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ABSTRACT

DEVELOPING RECOMMENDATION TECHNIQUES FOR LOCATION BASED
SOCIAL NETWORKS USING RANDOM WALK

Bağcı, Hakan

Ph.D., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Pınar Karagöz

December 2015, 104 pages

The location-based social networks (LBSN) enable users to check-in their current lo-
cation and share it with other users. The accumulated check-in data can be employed
for the benefit of users by providing personalized recommendations. In this thesis, we
propose three recommendation algorithms for location-based social networks. These
are random walk based context-aware location (CLoRW), activity (RWCAR) and
friend (RWCFR) recommendation algorithms. All the algorithms consider the cur-
rent context (i.e. current social relations, personal preferences and current location)
of the user to provide personalized recommendations. We propose an undirected un-
weighted graph model for representing LBSN data that contains users, locations and
activities. We build a graph according to the current context of the user for each al-
gorithm depending on this LBSN model. A random walk with restart approach is
employed on this graph to predict the recommendation scores. Lists of users, lo-
cations and activities are recommended to users after ordering the nodes according
to estimated scores. We compare CLoRW with popularity-based, friend-based and
expert-based baselines, collaborative filtering approach and a similar work in the lit-
erature. According to results, our location recommendation algorithm outperforms
these approaches in all of the test cases. Moreover, we also compare RWCAR and
RWCFR algorithms with respective popularity-based, friend-based and expert-based
baselines. In all of the experiments, RWCAR and RWCFR perform better than the
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baselines. The results clearly indicate that random walk based context-aware recom-
mendation approach is a good candidate for recommending locations, activities and
friends for LBSNs.

Keywords: Location-Based Social Networks, Random Walk, Location Recommen-
dation, Activity Recommendation, Friend Recommendation
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ÖZ

KONUM TABANLI SOSYAL AĞLAR İÇİN RASTGELE YÜRÜYÜŞ YÖNTEMİ
KULLANARAK ÖNERME TEKNİKLERİ GELİŞTİRME

Bağcı, Hakan

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pınar Karagöz

Aralık 2015 , 104 sayfa

Konum tabanlı sosyal ağlar kullanıcıların şu anda bulunduğu konumu kaydetmesine
ve diğer kullanıcılarla paylaşmasına olanak sağlar. Birikmiş olan konum kayıt bilgi-
leri kullanıcıların yararına kullanılarak kişiselleştirilmiş öneriler yapılabilir. Bu tezde
konum tabanlı sosyal ağlar için üç farklı önerme algoritması sunuyoruz. Bu algorit-
malar rastgele yürüyüş yaklaşımı tabanlı bağlam farkında konum (CLoRW), aktivite
(RWCAR) ve arkadaş (RWCFR) önerme algoritmalarıdır. Bütün bu algoritmalar ki-
şiselleştirilmiş öneriler yapabilmek için kullanıcının mevcut şartlarını (mevcut sosyal
bağlantıları, kişisel tercihleri ve mevcut konumu) dikkate almaktadır. Kullanıcı, ko-
num ve aktiviteleri içeren konum tabanlı sosyal ağ verilerini ifade edebilmek için
yönsüz ağırlıksız bir çizge modeli öneriyoruz. Bu konum tabanlı sosyal ağ mode-
line dayanarak kullanıcının şu anki bağlamına göre her bir algoritma için bir çizge
oluşturuyoruz. Öneri skorlarını tahmin etmek için bu çizge üzerinde tekrar başlamalı
rastgele yürüyüş yaklaşımı kullanılmaktadır. Öneri skorları sıralandıktan sonra kul-
lanıcı, konum ve aktivite listeleri kullanıcılara önerilir. CLoRW algoritmasını popü-
lerlik tabanlı, arkadaşlık tabanlı ve uzmanlık tabanlı, işbirlikçi filtreleme yaklaşımı
ve literatürdeki benzer bir algoritma ile kıyasladık. Sonuçlara göre, konum önerme
algoritmamız tüm test senaryolarında bu yaklaşımlardan daha iyi performans göster-
miştir. Ayrıca RWCAR ve RWCFR algoritmalarını da popülerlik tabanlı, arkadaşlık
tabanlı ve uzmanlık tabanlı referans yaklaşımlarla kıyasladık. Tüm testlerde RWCAR
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ve RWCFR referans yaklaşımlardan daha iyi performans göstermiştir. Bu sonuçlar
açıkça göstermektedir ki rastgele yürüyüş tabanlı bağlam farkında önerme yaklaşımı,
konum tabanlı sosyal ağlarda konum, aktivite ve arkadaş önermek için iyi bir adaydır.

Anahtar Kelimeler: Konum Tabanlı Sosyal Ağlar, Rastgele Yürüyüş, Konum Önerme,
Aktivite Önerme, Arkadaş Önerme
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graduate studies.

I thank to my wife and my son for their patience throughout my thesis studies.

Finally, I would like to thank my parents and my brother for their love, and endless
support and guidance during my educational life.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . 7

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Location Recommendation Methods . . . . . . . . . . . . . 9

2.1.1 Collaborative Filtering Based Location Recommen-
dation Methods . . . . . . . . . . . . . . . . . . . 9

xi



2.1.2 Model-Based Location Recommendation Methods 17

2.1.3 Ontology-Based Location Recommendation Meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.4 Other Location Recommendation Methods . . . . 23

2.1.5 Overview of Location Recommendation Methods . 25

2.2 Activity Recommendation Methods . . . . . . . . . . . . . . 27

2.3 Friend Recommendation Methods . . . . . . . . . . . . . . . 29

3 PROPOSED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 LBSN Data Model . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Context-Aware Location Recommendation with Ran-
dom Walk . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1.1 Location Recommendation Problem . 37

3.3.1.2 Subgraph Construction . . . . . . . . 37

3.3.1.3 Recommendation using RWR . . . . . 40

3.3.1.4 Context-Aware Location Recommen-
dation with Random Walk using Ac-
tivities . . . . . . . . . . . . . . . . . 42

3.3.1.5 Context-Aware Location Recommen-
dation with Weighted Random Walk . 43

3.3.2 Context-Aware Activity Recommendation with Ran-
dom Walk . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2.1 Activity Recommendation Problem . . 45

xii



3.3.2.2 Subgraph Construction . . . . . . . . 45

3.3.2.3 Recommendation using RWR . . . . . 49

3.3.3 Context-Aware Friend Recommendation with Ran-
dom Walk . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3.1 Friend Recommendation Problem . . . 50

3.3.3.2 Subgraph Construction . . . . . . . . 51

3.3.3.3 Recommendation using RWR . . . . . 52

3.3.4 Complexity Analysis of Algorithms . . . . . . . . 55

4 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 LBSN Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Evaluation Methodology and Metrics . . . . . . . . . . . . . 58

4.3 Location Recommendation Experiments . . . . . . . . . . . 60

4.3.1 CLoRW Parameter Settings Experiments . . . . . 60

4.3.1.1 Number of Recommendations . . . . . 61

4.3.1.2 Dataset Partition Ratio . . . . . . . . . 62

4.3.1.3 Minimum Number of Check-ins . . . 63

4.3.2 Comparison with Baselines and Similar Approaches 64

4.3.3 Comparison between CLoRW and CLoRW_A . . . 73

4.3.4 Location-Location Edges Experiments . . . . . . . 77

4.3.5 Weighted Location Recommendation Experiments 78

4.4 Activity Recommendation Experiments . . . . . . . . . . . . 80

4.4.1 Comparison with Baselines . . . . . . . . . . . . . 81

xiii



4.5 Friend Recommendation Experiments . . . . . . . . . . . . 84

4.5.1 Comparison with Baselines . . . . . . . . . . . . . 85

5 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . 93

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiv



LIST OF TABLES

TABLES

Table 2.1 Overview of Location Recommendation Methods . . . . . . . . . . 25

Table 2.1 (Continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 3.1 Location Recommendation Configuration for a Given User . . . . . 41

Table 3.2 Location Recommendation Results . . . . . . . . . . . . . . . . . . 42

Table 3.3 Activity Recommendation Results . . . . . . . . . . . . . . . . . . 49

Table 3.4 Friend Recommendation Results . . . . . . . . . . . . . . . . . . . 55

Table 4.1 Dataset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.2 Common Configuration of Parameter Setting Experiments . . . . . . 61

Table 4.3 Activity Experiments Configuration . . . . . . . . . . . . . . . . . 81

Table 4.4 Friend Experiments Configuration . . . . . . . . . . . . . . . . . . 84

xv



LIST OF FIGURES

FIGURES

Figure 3.1 LBSN Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.2 Sample Graph for Location Recommendation . . . . . . . . . . . . 42

Figure 3.3 Sample Graph for Activity Recommendation . . . . . . . . . . . . 50

Figure 3.4 Sample Graph for Friend Recommendation . . . . . . . . . . . . . 52

Figure 4.1 Precision, Recall and F-Measure Values vs. Number of Recom-
mendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.2 Precision, Recall and F-Measure Values vs. Dataset Partition Ratio 63

Figure 4.3 Precision, Recall and F-Measure Values vs. Min. Number of
Check-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.4 Precision Values of Baselines, CF, USG, and CLoRW vs. Number
of Recommendations for Brightkite Dataset . . . . . . . . . . . . . . . . . 65

Figure 4.5 Recall Values of Baselines, CF, USG, and CLoRW vs. Number of
Recommendations for Brightkite Dataset . . . . . . . . . . . . . . . . . . 66

Figure 4.6 F-Measure Values of Baselines, CF, USG, and CLoRW vs. Num-
ber of Recommendations for Brightkite Dataset . . . . . . . . . . . . . . 66

Figure 4.7 Precision Values of Baselines, CF, USG, and CLoRW vs. Number
of Recommendations for Gowalla Dataset . . . . . . . . . . . . . . . . . 67

Figure 4.8 Recall Values of Baselines, CF, USG, and CLoRW vs. Number of
Recommendations for Gowalla Dataset . . . . . . . . . . . . . . . . . . . 67

Figure 4.9 F-Measure Values of Baselines, CF, USG, and CLoRW vs. Num-
ber of Recommendations for Gowalla Dataset . . . . . . . . . . . . . . . 68

Figure 4.10 Precision Values of Baselines, CF, USG, and CLoRW vs. Number
of Recommendations for Foursquare Dataset . . . . . . . . . . . . . . . . 68

xvi



Figure 4.11 Recall Values of Baselines, CF, USG, and CLoRW vs. Number of
Recommendations for Foursquare Dataset . . . . . . . . . . . . . . . . . 69

Figure 4.12 F-Measure Values of Baselines, CF, USG, and CLoRW vs. Num-
ber of Recommendations for Foursquare Dataset . . . . . . . . . . . . . . 69

Figure 4.13 Precision Values of Expert Baseline and CLoRW . . . . . . . . . . 72

Figure 4.14 Recall Values of Expert Baseline and CLoRW . . . . . . . . . . . 72

Figure 4.15 F-Measure Values of Expert Baseline and CLoRW . . . . . . . . . 73

Figure 4.16 Precision Values of CLoRW and CLoRW_A for Foursquare Dataset 74

Figure 4.17 Recall Values of CLoRW and CLoRW_A for Foursquare Dataset . 74

Figure 4.18 F-Measure Values of CLoRW and CLoRW_A for Foursquare Dataset 75

Figure 4.19 Precision Values of CLoRW and CLoRW_A_F for Foursquare
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.20 Recall Values of CLoRW and CLoRW_A_F for Foursquare Dataset 76

Figure 4.21 F-Measure Values of CLoRW and CLoRW_A_F for Foursquare
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.22 Precision, Recall and F-Measure Values versus Neighborhood Radius 78

Figure 4.23 Precision, Recall and F-Measure Values of CLoRW and CLoWRW 79

Figure 4.24 Precision, Recall and F-Measure Values of CLoRW and CLoWRW-
VisitCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.25 Precision, Recall and F-Measure Values of CLoRW and CLoWRW-
Temporal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.26 Precision Values of Baselines and RWCAR vs. Number of Rec-
ommendations for Foursquare Dataset . . . . . . . . . . . . . . . . . . . 82

Figure 4.27 Recall Values of Baselines and RWCAR vs. Number of Recom-
mendations for Foursquare Dataset . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.28 F-Measure Values of Baselines and RWCAR vs. Number of Rec-
ommendations for Foursquare Dataset . . . . . . . . . . . . . . . . . . . 83

Figure 4.29 Precision Values of Baselines, and RWCFR vs. Number of Rec-
ommendations for Brightkite Dataset . . . . . . . . . . . . . . . . . . . . 85

xvii



Figure 4.30 Recall Values of Baselines, and RWCFR vs. Number of Recom-
mendations for Brightkite Dataset . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.31 F-Measure Values of Baselines, and RWCFR vs. Number of Rec-
ommendations for Brightkite Dataset . . . . . . . . . . . . . . . . . . . . 86

Figure 4.32 Precision Values of Baselines, and RWCFR vs. Number of Rec-
ommendations for Gowalla Dataset . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.33 Recall Values of Baselines, and RWCFR vs. Number of Recom-
mendations for Gowalla Dataset . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.34 F-Measure Values of Baselines, and RWCFR vs. Number of Rec-
ommendations for Gowalla Dataset . . . . . . . . . . . . . . . . . . . . . 88

Figure 4.35 Precision Values of Baselines, and RWCFR vs. Number of Rec-
ommendations for Foursquare Dataset . . . . . . . . . . . . . . . . . . . 88

Figure 4.36 Recall Values of Baselines, and RWCFR vs. Number of Recom-
mendations for Foursquare Dataset . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.37 F-Measure Values of Baselines, and RWCFR vs. Number of Rec-
ommendations for Foursquare Dataset . . . . . . . . . . . . . . . . . . . 89

xviii



LIST OF ABBREVIATIONS

ACF Activity-based CF

ALAPR Also-Like based Activity Recommendation

APR Average Percentile Ranking

AUC Area Under the ROC Curve

BN Bayesian Networks

CADC Community-based Agglomerative-Divisive Clustering

CFAPR Collaborative Filtering based Activity-Partner Recommenda-
tion

CGAR Collaborative Group Activity Recommender

CLAF Collaborative Location and Activity Filtering

CLM Community Location Model

CLR Collaborative Location Recommendation

CLoRW Context-aware Location Recommendation with Random Walk

CLoRW_A Context-Aware Location Recommendation with Random Walk
using Activities

CLoRW_A_F Context-Aware Location Recommendation with Random Walk
using Activities (Filtered Version)

CLoWRW Context-Aware Location Recommendation with Weighted Ran-
dom Walk

CF Collaborative Filtering

DBSCAN Density-based Spatial Clustering of Applications with Noise

EBAR Expert-Based Activity Recommendation

EBFR Expert-Based Friend Recommendation

EWI Equal Width Intervals

EM Expectation Maximization

FBAR Friend-Based Activity Recommendation

FBFR Friend-Based Friend Recommendation

GEFR Geo-Friends Recommendation

GPS Global Positioning System

xix



HGSM Hierarchical Graph Based Similarity Measurement

HITS Hypertext Induced Topic Search

HMM Hidden Markov Model

HOSVD Higher-Order Singular Value Decomposition

ITR Incremental Tensor Reduction
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CHAPTER 1

INTRODUCTION

1.1 Overview

The advances in mobile communication and pervasiveness of location-acquisition

technologies encouraged mobile users to employ their location data with existing so-

cial networks in several ways [58]. For example users can share their current location

with other users using Foursquare, and share their travel experiences with their friends

in GeoLife [60] [59]. The location information helps connecting physical world with

social networks. A Location-Based Social Network (LBSN) enables users to add their

location information to the social network, hence they can share location-embedded

information with other users [57].

The datasets that are resulted from the users’ check-in activities through LBSNs can

be used for building recommender systems. These datasets contain information about

users, locations, activities and relationships between them. The recommender sys-

tems may suggest friends, locations and activities to users according to their context.

For example, a particular user may want a personalized list of the restaurants in the

vicinity. By employing some available data such as user’s current location and previ-

ous check-in behaviors, his/her friends’ check-in data etc., a list of restaurants can be

recommended to that user.

In this thesis, we develop algorithms and techniques to build a recommendation sys-

tem for location-based social networks using a random walk approach. This recom-

mendation system is able to suggest locations, activities and friends to users based

on the check-in data. In order to achieve this, firstly LBSN elements (users, loca-
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tions and activities) and their relationships are represented by using an undirected

unweighted graph model. After building an instance of this graph model, a random

walk is performed on that graph to calculate the recommendation probabilities of the

nodes. Lists of locations, activities and users are recommended to users after ordering

the nodes according to estimated probabilities.

1.2 Motivation

Given a LBSN check-in history as a set of tuples where each tuple includes user,

check-in time, and check-in location information, and users’ social network connec-

tions, location recommendation problem for LBSN aims to recommend a set of loca-

tion for a target user. The input data can be further enriched by additional information

such as the type of the activity performed or demographic information of users. Lo-

cation recommendation problem for LBSNs is an interesting research problem since

LBSNs capture both social connections between users and physical interactions be-

tween users and locations [50]. Most of the research studies related to this problem

are not able to employ these connections and interactions together. Zheng et al. have

used only GPS trajectories of users to recommend locations [55] [54]. They did not

consider social connections between users. There are other approaches that employ

multiple criteria for location recommendation. For example, Ye et al. introduces

an algorithm that considers user preference, social and geographical influence [50].

However, it is not a context-aware algorithm since it does not consider the current

location or current social context of users. Moreover, it does not employ other users

such as local experts for location recommendation.

In [30], the authors also used a random walk approach to recommend locations. How-

ever, their proposed technique only recommend new locations, which are the locations

that are not visited in the last month. Moreover, it does not provide recommenda-

tions for current context of the user. It suggests general recommendations such as

the restaurants in a city for each user. On the other hand, our proposed approach

recommends friends, locations and activities considering the current context of the

user. Our recommendation technique will traverse a subgraph of the LBSN for per-

sonalized recommendation. However, in [30], they traverse the entire LBSN graph to

2



provide recommendations to each user.

In [27], the authors introduce a Community Location Model (CLM) graph that con-

tains users, locations and activities. Their approach Collaborative Location Recom-

mendation (CLR) employs collaborative filtering techniques and clustering methods

to recommend locations to the users. Our proposed approach also use an underlying

LBSN graph similar to CLM graph. However, CLM graph does not define the friend-

ship relationships between users. Our recommendation method is based on a random

walk approach, and does not employ collaborative filtering techniques and clustering

methods like CLR.

In this thesis, we introduce a random walk based context-aware location recommen-

dation algorithm, CLoRW (Context-aware Location Recommendation with Random

Walk), for LBSNs. CLoRW is able to suggest locations to users based on previous

check-in data. Our proposed location recommendation algorithm considers current

location, social and personal contexts to suggest locations. Friendship relations of a

user defines social context. Similarly, user’s previous check-ins present personal con-

text. In addition to this, local experts and popular locations are employed in location

recommendation.

There are several location recommendation algorithms in the literature. On the other

hand, there are only few number of friend and activity recommendation algorithms.

Activity recommendation problem is an interesting research problem, because LB-

SNs acquire social relations between users, and physical interactions between users,

locations and activities [50]. Most of the proposed activity recommendation methods

use raw GPS data and they do not consider social connections between users [55]

[40]. In [49], Ye et al. propose a method to predict the category of next activity, but

they cannot recommend a set of activities to user. The approaches proposed in [36]

and [46] are related to activity group/partner recommendation, and they are not able

to recommend activities for a single user. Moreover, to the best of our knowledge,

none of the proposed activity recommendation methods are context-aware and none

of them employ local activity experts.

In this thesis, we also introduce a context-aware activity recommendation algorithm,

RWCAR (Random Walk based Context-aware Activity Recommendation), for LB-
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SNs using a random walk approach. This algorithm considers social, personal and

spatial context of the user. Social context includes the friendship relations of a user.

Personal context is built according to user’s previous location and activity history.

Moreover, local activity experts and popular activities are employed in activity rec-

ommendation. Spatial context defines the geographical boundaries of the recommen-

dation.

LBSN data can also be utilized for friend recommendation. LBSNs provide a new

way of friend recommendation based on user location histories [5]. User location

histories provide valuable contextual information. Moreover, location histories and

social behaviors are notably correlated [13]. Friend recommendation is extensively

studied for traditional social networks. However, there are a few number of friend

recommendation algorithms that employ LBSN data in recommendation. In [59], the

authors propose a method that measures the similarity between users based on the

location histories. In [11], Chu et al. propose a friend recommendation method based

on the similar interests of users and location histories. Moreover, in [52], the authors

propose a random walk based statistical framework for geo-friends recommendation

(GEFR) . All these three methods employ raw GPS data to find the similarity between

users. When compared to raw GPS data, check-in data provides more contextual

information. Moreover, most of the LBSNs collect check-in data rather than GPS

trajectories. The majority of the proposed friend recommendation algorithms are not

context-aware algorithms, hence they do not consider the current location of the user.

A contextual friend recommendation algorithm can be more useful for finding new

friends at visited locations.

In order to suggest new friends to users, we propose a friend recommendation algo-

rithm, RWCFR (Random Walk based Context-aware Friend Recommendation). Our

friend recommendation algorithm also considers social, personal and spatial context.

It employes second degree friends (friends of friends). User’s visited locations in

recommendation region are also considered to identify place friends. Place friends

are potential friends that have check-ins at the locations where the current user vis-

ited before. In addition to this, local experts and popular locations are employed in

populating the context of the user.
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We employ a random walk based approach in all of our algorithms. Collaborative

filtering (CF) approaches depend on like-mindedness and similarity of locations. Ap-

proaches that employ social filtering make use of friend’s data. Spatial filtering only

considers physical distance [30]. In order to achieve a higher recommendation ac-

curacy, it is better to employ each of these features together. We define an LBSN

graph that models the relationships between users, locations, activities, experts, pop-

ular locations and popular activities. Then we employ random walk with restart on

this graph to automatically combine personal, social and spatial features. In order to

achieve this, firstly LBSN elements (users, locations and activities) and their relation-

ships are represented using a graph model. In this study, we employ an undirected

unweighted graph model to represent a particular LBSN. After building the graph,

random walk is performed on it to calculate the recommendation probabilities of the

nodes. A list of locations, activities or users are recommended to users after ordering

the nodes according to estimated probabilities.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

• We propose a model that represents the relationships between LBSN items (i.e.

users, locations and activities).

• Three novel recommendation algorithms are proposed based on this LBSN

model.

• User preference, social connections and current location are employed together

for location, activity and friend recommendation.

• Location experts and popular locations are extracted locally and used in loca-

tion and friend recommendation.

• Activity experts and popular activities are extracted locally and used in activity

recommendation.

• We employ an undirected unweighted graph based on the LBSN model to rep-

resent the current context of users. This graph is constructed dynamically ac-
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cording to current user’s personal, social and spatial context. A random walk is

performed on this graph to recommend locations, activities and friends.

• When a new user, location or an activity is inserted into the database, we do not

need to update any model or structure, such as tensor. Since our location, ac-

tivity and friend recommendation algorithms operate locally, we only construct

the subgraph for users according to their current context dynamically by em-

ploying graph database queries. On the other hand, CF-based and model based

recommendation methods need to update the model or tensor periodically.

• We compare the performance of CLoRW with popularity-based, friend-based,

expert-based baselines and CF-based approach using Brightkite, Gowalla and

Foursquare datasets. Moreover, we compare our algorithm with a well-known

location recommendation algorithm, USG [50]. The results of the experiments

show that our algorithm outperforms all the baselines, CF-based approach and

USG in all of the test cases. This indicates that consideration of location, social

and personal context together increases the location recommendation accuracy.

• We compare the performance of RWCAR with popularity-based, friend-based,

expert-based baselines using the Foursquare dataset. In all of the experiments

RWCAR outperforms all the baselines.

• We compare the performance of RWCFR with popularity-based, friend-based,

expert-based baselines using Brightkite, Gowalla and Foursquare datasets. In

all of the tests RWCFR performs better than the baselines.

Location recommendation approach1 described in this thesis has been published in

[1]. The paper content is split and reused in corresponding sections of the thesis.

Activity recommendation approach2 described in this thesis has been published in [2].

The paper content is split and reused in corresponding sections of the thesis.

1 c© 2015 Springer London. Reprinted by permission with license number 3753661370200. Hakan Bagci,
Pinar Karagoz, Context-aware location recommendation by using a random walk-based approach, Knowledge
and Information Systems, First Online: 15 July 2015, Online ISSN 0219-3116. http://dx.doi.org/10.1007/s10115-
015-0857-0.

2 c© 2015 IEEE. Reprinted, with permission, from Hakan Bagci, Pinar Karagoz, Random walk based context-
aware activity recommendation for location based social networks, in Data Science and Advanced Analytics
(DSAA), 2015 IEEE International Conference on, Oct 2015. http://dx.doi.org/10.1109/DSAA.2015.7344852.
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1.4 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, an overview of

recommendation systems for LBSNs is given. In Chapter 3, we describe our proposed

work in detail. The evaluation methodology and experiment results are presented in

Chapter 4. Finally, in Chapter 5 we conclude the thesis with comments.
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CHAPTER 2

RELATED WORK

In this chapter we give a brief overview of the recent work addressing location, activ-

ity and friend recommendation in location-based social networks.

2.1 Location Recommendation Methods

Most of the location recommendation systems usually use Collaborative Filtering

(CF) based methods. On the other hand, decision trees, ontologies, Bayesian net-

works and random walk methods are also employed in location recommendation.

First, we present the CF-based location recommendation methods, then we continue

with presenting the other related studies.

2.1.1 Collaborative Filtering Based Location Recommendation Methods

Leung et al. [27] proposed a Collaborative Location Recommendation (CLR) frame-

work based on co-clustering. In this study, the Community Location Model (CLM)

is introduced to organize user, location and activity data into a meaningful data struc-

ture. An instance of this model is a User-Acitivity-Location tri-partite graph, called

CLM graph. This graph consists of three disjoint node sets respresenting the users,

locations and activities. An instance of a CLM graph can be clustered with a co-

clustring algorithm. The clustering algorithm outputs clusters of similar users, sim-

ilar activities and similar locations. The authors claim that CLM exploits all of the

spatial properties, temporal-spatial properties, and long-term spatial properties in the
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co-clustering process.

The traditional co-clustering algorithms require the CLM graph to be clustered re-

peatedly when new data are inserted. Therefore, a Community-based Agglomerative-

Divisive Clustering (CADC) algorithm is adopted to iteratively cluster different types

of entities concurrently based on CLM. When new users, activities and locations ar-

rive, they are added to current CLM graph with their links. The new graph is given as

an input to the CADC algorithm. This algorithm groups the nodes into correct clus-

ters by the agglomerative phase. When a particular cluster becomes too large because

of the new members, the cluster is partitioned into smaller ones in the divisive phase.

After clustering process, they get the refined clusters of similar locations that are

visited by similar users and have similar activities. The clusters are further refined

according to user types which are pattern users, normal users and travelers. The users

are classified into these categories according to their location entropy values. If a user

visits more different places than it has a higher location entropy value. Therefore, the

location entropy values get higher values as we move from pattern users to travelers.

After refining the clusters by employing user types, the top k locations are recom-

mended to a particular user according to the highest LF (Location Frequency) X IUF

(Inverse User Frequency) scores in the refined subclusters.

The proposed algorithm is compared against a few state of the art methods. These

methods are Distance, SimUser, Memory-Based Collaborative Filtering (MemCF),

Model-Based Collaborative Filtering (ModelCF) and HITS (Hypertext Induced Topic

Search). MemCF method is based on the approach proposed in [47] and the HITS

method is based on the method presented in [61]. Experimental results show that the

proposed CADC approach can provide more accurate and refined recommendations

according to the existing clustering and collaborative filtering methods. We pay more

attention to this study since we plan to build a user-location-activity graph based on

the user check-in behaviors in a location-based social network.

Zheng et al. proposed a collaborative activity and location recommendation system in

[56]. They introduce three collaborative filtering algorithms to address the data spar-

sity problem in activity and location recommendation. These algorithms are CLAF

(Collaborative Location and Activity Filtering) [55], PCLAF (Personalized Collabo-
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rative Location and Activity Filtering) [54] and RPCLAF (Ranking-based Personal-

ized Collaborative Location and Activity Filtering).

CLAF algorithm merges all the users’ data together and obtains a location-activity

matrix. It uses a collective matrix factorization model to provide general recommen-

dations. This algorithm is focused on general recommendations. Therefore, the algo-

rithm outputs the same recommendations to different users. In order to overcome this

limitation, they propose a PCLAF algorithm that can provide personalized recommen-

dations to each user. In this algorithm, they directly model the user-activity-location

tensor under the factorization framework. The aim of this algorithm is to fill the miss-

ing entries in the tensor. In addition to location features and activity correlations that

are used in CLAF, they employ user-user similarities and user-location visiting pref-

erences. User-user similarity information is used for obtaining the like-minded users.

User-location visiting preferences are useful to model the user preferences on each

location.

CLAF and PCLAF algorithms aim to find some model that can minimize the pre-

diction errors with respect to the existing ground truth ratings. In order to rank the

recommendations, predictions on the missing values are used. The strategy used

in CLAF and PCLAF is an indirect way of solving a ranking problem. However,

RPCLAF uses ranking loss as the objective function to solve the recommendation

problem directly.

A real-world dataset is employed for evaluating CLAF, PCLAF and RPCLAF algo-

rithms. The dataset contains data from 119 users who carried GPS devices to record

their outdoor trajectories. RMSE (Root Mean Square Error) and AUC (Area under

the ROC curve) are used as evaluation metrics. RMSE measures the tensor/matrix

reconstruction loss on a hold-out test data while AUC measures the ranking results

based on the reconstructed tensor from training data. The algorithms are compared

with six competing baselines which are UCF (User-based CF), LCF (Location-based

CF), ACF (Activity-based CF), ULACF (Unifying User-Location-Activity CF), SCF

(Single CF) and POIC (POI Count based ranking). UCF, LCF and ACF memory-

based methods are adopted from [21] while SCF is defined in [43]. ULACF is also

a memory-based approach and adopted from [47]. The results show that their algo-
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rithms generally outperform these baselines. PCLAF has the lowest RMSE values

among all the algorithms. Since RPCLAF is a ranking-oriented algorithm its AUC

performance is the highest among the others. PCLAF and RPCLAF show better per-

formance than CLAF implying that personalization is an important factor in location

and activity recommendation.

In [6] the authors question if the available check-in data of an LBSN has a structure

that allows building a recommendation system for the benefit of the users. The check-

in dataset is accumulated by crawling Gowalla on a daily basis using its web-based

API. As a result of data collection process, 212,000 profiles and their last 20 check-in

events are recorded. The dataset includes 1.5 million locations with their coordinates

and all related check-in events.

First, in order to define preference definitions, they devise an interpretation of the

data. In order to generate a model, they present the data as user-location matrix. The

entry of a matrix represents the interest of user i at location j. The proposed CF

algorithm aims to predict the preference of users for selected locations which they

have not visited yet. A list of the top N recommended locations for a particular user

can be generated by using the prediction values in the matrix.

In order to estimate the user’s interest at a particular location, they mainly focus on

two potential preference definitions. The first one is the binary preference definition.

This definition suggests that if a user’s average visits for a location is more often than

other users, then the interest value is equal to 1, otherwise 0. The other preference

definition employs equal width intervals (EWI) to achieve a discrete rating scale with

N values. Therefore, they divide the open scale of check-ins for each user to N inter-

vals of equal width. The interest of a user at a particular location hence is the index

of the interval which includes the selected number of check-ins.

In recommendation phase, they employ the Regularized Matrix Factorization (RMF)

technique for CF. This technique is based on latent factor models. They mapped the

users and locations to a joint latent factor space of dimensionality d. For a given

user ui and a location lk, the inner product of the corresponding vectors results the

preference of the user for that location.
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One of the advantages of the approach proposed in [6] is that it does not need to

load the entire data in memory at the same time as opposed to memory-based CF

techniques. Moreover, RMF recommender has a fast recommendation time. After

model learning phase it takes only O(1) to make prediction. On the other hand, it is

difficult to configure the parameters of the RMF.

In order to evaluate the proposed recommender, they compare it to an Item Average

Recommender. This non-personalized recommender is commonly used as a baseline.

The prediction rating for a particular user ui at location lk is simply estimated as the

average rating of the location over all users. In evaluation phase, they select two

specific sub-datasets, namely Austin and New York City, that cover large amounts of

users with higher check-in activity. They divide each dataset into a training and a test

set. RMF recommender tries to predict ratings for user-location pairs which were not

selected for training set. The test set is employed for evaluating the predictive accu-

racy of the recommender. In order to measure this accuracy, Mean Absolute Error

(MAE) and the Root Mean Squared Error (RMSE) metrics are utilized. In the ex-

periments, the RMF recommender performs better than Item Average Recommender

for both datasets. Hence, the authors claim that it is possible to make personalized

recommendations for locations using CF techniques with the proposed preference

definitions.

Papadimitriou et al. developed a prototype online recommender system, namely

GeoSocial [33]. It aims to provide friend, location and activity recommendations

relying on user check-ins. In this study, friend recommendation is based on the

FriendLink algorithm presented in [32]. This algorithm constructs a friends similarity

matrix where the weigths are the geographical distances between user check-ins. The

GeoSocial recommendation engine also constructs a dynamically analyzed 3-order

tensor. This tensor is firstly built by the HOSVD (Higher-Order Singular Value De-

composition) algorithm. This tensor is updated incrementally using the methods in

[7] [39].

An element of tensor Â represents a quadruplet {u, l, a, p} where p is the predicted

probability of the user u will visit location l and perform activity a. {u, l} pair gives

the activities at a particular location while {u, a} pair returns the locations in which
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the particular activity can be performed.

When new users, activities or locations are inserted to the database, the Â tensor needs

to be updated. However, the reconstruction of this tensor is a costly operation. There-

fore, they employ incremental update solutions. Depending on the size of the update,

the selected method varies. The f olding − in technique proposed in [39] is suitable

for small-scaled updates, while Incremental SVD techniques [7] are appropriate for

larger updates.

In experimentations, they use their own dataset that contains 102 users, 46 locations

and 18 activities. The number of total check-ins is 1173. In order to evaluate the

accuracy of the proposed approach, the precision and recall metrics are employed.

Precision is the ratio of the number of relevant friends, locations or activities in the

top-N list relative to N. Recall metric is similar but it is relative to the total number

of relevant friends, locations and activities. The results of the experiments indicate

that the activity recommendations are more accurate than location recommendations.

The friend recommendation accuracy of the FriendLink algorithm is not so high.

According to the authors, the reason of this result is data sparsity. We take this study

into consideration since it tries to suggest users, locations and activities together. Our

approach is also be able to recommend users, locations and activities to users.

In [4] the authors present a location-based and preference-aware recommender sys-

tem. This system recommends a particular user a set of locations (e.g. restaurants)

within a geospatial range considering both user preferences and social opinions.

A user’s preferences are learned based on his/her location history which consists of

his/her previous check-ins. These preferences are modeled as a weighted category

hierarchy (WCH). WCH is employed for estimating the similarity between two users.

This similarity measure is used for recommendations based on the fact that similar

users tend to visit similar locations. This method handles the data spareness prob-

lem for location recommendations by extracting similar users. Social opinions are

extracted from the location histories of the local experts. The local expert for each

location category is determined in advance by applying an iterative model for social

knowledge learning that is based on HITS (Hypertext Induced Topic Search) infer-

ence model [9], [25]. This model is based on the fact that people who have visited
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many high quality locations in a particular region are more likely to have high knowl-

edge about that region. Moreover, if a particular location is visited by many people

that have high knowledge, that location is more likely to be a quality location.

WCH is represented as a tree in which each node is labeled with a value indicating

the number of visits of the user to a particular category. This tree is regarded as

a document and its nodes are considered as terms of that document for estimating

the TF-IDF (Term Frequency–Inverse Document Frequency) values of each node.

The intution behind using TF-IDF values is that a user tends to visit more locations

belonging to a category that user likes. Moreover, this method reveals the categories

of the locations that is often visited by a particular user but rarely visited by other

users.

The online recommendation phase of this approach consists of two parts which are

preference-aware candidate selection and location rating calculation. In the first part,

a set of candidate local experts and locations are selected. The candidate selection

algorithm starts from the bottom level of the WCH and moves up to the upper level

if the number of candidate locations is not sufficient. In every level, the locations that

are visited by local experts are added to the candidate locations set. The algorithm

stops when sufficient number of locations are obtained or all the candidate users are

evaluated.

In the second part of the recommendation, the similarity score between a particular

user and each local expert are calculated depending on their WCHs. The similarity

between two WCHs are calculated using the weighted sum of the similarities be-

tween each corresponding levels in each hierarchy. The deeper levels of the WCH

have greater weights. After calculating the similarity scores, the local experts and

candidate locations are placed in a user-location matrix. Then this matrix is used as

an input to a user-based CF model that infers users’ ratings to candidate locations.

The recommender system returns the top-N locations that have the highest scores

among candidate locations.

In order to evaluate their proposed approach, the authors used two datasets obtained

from Foursquare for New York City (NYC) and Los Angeles (LA). The datasets con-

sist of 221,128 tips generated by 49,062 users in NYC and 104,478 tips generated by
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31,544 users in LA. Since Foursquare does not allow to obtain check-in information

of users, they employ the tips generated by the users. Each tip contains a location ID,

comments and a timestamp.

They compare their approach with three baseline approaches which are Most Pre-

ferred Category based (MPC) recommendation, Location based CF (LCF) and Pref-

erence based CF (PCF). MCF recommends the top-N locations based on an iterative

model similar to [61]. This method does not consider the local experts’ opinions.

LCF directly applies the traditional user-based CF method to offer locations using

a user-location matrix. PCF gathers all the user and locations in a region and con-

structs a user-location matrix online. It also applies a user-based CF model to infer

the locations that will be recommended.

The authors evaluated both the effectiveness of the recommendation results and the ef-

ficiency for generating online recommendations. In order to evaluate the effectiveness

of recommendations results, they calculate the precision and recall values depending

on the ground truths and recommendations. According to the evaluation results the

proposed approach outperforms the baseline methods. LCF has the lowest perfor-

mance among other methods, indicating the advantage of using location categories to

model user’s location history. MPC has a higher performance than LCF while having

a lower performance than PCF. The reason for that could be the lack of consideration

of social opinions. PCF outperforms LCF and MPC but the proposed approach has a

higher performance because WCH is more capable of modeling user preferences.

In order to evaluate the efficiency for generating online recommendations, they test

200 users in LA and NYC by randomly choosing a location in the city for each user.

The fastest method is LCF because it only performs an online selection. Since MPC

does not consider the location history of other users, it is faster than the proposed

approach. On the other hand, the proposed approach is significantly faster than PCF.

In [50], authors propose a multi-criteria location recommendation algorithm, namely

USG. They explore user preference, social influence and geographical influence for

location recommendations. User preference and social influence are derived based

on user-based collaborative filtering and friend-based collaborative filtering, respec-

tively. In this study, authors put a special emphasis on geographical influence. USG
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uses a linear model to fuse user preference to a location with social influence and ge-

ographical influence. USG is not a context-aware algorithm since it does not consider

the current location or current social context of users. Moreover, it does not employ

other users (non-friend users) such as local experts for location recommendation.

2.1.2 Model-Based Location Recommendation Methods

In [26], Lee et al. proposed a restaurant recommendation method that employs con-

text information and decision treel model. The context information consists of three

types of data which are location, personal and environment context. Location con-

text represents the location of the current user in GPS coordinates. Personal context

has attributes such as age, gender, marital status, occupation and salary. Environment

context information consists of season, weather, temperature, time and user feeling

(mood) data.

In this study, three different decision trees are constructed for location, personal and

environment context using C4.5 algorithm. Firstly, the recommender system gener-

ates three different top-N restaurant recommendation lists for each context. The user

preferences are employed for assigning proper weights to each recommendation list.

After this weight refinement, the optimal top-N recommendation list is obtained.

The performance of the recommender is evaluated using k-fold cross-validation and

Mean Absolute Error (MAE). In order to measure the accuracy of the recommender,

three other recommender system models are considered which are LS, LPS and LES.

LS considers location context while LPS considers both personal and location con-

texts. On the other hand, LES employs location and environment contexts. The last

system is the proposed recommendation system, abbreviated as LPES, and it consid-

ers location, personal and environment contexts together.

In the evaluation phase, the k is set to 10 and the experiments are repeated 10 times.

The results of the experiments show that LPES outperforms the remaining recom-

mendation systems. The authors claim that it is a small, but statistically significant

improvement in accuracy. They conclude that personal context and environmental

context help recommendation system to make more accurate decisions. Moreover,
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consideration of user preference leads to different recommendation results for dis-

tinct users.

Park et al. proposed a map-based personalized location recommendation system that

models user’s preference by Bayesian Networks (BN) [34]. If BNs are built by an

expert, they are not sensitive to changes in the environment. The proposed BN in this

study is also built by an expert. However, they employ a parameter learning technique,

Expectation Maximization (EM) algorithm, to overcome this problem. Using the

collected data, conditional probability tables of the nodes are learned.

They apply their approach on food domain and recommend restaurants to mobile

users. In order to model user preferences, they consider name, gender, age, birthday,

blood type, car ownership, monthly income, and user’s food preferences. In order

to suggest restaurants to users, they calculate the preference on restaurants by using

the inference results of constructed BN. A restaurant has three attributes, which are

class, price and mood. The Equation 2.1 is used for calculating the preference on a

restaurant. In order to recommend a list of restaurants, Xi jk values are ordered and the

top-N list is returned.

Xi jk = (ci · wclass) + (p j · wprice) + (mk · wmood) (2.1)

In order to evaluate their approach, they employ a dataset collected around Shinchon

area. The data are collected by 4 users during a week. The preprocessed dataset

consists of context information such as time, user request, user profile, location and

weather. Different sets of restaurants are recommended to the users for breakfast,

lunch and dinner. The results of the experiments are not compared to another work.

Moreover, the employed dataset is not sufficient to validate the stability of the pro-

posed approach. However, this study employs BNs to model the user’s preference,

which makes it different from other approaches.

In [51], the authors proposed an approach, namely Urban POI−Mine (UPOI-Mine),

that recommends locations to users according to user preferences and location proper-

ties simultaneously. Users’ preferences are exploited from their visited locations. The

authors noticed that location recommendation systems that are based on the users’
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check-in behaviors mostly consider only the social properties of users. Living-sphere

of a user consists of social links and check-ins. Therefore, CF-based recommendation

methods are restricted by the user’s living-sphere. The authors argue that social-links

and check-in behaviors itself is not sufficient for recommending locations. In order to

recommend locations outside the living-sphere, previously unvisited locations should

also be taken into consideration.

In this study the location recommendation problem is modeled using the formula 2.2.

U represents the set of user, and P represents the set of locations. The problem of

location recommendation is formulated as predicting the relevance score of a given

location for each user.

f (u, p)→ v,where u ∈ U, r ∈ P, and v ∈ [0, 1] (2.2)

In order to support location recommendation based on users’ preferences and social

factors, they train a regression-tree based predictor. It is important to select descrip-

tive features of user-location pairs. In this study the features are extracted in three

different aspects, which are Social Factor (SF), Individual Preference (IP) and POI

(Point of Interest) Popularity (PP). Features derived from social factor are CheckSim

and DisSim. CheckSim feature represents the similarity between users based on their

common check-ins. DisSim is employed for evaluating the similarity between users

according to their relative base-points. Features from individual preference are Pref

and HPref. CPref measures the user’s personal preference of a location category

such as coffee, pizza. The locations are annotated with highlight tags such as coffee,

ice-cream, cheese. HPref represents the user’s preference on a highlight tag. Social

factor and individual preference features do not work well for new users. In order to

solve this cold start problem, POI popularity feature is employed.

After extracting the features, these features are used as inputs for the location rec-

ommendation phase. Since M5Prime has shown excellent performance in similar

prediction tasks [15], they choose M5Prime as the relevance score predictor.

In order to evaluate the performance of UPOI-Mine, they conduct a series of exper-

iments. Gowalla dataset is employed in these experiments. The Normalized Dis-
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counted Cumulative Gain (NDCG) [29] is used to measure the accuracy of the rec-

ommended locations. A higher NDCG means that the highly relevant locations have

appeared earlier in the recommendation list. NDCG measures the ranking perfor-

mance but it is also important to identify how close the predictions are to the eventual

outcomes. Hence, MAE is also employed as an evaluation metric.

The experiments are conducted in two phases, which are internal and external ex-

periments. Internal experiments compare the performance of their social, location

information and user preference factors. On the other hand, external experiments

compare the performance of the proposed approach with TrustWalker [22] and CF-

based model proposed in [50] according to NDCG and MAE. In internal experiments,

they observe that the effect of user preference is higher than other two factors. The

results also indicate that user’s self check-ins are still more important compared to

that of friends. MAE value gets the smallest value when all the factors are combined.

CPref feature outperforms other feature if they are individually experimented consid-

ering NDCG@10 metric. The results of external experiments show that UPOI-Mine

outperforms both TrustWalker and CF-based approach. The authors claims that the

reason of this result is the consideration of user’s self check-in behaviors.

In [41] the authors proposed a location-based context-aware recommendation system

namely, I’m feeling LoCo. The aim of this study is to design a complete ubiquitous

location-based recommendation system by considering user’s location context and

similarity measurements. The proposed approach is similar to the study presented in

[12], but it does not require users to fill an extensive questionnaire or update their

contextual information. Their system mines user’s social network profile and extracts

the user preferences automatically.

The proposed recommendation algorithm considers the location history of the user

(Foursquare check-ins), transportation mode, current location and user’s mood. The

transportation mode of the user is detected automatically by a method that is similar

to the approach proposed in [38]. In order to decide the transportation mode, mobile

phone’s accelerometer variance and the GPS speed data are employed as inputs to

the decision tree. The decision tree selects one of the transportation modes, which

are biking, walking and driving, according to these inputs. A series of transportation
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modes that are encountered by the decision tree are given as an input to the Hidden

Markov Model. Finally, this model selects a single transportation mode based on the

presented pattern.

A user’s preference model is like a document that consists of series of words. When

a user visits a location, its name, category and tags are appended to this document.

The recommendation algorithm employs a content based filtering approach to offer

locations. The items for content based filtering are the locations visited by the user

and their associated information. The algorithm firstly filters the locations according

to user current location using a predefined radius. The second filtering is performed

using the feeling of the user. The user can choose one of the feelings from artsy,

nerdy, hungry, workaholic, party animal, outdoorsy and shopaholic. Each category

maps to a location category in Foursqaure. After the locations are filtered by the

mood, the associated tags are obtained for each location. For each location a set of

words that contains the intersection of the tags of the user and the tags of the particular

location are constructed. The log frequency weight of each term in this set of words

is calculated using the equation 2.3.

f (t) = 1 + log(t ft,d), t ft,d > 0 (2.3)

t ft,d represents the number of times term t occurs in document d that holds all of

the words associated with the user’s visited locations. After all of the log frequency

weights are estimated for a particular location, the summation of these weights are

calculated. This value represents the prediction score of that location. The k places

with the highest scores are recommended to the user.

If a user is not active in Foursquare, then this algorithm fails to recommend locations.

For this reason, if the user location history is not sufficient for recommendation, they

employ a wikitravel page (wikitravel.org) to suggest that city’s iconic places and land-

marks to the user.

The authors test the usability of the interface of the system. However, the effective-

ness of the recommendation system is not evaluated in this study.
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2.1.3 Ontology-Based Location Recommendation Methods

In [53], Yu et al. proposes a location-based recommendation system that supports user

participation as collective intelligence. The system consists of three modules, which

are user interface module, knowledge base manager module, and inference engine

module. A user can view inference results and create/modify the knowledge base

and location information through user interface module. Knowledge base manager

stores refined information on locations created/modified by users into a knowledge

database. Knowledge database keeps information and association rules on locations.

The inference engine consists of static data such as ontology, rules, individuals, and

facts. The rule based inference engine employs both static data and dynamic data

such as current location of the user and user preferences.

The inference engine is implemented by using Bossam [23]. Bossam is a RETE

algorithm-based forward chaining inference engine. In order to construct an ontology

and the relationship between classes, Protégé ontology editing language is employed.

The ontology models the relationships between the profile of the user, location of

the user, shops (POIs), and time information. In this study, the presented ontology

is constructed for only recommending movie/theater for easy understanding. There

are several implemented association rules that depend on the constructed ontology.

Association rule for location is defined as ’The shop whose service range overlaps

with the search range of the user, will be recommended to the user’. The rule for time

indicates that the user will be recommended a movie/theater if he/she can view the

movie within his/her available time. The individuals store information about movies,

time information of movies, the discount cards of movies, users etc.

In experiments, they make a user to move through Sinchon and check the recommen-

dations on a PDA. The shops are classified into seven types and corresponding ontolo-

gies are constructed. They implemented 173 association rules and store them in the

knowledge base with 735 individuals and facts. A college student who wants to watch

a movie is recommended some movies according to parameters such as his available

time, discount card, current location etc. During this recommendation process, the

inference rules are executed on the knowledge base and the results are presented to

the users. The accuracy of the results are not evaluated in the study. Moreover, the
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study does not compare their approach with others. However, the proposed approach

makes use of an ontology to recommend locations to the mobile users which makes

it sensible within other approaches.

2.1.4 Other Location Recommendation Methods

In [30], Noulas et al. proposed a new model that depends on personalized random

walks over a user-location graph. It combines location visit data with social net-

work data and aims to recommend new unvisited locations to the users. They collect

check-in data for 11 cities across the world. The check-in data is collected through

Foursquare and Gowalla. They analyzed the collected data and found out that a large

fraction of the visited locations are new locations. This fraction changes between

60% and 80% for different cities. Therefore, they claim that it is important to offer

high quality recommendations of new locations to the users. The set of new places

are identified by analyzing two consecutive months. The equation 2.4 gives the new

locations visited by user i in month t+1:

Ψt
i = Θt+1

i \ Θt
i (2.4)

The new location recommendation problem is formally defined as follows: given a

check-in dataset for month t, a set of users U, and a set of locations L, the problem is

to predict the elements of the set defined in 2.4 which are the new locations that will

be visited in next month t+1.

In this study, they identify the weak properties of the existing location recommenda-

tion methods. They claim that the most of the proposed approaches only capture the

unique aspect of the data. For example, CF approaches exploit like-mindedness and

location similarity, social filtering approaches only employ friends’ data, and spatial

filtering methods only consider physical distance. Therefore, the authors aim to de-

velop a network that connects locations and users. After that they want to perform

personalized random walks with restart over this network to predict new location rec-

ommendations for individual users.
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While a random walker jumps across the nodes of the graph according to predefined

transition probabilities, it will visit each node at different frequencies. After a while,

the random walk will approach a steady-state. Then, the visit count of each node

represents the relevance of that node to the start node. Random walk with restart has

an additional feature, at any step there is constant probability of random walker to

jump back to starting node. Therefore, the nodes that are closer to the start node tend

to be ranked more highly than the other nodes, providing a personalized view of the

underlying network [45].

In this study, two different graphs are constructed for random walk. The first one is

an undirected graph whose nodes are users and locations. A user i is connected to a

location j if ci j is not zero which means that user has at least one check-in at j. While

traversing the graph with random walk, the steady-state probabilities are computed.

Then each location is ranked in decreasing order according to these probabilities. The

probability of restart keeps the random walker around the user’s neighborhood which

provides more biased recommendations towards locations that are more connected.

The second version of the graph is weighted and directed where each link is given a

weight that defines the transition probabilities. A link from user i to user k is weighted

according to total number of friends of i. The weight of the link from user i to location

j is proportional to user’s check-ins to that location over the total number of check-

ins of that user. The link from location j to user i is weighted using the check-

in frequency of the user at that location over the total number of check-ins of that

location.

In order to evaluate the proposed approach, the data is partitioned into multiple train-

ing/test pairs each of representing two consecutive months for obtaining cross vali-

dated results. The prediction algorithms generate a personalized ranked list of loca-

tions for each user. The evaluation metrics are precision@N, recall@N and Average

Percentile Ranking (APR). They compare their random walk approach to Random,

Popular, Activity [35], Home [37], SocialNet, kNN, PlaceNet and Matrix Factoriza-

tion (MF) predictors. The most important result is that nearly all methods fail to out-

perform the popularity-based baseline. According to their experiment results, their

two approaches are the only ones that outperform popularity. The undirected ran-

dom walk (RW) achieves an improvement of 5% in Foursquare and 18% in Gowalla
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dataset relative to popularity method. The results are similar for all three metrics.

Moreover, the results obtained from two different datasets conform with each other.

2.1.5 Overview of Location Recommendation Methods

Table 2.1 lists and compares all the previously mentioned location recommendation

algorithms in terms of used datasets, context-awareness, evaluation methodology and

evaluation metrics.

Table 2.1: Overview of Location Recommendation Methods

Method Class Dataset Context

Awareness

Evaluation

Method

Metrics

CLR CF-

Based

Own

Dataset

None User Feed-

back

nDCG

CLAF CF-

Based

Own

Dataset

None 2-Fold

Cross-

Validation

Tensor

\RMSE,

AUC

PCLAF CF-

Based

Own

Dataset

None 2-Fold

Cross-

Validation

Tensor

\RMSE,

AUC

RPCLAF CF-

Based

Own

Dataset

None 2-Fold

Cross-

Validation

Tensor

\RMSE,

AUC

RMF Spot

Recommenda-

tion

CF-

Based

Gowalla Social 2-Fold

Cross-

Validation

MAE,

RMSE

GeoSocial CF-

Based

Own

Dataset

Social 4-Fold

Cross-

Validation

Precision,

Recall
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Table 2.1: (Continued)

Method Class Dataset Context

Awareness

Evaluation

Method

Metrics

LPES Model-

Based

Own

Dataset

Location,

Personal,

Environ-

ment

10-Fold

Cross-

Validation

MAE

BN Based

Recommenda-

tion

Model-

Based

Own

Dataset

Location,

Personal,

Environ-

ment

7-Fold

Cross-

Validation

-

UPOI-Mine Model-

Based

Gowalla Location,

Social,

Personal

- nDCG,

MAE

Ontology

Based Recom-

mendation

Ontology-

Based

Own

Dataset

Location,

Personal

- None

Random Walk

Around the

City

Other Gowalla,

Foursquare

Social Cross-

Validation

Precision,

Recall

Location-

Based and

Pref. Aware

Rec.

CF-

Based

Foursquare Location,

Personal,

Social

2-Fold

Cross-

Validation

Precision,

Recall,

Running

Time

I’m Feeling

Loco

Model-

Based

Foursquare Location,

Personal

User Feed-

back

-

USG CF-

Based

Foursquare,

Whirl

None 2-Fold

Cross-

Validation

Precision,

Recall
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2.2 Activity Recommendation Methods

In this section we give an overview of recent studies addressing activity recommen-

dation in location-based social networks. Most of the works in the literature are fo-

cused on location recommendation. There are only limited number of proposed ac-

tivity recommendation algorithms. However, location and activity recommendation

algorithms are closely related. Therefore, we also provide some related work about

location recommendation in addition to activity recommendation approaches.

In [27], Leung et al. proposed a collaborative location recommendation framework

based on co-clustering (CLR). CLR converts users’ GPS trajectory data to obtain a set

of points of interest as candidate locations. Most of the collaborative filtering based

approaches employ User-Location matrix. Unlike these methods, authors propose

a Collaborative Location Model (CLM), which considers an additional entity type,

activity, to capture the relations between users, location and activities. In CLR, CADC

co-clustering algorithm is employed to cluster the CLM graph to produce location

recommendations.

Zheng et al. propose a collaborative location and activity recommendation approach

using users’ GPS history data [55]. In addition to GPS data, they also employ point

of interest category database and Web, to overcome the data sparsity problem in

location-activity relations. Authors perform stay region extraction, location-activity

information extraction, location feature extraction and activity-activity correlation

during modeling phase. After having location-activity matrix, location-feature matrix

and activity-activity correlation matrix, a recommender system is trained for location

and activity recommendation. Based on the filled location-activity matrix, they rank

the locations and activities and return the top k locations/activities.

Sattari et al. inspired from the approach proposed in [55] and introduced a new activ-

ity recommendation method in [40]. In this study, they work on the same GPS dataset

and employ the same location-activity matrix, location-feature matrix and activity-

activity matrix. In both of the studies, the authors try to combine these three matrices

to populate an integrated matrix. The basic difference of this study from [55] is the

way integrated matrix is used for prediction and the application of Singular Value
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Decomposition (SVD). They show that their prediction accuracy is higher than the

technique given in [55].

Symeonidis et al. realized that the tensor decomposition based approach in [54],

namely User Collaborative Location and Activity Filtering (UCLAF), do not up-

date their system online as more users data is inserted into database. In [44], they

proposed an online recommender system, called Geo-social recommender system,

where users can get user, friend and activity recommendations. In location and ac-

tivity recommendation, the data is modeled as 3-order tensor. They employ Higher

Order Singular Value Decomposition (HOSVD) technique to perform latent semantic

analysis and dimensionality reduction on tensor. They also propose an incremental

tensor reduction approach to update the system as more data is accumulated to the

system.

In [49], Ye et al. propose a framework that employs a mixed Hidden Markov Model

(HMM) to predict the category of user’s next activity. HMM models the dependen-

cies between categories. HMM is trained by incorporating the temporal and spatial

information to further improve the model accuracy. Moreover, they model user pref-

erences using users’ check-in activities. User preferences are also employed for im-

proving the accuracy of the recommender. After predicting the category of activity, a

location is recommended to user according to the estimated category distribution. An

advantage of this approach is that it reduces the size of location prediction space by

firstly determining the activity category.

The work proposed in [36], Collaborative Group Activity Recommender (CGAR), is

different from other approaches, because they produce activity recommendations to

groups, instead of individuals. They model the groups as a generative process to ob-

tain the group dynamics. While the authors obtain group dynamics, user interactions

are used for learning and inferring group preferences. They also employ location-

temporal information of the LBSNs. The activities at a location are modeled using

a topic model to capture its semantics. In order to perform the actual group-activity

recommendation they use a collaborative filtering framework. They claim that their

group generative process and collaborative filtering framework overcome data spar-

sity and cold-start problem in group recommendation.
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W. Tu et al. introduce an activity-partner recommendation system in [46]. They

realized that when recommending activities to users, it is also important to recom-

mend suitable activity partners. They claim that recommending activity partners is

likely to improve the success rate of activity recommendations. They utilize user

attendance preference and social context (friendship relations) to implement activity-

partner recommendation. They produce three different methods, which are Social-

Closeness (SCAPR), Similar-Interest (SIAPR) and Also-Like (ALAPR) based ac-

tivity recommendation. They also propose another activity-partner recommendation

method based on past partner knowledge of users (CFAPR). This method employs

collaborative filtering in recommendation. In experiments CFAPR outperforms the

other methods proposed in the same work.

2.3 Friend Recommendation Methods

In this section we give an overview of friend recommendation methods for LBSNs.

Most of the studies in literature are mostly focused on location recommendation.

However, there are also a few number of friend recommendation methods for LB-

SNs. Friend recommendation is extensively studied for traditional social networks.

LBSNs provide a new way of friend recommendation based on user location histories

[5]. User location histories provide rich contextual information. Moreover, location

histories and social behaviors are significantly correlated [13].

In [44], Symeonidis et al. propose a prototype system GeoSocial that is able to rec-

ommend locations, activities and friends to users. In friend recommendation they

employ FriendLink algorithm [32]. In order to calculate the weights between links

they use the average geographical distance between users’ check-ins. In this paper,

the authors state that the performance of FriendLink is not so high due to the data

sparsity problem.

GeoLife2.0 is a social networking service that enables users to share their life experi-

ences with other users. In [59], the authors say that GeoLife is capable of measuring

the similarity between users based on the location histories. This similarity measure

is employed for friend recommendation for individuals. The friend recommendation
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system analyzes the location histories of the users and populates the potential friends

list. Each individual’s location history is modeled using a hierarchical graph based

similarity measurement (HGSM).

In [11], Chu et al. propose a friend recommendation approach based on the similar

interests of the users. Moreover, they employ the real-life location and dwell time in

friend recommendation. After gathering these data, the proposed method analyzes the

data using weighted Voronoi diagram and interest similarity. Affinity diagrams and

matrices are populated according to the results of this analysis. Based on the affinity

matrices and interest similarity the acceptable degree value is evaluated for candidate

friends. If this value is greater than the predefined threshold for a user, then that user

is recommended as a friend.

In [52], the authors propose a random walk based statistical framework for geo-

friends recommendation (GEFR). It is a three-step approach and first, raw GPS data is

analyzed and interesting and discriminative GPS patterns are extracted. The extracted

geographical information and social network are combined in a heterogeneous infor-

mation network. Random walk is applied on this network to provide friend recom-

mendations. GEFR employs the patterns that are extracted from raw GPS data. How-

ever, actual check-in data can be more useful for identifying similar users in a social

network rather than using the GPS patterns. Moreover, GEFR is not a context-aware

algorithm and does not consider the current location of the user while recommending

friends.

In [28], Li et al. introduce a three-layered friendship model that is used to evaluate

the similarity between users in LBSNs. They employ social connections, user profiles

and mobility patterns to find the correlation between users. The three layers are social

graph layer, tag graph layer and location graph layer. In each layer the similarity of

users are calculated based on the respective formula. The global friendship ranking

is calculated by summing the ranking scores for each layer.

The work proposed in [42] is for recommending new friend links to the users. In

this paper, the authors study to reduce the size of the prediction space. They show

that even making the prediction space 15 times smaller by utilizing the place-friends,

%66 of the future friend connections can still be preserved. The aim of the study is
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to design a friend link prediction system which exploits data about user check-ins.

The authors emphasizes the sociological focus theory which identifies that activity

and interaction happening around physical places can produce social relationships

between individuals, and it is correlated to the properties of the place itself [16]. In

the experiments, they compare the performance of J48, Naive Bayes, model trees

with linear regression on the leaves [17], and random forests [8]. The results indi-

cates that their prediction method is more effective with random forests and model

trees methods. The results also show that exploiting the place features in friend link

recommendation leads to better performance than the methods that are purely based

on social features.

Friendbook is a semantic-based friend recommendation system for social networks

[48]. It employs user’s life style information that is extracted from the data gathered

from smartphone sensors. The authors model the daily lives of users as life doc-

uments. In order to extract life style information of users, they use the probabilistic

topic model. In this topic model, the life styles are modeled as topics and the activities

of users are modeled as words. Friendbook recommendation system is not proposed

for LBSNs, it is designed for all types of social networks. However, it is capable of

using user’s current location to filter the friend recommendation list. Therefore, it can

be regarded as a context-aware friend recommendation algorithm. On the other hand,

it does not employ location history of the users in estimating the correlation between

users.
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CHAPTER 3

PROPOSED WORK

In this chapter, we describe the details of our recommendation algorithms. Since

random walk is employed in all of the algorithms, firstly, the details of random walk

is given in Section 3.1. After that LBSN data model is introduced in Section 3.2.

Then location, activity and friend recommendation algorithms are described in detail

in Section 3.3.

3.1 Random Walk

Random walk can be used to rank the nodes on a graph using the information encoded

by links [30]. Random walk starts from a particular node and moves through the edges

of the graph. This process is performed according to transition probabilities, which

define the probability of moving from any node to another. In each transition of the

random walk, the visit count of current node is incremented to be used for ranking

the nodes of the graph. Random walk process continues for a while and approaches

a steady state. The output of random walk is the visit counts of the nodes. This

information can be utilized for ranking the nodes.

If graph has many nodes, then a random walk may move away from the starting node

rapidly. This may cause moving out of the context and visiting less important nodes.

This problem can be solved using a derivative of random walk, namely random walk

with restart (RWR). In this method, in each transition, there is a constant probability

of jumping back to starting node. Therefore, nodes that are closer to starting node

tends to have more visits than distant nodes. RWR is a well-known method that
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provides a good relevance score between two nodes in a graph. Therefore, RWR

and related methods have been successfully used in numerous studies [45], such as

automatic captioning of images, generalizations to the connection graphs, PageRank

[31], personalized PageRank [20], SimRank [24], ObjectRank [3], RelationalRank

[19] and more.

Formally, the transition probabilities of a random walk can be arranged in a matrix

as in Equation 3.1. In this equation, W is a matrix that represents the transition prob-

abilities according to graph structure. R is for modeling the random probability of

moving back to starting node. α value is used for determining the weight between W

and R to calculate the resultant matrix Q. Therefore, random walk behavior can be

tuned by changing the α value.

Q = αW + (1 − α)R (3.1)

p = pQ (3.2)

In order to calculate the steady state rankings of the nodes, Equation 3.2 must be

solved. Here p is a vector of steady state probabilities, where pi denotes the ith node’s

probability. Resultant p can be calculated by repeatedly iterating over Equation 3.2

until it converges [30].

In order to make personalized recommendations to users, we employ RWR on the

underlying graph of the LBSN. The starting node of the random walk is the user

that requests location, activity or friend recommendation. Our RWR approach is a

specialized version of original RWR, since we have uniform transition probabilities.

In other words, the probabilities of moving to each neighbor from a particular node

is equal. This assumption lowers the computation cost, because it is a costly task to

assign weights to each link on the graph. In this version of RWR, when new users and

locations arrive, we do not need to update any weights. This is the major weakness of

CF-Based recommendation methods, because such approaches need periodic updates.

Moreover, our approach is more extensible since different types of nodes can easily

be adopted into the same graph.
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During graph traversal in every visit, current node’s visit count is incremented by 1.

Since it is an RWR, in every transition it is possible to jump back to starting node.

After, RWR converges, we sort the locations, activities or users by visit counts and

produce the recommendation results.

3.2 LBSN Data Model

LBSN data basically consists of users, locations, activities and relationship data. Rep-

resentation of our LBSN model is given in Figure 3.1. An instance of this model is an

undirected unweighted graph that defines the relationships between users, locations

and activities. Formally, this graph, G, is a tuple G < V, E > where V is a set of nodes

v and E is a set of edges e. V = U ∪ L ∪ A where U, L and A are disjoint sets and U

is a set of users, L is a set of locations and A is a set of activities.

Users

LocationsActivities

perform visit

performed-at

friend-of

Figure 3.1: LBSN Data Model

A particular user is an ordinary user or an expert. Experts are users that have more

location/activity knowledge about a particular region. Similarly, there are two dif-

ferent types of locations/activities which are ordinary and popular location/activities.

Popular locations/activities and experts are identified together using a HITS-based [9]

[25] algorithm. The details of this algorithm is given in Section 3.3.1.2 and Section
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3.3.2.2.

E is a set of edges that represent relationships between the elements of V . There are

four types of relationships as depicted in Figure 3.1:

• friend-of: There is an edge between two users if they are friends.

• visit: There is an edge between a user and location if the user has visited the

location at least once.

• perform: There is an edge between a user and an activity, when the user has

performed the activity at least once.

• performed-at: There is an edge between an activity and a location if the activ-

ity could be performed at that location.

We propose two different location recommendation algorithms. In the first location

recommendation algorithm, our LSBN model does not contain activity nodes. There-

fore, in this algorithm location recommendation graphs do not contain perform and

performed-at relationships. However, in the second algorithm, activity nodes are in-

cluded in the model. Our activity recommendation algorithm considers all types of

relations in this model. On the other hand, our friend recommendation algorithm

considers visit and friend-of links.

3.3 Proposed Approach

We propose three different novel recommendation algorithms for LBSNs. The first

one is a location recommendation algorithm (CLoRW). There is another version of

CLoRW, namely CLoRW_A, which additionally considers activities. The second

algorithm is an activity recommendation algorithm (RWCAR). The last one is a friend

recommendation algorithm (RWCFR). The details of these algorithms are given in the

following sections.
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3.3.1 Context-Aware Location Recommendation with Random Walk

In this section, we describe our proposed location recommendation algorithm in de-

tail. CLoRW, is a context-aware location recommendation algorithm that considers

personal, social and location (spatial) contexts. CLoRW consists of two phases, which

are subgraph construction and location recommendation phases.

In our random walk approach, our graph traversal is not performed on the entire

graph that represents whole LBSN. Instead of this, we construct a subgraph according

to current context of the user that requests location recommendation. The details

of subgraph construction is given in Section 3.3.1.2. After subgraph construction

phase we perform the actual recommendation using random walk. The details of

recommendation phase is given in Section 3.3.1.3. Before explaining the details of

the algorithm we define the location recommendation problem.

3.3.1.1 Location Recommendation Problem

Location recommendation problem can be formulated as follows: Let graph G be an

instance of the LBSN model introduced in Section 3.2. Given G and user’s current

location, for each user u in U, we aim to predict the future locations that can be visited

within a predefined radius r. These locations can be represented as a recommendation

list which is an ordered list of locations that contains N elements of A where N is the

desired number of recommendations. The challenge is to populate this location list

with highest accuracy, in other words, with minimal errors relative to user’s future

visited locations in r.

3.3.1.2 Subgraph Construction

In subgraph construction phase, a subgraph is constructed for a particular user using

his/her current context. In the second phase a random walk is performed on this

graph to sort the location nodes for recommendation. When a particular user requests

recommendations at a specific location, CLoRW firstly constructs a subgraph using

the following items:
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• locations that user previously visited in vicinity (personal spatial context)

• friends and their previously visited locations in vicinity (social spatial context)

• experts and their previously visited popular locations in vicinity (social spatial

context)

The details of user subgraph construction algorithm is given in Algorithm 1. In this

algorithm, userid and currentLoc represent the id of the user and the current location

of the user, respectively. We model the vicinity as a rectangular region. In order to de-

fine this region we employ the radius parameter. A circle is drawn from user’s current

location and the bounding rectangle of this circle is used as recommendation region.

We call this region as vicinity. GetUserLocationsInVicinity procedure retrieves the

previous check-ins of the currents user in this region. Similary, GetFriendLocation-

sInVicinity procedure selects the friends that have check-ins in this region and their

locations. GetExpertLocationsInVicinity procedure finds the experts and popular lo-

cations in recommendation region. After experts are identified, the relationship be-

tween all users and experts are retrieved using the GetFriendRelationships procedure.

expertCount and popLocCount parameters limit the number of expert and popular

location counts in the subgraph, respectively. In order to obtain experts and popular

locations, similar to works in [4][61], we employ a HITS-based [9][25] algorithm in

which locations are authority and users are hub nodes. Each user’s hub score denotes

the knowledge of that user in recommendation area. Similarly, authority score of a

location represents the popularity of that location in this area. According to HITS,

people who visit many high quality locations in a region have rich knowledge about

the region. Similarly, if a location is visited by many experts, it is more likely to

be a quality location [4]. In order to calculate the location and user scores in expert

and popular location estimation, our HITS-based algorithm iterates up to a predefined

count. In each iteration, location scores are updated according to previously calcu-

lated user scores. In the same iteration newly obtained location scores are employed

for estimating the user scores. At the end of each iteration, location and user scores

are normalized. When the iteration count is reached, location and user scores are

sorted. Our location recommendation algorithm selects the desired number of experts
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Algorithm 1 Subgraph Construction Algorithm for Location Recommendation
1: Initialize G<V,E > {Subgraph of the user}

2: userLocs← GetUserLocationsInVicinity()

3: f riendLocs← GetFriendLocationsInVicinity()

4: expertLocs← GetExpertLocationsInVicinity()

5: Create new user vertex u for the current user

6: V ← V ∪ u

7: for all loc in userLocs do

8: vl ← new location vertex for loc

9: V ← V ∪ vl

10: end for

11: for all f riendLoc in f riendLocs do

12: v f ← new user vertex for f riendLoc.user

13: vl ← new location vertex for f riendLoc.location

14: V ← V ∪ {v f , vl}

15: e f ← new edge between u and v f

16: el ← new edge between v f and vl

17: E ← E ∪ {e f , el}

18: end for

19: for all expertLoc in expertLocs do

20: v f ← new user vertex for expertLoc.user

21: vl ← new location vertex for expertLoc.location

22: V ← V ∪ {v f , vl}

23: e f ← new edge between u and v f

24: el ← new edge between v f and vl

25: E ← E ∪ {e f , el}

26: end for

27: V f ← friends and experts vertices

28: f riendships← GetFriendRelationships(V f )

29: for all f riendship in f riendships do

30: e f ← new edge between v f riendship. f1 and v f riendship. f2

31: E ← E ∪ {e f }

32: end for
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and popular locations from these sorted lists. Since we filter whole LBSN graph and

construct a subgraph, the number of users and locations in the vicinity are not so high.

Since HITS is a rapidly converging algorithm and the size of the bi-partite graph is

small, we do not have a convergence problem in our experiments. We use a constant

value (i.e. 10) for iteration count.

3.3.1.3 Recommendation using RWR

After subgraph of a given user is constructed by using Algorithm 1, the output of

this algorithm is given as an input to Algorithm 2. Algorithm 2 performs the actual

location recommendation using random walk. In this algorithm, recCount denotes the

requested number of recommendations. iterCount and restartProb represent random

walk iteration count and restart probability at each move. curNode stores the node

currently being visited by the random walk algorithm. In every iteration curNode

changes and the visit count of that node is incremented by 1. When random walk

iteration count is reached the algorithm sorts the nodes by visit count. Then it selects

the first recCount locations from the sorted list and terminates.

Since our LBSN graph is an unweighted graph, transition probabilities are equal for

each node in every random walk iteration. curNode selects whether to move to

starting node or its neighbors. All of its neighbors have the same chance to be the

next curNode. restartProb parameter corresponds to the α value that determines the

restart behavior of the random walk.

An example run of the algorithm for New York City (NYC) Brightkite dataset is

given in Figure 3.2. In this example, the whole Brightkite dataset is filtered and only

the locations around the NYC are considered. Here, User_1 requests a personalized

location recommendation list at a particular point. The configuration of the run is

given in Table 3.1.

The result of the example run is listed in Table 3.2. The recommended locations are

sorted according to their visit counts. PopularLoc_1 has the highest visit count and

recommended in the first place. On the other hand, the visit count of PopularLoc_3

is 0 although it is a popular location. The reason of this situation is that it is not
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Algorithm 2 Random Walk Recommendation Algorithm
1: recCount ← number of requested recommendations

2: iterCount ← iteration count of random walk

3: restartProb← probability of restart in each move

4: G < V, E >← subgraph of the user

5: u← vertex of the current user in V

6: curNode← u

7: for i < iterCount do

8: p← rand(0,1)

9: if p < restartProb then

10: curNode← u

11: else

12: curNode← S electNextNode(curNode)

13: curNode.visitCount ← curNode.visitCount + 1

14: end if

15: i← i + 1

16: end for

17: sortedNodes← S ortNodesByVisitCount(G<V,E >)

18: result ← S electFirstKNodes(sortedNodes, recCount)

Table 3.1: Location Recommendation Configuration for a Given User

Parameter Value
Current Location Latitutude 40.7772483825684
Current Location Longitude 73.8726119995117
Radius 3000 m
Expert Count 3
Popular Location Count 3
DBSCAN Eps 3000 m
DBSCAN Minimum Cluster Points 1
Random Walk Restart Probability 0.05
Random Walk Iteration Count 10000
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Table 3.2: Location Recommendation Results

Location VisitCount
PopularLoc_1 594
Location_3 263
Location_4 206
PopularLoc_2 199
Location_6 199
Location_2 190
Location_1 179
Location_5 153
PopularLoc_3 0

connected to a user or an expert in the subgraph.

Location_2
Location_1

Expert_3

Expert_2

Expert_1

User_1

Location_3

Location_4
Location_5

Location_6

PopularLoc_1

PopularLoc_3

PopularLoc_2
Friend_1

Friend_2

Figure 3.2: Sample Graph for Location Recommendation

3.3.1.4 Context-Aware Location Recommendation with Random Walk using

Activities

In the previous section, we introduce our location recommendation algorithm, namely

CLoRW. In this section we describe a different version of CLoRW, Context-Aware
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Location Recommendation with Random Walk using Activities (CLoRW_A), in de-

tail. CLoRW_A is an extended version of CLoRW. CLoRW algorithm is a context-

aware location recommendation algorithm that considers personal, social and spatial

contexts. In addition to this, CLoRW_A takes activities into consideration. In our

model, activity is used a as a general term that defines actions, categories, tags that

are related to a user or a location. In most of the popular LBSNs, locations have one

or more categories (e.g.French Restaurant, Coffee Shop). A particular user or a loca-

tion can be related to one or more categories. These categories correspond to activity

nodes in our LBSN model. When a particular user requests recommendations at a

specific location, CLoRW_A firstly constructs a subgraph using the following items:

• Locations that user previously visited in vicinity

• Friends and their previously visited locations in vicinity

• Experts and their previously visited popular locations in vicinity

• Activities that user performed before

• Activities that can be performed in vicinity locations

• Vicinity locations that are related to an activity that the current user performed

before

When all the related nodes are connected, random walk is performed on the subgraph

as in the previous section. Similarly, when random walk iteration count is reached

the algorithm sorts the nodes by visit count. Then it selects the desired number of

locations from the sorted list and terminates.

3.3.1.5 Context-Aware Location Recommendation with Weighted Random Walk

CLoRW employs an undirected unweighted graph model to recommend locations.

We also try to develop the weighted version of CLoRW, Context-Aware Location

Recommendation with Weighted Random Walk (CLoWRW). CLoWRW is identical

to CLoRW except the weighting strategy between user-location edges. In CLoRW,

there is a single edge between a user and a location independent from the number
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of check-ins to that location if that user has at least one check-in at that location.

However, in CLoWRW the number of edges between a user and a location is equal

to number of check-ins. In other words, we assign the check-in count as weight to

user-location edges.

We also try two different parameters for assigning weights to user-location edges.

These parameters are visit count of locations and temporal check-in rate. When the

visit count parameter is considered, if we want to select a neighbor location from a

user node, the location nodes that have higher visit counts have higher probability of

becoming the next node in next iteration. On the other hand, temporal check-in rate

parameter pays more attention to recent check-ins rather than the older ones. This

means if a location has more recent check-ins then it is more probable for user to

select that location in next iteration.

In addition to these parameters, we also employ two different strategies for next node

selection. In the first strategy, all neighbor nodes have equal probability to participate

to node selection. In the second strategy, first the node type is selected with equal

probability and then the next node is selected from the nodes that have the selected

type. Finally, we have two different parameters and two different strategies, hence

four different cases.

3.3.2 Context-Aware Activity Recommendation with Random Walk

In this section, we describe our proposed activity recommendation algorithm in detail.

RWCAR is a context-aware activity recommendation algorithm that employs RWR

for prediction of activity ranks. RWCAR considers three different contexts which are

personal, social and location (spatial).

In our random walk approach, our graph traversal is not performed on the entire

graph that represents whole LBSN. Instead of this, we construct a subgraph according

to current context of the user that requests activity recommendation. The details

of subgraph construction is given in Section 3.3.2.2. After subgraph construction

phase we perform the actual recommendation using random walk. The details of

recommendation phase is given in Section 3.3.2.3. Before explaining the details of
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RWCAR, we define the activity recommendation problem.

3.3.2.1 Activity Recommendation Problem

Activity recommendation problem can be formulated as follows: Let graph G be an

instance of the LBSN model introduced in Section 3.2. Given G and user’s current

location, for each user u in U, we aim to predict the future activities that can be

performed within a predefined radius r. These activities can be represented as a rec-

ommendation list which is an ordered list of activities that contains N elements of

A where N is the desired number of recommendations. The challenge is to populate

this activity list with highest accuracy, in other words, with minimal errors relative to

user’s future performed activities in r.

3.3.2.2 Subgraph Construction

In order to perform RWR, we need a subgraph that is built according to user’s current

context. Here, user is the person requesting activity recommendation. This graph is

constructed using the following items:

• Previously visited locations of user in vicinity (personal spatial context)

• Previously performed activities of user (personal context)

• Friends and their previously visited locations and performed activities in vicin-

ity (social spatial context)

• Experts and their previously performed popular activities in vicinity (social spa-

tial context)

• Locations in vicinity that activities added to the subgraph can be performed at

(spatial context)

• Activities that can be performed at locations that are added to the subgraph

(spatial context)
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The links between added nodes are set based on the LBSN model introduced in Sec-

tion 3.2. Additionally, current user and experts are connected using friend-of rela-

tionships. Vicinity is bounded by a rectangular region based on a predefined radius.

A circle is drawn from user’s current location. The bounding rectangular region of

that circle is employed as recommendation region. Vicinity refers to that rectangular

region. Algorithm 3 presents the details of subgraph construction process.

In this algorithm, GetUserActivities procedure retrieves the previously performed ac-

tivities of the current user. GetUserLocationsInVicinity method is used for retrieval

of vicinity locations that the user previously checked-in. Similarly, GetFriendLoca-

tionsInVicinity selects the friends’ vicinity locations. GetExpertActivitiesInVicinity

procedure finds the experts and popular activities in recommendation region.

In order to find experts and popular activities, we apply a HITS-based [9][25] al-

gorithm. In this algorithm, users are hub nodes and activities are authority nodes.

Each user’s hub score represents the activity knowledge of that user in vicinity. On

the other hand, each activity’s authority score denotes the popularity of that activity

in recommendation region. The main idea behind this approach is that users who

perform high quality activities in vicinity, have rich knowledge about the vicinity.

Equivalently, if an activity is performed by many experts, then it is more probable for

that activity to be a quality activity. A similar approach is introduced in [4][61] for

location recommendation.

In order to find hub and authority scores, our algorithm iterates until it converges.

In each iteration, activity scores are calculated depending on the previous iteration’s

user scores. In the same iteration, this activity scores are employed for predicting

user scores. Before moving to next iteration, calculated activity and user scores are

normalized. This process continues up to convergence of the algorithm. After that,

activity scores and user scores are sorted to find out desired number of popular activi-

ties and experts. Since we employ filtered subgraphs in recommendation, the number

of activities and users that our algorithm considers are not so high. Therefore, the size

of the HITS graph is small and algorithm converges rapidly.
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Algorithm 3 Subgraph Construction Algorithm for Activity Recommendation
1: Initialize G<V,E > {Subgraph of the user}

2: userActs← GetUserActivities()

3: userLocs← GetUserLocationsInVicinity()

4: f riendLocs← GetFriendLocationsInVicinity()

5: expertActs← GetExpertActivitiesInVicinity()

6: Create new user vertex u for the current user

7: V ← V ∪ u

8: for all act in userActs do

9: va ← new activity vertex for act

10: V ← V ∪ va

11: end for

12: for all loc in userLocs do

13: vl ← new location vertex for loc

14: V ← V ∪ vl

15: end for

16: for all f riendLoc in f riendLocs do

17: v f ← new user vertex for f riendLoc.user

18: vl ← new location vertex for f riendLoc.location

19: V ← V ∪ {v f , vl}

20: e f ← new edge between u and v f

21: el ← new edge between v f and vl

22: E ← E ∪ {e f , el}

23: end for

24: for all expertAct in expertActs do

25: v f ← new user vertex for expertAct.user

26: va ← new activity vertex for expertAct.activity

27: V ← V ∪ {v f , va}

28: e f ← new edge between u and v f

29: ea ← new edge between v f and va

30: E ← E ∪ {e f , ea}

31: end for
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Algorithm 4 Subgraph Construction Algorithm cont’d
1: Vl ← all location vertices

2: for all vl in Vl do

3: locActs← GetLocationActivities(vl)

4: for all locAct in locActs do

5: va ← new activity vertex for locAct

6: V ← V ∪ va

7: ea ← new edge between vl and va

8: E ← E ∪ {ea}

9: end for

10: end for

11: Va ← all activity vertices

12: for all va in Va do

13: actLocs← GetActivityLocations(va)

14: for all actLoc in actLocs do

15: vl ← new location vertex for actLoc

16: V ← V ∪ vl

17: el ← new edge between va and vl

18: E ← E ∪ {el}

19: end for

20: end for

21: V f ← friends and experts vertices

22: f riendships← GetFriendRelationships(V f )

23: for all f riendship in f riendships do

24: e f ← new edge between v f riendship. f1 and v f riendship. f2

25: E ← E ∪ {e f }

26: end for
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3.3.2.3 Recommendation using RWR

After subgraph is constructed using the procedure that is explained in detail in Section

3.3.2.2, that subgraph is given as an input to the activity recommendation algorithm.

RWCAR operates on this graph using RWR to rank activities. Random walk starts

from the current user’s node and iterates over the graph. When an activity node is

encountered the visit count of that node is incremented by 1. At the end of the random

walk process, the activity nodes are sorted according to number of visits. After that

recommendation results are populated depending on the number of desired number of

recommendations. More details about random walk algorithm is given in Algorithm

2.

An example subgraph is given in Figure 3.3. In this example, User_1 requests activity

recommendation at a specific location. A graph is populated by using the subgraph

construction algorithm. This algorithm identifies Expert_1 and Expert_2 as local

activity experts. Moreover, user’s location and activity history in vicinity is added

onto graph. In addition to this, Friend_1 and Friend_2 and related links are added.

After building the subgraph, it is given as an input to actual activity recommendation

algorithm. This algorithm performs a random walk on that subgraph and populates

the results shown in Table 3.3.

Table 3.3: Activity Recommendation Results

Activity Visit Count
Activity_1 140
Activity_2 115
Activity_4 97
Activity_3 50
Activity_5 47

3.3.3 Context-Aware Friend Recommendation with Random Walk

In this section, we describe our friend recommendation algorithm in detail. RWCFR

is a context-aware friend recommendation algorithm that considers personal, social

and spatial context. It employs RWR for estimating the user rankings for friend rec-
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Figure 3.3: Sample Graph for Activity Recommendation

ommendation.

First a subgraph is constructed for the user that requests friend recommendation ac-

cording to his/her current context. The details of construction of this subgraph is

explained in Section 3.3.3.2. RWR is performed on this subgraph to rank the candi-

date friends for the current user. The actual friend recommendation is done according

to these rankings. The details of recommendation phase is given in Section 3.3.3.3.

Before describing the details of RWCFR, we define the friend recommendation prob-

lem.

3.3.3.1 Friend Recommendation Problem

Friend recommendation problem can be formulated as follows: Let graph G be an

instance of the LBSN model introduced in Section 3.2. Given G and user’s current

location, for each user u in U, we aim to predict the future friends. These users can

be represented as a recommendation list which is an ordered list of users that contains

N elements of U where N is the desired number of recommendations. The challenge
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is to populate this user list with highest accuracy, in other words, with minimal errors

relative to user’s future friends.

3.3.3.2 Subgraph Construction

In order to recommend friends to user, first we build a subgraph according to user’s

current context. This graph is constructed using the following items:

• Previously visited locations of user in vicinity (personal spatial context)

• Friends and their previously visited locations in vicinity (social spatial context)

• Experts and their previously visited popular locations in vicinity (social spatial

context)

• Friends of friends (social context)

• Users that visited locations that the current user previously visited (social spa-

tial context)

This subgraph is an instance of the LBSN data model introduced in Section 3.2.

Vicinity is defined by a rectangular region based on a constant radius. Vicinity is also

called as recommendation region. The subgraph construction procedure for friend

recommendation is given in Algorithm 5.

GetUserLocationsInVicinity procedure retrieves the previously visited locations of the

user in vicinity. Similarly, GetFriendLocationsInVicinity method is used for retrieval

of the locations of friends in recommendation region. GetExpertLocationsInVicinity

procedure identifies the local experts and popular locations. The process of finding

experts and popular locations is identical with the process that is described in Section

3.3.1.2.

GetFriendsOfFriends method is used for finding the second degree friends of the cur-

rent user. Since friends of friends of the current user could be considered as potential

future friends, we add these users to our subgraph.
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The users visiting the same places are likely to become friends. Therefore, the users

that have check-ins at the locations that the current user previously visited are also

potential future friends of the current user. GetUsersThatVisitedLocation procedure

retrieves the users that checked-in at a location that the current user previously visited.

This procedure is called for each vicinity location that the current user checked-in

before. New users are added to the graph as vertices and links are constructed between

these users and corresponding locations.

3.3.3.3 Recommendation using RWR

After constructing the subgraph for friend recommendation, we employ RWR to rank

potential friends. The details about RWR is provided in Algorithm 2. Therefore, we

do not provide more details here.

Location_2
Location_1

Expert_2

Expert_1

Friend_5

User_1

Location_3

Location_4

Location_5

PopularLoc_1

PopularLoc_2
Friend_1

Friend_2
Friend_7

Friend_3 Friend_4

Friend_6

Figure 3.4: Sample Graph for Friend Recommendation

An example friend recommendation subgraph is fiven in Figure 3.4. Here, User_1

requests friend recommendation at a particular location. This subgraph is constructed
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Algorithm 5 Subgraph Construction Algorithm for Friend Recommendation
1: Initialize G<V,E > {Subgraph of the user}

2: userLocs← GetUserLocationsInVicinity()

3: f riendLocs← GetFriendLocationsInVicinity()

4: expertLocs← GetExpertLocationsInVicinity()

5: Create new user vertex u for the current user

6: V ← V ∪ u

7: for all loc in userLocs do

8: vl ← new location vertex for loc

9: V ← V ∪ vl

10: end for

11: for all f riendLoc in f riendLocs do

12: v f ← new user vertex for f riendLoc.user

13: vl ← new location vertex for f riendLoc.location

14: V ← V ∪ {v f , vl}

15: e f ← new edge between u and v f

16: el ← new edge between v f and vl

17: E ← E ∪ {e f , el}

18: end for

19: for all expertLoc in expertLocs do

20: v f ← new user vertex for expertLoc.user

21: vl ← new location vertex for expertLoc.location

22: V ← V ∪ {v f , vl}

23: e f ← new edge between u and v f

24: el ← new edge between v f and vl

25: E ← E ∪ {e f , el}

26: end for
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Algorithm 6 User Subgraph Construction Algorithm cont’d
1: f riendsO f Friends← GetFriendsO f Friends(V f )

2: for all f riendO f Friends in f riendsO f Friends do

3: for all f f in f riendO f Friends. f riends do

4: v f f ← new user vertex for f f

5: V ← V ∪ v f f

6: end for

7: end for

8: for all loc in userLocs do

9: vl ← location vertex for loc

10: locUsers← GetUsersThatVisitedLocation(loc)

11: for all locUser in locUsers do

12: vlu ← new user vertex for locUser

13: V ← V ∪ vlu

14: elu ← new edge between vlu and vl

15: E ← E ∪ elu

16: end for

17: end for

18: V f ← friends and experts vertices

19: f riendships← GetFriendRelationships(V f )

20: for all f riendship in f riendships do

21: e f ← new edge between v f riendship. f1 and v f riendship. f2

22: E ← E ∪ {e f }

23: end for
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using Algortihm 5. Expert_1 and Expert_2 are identified as local experts. Popular-

Loc_1 and PopularLoc_2 are the popular locations. Friends and friends of friends

such as Friend_4 and Friend_5 are also depicted on the graph. Moreover, users that

have check-ins at the locations that User_1 visited before (e.g. Friend_7) are also

added onto the graph.

RWR algorithm operates on the constructed subgraph and the recommendation results

are populated. The recommendation results that are sorted by visit count are shown

in Table 3.4.

Table 3.4: Friend Recommendation Results

Friend Visit Count
Friend_3 104
Friend_5 65
Friend_7 51
Friend_4 47
Friend_6 45

3.3.4 Complexity Analysis of Algorithms

At this point, it is needed to consider that the proposed recommendation methods in-

volve two phases: graph construction and random walk based recommendation gen-

eration. For the first phase, we employ graph database queries for subgraph con-

struction. The details as to the complexity for internal logic of query engine is not

available. Therefore, here we provide the complexity analysis of the second part of

our recommendation algorithm.

The complexity of random walk depends on the iteration count. The number of de-

sired iteration count changes according to graph size and it depends on the edge count

of the underlying graph. In the worst case, the maximum number of edges on a graph

is C(|V |, 2), where C is the combination function and |V | represents the total number

of vertices. Let k be the average number of expected transitions for each edge. All

edges are not used evenly in transitions, but we define k as the average number of

transitions for each edge to bound the number of iterations. Hence, the complexity of

random walk is calculated as C(|V |, 2) × k, which is O(|V |2). After random walk, we
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sort vertices and the sorting complexity is O(|V | log |V |). However, sorting complex-

ity is asymptotically smaller than random walk complexity. Therefore, the overall

complexity of our algorithm is O(|V |2).

It is important to note that this algorithm runs on the subgraph which corresponds to

the user’s current context. Therefore, |V | is expected to have much smaller values in

comparison to the whole graph.
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CHAPTER 4

EVALUATION

In this chapter, we compare the performance of CLoRW, RWCAR and RWCFR with

other algorithms. Before presenting the evaluation results, we first introduce the

datasets that are used in experiments. After that we describe the evaluation method-

ology and metrics. Then location, activity and friend recommendation results are

presented, respectively.

4.1 LBSN Datasets

We employ three different datasets in our experiments, which are Brightkite [10],

Gowalla [10] and Foursqaure [18] datasets. All of these datasets contain users’ lo-

cation check-in data. In the experiments, we employ the filtered versions of these

datasets for New York City. The characteristics of these datasets are given in Table

4.1.

Table 4.1: Dataset Characteristics

Brightkite Gowalla Foursquare
Users 6013 9768 4906
Locations 42494 55181 28095
Activities - - 331
Friendships 27330 44300 26522
Total Check-ins 252200 262004 451263
Check-ins per User 41.94 26.82 91.98
Friends per User 4.55 4.54 5.4
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As seen in Table 4.1, all these datasets have different check-ins per user. On the

other hand, Brightkite and Gowalla have nearly the same number of friends per user.

Foursquare has a higher value of friends per user. Original Foursquare dataset does

not contain activity information. We crawled category information of locations in the

original dataset using Foursquare API to collect activity information. For each loca-

tion coordinate in Foursquare dataset, we queried whether such a location exists in

Foursquare database. If such a location exists, then we use its category as activity in-

formation. Finally, we obtained an updated dataset that contains activity information

in addition to user and location information. We analyze whether the characteristics

of datasets affect the recommendation accuracy or not in our experiments.

4.2 Evaluation Methodology and Metrics

CLoRW, RWCAR and RWCFR are context-aware recommendation algorithms and

they consider spatial context. They populate subgraphs for random walk according

to current location of user that requests recommendation. Therefore, we need to

determine current location of user for each run in evaluation. In order to find out

such points for each user in the dataset, we employ DBSCAN (Density-based spatial

clustering of applications with noise) clustering algorithm [14]. DBSCAN algorithm

clusters each user’s check-in data and each cluster’s center is used as current location

of that user in corresponding run of the algorithm. Since DBSCAN algorithm decides

on the number of clusters itself, each user has different number of clusters hence

different number of runs. In order to determine the number of clusters DBSCAN

employs two parameters, Eps and minimum number of points in a cluster. Eps is

the radius that defines the Eps-neighborhood of a point. This algorithm is able to

detect noisy points according to Eps-neighborhood of a point. If a point does not

have sufficient number of neighbors, then it is skipped during clustering process.

It is important to note that DBSCAN algorithm is only used in processing of datasets

to be used in our evaluation. When our recommendation algorithms are used in real

life, they directly use the current location of the user, hence does not need DBSCAN

or any other clustering algorithm.
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The output of DBSCAN algorithm is a set of clusters for each user. Each cluster

contains check-in data for corresponding user around the center point of the cluster.

Each check-in stores a timestamp for the time of visit. Since our recommendation

algorithms aim to predict the future locations, activities and friends of a user, user’s

check-in data is sorted according to time and partitioned into training and test datasets.

This partition is done according to partition ratio parameter. This parameters defines

the ratio between number of check-ins in training and test datasets.

After we obtain training and test datasets, recommendation algorithm operates on

training datasets of each user and produces the recommendation results. These re-

sults are validated using the corresponding test datasets. We employ two well-known

metrics, precision and recall, while evaluating the results. In order to evaluate preci-

sion and recall values together, we use another metric, F-Measure. There are different

variations of F-Measure, but we use the traditional one which is the harmonic mean of

precision and recall. The formulas that are used for calculation of precision, recall and

F-Measure are given in Equation 4.1, Equation 4.2, and Equation 4.3, respectively.

Precision =
#Recommended Ground Truths

#Recommendations
(4.1)

Recall =
#Recommended Ground Truths

#Ground Truths
(4.2)

F − Measure = 2 ×
Precision × Recall
Precision + Recall

(4.3)

Each experiment is performed for all users in Brighkite, Gowalla and Foursquare

datasets in location and friend recommendation experiments. On the other hand, ac-

tivity recommendation algorithms are only performed on Foursquare dataset because

other datasets do not contain activity information. For each dataset, the average pre-

cision and recall values are calculated for all of the algorithms.
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4.3 Location Recommendation Experiments

There are several location recommendation algorithms in the literature as summa-

rized in Section 2. We identified the common approaches employed by these algo-

rithms and used them as baselines in our evaluation. These algorithms are popularity-

based, friend-based and expert-based baseline location recommendation algorithms

and user-based CF algorithm. We also compare our algorithm with a well-known

multi-criteria location recommendation algorithm, namely USG [50]. In this section,

we evaluate our location recommendation algorithm and compare the results with

these algorithms.

Popularity-based location recommendation suggests the most visited locations in a

geospatial range. Friend-based baseline algorithm recommends the most visited lo-

cations by friends in vicinity. On the other hand, expert-based baseline suggests the

most visited locations by experts.

In user-based CF approach, the general intuition is that similar users visit similar

locations. In this approach a User-Location matrix is constructed. In this matrix,

each entry represents the probability of a particular user to visit a particular location.

Since it is a user-based CF algorithm, as the first step, similarity scores between users

are calculated. This calculation is performed using cosine similarity. Then location

scores for each user are calculated using these similarity scores.

USG is a multi-criteria algorithm that considers user preference (user-based CF), so-

cial influence (friend-based CF) and geographical influence for location recommen-

dation [50]. It fuses user preference, social and geographical influence using a linear

model to predict location scores.

The common configuration parameters and their values for location recommendation

experiments are given in Table 4.2.

4.3.1 CLoRW Parameter Settings Experiments

In the following sections, we aim to analyze the accuracy of CLoRW under changing

number of recommendations, dataset partition ratio and minimum number of check-
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Table 4.2: Common Configuration of Parameter Setting Experiments

Parameter Value
Number of Recommendations 5
Radius 3000 m
Expert Count 3
Popular Location Count 3
DBSCAN Eps 3000 m
DBSCAN Minimum Cluster Points 1
Random Walk Restart Probability 0.1
Dataset Partition Ratio 1
Minimum Number of Check-ins 6

ins. The precision, recall and F-Measure values are calculated for different values of

these parameters. In each experiment only one of the parameters is changed while the

others remain constant, and the effect of that parameter is analyzed.

4.3.1.1 Number of Recommendations

This experiment aims to analyze the change of precision and recall of CLoRW with

respect to number of recommendations. In this experiment, it is also aimed to find the

optimal number of recommendations for CLoRW. The results of this experiment are

shown in Figure 4.1.

As shown in Figure 4.1, the recall of CLoRW increases rapidly while the precision

drops as the number of recommendations increases. CLoRW achieves the best per-

formance when the number of recommendations is 2 (F − measure = 0.421102798)

according to F-measure. However, in other experiments we select the number of rec-

ommendations as 5, because in most of the cases desired number of recommendations

are more than 2.

It is expected that when the number of recommendations increases, recall should also

increase. However, in this experiment and other experiments, if a particular algo-

rithm cannot make desired number of recommendations, then that test result data is

not considered in the evaluation result. For example, if an algorithm cannot sug-

gest more than 2 locations for a user at a particular location, then when the required
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number of recommendations is 3 or more, these results are not considered in the eval-

uation. Therefore, the dataset becomes smaller as the number of recommendation

increases. This situation causes drop in the recall value as the required number of

recommendations increases.
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Figure 4.1: Precision, Recall and F-Measure Values vs. Number of Recommendations

4.3.1.2 Dataset Partition Ratio

This experiment aims to find the behavior of our algorithm when the dataset par-

tition ratio is set as 1, 2 and 3. In this experiment, we want to analyze whether

CLoRW could construct a usable model for different amounts of check-in data. Here

the number of recommendations are fixed to 5 and does not change throughout the

experiment.

The results of this experiment are given in Figure 4.2. CLoRW has the best perfor-

mance when partition ratio is set to 1 and have the lowest performance when it is 3.

Hence, the optimal value for this parameter can be considered as 1. This shows that

in our algorithm, it is not necessary to have a large training data to obtain a successful

prediction model. Another observation is that the precision decreases as the dataset

partition ratio parameter increases. This is due to the fact that as the size of the test
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dataset decreases, it fails to represent user behavior.
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Figure 4.2: Precision, Recall and F-Measure Values vs. Dataset Partition Ratio

4.3.1.3 Minimum Number of Check-ins

Our proposed algorithm considers user’s previous check-ins for recommendation.

Therefore, the number of check-ins may affect the efficiency of CLoRW. In this ex-

periment, we test the accuracy of CLoRW under the changing number of minimum

check-ins. If a particular user’s check-in count in a cluster is lower than the minu-

mum number of check-ins threshold, then the results of that cluster is not taken into

account. In this experiment, we set the minimum number of check-ins to 4, 6, 8 and

10. The number of recommendations and dataset partition ratio are fixed to 5 and 1,

respectively. The results are illustrated in Figure 4.3.

As shown in Figure 4.3, the performance of CLoRW increases as the value of min-

imum number of check-ins increases. Our algorithm achieves the best performance

when the value of minimum number of check-ins is 10. This concludes that the more

locations that a user has visited, the more accurate are the recommendation results

for our algorithm. However, in other experiments minimum number of check-ins is
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Figure 4.3: Precision, Recall and F-Measure Values vs. Min. Number of Check-ins

chosen as 6 because the performance of CLoRW changes slightly when the number

of check-ins is increased, and we do not want to lose much data from the original

dataset.

4.3.2 Comparison with Baselines and Similar Approaches

In order to evaluate our proposed algorithm, CLoRW, we compare it with baselines,

user-based CF location recommendation and USG algorithm [50] using Brightkite,

Gowalla and Foursquare datasets. The baseline location recommendation algorithms

are popularity, friend and expert based location recommendation algorithms. In base-

line tests, we aim to find if our extra considerations from baselines increase location

recommendation accuracy or not. In this experiment the expert count is selected as 3.

In the next section, we further analyze the accuracy of expert baseline and CLoRW

as the number of experts increases. CF-based approaches are widely used in location

recommendation algorithms. In this experiment, we also analyze the performance of

CLoRW in comparison to user-based CF location recommendation algorithm. We

conducted experiments for performance evaluation in comparison to a similar work

in the literature, USG algorithm. USG is a multi-criteria algorithm that considers
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user preference, social influence and geographical influence. Our algorithm is also

a multi-criteria algorithm that considers popular locations, friend locations, local ex-

pert’s locations and user’s own locations to generate recommendations.

The results of the experiments for Brightkite, Gowalla and Foursquare datasets are

given in Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, Figure 4.8, Figure 4.9, and

Figure 4.10, Figure 4.11, Figure 4.12, respectively. The results clearly indicate that

CLoRW outperforms all the baselines and CF-based location recommendation ac-

cording to precision, recall and F-Measure metrics. This shows that it is not sufficient

to consider only friend, popular or expert locations disjointly to generate location rec-

ommendations, instead it is better to recommend locations using a graph structure that

combines all of them. Moreover, CLoRW’s consideration of user’s location history

also increases the accuracy because it is more likely for a user to visit same locations

in the future.
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Figure 4.4: Precision Values of Baselines, CF, USG, and CLoRW vs. Number of
Recommendations for Brightkite Dataset
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Figure 4.5: Recall Values of Baselines, CF, USG, and CLoRW vs. Number of Rec-
ommendations for Brightkite Dataset
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Figure 4.6: F-Measure Values of Baselines, CF, USG, and CLoRW vs. Number of
Recommendations for Brightkite Dataset
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Figure 4.7: Precision Values of Baselines, CF, USG, and CLoRW vs. Number of
Recommendations for Gowalla Dataset
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Figure 4.8: Recall Values of Baselines, CF, USG, and CLoRW vs. Number of Rec-
ommendations for Gowalla Dataset
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Figure 4.9: F-Measure Values of Baselines, CF, USG, and CLoRW vs. Number of
Recommendations for Gowalla Dataset
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Figure 4.10: Precision Values of Baselines, CF, USG, and CLoRW vs. Number of
Recommendations for Foursquare Dataset
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Figure 4.11: Recall Values of Baselines, CF, USG, and CLoRW vs. Number of Rec-
ommendations for Foursquare Dataset
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Figure 4.12: F-Measure Values of Baselines, CF, USG, and CLoRW vs. Number of
Recommendations for Foursquare Dataset
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Friend-based location recommendation algorithm has very poor performance. It has

the lowest recommendation accuracy in nearly all the experiments. This result in-

dicates that the friends of a user cannot span sufficient locations for user’s current

context. If a particular user has few friends, then it is difficult to recommend loca-

tions to that user by using friend-based algorithm. Therefore, we can conclude that

user’s friends themselves are not sufficient for location recommendation.

Expert-based algorithm has higher recommendation accuracy than friend-based base-

line. However, in Gowalla experiments, there are a few cases that friend baseline out-

performs expert baseline. On the other hand, even recommending popular locations

produce more accurate results than expert baseline. This is because only locations of

local experts cannot span enough locations in current location context.

Popularity baseline have nearly the same recommendation accuracy with CF-based

approach. In Gowalla experiments, popularity baseline produce more accurate re-

sults while CF-based approach has higher accuracy in Brightkite experiments. In

Foursquare experiments, the results are nearly the same. Popularity-based baseline

algorithm is widely used in location recommendation. The logic behind this is that

if a location is popular, then it is more probable for other users to visit that location.

However, users have social relationships and their personal preferences. Therefore,

friends and user’s location history may affect user’s future locations. Moreover, opin-

ions of local experts may also influence other users’ decisions. The results in these

experiments also confirm the fact that popularity itself is not sufficient for location

recommendation.

Each baseline considers location recommendation in one dimension. On the other

hand, CLoRW takes friends, popularity, experts and location history into account and

outperforms all the baselines in all of the experiments.

The results also notably show that CLoRW has better performance than user-based

CF location recommendation algorithm. Moreover, if we compare these results with

the baseline results, we see that CF-based approach even cannot outperform the pop-

ularity baseline. Although CF-based approach is widely used in recommendation, we

can conclude that it is not a good candidate for location recommendation.

70



Although USG algorithm considers three different criteria for recommendation, its

performance is even worse than user-based CF algorithm. USG also employ CF for

estimating user preference and social preference. Moreover, it considers the distance

between locations as geographical influence. Our algorithm also considers personal,

social and spatial context. Consideration of multiple influences is important, but it

is more important to combine them using a suitable fusion framework. USG uses a

linear model to fuse final results. On the other hand, we employ a graph model for

fusion of input data (i.e. users, locations, experts) not the results. The experiment

results show that our methodology of fusion is more effective than the methodology

used in USG.

The results obtained across three datasets agree with one another. It is an important

result because it clearly indicates that CLoRW is not a dataset specific location recom-

mendation algorithm. Although, all there datasets have different characteristics such

as check-ins per user and friends per user, CLoRW achieves the best performance in

all of the test cases.

The results also show that check-ins per user parameter affects the recommendation

accuracy. The recommendation accuracy increases as the number of check-ins per

user increases. This is because, if we have higher check-in per user values, we have

large number of check-ins in training and test datasets.

Changing the Number of Experts

In this set of experiments, we further elaborate on the number of experts, as it af-

fects the accuracy of expert-based baseline algorithm and CLoRW. The configuration

parameter values of this experiment is same as the baseline experiments except the

expert count parameter. In this experiment, the expert count is increased up to 10 and

the accuracy results of the algorithms are compared. The results of this experiment

are depicted in Figure 4.13, Figure 4.14 and Figure 4.15.

CLoRW outperforms expert baseline for all values of number of experts. The pre-

cision values of expert baseline and CLoRW nearly do not change as the number of

experts increases. The recall value increases as the expert count increases for both of

the algorithms. However, when the precision and recall values are evaluated together
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Figure 4.13: Precision Values of Expert Baseline and CLoRW
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Figure 4.14: Recall Values of Expert Baseline and CLoRW
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Figure 4.15: F-Measure Values of Expert Baseline and CLoRW

using F-Measure, we see that the performance of expert baseline and CloRW does

not change when the number of experts is increased. This indicates that it is better to

represent a locality with fewer but reasonable number of experts.

4.3.3 Comparison between CLoRW and CLoRW_A

CLoRW_A employs activities in location recommendation different from CLoRW.

The datasets that we use in our experiments originally do not contain activity informa-

tion. They only contain users, locations (latitude, longitude) and check-ins informa-

tion. Brightkite and Gowalla services have become obsolete recently. Therefore, we

do not have the chance of enriching these datasets with activity information through

these services. Firstly, we try to enrich these datasets based on each location’s coordi-

nates. We employ Google Places service to match the coordinate information of each

location with the locations that are stored in these services. However, we realized that

there are several location candidates for a particular coordinate information in most of

the cases. Therefore, it is hard to match our locations with the one in Google Places

database.
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Figure 4.16: Precision Values of CLoRW and CLoRW_A for Foursquare Dataset
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Figure 4.17: Recall Values of CLoRW and CLoRW_A for Foursquare Dataset
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Figure 4.18: F-Measure Values of CLoRW and CLoRW_A for Foursquare Dataset

The Fourquare dataset that we employ in our experiments also only contain coordi-

nate information for each location. However, Foursquare is an active service. Our

test dataset is also crawled from Foursquare service and we think that location co-

ordinates should match with the locations in Foursquare database. Therefore, as a

second solution, we use Foursquare API and try to match our locations. We were able

to match nearly 12% of locations in our dataset. Foursquare location categories are

used as activities to enrich our original test dataset. This dataset is used in evaluation

of CLoRW_A. The evaluation results are compared with the results of CLoRW. These

results are given in Figure 4.16, Figure 4.17, and Figure 4.18.

The results show that adding activities to our model nearly does not affect location

recommendation accuracy. However, CLoRW_A can recommend locations when

CLoRW cannot produce any recommendation results, since new model contains more

locations. We further analyze whether CLoRW_A can perform better than CLoRW

when we only consider the cases that CLoRW can produce recommendation results.

Therefore, we filter the CLoRW_A results to analyze the results deeply. The re-

sults are given in Figure 4.19, Figure 4.20, and Figure 4.21. The filtered version of

CLoRW_A is renamed as CLoRW_A_F in result charts.
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Figure 4.19: Precision Values of CLoRW and CLoRW_A_F for Foursquare Dataset
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Figure 4.20: Recall Values of CLoRW and CLoRW_A_F for Foursquare Dataset
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Figure 4.21: F-Measure Values of CLoRW and CLoRW_A_F for Foursquare Dataset

According to the results, CLoRW, CLoRW_A and CLoRW_A_F have nearly same

recommendation accuracy. In other words, we are not able to improve our location

recommendation accuracy. However, we increased the size of the set of locations that

can be recommended in each case. Moreover, we can employ the newly constructed

model that contains activity nodes in activity recommendation.

4.3.4 Location-Location Edges Experiments

In this experiment, we test whether adding location-location edges to our undirected

unweighted graph model increases CLoRW’s performance or not. In order to achieve

this, we setup location-location edges using different values of neighborhood ra-

dius. If a location is in another location’s neighborhood than an edge is added to

graph. When the neighborhood radius is set to 0, the algorithm is identical to original

CLoRW. The results of this experiment is given in Figure 4.22.

According to results in Figure 4.22, the best performance is achieved when neigh-

borhood radius is 0 (i.e. no direct edges exist between locations). This result clearly

indicates that consideration of distance between locations as a similarity measure

worsens the performance of CLoRW. In other words, distance is not a good candidate
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Figure 4.22: Precision, Recall and F-Measure Values versus Neighborhood Radius

measure for estimating the similarity between locations.

4.3.5 Weighted Location Recommendation Experiments

CLoRW employs an undirected unweighted graph model to recommend locations.

We also try to develop the weighted version of CLoRW, Context-Aware Location

Recommendation with Weighted Random Walk (CLoWRW). In this experiment we

setup edges between a particular user and his/her locations for each check-in. In

CLoRW, there is a single edge between a user and a location even if there are several

check-ins to that location by that user. However, in this experiment there are number

of check-in count of edges between a user and a location. This procedure is identical

to assigning the check-in count as weight to user-location edges. The results of this

experiment are given in Figure 4.23.

According to the results, CLoWRW produces slightly better results when compared

to CLoRW for all three types of metrics. This result indicates that the check-in count

of a user to a location is a good candidate similarity measure between a user and a

location.
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Figure 4.23: Precision, Recall and F-Measure Values of CLoRW and CLoWRW
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Figure 4.24: Precision, Recall and F-Measure Values of CLoRW and CLoWRW-
VisitCount
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Figure 4.25: Precision, Recall and F-Measure Values of CLoRW and CLoWRW-
Temporal

In later experiments, we try two different parameters for assigning weights to user-

location edges. These are location node’s visit count and temporal check-in rate. The

details of these parameters are given in Section 3.3.1.5. As mentioned in that section,

we have two different parameters and two different strategies, hence four different

experiments. The results of these experiments are shown in Figure 4.24 and Figure

4.25.

As seen from the figures, neither visit count parameter nor temporal check-in parame-

ter is able to produce better results than CLoRW for both of the strategies. Therefore,

we decide not to employ these parameters in our location recommendation algorithm.

4.4 Activity Recommendation Experiments

We conduct several experiments to compare the performance of our activity recom-

mendation algorithm (RWCAR) with three different algorithms. These algorithms

represent the common approaches that are employed in location and activity rec-

ommendation studies in the literature. We use these approaches as baselines in our

evaluation. The definitions of these baselines are given below:
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Table 4.3: Activity Experiments Configuration

Parameter Value
Random Walk Restart Probability 0.1
Radius 3000 m
Expert Count 3
Popular Activity Count 3
DBSCAN Eps 3000 m
DBSCAN Minimum Cluster Points 1
Dataset Partition Ratio 1
Minimum Number of Check-ins 6

Popularity-Based Activity Recommendation (PBAR): Recommends the most per-

formed activities in recommendation region.

Friend-Based Activity Recommendation (FBAR): Considers the friend links and

recommends the most performed activities by friends in vicinity.

Expert-Based Activity Recommendation (EBAR): Considers the experts and their

activities and recommends the most performed activities by experts in vicinity.

The common configuration parameters and their values for activity recommendation

experiments are given in Table 4.3.

4.4.1 Comparison with Baselines

In this section, we compare RWCAR with other algorithms. The results of experi-

ments that are conducted on Foursquare dataset are given in Figure 4.26, 4.27 and

4.28. The results are produced for different number of recommendations (i.e. 1,2,3,4

and 5). The results clearly indicate that RWCAR outperforms FBAR, EBAR and

PBAR considering precision, recall and F-Measure metrics. RWCAR is a multi-

criteria algorithm and considers friendships, experts and popularity together. Our al-

gorithm fuses all these data by using an LBSN model. Moreover, RWCAR employs

user’s location and activity history as personal context. On the other hand, other algo-

rithms consider friendships, expert users and popularity disjointly and do not provide

a data fusion framework.
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Figure 4.26: Precision Values of Baselines and RWCAR vs. Number of Recommen-
dations for Foursquare Dataset
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Figure 4.27: Recall Values of Baselines and RWCAR vs. Number of Recommenda-
tions for Foursquare Dataset
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Figure 4.28: F-Measure Values of Baselines and RWCAR vs. Number of Recom-
mendations for Foursquare Dataset

FBAR has the poorest performance among all the algorithms. When number of rec-

ommendations is 5, its precision value is greater than EBAR’s. However, in the same

case, when precision and recall values are considered together EBAR has higher rec-

ommendation accuracy. Therefore, we can conclude that FBAR has the lowest recom-

mendation accuracy in all the experiments. This results shows that friends of a user

itself is not sufficient for generating accurate activity recommendations. Moreover,

FBAR is not a suitable algorithm who has few friends in the network.

EBAR has higher recommendation accuracy than FBAR, but PBAR’s performance is

higher than EBAR in all of the experiments. This shows that local activity experts are

more useful than friends in activity recommendation. However, PBAR and RWCAR

still have more recommendation accuracy than EBAR. This shows that EBAR is a

better choice than FBAR, but it still cannot span enough activities in current spatial

context.

Popularity-based techniques are widely used in recommendation. It is a simple ap-

proach, but it produces reasonable results because popular items (e.g. activities) are

very strong candidates for recommendation. The logic behind PBAR algorithm is

that if an activity is popular in vicinity, then it is more probable for other users to
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perform that activity in the same region. However, PBAR does not consider users’

social links (i.e. friends), personal preferences (i.e. user’s location/activity history)

and does not ask experts’ opinions about the region. This lack of consideration puts

PBAR behind RWCAR. However, PBAR’s performance is significantly greater than

EBAR and FBAR’s performance. This shows that popularity is a valuable feature for

activity recommendation, but popularity itself is not satisfactory for activity recom-

mendation.

4.5 Friend Recommendation Experiments

In order to compare the performance of our friend recommendation algorithm, we

conduct several experiments. The common configuration parameters and values for

friend recommendation experiments are given in Table 4.4.

Table 4.4: Friend Experiments Configuration

Parameter Value
Random Walk Restart Probability 0.1
Radius 3000 m
Expert Count 3
Popular Location Count 3
DBSCAN Eps 3000 m
DBSCAN Minimum Cluster Points 1
Dataset Partition Ratio 1
Minimum Number of Check-ins 6
Minimum Number of Friends 6

In these experiments we employ three different algorithms for comparison. These

algorithms are common approaches that are used in location, activity and friend rec-

ommendation. These approaches are employed as baseline algorithms in experiments.

The definitions of these baselines are given below:

Popularity-Based Friend Recommendation (PBFR): Recommends the users that

have check-ins in recommendation region and have the highest number of friends.

Friend-Based Friend Recommendation (FBFR): Recommends the second degree

friends (i.e. friends of friends) sorted by the number of friends.
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Expert-Based Friend Recommendation (EBFR): Recommends the friends of local

experts that have the highest number of friends.

4.5.1 Comparison with Baselines

In this section we compare RWCFR with baseline friend recommendation algorithms.

The experiments are conducted on three different datasets, which are Brightkite,

Gowalla and Foursquare datasets. The results of the experiments are given in Fig-

ure 4.29, Figure 4.30, Figure 4.31, Figure 4.32, Figure 4.33, Figure 4.34, and Figure

4.35, Figure 4.36, Figure 4.37, respectively.

As reported by the results, it is clear that RWCFR outperforms PBFR, FBFR and

EBFR considering precision, recall and F-Measure metrics. RWCFR is a multi-

criteria algorithm and it considers popularity, friendships and local experts together.

The proposed LBSN model fuses these data seamlessly. In addition to this, our friend

recommendation algorithm also takes user’s personal preference into consideration.

However, other algorithms are based on a single consideration and they do not provide

a data fusion model.
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Figure 4.29: Precision Values of Baselines, and RWCFR vs. Number of Recommen-
dations for Brightkite Dataset
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Figure 4.30: Recall Values of Baselines, and RWCFR vs. Number of Recommenda-
tions for Brightkite Dataset

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5

F-
M

e
as

u
re

Number of Recommendations

PBFR FBFR EBFR RWCFR

Figure 4.31: F-Measure Values of Baselines, and RWCFR vs. Number of Recom-
mendations for Brightkite Dataset
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Figure 4.32: Precision Values of Baselines, and RWCFR vs. Number of Recommen-
dations for Gowalla Dataset
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Figure 4.33: Recall Values of Baselines, and RWCFR vs. Number of Recommenda-
tions for Gowalla Dataset
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Figure 4.34: F-Measure Values of Baselines, and RWCFR vs. Number of Recom-
mendations for Gowalla Dataset
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Figure 4.35: Precision Values of Baselines, and RWCFR vs. Number of Recommen-
dations for Foursquare Dataset
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Figure 4.36: Recall Values of Baselines, and RWCFR vs. Number of Recommenda-
tions for Foursquare Dataset
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Figure 4.37: F-Measure Values of Baselines, and RWCFR vs. Number of Recom-
mendations for Foursquare Dataset
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In Brighkite and Foursquare experiments, FBFR has the lowest performance among

all the algorithms. In Gowalla experiments, it is the second algorithm in terms of

recommendation accuracy. However, it is still behind the performance of RWCFR.

As mentioned before FBFR recommends the second degree friends. If a user has

few friends, it is difficult for FBFR to recommend friend of friends. In other words,

FBFR cannot span enough number of potential friends. Moreover, in the cases FBFR

produces enough number of recommendations, the accuracy of it is very low. Hence,

we can conclude that friend of friends are useful for friend recommendation but it is

not sufficient for friend recommendation.

PBFR has the lowest performance in Gowalla experiments. In other experiments it is

slightly better than FBFR but it still has lower performance than EBFR and RWCFR.

Popularity-based techniques are simple and widely used in recommendation. Al-

though it is a simple approach, the results produced by popularity-based approaches

are reasonable because popular items target the majority of the audience. PBFR rec-

ommends the users that have check-ins in vicinity and have the highest number of

friends. However, it does not consider social context (i.e. friendship links) of the

user. Moreover, it does not ask the opinion of local experts. It also does not consider

the personal preferences of the user. All these reasons put PBFR behind RWCFR.

Popularity is still a reasonable friend recommendation approach because it produces

better results than FBFR in most of the cases. However, popularity should be com-

bined with other approaches to produce more accurate results, as in RWCFR.

EBFR asks the opinions of the local experts for friend recommendation. Local experts

are very useful in location and activity recommendation. The friend recommendation

results show that experts are also good at recommending friends to the users. It has

the highest performance after RWCFR in Brightkite and Foursquare experiments. In

Gowalla experiments it is the third algorithm in terms of recommendation accuracy.

EBFR is a better choice in recommendation compared to FBFR and PBFR. However,

EBFR is still not able to span enough friends for recommendation.

RWCFR considers popularity, local experts and second degree friends in friend rec-

ommendation. Moreover, it also take local history and place friends into considera-

tion. All these data are combined with the help of proposed LBSN model and with the
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power of random walk RWCFR produces more accurate results than all the baselines.

RWCFR has the highest performance for each of the datasets. This results clearly

indicates that RWCFR is a stable friend recommendation algorithm for LBSNs.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The data collected from LBSNs can be utilized for building recommendation systems

for users. In our study, we aim to build a recommendation system for LBSNs which

can suggest locations, activities and friends to users according their current context.

We propose a graph model to represent LBSN data. This model includes user, lo-

cation and activity nodes and relationships between these nodes. Our LBSN model

represents an LBSN as an undirected unweighted graph. By applying a random walk

approach on the personalized versions of these graphs, we can rank locations, ac-

tivities and users. Recommendation lists for each type can be populated based on

these rankings. We introduce three novel context-aware recommendation algorithms,

CLoRW, RWCAR and RWCFR for LBSNs. They recommend locations, activities

and friends to users, respectively.

We evaluate our location recommendation algorithm, CLoRW, by comparing it with

popularity-based, friend-based, expert-based baselines and CF-based location recom-

mendation approach using three different LBSN datasets. Moreover, we compare

CLoRW with a well-known location recommendation algorithm, USG. In the exper-

iments, we use the subset of Brightkite, Gowalla and Foursquare datasets that are

filtered for New York City. In order to measure the effectiveness of the algorithms,

we employ precision and recall metrics. We also calculate the F-measure to compare

precision and recall values.

Our proposed location recommendation algorithm outperforms all the baselines, CF-

based approach and USG in all of the experiments. This shows that consideration

of friends and experts, which defines the social context, yields better results. More-
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over, when the previous location history is employed for location recommendation

as in our algorithm, the prediction accuracy increases. According the results USG

experiments, we realized that consideration of multiple influences is important, but it

is more important to combine them using suitable a fusion framework. USG uses a

linear model to fuse final results. On the other hand, we employ a graph model for

fusion of input data (i.e. users, locations, experts) not the results. The experiment

results show that our methodology of fusion is more effective than the methodology

used in USG.

In order to evaluate our activity recommendation algorithm, RWCAR, we compare

it with friend-based, expert-based and popularity-based activity recommendation ap-

proaches. We use the Foursquare LBSN dataset in evaluation. We further enrich this

dataset with activity information using the Foursquare API. According to the results

of the experiments, RWCAR outperforms all the baselines. This clearly indicates that

consideration of user’s location and activity history, social relations and local activity

experts together in activity recommendation yields better results.

Similar to RWCAR evaluation, we compare our friend recommendation algorithm,

RWCFR, with friend-based, expert-based and popularity-based friend recommen-

dation baselines. In experiments, we employ Brightkite, Gowalla and Foursqaure

datasets. RWCFR performs better than all the baselines for all of the datasets. This is

because of that RWCFR is a multi-criteria algorithm similar to CLoRW and RWCAR.

It considers personal, spatial and social context together and fuses this data using the

proposed LBSN model.

One of the major strength of our recommendation methods is that they are suitable for

dynamic environments. CF-based and model based recommendation approaches need

to update their models and structures (e.g. tensors) periodically due to inclusion of

new check-in data. On the other hand, CLoRW, RWCAR and RWCFR construct their

local recommendation graph online using efficient graph queries and does not need

to keep static models or structures that need to be updated periodically. Therefore,

our recommendation algorithms can easily be employed in online systems without

bringing extra processing overhead to server side.

All the results clearly point out the correctness of the LBSN model. Our proposed
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LBSN model is easy to extend. Therefore, other LBSN elements can easily be added

to this model. The results also indicate that random walk is a good choice for ranking

the connected items on a graph.

As a future work, our work can be extended to provide recommendations for groups

by extracting the common features of group members and adding those features as

contextual information to our subgraph. In addition to this, our proposed recommen-

dation algorithms can easily be employed in mobile applications which allows col-

lecting more contextual information about the users. This contextual information can

be used in subgraph construction to provide more accurate recommendation results.
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