
MESSAGE SCHEDULING FOR THE STATIC AND DYNAMIC SEGMENT OF
FLEXRAY: ALGORITHMS AND APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGÜR KIZILAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2015

Approval of the thesis:

MESSAGE SCHEDULING FOR THE STATIC AND DYNAMIC SEGMENT OF
FLEXRAY: ALGORITHMS AND APPLICATIONS

submitted by ÖZGÜR KIZILAY in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Şenan Ece Güran Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Klaus Schmidt
Co-supervisor, Mechatronics Engineering, Cankaya Univ.

Examining Committee Members:

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Şenan Ece Güran Schmidt
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. İlkay Ulusoy-Parnas
Electrical and Electronics Engineering, METU

Prof. Dr. Halit Oğuztüzün
Computer Engineering, METU

Prof. Dr. Semih BİLGEN
Computer Engineering, Yeditepe University

Date: 18.12.2015

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ÖZGÜR KIZILAY

Signature :

iv

ABSTRACT

MESSAGE SCHEDULING FOR THE STATIC AND DYNAMIC SEGMENT OF
FLEXRAY: ALGORITHMS AND APPLICATIONS

Kızılay, Özgür

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Güran Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Schmidt

December 2015, 50 pages

Today’s automobiles comprise an increasing number of electronic components. Some

of these components are used for entertainment purposes and some of them are used

for safety-critical application such as X-by-Wire that are implemented on electronic

control units (ECUs). The safe data exchange among such ECUs has to be realized

by a robust and reliable in-vehicle network protocol. In this context, FlexRay is one

of the new generation in-vehicle network protocols which is already used in upper

class series vehicles.

In principle, FlexRay enables the reliable transmission of periodic and sporadic mes-

sages that are generated by ECUs on two communication channels. Nonetheless, it

is the user’s responsibility to configure the FlexRay parameters. In particular, it is

required to determine a message schedule such that each message meets its deadline.

In general, two types of messages – periodic and sporadic messages – are considered.

In FlexRay, periodic messages are transmitted in the static segment and sporadic mes-

sages are transmitted in the dynamic segment. Since these two types of messages have

v

different timing characteristics and the corresponding segments in FlexRay have dif-

ferent arbitration properties, their scheduling has to be performed by different types

of algorithms.

In this thesis, we focus on the message scheduling on the static segment and the

dynamic segment of FlexRay. We first analyze practical requirements for the static

segment scheduling based on previous studies that involve the solution of a linear

integer problem (LIP). In order to circumvent the requirement for an LIP solver, a

new heuristic static segment scheduling algorithm is developed and implemented.

Its performance is evaluated by several test cases. Next, we consider the FlexRay

dynamic segment. We first propose an improvement of an existing algorithm for the

worst-case response time analysis and then develop a new algorithm for the priority

assignment on the FlexRay dynamic segment. The practicability of the presented

algorithms is established by various examples.

Keywords: FlexRay, Static segment, Dynamic segment, Message Scheduling

vi

ÖZ

FLEXRAY VERİYOLU STATİK VE DİNAMİK BÖLÜTLERİ İÇİN MESAJ
ÇİZELGELEMESİ: ALGORİTMALAR VE UYGULAMALAR

Kızılay, Özgür

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Assoc. Prof. Dr. Şenan Ece Güran Schmidt

Ortak Tez Yöneticisi : Assoc. Prof. Dr. Klaus Schmidt

Aralık 2015 , 50 sayfa

Günümüz otomobilleri her geçen gün daha fazla elektronik parça içermektedir. Bu

elektronik parçaların bazıları eğlence amaçlı kullanılırken bazıları güvenlik ve X-

by-Wire uygulamaları gibi daha kritik alanlarda kullanılmaktadır. Elektronik parça-

ların kullanımının olduğu yerde veri alışverişi kaçınılmaz hale gelmektedir. Elektro-

nik kontrol ünitelerinin (EKÜ) güvenli bir şekilde haberleşebilmesi için sağlam ve

güvenilir bir araç içi ağ protokolüne ihityaç vardır. FlexRay daha sık kullanılmaya

başlanan yeni nesil araç içi ağ protokollerinden biridir.

FlexRay EKÜ’ler tarafından üretilen periyodik (periodic) ve sporadik (sporadic) me-

sajların güvenilir bir şekilde iki kanal üzerinden iletilmesini sağlamaktadır. FlexRay

ağ parametre değerlerinin belirlenmesi ve her mesajın zaman sınırından önce gönde-

rilmesini garantileyecek bir çizelge tasarımı yapılmalıdır.

Dönemleme açışından bakıldığında iki tip mesaj vardır, periyodik ve sporadik me-

sajlar. FlexRay’de periyodik mesajlar statik bölütte (static segment) ve sporadik me-

vii

sajlar ise dinamik bölütte (dynamic segment) iletilmektedir. Bu iki tip mesaj farklı

zamanlama karakteristiğine sahip olduğu için, bu mesajların çizelgelemeleri farklı

tipte algoritmalar kullanılarak planlanmaktadır.

Bu tezde, biz bir FlexRay sisteminde statik bölüt ve dinamik bölüt mesaj çizelgeleme-

sine odaklandık. Öncelikle statik bölüt çizelgelemesi için doğrusal tamsayı program-

lama (Linear Integer Programming) kullanan bir çözüm içeren önceki bir çalışmaya

dayanarak pratik gerekleri analiz ettik. Doğrusal tamsayı programlama çözücü içer-

meyen bir keşifsel algoritma geliştirdik ve doğruladık. Algoritmanın performansını

test durumlarıyla ölçtük. Daha sonra FlexRay dinamik bölüt üzerinde çalıştık. Önce-

likle en kötü cevap zamanı analizi için daha önce ortaya konulmuş bir algoritmayı

iyileştirdik ve daha sonra FlexRay dinamik bölüt üzerinde öncelik atayan yeni bir al-

goritma geliştirdik. Bu algoritmanın kullanışlılığını çeşitli örneklerle ortaya koyduk.

Anahtar Kelimeler: Flexray, Sabit bölüt, Hareketli bölüt, Mesaj Çizelgelemesi

viii

To My Wife, Ayça

ix

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisors Assoc. Prof. Dr. Şenan

Ece Güran Schmidt and Assoc. Prof. Dr. Klaus Schmidt for supporting and guiding

me with patience, enthusiasm and immense knowledge. I could not have imagined

having better advisors and mentors for my M.S study.

Throughout my study, the biggest support came from my wife, Ayça. She helped

me a lot both psychologically and physically. Without her support I would not com-

plete this study. Also a special thanks to my dear brother and friends who always

encouraged me, Özgün, Duygu, Hasan, Ceren, Gül, Volkan, Çağatay, Carol.

I would like to thank to my employer ASELSAN Inc. for the supporting my academic

studies. My sincere thanks also goes to my colleague and team leader Dr.Mustafa

DURSUN for his insightful comments, encouragement and full support. I am grateful

to my colleagues Güner, Cihan, Nagehan, Serap, Hande and Ümit for their spiritual

help which made me relaxed when I was stressfull.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xv

LIST OF ALGORITHMS . xvi

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 FLEXRAY NETWORK PROTOCOL 5

2.1 Static Segment . 7

2.2 Dynamic Segment . 8

xi

2.3 Symbol Window . 10

2.4 Network Idle Time . 11

3 FLEXRAY STATIC SEGMENT SCHEDULING 13

3.1 Background on Scheduling 13

3.1.1 Notation and Assumptions 14

3.1.2 Requirements . 14

3.1.3 Performance Metrics 15

3.2 Heuristic Scheduling Algorithm 18

3.3 Case Study . 22

4 DYNAMIC SEGMENT ANALYSIS AND SCHEDULING 27

4.1 Notation and Assumptions 28

4.2 Worst-Case Response Time Analysis 30

4.2.1 Existing Analysis and Discussion 30

4.2.2 Improved Worst-Case Response Time Analysis . . 34

4.2.3 Execution and Case Study 36

4.3 Dynamic Segment Scheduling 42

5 CONCLUSION . 47

REFERENCES . 49

xii

LIST OF TABLES

TABLES

Table 1.1 Message Periods . 1

Table 3.1

Message Periods . 21

Table 3.2

Initial Repetiton Set . 22

Table 3.3

Resulting Schedule . 22

Table 3.4

Message Periods . 23

Table 3.5

Resulting Schedule, γJ = 1, γFA = 1 . 24

Table 3.6

Resulting Schedule, γJ = 1, γFA = 2 . 24

Table 3.7 Comparison of optimal LIP result and heuristic algorithm for differ-

ent message counts. 25

Table 4.1

Message Parameters . 33

Table 4.2

Message Parameters of Case 2 . 38

xiii

Table 4.3

FlexRay Configurations of [12] . 39

Table 4.4

Sporadic Message Parameters [12] . 41

Table 4.5

Message Parameters . 45

Table 4.6

FID Assignment . 45

Table 4.7

Dynamic Segment Message Scheduling Algorithm Run-Time Evaluation . 45

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Time base triggered communication cycle [2]. 6

Figure 2.2 Timing hierarchy within the communication cycle[2] 6

Figure 2.3 Structure of the static segment[2] 7

Figure 2.4 Static Segment Scheduling Example 8

Figure 2.5 Structure of the Dynamic Segment [2] 9

Figure 2.6 Structure of the Dynamic Slot [15] 10

Figure 2.7 Timing within the symbol window [2] 11

Figure 4.1 Worst-case Response Time Computation - Existing Algorithm . . . 33

Figure 4.2 Worst-case Response Time Computation - Blocking Effect Evaluated 34

Figure 4.3 The Result of the Case 1, NMS = 11 37

Figure 4.4 Blocked Cycles in Case 1, NMS = 11 37

Figure 4.5 Blocked Cycles Case 1, 13 MS 37

Figure 4.6 The Result of the Case 1, 13 MS 38

Figure 4.7 The Result of the Case 2, 20 MS 39

Figure 4.8 The Result of the Case 2, 25 MS 40

xv

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 FID and offset assignment algorithm in [17]. 17

Algorithm 2 Starting Repetition Computation 19

Algorithm 3 Finding Best-Cost Message 20

Algorithm 4 Perform Optimization . 21

Algorithm 5 Scheduling algorithm for the FlexRay DS in [18]. 42

Algorithm 6 Heuristic DS Scheduling Algorithm 44

xvi

LIST OF ABBREVIATIONS

ECU Electronic Control Unit

CAN Controller Area Network

LIN Local Interconnect Network

FC FlexRay Cycle

MT Macro Tick

TDMA Time Division Multiple Access

FID Frame Identification

DS Dynamic Segment

WCRT Worst-Case Response Time

NIT Network Idle Time

SW Symbol Window

MS Minislot

xvii

xviii

CHAPTER 1

INTRODUCTION

The automotive industry is one of the biggest industries in the world and to raise its

share in the global market it needs to keep innovating. Today, the automotive industry

presents automobiles with improved safety, comfort, performance and a reduced car-

bon foot-print. While improving automobiles, more and more electronics are getting

involved and the number of electronic control units (ECUs) used in automobiles is

getting larger. As the number of ECUs is increasing, the amount of data exchanged

by these ECUs also increases. Additionally, data exchange reliability needs to be im-

proved due to the fact that automobile’s safety and control systems rely on the data

coming from other ECUs. In the past, there were two very commonly used standards:

controller area network (CAN) and local interconnect network (LIN). However, with

the emerging needs of a higher bandwidths and data reliability for applications such

as X-by-Wire, the FlexRay protocol was developed as an advanced embedded in-

vehicle network by the FlexRay Consortium. Table 1.1 shows a comparison of the

properties and usage areas of the three protocols: LIN, CAN and FlexRay.

Table1.1: Message Periods

Bus LIN CAN FlexRay
Speed 40kbit/s 1Mbit/s 10Mbit/s
Cost $ $$ $$$

Wires 1 2 2 or 4

Typical Applications

Body Electronics
(Mirrors,

Power Seats,
Accessories)

Powertrain
(Engine,

Transmission,
ABS)

High-Performance
Powertrain, Safety

(Drive-by-wire,
active suspension,

adaptive cruise control)

1

The basic operation of FlexRay is described in [2, 9, 8]. In comparison to existing

protocols such as CAN [19], FlexRay offers two channels with a high bandwidth of

10Mbit/s. Its cyclic operation supports both time-triggered and event-triggered com-

munication. In each FlexRay cycle, the static segment (SS) employs the idea of time

division multiple access (TDMA) to enable the transmission of periodic messages in

unique static slots, while sporadic messages can be sent in dynamic slots in the dy-

namic segment (DS). In this context, the proper utilization of FlexRay depends on the

configuration of the message transmission by an appropriate message schedule.

The FlexRay SS requires to assign a frame ID (FID), a scheduling repetition and a

scheduling offset to each periodic message so as to configure its transmitting static

slots [16, 17]. The FIDs are limited and they are exclusively allocated to the nodes.

Hence, for a given message set, decreasing the number of allocated FIDs per node is

required for the extensibility of the network. An important fraction of the messages in

automotive networks are generated periodically, however it is possible that the trans-

mission of these messages deviates from this periodicity with some jitter because of

the message schedule. The control applications generally rely on the periodic trans-

mission of these messages. Therefore, it is beneficial to achieve message schedules

with minimum jitter. Message scheduling on the DS of FlexRay requires assigning

priority levels to the sporadic messages such that each message meets its specified

deadline. That is, the worst-case response time (WCRT) between message genera-

tion and message reception has to be smaller than the deadline. Hereby, it has to be

noted that the priority-based arbitration in the DS complicates the WCRT computa-

tion since the transmission of higher-priority messages can block, and hence delay,

the transmission of lower-priority messages.

Referring to the stated requirements, this thesis contains three main contributions

regarding the message scheduling on the FlexRay SS, the WCRT analysis on the

FlexRay DS and the priority assignment on the FlexRay DS. These contributions are

summarized as follows.

• The first contribution of this thesis concerns the assignment of FID, repetition

and offset to each periodic message to be transmitted in the FlexRay SS. Exist-

ing work on this subject requires the solution of linear integer programs (LIPs).

2

This either requires the use of open source LIP solvers that cannot be integrated

into proprietary software or the use of expensive professional LIP solvers. Ac-

cordingly, this thesis proposes a new heuristic to compute good quality assign-

ments for the FlexRay SS without the need for an LIP solver. Case studies show

the suitability of the proposed heuristic.

• The second contribution of this thesis concerns the WCRT analysis for sporadic

messages transmitted in the FlexRay DS. It is based on the observation in [12]

that the WCRT computation in [17] gives optimistic results in certain cases. In

order to address this issue, the thesis proposes an improved WCRT analysis and

demonstrates it by several test cases.

• The third contribution of this thesis concerns the priority assignment on the

FlexRay DS. To this end, the algorithm in [18] is studied and it is observed

that its run-time considerably increases for large message sets. Hence, this

thesis proposes a new priority assignment algorithm with a lower run-time. The

practicability of this algorithm is supported by various test cases.

The existing literature provides scheduling algorithms for the FlexRay SS and DS.

[6] proposes a fast greedy heuristic and a Integer Linear Programming formulation

to determine the optimal number of slots in the SS. [13] focuses on computing the

optimal FlexRay cycle duration in order to minimize network delays. [7] proposes a

modular framework with a symbolic representation that is used by an Integer Linear

Programming (ILP) solver. The framework enables determining a schedule that re-

spects all bus and processor constraints as well as end-to-end timing constraints. [21]

defines an extensibility policy and extensibility evaluation for the FlexRay SS. Then,

an optimal integer linear programming-based formulation and a fast heuristic algo-

rithm are proposed as the basic message scheduling algorithms. [5] investigates the

problem of allocating a minimum number of static slots to each FlexRay node, while

guaranteeing that all periodic messages will be transmitted before their deadlines. It

has to be noted that none of these approaches captures the trade-off between the FID

allocation and the jitter as important performance metrics for in-vehicle communi-

cation. Although the previous work of Schmidt and Schmidt in [17] addresses this

trade-off, the message schedule computation is carried out using a LIP formulation

3

with the stated disadvantages.

Regarding existing approaches for the FlexRay DS, the WCRT analysis is studied in

[14, 18, 11, 20, 12]. In [14], it is considered that a fixed worst-case time interval for

the analysis is given. In contrast, our algorithm iteratively increases the time interval

under investigation by one FC until a deadline violation occurs (line 8) or schedula-

bility can be verified (line 6). [11] presents an approach for the WCRT analysis of the

FlexRay dynamic segment, which takes slot-multiplexing into account. [20] develops

an approach for the WCRT analysis of the dynamic segment with slot multiplexing

that returns less pessimistic results compared to previously known techniques. In ad-

dition, the work in [12] computes exact response times for the FlexRay DS with a very

high computational complexity. The algorithm in [18] is the basis for the new WCRT

algorithm proposed in this thesis. In particular, this thesis modifies the constraints

in [18] in order to avoid an optimistic WCRT computation. Finally, the priority as-

signment for the FlexRay DS is only considered in [18, 22]. [22] studies the problem

of timing analysis of frames transmitted in the FlexRay dynamic segment, providing

a tight upper bound to the worst case response times. In addition they propose an

algorithm to assign identifiers (priorities) to frames, to optimize a design objective.

The proposed algorithm in [18] shows a considerable run-time for large message sets

and an improvement is provided in this thesis.

The remainder of this thesis is organized as follows. In Chapter 2, the FlexRay pro-

tocol basics and its operation are specified. Chapter 3 is devoted to static segment

scheduling. Firstly, scheduling requirements are described and formalized in the form

of an objective function. The chapter then explains the optimal scheduling algorithm

for the SS and the proposed heuristic algorithm. The WCRT analysis and priority as-

signment for the FlexRay DS is discussed in Chapter 4. Chapter 5 gives conclusions

and outlines directions for future research.

4

CHAPTER 2

FLEXRAY NETWORK PROTOCOL

The Flexray protocol is developed by a consortium consisting of Adam Opel GmbH,

Bayerische Motoren Werke AG, Daimler AG, Freescale Halbleiter Deutschland GmbH,

NXP B.V., Robert Bosch GmbH, and Volkswagen AG [2]. The Flexray protocol is

introduced due to requirements that are pointed out in [2, 8, 10]. As compared to

its predecessor CAN [19], FlexRay offers a higher bandwidth of 10 Mbit/s with two

channels and it is capable of dealing with both time-triggered and event-triggered

messages. As depicted in the FlexRay Protocol specification [2], FlexRay operates in

cycles. Scheduled messages are delivered on certain previously determined FlexRay

cycles (FCs). The cycle count of FlexRay is identified by the value vCycleCounter

which is a 6-bit value. Hence, FlexRay has up to 26 = 64 FCs. This communication

cycle scheme is depicted in Figure 2.1.

The communication cycle comprises the static segment, dynamic segment, symbol

window and network idle time and cycles are executed repeatedly. The smallest time

unit of the protocol is macrotick (MT) and it can take values between 1 µs and 6 µs.

The duration of the FCs is predetermined and fixed: gdCycle = gMacroPerCycle ·

gdMacrotick, gdMacrotick is the value of MT and gMacroPerCycle is the num-

ber of MTs per FC. The time hierarchy may be seen in Figure 2.2.

5

Figure 2.1: Time base triggered communication cycle [2].

Figure 2.2: Timing hierarchy within the communication cycle[2]

6

Figure 2.3: Structure of the static segment[2]

2.1 Static Segment

The static segment (SS) of FlexRay uses a TDMA scheme and is designed for the

transmission of real-time periodic messages. The SS is divided into equal length

time slots. The number of these time slots is gNumberOfStaticSlots. The dura-

tion of the time slots is gdStaticSlot. Therefore, the duration of the SS is evalu-

ated as gNumberOfStaticSlots · gdStaticSlot · gdMacrotick. A state variable

vSlotCounter is maintained by each node and by means of this variable, each node

knows the executing slot number. The bus arbitration process in the SS makes use

of the TDMA approach [4]. Each node has previously assigned FIDs, and when

vSlotCounter is equal to the related node’s FID, then that node makes its transmis-

sion. The FID is the slot number in the static segment to which a frame is assigned.

In Figure 2.3, the SS timing characteristics are illustrated.

According to the protocol specification [2] each message in the SS has an unique

triple (fM,rM,oM) and each FID is assigned to a unique node. Assigning this triple to

the messages is the scheduling process. fM is the FID that message is assigned, rM is

the repetition value which denotes that the message is going to be transmitted every

rM FCs and oM is the offset value which can be explained as the FC number in which

the message is transmitted first.

In Figure 2.4, an example schedule with 3 messages is given. According to the pre-

7

Figure 2.4: Static Segment Scheduling Example

sented schedule, M1 is assigned to slot 1 with FID 1 with a repetition of 1. FID 3

is assigned to both M2 and M3, whereas their offset values are different; M3 has an

offset 0 and M2 has an offset 1. More than 1 message can be assigned to the same

FID with different offset values as in the case of this example. With the use of this

kind of slot multiplexing, FIDs may be used more efficiently.

2.2 Dynamic Segment

In embedded systems, some of messages are real-time periodic messages and these

messages should be transmitted in the SS in the Flexray operation in order not to miss

their deadlines. On the other hand there are sporadic messages and these messages are

transmitted in the dynamic segment (DS) of the Flexray operation. Sporadic messages

are not transmitted in the SS because transmitting such occasional messages in the

SS would result in an inefficient use of the Flexray cycle with allowing empty slots to

pass frequently.

The DS of Flexray is divided into equal length minislots (MS). Each minislot is com-

posed of gdMinislot number of macroticks. The number of minislots that each

Flexray dynamic segment has is gNumberOfMinislots. The number of minislots

may be between 0 and 7986 [2].

8

Figure 2.5: Structure of the Dynamic Segment [2]

The structure of the DS is depicted in Figure 2.5. In each channel, the slot counter

accounts for the ID of the current slot. Slot IDs start from a pre-configured value.

If there is a message to be transmitted with the ID of the current slot ID, then that

message is transmitted and the duration of the slot is determined with the duration of

the transmitted message. The durations of the messages are specified in multiples of

MSs before the operation and scheduling. If there is not any message to be transmitted

that has the ID of the current slot, then that slot remains empty with a duration of one

MS. At this point, minislot should not be confused with dynamic slot; dynamic slot is

an entity that may include a message transmission and in that case contains as many

minislots as the message has and it may not include a message transmission and in

that case it contains one minislot.

Each minislot has an action point that is some certain number of macroticks after the

starting point of the minislot. The number of macroticks that characterizes the action

point is gdMinislotActionPointOffset.

In the DS, the message transmissions start and end at the action points. This behavior

is shown in Figure 2.6. A frame transmission is started at the action point of the first

minislot and is ended at the corresponding last minislot of that dynamic slot.

The dynamic slot consists of two phases as may be seen at Figure 2.6. These phases

are the transmission phase and the idle phase. The transmission phase is mandatory

and it starts from the first minislot and it ends at the minislot in which the frame

9

Dynamic Slot

action pointaction point
gdMinislot

macrotick

gdMinislotActionPointOffset gdDynamicSlotIdlePhase

Frame

transmission phase idle phase

Figure 2.6: Structure of the Dynamic Slot [15]

transmission ends. The idle phase is optional. In the idle phase, no communication

takes place and it provides time for all nodes to complete idle detection within the

dynamic slot [2]. These both phases are composed of a certain number of MSs that

are configured at the time of design of the Flexray network.

2.3 Symbol Window

In the Flexray cycle, after static and dynamic segments are completed, an optional

symbol window part may be performed. In this part either a media acces test symbol

(MTS) or a wake-up also during operation possible (WUDOP) may be sent [2].

The symbol window consists if a certain number of macroticks and that number

gdSymbolWindow is configured.

As it may be seen in Figure 2.7, the transmission of the symbol starts at the action

point of the symbol window which is an offset of gdSymbolWindowActionPointOffset

macroticks long.

10

Figure 2.7: Timing within the symbol window [2]

2.4 Network Idle Time

In the Flexray cycle, the Network Idle Time (NIT) takes part after the SW. This part

provides time for nodes to calculate and apply clock correction. This part is also used

as a phase in which some communication related tasks are performed [2].

11

12

CHAPTER 3

FLEXRAY STATIC SEGMENT SCHEDULING

Periodic messages are transmitted in FlexRay static segment. The specific slots that

messages are scheduled to be transmitted in are determined by the offline scheduling

process. In this chapter, the scheduling methodology for the FlexRay static segment

is discussed. Firstly, background of scheduling is presented followed by a discussion

of the existing scheduling algorithm in [16] which is formulated and implemented

making use of linear integer programming (LIP). Our contribution in this chapter is

the design of a heuristic LIP-free scheduling algorithm with the following motivation.

There are open source LIP tools and professional LIP tools in the market. On the one

hand, an open source LIP tool is used, the resulting scheduling application has to

be made open source also. On the other hand, professional LIP tools are expensive.

Hence, we develop an LIP-free heuristic algorithm and show that it performs well in

comparison to the LIP formulation in [16]. The chapter is concluded by a case study

of the heuristic algorithm.

3.1 Background on Scheduling

The structure of the static segment of the FlexRay protocol is defined in Chapter 2.

Scheduling messages that are transmitted in static segment basically requires assign-

ing a unique triple of (fM,rM,oM) to each message M. Here, fM denotes the FID, rM

denotes the message repetition and om denotes the message offset. While assigning

these free parameters to a set of messages, certain constraints apply and assumptions

are made together with the constraints. After assumptions and constraints are for-

13

mulated, the solution of the scheduling problem depends on the chosen performance

metrics. The performance metrics in [17] are allocating a minimum number of FIDs

and minimizing the message jitter, that is, the deviation from the message periodicity.

3.1.1 Notation and Assumptions

The scheduling problem is formulated in the following setting: each node i has a

set of periodic messagesMi. The scheduling process assigns a triple (fM,rM,oM) to

each message M ∈Mi. Each periodic message M has a period pM. The period pM is

assumed to be measured in multiples of the FC duration gdCycle.

Messages in the set Mi have deadlines which can be defined as the maximum time

between the generation and reception of the message. As is commonly done for peri-

odic messages, the deadline value is assumed to be equal to the period. The duration

of a static slot gdStaticSlot is assumed to be chosen such that every message may

be accommodated by one static slot.

3.1.2 Requirements

In this section, requirements that we need for a correct scheduling according to the

FlexRay specification [2] are presented.

It is required that repetition value rM should be in the range of [1,64], whereby rM ∈

{2q|0 ≤ q ≤ 6}. This requirement emerges from the cyclic operation of the FlexRay

Protocol. Since FlexRay repeats its operation every 64 cycles, rM may not exceed

this value.

The offset value oM should be strictly smaller than the repetition rM, 0 ≤ oM < rM.

Since oM is defined as the cycle number in which the message is transmitted first, oM

can not exceed the repetition.

The total number of FIDs used should be smaller than the total number of slots in

the static segment, 0 ≤ fM ≤ gNumberOfStaticSlots. Since a static segment slot is

assigned exactly one FID, the total number of FIDs also should be at most the number

14

of static segment slots.

In order for messages to meet their deadline, the repetition value should be less or

equal than the period, rm ≤ pM. Note that both rm and pM are multiples of the FC.

Each FID should be assigned to a unique node; an FID may not be assigned to mes-

sages from different nodes.

3.1.3 Performance Metrics

After assumptions are made and requirements that come from the FlexRay protocol

specification [2] are pointed out, we discuss the performance metrics that characterize

the scheduling algorithm. We use two performance metrics as introduced in [17]:

minimizing the number of FIDs used and minimizing the jitter.

One of the performance metrics of our scheduling algorithm is to minimize the FIDs

used. This metric is offered in order to keep the used portion of the static segment

as small as possible. Using a minimum portion from the static segment would allow

users to add extra messages with ease if necessary. When a messageMi of from node

i is assigned to a slot with a repetition of rM, the fraction of the usage of that slot may

be evaluated as in equation (3.1).

AM =
1

rM
. (3.1)

The repetition value rM specifies that message M will be transmitted every rM cycles

in its assigned slot. That slot is hence going to be used by message M every rM cycles

out of 64 cycles. For example if rM = 2, the message is going to use the slot every 2

cycles, the utilization of that slot by message M is evaluated as AM = 1
2 and it holds

that 32 out of 64 cycles are used by M.

Following the proposition in [17], the expression for the FID allocation of node i

becomes

FAi := d
∑

M∈Mi

AMe = d
∑

M∈Mi

1
rM
e. (3.2)

The ceiling function in (3.2) exists to ensure that the FID allocation is an integer.

Since FID allocation determines the total number of FIDs, it must be an integer.

15

Minimizing the jitter is the other performance metric of our scheduling algorithm.

Jitter is defined as the message’s deviation from periodicity. Quantification of the

jitter is made in [17] by defining a relative jitter JM for a message M ∈Mi:

JM :=
2 · (rM −b) ·b

pM · rM
, (3.3)

where b is defined as

b = pM mod rM, 0 ≤ b < rM. (3.4)

The jitter defined in (3.3) is a relative quantity which allows us to use the term as an

indication of jitter and compare the jitters created by different rM values.

The specified performance metrics for the scheduling algorithm lead us to the ob-

jective function which contains these two performance metrics. If we have a set of

messagesMi from a node i, then to schedule these messages such that they use the

minimum number of FIDs and they experience minimum jitter, we should minimize

FAi in (3.2) and the relative jitter sum

Ji :=
∑

M∈Mi

JM. (3.5)

Note that both terms depend on the choice of rM for each message. [16] formulates

an LIP to decide on the optimum values of repetitions for the joint minimization of

FID utilization and jitter. A set of potential repetitions for messages is introduced:

RM = {2q|2q ≤ pM}. For the LIP formulation, a boolean decision variable xM,r for

each r ∈ RM is introduced. This boolean variable gets the value 1 if rM = r and 0

otherwise. The sum of these boolean variables for one message should be 1, since a

message is assigned a unique repetition value. (3.6) specifies this constraint.

∑
r∈RM

xM,r = 1. (3.6)

Using (3.3), the total jitter JM is evaluated as

JM =
∑

r∈RM

xM,r ·
2 · (r− (pM mod r)) · (pM mod r))

pM · r
. (3.7)

16

Using (3.1), the FID allocation for node i is

FAi = d
∑

M∈Mi

∑
r∈RM

xM,r

r
e = d

(
64 ·

∑
M∈Mi

∑
r∈RM

xM,r

r
)
/64e.

Here, the expression contains a ceiling function which cannot be expressed in an

LIP. Therefore, the expression may be written as in (3.8) to account for the ceiling

function.

FAi ·64 = 64 ·
(∑

M∈Mi

∑
r∈RM

xM,r

r
)
+ c. (3.8)

In (3.8), the dummy integer variable c is introduced. When c is minimum, FAi eval-

uates to the ceiling value.

The optimization function which jointly minimizes the FID allocation and jitter is pre-

sented in (3.9). In this joint objective function , γFA is the weight of the FID allocation

part and γJ is the weight of the jitter part. By changing these weight parameters, the

user may decide which part should contribute more to the objective function.

min
X
γFAFAi +γJ ·

∑
M∈Mi

JM. (3.9)

The assignment of rM is determined using the objective function (3.9). Using this

repetition assignment, the assignment of FIDs and offsets can be performed making

direct use of Algorithm 1.

input : Li, finit; Variable: O = {0, . . . ,63}, fc := finit, util := 0
while Li is not empty 1

if util = 1 2
util := 0; O := {0, . . . ,63}, fc := fc + 1 3

remove the first element M from Li 4
util := util + 1/rM 5
assign fM := fc 6
assign smallest element o in O to oM: oM := o 7
remove all elements o + k · rM from O for k ∈ N0 8

return triple (rM,oM, fM) for each M ∈Mi 9

Algorithm 1: FID and offset assignment algorithm in [17].

17

3.2 Heuristic Scheduling Algorithm

In this part, the heuristic LIP-free static segment scheduling algorithm which is the

main contribution of this thesis regarding the FlexRay static segment is presented.This

heuristic algorithm is designed to get an FID assignment that is as close as possible

to the optimal assignment in defined in (3.9). In a vehicle network a lot of nodes need

to connect to bus. In order to schedule whole network, all periodic messages from all

nodes need to be assigned an FID. While defining the objective function, we reduced

our focus on a single node due to the requirement that "Each FID should be assigned

to a unique node". This requirement enables us to apply our objective function to

all nodes separately because free parameters of messages from different nodes do not

have an impact on the other node’s objective function. When the schedule of each

node is computed, we obtain a solution of whole system.

Consider a node i and its set of messages Mi. We define rMmax as the maximum

possible repetition value that message M ∈Mi can take without violating the deadline

and rMmin as the repetition value that gives minimum relative jitter. Since the deadline

is equal to the period and the period is in multiples of cycle time, rMmax is evaluated

as:

rMmax = 2imax
, where imax is the maximum value satisfying 0 ≤ imax ≤ 6, 2imax

≤ pM

(3.10)

rMmin is determined making use of the (3.3) as

rMmin = ri, where 1≤ ri ≤ 64 is the value minimizing JMi =
2 · (ri− pM mod ri) · pM mod ri

pM · ri
.

(3.11)

We next present our heuristic scheduling algorithm that we refer as Algorithm (4) to

find the set of repetitions rM which result in good (small) objective function value.

We then employ Algorithm 1 in [17] to completely specify the triple of (fM,rM,oM)

for the scheduling. Algorithm (4) makes use of Algorithms 2 and 3.

To this end, we first determine rMmin and rMmax values and then specify an initial

repetition value according to procedure in Algorithm 2 (lines 4-16). Algorithm 2

makes use of the functions 3.12 and 3.13. The resulting value for each message is the

18

repetition value that minimizes 3.13.

ComputeRelativeJitter(γJ ,rM, pM) = γJ ×
2 · (rM − pM mod rM) · pM mod rM

pM · rM
(3.12)

ComputeOb jS core(γFA,γJ ,rM, pM) = γFA×
1

rM
+ ComputeRelativeJitter(γJ ,rM, pM)

(3.13)

input : Message SetMi

output: Repetition Set

1 for each M ∈Mi do

2 compute rMmin and rMmax

3 end

4 for each M ∈Mi do

5 ropt = rMmax

6 optS core = ComputeOb jS core(γFA,γJ ,ropt, pM)

7 while ropt ! = rMmin do

8 tempS core = ComputeOb jS core(γFA,γJ ,
ropt

2 , pM)

9 if tempS core < optS core then

10 ropt =
ropt

2

11 optS core = tempS core

12 else

13 break

14 end

15 end

16 end
Algorithm 2: Starting Repetition Computation

After running Algorithm 2, a repetition value rM is obtained for each message M ∈Mi

from which the oM and fM values may be computed. However, at this step, the repe-

tition values do not give the minimum objective function value. The first term of the

objective function (3.9) FAi = d
∑

M∈Mi
1

rM
e employs a ceiling function. If the term in-

side the ceiling function for the computed repetitions is not an integer, then decreasing

19

some of the repetition values would not change the value of FAi. For example, if this

term is 4.5, then some of the repetitions may be made smaller until the value reaches

5 without altering the term’s contribution to the overall objective function result. By

employing this fact, some certain repetitions which do not assume the value rMmin

may be made smaller in order to reduce the jitter term of the objective function (3.9).

To apply this idea, Algorithm 4 is proposed. Firstly, if there is margin in FAi, the rep-

etition that has the biggest impact on jitter term of the objective function is chosen.

Then the chosen repetition is set as the new repetition of the message. The algorithm

iterates until the term inside the ceiling of FAi assumes an integer value or no more

repetitions can be decreased. It employs 3 to find the best-cost message during these

iterations.

input : Message SetMi, margin, γJ , γFA

output: Best-cost message

1 for each M ∈Mi do

2 rtemp =
ri
2

3 while rtemp ≥ rMmin do

4 absCosti = 1
rtemp
− 1

ri

5 costi = (1
rtemp
− 1

ri
) ·γFA

6 bene f iti = (ComputeRelativeJitter(γJ ,ri, pM) −

ComputeRelativeJitter(γJ ,rtemp, pM)) ·γJ

7 if costi
bene f iti

< bestcost & margin > absCosti then

8 bestcost =
costi

bene f iti

9 best− cost message = M

10 end

11 rtemp =
ri
2

12 end

13 end
Algorithm 3: Finding Best-Cost Message

After the application of Algorithm (4), the set of repetitions which result in a better

(smaller) objective function value is determined. In order to complete scheduling,

the triple of (fM,rM,oM) should be specified. Since the rM parameters are already

determined, Algorithm 1 in [17] is used.

20

input : Message SetMi, γJ , γFA

output: Repetition Set

1 while true do

2 margin = d
∑

M∈Mi
1

rM
e −

∑
M∈Mi

1
rM

3 if margin > 0 then

4 Find best-cost message with Algorithm 3

5 if found then

6 change the repetition of the message with the one found in line 4

7 else

8 break

9 end

10 else

11 break

12 end

13 end
Algorithm 4: Perform Optimization

Table3.1:Message Periods

Period in ms
m1 10
m2 70
m3 150
m4 770
m5 340

We next evaluate our heuristic algorithm using an example for illustration. The

scheduling computation for the set of messages presented in Table 3.1 is executed.

The FlexRay configuration in this case is cycle time : 10ms, γJ = 1, γFA = 1. Firstly,

Algorithm 2 is executed. The output of this algorithm is the initial repetition set which

is shown in Table 3.2. These repetition values determine the FID part of the objective

function: 1
1 + 1

4 + 1
8 + 1

16 + 1
32 = 1.46875. Since this value is not an integer, Algorithm

4 is applied in order to reduce the objective function value.

As the result, we obtain the repetition set in Table 3.3. The FID part of the objec-

tive function: 1
1 + 1

2 + 1
8 + 1

8 + 1
4 = 2. FID and offset assignments are computed using

21

Table3.2:Initial Repetiton Set

Repetition
m1 1
m2 4
m3 8
m4 16
m5 32

Algorithm 1 and results are given in Table 3.3.

Table3.3:Resulting Schedule

Repetition FID Offset
m1 1 1 0
m2 2 2 0
m3 8 2 3
m4 8 2 7
m5 4 2 1

Note that scheduling algorithm of [16] is optimal but our heuristic algorithm might

not be optimal. Nevertheless, for the case presented, the resulting assignment of triple

(fM,rM,oM) and objective function value are identical to the values of the optimal

algorithm.

3.3 Case Study

In this section, a case study of static segment message scheduling is presented. In this

example message set is composed of 35 messages whose periods/deadlines are given

in Table 3.4. Let gdCycle be 10ms. We compute a schedule with γJ = 1, γFA = 1

and γJ = 1, γFA = 2.

The result found by running the heuristic algorithm with an input of γJ = 1, γFA = 1

is given in the Table 3.5. According to results, in total 5 FIDs are used, an objective

function value of 7.583071 is obtained. When this case is executed with optimal

algorithm, the same objective function value is obtained thus in this case heuristic

algorithm results in an optimal solution. Table 3.6 shows results computed by the

heuristic algorithm with an input of γJ = 1, γFA = 2. In that case 6 FIDs are used

and objective function value is 10.019142. The optimal algorithm gets an objective

22

Table3.4:Message Periods

Message Period in ms Message Period in ms Message Period in ms
m1 10 m2 70 m3 150
m4 770 m5 340 m6 500
m7 40 m8 90 m9 240
m10 840 m11 630 m12 570
m13 700 m14 400 m15 150
m16 210 m17 310 m18 320
m19 440 m20 520 m21 270
m22 280 m23 290 m24 110
m25 120 m26 130 m27 140
m28 470 m29 480 m30 490
m31 610 m32 620 m33 680
m34 750 m35 760

function value of 9.971413, the result of heuristic algorithm is not optimal.

We further performed tests with randomly generated message sets in order to compare

the performance of the heuristic algorithm and the optimal LIP solution. For each

message count at Table 3.7, we randomly generated 1000 test cases and evaluated the

results. Randomly generated message periods are in between 30 − 10000 ms and

cycle is set to 10 ms. In the second column of Table 3.7, we present the number of

cases in which two algorithms have the same result out of 1000 cases. In the third and

fourth columns, we present average and maximum percentage differences between the

objective function values of the two algorithms in 1000 test cases respectively.

The results in Table 3.7 show that average difference from the optimal algorithm is

below %10 thus our heuristic algorithm may be considered as a good approximation

to optimal algorithm. For some message counts, the maximum difference can be

large; it may be said that there is a chance that computation can result in a difference

of %47. If it is critical for the user not to have such a difference from the optimal

result; exhaustive enumeration may be used in order to avoid usage of LIP.

23

Table3.5:Resulting Schedule, γJ = 1, γFA = 1

Message Repetition FID Offset Message Repetition FID Offset
m1 1 1 0 m2 4 2 0
m3 8 4 0 m4 16 5 1
m5 32 5 13 m6 16 5 2
m7 4 2 1 m8 8 4 1
m9 8 4 2 m10 16 5 3
m11 32 5 14 m12 8 4 3
m13 8 4 4 m14 8 4 5
m15 8 4 6 m16 4 2 2
m17 16 5 4 m18 32 5 15
m19 4 2 3 m20 16 5 5
m21 8 4 7 m22 4 3 0
m23 16 5 6 m24 4 3 1
m25 4 3 2 m26 4 3 3
m27 8 5 0 m28 16 5 7
m29 16 5 9 m30 16 5 10
m31 32 5 29 m32 32 5 30
m33 32 5 31 m34 16 5 11
m35 16 5 12

Table3.6:Resulting Schedule, γJ = 1, γFA = 2

Message Repetition FID Offset Message Repetition FID Offset
m1 1 1 0 m2 4 2 1
m3 8 5 1 m4 16 6 2
m5 32 6 13 m6 16 6 3
m7 4 2 3 m8 8 5 2
m9 8 5 3 m10 16 6 4
m11 32 6 14 m12 8 5 5
m13 8 5 6 m14 8 5 7
m15 8 6 0 m16 4 3 0
m17 16 6 5 m18 32 6 15
m19 4 3 1 m20 4 3 2
m21 4 3 3 m22 4 4 0
m23 4 4 1 m24 4 4 2
m25 4 4 3 m26 4 5 0
m27 2 2 0 m28 16 6 6
m29 16 6 7 m30 16 6 10
m31 32 6 29 m32 32 6 30
m33 8 6 1 m34 16 6 11
m35 16 6 12

24

Table3.7: Comparison of optimal LIP result and heuristic algorithm for different mes-
sage counts.

Message Count Exact Match # of Cases Avarage Difference (%) Max. Difference (%)
5 817 0.03 1.05

10 659 0.08 2.49
20 603 1.00 47.10
30 395 8.23 42.81
40 198 6.45 28.00
50 465 1.02 17.85
60 337 2.35 15.12
70 223 2.60 12.64
80 322 0.92 10.15
90 281 1.18 7.82

100 184 1.30 7.59

25

26

CHAPTER 4

DYNAMIC SEGMENT ANALYSIS AND SCHEDULING

In a FlexRay cycle, periodic and sporadic messages are transmitted according to the

schedule and configuration parameters of the FlexRay Protocol. Scheduling mes-

sages and configuration of the FlexRay Protocol parameters are off-line processes

that are executed before the actual implementation of FlexRay Network. After dis-

cussing scheduling for the FlexRay static segment in Chapter 3, this chapter focuses

on scheduling of dynamic segment (DS) messages.

The FlexRay DS is intended for the transmission of sporadic messages. According to

the description in Section 2.2, scheduling of DS messages addresses the problem of

assigning an FID to each sporadic message such that no message misses its deadline.

The procedure of assigning FIDs also depends on the configuration parameters of the

FlexRay protocol. The dynamic segment is designed such that its length is usually

not sufficient for accommodating all the sporadic messages in order to efficiently

use the available bandwidth: since sporadic messages are not released periodically,

reserving a dynamic slot with the length of each message in each cycle is not efficient.

Nevertheless, each sporadic messages still has to meet its deadline.

In the DS, the FIDs assigned to sporadic messages can be considered as priorities. At

the beginning of the DS, if the message with the highest priority (smallest assigned

FID) is present, then that message is transmitted and the dynamic slot uses the number

of FIDs corresponding to the message length. If it is not present, then the dynamic slot

lasts exactly one MS. Afterwards the second highest priority message is checked and

if present it is transmitted. This procedure goes on until the end of the DS. A message

with a low priority may not be transmitted due to present high-priority messages. In

27

order to be certain that no message misses its deadline, the worst-case scenario for

every message should be computed and it must be shown that, under the worst-case

condition, every message meets its deadline.

This chapter focuses on two main topics. First, the computation of the worst-case

response time (WCRT), that is, the longest time between message generation and

reception for the FlexRay DS is considered. Second, the problem of assigning FIDs

to sporadic messages such that the WCRT time is smaller than the message deadline is

studied. Here, the main contributions are the improvement of the WCRT computation

in [18] and a new FID assignment algorithm with a reduced run-time compared to

existing algorithms.

This chapter is organized as follows. The notation is introduced and the assumptions

made for the formulation of the problem are stated in Section 4.1. Then, the WCRT

analysis is discussed in Section 4.2. In this context, first, the existing analysis is

explained and then the improved analysis is put forward. and executed dynamic seg-

ment scheduling cases are going to be presented. Chapter ends with the discussion of

dynamic segment scheduling.

4.1 Notation and Assumptions

In this section, the notation that is used to formalize the analysis is given and the

assumptions made are discussed.

In the analysis an easier to follow notation compared to protocol specification nota-

tion in Section 2.2 is used. FlexRay operates in cycles. The duration of one cycle is

gdCycle [2]. We call this parameter Tc throughout the analysis. The FlexRay dy-

namic segment is divided into equal length minislots. The duration of each minislot

is gdMinislot macroticks, denoted as TMS. The number of minislots in a dynamic

segment is fixed and it is gNumberOfMinislots written as NMS. The durations of

Symbol Window and Network Idle Time are gdSymbolWindow and gdNIT. These

parameters are denoted as TSW and TNIT, respectively.

In the DS, a message may be transmitted if the latest transmission point is not reached,

28

yet [2]. The latest transmission point is the beginning of the minislot such that the

longest message does not fit in the remaining minislots. The corresponding parameter

pLatestTx is calculated as

pLatestTx = gNumberOfMinislots−aMinislotPerDynamicFrame+ 1,

where aMinislotPerDynamicFrame is the number of minislots needed for the trans-

mission of the longest message [18].

In the DS, scheduling includes assigning FIDs to all messages and also determining

the number of minislots. Then, the WCRT analysis is based on the already assigned

FIDs and number of minislots. That is, we assume for the analysis that FIDs are

already assigned to each message. We use the message set D. In analogy to the

studies in [3, 14, 18] we characterize each message D ∈ D by its deadline dD, its

minimum inter-arrival time pD and its payload length bD in two-byte words. Hereby,

pD models the minimum time between two consecutive message generations of the

sporadic message D. In addition, we use the mapping between messages and their

FIDs [18] as:

aDS :D→ {1, . . . ,gNumberOfMinislots} (4.1)

that determines the MS ID aDS(D) for each message D ∈ D.

According to the FlexRay specification [2] the frame length is evaluated as:

FrameLength[gdBit] = PayloadLength ·20 + 94. (4.2)

In equation 4.2, gdBit is the bit time in the channel. In the DS, frames are sent within

the minislots and each message occcupies a certain number of minislots. This number

is evaluated as:

MinislotPerDynamicFrame[MS] = 1 + d
0.1003·gdBit·(FrameLength+1)
gdMacrotick·gdMinislot e+

gdDynamicSlotIdlePhase.
(4.3)

In (4.3), gdDynamicSlotIdlePhase is the duration of the idle phase in each minislot

29

as described in Chapter 2.

While performing the WCRT analysis, we assume that each FID is assigned to a

unique message such that FIDs are not shared by different messages. We make the

analysis for a single channel of FlexRay, accounting for the fact that the FID assign-

ment for the messages assigned to the two different FlexRay channels is independent.

4.2 Worst-Case Response Time Analysis

In this section we perform the analysis of the worst-case response time (WCRT) that

a message scheduled in the FlexRay DS may experience. The WCRT depends on the

FID assignment and the number of minislots in the DS. Firstly, the existing work in

[18] is presented and discussed. Afterwards, improvements on the existing work are

studied and finally case studies are presented.

4.2.1 Existing Analysis and Discussion

The WCRT for DS messages may be analyzed with two components. Consider a

message D ∈ D. The first component of the delay is experienced in the first FC of

its generation. Since we are investigating the WCRT, we assume that the message

D came just after the its assigned FID aDS(D). In that case, the initial delay that D

experiences in the first FC is:

tD,init = (NMS−aDS(D) + 1)TMS + TSW + TNIT. (4.4)

The second component of the delay occurs due to blocking by higher-priority mes-

sages. If the DS of a FlexRay cycle can be filled with higher-priority messages up

to pLatestTx, Nlatest, then the message D cannot be transmitted in that cycle. The

WCRT is experienced if the maximum number of cycles are filled with higher-priority

messages. In the analysis of [18], an LIP formulation is presented. The boolean de-

cision variables xD′,1, . . . , xD′, f for each message D′ ∈ D are introduced. The mes-

sages D′ ∈ D are higher-priority messages than D such that aDS(D′) < aDS(D). If the

30

boolean variable xD′,i = 1, then it means that the message D′ is transmitted in FC i

and if xD′,i = 0 then it means that the message D′ is not transmitted in FC i, 1 ≤ i ≤ f .

As previously stated, p′D is the minimum inter-arrival time between two instances of

message D′. In [18], it is assumed that the maximum number of instances D′ may be

transmitted in j consecutive cycles is

d j ·Tc/pD′e. (4.5)

In this respect, for each cycle j with 1 ≤ j ≤ f , f − j+1 constraints for each message

D′ ∈ D are introduced. (4.6) states these constraints for each message.

xD′,1 + · · ·+ xD′, j ≤ d j ·Tc/pD′e
...

...
...

xD′, f− j+1 + · · ·+ xD′, f ≤ d j ·Tc/pD′e.

(4.6)

Using the boolean variables xD′, j for the messages D′ ∈ D and cycles 1 ≤ j ≤ f ,

the constraint such that message D is not transmitted in the cycles before than its

scheduled cycle f is

(Nlatest−1) ·TMS <∑
D′

aDS(D′)<aDS(D)

xD′,i ·ND′,MS ·TMS + (1− xD′,i) ·TMS ≤ TDS. (4.7)

For message D not to be transmitted in any cycle before f , each of the cycles 1≤ i< f

should be filled at least up to minislot Nlatest. The term xD′,i ·ND′,MS stands for the

transmitted message D′ in cycle i and (1− xD′,i) · TMS stands for the messages that

are not transmitted in cycle i such that a minislot is passed empty. The upper limit in

(4.7) is the overall duration of the DS.

In the final cycle f , the sum of the durations of the messages transmitted should also

be less than TDS:

∑
D′

aDS(D′)<aDS(D)

xD′, f ·ND′,MS ·TMS + (1− xD′, f) ·TMS ≤ TDS. (4.8)

31

The objective is then to maximize the cycle number in which message D cannot be

transmitted. In this LIP formulation the objective corresponds to the maximization of

the higher-priority message transmission time in the last cycle f . It can be expressed

as:

JD, f =
∑
D′

aDS(D′)<aDS(D)

xD′, f ·ND′,MS ·TMS + (1− xD′, f) ·TMS. (4.9)

If function JD, f is maximized, then the WCRT for massage D may be obtained. Then

optimization problem in [18] is hence expressed as follows:

J∗D, f = max
X

JD, f (4.10)

(4.10) is subject to the constraints (4.6), (4.7) and (4.8). If the message D may be

transmitted in cycle f , then there should be room for the message D in the cycle:

J∗D, f ≤ (Nlatest − 1) ·TMS should be satisfied. The total delay that message D experi-

ences is:

wD = tD,init + (f −1) ·Tc + TSS + J∗D, f + ND,MS ·TMS. (4.11)

This formulation is applied for all the sporadic messages. It starts iterating from cycle

1 and it ends at cycle f = ddD/Tce. If it ends before reaching f , it means that message

D may be scheduled without missing its deadline. But if the last iteration is reached,

it means that message D misses its deadline.

The analysis presented here [18] depends on the consecutive occurrence limits of

messages in (4.5). Nevertheless, as indicated in [12], this constraint is on inter-arrival

times and it is also used as a constraint for inter-departure times. Hence, it implicitly

assumes that for a given priority, the higher priority messages cannot be transmit-

ted on the bus more frequently than their minimum inter-arrival times. However, as

we demonstrate next with an example, in order to calculate worst-case response time

exactly, inter-arrival and inter-departure times should be treated separately and there

should be separate constraints. While putting a limit to the number of consecutive oc-

32

Figure 4.1: Worst-case Response Time Computation - Existing Algorithm

currences the constraint 4.6 does not account for the non-transmissibility of messages

due to filled cycles. A message may be transmitted more times than it is generated

within a certain number of cycles due to accumulated blocked instances.

We illustrate the described situation using the example presented in [12]. There are

four sporadic messages m1,m2,m3 and m4. The number of minislots in the dynamic

segment is 11 and the cycle time is Tc. The message sizes and minimum inter-arrival

times are given in the Table 4.1.

Table4.1:Message Parameters

Message Size in MS Minimum Inter-Arrival Time in Tc Deadline in Tc
m1 3 4 4
m2 3 4 4
m3 6 1.9 1.9
m4 3 5.5 5.5

If the WCRT for m4 is computed using the presented algorithm, the resulting number

of cycles that the message m4 is blocked due to filled cycles, is f = 4. The messages

transmitted may be seen in Figure 4.1.

According to the constraint 4.6, in 3 consecutive cycles, m3 may be transmitted 2

times: d3 ·Tc/1.9 ·Tce = 2. However, m3 may be blocked by higher priority messages

m1 and m2 and due to this blockage it may be possible that m3 is transmitted 3 times

within 3 consecutive cycles. It means that the inter-arrival and inter-departure counts

of messages should be considered separately. If the first arrival of m3 is at the initial

cycle and just after the 3rd frame and if m1 and m2 are transmitted in the first cycle,

then m3 may be transmitted only in the 2nd, 3rd and 4th cycle. This situation is

depicted in Figure 4.2.

33

Figure 4.2: Worst-case Response Time Computation - Blocking Effect Evaluated

When the blocking effect is accounted for in the analysis of this example, the number

of cycles that message m4 is blocked due to filled cycles, becomes 6. In order to

compute the analysis with considering the blocking effect, we make a modification to

the WCRT algorithm which is proposed in Section 4.2.2.

4.2.2 Improved Worst-Case Response Time Analysis

In this part we present the improved WCRT analysis algorithm. As it is mentioned

in Section 4.2, inter-arrival and inter-departure counts of messages should be consid-

ered separately. In the existing algorithm, the constraint (4.6) behaves as if these two

parameters are equal. We next introduce separate equations for the number of gener-

ations and number of transmissions. The maximum number of transmissions that a

message D′ has in j cycles where 1 ≤ j ≤ f , may be evaluated as follows using the

previously introduced boolean decision variables xD′,i:

j∑
i=1

xD′,i. (4.12)

It must hold for each cycle j, 1 ≤ j ≤ f , that the number of transmissions of D′ must

be less or equal than the number of generations of D′. The number of transmissions

is already calculated above. Moreover, the number of generations of D′ until cycle j,

1 ≤ j ≤ f , is computed as follows. We write

S D′, j :=
∑
D′′

aDS(D′′)<aDS(D′)

xD′′, j ·ND′′,MS ·TMS + (1− xD′′) ·TMS (4.13)

34

for the transmission duration of higher-priority messages D′′ than D′ in cycle j before

the first time D′ could be transmitted in that cycle. We further assume that the first

instance of D′ is generated right after its FID in cycle 0. That is, the message spends

time TDS−aDS(D′) ·TMS in cycle 0, (j−1) ·Tc until cycle j and time Tc−TDS +S D′, j in

cycle j. In addition, D′ can be generated with a maximum frequency of 1/pD′ during

that time. That is, the maximum number of generations until a potential transmission

in cycle j is given by⌈
TDS−aDS(D′) ·TMS + (j−1) ·Tc + Tc−TDS + S D′, j

pD′

⌉
. (4.14)

After several simplifications (4.14) becomes:

⌈
S D′, j + j ·Tc−aDS(D′) ·TMS

pD′

⌉
. (4.15)

Hence, the constraint for message D′ in cycle j that relates the number of generations

until that cycle and the number of transmissions becomes:

j∑
i=1

xD′,i ≤

⌈
S D′, j + j ·Tc−aDS(D′) ·TMS

pD′

⌉
. (4.16)

with S D′, j in (4.13).

The new constraint (4.16) needs to be added to the LIP formulation. Unfortunately,

the LIP formulation does not allow the usage of the ceiling operation. Accordingly,

the constraint (4.16) should be transformed to a version that models the ceiling oper-

ation by linear expressions. Indeed, (4.14) can be expressed as follows:∑
D′′

aDS(D′′)<aDS(D′)

xD′′, j ·ND′′,MS ·TMS +(1− xD′′) ·TMS + j ·Tc−aDS(D′) ·TMS +KD′, j = cD′, j · pD′ .

(4.17)

Here, a dummy integer constant KD′, j and a dummy integer coefficient cD′, j are added

for each D′ and j to (4.14) such that (4.17) is obtained. The equation reflects that,

after performing the ceiling operation, the result should be an integer multiple of pD′

and KD′, j is the required remainder. Hereby, we want to use the smallest value for

KD′, j that fulfills the above equation in order to realize the ceiling function. That is,

35

it is sufficient to set boundaries of KD′, j as 0 ≤ KD′, j ≤ pD′ such that KD′, j can assume

only one suitable value. Then, cD′, j represents the result of the ceiling function in

(4.16).

In summary, the improved WCRT analysis for a given message D evaluates

J∗D, f = max
X

JD, f (4.18)

subject to the constraints (4.7), (4.8) and for all D′ with (D′) < a(D) and all 1 ≤ j ≤ f

j∑
i=1

xD′,i ≤cD′, j,a

j ·Tc−aDS(D′) ·TMS +
∑
D′′

aDS(D′′)<aDS(D′)

xD′′, j ·ND′′,MS ·TMS + (1− xD′′) ·TMS + KD′, j =cD′, j · pD′ ,

0 ≤ KD′, j <pD′ .

If the message D may be transmitted in cycle f , then there should be room for the

message D in the cycle: J∗D, f ≤ (Nlatest−1) ·TMS should be satisfied. If this condition

is fulfilled, the total delay that message D experiences is:

wD = tD,init + (f −1) ·Tc + TSS + J∗D, f + ND,MS ·TMS. (4.19)

4.2.3 Execution and Case Study

In this section we present several test cases to which we apply our algorithm. Firstly,

the case in (4.2) is revisited. We call this case Case 1. The message parameters are

given in Table 4.1. We assume Tc = 20ms, NMS = 11, TDS = 11 ms, TSS = 7 ms,

TSW +TNIT = 2 ms. For this case, while computing the WCRT w4 for m4, the number

of cycles that must be checked f = d
5.5·Tc

Tc
e = 6. When the analysis is executed for this

case the result is as shown in Fig. 4.3.

From Figure 4.3, it may be observed that m4 misses its deadline with a WCRT of

w4 = 130 ms. Fig. 4.4 shows the cycles in which m4 is blocked.

The resulting blocked cycles in Figure 4.4 shows that the change of previous con-

straint on consecutive occurrences 4.6 to a constraint that take into consideration the

36

Figure 4.3: The Result of the Case 1, NMS = 11

Figure 4.4: Blocked Cycles in Case 1, NMS = 11

inter-arrival and inter-departure times 4.16 works correctly.

In order for m4 to be schedulable without missing its deadline, we change the FlexRay

parameters NMS, TDS, and TSS such that NMS = 13, TDS = 13ms, TSS = 5ms. Tc and

TSW + TNIT remain the same as before. When the analysis is performed with these

modified parameters, the results is as in Figure 4.5.

According to the results of Figure 4.5, m4 may be scheduled without missing its dead-

line. Figure 4.6 shows the distribution of messages to cycles. In this configuration the

latest slot that a message may start transmission is evaluated as NLatest = 13−6+1 = 8

ref. m4 is blocked at the 1st and 2nd cycle by m3, but, at cycle 3, m1 and m2 can-

not block m4 since NLatest can not be reached. The WCRT of m4 is evaluated as

Figure 4.5: Blocked Cycles Case 1, 13 MS

37

Figure 4.6: The Result of the Case 1, 13 MS

67 ms. The initial delay according to 4.4 is evaluated as tD,init = (13− 4 + 1) · 1ms +

2ms = 12ms. Since it is blocked by higher priority messages in 2 cycles, a delay

of 2 ·Tc = 2 · 20ms = 40ms should be added to the total delay. In cycle 3, in which

m4 is transmitted, a final delay is experienced. This final delay is the time passed

until m4 is transmitted. The time passed in the static segment is TSS = 5ms and the

transmission of m4 is finished at the 10th slot, after 10 ms from the beginning of the

DS. Therefore, the final delay evaluates to 5ms + 10ms = 15 ms and the total delay is

12ms + 40ms + 15ms = 67 ms. Note that m3 still misses its deadline. NMS should be

made larger for m3 not to miss its deadline.

We perform a second test case with 10 messages, Case 2. We choose Tc = 30ms, NMS =

20, TDS = 20ms, TSS = 8ms, TSW +TNIT = 2ms. The sizes and minimum inter-arrival

times of messages are presented in Table 4.2.

Table4.2:Message Parameters of Case 2

Message Size in MS Minimum Inter-Arrival Time in ms Deadline
m1 3 300 100
m2 3 120 60
m3 4 75 50
m4 4 105 60
m5 3 150 90
m6 3 180 90
m7 3 90 70
m8 5 90 75
m9 4 90 75
m10 3 120 105

The result of the analysis for Case 2 is presented in Figure 4.7. It may be seen that

two messages miss their deadlines, m9 and m10. In order to schedule all the messages

in this set without changing the FIDs assigned, the number of minislots in the DS

should be increased. We re-perform the analysis with the following parameters: Tc =

38

Figure 4.7: The Result of the Case 2, 20 MS

30ms, NMS = 25, TDS = 25ms, TSS = 3ms, TSW + TNIT = 2ms. The result may

be observed in Figure 4.8. When the slot number NMS is increased from 20 to 25

without altering the cycle time Tc by decreasing TS S to 3ms, m9 and m10 become

schedulable.

We also apply our algorithm to the benchmark problem in [12] and compare the re-

sults. In [12], they use the benchmark of the Society of Automotive Engineers (SAE)

[1] which provides a set of signals for a prototype electric car. In total, there are

53 signals and 31 of them are sporadic. Since periodic messages are scheduled in

the static segment, we only consider the sporadic messages. In [12], they use three

different configurations for the FlexRay network. Table 4.3 shows the configuration

parameters.

Table4.3:FlexRay Configurations of [12]

Configuration Tc (MT) TS S (MT) TMS (MT) NMS
conf.1 170 60 2 50
conf.2 120 40 2 40
conf.3 150 30 2 60

We present the sporadic message parameters for the three different configurations at

Table 4.4 and computed the WCRT analysis for all messages under these different

configurations. Our computation does not return in a reasonable time (1 hour) for the

messages 20-31 under configurations 1 & 2 and messages 20 & 22-31 under configu-

39

Figure 4.8: The Result of the Case 2, 25 MS

ration 3. We confirmed that we have the same results of schedulability analysis with

the algorithm of [12] for the messages 1-19 under configurations 1 & 2 and messages

1-19 & 21 under configuration 3. Since we use an open source non-professional LIP

solver while implementing our algorithm, we encounter cases for which our algorithm

does not return in a reasonable time.

40

Table4.4:Sporadic Message Parameters [12]

Message ID Message Size (MS)

Deadline
conf.1
(MT)

Deadline
conf.2
(MT)

Deadline
conf.3
(MT)

1 7 1000 720 1400
2 4 800 720 1400
3 4 800 720 1400
4 5 800 720 1400
5 4 900 720 1400
6 4 800 850 1400
7 6 800 850 1400
8 6 800 850 1400
9 4 1000 1500 1400

10 4 1000 1500 1400
11 4 1000 1500 1400
12 4 800 1500 1400
13 4 800 1500 1400
14 4 1000 1500 1400
15 5 700 1500 1400
16 11 1000 1500 1400
17 4 1000 1500 1400
18 4 900 1500 1400
19 4 900 1500 1400
20 10 1200 1500 1400
21 4 2000 1500 1400
22 4 2000 1500 1400
23 4 2000 1500 1400
24 4 2000 1500 1400
25 4 2000 1500 1400
26 4 20000 1500 1400
27 4 2000 1500 1400
28 5 2000 1500 1400
29 4 2000 1500 1400
30 11 2000 1500 1400
31 4 2000 1600 1400

41

4.3 Dynamic Segment Scheduling

In this section, the scheduling problem on the FlexRay DS is investigated. Similar to

the study of the WCRT, our study in this section depends on the study of [18]. The

scheduling of dynamic segment messages has two components: assigning an FID to

each message such that no message misses its deadline and setting the number of

slots NMS in the DS. The problem of scheduling is computationally tedious since the

number of possible assignment of FIDs and NMS is large. If there are |D| messages

to be scheduled, then there are

 NMS

|D|

 · |D|! possible FID assignments. If we accept

that the first |D| minislots are assigned as dynamic slots then there are |D|! possible

FID assignments.

input : Message setD, NMS = NMS,max, NMS = maxD∈DND,MS, aDS is empty.
while(NMS ≤ NMS,max) 1

i = x,D′ =D 2
whileD′ 6= ∅ 3

i = i + 1 4
schedulable = true 5
for each message D ∈ D′ 6

set aDS(D) = i 7
if D is unschedulable according to (4.19) 8

schedulable = false 9
break 10

else 11
record dD−wD 12

if schedulable = false 13
NMS = NMS + 1 14
break 15

set aDS(D) = i for D ∈ D with minimal dD−wD 16
D′ =D′−{D} 17
ifD′ = ∅ 18

return aDS 19

return false 20

Algorithm 5: Scheduling algorithm for the FlexRay DS in [18].

In [18], the heuristic Algorithm 5 is presented. The algorithm iteratively performs

schedulability analysis for a candidate value NMS . If schedulability analysis fails then

the value of NMS is incremented by 1 and the analysis starts from the beginning. The

starting value of the NMS equals the largest message size in minislots. The algorithm

42

assigns FIDs in increasing order to the messages which have the smallest difference

between the deadline and worst-case response time. The problem we point out for

the algorithm is its run-time. The run-time depends on the number of messages and

the characteristics of message parameters. As the message number gets larger, the

run-time of the algorithm increases exponentially.

In order to resolve the problem of a large run-time, we propose a heuristic algo-

rithm, Algorithm 6, which is simpler than the algorithm in [18]. It is based on the

observation that Algorithm 5 generally assigns the FIDs in the DS with increasing

message deadline. Accordingly, we propose to assign FIDs to messages according to

their deadlines; the message with smaller deadline gets a smaller FID. There are two

issues with this FID assignment scheme:

1. Messages with identical deadlines and different periods: We assign higher-

priority FIDs to messages with smaller periods.

2. Messages with identical deadlines and different sizes: We assign higher-priority

FIDs to messages with larger sizes.

At the beginning of algorithm, we assign FIDs to all messages according to the de-

scribed method. Then, we apply a bisection algorithm, that is, NMS is set to the half

of the sum of NMS max and NMS min values. NMS max is the sum of all message sizes and

NMS min is the longest message size. The WCRT of all messages is analyzed using the

algorithm of Section 4.2.2. If at least one message misses its deadline with the as-

signed NMS , NMS is set to the average of NMS and NMS max . If all messages meet their

deadlines, NMS is set to the average of NMS and NMS min and the analysis procedure

starts over again. The algorithm is terminated if the value of NMS does not change.

The algorithm is applied to the message set in Table 4.5. Static segment duration is

set to 7 ms and the total duration of SW and NIT is set to 2 ms for this case.

The resulting FID assignment that is computed by heuristic algorithm is given in

Table 4.6 and the number of MSs in dynamic segment NMS is determined as 11.

The algorithm of [18] results in the same FID assignment and NMS as our heuristic

scheduling algorithm for this case.

43

input : Message SetD

output: FID assignment forD

1 Assign FIDs in increasing order of deadlines

2 NMSmax = sum o f all message sizes

3 NMSmin = maxD∈DND,MS

4 NMS = (NMSmax + NMSmin)/2

5 while !terminate do

6 for each D ∈ D do

7 success = ComputeWCRTAnalysis for D

8 if success then

9 NMS = (NMS + NMSmin)/2

10 else

11 NMS = (NMS + NMSmax)/2

12 end

13 end

14 if NMS does not change then

15 terminate

16 end

17 end
Algorithm 6: Heuristic DS Scheduling Algorithm

In order to evaluate the run time performance of our heuristic algorithm, we randomly

generate test cases and run our heuristic algorithm and algorithm of [18] on these test

cases and compare run times. We generate random message sets which have 5 and 10

messages. We set TS S to 5 ms and minimum inter-arrival times are chosen between

90− 190 ms. We generate 10 random cases for each message count. We present

the average run-times at Table 4.7. We should note that for all the cases, the two

algorithms result in same FID assignment and same NMS .

It may be seen from Table 4.7 that our heuristic algorithm has a similar run-time

for the 5 message case and has a lower run-time for the 10 message case than the

algorithm of [18]. We should note that both algorithms do not return in a reasonable

time for the cases with 20 or higher number of messages. This is due to the usage of

a non-professional LIP solver used in our implementation.

44

Table4.5:Message Parameters

Message Size in MS Minimum Inter-Arrival Time in ms Deadline in ms
m1 8 150 100
m2 4 130 90
m3 6 200 150
m4 4 120 120

Table4.6:FID Assignment

FID Assigned
m1 2
m2 1
m3 4
m4 3

Table4.7:Dynamic Segment Message Scheduling Algorithm Run-Time Evaluation

Message Count Average Run-Time of [18] in s Average Run-Time of our heuristic in s
5 0.063 0.067

10 5.06 0.78

45

46

CHAPTER 5

CONCLUSION

With the recent advances in the automotive industry, the number of electronic com-

ponents in automobiles considerably increased. Alongside the rise in the electronic

components, the amount of data exchanged in the automobiles has increased. As a

result, scheduling of messages that carry this data became more complex. The ECUs

used in safety and X-by-Wire applications made it very critical not to miss message

deadlines.

In this respect, we focus on the schedule analysis and design problems of both Static

(SS) and Dynamic Segments (DS) of the FlexRay protocol. Regarding the SS, we

propose a new heuristic approach for the FID assignment that avoids the LIP solvers

which cannot be practically integrated into other software needed for the optimal

result. Regarding the DS, the thesis proposes a WCRT analysis that also produces

correct results for infeasible priority assignments, different than the previous work.

Furthermore, a low complexity priority assignment for the DS is proposed.

All proposed approaches are tested and evaluated by case studies. The results show

that the heuristic SS scheduling approach achieves close results to the optimal as-

signment defined by the objective function with weights for the efficient use of FIDs

and jitter. The DS WCRT analysis provides correct results for infeasible schedules as

well. The DS scheduling algorithm runs faster with respect to the previous approaches

without compromising the WCRT.

It has to be noted that the FlexRay standard continues to evolve. The newly published

FlexRay Communications System Protocol Specification Version 3.0.1 has additional

47

features including more relaxed FID assignment constraints in the SS. Such changes

redefine the scheduling problem. We believe that the approaches proposed in this

thesis can be adopted to the new standard maintaining their good properties.

48

REFERENCES

[1] Class C application requirement considerations. Technical Report J2056/1, So-
ciety for Automotive Engineers, 1993.

[2] FlexRay communication system, protocol specification, version 2.0., June 2004.

[3] H. Kopetz. A solution to an automotive control system benchmark. In IEEE
Real-time systems symposium, 1994.

[4] H. Kopetz and G. Bauer. The time-triggered architecture. Proc. IEEE,
91(1):112–126, 2003.

[5] R. Lange, F. Vasques, P. Portugal, and R. De Oliveira. Guaranteeing real-time
message deadlines in the flexray static segment using a on-line scheduling ap-
proach. In IEEE International Workshop on Factory Communication Systems -
Proceedings, WFCS, pages 301–310, 2012.

[6] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt. FlexRay schedule opti-
mization of the static segment. In IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis, pages 363–372, 2009.

[7] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty. Modular
scheduling of distributed heterogeneous time-triggered automotive systems. In
Proceedings of the Asia and South Pacific Design Automation Conference, ASP-
DAC, pages 665–670, 2012.

[8] R. Makowitz and C. Temple. FlexRay - a communication network for auto-
motive control systems. Factory Communication Systems, IEEE International
Workshop on, pages 207–212, June 27, 2006.

[9] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert. Trends in automotive
communication systems. Proceedings of the IEEE, 93(6):1204–1224, 2005.

[10] N. Navet, Y.-Q. Song, and F. Simonot. Worst-case deadline failure probability
in real-time applications distributed over controller area network. Journal of
Systems Architecture, 46:607 – 617, 2000.

[11] M. Neukirchner, M. Negrean, R. Ernst, and T. Bone. Response-time analysis
of the flexray dynamic segment under consideration of slot-multiplexing. In 7th
IEEE International Symposium on Industrial Embedded Systems, SIES 2012 -
Conference Proceedings, pages 21–30, 2012.

[12] L. Ouedraogo and R. Kumar. Computation of the precise worst-case response
time of flexray dynamic messages. IEEE TRANSACTIONS ON AUTOMATION
SCIENCE AND ENGINEERING, 11(2):537–548, 2014.

49

[13] I. Park and M. Sunwoo. Flexray network parameter optimization method
for automotive applications. IEEE Transactions on Industrial Electronics,
58(4):1449–1459, 2011.

[14] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the FlexRay
communication protocol. Real-Time Syst., 39(1-3):205–235, 2008.

[15] E. G. Schmidt and K. Schmidt. Message scheduling for the FlexRay pro-
tocol: The dynamic segment. Vehicular Technology, IEEE Transactions on,
58(5):2170–2179, 2009.

[16] K. Schmidt and E. G. Schmidt. Message scheduling for the FlexRay protocol:
The static segment. Vehicular Technology, IEEE Transactions on, 58(5):2160–
2169, 2009.

[17] K. Schmidt and E. G. Schmidt. Optimal message scheduling for the static seg-
ment of FlexRay. In Vehicular Technology Conference Fall, pages 1 –5, sep.
2010.

[18] K. Schmidt and E. G. Schmidt. Schedulability analysis and message schedule
computation for the dynamic segment of FlexRay. In Vehicular Technology
Conference Fall, pages 1 –5, sep. 2010.

[19] I. Standard-11898. Road vehicles-interchange of digital information – Con-
troller Area Network (CAN) for high-speed communication. International
Standards Organisation (ISO), 1993.

[20] B. Tanasa, U. Bordoloi, S. Kosuch, P. Eles, and Z. Peng. Schedulability analysis
for the dynamic segment of flexray: A generalization to slot multiplexing. In
Real-Time Technology and Applications - Proceedings, pages 185–194, 2012.

[21] Y. Xie, G. Zeng, Y. Chen, R. Kurachi, H. Takada, and R. Li. Worst case response
time analysis for messages in controller area network with gateway. IEICE
Transactions on Information and Systems, 2013(7):1467–1477, 2013.

[22] H. Zeng, A. Ghosal, and M. Di Natale. Timing analysis and optimization of
flexray dynamic segment. In Proceedings - 10th IEEE International Conference
on Computer and Information Technology, CIT-2010, 7th IEEE International
Conference on Embedded Software and Systems, ICESS-2010, ScalCom-2010,
pages 1932–1939, 2010.

50

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	FLEXRAY NETWORK PROTOCOL
	Static Segment
	Dynamic Segment
	Symbol Window
	Network Idle Time

	FLEXRAY STATIC SEGMENT SCHEDULING
	Background on Scheduling
	Notation and Assumptions
	Requirements
	Performance Metrics

	Heuristic Scheduling Algorithm
	Case Study

	DYNAMIC SEGMENT ANALYSIS AND SCHEDULING
	Notation and Assumptions
	Worst-Case Response Time Analysis
	Existing Analysis and Discussion
	Improved Worst-Case Response Time Analysis
	Execution and Case Study

	Dynamic Segment Scheduling

	CONCLUSION
	REFERENCES

