and ¥ spaces are 

discussed. Next, both the calculation of 2 and ¥ norms and the importance of these 

norms are considered. After that, the performance indices of the feedback loops are 

introduced. The importance of the loop shaping in feedback design is illustrated. After 

that, the weighted performance for different norms is expressed. Weight selection for 

different performance indices and fundamental limitations in controller design are briefly 

discussed. Then internal stability of the feedback systems and their conditions are given. 

Different perturbation representations and their effects on Nyquist plots are examined. 

Nominal stability, nominal performance, robust stability and robust performance are 

defined. For different uncertainty modeling, robust stability and performance conditions 

are given. Next, the linear fractional transformation (LFT) structures are introduced. 

Finally, the motivations behind the μ-synthesis and its approximate solution D-K 

iteration are examined. 
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In Chapter 3, the design methods that are used for LOS stabilization are investigated. 

First, the properties of LQG/LTR design and its motivation are discussed. Then how 

LQG/LTR is modified such that it becomes a very powerful loop shaping design is 

examined. After that, 2 and ¥ controller design methods and their solutions are 

discussed. After giving 2 equivalency of LQG design, the mixed sensitivity ¥ 

controller synthesis and its motivation are given. Finally, Chapter 3 ends with the 

construction of LFT structures that will be used for μ-synthesis and analysis. 

In Chapter 4, the experimental setup where the data is obtained and algorithms are 

validated is illustrated. The working principle of the system and how the data is obtained 

are illustrated briefly.  

Chapter 5 is devoted to the modeling and identification of the two-axis gimbal system. 

First, the dynamic equations of the gimbal are derived. Then unknown parameters are 

identified using CD-EKF and experimental data. Then the constructed models with the 

estimated parameters are compared with experimental data obtained from system. 

Finally, the MIMO model of the two-axis gimbal is constructed. 

In Chapter 6, the LOS control problem is further examined. The motivations and the 

requirements are explained. The disturbance profile of the platform where the gimbal 

will be used is obtained from experimental measurements. To satisfy the requirements, 

the performance weights are determined using the experimental measurement and the 

system information. Finally, the uncertainty upper bounds are derived from the 

experimental data obtained by exciting the system with different control input levels. In 

other words, the nonlinear gimbal model is linearized at different operating points, and 

the resulting linear models are used to construct the model set that will be used in robust 

control synthesis. 

Chapter 7 includes the theoretical results of the design methods. The robustness of the 

closed loops created with LQG/LTR, ¥ and μ controllers are investigated. First, the 

singular value tests are used for robustness analysis when the performance criterion 

depends only on weighted output sensitivity. Next, the robustness is investigated in μ 

framework by changing the performance criterion. Finally, the comparison of these 

three techniques is discussed. 
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In Chapter 8, firstly the implementation of the controllers is discussed. Next, the 

experimental closed loop responses are given. After that, stability and performance 

properties are investigated. Then the theoretical and experimental results are compared. 

Finally, the comparison of three controllers is discussed. 

Chapter 9 summarizes the thesis. Then the important results derived throughout the 

thesis are explained. After that, advantages and disadvantages of these controllers are 

explained. Chapter 9 is concluded by discussing some future applications.  
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CHAPTER 2 
 
 

ROBUST CONTROL THEORY 
 
 
 

Main motivation of this chapter is to give a brief summary of robust control theory. 

While the chapter progress, it benefits from [12] as a guide. For further reading on robust 

control theory, one can investigate the references [12-15]. 

2.1. Linear Algebra Preliminary 

In this section, some background material is reviewed that will be used in the following 

sections. 

2.1.1. Linear Subspaces 

Let  and    denote the real and complex scalar field respectively, and let   be either 

 or    and n  be the vector space over  . Let 1 2 3, , ,  ..., n
kx x x x ∈  and

,  ,i ka a… ∈ .  Then the linear combinations of all these vectors is called the span of 

1 2 3, , ,  ..., n
kx x x x ∈  and defined as Eq. (2.1). 

{ } { }1 2 3 1 1span , , ,  ..., : ...k k kx x x x x a x a x+ += =                          (2.1) 

A set of vectors 1 2 3, , ,  ..., n
kx x x x ∈  is said to be linearly dependent over   if there 

exists ,  ,i ka a… ∈  not all zero such that 1 1 ... 0k ka x a x+ + =  is satisfied; otherwise, the 

vectors are called linearly independent [12]. 

Let S be a subspace of n , and the set { }1 2 3, , ,  ..., kx x x x S∈  is called a basis for S if 

1 2 3, , ,  ..., kx x x x  are linearly independent. 

The set { }1 2 3, , ,  ..., kx x x x  is mutually orthogonal if * 0i jx x =  for all i j≠  and 

orthonormal if *
i j ijx x δ=  where 1 if  ij i jδ = = , and 0 if ij i jδ = ≠ . The subspaces

1 2, ,  ..., kS S S  are mutually orthogonal if * 0 for  and  for i jx y x S y S i j= ∈ ∈ ≠ . 

A square matrix n xnU ∈  whose columns form an orthonormal basis for n  is called a 

unitary matrix and it satisfies * *U U UU= . 
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Let [ ] n xn
ijA a= ∈ , and then the trace of A is defined as Eq. (2.2).  

1
trace( ) :

n

ii
i

A a
=

= ∑                                                (2.2) 

2.1.2. Eigenvalues and Eigenvectors 

Let n xnA∈ , and then the eigenvalues of A are the roots of the characteristic polynomial 

( )( ) detp I Aλ λ= − . The spectral radius is said to be maximum modulus of the 

eigenvalues and denoted by Eq. (2.3) [12]. 

( )
1

x: ma ii n
Aρ λ

≤ ≤
=                                                   (2.3) 

A nonzero vector nx ∈  is called right eigenvector if it satisfies Eq. (2.4). Similarly, it 

is called left eigenvector if it satisfies Eq. (2.5). 

Ax xλ=                                                          (2.4) 

x A xλ∗ ∗=                                                        (2.5) 

2.1.3. Vector and Matrix Norms 

Let X be a vector space, and then a real valued function .  is said to be norm if the 

conditions (i-iv) are satisfied [12]. 

(i) 0 (positivity);x ≥   

(ii) 0 iff 0 (positive definiteness);x x= =   

(iii) ,  for any schalar  (homogeneity);ax a x a=  

(iv) +  (triangle inequality);x y x y+ ≤  

Then for nx ∈  the vector p-norm is defined as Eq. (2.6). 
1/

1
: ,  for 1

p
n

p
ip

i
x x p

=

 
= ≤ ≤ ∞ 

 
∑                                 (2.6) 

For [ ] m xn
ijA a= ∈  the induced matrix p-norm is defined as Eq. (2.7). 

0
up: s p

x p
p

A
Ax

x≠
=                                               (2.7) 
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When one considers in terms of system theory, the induced norm can be viewed as 

input/output amplification gains [12]. 

2.1.4. Singular Value Decomposition 

The singular values of a matrix give very good information about the size of the matrix [12]. 

Theorem: Let m x nA∈ . There exist unitary matrices U and V given by Eqs. (2.8) and 

(2.9) such that Eq. (2.10) is satisfied. 

1 2[ , ,  ... ], m
m xmU u u u ∈=                                           (2.8) 

1 2[ , ,  ... ], n
n xnV v v v ∈=                                             (2.9) 

A U V ∗= Σ                                                     (2.10) 

Σ , which is given in Eq. (2.10) has the form expressed in Eq. (2.11), and the diagonal 

elements satisfy Eq. (2.12). 

1

21
1

0 0
0 00

= ,
0 0

0 0 p

σ
σ

σ

 
 Σ   Σ Σ =      
  





   



                            (2.11) 

{ }1 2 0,  min ,p p m nσ σ σ≥ ≥ ≥ ≥ =
                              (2.12) 

Let iσ  is the ith singular value, and ui and vj are the ith left singular vector and jth right 

singular vector respectively. Then the identities (i-ii) can be derived [12]. 

(i) i i iAv uσ=  

(ii) i i iA u vσ∗ =  

Next, (i-ii) can be rearranged as (iii-iv). 

(iii) 2
i i iA Av vσ∗ =  

(iv) 2
i i iAA u uσ∗ =  

So, 2
iσ  is the eigenvalues of A A∗  or AA∗ , and ui  is the eigenvector of AA∗ , and vi  is the 

eigenvector of A A∗ , and singular value decomposition is found using these facts. 

The following notations are usually used: 

max 1( ) ( ) the largest singular value of A A Aσ σ σ= = =  
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min( ) ( ) the smallest singular value of pA A Aσ σ σ= = =  

The singular values of matrix A are the lengths of the semi-axes of the hyperellipsoid E 

defined as Eq. (2.13) [12]. 

{ }: ,  ,  1nE y y Ax x x= = ∈ =                                    (2.13) 

In brief, v1 can be viewed as the direction in which y  is largest for 1x = . Similarly, 

vn can be thought as the direction in which y  is smallest for 1x = . 

When one considers from input/output point of view, v1 is the highest gain input 

direction, while u1 is the highest gain output direction. In the same manner, vn 

corresponds to the lowest gain input direction while un corresponds to the lowest gain 

output direction [12]. 

2.2. Performance Specification 

In this section, first 2 and ¥ spaces are discussed. Next, 2 and ¥ norms, their 

importance and calculations are expressed. Then 2 and ¥ control problems and their 

formulations are considered. After that, selection of weighting functions in optimal 

control problems is reviewed. 

2.2.1. 2 and ¥ Spaces 

The aim of the control system is to obtain certain performance requirements and provide 

internal stability at the same time. Most of the time, the performance can be described by 

the size of certain signals. For example, one can measure the performance of a tracking 

system by the size of the tracking error signal. The designer may also want to minimize 

the size of control signals. So, in this part of the thesis, different ways of interpreting the 

size of the relevant signals will be discussed [12]. 

2.2.1.1. Hilbert Spaces 

A Hilbert space is a complete inner product space with the norm induced by its inner 

product. A well known Hilbert space is 2, which consists of square integrable functions 

with the inner product defined as Eq. (2.14). 
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( ) ( ) 2,  :  ,   ,  f g f t g t dt f g
∞

∗

−∞

〈 〉 = ∈∫                                (2.14) 

If functions are vector or matrix valued the inner product given in Eq. (2.15) is used. 

( ) ( ),  : tracef g f t g t dt
∞

∗

−∞

 〈 〉 =  ∫                                  (2.15) 

2.2.1.2. 2 and ¥ Spaces 

2( j) Space: 

In frequency domain 2 is a Hilbert space of matrix-valued functions on imaginary axis 

with the inner product and norm defined as Eq. (2.16) and Eq. (2.17) respectively. 

( ) ( )1,  : trace
2

F G F jw G jw dw
π

∞
∗

−∞

 〈 〉 =  ∫                          (2.16) 

2
: ,F FF = 〈 〉


                                             (2.17) 

The real rational strictly proper transfer matrices with no poles on the imaginary axis 

form a closed subspace of 2, and denoted by 2. (By real rational transfer matrices, 

the transfer matrices which are composed of rational functions of s with real               

coefficients in numerator and denominator are meant. For example, the transfer matrix 

which includes delay could not be represented by transfer functions having finite number 

of poles and zeros, so they are not real rational.) 

2 Space: 

2 is a closed subspace of 2 with F is analytic in RHP. Norm for 2 is calculated in the 

same way as 2 as given by Eq. (2.18). The real rational subspace of 2, which includes 

strictly proper and real rational stable transfer matrices, is denoted by 2. 

( ) ( )2 2 *

2 2

1 trace
2

F F F jw F jw dw
π

∞

−∞

 = =  ∫                     (2.18) 

¥( j) Space: 

¥ is a Banach space of matrix valued functions that are (essentially) bounded on 

imaginary axis with the norm defined as Eq. (2.19). 

( ): ess sup
w

F F jwσ
∞

∈
=   



                                   (2.19) 
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The real rational proper transfer matrices with no poles on the imaginary axis form a 

closed subspace of ¥, and it is denoted by ¥.  

¥ Space: 

¥ is a closed subspace of ¥ with functions analytic in RHP, and ¥ norm is defined 

as Eq. (2.20). 

( )
( ) ( )

Re 0
: sup sup

s w
F F jw F jwσ σ

∞
> ∈

= =      


                        (2.20) 

The real rational subspace of ¥ which includes proper and real rational stable transfer 

matrices is denoted by ¥.  

2.2.1.3. Computation of 2 and 2  Norms 

( ) ( )2

2

1: trace
2

F F jw F jw dw
π

∞
∗

−∞

 =  ∫                             (2.21) 

2 norm defined as Eq. (2.21) is finite if the transfer matrix F is strictly proper. 

Assuming F to be strictly proper, 2 norm is obtained by using contour integral along 

imaginary axis and infinite semicircle in the LHP [12]. 

( ) ( )2

2

1 trace
2

F F jw F jw dw
jπ

∼ =  ∫                            (2.22) 

Utilization of state space methods for computation of 
2

F  is generally preferred over 

contour integral given in Eq. (2.22). To determine the norm of a transfer matrix in 2 

the rule given by Eq. (2.24) is used, where Q and P matrices represent the observability 

and controllability Grammians [12], and A, B, C are the corresponding matrices of the 

state space representation expressed in Eq. (2.23) of strictly proper transfer matrix F. 

( )
0

A B
F s

C
=

 
 
 

                                              (2.23) 

2 * *
2

trace( ) trace( )F B QB CPC= =                                 (2.24) 

2.2.1.4. Computation of ¥ and ¥ Norms 

¥ norm of a transfer matrix can be obtained by evaluating the transfer matrices over a 

grid of frequencies, and then taking the maximum singular value of those frequencies. 
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There is also a state space method available. Let 0γ >  and F be proper transfer matrix, 

and let A, B, C, D be the matrices of its state space representation given in Eq. (2.25). 

(s)
A B

F C D ∞

 
= ∈ 

 
                                         (2.25) 

Then F γ
∞

<  is satisfied if and only if ( )Dσ γ<  and the Hamiltonian matrix H 

defined as Eq. (2.26) has no eigenvalues on the imaginary axis [12] where
2 *R I D Dγ= − . 

1 * 1 *

* 1 * 1 * *
:

( ) ( )
A BR D C BR B

H
C I DR D C A BR D C

− −

− −

 +
=  − + − + 

                    (2.26) 

Bisection algorithm uses this fact and iteratively changes the upper and lower bounds. It 

makes the interval ( l uFγ γ
∞

< < ) smaller at each iteration and finds F
∞

numerically 

within the specified tolerances [12]. 

2.2.2. Importance of 2 and ¥ Norms 

Most of the time, the performance can be described by the size of certain signals. For 

example, consider the system given in Fig. 2 where P is the augmented plant with 

different performance weights. Let e be the output of augmented system and it can be 

actuator signals, or tracking errors of the closed loop system. In other words, in the 

system e represents the signals that are desired to be small. Further assume that w is 

input to the augmented plant and it can include exogenous references or disturbance 

signals. For simplicity let w be scalar (it is easily generalized for spatial domain by 

changing absolute values with norms), and it belongs to some special sets given by Eqs. 

(2.27)-(2.29) where B denotes the unit closed ball. Then one desires to find out the 

relations between e and w. 

 
 
 
 

 
Figure 2: Augmented closed loop system 
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Power: ( ) 21 | lim 1
2

T

T
T

BP w w t dt
T→∞

−

 
= ≤ 

 
∫                          (2.27) 

Energy: ( ) 22
2 2

 | 1B w w w t dt
∞

−∞

 
= = ≤ 

 
∫                           (2.28)  

Magnitude: ( ){ } | ess sup  1
t

B w w w t∞ ∞
= = ≤                       (2.29) 

Equations (2.27)-(2.29) contain the signals having power, energy and magnitude in unit 

closed ball respectively. By considering different cases, Table 1 can be constructed 

which shows the relations between different input and output signals [16, 17]. In other 

words, table entries show the induced norm performance indices for different conditions 

by assuming P is stable. For example, if output energy due to bounded energy input is 

interested, one needs to consider ¥norm of the system. 
 
 

Table 1: Induced norm performance theorems 

 
 
 
Consider the case where 2 2

,        1w B w∈ ≤ , and one investigates the energy of the error 

signal e. So, when unit energy signal enters the system, 
2

e  remains small, if ¥norm 

of the system is minimized as expressed in Eq. (2.30). 
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∞ ∞
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−∞ −∞

∞
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∞
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∞
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∞
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∞
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Figure 3: Standard feedback loop 

 
 
 

The underlying reason behind the popularity of 2 and ¥control lies in Table 1. Since 

2 and ¥are most common norms in the Table 1, 2 and ¥control methods has 

gained popularity in last few decades. 

2.2.3. Measure of Performance in Feedback System 

In this section, the properties of feedback are discussed. The standard equations of a 

feedback loop are examined. The benefits of feedback and design tradeoffs while 

designing control loop are also investigated [12].  

Consider the standard feedback configuration given in Fig. 3, and define the following 

transfer matrices: 

Input open loop transfer matrix (when the loop is broken at u) is .iL KP=  

Output open loop transfer matrix (when the loop is broken at y) is .oL PK=  

The input sensitivity matrix (transfer matrix from di to up) is ( ) 1 .i iS I L −= +  

The output sensitivity matrix (transfer matrix from d to y) is ( ) 1 .o oS I L −= +  

The input and output complementary sensitivity matrices are ( ) 1
i i i iT I S L I L −= − = +

and ( ) 1
o o o oT I S L I L −= − = + respectively. The input and output return difference 

matrices iI L+  and oI L+ respectively. If the closed loop is internally stable, it satisfies 

Eqs. (2.31)-(2.34). 
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( )o o i oy T r n S Pd S d= − + +                                       (2.31) 

( )o o o ir y S r d T n S Pd− = − + −                                    (2.32) 

( )o o i iu KS r n KS d T d= − − −                                      (2.33) 

( )p o o i iu KS r n KS d S d= − − +                                     (2.34) 

These equations show not only the fundamental benefits but also the design objectives in 

a feedback system. As an example, making output sensitivity So small reduces the effect 

of the output disturbance d on the output y as seen in Eq. (2.31). Similarly, Eq. (2.34) 

shows that small input sensitivity Si leads to small effect of input disturbance di on the 

plant input up. Generally, use of frequency dependent singular values is preferred while 

analyzing the smallness of the transfer matrices. For example, making ( ) 1 oSσ <  at 

some frequencies means that disturbance d is suppressed at those frequencies. Therefore, 

to reduce the disturbance effects on the output y, the transfer matrices given in Eqs. 

(2.35)  and (2.36) need to be small over the specified interval. 

( ) ( )( ) ( ) ( )1 1   for disturbance at plant output,oS I PK d
I PK

σ
σ

σ −= + =
+

 (2.35) 

( ) ( )( ) ( ) ( )1    for disturbance at plant input,o i iS P I PK P PS dσ σ σ−= + =  (2.36) 

In a similar fashion, good disturbance rejection at the plant input up requires small 

transfer matrices expressed in Eqs. (2.37) and (2.38) where the disturbances are 

dominant. 

( ) ( )( ) ( ) ( )1 1   for disturbance at plant input,  i iS I KP d
I KPσ

σ σ −= + =
+

 (2.37) 

( ) ( )( ) ( ) ( )1    for disturbance at plant output, i oS K K I PK KS dσ σσ −= + = (2.38) 

Please observe that Eqs. (2.39) and (2.40) result in Eqs. (2.41) and (2.42). 

( ) ( ) ( )1 1PK I PK PKσ σ σ− ≤ + ≤ +                              (2.39) 

( ) ( ) ( )1 1KP I KP KPσ σ σ− ≤ + ≤ +                              (2.40) 

( ) ( ) ( ) ( )1 1 , if   1 
1 1oS PK

PK PK
σ σ

σ σ
≤ ≤ >

+ −
                   (2.41) 

( ) ( ) ( ) ( )1 1 ,  if   1 
1 1iS KP

KP KP
σ σ

σ σ
≤ ≤ >

+ −
                    (2.42) 

So, the results shown in Eqs. (2.43) and (2.44) can be derived easily. 
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( ) ( )1 1 oS PKσσ ⇔ 
                                      (2.43) 

( ) ( )1 1 iS KPσσ ⇔ 
                                       (2.44) 

Considering the equations above, and assuming invertible P and K, the approximations 

illustrated in Eqs. (2.45) and (2.46) can be made. 

( ) ( ) ( ) ( )( ) ( ) ( )
1 1 11 o  r   1 oPK KP S P I KP P K

K
σ σ σ σσ

σ
− −⇔ = + ≈ = 

 (2.45) 

( ) ( ) ( ) ( )( ) ( ) ( )
1 1 11 o  r   1 oPK KP KS K I KP P

P
σ σ σ σ σ

σ
− −⇔ = + ≈ = 

 (2.46) 

The meaning of Eqs. (2.31)-(2.46) can be solidified as follows. Good disturbance 

rejection at the plant output y requires large loop gain ( )( ) 1oL PKσ σ= 
 where d is 

significant. Moreover, large controller gain ( ) 1Kσ 
 is essential where di is significant 

to reduce the effect of di . 

In the same manner, good disturbance rejection at the plant input requires large loop gain

( )( ) 1iL KPσ σ= 
where di is significant to minimize the effect of di. In addition, big 

plant gain ( ) 1Pσ 
 is crucial where d is significant to reduce the effect of d. However, 

this fact cannot be changed by controller design and should be considered at the stage of 

plant construction. 

In brief, good multivariable feedback design is accompanied with high loop gains in the 

desired frequency ranges. Even if the comment looks very simple, there are lots to 

consider while designing feedback loops. For example, the loop gain should not be large 

at high frequencies. It is not odd to think that there are tradeoffs between disturbance 

rejection and stability under model uncertainties. Consider the perturbed plant 

( )P I P= + ∆  where Δ and nominal closed loop are stable. The perturbed system is 

stable if the determinant given by Eq. (2.47) has no right half plane zeros [12]. 

( )( ) ( ) ( )det det det oI I PK I PK I T+ + ∆ = + + ∆                       (2.47) 

So, when Δ is significant ( )oTσ  has to be small which relates small loop gain ( )oLσ . 

Equation (2.31) can be approximated as Eq. (2.48) at low frequencies, and it shows that 

when high loop gain reduces disturbances, it cannot reduce the effect of noises which are 

dominant at high frequencies. 

( )o o i oy T r n S Pd S d r n= − + + ≈ −                                  (2.48) 
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Also, under the assumptions of high loop gain ( )( ) ( )( )1  or  1o iL jw L jwσ σ 
 and 

small plant gain ( )( ) 1P jwσ 
, Eq. (2.33) is approximated as Eq. (2.49). Under the 

assumption of invertibility of P, Eq. (2.49) shows that disturbances and noises are 

amplified at u, and this causes unacceptably large u which saturates the actuators. For 

that reason, high loop gain frequency range is limited for feedback design. 

( ) ( )1
o i i iu KS r n d T d P r n d d−= − − − ≈ − − −                        (2.49) 

In a similar way, under small loop gain ( )( ) ( )( )1  or 1o iL jw L jwσ σ 
 and high 

controller gain ( )( )K jwσ , Eq. (2.33) is approximated as Eq. (2.50). This fact shows 

that the controller gain should not be large when loop gain is small. 

( ) ( )o i iu KS r n d T d K r n d= − − − ≈ − −                             (2.50) 

Under the results gathered throughout this section, good design must have following 

properties [12]. First, at low frequencies (0, )lw  good performance requires large loop 

and controller gains ( ) ( ) ( )1 ,  1,  1PK KP Kσ σ σ  
. Next, at high frequencies

( , )hw ∞  good robustness and sensor noise reduction requires small loop and controller 

gains ( ) ( ) ( )1,  1,  .PK KP K Mσ σ σ ≤ 
 In Fig. 4, all these requirements are shown 

graphically. 

 
 
 

 
Figure 4: Desired loop gains 
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2.2.3.1. Weighted 2 and ¥ Performance 

As introduced in the previous section, the performance objectives of a feedback system 

are usually specified by the closed loop transfer matrices such as sensitivity and 

complementary sensitivity. As an example, for a desired performance, it is required that 

at low frequencies ( )0 ,w w S εσ∀ ≤ ≤  and at high frequencies ( )0 ,w w S Mσ∀ > ≤

are satisfied. 

However, representing these performances as ( ) 1,  eW S wσ ≤ ∀  is much more efficient 

where weighting function is given by Eqs. (2.51) and (2.52). 

( ) 01 ,  eW w wσ ε= ∀ ≤                                            (2.51) 

( ) 01 ,  eW M w wσ = ∀ >                                           (2.52) 

In MIMO control design, weighted performance usage is essential. For example in 

MIMO systems, some signals may be more important than others. Similarly, there is a 

need to compare signals having different units. In these aspects, weighting functions can 

be used to scale the signals having different units or to emphasize the important signals. 

More importantly, frequency-dependent weights are used when the error signals are tried 

to be minimized in the specific frequency ranges. 

 
 
 

 
Figure 5: Standard feedback loop with weights 
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The standard feedback loop discussed previously is now augmented with weighting 

matrices, and it is shown in Fig. 5. 

The weighting matrices in Fig. 5 may be chosen to illustrate design aim, disturbance and 

noise information. Wd  and Wi  are usually selected to illustrate frequency content or 

power spectrum of the signals d  and id  . Moreover, We is generally used to denote 

some desired loop shape, and Wn shows frequency content of noise. Usually, Wu  is 

required to limit the actuator signals, and Wr  is used to shape the reference command. 

These weighting matrices play an important role in 2 and ¥ control synthesis. So, the 

control problem reduces to design a controller K to make the weighted signals as small 

as possible. According to norm of a signal choice, different controller synthesis can be 

used. Now different performances are discussed and for simplicity id  and n  are 

assumed to be zero in Fig. 5. 

2.2.3.1.1. 2 Performance 

Consider again Fig. 5 and let disturbance d  be illustrated as an impulse with random 

input direction defined as in Eqs. (2.53) and (2.54) [12]. 

( )td ηδ=                                                       (2.53) 

( )*E Iηη =                                                     (2.54) 

It desired to minimize the expected energy of e and u  due to d . 



2
22

2 2
0 2

e o d

u o d

W S W
E e u dt

W KS W

∞   
+ =   

  
∫                              (2.55) 

The cost given by Eq. (2.55) can be considered as a total energy expended by the system 

to reject disturbance d  . This problem is named as linear quadratic Gaussian control and 

became popular in 1960s and 1970s. 

2.2.3.1.2. ¥ Performance 

The use of 2 norm as a cost leads to a controller having high gain at high frequencies. 

So, having high gains at high frequencies where the plant is not known exactly creates a 

serious problem, and the plant perturbations can destabilize the closed loop system. In 

this case,¥  norm may be helpful. For ¥case, the cost function given by Eq. (2.56) 
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can be used. In this case, the total energy expended by the system due to d  which has 

bounded energy is minimized.



{ }
2

2
22

2 21
sup e o d

d u o d

W S W
e u

W KS W≤ ∞

 
+ =  

 
                               (2.56) 

When one cares about robustness, the cost in Eq. (2.57) can be preferred,  

1 2

e o d

o

W S W
W T W

∞

 
 
 

                                                (2.57) 

where W1 and W2 denote frequency dependent uncertainty scaling matrices [12]. 

2.2.3.2. Weight Selection 

Even if every problem posses unique properties, it is possible to discuss general rules 

applicable to weight selection. For example, some time domain performance criteria like 

percent overshot and settling time can be given for SISO closed loops. These properties 

can be interpreted in the frequency domain as bandwidth and peak sensitivity [18]. 

Therefore, sensitivity function having bandwidth wb and peak sensitivity Ms is a good 

performance measure for closed loop systems. So, it is desired that the sensitivity 

function satisfies   Eq. (2.58). 

( ) , ,
1 s b

sS s s jw w
M w

≤ = ∀
+

                           (2.58) 

s b
e

s M wW
s
+

=                                              (2.59) 

When the weight given by Eq. (2.59) is considered, the objective is satisfied if the 

inequality 1eW S ≤  is satisfied at every frequency. However, to have a solution of 2 

and ¥ control, performance and weight functions need to be stabilizable by the control 

and detectable from the measurements [12]. Clearly, there must be no integrator outside 

the loop. A small modification is needed such that instead of zero steady state error, very 

small error is allowed. For small steady state error, the inequalities ( )0S ε≤  and 

( )0 1eW ε>  need to be satisfied. Thus, performance is satisfied if inequality 

1eW S
∞

≤  is achieved where the weight is now modified to one given in Eq. (2.60). 

s b
e

b

s M wW
s w ε

+
=

+
                                              (2.60) 
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Figure 6: Weight selection for sensitivity 

 
 
 
If a steeper transition is desired around crossover, one can choose weighting function in 

Eq. (2.61) where k denotes a positive integer bigger than one. 

k
k

s b
e k

b

s M w
W

s w ε

 +
=   + 

                                           (2.61) 

Typical weight We  and sensitivity S are illustrated in Fig. 6. 1eW S
∞

≤  is satisfied if the 

sensitivity remains below 1 eW  at all frequencies as shown in Fig. 6. 

Selection of Wu is made considering Eq. (2.62). 

( )o i iu KS r n d T d= − − −                                         (2.62) 

The magnitude of oKS  in the low frequency region is limited by allowable control 

effort and actuator saturation. Not to amplify the noises and disturbances at control 

signals in high frequency region, it is desired to roll off as fast as possible beyond the 

desired control bandwidth. Possible choice for control weight is given by Eq. (2.63). 

1

bc u
u

bc

s w MW
s wε

+
=

+
                                            (2.63) 

If faster roll off desired at high frequencies, one can choose weight given in Eq. (2.64). 
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Figure 7: Weight selection for control 

 
 
 

1

k
k

bc u
u k

bc

s w M
W

s wε

 +
=   + 

                                        (2.64) 

The typical weight Wu and KSo are illustrated in Fig. 7.  

Even if these weights are expressed for SISO system, it can be generalized for MIMO 

system easily. For example, one can chose the weight as a diagonal matrix whose 

diagonal elements are in discussed forms above. 

2.2.3.2.1. Fundamental Limitations in Feedback Loops 

The good control loop design is a tradeoff between performances as discussed earlier. 

Moreover, stability and robustness also puts restriction to the achievable performance 

which could not be changed with controller design methods. Existence of RHP zeros and 

poles also put strict limitation to achievable performance. These limitations need to be 

considered with care while designing feedback loops and determining performance 

indices and weighting functions. The details are outside of this thesis; however, 

interested reader can consult [12-14, 18] to learn much about these fundamental 

limitations. 
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Figure 8: Standard closed loop system 

 
 

 
Figure 9: Stability analysis structure 

 
 

2.3. Internal Stability of Feedback System 

In this section, the feedback structure and its stability analysis are discussed. The results 

obtained here, will be used in the next section to investigate the stability of the feedback 

systems in the existence of uncertainty. 

The standard closed loop given in Fig. 8 can be rearranged such that the structure given 

in Fig. 9 is obtained, where 1 2 1 2, , ,i pw d w d e u e y= = = = are satisfied. (Since the 

transfer matrix from d, n and –r to u are same, in stability analysis r and n are neglected.) 

Then the closed loop system is internally stable if the transfer matrix from 1 2( , )w w  

to 1 2( , )e e  given in Eq. (2.65) is in ¥ [12]. 

( )
( )

( )
( )

1 11

1 1

I KP K I PKI K
P I P I KP I PK

− −−

− −

 + − + 
 = −  + +   

                         (2.65) 
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In brief, to guarantee internal stability, all the four transfer matrices must be in ¥. If 

there is no pole zero cancellations between P and K in RHP, the closed loop system is 

internally stable if and only if one of the transfer function in transfer matrix expressed in 

Eq. (2.65) is in ¥. In other words, one can check only stability of ( ) 1I PK −+  for the 

internal stability of closed loop system [12]. 

2.4. Uncertainty and Robustness 

In this section, the unstructured uncertainties are discussed to represent the modeling 

errors of the actual systems. Moreover, the robust stability and robust performance 

conditions are expressed.  

2.4.1. Model Uncertainty 

Most control designs are done using a model of the system. However, it is impossible to 

represent a true plant in terms of a single mathematical model. Therefore, it is customary 

to represent a plant in terms of a set of models. The uncertainty is the difference between 

the mathematical model and the actual plant and various representations are available for 

uncertainty. For example, additive noise having bounded power spectrum in LQG 

control is one type of uncertainty representation. This type of uncertainty assumes the 

deviation of the output is independent of the input. However, this representation is not 

sufficient, because the deviations at the plant output usually depend on input in physical 

systems [12]. There are two ways of uncertainty representations, namely structured and 

unstructured. Defining sets for the system parameters are the structured uncertainty 

example. However, instead of one parameterized system, it is preferable to represent the 

system as a model set. Simple way to do that is using a frequency domain bounds for 

model sets. This type of representation does not usually seek to find the error source; 

therefore, it is called unstructured uncertainty. Since the model error gets bigger as the 

frequency increases, it is convenient representation for physical system’s errors. 

In this thesis, unstructured uncertainties are examined. For example, Eq. (2.66) is the 

representation of this type of error where P(s) is the nominal plant and W1 is stable 

transfer functions that illustrate the uncertainty upper bound. 

( ) ( ) ( ) ( ) ( )1 ,   1, 0P s P s s W s jw wσ∆ = + ∆ ∆ < ∀ ≥                      (2.66) 
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Usually, one chooses ( )1W w s I=  and then the model set P∆  describes a disc centered 

at P with radius w( jw) at each frequency as given in Fig. 10.  

Apart from this additive form, there is also a multiplicative form given by Eq. (2.67). 

( ) ( ) ( )( ) ( ) ( )1 ,   1, 0P s I s W s P s jw wσ∆ = + ∆ ∆ < ∀ ≥                   (2.67) 

The advantage of multiplicative form over additive form is that, the uncertainty affects 

both the nominal plant and open loop transfer function L = PK at the same time as 

illustrated in Fig. 11.  
 
 
 

 
Figure 10: Nyquist diagram of additive uncertainty 

 
 
 

 
Figure 11: Nyquist diagram of multiplicative uncertainty 
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Figure 12: Multiplicative uncertainty effect 

 
 
 
Generally the low frequency dynamics of the plant is known well and at this region the 

uncertainty is low. As frequency increases, the uncertainty also increases. In Fig. 12, 

representation of this effect is given. This error type is very suitable for any physical 

system representation, so in this thesis, output multiplicative uncertainty is discussed. 

One can denote the uncertainty model set by П, and nominal model by P  П. Also, 

some performance specification is considered while designing controller K. Then the 

closed loop system is said to have [12, 13]: 

Nominal Stability (NS): if K internally stabilizes the nominal plant P. 

Robust Stability (RS): if K internally stabilizes every plant in set П. 

Nominal Performance (NP): if the performance objectives are satisfied for the nominal 

plant P. 

Robust Performance (RP): if the performance objectives are satisfied for every plant in 

set П. 

One can easily check the nominal stability and nominal performance criteria; however, 

robust stability and robust performance require more analysis. 
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2.4.2. Small Gain Theorem 

This section is devoted to check the robust stability of a nominally stable system. When 

the closed loop system has unstructured perturbations, the closed loop system can be 

modified to MΔ loop as given in Fig. 13 where M is stable transfer matrix. 

Small Gain Theorem: Suppose  0,M γ∞∈ > . Then the system in Fig. 13 is 

internally stable for all ( )s ∞∆ ∈  if one of the below conditions (i-ii) hold [12]. 

(i) ( )1     if and only if   M s γ
γ∞ ∞

∆ ≤ <  

(ii) ( )1     if and only if   M s γ
γ∞ ∞

∆ < ≤  

 
 
 

 
Figure 13: MΔ loop for stability analysis 

 
 
 

 
Figure 14: Robust stability analysis with unstructured uncertainties 

 
 
 

2.4.3. Stability under Unstructured Uncertainties 

Small gain theorem defined in previous section, assumes stable modeling error Δ and 

stable nominally stable system. Δ is weighted by matrices and uncertainty is represented 

as ( ) ( )1  .s W s∆  
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The structure given in Fig. 14 is internally stable if the transfer matrix expressed with Eq. 

(2.68) is in ¥ for all П∀ ∈ П . 

( )
( )

( )
( )

1 11

1 1

П П
П П П П

I K K I KI K
I I K I K

− −−

− −

 + − + 
 = −  + +   

                        (2.68) 

2.4.3.1. Additive Uncertainty Case  

Additive uncertainty set can be represented as Eq. (2.69) where 1
∞

∆ < and

1 and W ∞∆ ∈  are satisfied. 

1P W= + ∆П                                                     (2.69) 

If the nominal stability is available, robust stability is satisfied if Eq. (2.70) is satisfied 

[12]. 

1 1oW KS
∞

<                                                    (2.70) 

2.4.3.2. Output Multiplicative Uncertainty Case 

Output multiplicative uncertainty set can be represented as Eq. (2.71) where 1
∞

∆ <

and 1 and W ∞∆ ∈  are satisfied. 

( )1I W P= + ∆П                                                  (2.71) 

If the nominal stability is available, robust stability is satisfied if Eq. (2.72) is satisfied 

[12]. 

1 1oW T
∞

<                                                     (2.72) 

In this thesis, the perturbation is given as output multiplicative uncertainty as depicted in 

Fig. 15. 

2.4.4. Robust Performance 

Consider the feedback structure given in Fig. 15. The performance criterion can be 

modeled as to keep the worst case energy of the error e as small as possible in the 

existence of disturbance d  of unit energy. In a similar way, one would like to minimize 

the magnitude error under sinusoidal disturbance d . 
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Figure 15: Output multiplicative perturbed system 

 
 
 
So, in either case as given in Table 1, it is desired that the transfer function from d  to e 

edT
∞

is small.  

Assuming the system in Fig. 15 is robustly stable, the robust performance is obtained if 

Eq. (2.73) is satisfied, where 


( ) 1 ,  e dedT W I P K W P−
∆ ∆= + ∀ ∈ П . 



1edT
∞

≤                                                       (2.73) 

More specifically, for each frequency w if Eq. (2.74) is satisfied, the robust performance 

is guaranteed [12]. 

( ) ( ) ( )1 1,d e o oW W S W T wσ σ σ+ ≤ ∀                                  (2.74) 

2.5. Linear Fractional Transformation 

In linear robust control theory, 2 and ¥ control problems are treated in linear 

fractional transformation (LFT) structure. Moreover, when applying μ-analysis and 

synthesis, the use of LFT structure is essential. 

In LQG/LTR control LFT usage is not a must; however, the equivalent representation of 

this problem in LFT framework is also discussed in Chapter 3. 

There are two types of LFT, namely upper and lower. Assume M is complex matrix and 

it is partitioned as Eq. (2.75). Similarly, assume 2 2 1 1and   q x p q x p
u∆ ∈ ∆ ∈



   are the 

complex matrices. 

( ) ( )1 2 1 211 12

21 22

p p x q qM M
M

M M
+ + 

= ∈ 
 

                                   (2.75) 
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Then the lower LFT is defined as in Eq. (2.76), and it is the transformation obtained by 

closing the lower loop in Fig. 16. 

( ) ( ) 1
11 12 22 21, :M M M I M M−∆ = + ∆ − ∆

   

                       (2.76) 

( ),M ∆
 

  is simply the closed loop transfer function from w1 to e1. It is the addition of 

nominal mappings M11 of the system and its perturbation due to some Δ. 

On the other hand, the upper LFT is defined as Eq. (2.77), and it is the transformation 

obtained by closing the upper loop in Fig. 17. 

( ) ( ) 1
22 21 11 12, :u u u uM M M I M M−∆ = + ∆ − ∆                       (2.77) 

 
 
 

 
Figure 16: Lower LFT 

 
 
 

 
Figure 17: Upper LFT 

 
 
 

( ),u uM ∆  is the closed loop transfer function from w2 to e2. Generally, this transform 

is used for analysis of robust stability and performance [12]. 
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2.6. μ and μ-synthesis 

Robust stability and performance derived in Section 2.4, depend on the uncertainty 

descriptions and performance. In other words, according to selection of uncertainty 

description, the robust stability and robust performance conditions change. For example, 

Eqs. (2.72) and (2.74) are the conditions of robust stability and robust performance for 

output multiplicative perturbation and for the structure given in Fig. 15. Moreover, the 

results of the Section 2.4 are applicable only if there is a single uncertainty in the loop. 

When there is more than one uncertainty in the loop, all the perturbations must be 

reflected to the same point in the loop in order to use the singular value tests discussed 

earlier. However, this is usually a complicated procedure and it is not preferred. So, in 

this section, robust stability and robust performance tests are explained in μ framework 

using the LFT structure given in Fig. 18. 

2.6.1. General Framework for System Robustness 

It is usually possible to represent any system in the general framework given in Fig. 18 

by making required modifications. 

In Fig. 18, P is the interconnection matrix, K is the controller and Δ is all possible 

perturbations. The signal w is a vector which may include references, disturbances, and 

noises and e is a vector which includes error signals to be minimized. Finally, u and y are 

the control and measurement signals, respectively. 
 
 
 

 
Figure 18: General framework 
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Figure 19: MΔ analysis framework 

 
 
 
The robustness analysis is done in MΔ structure as given in Fig. 19 by closing the lower 

loop in Fig. 18. The lower LFT M is partitioned as Eq. (2.78). 

( ) ( ) ( )( ) ( )
( )

( )
( )

11 12

21 22

,
M s M s

M s P s K s
M s M s

 
= =  

 


                        (2.78) 

Then the upper LFT of MΔ gives a transfer matrix from w to e as given by Eq. (2.79). 

( ) ( ) 1
22 21 11 12,u u ue M w M M I M M w− = ∆ = + ∆ − ∆ 

                (2.79)  

2.6.2. Structured Singular Value 

2.6.2.1. Definition of μ  

The definition of the structural singular value (μ) results from the need to answer the 

following question. Given a matrix p xqM ∈  what is the smallest perturbation matrix 
q x p∆ ∈  ( )( )in terms of maximum singular value Δσ  such that ( )det 0I M− ∆ =  is 

satisfied?  In other words, one is interested in finding the smallest maximum singular 

value of the perturbation block that makes the corresponding determinant zero as given 

by Eq. (2.80). 

( ) ( ){ }: inf Δ : det 0, q x p
mina I Mσ= − ∆ = ∆ ∈                         (2.80) 

The solution is given in [19] as the reciprocal of the maximum spectral radius of the 

matrix MΔ as shown in Eq. (2.81) for norm bounded perturbation. 

( )
( )

Δ 1

1
maxmina

M
σ

ρ
≤

=
∆

                                           (2.81) 

For a complex perturbation qxp∆ ∈ , Eq. (2.82) is satisfied. 
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( )
( ) ( )

Δ 1
max M M
σ

ρ σ
≤

∆ =                                           (2.82) 

It is customary to define the maximum singular value of the matrix as in Eq. (2.83) 

which shows that the maximum singular value of a matrix is a measure of the smallest 

destabilizing perturbation matrix. 

( )
( ) ( ){ }

1:
inf Δ : det 0,  q x p

M
I M

σ
σ

=
− ∆ = ∆ ∈

                    (2.83) 

The uncertainty q x p∆ ∈  is not restricted in any sense. Now, the same question with 

different uncertainty is considered. Consider a structurally restricted perturbation block 

having repeated scalars and full blocks. Let S is the number of scalar blocks and ri is the 

dimension of them. Also, let F is the number of the full blocks and mj is the dimensions 

of them. Perturbation n xn∈∆  is defined as in Eq. (2.84), and it satisfies Eq. (2.85). 

 [ ]{ }1 1 1, ,diag , , , : ,   j jm xm
r S rS F iI Iδ δ δ= ∆ … ∆ ∈ ∆ ∈  ∆             (2.84) 

1 1 

F

i
i

S

j
j

r m n
= =

+ =∑ ∑                                               (2.85) 

Often, norm bounded subset of ∆  is needed. For that reason, new set as in Eq. (2.86) is 

introduced which covers the uncertainties in the unit closed ball. 

( ){ }: Δ 1σ= ∆ ∈ ≤∆ ∆B                                        (2.86)  

Now the previous question is asked for this new structure. Given a matrix p xqM ∈  

what is the smallest perturbation matrix ∆ ∈ ∆   such that ( )det 0I M− ∆ =  is satisfied? 

That is, the variable can be expressed in Eq. (2.87). 

( ) ( ){ }: inf Δ : det 0,  mina I Mσ= − ∆ = ∆ ∈ ∆                          (2.87) 

Again, Eq. (2.88) is valid for norm bounded perturbations [12, 19]. 

( ){ } ( )
1inf : det 0,  

maxmina a I aM
Mρ

∆∈

= − ∆ = ∆ ∈ =
∆

∆

∆
B

B             (2.88) 

Definition of the structured singular value comes from the definition shown in Eq. 

(2.87). Instead of dealing with the smallest perturbation, it is very helpful to deal with its 

reciprocal. So, 1 mina  is called a structured singular value and it is denoted by ( )Mµ∆ . 
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Definition: For n xnM ∈ , ( )MµΔ  is defined as Eq. (2.89). 

( ) ( ) ( ){ }
1:

inf Δ : , det 0
M

I M
µ

σ
=

∆ ∈ − ∆ =Δ ∆
                     (2.89) 

If no ∆ ∈ ∆  can make I M− ∆  singular, ( )MµΔ  is accepted to be zero. 

2.6.2.2. Upper and Lower Bounds for μ 

It can be shown that when perturbation has one scalar full block { }  ,  Iδ δ= ∈∆

satisfying (S = 1, F = 0, r1 = n), ( ) ( )M Mµ ρ=∆ is satisfied. 

Similarly, when perturbation has one complex full block n xn∆ =  satisfying (S = 0,             

F = 1, m1 = n), ( ) ( )M Mµ σ=∆ is satisfied. 

One can drive the result given in Eq. (2.91), by considering the perturbation relations 

shown in Eq. (2.90) [19]. 

{ },  n xnIδ δ ∈ ≤ ≤ ∆                                         (2.90) 

( ) ( ) ( )M M Mρ µ σ≤ ≤∆                                      (2.91) 

Generally, the difference between the bounds is large, so this relation gives very little 

information for most of the cases.  

2.6.2.3. Better Bounds for μ 

While keeping structured singular value constant, it is possible to change the bounds. 

Consider any unitary matrix U with the same structure as Δ, and any matrix D which 

commutes with Δ. In other words, U and D have forms in Eqs. (2.92) and (2.93). 

{ }: nU UU I= ∈ =∆ *U                                           (2.92) 

1

*
1 1 1 1{diag , , , , , , : 0 0, , , }i i

F F

r x r
S m F m m i i i j jD D d I d I I D D D d d

−− = … ∈ = > ∈ >   D
(2.93) 

So, for any matrix ,  ,  U and D∆ ∈ ∈ ∈∆ U   D  the relations given in Eq. (2.94) are 

satisfied [19]. 

( ) ( ) ( )* ,  ,    ,     ,  U U D D U U Uσ σ σ∈ ∆ ∈ ∆ = ∆ ∆ ∈ ∆ = ∆ = ∆∆  ∆U      (2.94) 

For all D ∈D  and U ∈U Eq. (2.95) are satisfied [19]. In other words, the stability of 

the structures given in Figs. 20 and 21 are equivalent. 
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Figure 20: DMD-1 structure 

 
 
 

( ) ( ) ( ) ( )1MU UM M DMDµ µ µ µ −= = =∆ ∆ ∆ ∆                        (2.95) 

For that reason, the bounds discussed in Eq. (2.91) can be written as in Eq. (2.96) [19]. 

( ) ( ) ( ) ( )1max max inf
DU

UM M M DMDρ ρ µ σ −

∈∈ ∆∈
≤ ∆ = ≤∆∆ DU B

              (2.96) 

The lower bound is not a convex problem. However, the upper bound can be formulated 

as a convex optimization problem, so the global minimum can be found [13, 15]. 

The convex optimization is not discussed in this thesis to keep the readers’ attention to 

control methods applications instead of their solutions. In this aspect, the algorithms 

which are available in MATLAB are utilized [15]. 

The upper bound is not usually equal to μ. It is reported in [19] that equality is valid only 

for special cases as given in Eq. (2.97). 

( ) ( )1inf   if  2 3
D

M DMD S Fµ σ −

∈
= + ≤∆ D

                            (2.97) 

In other words, the upper bound equality is satisfied if there are 3 or fewer blocks in ∆ . 

For higher number of blocks, the upper bound and μ are close [13]. 

The upper bound can be thought as ¥ norm of the scaled transfer function DMD-1. And 

this idea leads to iterative μ-synthesis method known as D-K iteration.  

2.6.3. Robust Stability 

MΔ structure given in Fig. 21 is considered where ∆ ∈ ∆B  is a set of norm bounded 

block diagonal perturbations discussed in previous section. The interconnection is stable 

for all perturbations if and only if the condition given in Eq. (2.98) is satisfied for all 

frequencies. 

( )( ) 1,M jw wµ < ∀∆                                             (2.98) 

36 



 

2.6.4. Robust Performance 

The robust performance can be tested by adding fictitious full block perturbation and 

constructing the new representation given in Fig. 22 where M is internally stable. 
 
 
 

 
Figure 21: MΔ structure for stability 

 
 
 

 
Figure 22: MΔ structure for performance 

 
 
 
Robust performance is satisfied if and only if the μ of this new structure satisfies Eq. 

(2.99), 

( ) 1,M wµ < ∀
∆

                                                     (2.99) 

where  ( ) ( )dim0
,  

0
w xdim e

p
p

 
= ∈ 

 
 

∆
∆ ∆

∆
 is the new norm bounded perturbation block. 

This idea is the result of main loop theorem discussed in [19]. 

2.6.5. Summary of the µ-analysis 

In the µ framework following stabilities and performances are valid if and only if the 

conditions given in Eqs. (2.100)-(2.103) are satisfied. NS, NP, RS and RP denote nominal 

stability, nominal performance, robust stability and robust performance, respectively [13]. 
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   NS M⇔ is internally stable                                   (2.100) 

( )22 1,  ,  and 
p

NP M w NSσ µ⇔ = < ∀∆                       (2.101) 

( )11 1, ,  and RS M w NSµ⇔ < ∀∆                                (2.102) 



( ) 1, , and RP M w NSµ⇔ < ∀
∆

                                 (2.103) 

2.6.6. µ-synthesis and D-K iteration 

The structured singular value µ is a very powerful tool when analyzing robust 

performance with given controller. However, the controller that minimizes a given µ 

condition is desired. The problem related with this condition is called as µ-synthesis 

problem [13]. 

2.6.6.1. D-K iteration 

The direct solution of µ-synthesis problem is not available. However, for complex 

perturbations a method known as D-K iteration is available. It is a combination of                     

¥ synthesis and µ-analysis. The aim is to find a controller that will minimize the peak 

value of μ by alternating between minimizing 1( )DM K D−

∞
with respect to either K or D.  

The objective of D-K iteration is given in Eq. (2.104) [13]. 

( )1min min ( )
K D

DM K D−

∞∈D
                                    (2.104) 

To start the iteration an initial stable D(s) must be chosen. The identity matrix is often a 

good choice for starting point. Then the D-K iteration follows the steps 1 to 3. 

Step 1: K-step: Synthesize a ¥ controller for the scaled problem as shown in Fig. 23 

with fixed D(s). 

Step 2: D-step: Find D( jw) to minimize the 1( )DMDσ −  at each frequency with fixed M 

for the structure shown in Fig. 20 previously. 

Step 3: Fit the magnitude of each element D( jw) to a stable and minimum  phase 

transfer function D(s) and go step 1. 

The iterations can continue until the μ bound becomes smaller than one or the bound is 

no longer decreases.  
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The controller obtained with D-K iteration has number of states equal to the total of 

nominal model, weights and twice the state number of D(s). 

2.7. Summary 

In Chapter 2, the robust control theory is summarized. In the next chapters, the results 

derived in this chapter will be used. When analyzing the robustness of the designed 

controller, both the singular value tests and μ tests are used. The singular value tests are 

used by assuming the structure given in Fig. 15 is used. In other words, there is only one 

full uncertainty block in the system and performance is measured only by weighted output 

sensitivity. When different performance indices are added, the μ-analysis is used to 

investigate the robustness of the designed controller. The details are explained in the next 

chapters. 
 
 
 

 
Figure 23: Scaled problem 
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CHAPTER 3 
 
 

LQG/LTR, ¥ AND μ CONTROLLERS DESIGN METHODS 
 
 
 
In this part of the thesis, the control techniques that will be designed for LOS 

stabilization are examined. Firstly, linear quadratic Gaussian (LQG) problem is 

discussed. After discussing the LQG problem, the motivation behind loop transfer 

recovery (LTR) is examined. Loop transfer recovery is done using the loop shaping 

technique reported in [20]. Then 2 and ¥ control problems are formulated and their 

state space solutions are discussed. Next, ¥ mixed sensitivity control framework is 

examined. Finally, this chapter ends with the introduction of structures that will be used 

for μ-analysis and synthesis in Chapter 7. 

3.1. LQG/LTR Control 

In this section, the motivation behind the LQG/LTR method is explained. The 

mathematical background of the problem is given, and throughout the section [11] is 

used as a guide. 

3.1.1. Traditional LQG Problem 

In traditional LQG control, the plant is assumed to be LTI, and measurement noises and 

disturbance signals or model uncertainties (process noises) are stochastic with known 

statistical properties [11]. 

The state space model of the plant has the form given in Eq. (3.1), 

    
d

n

x Ax Bu w

y Cx w

= + + Γ

= +



                                              (3.1) 

where wd and wn are uncorrelated zero mean white noise processes having constant 

power spectral densities W, V as shown in Eq. (3.2). 
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( ) ( ){ } ( ) ( ) ( ){ } ( )

( ) ( ){ }
,

0

T T
d d n n

T
d n

E w t w W t E w t w V t

E w t w

τ δ τ τ δ τ

τ

= − = −

=
           (3.2) 

Then the problem boils down to finding a feedback law which minimizes the cost 

function illustrated in Eq. (3.3), 

( )
0

lim
T

T T

T
J E x Qx u Ru dt

→∞

 
= + 

 
∫                                     (3.3) 

where and 00 T TQ Q R R= = >≥  are weighting matrices. The solution of this 

problem comes from separation principle as shown in Fig. 24. The procedure is as 

follows: 

(1) Obtain an optimal estimate x̂  of states x such that ( ) ( ){ }ˆ  ˆTxE x x x− − is minimized. 

(2) Use estimate as if it were true state measurement and solve LQ regulator problem. 
 
 
 

 
Figure 24: The separation theorem 

 
 
 
Problem 1 is solved by estimating the states with a Kalman filter which has an observer 

structure in Eq. (3.4) with a special gain matrix Kf  given by Eq. (3.5) [21]. 

( )ˆ  ˆ ˆfA Bu K yx x xC= + + −                                           (3.4) 

1T
fK YC V −=                                                      (3.5) 

In Eq. (3.5), Y is the positive definite symmetric matrix and it satisfies the algebraic 

Riccati equation (ARE) (3.6). 

1 0T T TYA AY YC V CY W−+ − + Γ Γ =                                   (3.6) 
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Problem 2 is solved by finding an optimal control law for the deterministic LQ problem 

which minimizes the cost in Eq. (3.7). 

( )
0

lim
T

T T

T
J E x Qx u Ru dt

→∞

 
= + 

 
∫                                    (3.7) 

The solution of this problem turns out to be the linear function of the states as shown in 

Eq. (3.8) where Kr is given in Eq. (3.9). 

ru K x= −                                                         (3.8) 

1 T
rK R B X−=                                                     (3.9) 

In Eq. (3.9), X is the positive definite symmetric matrix and satisfies the ARE (3.10). 

 1 0T TA X XA XBR B X Q−+ − + =                                    (3.10) 

3.1.2. LQG: Combined Optimal State Estimation and Optimal State Feedback 

The transfer function from y to u as given in Fig. 25 is the LQG compensator transfer 

function, and its state space form is given in Eq. (3.11). The order of the compensator is 

the same as the order of the plant. 

 
 
 

 
Figure 25: LQG control structure 
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Figure 26: Full state feedback 

 
 
 

(s) 0
r f f

LQG
r

A BK K C K
K K

− − 
=  − 

                                (3.11) 

In traditional LQG problem, Kr and Kf are exists if 1 2( , , )A B Q are stabilizable and 
1 2( , , )A W CΓ are detectable [11].  

3.1.3. Performance and Robustness Properties of Optimal State Feedback 

When all states of the plant are available or measurable, Kalman Filter is not required. 

To investigate the robustness, one can break the loop as shown in Fig. 26 so that the 

open loop transfer function can be obtained. 

The open loop transfer matrix at the plant input is ( ) ( ) 1
r r

e L s K sI A B
u

−− = = − . 

Return difference at the plant input is ( ) ( ) 1
r rF s I K sI A B−= + − . 

After manipulating the ARE (3.10), Eq. (3.12) is satisfied [11]. 

( ) ( )T
r rF jw RF jw R− ≥                                          (3.12) 

Taking R Iρ= , [11, 14, 22, 23] show that when the loop is perturbed by ( )W jw∆  the 

closed loop remains stable as long as ( ) ( )TW jw W jw I∆ ∆− + >  is satisfied. This leads to 

following results in classical control sense. When there is a pure gain perturbation in the 

loop, the closed loop system is stable as long as ( ) 1 2W jw∆ >  is satisfied. When only 

phase perturbation ( ) jW jw e θ
∆ =  exists, the closed loop system remains stable when 

phase perturbation θ is less than 60°. 

In brief, one can conclude that when R is diagonal the closed loop can tolerate gain 

variation between ( )1 2,∞  and phase variation less than 60° in each channel. 

44 



 

 
Figure 27: Kalman filter 

 
 

3.1.4. Performance and Robustness Properties of Kalman Filter 

To investigate the open loop transfer matrix of the Kalman filter it is convenient to 

assume control input to be zero since it affects both plant and Kalman filter in the same 

way. Then consider Fig. 27 for transfer matrix derivation. 

The open loop transfer matrix at the plant output is 1  ( ) ( )f f
y L s C sI A K
e

−− = = − . 

Return difference at the plant output is ( ) ( ) 1
f fF s I C sI A K−= + − . 

Similarly, after manipulating the ARE (3.6), ( ) ( )T
f fF s VF s V− ≥  is obtained [11, 14, 

22, 23]. So, Kalman filter loop is also stable under gain variation between ( )1 2,∞  and 

phase variation less than 60° in each channel. 

3.1.5. Loop Transfer Recovery 

Considering the fact that Kalman filter and state feedback have good robustness and 

performance properties, one may consider that LQG compensator has generally yield 

good robustness and performance properties. However, in [24] it is reported that there is 

no guaranteed stability conditions for the loops with LQG regulators, and if the designers 

do not pay attention, they can obtain arbitrary poor stability margins. 

The method introduced in [25] overcomes this drawback of LQG regulators. The method 

is a way of designing an optimal state feedback such that the Kalman filter properties are 

recovered at the plant output.  

For the dual problem, special Kalman filter is designed such that the full state properties 

are obtained at the plant input. For these problems some of the full state feedback poles 

(or Kalman filter poles for dual case) are attracted by the zeros of the plant and the 

45 



 

remaining ones become arbitrary fast. So, this procedure works well for the minimum-

phase plants [11]. 

Define G and Φ which satisfy Eqs. (3.13) and (3.14). 

( ) 1G C sI A B−= −                                               (3.13) 

( ) 1sI A −Φ = −                                                   (3.14) 

There are two methods for the application of the loop recovery in a feedback loop. 

Method 1: Recovery at plant output 

Fact1: The open loop transfer matrix obtained by breaking the LQG loop at point 4 of 

Fig. 28 is the KF open loop transfer matrix fC KΦ . Since u acts the same way to system 

and KF, it is convenient to assume u = 0, y = 0. 

Fact2: The open loop transfer matrix obtained by breaking the LQG loop at point 2 of 

Fig. 28 is LQGGK . It can be made to approach fC KΦ  by using LTR procedure. 

 
 
 
 
 

 

Figure 28: Loop recovery  
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Method 2: Recovery at plant input 

Fact3: The open loop transfer matrix obtained by breaking the LQG loop at point 3 of 

Fig. 28 is the LQR open loop transfer matrix rK BΦ . In this analysis, it is convenient to 

assume state estimation error is zero. 

Fact4: The open loop transfer matrix obtained by breaking the LQG loop at point 1 of 

Fig. 28 is LQGK G . It can be made to approach rK BΦ  by using LTR procedure. 

In this thesis the first method will be used. 

LTR procedure at the plant output can be summarized in two steps [11, 25]. 

Step 1: Design a Kalman filter by adjusting the covariance matrices W and V such that a 

desired open loop transfer matrix fC KΦ  is obtained. 

Step 2: Design an optimal state feedback regulator by setting  and Q I R Iρ= =  and 

reduce ρ until the open loop transfer matrix at the output of the plant has converged 

sufficiently to fC KΦ  over frequency range of interest. 

Now how to obtain a good fC KΦ  will be discussed [11]. 

3.1.6. Shaping Singular Values 

To design a satisfactory open loop transfer matrix, one needs to modify W and V in the 

first LTR method. Moreover, one can also use frequency dependent weighting matrices 

W(s) and V(s) to obtain a good properties of fC KΦ . 

Now assume that instead of state disturbances the plant has a disturbance d having power 

spectral density D(s) and measurement noise v having power spectral density V(s) as 

shown in Fig. 29. Further assume that disturbance d and measurement noise v are created 

from the processes given in Eqs. (3.15) and (3.16), respectively, 

d d

d

dA B
d C

ξ ξ
ξ

= +
=



                                               (3.15) 

v v

v

A B
v

v
C

η η
η θ

= +
= +

 

                                                (3.16) 

where ,   and d v θ

  are white noise processes. Combining these with original plant 

representation in Eq. (3.1), one can obtain the augmented system shown in Eq. (3.17). 
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Figure 29: Augmentation of plant  
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 
 =  
  











                 (3.17) 

After augmenting the plant, the problem is still solvable by LQG framework by 

assuming Eq. (3.18) is satisfied. 

{ } { } { }0, 0, 0T T TE E v E dθθ θ θ> = =

                               (3.18) 

Define Z(w), U(w) to denote the power spectral densities of the signals z and u 

respectively. Then the cost function can be written as in Eq. (3.19) as discussed in [11], 

( ){ } ( ) ( ){ }1 trace trace
2

T TJ E z Qz u Ru QZ w RU w dw
π

∞

−∞

= + = +      ∫   (3.19) 

where the signals z and u are given in Eqs. (3.20) and (3.21). 
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o oz S d T v= −                                                      (3.20) 

o ou KS d KS v= − −                                                (3.21) 

The cost function in Eq. (3.19) can be written as Eq. (3.22) [11]. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 1 2 1 2 2 1 2 1 2

2 1 2 1 2 2 1 2 1 2

 
1

2

o o
i i

o o
i i

Q S jw D jw Q T jw V jw
J dw

R K jw S jw D jw R K jw S jw V jw

σ σ

π σ σ

∞

−∞

    +    
=  

   + +     

∑ ∑
∫ ∑ ∑

(3.22) 

So, LQG problem minimizes the output sensitivity So, output complementary sensitivity 

To, and KSo weighted by corresponding transfer matrices. It is reported in [20] that the 

cost of the LTR procedure approaches Eq. (3.23) by taking Q = I, R = ρI and reducing ρ. 

( ) ( )2 1 2 2 1 2

0

1lim
2LTR o o

i i

J S D jw T V jw dw
ρ

σ σ
π

∞

→
−∞

    = +     
∑ ∑∫           (3.23) 

One can see that LTR procedure applied at plant output trades off the output sensitivity 

( )oS jw  against the output complementary sensitivity ( )oT jw  with a factor
1 2 1 2( ) ( ) ( )eW jw D jw V jw−= . Assuming V = I and choosing 1 2 ( )D jw  appropriately, it 

is possible to shape the sensitivity function over a required frequency range.  

3.2. 2 and ¥ Control 

In this section, 2 and ¥ control problems and their solutions are examined. In this 

section, the results and solutions discussed in [13] are followed.  

The LFT structure for 2 and ¥ control synthesis is given in Fig. 30 where P is the 

interconnection matrix and K is the controller. Signal w is a vector which may include 

references, disturbances, and noises and e is a vector which includes error signals to be 

minimized. Finally, u and y are the control and measurement signals respectively. The 

corresponding transfer matrix from (w, u) to (e, y) is given in Eq. (3.24). 

11 12

21 22

P P w
Py u

e
P

    
=     

    
                                          (3.24) 

The interconnection transfer matrix has a state space representation depicted in Eq. 

(3.25), and the lower LFT gives a transfer matrix from w to e ( ( ),e P K w=


 ). 
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Figure 30: LFT for 2 and ¥ control 
 
 
 

1 2

1 11 12

2 21 22

A B B
P C D D

C D D

 
 =  
  

                                            (3.25) 

2 and ¥ control minimizes the 2 and ¥ norm of the ( ),e P K w=


  respectively. 

2 and ¥ control problems are usually solved by state space techniques introduced in 

[26]. Both 2 and ¥ control methods give a controller having same state dimension as 

augmented plant P. Both solutions are found by solving ARE equations and they both 

have separation principle as in the case of LQG control discussed in Section 3.1. The 

assumptions (A1) to (A5) are usually made for these problems [13]. 

( )( )

( )

( )

( )

( )

2 2

12 21

2

1 12

1

2 21

11 22

A1 , ,  is stabilizable and detectable.

A2 and   have full rank.

A3  has f

 

ull column rank for all  .

A4  has full row rank for all  .

A5 0  and   0.

A B C

D D

A jwI B
w

C D

A jwI B
w

C D

D D

− 
 
 

− 
 
 

= =

 

(A1) is required for the existence of stabilizing controller K, and (A2) is required for K to 

be proper. (A3) and (A4) ensure that the controller does not try to cancel the poles or 

zeros on the imaginary axis which leads to instability. (A5) is required for 2 control. 

Making D11 = 0 leads to strictly proper P11 which is required, because 2 is the set where 

there are proper transfer matrices. D22 = 0 makes P22 strictly proper and simplifies the 2 

problem. In ¥ control, none of them is required but if they are available they simplify 
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the problem. Sometimes additional assumptions can be made to simplify the solutions 

greatly [13]. 

( ) [ ]

( )( ) ( )

12 1 1 21

12 21

1 1

(A6) 0 and 0.

0
A7   and   0 .

A8 , is stabilizable and  , is detectable.

T TD C B D

D D I
I

A B A C

= =

 
= = 

 
 

(A6) is required for 2 problem and it means that there is no cross term in cost function. 

As an example in LQG framework, it is equal to uncorrelated measurement and process 

noise.  

3.2.1. 2 Optimal Control 

The standard 2 optimal control results in a controller which minimizes the norm

( )
2

,P K


 . In this thesis, 2 optimal control will be discussed in LQG framework. 

LQG: A Special 2 Optimal Control: 

The traditional LQG problem is discussed in Section 3.1. For completeness, it is 

reconsidered in 2 framework. The plant has the state space representation in Eq. (3.26), 

d

n

x Ax Bu w

y Cx w

= + + Γ

= +



                                            (3.26) 

where wd  and wn  are  uncorrelated zero mean white noise processes having constant 

power spectral densities W, V satisfying Eq. (3.27). 

( )
( ) ( ) ( )

0
0

d T T
d n

n

w t W
E w w

w t V
τ τ

       =          
                       (3.27) 

The aim of the LQG problem is to find a controller K such that the cost in Eq. (3.28) is 

minimized. Moreover, the error signals and disturbance signals are obtained in Eqs. 

(3.29) and (3.30), where w is a vector of zero mean unit intensity white noise. 

( )
0

lim
T

T T

T
J E x Qx u Ru dt

→∞

 
= + 

 
∫                                  (3.28) 

1 2

1 2

0
0

xQ
e

uR
   

=    
  

                                           (3.29) 
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Figure 31: LQG problem in LFT structure 
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  

=   
   

                                      (3.30) 

After all this reformulations, the LQG cost given in Eq. (3.28) is equated to 
( ) 2

2
,lF P K  where ( ),lF P K  is the transfer matrix from w to e. Then the state space 

representation of generalized plant for this problem is given in Eq. (3.31). 

1 2

1 2

1 2

1 2

0
0 0 0

0 0 0
0 0

A W B
Q

P
R

C V

 Γ
 
 =  
 
  

                                  (3.31) 

The traditional LQG problem can be given in LFT framework as in Fig. 31.  Therefore, 

the LQG problem is a special type of 2 problem, and in this thesis 2 design will be 

made in LQG framework while designing controller in Chapter 7. 

3.2.2. ¥ Optimal Control 

The standard ¥ problem seeks a controller K that will minimize the transfer matrix 

from w to e. The cost for this problem is given in Eq. (3.32). 

( ) ( )( )( ), max ,l lw
F P K F P K jwσ

∞
=                               (3.32) 
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 In practice it is usually not necessary to obtain optimal solution, for easiness it is desired 

to obtain suboptimal controller which is very close to optimal solution. Let the optimal 

solution of the ¥ problem be minγ . 

¥ Suboptimal Control: 

Finding a controller K satisfying ( ),   where     minP K γ γ γ
∞

><


  is the formulation 
of suboptimal controller. 

The solution of this problem can be found by using the technique discussed in [26]. It is 

an iterative algorithm that finds the suboptimal controller that makes  and minγ γ close 

within specified tolerances. 

General ¥ Algorithm: 

If assumptions (A1) to (A8) are hold, there exist a stabilizing controller K(s) such that 

( ),P K γ
∞

<


  if and only if conditions (i-iii) are satisfied [13]. 

(i) 0X ∞ ≥  is a solution to the algebraic Riccati equation depicted in Eq. (3.33) such that 

( )2
1 1 2 2  0,T T

iRe A B B B B X iλ γ −
∞

 + − < ∀  and; 

( )2
1 1 1 1 2 2 0T T T TA X X A C C X B B B B Xγ −

∞ ∞ ∞ ∞+ + + − =                 (3.33) 

 (ii) 0Y∞ ≥  is a solution to the algebraic Riccati equation shown in Eq. (3.34) such that 

( )2
1 1 2 2  0,T T

iRe A Y C C C C iλ γ −
∞

 + − < ∀  and; 

( )2
1 1 1 1 2 2 0T T T TAY Y A B B Y C C C C Yγ −

∞ ∞ ∞ ∞+ + + − =                     (3.34) 

 (iii) 2( )X Yρ γ∞ ∞ <  

Then the controller is obtained using the results of Eq. (3.35), and controller transfer 

matrix is given in Eq. (3.36). 

( ) 12
2 2

2
1 1 2 2

,  ,    T T

T

F B X L Y C Z I Y X

A A B B X B F Z L C

γ

γ

−

∞ ∞ ∞ ∞ ∞ ∞ ∞

−
∞ ∞ ∞ ∞ ∞

= − = − = −

= + + +
                   (3.35) 

( ) ( ) 1K s Z L sI A F−
∞ ∞ ∞ ∞= − −                                    (3.36) 

The controller can be written as combination of observer and state feedback as seen in 

Eq. (3.37), 

( )2
1 1 2 2ˆ ˆ ˆ ˆTA B Bx x xX B xu Z L C yγ −

∞ ∞ ∞= + + + −                     (3.37) 

53 



 

where ˆu xF∞= . Moreover, the term 2
1 ˆTB xXγ −

∞  can be viewed as a worst case 

disturbance ˆ worstw . Then the structure of observer differs from Kalman filter by worst 

case disturbance estimation [13, 26]. In brief, like 2 control, for ¥ control, there is 

also separation principle idea. 

As discussed previously the solution of the ¥ control problem is obtained by iterative 

process by solving Eqs. (3.33) and (3.34), testing conditions (i)-(iii) and changing γ  at 

the same time [13, 26]. 

In conclusion, solution of ¥ control problem requires complex and iterative method. 

On the other hand, 2 problem is fairly easy and the controller can be found from the 

solution of just two Riccati equations [13]. 

3.2.3. Mixed Sensitivity ¥ Control 

Mixed sensitivity is the name of the problem where sensitivity ( ) 1
oS I GK −= +  is 

shaped with one or two of the other transfer matrices  and  o o oT I S KS= − . As explained 

in Chapter 2, the disturbance rejection typically requires low sensitivity in low 

frequencies. Moreover, the effect of d to u is given by transfer matrix KSo, and usually it 

is desired to limit the controller bandwidth so that disturbances are not amplified at 

control signals. Also, robust stability under additive perturbation puts limit to KSo. In 

addition, To shaping is required for noise attenuation and robust stability under output 

multiplicative perturbations. In these aspects, ¥ control design is made in mixed 

sensitivity framework. For this problem the cost function given by Eq. (3.38) can be 

used. The corresponding augmented plant and LFT structure is given in Fig. 32. 

e o

u o

ot

W S
W KS
W T

∞

 
 
 
  

                                                 (3.38) 

Please observe that the aim of ¥ control is to minimize Eq. (3.38) to satisfy the 

nominal performance. For this structure it is possible to give generalized plant P as in 

Eq. (3.39). 
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Figure 32: S/KS/T mixed sensitivity in regulation mode 

 
 
 
3.3. μ-synthesis 

For μ-synthesis design the robustness is gained by D-K iteration as discussed previously. 

In this aspect, there is no performance index related with the complementary sensitivity 

T required in the cost given by Eq. (3.40). 

e o

u o

W S
W KS

∞

 
 
 

                                                  (3.40) 

The aim of the μ-synthesis is to minimize Eq. (3.40) for all models in the set ∆  to satisfy 

robust performance, which is not present in the ¥ design. However, in ¥ design 

careful selection of weight Wt  may also lead to a robust controller which minimizes the 

performance index given by Eq. (3.40) for all models. 
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For this problem, the closed loop interconnection structure is given in Fig. 33. The 

generalized plant for this structure can be given as Eq. (3.41). 

0 0

0 0

p

e e e

u

W G
W W W G

P W
I I G

 
 
 =  −
 − − −  

                                        (3.41) 

 
 
 

 
Figure 33: Closed loop interconnection 

 
 
 
As discussed in Chapter 2, the structure given in Fig. 33 needs to be modified to analyze 

the robust performance of the closed loop system. Therefore, when making D-K 

iterations, the LFT structures given in Figs. 34 and 35 are used. 
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Figure 34: LFT structure for scaled problem (K-step) 
 
 
 
 
 
 

 
Figure 35: LFT structure for μ-analysis (D-step) 
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3.4. Summary 

In Chapter 3, the LQG/LTR, 2 and ¥ control problems and their solution methods are 

discussed. In this thesis, the solutions of these problems are found using the build in 

functions available in MATLAB. Moreover, the control methods that will be used in 

Chapter 7 for LOS controller design are expressed in detail. 

In Section 3.1, the LQG/LTR design that uses the loop shaping idea is given. In Section 

3.2, the ¥ mixed sensitivity design is explained. In Section 3.3, the structures that are 

used for μ-analysis and synthesis are illustrated. In short, these three techniques and 

structures will be used at controllers design stage in Chapter 7. 
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CHAPTER 4 
 
 

EXPERIMENTAL SETUP 
 
 
 
The stabilization servo loop includes gimbal, motor, current amplifier, controller and 

gyro as discussed previously. In this chapter, these components are briefly introduced 

and the experimental setup that is used in algorithm evaluations is illustrated.  

4.1. Overall System 

The block diagram of the overall system is depicted in Fig. 36. 

 
 
 

 
Figure 36: Block diagram of overall system 
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The main part of the system is xPC target which includes the control algorithms, 

communication channels, A/D and D/A conversion channels. Digital stabilization loop is 

evaluated at 3 kHz frequency. Firstly, the rate feedbacks are obtained via RS422 channel 

of xPC target. Secondly, corresponding current references which are the output of 

controllers are sent by D/A channels to motor driver. Then the driver card evaluates the 

analog current loop, and it supplies the required currents to gimbal motors. The 

experimental setup where the controllers are tested is illustrated in Fig. 37 below. 
 
 
 

 

Figure 37: Experimental setup 
 
 
 

4.1.1. Motor Driver 

The main aim of the motor driver is to supply required currents to gimbal motors. The 

analog current loop operates such that the analog current reference which is come from 

xPC target is followed. Generally, the current controller is tuned such that it gives around 

1 kHz bandwidth. Since this is very high compared to gimbal mechanical bandwidth, the 

current loop transfer function is usually approximated by constant in model construction 

stage. 

The working principle of the analog current loop is illustrated in Fig. 38. The analog 

current reference is compared with the actual current and the error enters to analog pi 

controller. The result of the pi controller is compared with triangle signal and 

corresponding PWM signals that drives the mosfets of power converter are generated. 

The clamping diodes in the structure serve as an anti-windup structure in analog current 
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loop. At the end, the required current is supplied to the motor. The motor driver in the 

experimental setup which supplies currents to both elevation and azimuth axes is shown 

in Fig. 39 with motor and analog signal connections. 

 
 
 

 

Figure 38: Analog current loop 
 
 
 
 

 

Figure 39: Motor driver in experimental setup 
  

61 



 

4.1.2. Two-axis Gimbal 

The two-axis gimbal that is used for stabilization of LOS is illustrated in Fig. 40. On the 

gimbal three-axis gyro can be seen. Moreover, MATLAB environment where the 

algorithms are prepared is also seen in Fig. 40. 

 
 
 

 

Figure 40: Two-axis gimbal in experimental setup 
 
 
 

 
Figure 41: Signal analyzer in experimental setup 
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4.1.3. Signal Analyzer 

Signal analyzer is a device that is used for obtaining a frequency response of a system by 

looking at the analog input and output signals of a system. 

In this thesis, the local linearizations of the gimbal system are obtained using swept sine 

tests with different input excitations levels. By obtaining frequency responses of these 

models, the signal analyzer is used which is depicted in Fig. 41 above. Moreover, it is 

also used while evaluating the closed loop experimental responses.  

4.2. Summary 

In this chapter, a brief introduction of the experimental setup is made. In the remaining 

part of the thesis, all identification, evaluation and data collection are made using this 

system and the devices introduced in this chapter. 
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CHAPTER 5 
 
 

SYSTEM MODELING AND IDENTIFICATION 
 
 
 

The main motivation of this chapter is to find a nominal model for the two-axis gimbal 

system that will be used in robust controller design in the following chapters. Firstly, the 

dynamic equations of the two-axis gimbal are obtained. Then making reasonable 

assumptions about the structure of the gimbal simpler dynamic equations that will be 

used for stabilization are derived. Next, the theoretical model of the gimbal is explained. 

It turns out that the gimbal model is nonlinear due to the friction in the system. However, 

by exciting the system with sufficiently large input, the nonlinear effect can be assumed 

to be small. Under this condition, the gimbal model can be approximated with a LTI 

model. Next, parameter identification is performed using continuous-discrete extended 

Kalman filter using this model. Finally, the nominal model of the two-axis gimbal is 

obtained that will be used for controller design. 

5.1. Dynamic Model of a Two-Axis Gimbal 

The common structure of a two-axis gimbaled sensor is given in Fig. 42. An outer 

gimbal can rotate about yaw axis, and yaw axis carries inner pitch axis. The sensor or 

camera is mounted on inner pitch axis. The rate gyros that measure pitch and yaw rates 

are also placed on pitch axis. Gimbals are assumed to be rigid bodies, and three frames 

are introduced. Body fixed frame (B), a frame fixed to the outer yaw (azimuth) gimbal 

(A), and the frame fixed to pitch (elevation) gimbal (E) [10, 27]. 

Let , ,az az azx y z  show azimuth frame axes and , ,el el elx y z  show elevation frame axes. 

The sensor’s axes , ,h h hx y z  are given such that ,  el hx x  and ,az hz z  coincide. 

Moreover, let ψ  denote the angular rate for azimuth axis, and θ  denote the angular rate 

for elevation axis. Using Euler angles, the rotation matrices are introduced in Eq. (5.1) 

and Eq. (5.2) about z and y axis respectively. 
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Figure 42: Two-axis yaw-pitch gimbal 
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                                        (5.1) 
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− 
 =  
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                                        (5.2) 

     ,       ,    
ax ex

B A ay E ey

az ez
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w q w w w w

r w w

     
     = = =     
          

                               (5.3) 

In Eq. (5.3) p, q, r denote the inertial angular velocities of roll, pitch and yaw of B frame, 

and wA and wE are the velocities of the azimuth and elevation (A and E frame) 

respectively. Then using transformations given in Eq. (5.4), the angular rates of the 

azimuth and elevation axes due to p, q, r are obtained and they are given in Eqs. (5.5) 

and (5.6), respectively. 

,   A z B E y Aw R w w R wψ θ= =                                         (5.4) 

ax

ay

az

w cos qsin

w sin qcos

w r

ρ ψ ψ

ρ ψ ψ

ψ

= +

= − +

= + 

                                          (5.5) 
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ex ax az

ey ay

ez ax az

w w cos w sin

w w

w w sin w cos

θ θ

θ

θ θ

= −

= +

= +

                                          (5.6) 

The inertia matrices of gimbals are given in Eqs. (5.7) and (5.8). 

 
axy axz

axy ayz

axz ayz

axx

ayy

azz

J J
J J
J J

J
azimuth gimbal J

J

 
 =  
  

                                  (5.7) 

 
exx exy exz

exy eyy eyz

exz eyz ezz

J J J
elevation gimbal J J J

J J J

 
 =  
  

                                  (5.8) 

The dynamic equations of a two-axis gimbal can be derived using Euler angular relations 

and conservation of momentum as given in Eq. (5.9). The detailed derivation of this 

problem is made in [27], and the results are briefly summarized here. 

dHT w x H
dt

= +                                                (5.9) 

In Eq. (5.9), H Jw=  is the angular momentum of rigid body and T  is the total of 

external torques. Then the equation of elevation gimbal is given as Eq. (5.10), 

eyy e ely yJ T Qw T= +                                            (5.10) 

where elmotoy r dT T T= −  is the net torque applied to the elevation gimbal. The total 

disturbance torque is composed of external frictions and other unmodeled torques 

( ).d elviscous elfriction elextT T T T= + +  Moreover, the torque component due to inertial angular 

rates exerted on elevation gimbal elTQ  is given as Eq. (5.11) [27].  

( ) ( )
( ) ( )

2 2
ezz exx ex ez exz ex ez

eyz ez ex ey exy ex ey e

l

z

e J J w w J w wT

J w w w J w

Q

w w

= −

−

+

−−

−

− 

                         (5.11) 

In the same manner, the equation of azimuth gimbal is given as Eq. (5.12), 

azz az z azRJ w T TQ= +                                          (5.12) 

where z azmotor dT T T= −  is the net torque given to azimuth gimbal. The instantaneous 

inertia about azimuth axis due to pitch rotation θ is given in Eq. (5.13). 
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2 2sin s ncos i 2azz azz exx ezz exzRJ J J J Jθ θθ= + + −                   (5.13) 

The torque due to inertial angular rates TQaz can be expressed in Eq. (5.14) [27], 

1 2 3azTQ T T T= + +                                             (5.14) 

where T1, T2 and T3 satisfy Eqs. (5.15)-(5.17) respectively. 

( )2
1

2co sin sin 2saxx exx ezz ayy eyy aexz x ayJT J J J J J w wθ θ θ = + − ++ +        (5.15) 

[ ]( )
( )( ) ( )( )

2

2 2

( )sin cos cos 2 (5.16)
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T J J J J w w w

J J J w w w J J J w w

θ θ θ

θ θ θ θ

= − + − + −

− + − + − + + −





 

( ) ( )( )

( ) ( )( )
3 (5.17)

2

sin cos cos 2 sin 2

sin 2 cos 2 sin cos

[

]

exy eyz exx ezz ax az

exz ax az eyz exy ey ay eyy ax

T J J J J w w

J w w J J w w J w

θ θθ θ θ θ

θ θ θ θ

= − − −+

+ + + + −+

 

 

5.2. Dynamic Model Used For Stabilization 

Most of the time, the products of inertias , , , , ,exy exz eyz axy axz ayzJ J J J J J  are very small 

such that they can be neglected. Moreover, the gimbal is designed in such a way that it is 

mass balanced. In other words, ,   exx ezz axx ayyJ J J J= =  are satisfied. After making these 

assumptions, elTQ  becomes zero and Eq. (5.10) reduces to Eq. (5.18). 

eyy ey yJ w T=                                                 (5.18) 

Equation (5.18) suggests that the elevation angular velocity eyw  is independent of any 

body and azimuth motion and it only depends on the net external torque applied to 

elevation gimbal [27]. 

Similarly, for the azimuth axis Eqs. (5.19)-(5.23) are obtained. 

azz azz ezzRJ J J= +                                              (5.19) 

( )1 [ ]axx exx ayy eyy ax ayT J J J J w w= + − +                               (5.20) 

2 0T =                                                       (5.21) 

3 eyy axT J wθ= −                                                 (5.22) 

( )az axx exx ayy eyy ax ay eyy axTQ J J J J w w J wθ = + − + − 
                     (5.23) 
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Shortly, azTQ  term is not totally eliminated as in the case of elevation gimbal. However, 

due to the higher order terms azTQ  is usually small, and its effect can be neglected. For 

that reason, Eq. (5.12) can be approximated by Eq. (5.24). 

azz az zRJ w T=                                                    (5.24) 

Equation (5.24) implies that the azimuth angular velocity azw  is independent of any 

body and elevation movement, and it only depends on net external torque applied to 

azimuth gimbal. 

In short, when the gimbal is mass balanced and the products of inertias are negligible the 

dynamic equations are simplified greatly. 

In Fig. 43, typical two-axis gimbal system is shown. It includes current servo loop, 

motor, gimbal dynamics and gyro model.  

The current loop includes a PI current controller, PWM generator, H-Bridge, motor 

inductance and resistance. Usually, the electrical time constant of the motor is much 

smaller than the mechanical time constant of the system. With the help of this property, 

the current closed loop bandwidth can be made sufficiently larger than the rate closed 

loop. Under this assumption, it is possible to represent the current loop with a constant to 

simplify the model. Moreover, it is also possible to represent rate gyro as a combination 

of second order low pass filter and some delay. The gyro delay can be approximated 

with a second order Pade approximation as in Eq. (5.25) at low frequency region. 

( ) ( )
( ) ( )

2 2

2 2

12 2 1

12 2 1
ds

d s d s
e

d s d s
−

− +
≈

+ +
                                   (5.25) 

 
 
 

 
Figure 43: Typical gimbal system 
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Finally, by adding dynamic (viscous) friction and static friction model (coulomb + 

stiction) [28, 29], the overall model shown in Fig. 44 is obtained. Since the frictions 

depend on relative angular speeds ψ  and θ , wh  and wb  are introduced in Fig. 44. For 

elevation gimbal, wh  and wb  denote wey  and way  respectively. Similarly, for azimuth 

gimbal, wh  and wb  correspond waz  and r. This small modification leads to the friction 

models depend only on ψ  and θ  for azimuth and elevation axes respectively. 

Note that, due to existence of friction the gimbal model is nonlinear and nonlinear design 

methods need to be considered. However, last two decades show that although several 

nonlinear identification and control techniques are introduced, these still appear to be 

disadvantageous compared to linear counterparts [30]. In this aspect, multiple model 

approaches are developed to model and control the nonlinear models [30, 31]. In these 

methods, the nonlinear models are decomposed into simple linear models which have 

limited operating regions. Then one wishes to design a controller that not only stabilizes 

these locally linearized models but also satisfies certain performances. If the single 

robust controller satisfies the required performances for all models, the designer may 

stop there. If the uncertainty is so large that the single controller gives very poor results, 

the designer needs to consider some robust adaptive methods [32] or gain scheduled 

control methods [33].  

 
 
 

 
Figure 44: Gimbal model 

 

70 



 

In this thesis, similar idea is utilized. In other words, the locally linearized models are 

considered to be the perturbations of the actual nonlinear system, and the nonlinear 

model is represented by this linear model set. In short, robust control of these linear 

models corresponds to robust control of actual nonlinear model. In this aspect, 

controllers which satisfy the performance and stability properties for all these linear 

models are searched. Since the uncertainty in the structure is small, single robust 

controller satisfies the required performances as discussed in the next chapters. 

It is reasonable assumption to take the nominal model of the system as in Eq. (5.26) by 

neglecting the nonlinear friction and wb. 

( ) ( ) ( )
( ) ( )

2 22

2 2 2 2

12 2 1
2 12 2 1

gmeasured a t

reference v g g

d s d sww K KG s x x
i Js B s w w d s d sξ

− +
= =

+ + + + +
    (5.26) 

Under this assumption the nonlinear disturbance coming from the model itself can be 

added to other external disturbances, and total disturbance can be expressed as Eq. (5.27). 

d friction ext v bT T T B w= + −                                        (5.27) 

5.3. Experimental Parameter Measurement 

In this section, the input is accepted to be large enough so that the model given in (5.26) 

is a good approximation of the true model. In the gimbal structure, the current controller 

is tuned such that the current loop has more than 1 kHz bandwidth. Under this condition, 

the current loop transfer function is assumed to be 2 where the gain results from the 

analog current loop circuitry in the motor driver. Moreover, the torque constant is 

directly obtained from the datasheet of motor. The gyro bandwidth is 262 Hz with a 

sufficient damping as given in the datasheet [34]. However, determination of inertia J 

and viscous constant Bv requires more complicated analysis. 
 
 
 

Table 2: Parameters of the system 

Parameters Values 
Current amplifier gain, Ka 2 A/A 
Motor torque constant, Kt 2.18 Nm/A 

Natural frequency of rate gyro, wg 1646 rad/s 
Damping of gyro, ξ 0.8 

Gyro delay, d 4.5 ms 
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5.3.1. Extended Kalman Filter for Parameter Estimation 

Parameter estimation and system identification are essential to form a mathematical 

model of the system by using measured data. This problem can be solved by two 

techniques, namely offline and online techniques. Offline techniques are iterative 

processes and they use all the data set available. However, online techniques are 

recursive and they use data when it becomes available. Since the sensor usually contains 

noise, and there may be unobservable states and biases in the model, the filtering 

techniques are preferred [35]. Kalman filter (KF), that uses mean and variance of 

Gaussian process and measurement noises in its time and measurement update states, is 

a recursive optimal filter in least square sense [36-38]. Since the method of parameter 

estimation through state augmentation is nonlinear, the nonlinear filtering technique 

must be utilized. 

The most common nonlinear filtering technique is extended Kalman filter (EKF). In this 

thesis, the parameters (inertia J and viscous constant Bv) are found by using EKF. 

5.3.1.1. Problem Simplification 

While using continuous-discrete extended Kalman filter (CD-EKF), at the stage of time 

update, the states and entries of covariance matrices are found solving differential 

equations. In this aspect, to solve the parameter identification problem, it is necessary to 

keep the model as simple as possible. To get rid of the singularity problems in numerical 

solution of differential equations, the delay is approximated with a first order low pass 

filter as in Eq. (5.28). This assumption is only valid when the system is excited with a 

low frequency signal where the magnitude and phase responses of these two transfer 

functions are very close.  

( ) ( )
( ) ( )

2 2

2 2

12 2 1 1
112 2 1

d s d s
dsd s d s

− +
≈

++ +
                                 (5.28) 

Figure 45 illustrates that approximation of second order Pade with a first order transfer 

function gives very small errors at 4 Hz. Since the gimbal excitation is made with 4 Hz 

sinusoidal signal, using first order low pass instead of second order Pade gives very 

accurate result and saves a lot of computation effort that is given in the next section. 
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Figure 45: Pade approximation and first order low pass 

 
 
 
So, the approximated transfer function and state space representation of the gimbal at 4 

Hz are given in Eqs. (5.29) and (5.30), respectively. 

( )
2

2 2

1
2 1

ga t

v g g

wK KG s x x
Js B s w w dsξ

≈
+ + + +

                          (5.29) 

[ ]

2 2

0 1 0 0 0
2 0 0

, 1 0 0 000 0
110 0 0

g g g

v t

w w w
B Kx x u y x
J J

dd

ξ
    − −      = + = −      −      

         (5.30) 

Since J and Bv are unknown, they can be considered as a fifth and sixth state. This state 

augmentation leads to new nonlinear model as depicted in Eq. (5.31). 
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                (5.31) 

5.3.1.2. Continuous-Discrete Extended Kalman Filter 

Note that the gimbal model is continuous and the measurements are discrete. In this 

aspect continuous-discrete EKF need to be considered. For a nonlinear model given as 

Eq. (5.32), the equations of continuous discrete EKF are summarized below [35]. 

( ) ( ) ( )

( )( )
, , Γ

,k k

x a x u t t w t

y h x t k v

= +

= +



                                      (5.32) 

In Eq. (5.32), w(t) and v(t) are white noise processes uncorrelated with x(0) and each 

other. 

( ) ( ) ( ) ( ) ( ) ( )00 ~ ,  ,  ~ 0,  ,  ~ 0,ox x P w t Q v k R  

Initialization: ( ) 0 ˆ0 , oP P x x= =   

 

Time update: 

Estimate: ( )ˆ ˆ, ,x a x u t=   

Error covariance: ( ) ( ) Tˆ ˆ, , ΓQΓTP A x t P PA x t= + +   

 

Measurement update: 

Kalman gain: 1T TK P H HP H R
−− − = +    

Error covariance: ( ) [ ] 1
kP t I KH P−= −   

Estimate: ( )( )ˆ ˆ ˆ,kx x K y h x k−= + −   
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Jacobians: ( ) ( ) ( ) ( ), , ,
, , ,

da x u t dh x t
A x t H x t

dx dx
= =   

5.3.2. Implementation 

The process noise is selected such that it only affects the states to be estimated, and Γ, Q 

and R matrices are chosen such that they have the form shown in Eq. (5.33). 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 361

14 24 34 44 45 462

15 25 35 45 55 56

16 26 36 46 56 66

0 0
0 0

00 0
, ,  ,

00 0
1 0
0 1

p p p p p p
p p p p p p
p p p p p pq

Q R r P
p p p p p pq
p p p p p p
p p p p p p

  
  
  
    

Γ = = = =     
    

  
  
    

(5.33) 

Step 1: Solve the state and covariance differentials Eqs. (5.34) and (5.35) during one 

sample time, and make time updates.  
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







                                 (5.34) 

11 122p p=  

2 2
12 22 11 13 12  2g g gp p p w p w p wξ= − + −  

( )15 4 3 613 6 16 3 14
13 23 2

5 5 5

ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆ

t tp K x x xp x p x p Kp p
x x x

−+
= − − +  

14
14 24

pp p
d

= −  

15 25p p=                                                                                                                         (5.35)

16 26p p=  

( )2 2
22 23 12 12 222 4g gp w p p p p wξ= − − −  
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( ) ( )55 4 3 6 56 3 35 6 45
35 2

5 5

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ

t tp K x x x p x p x K p
p

x x
− + −
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( ) ( )56 4 3 6 66 3 36 6 46
36 2

5 5

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ

t tp K x x x p x p x K p
p

x x
− + −
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44
44

2 pp
d

= −  

45
45

pp
d

= −  

46
46

2 pp
d

= −  

55 1p q=  

56 0p =  

66 2p q=  

Step 2: When measurement becomes available, make the measurement updates. 

Note that to make time update, it is required to solve 6 differential equations for states 

and 21 equations for covariance. 

5.3.3. Results 

The parameters of the system are identified under sinusoidal input at 4 Hz. In Fig. 46, the 

grey shows the current at the motor measured with current probe, and the black shows 

the gyro rate output. This test is used for both azimuth and elevation axis inertia and 

viscous friction constant determination. 
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Figure 46: Current input (grey) and gyro output (black) 

 
 
 

5.3.3.1. Azimuth Estimations 

While 4 Hz, 0.8 Apeak sinusoidal current excitation is made to azimuth motor, the online 

results derived from CD-EKF is investigated. Figure 47 shows the actual and filtered 

output, and Fig. 48 and Fig. 49 show the inertia J and viscous constant Bv estimation for 

azimuth gimbal respectively. 

 
 
 

 
Figure 47: Actual and filtered output of azimuth 
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Figure 48: Inertia estimation of azimuth 

 
 
 

 
Figure 49: Viscous friction constant estimation of azimuth 

 
 
 

5.3.3.2. Elevation Estimations 

While 4 Hz, 0.5 Apeak sinusoidal current excitation, the results of CD-EKF is investigated 

for elevation gimbal. Figures 50, 51 and 52 show the actual and filtered output, the 

inertia J and viscous constant Bv estimation for elevation gimbal, respectively. 
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Figure 50: Actual and filtered output of elevation 

 
 
 

 
Figure 51: Inertia estimation of elevation 
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Figure 52: Viscous friction constant estimation of elevation 

 
 
 

The results derived from parameter estimation process are expressed in Table 3. 

 
 
 

Table 3: Estimated parameters of the system 

Estimated Parameters Values 
Azimuth inertia J 0.1736 kgm2 

Azimuth viscous constant Bv 1.15 Nm/(rad/s) 
Elevation inertia J 0.063 kgm2 

Elevation viscous constant Bv 0.61 Nm/(rad/s) 
 
 
 

5.3.4. Validation of the Model 

The theoretical linear model in Eq. (5.26) is evaluated with the estimation results, and it 

is compared with experimental data obtained by applying sine sweep to the gimbal 

inputs, and excitation level is selected to be same as in the parameter estimation part. 

The results are illustrated in Figs. 53-56. 

 
 
 

80 



 

 
Figure 53: Magnitude plot of azimuth 

 
 
 
 
 
 
 
 

 

Figure 54: Phase plot of azimuth 
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Figure 55: Magnitude plot of elevation 

 
 
 
 
 
 
 
 

 

Figure 56: Phase plot of elevation 
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Figures 53-56 illustrate that the modeling errors at low frequencies are small. This error 

mainly results from the neglected nonlinearity in the model. Moreover, in high 

frequencies due to the neglected sensor or plant dynamics the error increases. 

The detailed analysis of the modeling error determination will be discussed in Chapter 6. 

In this section, only the nominal model is constructed by using the estimated parameters 

and model in Eq. (5.26). 

5.4. Nominal Model Construction 

As discussed in Section 5.2, when the gimbal is accepted to be mass balanced the 

elevation and azimuth axes decouple. Now, validity of this assumption is investigated 

through the experimental data. The linearized two-axis gimbal system, can be 

represented by Eq. (5.36) where waz, wel, iaz and iel are the azimuth and elevation angular 

rates and current inputs to corresponding axes’ motors. 

11 12

21 22

az az

el el

w iG G
w iG G

    
=    

    
                                       (5.36) 

By making iel  zero, G11 was determined by looking at waz  in Section 5.3 previously. The 

azimuth to elevation transfer matrix G21 can be assumed to be zero if the gimbal is mass 

balanced as expressed in Section 5.2. Now by keeping iel  zero, under different iaz levels, 

(0.3, 0.4, 0.5, 0.6, 0.75 Apeak), G21 is examined and experimental results of these 

perturbations are depicted in Fig. 57. 

The experimental data shows that at low frequencies the cross coupling is very small and 

it gets bigger at the higher frequencies where the azimuth axis has resonant mode. 

However, since there are very small disturbances at high frequencies, the excitement of 

the structure at those frequencies is not possible. In short, due to the small coupling at 

low frequencies where disturbances are available, the transfer function G21 can be 

assumed to be zero. 

Similarly by making iaz  zero, G22 was determined earlier with identification procedure in 

Section 5.3. By keeping iaz  zero, under different iel  levels, (0.2, 0.25, 0.3, 0.35, 0.4 Apeak), 

G12 is examined and experimental results are given in Fig. 58. 
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Figure 57: Azimuth to elevation couplings 

 
 
 
 
 
 
 
 

 
Figure 58: Elevation to azimuth couplings 
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The experimental data illustrates that at low frequencies the cross coupling is very small. 

Even if it gets bigger slightly at mid frequencies, the transfer function G12 can still be 

assumed to be zero. To conclude, the nominal model in Eq. (5.36) is constructed by 

assuming G12 and G21 to be zero, and the G11 and G22 are the transfer functions obtained 

in Section 5.3 with parameter estimation procedure. 

5.5. Summary 

The main motivation of this chapter is to find the nominal model of the two-axis gimbal. 

First, the dynamics equations of two-axis gimbal are derived. Next, by assuming gimbal 

is mass balanced, simpler model is obtained. Then the parameters of the gimbal are 

identified. Moreover, the validity of the assumption is investigated with experimental 

data. Finally, the nominal model of the two-axis gimbal is constructed. 
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CHAPTER 6 
 
 

LQG/LTR, ¥ AND μ CONTROLLERS DESIGN DESCRIPTIONS 
 
 
 
6.1. Introduction 

The design methods discussed in Chapter 3 use generalized plant P. In LQG/LTR case, 

the plant is augmented with transfer matrix which reflects the disturbance power 

spectrum. For ¥ mixed sensitivity design, S/KS and T are weighted with corresponding 

transfer matrices. On the other hand, for μ-synthesis case, S and KS are weighted with 

transfer matrices and multiplicative uncertainty at the plant output uses maximum 

uncertainty bound as a weight as expressed in Chapter 3. While constructing the 

generalized plant for different design methods, the corresponding weight matrices must 

be known. In this chapter, the performance and uncertainty weights and their 

determination are discussed. The uncertainty bound is obtained using the experimental 

data that can be related with different plant perturbations. Moreover, the performance 

weight selection is made after a few iterations to satisfy the different design objectives. 

Using the weights determined in this chapter and the methods discussed in Chapter 3, the 

controller will be designed and results will be reported in Chapter 7. 

6.2. Design Specification 

The design specification for the LOS stabilization problem includes the determination of 

performance indices by investigating the information about external disturbances and 

model errors. In this section, the performance requirements are derived from the 

disturbance properties. After that, the modeling errors are examined by looking at the 

different experimental data. 

6.2.1. Motivation of LOS Stabilization 

The control objective of LOS stabilization includes keeping pointing vector along the 

LOS under the effects of platform motions. In literature, the instantaneous error between 
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the LOS and sensor pointing vector is called as jitter. Moreover, the angle that a single 

detector pixel is sensitive to radiation is named as instantaneous field of view (IFOV). 

Main objective of the LOS stabilization is to reduce the jitter due to the platform 

disturbances. In most of the applications, it is desired that the root mean square (RMS) of 

the jitter during the sensor integration time should be smaller than IFOV value. 

As given in Fig. 59, to get a clear image, the jitter must be small such that each detector 

pixel can obtain the correct radiation of the targeted object in sensor integration time [1]. 

In other words, when the RMS of the jitter is higher than IFOV, the radiation of each 

pixel mixes. When a pixel receives radiation from neighboring pixels, the image gets 

blurry. Consequently, to obtain a clear image RMS of the error must be smaller than 

IFOV value. In this thesis, jitter which has a RMS value smaller than 75 microradian 

(μrad) is aimed. 

 
 
 

 
Figure 59: Track sensor 

 
 
 

 

 
Figure 60: Conceptual performance of stabilization and vibration isolation 
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6.2.2. Sensitivity Weight Selection 

In most applications, the power spectral density of the disturbance is considered while 

designing a stabilization servo loop. Usually, the low frequency disturbance is 

suppressed with the stabilization servo loop, and high frequency disturbances are 

eliminated by the vibration isolation as given in Fig. 60 graphically [1]. 

In this work, the platform power spectral density is obtained from the data taken from 

platform gyro. The spectral densities of disturbance rates for azimuth and elevation axes 

are depicted in Fig. 61.  

It is not odd to think that these disturbances act directly to the plant output as given in 

Fig. 62 with d. After closed loop is designed, the gimbal output rates can be found by 

evaluating the platform rates through output sensitivity function. Then resulting rates 

need to be integrated to reach the jitter in both axes. Finally, by investigating the power 

spectral density of the jitter, required sensitivity function is searched. In other words, to 

satisfy the jitter below 75 μrad RMS, the true sensitivity function need to be chosen. 

Since high frequency disturbances are suppressed by structure itself and isolators, while 

analyzing jitter only the component between 0.1 and 50 Hz is considered. In this thesis, 

the sensitivity function depicted in Eq. (6.1) is aimed for each axis. 
 
 

 
Figure 61: Platform rate power spectral density 
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Figure 62: Feedback loop for LOS stabilization 
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Note that in Chapter 2 for k = 2, the sensitivity weight represented with Eq. (6.2) is 

discussed. 
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                                  (6.2) 

However, for better loop shaping especially in S/KS/T scheme the weight slightly 

changes to the one given in Eq. (6.3). This necessity comes from the fact that higher roll 

off leads to higher S and T peaks at the crossover region [18]. 
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 (6.3) 

The magnitudes of weights given by Eqs. (6.2) and (6.3) are given in Fig. 63. The 

modified weight in Eq. (6.3) yields a higher disturbance rejection below 3 Hz, however 

it allows higher sensitivity peaking around the crossover. Moreover, at low frequencies 

disturbances are suppressed by a factor of 100. The weight lower bound at high 

frequencies is chosen to be 1/(3.162). 

According to sensitivity shown in Eq. (6.1), the output rate power spectral density shown 

in Fig. 64 is obtained. After integration is made, the output position power spectral 

density given in Fig. 65 is obtained. 
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Figure 63: Sensitivity weight selection 

 
 
 
 
 
 
 
 

 
Figure 64: Output rate power spectral density 
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Figure 65: Output position power spectral density 

 
 
 

The variance of the LOS error is calculated using Eq. (6.4) where Ge is the power 

spectral density in Fig. 65. 

2

0
e eG dfσ

∞

= ∫                                                  (6.4) 

In pointing error analysis the process can be accepted to be zero mean [17]. Since the 

RMS value of jitter in 0.1 and 50 Hz is important Eq. (6.5) is used. 

50

0.1
rms ee G df= ∫                                                   (6.5) 

The RMS values of the jitter are calculated from Fig. 65. For elevation axis 46 μrad and 

for azimuth 76 μrad RMS values are obtained. In short, sensitivity in Eq. (6.1) is a good 

design aim for this problem. So, sensitivity weight which is chosen for MIMO system is 

given in Eq. (6.6) where we  is the transfer function given in Eq. (6.3). 
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                                              (6.6) 
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6.2.3. Control Weight Selection 

It is possible to use the same procedure that was applied for sensitivity weight selection 

in previous section. In this case, the RMS of the control needs to be minimized such that 

the motors are not saturated. After closed loop is designed, the control signals can be 

found by evaluating the platform rates through KSo function. The maximum possible 

current supplied to motor is 3 ampere (A), and recall that there is current amplifier of 

gain 2 in the motor driver. Then the design aim is to keep the RMS value of the control 

signal below 1.5 A RMS over all frequencies and for both axes. 

1
1

1

0.01( ) , , 21 1200 00,bc u
o u bc

bc

s w MKS M w
s w

ε π
ε

− +
== =

+
=               (6.7) 

According to KSo selection represented with Eq. (6.7), the control power spectral density 

given in Fig. 66 is obtained. According to Eq. (6.4), the RMS values of the controls are 

found to be 1.32 and 0.53 A RMS for elevation and azimuth axes, respectively.   

1
1

, 100, 0.01, 2 1200bc u
u u bc

bc

s w Mw M w
s w

ε
ε

π= =
+

= =
+

                      (6.8) 

 
 
 

 
Figure 66: Control power spectral density 
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Hence, the control weight which is chosen for MIMO system is given in Eq. (6.9) where 

wu is the transfer function given in Eq. (6.8). 

0
0

u
u

u

w
W

w
 

=  
 

                                                (6.9) 

6.2.4. Uncertainty Weight Selection 

As discussed in Chapter 5, the actual system is nonlinear, and the nominal model 

constructed is valid around a single operating point. Apart from the nonlinearity, there 

are also unmodeled dynamics of the gimbal which consist of structural resonances and 

isolator effects that are used for vibration isolation at high frequencies [1, 2]. Moreover, 

at high frequencies the error due to delay approximation gets bigger. 

So, the purpose of this section is to construct a model set which covers all the errors 

which result from not only the linear model approximation but also the unmodeled 

dynamics. 

The local linearizations of the plant are obtained by applying swept sine tests to gimbal 

with different excitation levels. Then using these data and nominal model the uncertainty 

bound is obtained. 

Output multiplicative uncertainty set can be represented as Eq. (6.10) where 1
∞

∆ <  and

1   and W ∞∆ ∈  are satisfied. 

( )1I W P= + ∆П                                                  (6.10)  

In order to find the uncertainty upper bound W1, first all possible multiplicative 

perturbations (Δm’s) as given in Eq. (6.11) need to be found.  

( ) ( ) ( )( ) ( )m s P s P s P s∆=∆ −                                   (6.11) 

In Eq. (6.11), PΔ denotes any possible plant in the model set Π. When each axis is treated 

as a SISO system, the uncertainty upper bound w1 can be found which satisfy the Eq. 

(6.12).  

( ) ( )1m jw w jw≤∆                                            (6.12)  
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By evaluating Eq. (6.11) over a grid of frequencies where there is an experimental data, 

the uncertainty upper bound w1 is found by fitting a stable transfer function which upper 

bounds the perturbations. The results for two axes are illustrated respectively.  

First, the experimental data and the nominal model of the azimuth gimbal are given in 

Figs. 67 and 68. The perturbations correspond to cases where the motor is excited with 

0.6, 0.8, 1, 1.2 and 1.5 Apeak sinusoidal currents. After that, the upper bound w1a is 

obtained using Eqs. (6.11) and (6.12) for azimuth axis, and depicted in Fig. 69.  

Next, the experimental data and the nominal model of the elevation gimbal are shown in 

Figs. 70 and 71. In Figs. 70 and 71, perturbations are obtained under 0.4, 0.5, 0.6, 0.7 

and 0.8 Apeak sinusoidal currents for elevation gimbal. Then the upper bound w1e is 

obtained using Eqs. (6.11) and (6.12) for elevation axis and shown in Fig. 72. 
 
 
 
 

 
Figure 67: Effect of perturbations to azimuth magnitude 
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Figure 68: Effect of perturbations to azimuth phase 

 
 
 
 
 
 
 
 

 
Figure 69: Uncertainty upper bound for azimuth 
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Figure 70: Effects of perturbations to elevation magnitude 

 
 
 
 
 
 
 
 

 
Figure 71: Effects of perturbations to elevation phase 

97 



 

 
Figure 72: Uncertainty upper bound for elevation 

 
 
 
The uncertainty upper bounds w1a and w1e are found for azimuth and elevation axes, 

respectively and denoted in Eqs. (6.13) and (6.14). 

2

1 2

1.87 792.65 90750
1 650.35 572624a

s sw
s s

+ +
=

+ +
                                 (6.13) 

2

1 2

1.12 2564.28 289957
1 2059.65 2375266e

s sw
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+ +
                                (6.14) 

Then the overall perturbation bound for MIMO system is given in Eq. (6.15). 

1
1

1

0
0

a

e

w
W

w
 

=  
 

                                              (6.15) 

By looking at the Figs. 69, 72 and transfer functions in Eqs. (6.13), (6.14), it can be seen 

that at low frequencies the uncertainties are below 0.15 and 0.12 for azimuth and 

elevation axes respectively. At high frequencies due to the structural resonances of the 

gimbal, the uncertainties increase dramatically. Azimuth axis uncertainty exceeds 1 

around 100 Hz and reaches 2.5 at resonant frequencies. Similarly, elevation axis 

uncertainty goes beyond 1 at 200 Hz and reaches 1.4 at resonant frequencies. Note that 

these results are very similar to observations reported in [39]. 
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6.3. Summary 

Throughout this chapter, how weight selection is performed and its motivation are 

discussed. Briefly, the sensitivity weight We and control weight Wu result from the RMS 

requirement of the output error and control respectively.  The perturbation transfer 

matrices are obtained using experimental data. The selected transfer matrices are given 

in Table 4.   

 
 
 

Table 4: Selected weights 
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The state space matrices required at the plant augmentation for LQG/LTR design are 

illustrated in Table 5. Similarly, for ¥ S/KS/T mixed sensitivity design, the transfer 

matrices in Table 6 are used. In Table 7, the weights that are used in μ-synthesis are 

expressed. 

The transfer matrices and their usage are discussed extensively in Chapter 3. One can see 

Section 3.1 for LQG/LTR design, Section 3.2 for mixed sensitivity ¥ design and 

Section 3.3 for μ-synthesis design. 
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Table 5: Weights for LQG/LTR design 

d d
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d d
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Table 6: Weights for ¥ S/KS/T mixed sensitivity design 

e eW W= ,  u uW W= ,  1tW W=  

 
 
 

Table 7: Weights for μ-synthesis design 

e eW W= ,  u uW W= ,  1pW W=  
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CHAPTER 7 
 
 

LQG/LTR, ¥ AND μ CONTROLLERS DESIGN RESULTS 
 
 
 
7.1. Introduction 

In Chapter 5, the nominal model was constructed. After augmenting this model with 

appropriate weights found in Chapter 6, the generalized plants are obtained. Then as 

discussed in Chapter 3, the LQG/LTR, ¥ and μ controllers are synthesized. 

For each designed controllers, the resulting closed loop two-axis gimbal system is 

constructed and analyzed. First, the LQG/LTR control design is made by following the 

procedure discussed in Chapter 3. For this case, two designs are presented to satisfy the 

control objectives. Next, the ¥ controller is synthesized in S/KS/T mixed sensitivity 

design framework as expressed in Chapter 3 in detail. Finally, the μ-synthesis design is 

discussed by following the D-K iteration procedure by using the structures given in 

Chapter 3. After the controllers are obtained, the resulting closed loop transfer matrices 

are evaluated. The robustness of corresponding closed loops is investigated in two 

methods. The first method is applicable if the performance criterion is measured only by 

sensitivity ( 1e oW S
∞

< ) and there is only one uncertainty block in the loop as given in 

Chapter 2. The second method is applied in μ framework by accepting that the 

performance requirement is given as Eq. (7.1). 

1e o

u o

W S
W KS

∞

 
< 

 
                                                (7.1) 

After the performances of the controllers are investigated individually, the comparison 

between them is made, and the differences among them are discussed. Finally, their 

performance objective achievements are briefly summarized. 
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7.2. LQG/LTR Design 

As given in Table 4, the transfer matrix We which reflects the power spectrum of output 

disturbance d, is of order 4. Moreover, the nominal model constructed is of order 10. For 

that reason, the augmentation leads to generalized plant of order 14. Hence the 

corresponding LQG/LTR controller will have an order of 14. 

7.2.1. Design 1 

The LQG/LTR controller is designed by following the procedure outlined in Chapter 3. 

As discussed previously, the aim is such that the open loop transfer matrix LQGGK  need 

to approach to Kalman filter open loop transfer matrix fC KΦ . First, the designed 

Kalman filter and weight We are shown in Fig. 73. Then by reducing ρ, different optimal 

state feedbacks are designed, and the resulting open loop gains are given in Fig. 74. In 

Fig. 75, the closed loop output sensitivities can be found. Please observe that gains of the 

open and closed loop transfer matrices are given for nominal model. Finally, in Fig. 76 

the controllers are illustrated. 

 
 
 

 
Figure 73: Singular value plot of Kalman filter and We for design 1 
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Figure 74: Singular value plot of open loops and Kalman filter for design 1 

 
 
 
 
 
 
 
 

  
Figure 75: Singular value plot of sensitivities and We

-1 for LQG/LTR design 1 
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Figure 76: Singular value plot of the LQG/LTR controllers for design 1 

 
 
 
As given in Figs. 74 and 75, the recovery procedure does not achieve the objectives 

successfully even if one continuously reduces ρ. The main result behind this fact is the 

non-minimum phase behavior of the gimbal. As discussed previously, for successful 

loop recovery the plant zeros are usually canceled by the compensator poles [11]. Since 

this is not possible for non-minimum phase plants, the procedure success reduces. To get 

rid of this drawback, the design 1 is reconsidered and design 2 is made. 

7.2.2. Design 2   

For design 2, the transfer matrix We which reflects the power spectral density of output 

disturbance d, is modified such that it has a higher bandwidth and a dc gain. For this 

case, the Kalman filter from two designs and modified weight We is plotted in Fig. 77. 

Then different optimal state feedbacks are designed by reducing ρ, and the resulting 

open loop singular values are given in Fig. 78. In Fig. 79, the closed loop output 

sensitivities can be found for nominal model. Finally, in Fig. 80 the controllers are plotted. 
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Figure 77: Singular value plot of Kalman filters and We for design 2 

 
 
 
 
 
 
 
 

 
Figure 78: Singular value plot of open loops and Kalman filter for design 2 
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Figure 79: Singular value plot of sensitivities and We

-1 for LQG/LTR design 2 
 
 
 
 
 
 
 
 

 

Figure 80: Singular value plot of the LQG/LTR controllers for design 2 
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As given in Figs. 78 and 79 the recovery procedure is made such that the design 

objectives of the design 1 are recovered. To do that, the weighting matrix is modified 

such that the bandwidth is enlarged to 15 Hz from 10 Hz, and 2.5 multiples of the dc 

gain is used. 

7.3. ¥ Design 

As given in Table 4, the sensitivity weight We is of order 4, and the control weight Wu is 

of order 2. Moreover, the complementary sensitivity weigh Wt which comes from the 

perturbations upper bound has order of 4. On the other hand, the nominal model has 

order of 10. All these create a generalized plant having order of 20. In short, the ¥ 

controller which has order of 20 will be synthesized. 

The ¥ controller is designed in S/KS/T mixed sensitivity framework as discussed in 

Chapter 3. For this problem, the objective is to find suboptimal controller such that Eq. 

(7.2) is satisfied where γ  value is very close to optimal value γmin.  

e o

u o

ot

W S
W KS
W T

γ

∞

 
 
 
 

<



                                                (7.2) 

 
 

 
Figure 81: Singular value plot of sensitivity and We

-1 for ¥ design 
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The ¥ controller with γ  value of 0.68 is obtained, and resulting closed loop output 

sensitivity gains for nominal model are shown in Fig. 81. 

7.4. μ-synthesis Design  

For this problem the generalized plant has the same structure as in the case of ¥ 

design. That is, for this problem generalized plant has an order of 20. The controller 

synthesized with D-K iteration will be of order of 20 plus the orders of D scaling 

matrices.  

In our case, the uncertainty has the form given in Eq. (7.3). 

{ }2 2 2 4diag , :   ,x x
p p = ∈ ∈ 

  ∆ ∆ ∆ ∆ ∆                               (7.3) 

The first block corresponds to the uncertainty used in the modeling of two-axis gimbal. 

The second fictitious uncertainty block is used while evaluating the robust performance 

in the μ framework [19]. In addition, both uncertainty blocks are norm bounded. 

Please observe that this ∆  structure is slightly different than the structure introduced in 

Chapter 2. In other words, the perturbations blocks are no longer square. This small 

modification leads to a small change in optimization procedure that is made to reduce the 

structural singular value upper bound. In other words, the cost function of the 

optimization changes to ( )1
l rD MDσ −  where Dl and Dr are the left and right scaling 

matrices, and they have the form given in Eqs. (7.4) and (7.5), respectively [40]. 

{ }1 1 1 1 1diag , :  ,  0,  2,  4
pl m m pd I I d d m m = ∈ > = =  D                 (7.4) 

{ }1 1 1 1 1diag , :  ,  0,  2,  2
pr m m pd I I d d m m = ∈ > = =  D                 (7.5) 

Then the objective during the optimization procedure reduces to find d1 ( jw) which will 

minimize the ( )1
l rD MDσ − . Next, it is desired to fit a stable and minimum phase 

transfer function to d1 ( jw). After that, the iterative procedure discussed in Chapter 2 can 

be used. 

Iteration 1: 

Iteration 1 is made by choosing D scaling matrices as identity with corresponding sizes, 

and the resulting controller will be of order 20. The resulting controller results in the 

following μ bounds as shown in Fig. 82. Note that the controller of the iteration 1 is 

actually equal to ¥ controller designed in mixed sensitivity framework in Section 7.3. 
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Figure 82: Closed loop μ controller iter:1 

 
 
 
 
 
 
 

 
Figure 83: D scale fit 
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At first iteration during optimization, corresponding d1( jw) is obtained at different 

frequencies and appropriate transfer function is fitted. The d1 ( jw) and the fitted transfer 

function of order 3 is given in Fig. 83. 

Note that the D scalings are of order 12 in total, and then the resulting controller in the 

next iteration will be order of 32. 

Iteration 2: 

The ¥ controller is synthesized for the scaled plant and the resulting μ bounds are 

given in Fig. 84. The iterations are stopped at this point because the local optimum 

solution is found. In other words, the μ upper bound could not be minimized any more. 

For the nominal model, gains of the output sensitivity and weight are illustrated in Fig. 

85 for two iterations. 

 
 
 
 

 
Figure 84: Closed loop μ controller iter:2  
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Figure 85: Singular value plot of sensitivities and We

-1 for μ-synthesis 
 
 
 

7.5. Robustness Analysis 

The robustness analysis is usually performed by investigating the μ values of the closed 

loop system. The required μ conditions for robust stability and robust performance are 

discussed in Section 2.6. However, when there is only one full block perturbation in the 

system, and if the performance criterion is measured only by sensitivity ( 1e oW S
∞

< ), 

the robustness analysis can be done with simple singular value tests. The detailed 

procedure is discussed in Section 2.4. Since singular value tests are very simple 

compared to μ tests, in the first part of this section, the robustness is analyzed in this way. 

Then in the next section the robustness is discussed in μ framework and the performance 

criterion is changed to one given in Eq. (7.6). 

 1e o

u o

W S
W KS

∞

 
< 

 
                                                (7.6) 

7.5.1. Robustness Analysis with Singular Value Tests 

The singular value tests for the structure given in Fig. 86 are summarized here as                   

Eqs. (7.7)-(7.10). 
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Figure 86: Output multiplicative perturbed system 

 
 
 

1e oW S
∞

<                                                       (7.7) 

1 1oW T
∞

<                                                       (7.8) 

( ) ( ) ( )1 1,d e o oW W S W T wσ σ σ+ ≤ ∀                                   (7.9) 

Equations (7.7)-(7.9) are the nominal performance, robust stability and robust 

performance singular value tests for nominally stable system respectively. In our case, 

Wd  is taken to be identity, so the resulting robust performance test reduces to Eq. (7.10). 

( ) ( )1 1,e o oW S W T wσ σ+ ≤ ∀                                       (7.10) 

Now, the singular value tests are applied to three designs consecutively. 

7.5.1.1. LQG/LTR Design 2 

Since the recovery is not satisfied for design 1, robustness analysis is only made for 

design 2. In design 2 as explained in Section 7.2, the plant is augmented with modified 

weight and new controllers are designed. The nominal performance, robust stability and 

robust performance of the design 2 are shown in Figs. 87 and 88. With these controllers, 

nominal performance and robust stability are satisfied for both ρ values. Since the peak 

value of robust performance test is very close to 1, robust performance can be assumed 

to be satisfied for ρ = 1e-4. For ρ = 1e-3 the robust performance is not satisfied; however, 

it leads to more stable loop. In short, reducing ρ makes the performance better at the cost 

of reducing stability. This situation result from the high controller gains at high 

frequencies for small ρ as shown in Fig. 80 previously. 
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Figure 87: Nominal performances with the LQG/LTR controllers 

 
 
 
 
 
 
 
 

 
Figure 88: Robust performances and robust stabilities with the LQG/LTR controllers 
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7.5.1.2. ¥ Design 

The nominal performance, robust stability and robust performance of the closed loop of 

¥ design are depicted in Figs. 89 and 90. They show that the required stability and 

performance are satisfied. 

 
 

 
Figure 89: Nominal performance with the ¥ controller 

 

 
Figure 90: Robust performance and robust stability with the ¥ controller 
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7.5.1.3. μ-synthesis Design 

The nominal performance, robust stability and robust performance of the closed loops 
with the μ controllers are given in Figs. 91 and 92 for two iterations. They show that the 
required stability and performance are satisfied. Moreover, the controller at first iteration 
(¥ controller) has better nominal performance than the controller at next iteration. 
However, iteration 2 leads to smaller performance peak. In short, μ-synthesis tries to 
flatten the robust performance at each iteration at the cost of reducing nominal 
performance. 

 
 
 
 

 
Figure 91: Nominal performances with the μ controllers 
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Figure 92: Robust performances and robust stabilities with the μ controllers 

 
 

7.5.2. Robustness Analysis with μ Tests 

The μ tests for the structure given in Fig. 93 are summarized here where ∆  has the form 

represented in Eq. (7.11) and M is partitioned as in Eq. (7.12). 

{ }2 2 2 4diag , :   ,x x
p p = ∈ ∈ 

  ∆ ∆ ∆ ∆ ∆                             (7.11) 

11 12 2 2 4 2
11 12 21 22

21 22

, ,, ,x xM M
M M M M M

M M
 

= ∈ ∈ 
 

                    (7.12) 

( )22 1,
p

NP M wσ µ⇔ = < ∀∆                                       (7.13) 

( )11 1,RS M wµ⇔ < ∀∆                                            (7.14) 



( ) 1,RP M wµ⇔ < ∀
∆

                                            (7.15) 

Equations (7.13)-(7.15) are the nominal performance, robust stability and robust 

performance μ tests for nominally stable system respectively. Now, the μ tests are 

applied to three designs consecutively. 

116 



 

 
Figure 93: LFT structure for μ-analysis 

 
 
 
 

7.5.2.1. LQG/LTR Design 2 

The nominal performance, robust stability and robust performance of the closed loops of 
design 2 are depicted in Figs. 94 and 95. Note that there is no term related with control 
(KSo) in the cost function of the LTR as given in Eq. (3.23). So, usually it is not expected 
to work well when the performance criterion is selected as in Eq. (7.6). Figures 94 and 
95 show that at low frequencies robust performance is approximately satisfied for            
ρ = 1e-4. However, at high frequencies robust performance degrades. This shows that 
reducing ρ leads to a controller that has higher gain at high frequencies as shown in Fig. 
80. 
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Figure 94: Nominal performances with the LQG/LTR controllers 

 
 
 
 
 
 
 

 
Figure 95: Robust performances and robust stabilities with the LQG/LTR controllers 
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7.5.2.2. ¥ Design 

The nominal performance, robust stability and robust performance of the closed loop of 

¥ design are depicted in Figs. 96 and 97. They show that the required stability and 

performance are satisfied. 
 
 

 
Figure 96: Nominal performance with the ¥ controller 

 

 
Figure 97: Robust performance and robust stability with the ¥ controller 
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7.5.2.3. μ-synthesis Design 

In Figs. 98 and 99 the nominal performance, robust stability and robust performance of 
the closed loops with the μ controllers are illustrated. They show that the required 
stability and performance are satisfied. Note that the controller at first iteration (¥ 
controller) tries to minimize the nominal performance; however, the μ controller 
(controller at next iterations) tries to minimize the peak robust performance. At each 
iteration, robust performance is made flatter at the cost of nominal performance 
reduction. 

 
 
 
 

 
Figure 98: Nominal performances with the μ controllers 
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Figure 99: Robust performances and robust stabilities with the μ controllers 

 
 
 
 

7.5.3. Comparison of Controllers 

In this section, the performances of the three controllers are compared. The LQG/LTR 

controller is taken from the design 2 when ρ = 1e-4. As discussed previously, the ¥ 

controller is actually the μ controller at iteration 1. So, it is possible to compare the two 

controllers at two iterations in μ approach. First, the gains of the controllers are 

illustrated in Fig. 100. It shows that the ¥ controller has larger gain at low frequencies 

which leads to better performance at this region. On the other hand, the LQG/LTR 

controller has large gain at high frequencies which reduces the stability at this region. 
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Figure 100: Singular value plot of controllers 

 
 
 

Now, the results obtained in the previous sections are compared. First, the comparison is 

made by looking at singular value tests. Next, μ tests are utilized. 

7.5.3.1. Robustness Comparison with Singular Value Tests 

In this section, it is assumed that the structure given in Fig. 86 is considered. Then the 

corresponding nominal performances, robust stabilities and robust performances are 

depicted in Figs. 101 and 102 below with the three controllers by using the 

corresponding singular value tests. 

7.5.3.2. Robustness Comparison with μ Tests 

For the structure given in Fig. 93, the nominal performances, robust stabilities and robust 

performances are depicted in Figs. 103 and 104 by using the corresponding μ tests. 
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Figure 101: Comparison of nominal performances with singular value tests 

 
 
 
 
 
 
 

 
Figure 102: Comparison of robust performances and robust stabilities with singular 
value tests 
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Figure 103: Comparison of nominal performances with μ tests 

 
 
 
 
 
 
 

 
Figure 104: Comparison of robust performances and robust stabilities with μ tests 
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7.5.3.3. Results of the Comparisons 

Figures 101-104 illustrate the following results: 

The LQG/LTR controller satisfies the robust stability and performance when the 

performance is measured in terms of output sensitivity only. However, LTR leads to 

controller having large gains at high frequencies which reduces the stability at these 

frequencies. When the performance is measured in terms of So and KSo, the robust 

performance reduces dramatically at high frequencies. This results from the fact that 

there is no term with KSo in the LTR cost function. 

The ¥ controller satisfies the robust stability and performance for both structures. In 

low frequency region it has the best performance. However, at mid frequencies the μ 

controller has better performance than ¥ controller. 

When the ¥ controller is considered as the μ controller at iteration 1, it is observed that 

D-K iteration tries to find a controller that minimizes the peak of the robust performance. 

In other words, at each iteration, μ of the closed loop gets flatter. However, this 

procedure achieves that by reducing the nominal performance. 

Briefly, when the performance at low frequencies is important one can use the ¥ 

controller. On the other hand, the performance over all frequencies is essential the μ 

controller should be chosen. When performance is only measured by weighted output 

sensitivity, the LQG/LTR controller can be used; however, it has the poorest stability. 

So, LQG/LTR controller must be the third choice. 

7.6. Summary 

Firstly, in this chapter the LQG/LTR, ¥ and μ controllers are synthesized. Secondly, 

the nominal performances, robust stabilities and robust performances of the closed loops 

with these three controllers are investigated. Finally, the three controllers are compared 

and observations about their properties are summarized.  
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CHAPTER 8 
 
 

IMPLEMENTATION AND EXPERIMENTAL RESULTS 
 
 
 
In this chapter, how the designed controllers are implemented is discussed. Firstly, 

since the designed controllers have high order, reduced order controllers are found 

using Balanced Truncation method. Next, the reduced order controllers are discretized 

so that they can be implemented in digital computer. After that, the experimental 

closed loop transfer matrices are depicted. The chapter ends with the investigation of 

experimental performances of the system at different conditions. 

8.1. Implementation 

In this section, the motivation of the controller reduction is expressed. Next, 

discretization of the controllers is discussed.  

8.1.1. Controller Reduction 

The design methods discussed throughout the thesis all create complex high order 

controllers. For example, the LQG/LTR controller is of order 14, ¥ controller is of 

order 20, and the μ controller is of order 32 as discussed in Chapter 7. However, the 

implementations of these high order controllers are difficult task. Apart from that, they 

lead to high process cost and poor reliability in the system. In this aspect, the lower order 

controller is always favorable by the control designers. In this section, how to obtain a 

low order controller is briefly discussed. 

For this section let the original controller has a state space representation given in Eq. 

(8.1), 

( )
A B

G s C D
 

=  
 

                                                (8.1) 

where , , ,n xn n xm p xn p xmA B C D∈ ∈ ∈ ∈     and [A, B, C] is minimal realization. 

Moreover, let the reduced order controller Gr  is represented with Eq. (8.2), 
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( ) r r
r

r r

A B
G s C D

 
=  

 
                                                (8.2) 

where , , ,r x r r xm p xr p xm
r r r rA B C D∈ ∈ ∈ ∈   

 and r < n is satisfied.  

Then the objective is to find a reduce order controller that minimizes the cost in Eq. 

(8.3). 

rG G
∞

−                                                      (8.3) 

There are various model reduction methods [40]; however, in this thesis Balanced 

Truncation method is investigated. 

8.1.1.1. Balanced Model 

A stable system G(s) is called balanced if the solutions P and Q of Lyapunov Eqs. (8.4) 

and (8.5) have the form given in Eq. (8.6). 

0T TAP PA BB+ + =                                             (8.4) 

0T TA Q QA C C+ + =                                             (8.5) 

1 2 1 2: diag( , , , ) with 0nnP Q σσ σ σ σ σ= ≥ ≥ ≥ ≥= ∑ =                (8.6) 

In other words, the system is balanced if the controllability and observability 

Grammians P and Q are equal and diagonal. Moreover, iσ  is named as ith Hankel 

singular value of the system [40]. 

8.1.1.2. Balanced Truncation Method 

This method is based on neglecting the less observable or/and less controllable part of 

the original model. By doing that, important dynamics of the original model can be kept. 

However, in some models a mode can be weakly observable but highly controllable, or 

vice versa [40]. Therefore, before applying truncation, the balanced realization of the 

model needs to be found via state transformation. 

 It is shown in [41] that the system represented with Eq. (8.1) can be put into balanced 

form via an invertible state transformation n xnT ∈  such that Eq. (8.7) is satisfied. It 

also shows that the balanced realization can be partitioned as in Eq. (8.8). 

1 1
BAL BAL

BAL BAL

A B T AT T B
C D CT D

− −  
=   

    
                                  (8.7) 
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r r
BAL BAL

BAL BAL
r r

A A B
A B

A A B
C D

C C D

 
   =   
    

                                  (8.8) 

Then truncating the n-k least controllable-observable states leads to reduced order model 

given in Eq. (8.9). It is further reported in [41] that the reduced model is stable, minimal 

and balance with Grammians in Eq. (8.10) [42]. 

( ) 1( ) r r
r r r r r

r r

A B
G s C Is A B DC D

− 
= = − + 

 
                           (8.9) 

1 2diag( , , , )BAL rσ σ σ∑ =                                       (8.10) 

The calculation of state transformation n xnT ∈  can be found using the state space 

balancing algorithm developed in [43]. Since this balancing algorithm is beyond the 

scope of this thesis, the details are not discussed further. In this thesis, the build in 

function of MATLAB is used to find the balanced realization of controllers. 

It is reported in [44] that the error of the truncated model satisfies Eq. (8.11). 

1
2 ,

m

r i
i r

G G wσ
∞

= +

− < ∀∑                                        (8.11) 

So, in model truncation method, one can select r such that 1r rσ σ +  is satisfied. Even if 

this model gives freedom in selecting controller order, the control designer should 

always look at the stability and performance properties of the closed loop formed with 

reduced order controller [40]. 

8.1.1.3. Truncation of the Designed Controller 

In this section, the model reductions of the designed controllers in Chapter 7 are made 

using the Truncation method. 

8.1.1.3.1. LQG/LTR Design 

First, the balanced realization of the designed LQG/LTR controller is obtained. Next, the 

Hankel singular values are investigated. The LQG/LTR controller is of order 14, so 14 

Hankel singular values are plotted in Fig. 105. It shows that the first 12 Hankel singular 

values are significantly larger than the remaining two. That is, truncating last 2 states is 

appropriate which results in 12th order controller. The original (full order) and truncated 
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(reduced order) controller are depicted in Fig. 106. The robustness comparison of the 

closed loops is investigated for the LFT structure given in Fig. 93 in μ framework. 

Figures 106 and 107 show that the full and reduced order controllers show nearly the 

same performance and stability properties. 

 
 

 
Figure 105: Hankel singular values of full order LQG/LTR controller 

 

 
Figure 106: Singular value plot of full and reduced order LQG/LTR controllers 
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Figure 107: Robust performances and robust stabilities with full and reduced order 
LQG/LTR controllers 
 
 
 

8.1.1.3.2. ¥ Design 

The same procedure outlined for LQG/LTR case is reconsidered. The designed ¥ 

controller is of order 20, and corresponding Hankel singular values are shown in Fig. 

108. It shows that the first 10 singular values are correspondingly larger than remaining 

ones. However, as in the LQG/LTR case the controller which has order of 12 is selected, 

and remaining 8 states are truncated. Then full and reduced order controllers and 

stabilities and performances with these controllers are illustrated in Figs. 109 and 110, 

respectively. 
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Figure 108: Hankel singular values of full order ¥ controller 

 
 
 
 
 
 
 

 

Figure 109: Singular value plot of full and reduced order ¥ controllers 
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Figure 110: Robust performances and robust stabilities with full and reduced order 
¥ controllers 

 
 
 

8.1.1.3.3. μ-synthesis Design 

The designed μ controller is of order 32 and its Hankel singular values are given in Fig. 

111. By truncating 20 states, reduced order controller having 12 states is obtained. Full 

and reduced order μ controllers and robustness of corresponding loops are illustrated in 

Figs. 112 and 113. 
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Figure 111: Hankel singular values of full order μ controller 

 
 
 
 
 
 
 
 

 
Figure 112: Singular value plot of full and reduced order μ controllers 
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Figure 113: Robust performances and robust stabilities with full and reduced order μ 
controllers 
 
 
 
8.1.1.3.4. Summary of the Model Truncation 

In this section, the designed controllers and their reduced order models are obtained. The 

original controller orders were 14, 20 and 32 for the LQG/LTR, ¥ and μ cases 

respectively. All the models are truncated such that they are of order 12. All the 

performances and stabilities given in this section show that the reduced and full order 

models possess very similar properties. To conclude, reduced order controllers can be 

used instead of full orders without hesitation. 

8.1.2. Discretization with Bilinear Transform 

In this section, the discretization of the continuous controller is discussed. In this thesis, 

bilinear transform which is a common discretization method is used. The bilinear 

transform results from the trapezoidal approximation of integral.  

Let the continuous and discrete time controller be denoted by G(s) and Gbt (z) 

respectively. Then the state space matrices in Eq. (8.12) of discretized controller is 

obtained by using Eq. (8.13) as explained in appendix A in detail. The state space 
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formulas are valid if 2sT  is not an eigenvalue of A where sT  denotes the sampling time 

of the system [45]. 

( ) ( ) bt bt
bt

bt bt

A B A B
G s G zC D C D

   
= ⇒ =   

   
                           (8.12) 

( )

1

1

2 2

2 2

s s
bt

s s
bt

bt bt

bt bt

T TA I A I A

T TB I A B

C C I A

D D CB

−

−

   = − +   
   

 = − 
 

= +

= +

                                   (8.13) 

8.2. Experimental Results 

In this section, the experimental results are depicted. Previously in this chapter, the 

reduced order controllers were obtained and they were discretized. Firstly, using these 

discretized reduced order controllers responses of the closed loop sensitivities are found. 

Then using these responses, the transfer matrices are constructed. After that, using these 

matrices, experimental performances are derived and illustrated.  

In Chapter 2, the output was given as in Eq. (8.14). 

( )o o i oy T r n S Pd S d= − + +                                        (8.14) 

Moreover, it was assumed in Chapter 3 that the reference r, noise n and input 

disturbance di  are zero. The only external signal was assumed to be output disturbance d. 

Then Eq. (8.14) simplifies to Eq. (8.15) for two-axis gimbal. 

11 12

21 22

az az

el el

o o

o o

w dS S
w dS S

    
=    

    
                                     (8.15) 

By making del  zero, So11 and So21 are determined by looking at waz  and wel  respectively. 

Similarly, under zero daz, So12 and So22 are found. After finding responses of 

corresponding transfer functions, for two-input two-output system transfer matrix is 

constructed. Then the singular values of the sensitivity matrix are plotted. The results are 

now illustrated for different controllers successively. In this part by changing disturbance 

inputs, different perturbations are obtained which roughly yield the same input excitation 
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levels at low frequencies that are used while determining uncertainty upper bounds in 

Chapter 6.  

8.2.1. LQG/LTR Design 

First, the responses of So11, So12, So21 and So22 of the closed loop system constructed with 

the LQG/LTR controller are depicted in Figs. 114-117. Next, for MIMO system the 

singular values of So are given in Fig. 118. 

 
 
 
 

 
Figure 114: So11 of perturbations with the LQG/LTR controller 
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Figure 115: So12 of perturbations with the LQG/LTR controller 

 
 
 
 
 
 
 
 

 
Figure 116: So21 of perturbations with the LQG/LTR controller 
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Figure 117: So22 of perturbations with the LQG/LTR controller 

 
 
 
 
 
 
 

 
Figure 118: Singular value plot of sensitivities and We

-1 with the LQG/LTR 
controller 
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8.2.2. ¥ Design 

The experimental closed loop transfer functions So11, So12, So21 and So22 created with the 

¥ controller are depicted in Figs. 119-122. After that, the singular values of So can be 

found in Fig. 123. 
 
 

 

Figure 119: So11 of perturbations with the ¥ controller 

 

 

Figure 120: So12 of perturbations with the ¥ controller 
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Figure 121: So21 of perturbations with the ¥ controller 
 
 
 
 
 
 
 

 

Figure 122: So22 of perturbations with the ¥ controller 
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Figure 123: Singular value plot of sensitivities and We
-1 with the ¥ controller 

 
 
 

8.2.3. μ-synthesis Design 

The responses of transfer functions So11, So12, So21 and So22 given in Eq. (8.15) are 

obtained for the closed loop system constructed with the μ controller, and corresponding 

gains are given in Figs. 124-127. Then for two-input two-output system, singular values 

of So  are plotted in Fig. 128. 
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Figure 124: So11 of perturbations with the μ controller 

 
 
 
 
 
 
 
 

 
Figure 125: So12 of perturbations with the μ controller 
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Figure 126: So21 of perturbations with the μ controller 

 
 
 
 
 
 
 
 

 
Figure 127: So22 of perturbations with the μ controller 
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Figure 128: Singular value plot of sensitivities and We

-1 with the μ controller 
 
 
 

8.2.4. Performance Analysis 

In this section, the performances of different perturbations are discussed. Again the 

analysis is done for two performance criteria. Firstly, the performance in Eq. (8.16) is 

considered. Next, the analysis is redone for requirement in Eq. (8.17) for three 

controllers. 

1e oW S
∞

<                                                      (8.16) 

1e o

u o

W S
W KS

∞

 
< 

 
                                              (8.17) 

Define the performance analysis for the criterion in Eq. (8.16) as case 1, and analysis for 

requirement in Eq. (8.17) as case 2. Then the experimental results for the two cases are 

given for different controllers below. 

8.2.4.1. LQG/LTR Design 

The experimental performances of the LQG/LTR compensated closed loop for different 

disturbance levels are plotted in Figs. 129 and 130 for two cases. 
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Figure 129: Performances of perturbations with the LQG/LTR controller (case 1) 

 
 
 
 
 
 
 
 

 
Figure 130: Performances of perturbations with the LQG/LTR controller (case 2) 
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8.2.4.2. ¥ Design 

The performances of closed loop with the ¥ controller are given in Figs. 131 and 132.  
 
 

 
Figure 131: Performances of perturbations with the ¥ controller (case 1) 

 
 

 
Figure 132: Performances of perturbations with the ¥ controller (case 2) 
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8.2.4.3. μ-synthesis Design 

Finally, experimental performances with the μ controller are shown in Figs. 133 and 134. 
 
 

 
Figure 133: Performances of perturbations with the μ controller (case 1) 

 
 

 
Figure 134: Performances of perturbations with the μ controller (case 2) 
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8.2.5. Summary of the Experimental Results 

Comparison of the theoretical nominal performances was made and the results were 

shown in Fig. 101 for case 1 previously. Similar observations are made for the 

experimental case as given in Fig. 135 below. At low frequencies while the ¥ 

controller shows the best performance, the LQG/LTR shows the worst. On the other 

hand, the worst performance is created by the ¥ controller in mid frequencies for                

case 1. At high frequencies they show similar properties. 

The theoretical nominal performances corresponding to case 2 were given in Fig. 103 in 

previous chapter. The experimental results shown in Fig. 136 possess similar 

characteristics. At low frequencies, the best and the worst performances are created by 

the ¥ and the LQG/LTR controllers respectively as in case 1. However, due to high 

gain of the LQG/LTR controller at high frequencies, its performance degrades. Also, at 

mid frequencies the μ controller is better than the ¥ controller. Moreover, at high 

frequencies the ¥ controller is the best one which is expected from the theoretical results. 

Note that as frequency increases beyond the loop bandwidth, the disturbances are 

amplified at control signal. So, usually at this region the current references are high. 

When the input excitation signal is high, the nonlinear effects remain small which makes 

the perturbed plants approach to nominal model built in Chapter 5. Therefore, at high 

frequencies some perturbations could not be seen. Moreover, recall that the swept sine 

tests in Chapter 6 begin from 3 Hz for azimuth, and 5 Hz for elevation since there are 

mechanical limits in the structure. For that reason, the uncertainty modeling is valid 

above these frequencies. On the other hand, the experimental performances are derived 

above 1 Hz. That is, the results show that around 1 Hz slightly larger model error is 

available than the error at 3 Hz and 5 Hz for corresponding axes where the data begin. 

Moreover, high excitation signals lead to performance degradation around the small 

resonant peak of azimuth around 15 Hz. In other words, the model error at this region is 

slightly larger than the modeled one in Chapter 6. By looking at the overall picture, it can 

be said that the modeling, identification and control show successful properties and they 

are similar to theoretical results. 
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Figure 135: Comparison of performances (case 1) 

 
 
 
 
 
 
 

 
Figure 136: Comparison of performances (case 2) 
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The chapter is concluded with the transient responses of disturbance rejection for 

different controllers and for two channels separately. The disturbance signal is a square 

signal at 4 Hz, and the results are given in Figs. 137 and 138. They show that the three 

controllers possess good disturbance rejection responses. 
 
 
 
 

 
Figure 137: Disturbance rejection in azimuth channel 
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Figure 138: Disturbance rejection in elevation channel  

 
 
 

8.3. Summary  

In this chapter, the procedures followed for controller implementations are explained. 

Then the experimental results are depicted. Comparison of the controller is made using 

the experimental data and the theoretical expectations. 
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CHAPTER 9 
 
 

CONCLUSION 
 
 
 
9.1. Summary 

In this thesis, the LQG/LTR,¥ and μ control methodologies are applied to design a 

robust line of sight stabilizing controller. First, the robust control theory is briefly 

discussed. The importance of 2 and ¥ norms for controller design is expressed. The 

generalized plant construction, performance weight selection and uncertainty modeling 

are summarized. Nominal stability, nominal performance, robust stability and robust 

performance are investigated. Then motivations behind μ-analysis and its approximate 

solution D-K iteration are examined. 

After introducing the experimental setup, a two-axis gimbal system is modeled and its 

parameters are identified using CD-EKF. Then the two-input two-output MIMO 

nominal model is constructed. After that, using swept sine tests the uncertainties are 

found. Next, the performance requirement in the system is considered. By considering 

the constraints on the output jitter, control input and the experimental disturbance profile 

taken from the platform, the required performance weights are derived. By augmenting 

the nominal model with these performance and uncertainty weights the generalized plant 

and LFT structure are obtained. 

Firstly, the LQG/LTR controller is designed for an augmented plant with weight which 

is related with the disturbance power spectrum. After that, using the LFT structure built 

in S/KS/T mixed sensitivity framework the ¥ and μ controllers are designed. Next, the 

theoretical results are shared for closed loops constructed with these three controllers. 

Then the comparison is made by considering the performance and stability of the 

corresponding loops. After that, the implementation issues of the controllers are 

expressed. The Balanced Truncation and discretization methods are introduced. Next, 

experimental responses of the closed loop transfer functions are illustrated. Using these 

experimental responses, the closed loop transfer matrix is constructed for MIMO system. 
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Then the experimental MIMO closed loop properties are investigated. Finally, the 

experimental performances and their comparisons are expressed.  

9.2. Results and Discussions 

In this section, the results obtained throughout the thesis are reviewed. Then important 

points about the control methods are shared. 

In low frequency region, the ¥ controller has the best performance due to the highest 

gain. On the other hand, the LQG/LTR shows the worst performance. 

In mid frequency region, ¥ controller has the worst performance. Around crossover 

region the μ controller has better performance than ¥ controller. At these frequencies, 

LQG/LTR shows the best performance. 

In high frequency region, LQG/LTR possesses the worst performance which results 

from the high gains there. At this region, ¥ controller is the best one owing to the 

highest roll off rate. 

Note that, the control methods discussed in this thesis all try to minimize some cost 

functions. LQG/LTR controller tries to minimize the total nominal performance over all 

frequencies. On the other hand, ¥ controller tries to minimize the worst case nominal 

performance over all frequencies. Finally, μ controller attempts to minimize the worst 

case robust performance. However, there are trade-offs in feedback systems. In other 

words, it is not possible to obtain good performance in all these aspects at the same time. 

For example, small robust performance peak comes with reduced nominal performance. 

In a similar way, better nominal performance may lead to poorer robust stability, and 

robust performance. In this aspect, following conclusions can be made: 

When the performance at low frequencies is important one can use the ¥ controller.  

On the other hand, the performance over all frequencies is essential the μ controller 

should be chosen.  

If the worst case perturbation is unlikely to occur, one can prefer ¥ controller over μ 

controller. However, if the converse is true, μ controller should be chosen. 
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When performance is only measured by weighted output sensitivity, the LQG/LTR 

controller can be used; however, it has the poorest stability at high frequencies. So, 

LQG/LTR controller must be the third choice. 

9.3. Publications 

The controller design procedures and results discussed in this thesis are reported, and the 

following paper is submitted for publication. 

Mehmet Baskın and Kemal Leblebicioğlu, “Multivariable robust line of sight stabilizing 

controllers design in LQG/LTR, ¥ and μ-synthesis frameworks”, submitted for 

publication, 2015. 

To investigate the differences of classical control and robust control, the theories are 

applied to SISO dc-dc converter control problem, and the following paper is presented in 

TOK, in September 2015, Denizli. 

Mehmet Baskın and Kemal Leblebicioğlu, “Fotovoltaik uygulamalarda kullanılan 

yükseltici tip DA-DA çeviricinin µ sentezi ile gürbüz voltaj kontrolü”, in Otomatik 

Kontrol Türk Milli Komitesi Ulusal Toplantısı (TOK), pp. 262-267, 2015. 

9.4. Future Work 

The design methodologies introduced in this thesis can be applied to any MIMO system 

by changing the corresponding performance weights according to problem and system. It 

is discussed that the LTR procedure for non-minimum phase plants cannot be as 

successful as for minimum phase counterparts. This phenomenon is actually observed in 

this thesis while discussing the LQG/LTR controller design. However, the problem is 

solved by a heuristic method which depends on augmenting the plant with modified 

weight. In this aspect, the achievable LTR for non-minimum phase plant and 

corresponding weight selection can be investigated [20, 46]. Moreover, the ¥ loop-

shaping design procedure introduced in [47] and its differences from mixed sensitivity 

design can be examined [12, 48, 49]. In addition, if there is a restriction on pole or zero 

location of the controller the bilinear pole shifting transform discussed in [50] can be 

used. Also, 2/¥ mixed controller can be designed [51, 52]. Finally, by using friction 

compensator whether the uncertainty reduction is possible can be investigated [28, 53]. 
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APPENDIX A 
 
 

DISCRETIZATION OF CONTROLLER WITH BILINEAR 
TRANSFORM 

 
 
 

Assume the continuous-time controller has a state space model in Eq. (A.1). Then it 

suggests Eq. (A.2). 

 ,x Ax Bu y Cx Du= + = +                                           (A.1) 

1 1 1

1

k k k

k k k

t t t

k k
t t t

x x x dt A x dt B u dt
+ + +

+ − = = +∫ ∫ ∫                                (A.2) 

The integrals on the right-hand side are approximated by trapezoidal rules as given in 

Eq. (A.3). 

( ) ( )
1 1

1 1,
2 2

k k

k k

t t
s s

k k k k
t t

T Tx dt x x u dt u u
+ +

+ += + = +∫ ∫                  (A.3) 

Then 
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2 2 2 2
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 

 

Now consider the Eq. (A.4). 

1

2 1 1

k bt k bt k

k bt k bt k

z A z B u

z A z B u
+

+ + +

= +

= +
                                           (A.4) 

Since 1k k kx z z += +  is satisfied, adding two equations in Eq. (A.4) gives desired .kx  
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( )

( )

( ) ( )

1k k k k k k

k bt k bt k k

bt k bt k

btbt DC

y C x Du C z z Du

C z C A z B u Du

C I A z D CB u

+= + = + +

= + + +

= + + +
 

 

Therefore, the discrete approximation of controller in Eq. (A.1) is given in Eq. (A.5) 

with the matrices defined as above. 

1k bt k bt k

k bt k bt k

z A z B u

y C z D u
+ = +

= +
                                      (A.5) 
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