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ABSTRACT 
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1,3-GLUCANASE ISOLATED FROM PICHIA ANOMALA NCYC 434, BY 

USING EXCIPIENTS AND COMPUTATIONAL METHODS 
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M.S., Department of Biomedical Engineering 

Supervisor: Prof. Dr. Fatih İzgü 

Co-Supervisor: Assoc. Prof. Dr. Çağdaş D. Son 

 

December 2015, 126 pages 

 

  

As the risks for fungal infections increased, the prevalence of invasive fungal 

infections increased. Therefore, the demand for antifungal agents has risen. Moreover, 

the currently used antifungal agents have serious side effects and resistance 

development resulting from their mechanisms of action. Thus, novel antifungal agents 

with mechanisms that will not affect the host mammalian cells are in need. Yeast killer 

proteins which are naturally occuring toxins are good candidates for such types of 

agents. Panomycocin is an example for this type of killer proteins. Panomycocin is a 

killer toxin of Pichia anomala NCYC 434 (K5). It has exo-β-1,3-glucanase activity. It 

kills the sensitive cells by hydrolyzing β-1,3-glucans that are crucial in maintaining 

the integrity of fungal cell wall. However, its activity decreases above 37ºC. In this 

work various types of excipients were used to increase the thermostability of 

Panomycocin so that it would be active at higher temperatures. Gradient 

concentrations of these excipients along with the protein were tested on 

Saccharomyces cerevisiae NCYC 1006 at increasing temperatures. If the excipients 

tested increase the thermostability, this will give us the opportunity to choose suitable 

excipients that can be used in the formulation of Panomycocin as a novel antifungal 
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drug. Since the effect of excipients on thermostability is limited, computational 

methods were also used to design a thermostable protein at much higher temperatures. 

Homology modeling of the protein was performed first. After the binding site of the 

protein was predicted, the best thermostabilizing positions in the model generated were 

detected utilizing various computer programs and servers. Although the excipients 

tested did not increase the thermostability of the protein, we found the best amino acid 

residues in the model whose substitutions can increase the thermostability of the 

protein to the desired level. In the allosteric part of the protein Leu52Arg, Phe223Arg 

and Gly254Arg were found to be the best thermostabilizing mutations with 6.26 K, 

6.26 K and 8.27 K temperature increases respectively. In the binding site Glu186Arg 

was found to be the best thermostabilizer mutation with 9.58 K temperature increase. 

Using the results mutant thermostable protein can be obtained and this will enable the 

formulation of Panomycocin as a novel antifungal drug with high thermostability. 

 

Keywords: Computational; excipient; homology modeling; Panomycocin; 

thermostability. 
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ÖZ 

 

 

PİCHİA ANOMALA NCYC 434’TEN İZOLE EDİLMİŞ YENİ BİR EKZO-

BETA-1,3-GLUKANAZ OLAN PANOMİKOSİN’İN YARDIMCI 

MADDELER VE BİLGİSAYAR PROGRAMLAR KULLANILARAK 

TERMOSTABİLİTESİNİN ARTIRILMASI 

 

Muhammed, Muhammed Tilahun 

Yüksek Lisans, Biyomedikal Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Fatih İzgü 

Ortak Tez Yöneticisi: Doç. Dr. Çağdaş D. Son 

 

Aralık 2015, 126 sayfa 

 

 

Mantar enfeksiyonlarına neden olan risklerin artmasıyla, invaziv mantar hastalığı 

yaygınlaşmıştır. Bundan dolayı antifungal ilaçlarına talep artmıştır. Ayrıca şu anda 

kullanılmakta olan antifungal ilaçların etki mekanizmalarından dolayı ciddi yan 

etkileri bulunmaktadır ve onlara karşı direnç gelişmektedir. Dolaysıyla etki 

mekanizmaları memeli hücrelerini etkilemeyen yeni antifungal ilaçlara ihtiyaç 

duyulmaktadır. Doğal ortamda oluşan toksik, maya öldürücü proteinler bunun gibi 

ilaçlara iyi bir örnek teşkil etmektedir. Panomikosin de bu tür öldürücü proteinlere 

örnektir. Panomikosin Pichia anomala NCYC 434 maya suşunun (K5) öldürücü 

toksinidir. Ekzo-β-1,3-glukanaz aktivitesi bulunmaktadır. Mantar hücresinin duvar 

bütünlüğünün korunmasında önemli olan β-1,3-glukanı hidrolize ederek proteine karşı 

hassas olan hücreleri öldürür. Ancak 37ºC’den sonra proteinin aktivitesi azalmaktadır. 

Bu çalışmada Panomikosin’nin termostabilitesinin çeşitli yardımcı maddeler 

kullanılarak artırılmasıyla daha yüksek sıcaklıklarda etkin olması amaçlanmıştır. 

Çeşitli konsantrasyonlarda hazırlanan yardımcı maddeler protein ile birlikte 

Saccharomyces cerevisiae NCYC 1006 üzerinde sıcaklığı artırarak denenmiştir. 

Yardımcı maddeler protein termostabilitesini arttırmasını sağlarsa Panomikosin’in 
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yeni bir antifungal ilaç olarak formülasyon geliştirilmesinde kullanılabilecek yardımcı 

maddeleri seçme fırsatı verecektir. Yardımcı maddelerin termostabilite üzerindeki 

etkileri sınırlı olduğundan daha yüksek sıcaklıklarda termostabil olan bir protein 

tasarlamak için bilgisayar programlar da kullanılmıştır. Önce proteinin homoloji 

modellemesi yapılmıştır. Proteinin bağlanma noktaları bulunduktan sonra çeşitli 

programlar ve serverler kullanılarak geliştirilmiş model üzerindeki en iyi 

termostabilize eden noktalar tespit edilmiştir. Test edilen yardımıcı maddelerin 

proteinin termostabilitesini artırmamasına rağmen mutasyon ile termostabiliteyi 

istenilen dereceye artırabilen model üzerindeki en iyi amino asit noktaları tespit 

edilmiştir. Proteinin alosterik bölgesinde Leu52Arg, Phe223Arg ve Gly254Arg 

mutasyonlar sırasıyla 6.26 K, 6.26 K ve 8.27 K sıcaklık artışı sağlayabilecek en iyi 

termostabilize eden noktalar oldukları bulunmuştur. Bağlanma noktasında Glu186Arg 

mutasyonu 9.58 K sıcaklık artışı sağlayabilecek en iyi termostabilize eden nokta 

olduğu bulunmuştur. Sonucu kullanarak mutant termostabil protein elde edilebilir ve 

bu da termostabilitesi yüksek olan yeni bir antifungal ilaç olan Panomikosin 

formülasyonun yapılmasında yardımcı olacaktır. 

 

Anahtar kelimeler: Bilgisayar programlar; homoloji modelleme; Panomikosin; 

termostabilite; yardımcı maddeler. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Participation of fungi in the aetiology of infections has increased significantly [1,2]. 

Extensive use of wide spectrum antibiotics for a long time, acquired resistance 

development of pathogenic fungi towards commonly used drugs, immunosuppressive 

diseases like AIDS, cancer and organ transplant patients, the use of chemotherapeutic 

drugs, the use of corticoids for a long time and invasive medical interventions 

increased the risk of fungal infections [3-5]. Furthermore advances in medical 

technology has increased the survival of patients with harsh and life threatening 

diseases has led to a rapid increase in the immunosuppressed population [6]. There is 

a correlation between these changes and the high increase in the rate of invasive fungal 

infections. World Health Organization (WHO) reports also show the increase in the 

prevalence of these infections in the last decades. As a result the demand for antifungal 

agents to combat with these infections has risen. According to BCC Research report 

the world market for human antifungal agents was approximately 11.6 billion USD in 

2012 and 11.8 billion USD in 2013. The global market is expected to grow 

approximately to 13.9 billion USD in 2018 with a compound annual growth rate of 

3.2% from 2013 to 2018 [7]. 

 

1.1 Antifungal Agents 

 

Developments in this area started with the discovery of griseofulvin, which was the 

earliest chemical substance declared to show inhibition of fungi in a selective manner. 

In 1955 a significant development was amphotericin B and in 1961 flucytosine was 

reported as an antifungal agent. The discovery of the azole groups was an important 
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advance in the area. In 1981 ketoconazole was introduced as an oral agent which is an 

important advance in the exploration of new antifungal agents for the treatment of 

systemic fungal infections. In the early 2000s echinocandins entered the market. These 

antifungal agents are natural products which are safe, have minimal drug interactions 

and good pharmacokinetics [8-10]. 

 

Currently used antifungal drugs can be generally classified according to their 

mechanisms of action (figure 1.1). 

 

Antifungal agents that target cell membrane specifically act on ergosterol, the major 

sterol of the cell membrane of many pathogenic fungi and essential for membrane 

structural unity. They bring their actions by inhibiting 14-α-demethylase in the 

biosynthetic pathway of ergosterol which is important in the conversion of lanosterol 

to ergosterol; binding to ergosterol that results in the formation of porin channels and 

leakage of plasma components. Hence it causes transmembrane potential loss, 

problematic cellular function and ergosterol biosynthesis inhibition. Azoles, polyenes, 

allylamines and morpholines act in this way. 

 

Those that target cell wall bring their action by binding and inhibiting β-1,3-D-glucan 

synthase enzyme complex responsible for β-1,3-D-glucan polysaccharides synthesis, 

the crucial structural components of the cell wall in various commonly seen pathogenic 

fungi. As a result of the actions of those agents, fungal cells can not maintain their 

integrity as a result of the loss of glucans which leads to osmotic stress and later to 

fungal cell lysis, especially in cells that are under rapid growth. Echinocandins are 

examples for this. 

 

Pyrimidine analogues exert their action by interfering with the metabolism of 

pyrimidine which impairs DNA, RNA and protein synthesis. They are taken up into 

the fungal cell selectively, deamination into 5-fluorouracil (5-FU) with cytosine 

deaminase and then convertion into 5-fluorouridylic acid takes place. Finally this is 

phosphorylated by uracil phosphoribosyl transferase that inhibits thymidylate 

synthase. Incorporation of 5-FU into RNA causes RNA miscoding, early chain 

termination and disruption of protein synthesis. There is also convertion of 5-
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Fluorouracil to 5-fluorodeoxyuridine monophosphate which is an inhibitor of 

thymidylate synthase. Thymidylate synthase takes part in DNA synthesis and nuclear 

division and thus its inhibition subsequently causes disruption of DNA synthesis. 

Mitotic inhibitors act by binding to tubulin and interfering with microtubule formation 

[11-15]. 

 

 

 

 

 

Figure 1.1 Mechanisms of currently used antifungal agents and their cellular targets 

[13]. 
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1.2 Resistance Development and Side Effects of Currently Used Antifungal Agents 

 

Antifungal drug resistance is the absence of sensitivity of pathogenic fungi to an 

antifungal drug resulting in the failure of antifungal treatments. Primary, secondary 

and clinical antifungal resistances are types of resistance. Primary resistance is present 

naturally among specific fungi species without exposure to antifungal drug before. 

Secondary resistance is gained by initially susceptible fungal strains after exposure to 

the antifungal drug. Clinical resistance is the failure of antifungal therapy or 

reoccurring of an infection by a fully sensitive fungi to the antifungal drug used 

[14,15]. 

 

Antifungal resistance can develop specifically by increased efflux of the drug by up 

regulation of multidrug transporter genes leading to decreased drug concentrations; 

alteration of target site due to mutations that reduces the binding of the drug to the 

target site; up regulation of target enzyme resulting from gene amplification, high rate 

of transcription or low rate of the degradation of the gene product; development of 

bypass pathways in the ergosterol biosynthetic pathway due to the change of particular 

steps; reduced uptake of drug due to decreased permeability (polyenes and pyrimidine 

analogues); decreased conversion to toxic antimetabolites (pyrimidine analogues) 

[12,14,16]. 

 

Hepatotoxicity, GI (gastrointestinal) disturbances, nephrotoxicity, fever, headache, 

chills, phlebitis, anaemia, bone marrow suppression, pruritus, thrombophlebitis and 

Stevens-Johnson syndrome are the common side effects of currently used antifungal 

agents [13,17]. 

 

In addition to resistance and many side effects there is unfavourable interaction with 

other medications, their spectrum of activity is low, limited formulation, many of them 

are fungistatic. This is mainly because fungi cells are eukaryotic and therefore they 

have common biochemical pathways and subcellular structures with mammalian cells. 

Antifungal drugs which target cell wall components of fungi have some special 

superiorities over the action mechanisms of the other antifungal agents because they 
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act selectively on the fungi and the acquired resistance development against the other 

antifungal drugs is low. Their wide spectrum fungicidal activity with minimal effect 

on mammalian cells and their potential to act on resistant strains which are now 

appearing due to therapy using the current antifungal drugs with a low tendency to 

raise resistance makes them a promising, attractive novel group of antifungal agents 

[11,18-20]. 

 

1.3 Yeast Killer Proteins and Their Applications 

 

Yeast killer proteins are naturally produced toxins which are secreted by killer yeast 

strains. They kill sensitive yeast cells and their related genera but they do not kill their 

own genera resulting from their autoimmunity mechanisms. They are low molecular 

mass proteins that are lethal to sensitive yeast and fungal strains without cell–cell 

contact. Studied yeast killer proteins are generally sensitive to heat, susceptible to 

proteases, and show their activity within narrow pH and temperature ranges, and 

display their action at acidic environments [21-24]. 

 

Based on their killing spectra and immunity cross reactions of the strains, yeast killer 

proteins are classified into eleven groups (K1-K11) [25,26]. In addition to killer yeasts 

there are non-killer strains that do not secrete a killer protein but immune to a particular 

killer protein. 

 

There are various yeast killer toxins with different modes of action, structures and 

growth processes. They mainly exert their action by hydrolyzing or inhibiting the 

synthesis of β-1,3-glucans which are the major cell wall components and forming ion 

channels on plasma membrane leading to ion leakage. Furthermore they act by 

inhibiting the DNA synthesis and blocking the cell cycle in G1 phase [27]. 

 

Yeast killer proteins have been used as starter culture to combat with contaminating 

yeasts in the production of bread, beer and wine, biocontrol systems for food 

preservation and as secretion vectors. In addition to biotechnological applications, 

yeast killer proteins have been suggested as novel, attractive potential antifungal 

agents [22,23,27]. 
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1.3.1 Structure, Processing and Secretion of Yeast Killer Proteins 

 

Toxin secretion pathways of K1 and K28 which are secreted by S. cerevisiae are fully 

identified. Although these two killer proteins are different in amino acid compositions 

and mechanisms of action, their synthesis, processing and secretion displays 

significant similarities. K1 and K28 toxins consist of two distinct disulfide bonded 

unglycosylated subunits, termed α and β and these domains flank a segment called γ, 

which is not part of the mature toxin and assumed to be the immunity determinant. 

Killer toxins are initially translated as preprotoxin which undergoes post-translational 

modifications within the endoplasmic reticulum and the Golgi complex until it is 

finally secreted as mature α/β heterodimeric protein toxin [23]. 

 

After synthesis the preprotoxin enters the endoplasmic reticulum with the help of a 

highly hydrophobic signal peptide in the N-terminal region. The signal peptide is cut 

by a peptidase that perhaps cleaves to produce protoxin. In the endoplasmic reticulum, 

the γ domain is N-glycosylated and folds into a form suitable for translocation to the 

Golgi and for further processing. In the Golgi apparatus the products of genes KEX1 

and KEX2 are also apparently involved. KEX1 and KEX2 genes were found to encode 

proteases that are important for the processing of the killer toxin and α factor precursor 

proteins. The combined action of these two proteases yields mature toxin from 

protoxin. Kex2p, the gene product of KEX2, is an endopeptidase and cleaves the pro-

region, removes the intramolecular γ sequence. Kex1p, the product of KEX1, is a 

carboxypeptidase which cleaves the C terminal basic dipeptide exposed by Kex2p 

action. Then mature toxin is transferred to a secretory vesicle and secreted out of the 

cell. Secretion process is possible with the products of SEC genes [23,28-30]. The 

secretion pathway of K28 is depicted in figure 1.2. 
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Figure 1.2 Secretory pathway of killer toxin K28 in S. cerevisiae [23]. 

 

 

 

1.4 K5 Type Yeast Killer Protein, Panomycocin 

 

K5 type yeast killer protein is produced by Pichia anomala NCYC 434.  P. anomala 

toxins have been found to have a broad killing spectrum with relatively high stability. 

Among P. anomala, the NCYC 434 strain has been extensively studied for various 

applications. The purification and characterization of the killer protein of P. anomala 

NCYC 434 was made and named as Panomycocin [27,31,32]. 

 

Panomycocin is a glycosylated monomeric protein. Its molecular mass is 49 kDa and 

it has a pI value of 3.7. Temperature and pH stability testing of the toxin shows that 

the optimum pH value is 4.5 and the optimum temperature for the toxin activity is 25 

ºC [33]. The pH stability is given in figure 1.3. 
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Figure 1.3 pH stability of Panomycocin [33]. 

 

 

 

The N-terminal of Panomycocin was sequenced and gave GDYWDYQNDKIR 

sequence. The internal amino acid sequencing also gave LNDFWQQGYHNL, 

IPIGYWAFQLLDNDPY and YGGSDYGDVVIGIELL sequences. These have 100% 

similarity with the mature secreted exo-β-1,3-glucanase ( with accession number 

AJ222862) of P. anomala strain K which is a glycoprotein with molecular mass of 

45.7 kDa and has a pI value of 4.7 [27,33]. 

 

Panomycocin exerts its lethal effect by hydrolyzing β-1,3- glucan residues of the cell 

wall of sensitive fungal cells and causes loss of cell wall rigidity which leads to cell 

death due to the osmotic pressure. Further studies on its mode of action shows that it 

exerts hydrolytic activity on the β-1,3- glucans in an exo like manner [32]. 
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Study on the effects of metal ions on the activity of the toxin showed that its activity 

is inhibited by Hg+2, but increases with other metal ions like Ba+2, Ni+2, Cr+2, Zn+2; 

most of all by Pb+2 [32]. 

 

In vitro activity of Panomycocin was tested against nine dermatophyte strains and all 

of them were found to be susceptible to Panomycocin [34]. Moreover, Panomycocin 

was found to have the in vitro killing activity against human isolates of pathogenic 

Candida spp. that cause candidiasis and showed in vitro and in vivo activities against 

Penicillium digitatum and P. italicum isolates that cause green mold and blue mold 

diseases in citrus fruits [35,36]. 

  

Panomycocin is a potent antifungal protein that can be used in the therapy of fungal 

infections due to its novel mechanism of action, high selectivity and relative stability. 

However, its activity decreases above 37 ºC. Thermal stability of Panomycocin should 

be increased so that formulations that are stable at high temperatures can be prepared. 

 

1.5 Protein Thermostability 

 

Thermostability is the resistance to irreversibility of chemical or physical changes of 

a substance due to elevation in temperature. Protein thermostability is, therefore, the 

preservation of the unique structure and chemical properties of polypeptide chains 

under extreme temperatures [37]. Proteins with high thermostability are needed in 

various industrial, bioanalytical and pharmaceutical applications [38]. 

 

The ability to produce proteins of desired sequence in vitro and in vivo has led to 

attempts for production of proteins with increased thermostability [39]. Thermostable 

proteins may be obtained by protein engineering or by looking for homologs in the 

thermophiles. When a protein is a eukaryotic one without homologs in the 

thermophilic organisms, protein engineering would be necessary [38]. The aim of 

engineering a thermostable protein is to retain its original activity and specificity, but 

increase its thermostability. 
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Thermostabilization may keep the protein stable at temperatures that would normally 

destabilize it and denature it or may keep the protein stable at moderate temperatures 

over prolonged time (increase in the half life). 

 

Thermodynamic thermostability can be specified by its Tm. Tm is the temperature at 

which half of the protein molecules are in native state and the remaining half is in the 

denatured state. Molecules in the denatured state are influenced by proteolysis, 

adsorption, aggregation and precipitation more easily. The increase in the free energy 

difference between the native and denatured states may increase the thermodynamic 

stability [38]. 

 

Kinetic thermostability which can be specified by half life or rate constant is generally 

of greater importance in pharmaceutical applications. The increase in the free energy 

difference between the native and transition states may increase the kinetic 

thermostability [38]. 

 

Stabilization of the native state may decrease the free energy. This can be achieved by 

increasing the electrostatic and van dar Waals interactions between atoms, by 

optimization of hydrogen bonding and spatial distribution of polar and hydrophobic 

residues. The free energy of the denatured state can be increased by decreasing the 

conformational entropy. This can be achieved by cross linking, post translational 

modifications, immobilization, adsorption and confinement in nanoparticles [38]. 

 

To increase thermostability of proteins various methods can be used. Site directed 

mutagenesis, segment deletion and ligation, directed evolution, novel thermostable 

scaffolds, chemical modification of proteins and addition of excipients and 

confinement in nanoparticles are the principal methods used to improve the 

thermostability of proteins [38]. Recent applications of protein engineering related 

with thermostability are given in table 1.1. 
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 Table 1.1 Recent applications of protein engineering or thermostabilization [38]. 

 

Protein Method Result 

Protease from Aspergillus 

oryzea 

Encapsulation within 

biomimetically generated 

silicate nanospheres 

Enhanced thermostability 

Pyranose 2-oxidase from 

Trametes multicolor 

Designed triple mutant Increased half life at 60ºC 

Endo β-glucanase EgI499 

from Bacillus subtilis JA18 

Deletion of C-terminal 

region 

Increases half life from 10 to 

29 mins at 65ºC 

Lipases from Yarrowia 

lipolytica 

Surface display on 

Saccharomyces cerevisiae 

Increased thermal stability 

and activity 

Alkaline protease from 

Aureobasidium pullulans 

HN2-3 

Surface display on yeast 

Yarrowia lipolytica 

Increased thermal stability 

and decreased pH stability 

Xylanase XT6 from 

Geobacillus 

stearothermophilus 

Directed evolution and site 

directed mutagenesis 

52 fold increase in thermal 

stability, catalytic efficiency 

increase by %90 

Tyrosine phenol lyase from 

Symbiobacterium toebi 

Directed evolution Higher thermostability and 

activity 

Phytase from Penicillium Random mutation Increased thermal stability 

Arabinose isomerase Immobilization on amino 

propyl glass modified with 

glutaraldehyde 

Kinetic thermal stability 

increases by 138 fold 

Papain Immobilization on cotton 

fabric with anhydrides 

Improved thermal stability 

and stability to alkali 

Cellobiase  Immobilization with 

chitosan-alginate 

Increased thermal stability 

Invertase Inter- and intra-molecular 

cross linking with 

diisocynate reagents 

First order thermal 

denaturation rate constant 

reduced 

Adenylate kinase Structural entropy 

optimization 

Higher thermostability 

L-Asparaginase In vitro directed evolution Increase in half life 

Human glucocorticoid 

receptor ligand binding 

domain (hGR-LBD) 

Random mutagenesis and 

high throughput screening   

Thermal stability increases 

upto 8ºC 

MDM2 Site directed mutagenesis Increased thermal stability 

HIV 4E10 epitope Flexible backbone 

remodeling  

Improved thermal stability 

Human epidermal growth 

factor specific antibodies 

Graft antigen binding 

segments from antibody to 

human EGF (HER-2) onto a 

designed thermostable three 

helix bundle 

HER-2 binding ability 

retained after heating to 

90ºC, three times. Binding 

constant 76pm 

Granulocyte colony 

stimulating factor 

Fusion with gelatin like 

protein polymer 

Increased thermal stability, 

slower plasma clearance rate 

Heme peroxidase from 

cinereus 

In silico Rosetta design and 

site directed mutation 

2/8 of designed enzyme 

were more stable 

Cytochrome P450 Rational mutagenesis Increased thermal stability 

Human erythropoeitin Polyethyleneglycosylation Increased thermal stability, 

Prolonged half life  
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1.6 Excipients 

 

Excipients are substances that are formulated together with the active substance of a 

pharmaceutical therapy. The quality of drugs depends on the active substance, 

excipients and the production processes. The classical concept of the excipient as any 

component other than the active substance has undergone a change from an ‘inactive’ 

carrier to an essential component of the formulation. Pharmaceutical regulations and 

standards require that all excipients in drugs and their decomposition products should 

be identified and shown to be safe [40]. 

 

Pharmaceutical excipients that are used to formulate and stabilize protein therapeutics 

are classified as amino acids, buffering agents, osmolytes, sugars, polymers and 

proteins, salts, surfactants, antioxidants and chelators, preservatives and specific 

ligands (table 1.2). 

 

Buffering agents: Solution pH is important in determining the integrity of amino acid 

residues and in the maintainance of higher order structure of a protein. Buffering 

agents are used to maintain solution pH and therefore increased protein stability [41]. 

 

Stabilization of proteins with amino acids is by preferential hydration, direct binding, 

through its buffering capacity and antioxidant properties [42]. 

 

Osmolytes: Polyols which are representatives of this group have been found to 

decrease the surface tension of water and act through the solvophobic effect. And this 

effects increase protein stability and affects solubility. This also changes their effects 

on protein folding [43]. In addition to this mechanisms observed in carbohydrates and 

sugars such as preferential hydration are seen as there are common examples. 

 

Sugars and carbohydrates stabilize proteins probably by preferential hydration at high 

concentrations, by a combination of specific interactions with proteins and formation 

of glassy matrices with high viscosity. They can also be used as bulking agents and 

carrier molecules [41]. 



13 

 

 

 

Proteins and polymers like rHSA (recombinant human serum albumin) prevent protein 

aggregation by hindering unwanted adsorption onto vial surfaces, prevent 

selfassociation of protein therapeutics through preferential hydration or exclusion 

effects and to prevent the formation of micro level particles to enhance the solubility 

of poorly soluble peptide drugs [44]. 

 

Surfactants can be used in protein formulations to prevent protein aggregation 

especially resulting from agitation or shaking. This is primarily due to their ability to 

outcompete protein molecules for hydrophobic surfaces such as air water interfaces 

and therefore prevent proteins from unfolding at these interfaces. Moreover, they can 

prevent protein molecules from adsorbing to hydrophobic surfaces that exist in the 

processing [45]. 

 

Chelators and antioxidants prevent oxidation by binding with metal ions or other 

oxidative agents [44]. 

 

Preservatives are often needed in protein liquid formulations to ensure sterility during 

its shelf life. However, preservatives often induce aggregation of protein in aqueous 

solution [46]. 

 

Specific ligands that are inherent ligand binding sites are effective methods in 

improving the conformational stability of protein drugs [41]. 
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Table 1.2 Pharmaceutical excipients commonly used in protein formulations [41]. 

 

Category Representative Examples General Comments 

Buffering agents Citrate, phosphate, Tris, 

sulphate 

Control solution pH 

Buffer ion specific 

interactions with protein 

Amino acids Lysine, arginine, glycine, 

proline, 

Particular interactions with 

proteins 

Free radical scavengers 

Tonicifying agents 

Buffering agents 

Osmolytes Trehalose, sorbitol, 

glycerol, urea, sucrose 

Natural compounds that 

improve protein stability  

Sugars and carbohydrates Mannitol, dextrose, lactose Protein stabilizing agents 

Bulking agents 

Lactose serves as a vehicle 

for inhalation drugs 

Proteins and polymers HSA, gelatin, PVB, PEG Protein adsorption inhibitors 

Bulking agents in 

lyophilization 

Serve as carriers in drug 

delivery vehicles 

 

Salts Sodium chloride, potassium 

chloride, sodium sulphate 

Have protein stabilizing 

effects 

They have also destabilizing 

effects on proteins 

Tonicifying agents 

Surfactants Tween 20 and 80 Protein adsorption inhibitors 

Competetive inhibitors of 

surface denaturation in 

proteins 

Used in liposomes as drug 

delivery vehicles 

Chelators and 

antioxidants 

EDTA, DTPA, ethanol Bind metal ions 

Free radical scavengers 

Preservatives Benzyl alcohol, phenol Prevents microbial growth 

in multiple doses 

Specific ligands Metals, ligands, polyanions Increases protein stability 

by preventing stress induced 

unfolding and by inhancing 

conformational stability 
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1.7 Homology Modeling 

 

Homology modeling is aimed at predicting a structure of a protein from its sequence 

with a high accuracy which is comparable to the results obtained experimentally. 3D 

structure prediction of a protein can be performed by using experimental methods such 

as NMR spectroscopy and X-ray diffraction. It can also be done by using homology 

modeling. For NMR analysis protein molecules should be small and for X-ray 

diffraction these molecules should be crystallized. Homology modeling is the only 

alternative to predict the structure of a protein if experimental methods fail. Moreover, 

homology modeling is a time saving and easy method [47]. 

 

The basis for homology modeling are two major findings: 

1. The structure of a protein is particularly determined by its amino acid sequence [48]. 

2. The structure of proteins is more conserved and changes much slower than the 

related sequence during evolution. As a result similar sequences fold into identical 

structures and even sequences with low relation take similar structures [49,50]. 

 

1.7.1 Steps in Homology Modeling 

 

Homology modeling is a process that consists of multiple steps (figure 1.4) that can be 

summarized in the following steps (1) identification of templates and initial alignment; 

(2) sequence alignments and alignment correction; (3) building the model; (4) loop 

modeling; (5) side chain modeling; (6)  optimization of the model, and (7) validation 

of the model [47,51]. 
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Figure 1.4 Steps of homology modeling [47]. 
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Step 1: Identification of Templates and Initial Alignment 

 

This is the first step in which the query sequence is compared with known structures 

stored in PDB (Protein Data Bank) by using programs or servers. The most popular 

server used is BLAST (Basic Local Alignment Search Tool). A search with BLAST 

against the database for suitable local alignments with the query sequence give a 

number of proteins that matches the sequence. From the list of the results only those 

which structures are known and expected to fold into the same structure should be 

selected as templates (figure 1.5). More sensitive alignment methods based on iteration 

such as PSI-BLAST, Hidden Markov Models (HMMs) or profile profile alignments 

have been developed. And these methods are more preferable for homology searchs 

these days. 

 

 

 

 

Figure 1.5 The two zones of sequence alignments. Two proteins are expected to fold 

in to the same structure if the sequence length and percentage identity fall into the 

region which is marked as safe [52]. 
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Step 2: Sequence alignments and alignment correction 

 

After the templates are found, there will be alignments and correction of them if 

necessary. When the percentage sequence identity is very low, alignment of the two 

sequences in a region may be difficult. In such conditions sequences from homologous 

proteins can be used to find a solution. For example suppose we want to align the 

sequence GAGAGAGA with RKRKRKRK. These are two completely different 

sequences that may cause the formation of a gap in this region. However, a sequence 

like ARARARAR that aligns to both of them can solve the problem. This is the basis 

for the concept of multiple sequence alignment [47]. 

 

Multiple alignments are heuristic that are known as progressive alignment [53]. 

Progressive alignments are easy to conduct and allow alignments of large sequences 

with low relation to be built. ClustalW program allows the alignment of distantly 

related sequences with high accuracy [54]. HMMs are a class of probabilistic models 

which have application mostly to linear sequence [55]. Profile HMM are highly 

efficient in detecting conserved regions in multiple sequences [56]. 

 

Step 3: Model building 

 

Experimentally determined protein structures may have errors. To develop software 

that detects these errors, lots of studies have been performed. PDBREPORT database 

at www.cmbi.nl/gv/pdbreport is an example [57]. So, templates with the fewest errors 

should be chosen to build a good model. 

 

Various methods are used to build a model for the query sequence. Rigid body 

assembly [58–60], segment matching [61], spatial restraint [52] and artificial evolution 

[62] methods are used to build the model. Rigid body assembly model building is 

based on the dissection of the protein structure into conserved core regions, loops and 

side chains. A subset of atomic positions obtained from template structures are used 

as leading positions in segment matching. Modeling by satisfaction of spatial restraints 

depends on the generation of many restraints on the structure of query sequence by 

using its alignment to similar protein structures as a guide. 
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Step 4: Loop modeling 

 

Gaps or insertions called loops are present in sequences of homologous proteins. The 

structures of loops are not conserved during evolution. Even without deletions or 

insertions different loop conformations in query and template are often found. This is 

the consequence of surface loops that have the potential to participate in crystal 

contacts, exchange of side chains below the loop that pushes it aside or mutation of a 

residue to proline or from glycine to any other residue in a loop [47]. 

  

The functional specificity of a protein structure is often determined by the loops. The 

accuracy of loop modeling is an important factor which determines the value of 

homology models for further applications [63]. Since loops show higher structural 

variability than strands and helices, the prediction of their structure is more difficult 

than strands and helices.  

 

Knowledge based and energy based approaches can be used for loop modeling. In the 

knowledge based approaches prediction of the loop structure measures the orientation 

and separation of the backbone segments, flanking the region to be modelled and 

eventually look for segments with the same length that span a region of similar 

structure in the PDB that will be copied. 

 

Loop construction by random search mechanisms is the main alternative to this [64]. 

In the energy based approaches an energy function is used to measure the quality of a 

loop. Then this function is minimized using Monte Carlo [65] or molecular dynamics 

[66] techniques to arrive at the best loop conformation. 

 

Step 5: Side chain modeling 

 

Side chain modeling is usually done by putting side chains onto the backbone 

coordinates that are obtained from a parent structure and/or derived from ab initio 

modeling simulations. In practice side chain prediction works at high levels of 

sequence identity. Protein side chains are present in a limited number of structures 



20 

 

 

with low energy known as rotamers. Depending on defined energy functions and 

search strategies, rotamers are selected in accordance with the preferred protein 

sequence and the given backbone coordinates. The accuracy of prediction is usually 

high for residues in the hydrophobic core but low for water exposed residues on the 

surface [47,51]. 

 

Step 6: Model optimization 

 

Optimization of the model usually begin with an energy minimization utilizing 

molecular mechanics force fields [67,68]. At each energy minimization a few big 

errors are removed but many small errors are introduced at the same time and start 

accumulating. Therefore, restraining the atom positions, applying only a few hundred 

steps of energy minimization and using more precise force fields like quantum force 

fields [69] and self parameterizing force fields [70] can be used to decrease the errors 

in model optimization. For further model optimization methods such as molecular 

dynamics and Monte Carlo can be used [71,72]. 

 

Step 7: Model validation 

 

Depending on the percentage identity between the sequences of the query and the 

templates and the quality of the templates, the generated models have errors. Thus 

verification and validation of models is necessary. Errors are estimated by calculating 

the energy of the model based on force fields and by using normality indices [73]. To 

determine the normality indices the normality of bond lengths, bond and torsion angles 

can be checked [74,75]; core/surface distributions of polar and nonpolar residues can 

be investigated [76]; the radial distribution and direction of atomic contacts can be 

calculated [77,78]. 

 

Many programs that are available freely can be used for verification and validation of 

homology models. To mention WHAT_CHECK solves crystallographic problems 

[79]. Programs such as PROCHECK and WHATIF check for appropriate higher order 

structure and structural packing quality; and programs such as Verify 3D and PROSAII 

check the compatibility of sequence to structure by assigning a score for each residue 
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compatible in its current environment. The Ramachandran plot is also powerful 

determinant of the quality of protein structure [80]. 

 

1.7.2 Softwares for Homology Modeling 

 

There are many programs and servers that are used to build models from query 

sequences. MODELLER, I-TASSER, SWISS MODEL, PrISM, ORCHESTRAR, 

MOE, COMPOSER and ROSETTA are some examples. 

 

1.7.2.a MODELLER 

 

MODELLER is a popular and widely used homology modeling tool which is available 

freely, has powerful features and gives reliable results. MODELLER utilizes the query 

structures to build constraints on atomic distances and dihedral angles. Then these are 

combined with statistical distributions obtained from many homologous structure pairs 

in the PDB. But for most users it is some what difficult to begin with MODELLER as 

it is based on command line and requires basic knowledge about Python scripting to 

use it effectively. Hence a graphical user interface to MODELLER called 

EasyModeller has been introduced. EasyModeller provides modeling, assessment, 

visualization, and optimization of protein models in a simple and straightforward way 

for users. EasyModeller has the following features: 1) tab based logical modeling 

steps; 2) allows to load unlimited number of templates; 3) colorful alignment viewer 

with alignment editor; 4) MODELLER code editing; 5) incorporated DOPE profile 

viewer, Ramachandran plot viewer, loop modeling, model optimization and dynamics 

for a selected model [81,82,83]. 

 

1.7.2.b I-TASSER 

 

I-TASSER (Iterative Threading ASSEmbly Refinement) is a server that provides an 

internet based service for protein structure predictions that allows academic users to 

make high quality structure predictions. Critical Assessment of Structure Prediction 

(CASP) experiments have been developed to obtain an objective assessment of the 
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performance of modeling tools. I-TASSER was found to be one of the best methods 

in the servers section of the CASP experiments.  In the default mode the query 

sequence is submitted and the program obtains templates and does the alignments. It 

is also possible to specify the templates and alignments by selecting the option ‘specify 

template with alignment’ in the I-TASSER server. Depending on the sequence length, 

the I-TASSER modeling procedure takes a maximum of 48 hours. The output of the I-

TASSER server includes up to five models, estimated accuracy of the predicted 

models including TM score and RMSD value for the first model, GIF images of the 

predicted models and top 10 proteins in PDB which have structural similarity with the 

predicted models [84,85,86]. 

 

1.7.2.c SWISS MODEL 

 

SWISS MODEL is a protein structure prediction method that gives the model of a 

protein from its amino acid sequences. It is a web based service that is used widely. It 

provides users a friendly web interface that allows users to generate 3D models for 

their proteins of interest without installing or downloading large databases. A recently 

developed interactive web interface allows users to easily look for appropriate 

templates using sensitive Hidden Markov Models (HMM) searches against SMTL 

(SWISS MODEL Template Library), analyse the alternative templates and alignments 

and compare the resulting models using QMEAN potential. The out put model is 

colored by model quality estimates calculated by QMEAN to highlight regions of the 

model according to the quality of the modeling. If many models have been generated 

for a query sequence, these models can be interactively superposed and visualized 

[87,88]. 

 

1.7.2.d PrISM 

 

PrISM (Protein Informatics System for Modeling) is a homology modeling method by 

using alignment to build a composite template by selecting each secondary structure 

from the most suitable template. Loop modeling is done by using ab initio methods 

and side chain dihedrals are obtained from the template or predicted structure based 
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on main chain torsion angles and a neural network algorithm. Advanced sequence 

template alignment techniques in PrISM are important in conditions where standard 

pairwise dynamic programming algorithms fail to make any reasonable global 

alignment [89]. 

 

1.7.2.e ORCHESTRAR 

 

ORCHESTRAR consists of programs that are used to align homologs, generate 

conserved regions, find structurally variable regions and add side chains. In these 

programs the concept of using existing knowledge from multiple templates and the 

underlying basic knowledge about protein environment is utilized [90]. 

 

1.7.2.f MOE 

 

MOE (Molecular Operating Environment) is the combination of segment matching 

methods [61] and the modeling of insertion/deletion regions approach [91]. The 

applications in homology modeling are powerful, intuitive and easy to use. MOE has 

these features: 1) 3D structure prediction from sequence; 2) fold detection / template 

selection with searchable structural databases; 3) advanced loop modeling; 4) 

advanced alignment methods; 5) powerful alignment visualizer and editor [92]. 

 

1.7.2.g COMPOSER 

 

Composer is based on structural alignments information obtained from multiple 

templates to detect structurally conserved regions (SCRs) across all homologs. From 

this information it builds a partial model. The remaining gaps are built using a loop 

modeling algorithm. Its features include: 1) detection of SCRs; 2) loop modeling; 3) 

customizable database of high quality 3D protein structures extracted from the PDB; 

4) similarity matrices for scoring sequence homology; 5) support for various file 

formats; 6) graphical editing of selection of homologs and sequence alignment; 7) 

displays multiple aligned structures along with sequence percent identity and statistical 

significance of the alignment simultaneously [93,94]. 



24 

 

 

 

1.7.2.h ROSETTA 

 

Rosetta a comprehensive freely available software suite for modeling molecular 

structures. It has been a strong performer in the CASP prediction excercices. Rosetta 

is a structure prediction tool that offers various efficient sampling algorithms to search 

for the backbone, side chain and gaps. It also includes tested scoring functions. Rosetta 

uses information from known structures to build a model from a query sequence [95]. 

 

1.7.3 Applications of Homology Modeling 

 

Homology modeling has a wide range of applications and its importance is increasing 

as the number of structures determined increase. It has applications in: (1) structure 

based drug design process; (2) investigation of the effects of mutations; (3) 

identification of binding sites; (4) looking for ligands and designing of novel ligands; 

(5) modeling of substrate specificity; (6) protein–protein docking simulations; (7) 

molecular replacement in experimental structural refinements; (8) rationalizing of 

known experimental results and (9) planning of future computational experiments by 

using the generated models [48]. 

Homology modeling has many applications in drug discovery process. This makes the 

discovery process faster, easier, cheaper and more practical (figure 1.6 and table 1.3). 
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Figure 1.6 Applications of homology modeling in drug discovery and its outline [96]. 
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Table 1.3 Recent applications of homology modeling. 

 

Protein                                        
Application Program/Server 

M Antigen [97] Study of protein function BLAST, SWISS MODEL, 

CLUSTALW, Swiss 

PDBViewer, PROCHECK 

Nod like Receptors [98] Understanding of the 

protein mechanism in the 

immune response 

FFAS, Predictprotein, m-

coffee, MUSCLE, SCWRL, 

ProSa, Pymol, ConSurf 

ECE-2 [99] Understanding of catalytic 

activity loss of ECE-2  

MODELLER, 

PROCHECK, ProSa, 

Pymol, AutoDock 

MCH-R1 [100] Structure-based discovery 

of antiobesity drugs 

ICM, MODELLER, 

AutoDock 

1,2,4-Triazole Analogs 

[101] 

Study of Structure-function 

relationships  

BLAST, SSpro, PRIME, 

SITEMAP, PROCHECK, 

WHATIF, MAESTRO 

Human Dopamine (D2L 

and D3) receptors [102] 

Exploration of structure and 

ligand based interactions 

MODELLER, SYBYL, 

PROCHECK 

Dopamine D2 receptor 

[103] 

Structure identification for 

the design of new protease 

antagonists 

CLUSTALX, BLAST, 

MODELLER, SYBYL 

Leishmanial Farnesyl 

Pyrophosphate 

Synthases[104] 

Useful in the identification 

of hits with novel scaffolds 

as antileishmanial agents 

BLAST, MODELLER, 

SWISS-PROT, SYBYL, 

InsightII 

hASIC1a ion channel 

[105] 

Dsiplays the route to in 

silico search for developed 

ASIC1a channel blockers 

MODELLER, DOT, 

SHAKE 

Cytochrome P450 sterol 

14α-demethylase [106] 

Identification of new hit 

compounds with similar 

inhibitory activities 

Amber, CPHmodels, FlexX, 

PROCHECK, SYBYL, 

PMF, DOCK  

Lysophosphatidic acid 

LPA4 receptor [107] 

Contributes for the 

recognition of LPA within 

the LPA4 receptor 

SYBYL, GOLD, SCWRL 

Cysteine Protease YopT 

from Yersinia 

pestis [108] 

Important for plague 

regulation and further drug 

designing 

Phyre2, ModRefiner, 

SOPMA, CASTP, 

PROCHECK, ERRAT, 

Verify 3D 

Human angiotensin II 

type I (Ang II-AT1) 

receptor [109] 

Guide for the design of 

novel compounds as Ang II 

AT1 receptor antagonists 

BLAST, CLUSTALW, 

SYBYL, MODELLER, I-

TASSER, PROCHECK, 

SurflexDock 

Chitinase II from 

Thermomyces lanuginosus 

[110] 

Offers insights into the 

structure and stability of the 

protein 

BLAST, SYSTERS, I-

TASSER, MODELLER, 

PsiPred, COFACTOR, 

MetaPocket, COACH, 

SAVES, CDOCKER 

Transketolase [111] Guide for the design of the 

enzyme inhibitors with 

potential antimalarial 

activity  

SOPMA, MODELLER, 

QMEAN, PROCHECK, 

CASTP, GlobPlot, 

AutoDock 
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1.8 Comparison of Models 

 

During modeling process many models of a query sequence may be generated. At this 

time to identify the best model, the generated models are compared using various 

parameters. Moreover, the best models are compared with the templates to measure 

the quality of the modeling process. In addition to this such parameters can also be 

used to compare two different protein structures that are generated through modeling 

or practical methods. DOPE (Discrete Optimized Protein Energy) score, TM 

(Template Modeling) score and RMSD (Root Mean Square Deviation) value are 

example parameters that are used for comparison. 

 

1.8.1 DOPE Score 

 

DOPE is a statistical potential based on atomic distance calculated from a group of 

native protein structures that is related with the probability theory. So, it is dependent 

on the spherical shape of the structures. It is implemented in the MODELLER and 

used to measure the energy of the model which is generated through many iterations 

by MODELLER. DOPE is used to measure the quality of the structure as a whole. It 

can also generate a residue-by-residue DOPE profile for a model so that the region that 

is problematic in the model can be detected. DOPE is the best function that is used in 

the detection of the native state, comparison of models and determination of the best 

model [112]. 

 

1.8.2 TM Score 

 

TM score is used to measure the similarity of topologies of protein structures. TM 

score has a value in the interval (0,1]. Here 1 is an indication of a perfect match 

between two structures. TM score below 0.17 shows two randomly selected proteins 

which are unrelated whereas a score above 0.5 shows two structures take the same 

fold. 

https://en.wikipedia.org/wiki/MODELLER
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Where,     Ltarget: length of the query protein, 

          Laligned: length of the aligned region, 

          di: distance between the th pair of residues and 

    d0: distance scale that normalizes distances. 

 

 

 

TM score gives information about global fold similarity and it is less sensitive to 

structural differences at local level. TM score does not depend on the length of the 

protein as a result of normalization that depends on the size. So, it solves the problem 

in classical measurements such as RMSD [113]. 

 

1.8.3 RMSD  

 

RMSD is used to measure the differences between values of a model and the values of 

templates. RMSD represents the standard deviation of the differences between 

predicted values and actual values. 

 

 

Where Natoms: number of atoms being compared and 

            ri(t): position of atom i at time t. 
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1.9 Molecular Dynamics and Energy Calculations 

 

There are various methods and programs to calculate the energy and molecular 

dynamics of proteins. Molecular dynamics is used to assess the state of a protein in 

various environmental conditions. Energy calculations are used to compare models 

and to minimize the energy to make the model more stable. The principle of working 

and the force fields used are different for each one of them. Among them GROMOS 

(GROningen MOlecular Simulations), GROMACS (GROningen MAchine for 

Chemical Simulations), CHARMM (Chemistry at HARvard Macromolecular 

Mechanics), AMBER (Assisted Model Building with Energy Refinement) and OPLS 

(Optimized Potentials for Liquid Simulations) are commonly used in various 

programs. 

 

1.9.1 GROMOS 

 

GROMOS has the capability of simulation of biomolecules using the molecular 

dynamics and analysis of molecular configurations and energies obtained by computer 

simulation or model building based on experimental data. Since it has been developed, 

various versions of it were introduced. Among them GROMOS96 was comprehensive 

and was released with manual. In GROMOS96 the force field, the potential energy 

function that describes the interaction between the particles or atoms. Here aliphatic 

CHn groups are represented as combined atoms with van der Waals interactions 

reparametrized based on a series of molecular dynamics simulations of model liquid 

alkanes. It also includes energy minimization and stochastic dynamics [114,115]. 
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1.9.2 GROMACS 

 

GROMACS provides molecular dynamics, energy minimization and stochastic 

dynamics. Free energy determinations and nonequilibrium dynamics are also 

incorporated in it. Even if it does not have its own force fields, it is compatible with 

the force fields of GROMOS96, AMBER and OPLS. It can treat polarizable shell 

models and flexible constraints. Force fields can be added by the user so that functions 

can be specified. Since the program is versatile, analyses can be customized easily. 

The program is also fast and free [116]. 

 

1.9.3 CHARMM 

 

CHARMM provides molecular dynamics simulations, free energy estimates, 

molecular energy minimization and analysis techniques. It has its own force fields with 

various versions. It is a flexible and widely used program. It can be utilized with 

various energy functions and models. It has been ported to many platforms. It has many 

applications with special emphasis on the study of biological molecules [117]. 

 

1.9.4 AMBER 

 

AMBER consists of a set of molecular mechanical force fields and a suite of molecular 

simulation programs. It is possible to implement AMBER force fields with AMBER 

programs. Even if the codes are distrbuted under license agreement, the force fields 

are free. The force field function includes the bond lengh due to covalent bonds, the 

angle or geometry of the covalent bonds, the torsion of the bonds and the nonbonded 

energy between all atom pairs. It has been implemented in several other computer 

packages. It has applications in proteins, nucleic acids, drugs, ligands and 

carbohydrates [118,119]. 
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1.9.5 OPLS 

 

OPLS consists of a set of force fields that can be used for computer simulations of 

proteins in their native state. These force fields are adopted from AMBER. It has 

versions of parameters like OPLS-UA and OPLS-AA. These parameters were obtained 

from Monte Carlo simulations and they were tested primarily in combination with 

them [120]. 

 

1.10 Protein Stability Predictors 

 

Stability predictors are important to determine the stability of a protein in a given 

environmental conditions. Furthermore when a mutation is undertaken over a protein, 

the change in its stability can be estimated with these predictors. They predict stability 

changes due to single site mutations by using physical, statistical, empirical or machine 

learning approaches. Most of the methods require 3D structure of the protein. 

However, some can do the prediction only from the sequence of the protein. Most of 

them give the general trend of stability. Some others can give the exact value of the 

increase or decrease in stability. 

 

There are various protein stability predictors. To mention CNA (Constraint Network 

Analysis), CUPSAT (Cologne University Stability Analysis Tool), I-MUTANT, 

FoldX, AUTO-MUTE and MUpro. 
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1.10.1 CNA 

 

CNA enables to identify the rigid and flexible regions in a biomolecule, provides a 

refined modeling of thermal unfolding simulations, allows rigidity analyses and 

calculates global and local indices for quantifying biomacromolecular stability. CNA 

has applications in the investigation of protein thermostability, identification of weak 

spots in a protein and linking the protein flexibility with function [121,122,123]. 

 

CNA web server has been developed. The CNA web server has a user friendly 

interface. It accepts PDB IDs or PDB format of a protein as an input. If there is a 

deficiency of hydrogens and/or residues in the input protein, it should be added before 

submitting the input to the server. Analysis type and simulation parameters are chosen 

by the user. Results are available in the web server or can be fetched from the mail 

given to the server. The result includes global and local indices with plots along with 

mappings onto the 3D structure. Flexible regions predicted for a protein structure are 

also depicted on the structure. It can calculate the exact temperature changes due to a 

point mutation. In short CNA web server provides detail analysis results [123]. 

 

1.10.2 CUPSAT 

 

CUPSAT is used to predict stability changes in a protein due to single site mutations. 

In CUPSAT mean force potentials are used to predict protein stability; amino acid-

atom potentials are used; torsion angle potentials are obtained from the distribution of 

main torsion angles φ and ψ; gaussian apodisation function has been used to 

accomodate torsion angle perturbation in protein mutants [124,125]. 

 

CUPSAT accepts PDB format of the protein as an input. The input PDB structure 

should be in the quality of proteins that are put into PDB. The output includes 

information about mutation site and detail information about changes in protein 

stability for the 19 substitutions of a specific amino acid residue. It also analyses the 

ability of the mutated amino acids to adapt the observed torsion angles [126]. 
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1.10.3 I-MUTANT 

 

I-Mutant2.0 is a support vector machine (SVM)-based tool that is used to predict 

stability changes due to single site mutations. It accepts PDB format or sequence of a 

protein as an input. Giving protein stability change predictions based only on the 

sequence makes it special. I-MUTANT2.0 predicts the sign of protein stability change 

upon mutation and estimates the related ΔΔG values. The output consists of the 

position under consideration and the changes undertaken, the predicted value or the 

sign of free energy change, the temperature and the pH at which the prediction has 

been carried out [127]. I-MUTANT3.0 is another version of I-MUTANT. I-Mutant3.0 

has similar working principles with the other version. The prediction result of I-

MUTANT can be classified as: neutral mutation (-0.5≤ΔΔG≤0.5), large decrease (< 

-0.5) and large increase (> 0.5) [128]. 

 

1.10.4 FoldX 

 

FoldX is a force field that is used in the investigation of the effects of mutations on the 

stability, folding and dynamics of proteins. It allows the computation of the stability 

of a protein, calculation of the positions of the protons, prediction of binding sites and 

analysis of the free energy of complex formation. FoldX gives good results whenever 

the two structures being compared are known. Otherwise the results may have a large 

error [129]. 

 

The FoldX web server accepts PDB structures as an input after the users join the web 

as guests or registered users. It is also possible to download the executive software. 

After the calculations are done according to the specified options, the results are sent 

to the specified mail in zip format [129]. 
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1.10.5 AUTO-MUTE 

 

AUTO-MUTE provides the combined power of computational mutagenesis using a 

four body and cutting-edge machine learning methodologies and tools. As a result it 

provides more accurate prediction for mutant using various protein functions.  For each 

type of function prediction, a variety of classification and regression models have been 

developed and are available. It accepts PDB ID or PDB structure of a protein as an 

input. The parameters to be calculated and the conditions in which this calculations are 

undertaken are specified by the user. The output is in the form of increase or decrease 

stability [130]. 

 

1.10.6 MUpro 

 

MUpro predicts thermostability changes due to single site mutations by using SVM 

and neural networks. Inputs can be in 3D format or just the sequence of the protein. 

Furthermore experimental results showed that the accuracy of predictions using 

sequence alone is similar with the accuracy of predictions using tertiary structure 

information. This is important when the tertiary structure of a protein is not 

determined. The output shows the general trend of stability. The result is in the form 

of +/- free energy value changes [131]. 

 

1.10.7 Eris 

 

Eris is a server used to calculate protein stability changes resulting from mutations 

utilizing the Medusa modeling suite. Inputs can be submitted in PDB format. After 

calculations are done in accordance with the conditions specified by the user, the 

results are sent to the e-mail of registration of the user. Studies that compared results 

of Eris with the experimental data showed that there are significant correlations among 

of them. Eris also allows refinement of the protein structure when there is a problem 

with the quality of the 3D structure of the protein [132]. 
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1.11 Aim of the Study 

 

The aim of this study is to thermostabilize Panomycocin so that it can be formulated 

as a drug which will be stable at high temperatures (above 37 ºC). Various excipients 

will be tested to thermostabilize the protein. For this purpose Panomycocin will be 

produced and isolated. The excipients will be mixed with the isolated protein and the 

mixture will be tested whether it is stable at high temperatures. Since excipients can 

increase thermostability only to some extent, computational methods are also going to 

be used to design a thermostable protein. Its 3D structure will be built by using 

homology modeling. Computational site directed mutations will be undertaken and the 

effect of the mutations will be assessed by using various programs and servers. By 

doing this the positions that may increase the thermostability of the protein will be 

detected.  
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CHAPTER 2 

 

 

MATERIALS AND METHODS 

 

 

 

2.1 Materials 

 

2.1.1 Strains 

 

Pichia anomala (NCYC 434) which is the source of Panomycocin and Saccharomyces 

cerevisiae (NCYC 1006) which is the sensitive strain were purchased from the 

National Collection of Yeast Cultures, Norwich, U.K. 

 

2.1.2 Culture Media 

 

P. anomala and S. cerevisiae were grown and mantained in YEPD medium consisting 

of 1 % Bacto-yeast extract, 1 % Bacto-peptone, 2 % dextrose and 2 % Bacto-agar. 

 

During production of Panomycocin, P. anomala cells were grown in YEPD medium 

buffered to pH 4.5 with phosphate citrate buffer in the presence of 5 % glycerol as a 

protein stabilizer. YEPD medium together with 2 % Bacto-agar buffered to pH 4.5 was 

used to determine the killer activity. 
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2.1.3 Chemicals 

 

The chemicals used and their suppliers are listed in Appendix A. 

 

2.1.4 Buffers and Solutions 

 

The buffers and solutions used are listed in Appendix B. 

 

2.1.5 Programs and Servers 

 

The programs and servers used and their websites are listed in Appendix C. 

 

2.2 Laboratory Methods 

 

2.2.1 Sterilizations 

 

Liquid cycle sterilization at 121 ºC for 15 minutes was used to sterilize the glasswares, 

the media, buffers and distilled water used in all steps. Buffers used for the 

chromatographic steps were filtered using 0.45μm cellulose acetate filters (Sartorius, 

AG, Germany) prior to sterilization. 

 

2.2.2 Maintainance of the Yeast Cultures 

 

Stock cultures of P. anomala (NCYC 434) and S. cerevisiae (NCYC 1006) were 

maintained in YEPD agar plates. These plates were stored at 4 ºC. New stocks were 

propagated for the replacement of the stock in every 2 months [33]. 
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2.2.3 Production of Panomycocin 

 

Production, concentration and isolation of Panomycocin was done by the method 

described by İzgü and Altınbay [33]. P. anomala NCYC 434 cells were cultivated into 

10 mL of YEPD medium. After the yeast cells were incubated at 25 ºC for 

approximately 7 hours on a gyratory shaker (Innova 4330, New Brunswick Scientific, 

USA) at 120 rpm, one mL cell suspension was obtained from the above inoculation 

and this was inoculated into 100 mL of the same medium. This was incubated at 25 ºC 

overnight at 120 rpm on a gyratory shaker (Innova 4330, New Brunswick Scientific, 

USA). Then 10 mL cell suspension was transferred to 1L of YEPD medium with 5 % 

glycerol whose pH was made 4.5 with acetic acid. This was further incubated at 18 ºC 

for 48 hours at 120 rpm on a gyratory shaker (Innova 4330, New Brunswick, USA). 

After 24 hours of incubation, %20 glucose was added to 1L YEPD medium with 

glycerol. To obtain the cell free medium, centrifugation (KR 22i, Jouan, France) was 

done at 9500 rpm for nearly 10 minutes at 4 ºC. The supernatant obtained was filtered 

using 0.45μm first and then 0.2μm cellulose membrane filters (Sartorius, AG, 

Germany) to sterilize the medium. 

 

2.2.4 Preparation of Crude Panomycocin 

 

Crude protein was prepared by ultrafiltration systems. The cell free culture medium 

consisting of Panomycocin was concentrated by using first 30 kDa and then 5 kDa 

molecular weight cut-off ultrafiltration systems (Vivaflow 200, Sartorius AG, 

Goettingen, Germany) having polyethersulfone membranes operating with peristaltic 

pump at nearly 2.5 bar pressure. The total 4 L medium was concentrated to 

approximately 50 mL. 
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Figure 2.1 Ultrafiltration system for Panomycocin a) feed, b) return, c) filtrate. 

 

2.2.5 Determination of Killer Activity of Panomycocin 

 

To determine the killer activity of Panomycocin YEPD agar plates with pH 4.5 were 

prepared. S. cerevisiae (NCYC 1006) cells in sterile water at 0.5 McFarland standard 

cell density (1 to 5 million cells/mL) were prepared. These cells were spread and 

cultivated into the plates with cotton buds. Fifty μL Panomycocin samples were 

spotted onto the YEPD plates and incubated at 25ºC. These were checked for clear 

zone of growth inhibition after 24 hours of incubation to determine the killer activity. 
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2.2.6 Panomycocin Purification with Gel Filtration Chromatography 

 

Concentrated crude Panomycocin was subjected to gel filtration chromatographies by 

using a fully automated FPLC system (Biocad 700E Perseptive Biosystems, USA) 

with a fraction collector (SF-2120 Super Fraction Collector, Advantec MFS, Japan). 

The flow was detected with UV absorbance at 280 nm at 20 ºC. 

 

The concentrated Panomycocin sample was subjected to gel filtration chromatography 

using a TSK G2000 SW (7.5 mmD/30 cmL TosoHaas, Japan) column. Prior to the 

injection of the sample, column was equilibrated with 0.1 M Na2HPO4-citric acid 

buffer at pH 4.5 containing 0.1 M Na2SO4 at a flow rate of 1 mL/min. 80 μL of the 

sample was injected into the column and the same buffer at a flow rate of 1 mL/min 

was used for elution. After the fractions that consist of Panomycocin was determined, 

these fractions were collected. The collected fractions were concentrated and buffer 

exchanged with pH 4.5 acetate buffer. Fifty μL of the purified protein was spotted on 

to YEPD (pH 4.5) agar plates seeded with 0.5 standard McFarland S. cerevisiae NCYC 

1006 cells to determine the killer activity of the protein. 

 

2.2.7 Determination of Protein Concentration 

 

UV-Vis spectrophotometer (Nanodrop 2000, Thermo Scientific, USA) at 280 nm was 

used to determine the concentration of Panomycocin. 

 

2.2.8 SDS Polyacrylamide Gel Electrophoresis 

 

Gel electrophoresis was done according to Laemmli [134] protocol by using 

SE250/SE260 Mighty Small slab gel unit (Hoefer, USA). The purity of the protein was 

measured by using electrophoresis on a 12.5 % linear, 0.75 mm thick polyacrylamide 

gel in a discontinuous buffer system using a vertical slab gel electrophoresis unit SE 

250 (Hoefer, USA). 
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12.5 % separating gel was prepared and poured into the electrophoresis unit. This was 

covered with n-butanol to avoid contact of the gel with air and then left for 

polymerization for overnight. When the polymerization of the separating gel was over, 

n-butanol was removed by washing first with water and then stacking buffer. Then the 

stacking gel was poured and left for polymerization. Seperating and stacking gel 

components and their amounts are given in table 2.1 and 2.2. 

 

Protein samples were heated for 5 minutes with boiling water in equal volume of 

sample buffer (0.125 M Tris-Cl, 20 % glycerol, 4 % SDS, 0.02 % bromophenol blue 

at pH 6.8) and 10% 2-β- mercaptoethanol was added to the sample buffer for SDS-

PAGE. Finally the samples were loaded onto the gel after the polymerization of the 

stacking gel was over. 

Electrophoresis was done at 15 mA/0.75 mm thick gel (Power supply PP4000, 

Biometra, Germany) at constant current for an hour. 
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Table 2.1 Separating gel mixture (12.5%). 

 

Components                                                                  

 

      Amount        

Acrylamide-bisacrylamide (30:0.8) 

 

      8.3 mL     

4X Separating Gel Buffer (1.5M Tris-Cl, pH:8.8)            

 

      5.0 mL      

10% SDS 

 

      0.2 mL 

ddH2O 

 

      6.4 mL 

10% Amonium Persulfate* 

 

      100 μL 

TEMED* 

 

      6.7 μL 

*APS and TEMED were added after deaeration. 

 

 

 

Table 2.2 Stacking gel mixture. 

 

Components 

 

      Amount 

Acrylamide-bisacrylamide (30.8%T, 2.7% Cbis) 

 

      0.44 mL    

4X Separating Gel Buffer (0.5M Tris-Cl, pH:6.8) 

 

      0.83 mL 

10% SDS 

 

      33.0 μL 

ddH2O 

 

      2.03 mL 

10% Amonium Persulfate* 

 

      16.7 μL 

TEMED* 

 

      1.7 μL 

*APS and TEMED were added after deaeration. 
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2.2.9 Protein Detection in Gels by Coomassiae Brilliant Blue Staining 

 

Protein bands on the gel were visualized by using coomassie brilliant blue standard 

staining method described by Wilson [135]. After the gel was removed, it was put into 

staining solution over night with a gentle shake on a rotary shaker. After staining was 

made, the gel was put into destaining solution I to remove the bulky stain over it. Then 

the gel was put into destaining solution II. Destaining solution II was refreshed until 

the gel back ground was clear and the blue protein bands were detected. 

 

2.2.10 Thermostability Tests by Using Excipients 

 

Fresh stock solutions of the excipients were prepared. From these stock solutions 50 

μL sample was prepared in which 25 μL was protein and 25 μL was stock solution 

diluted with sterile buffer for the required concentration of the excipient. Gradient 

concentrations of the samples were put into 4 ºC for 24 hours. YEPD medium along 

agar at pH 4.5 were poured into petri dishes. The YEPD petri dishes were waited until 

the media solidifies and then they were dried for an hour. During this time 0.5 

McFarland standard (1 to 5 million cells/mL) S. cerevisiae (NCYC 1006) cells were 

prepared in a sterile water. The dried YEPD petri dishes were brought and the 0.5 

McFarland S. cerevisiae cells were spread over the dishes using sterile cutton buds. 

The cells were spread evenly so that the killing activity of Panomycocin would be 

clear. Fifty μL samples were spotted on the petri dishes. Finally the petri dishes were 

put at increasing tempratures for incubation. The results were checked for a clear zone 

of killing after 48 hours. For each test a control plate was also prepared. In the control 

plates the sample spotted consist of 25 μL protein and 25 μL buffer. 

 

These tests were done at 37.5ºC, 38ºC, 38.5ºC and 39 ºC. Excipients from various 

groups of excipients were tested at various concentrations. Sucrose, glucose, lactose, 

sorbitol, trehalose, lysine, glycine, proline and glutamic acid were tested at 0.005M, 

0.02M, 0.05M, 0.1M, 0.2M, 0.5M, 1M and 1.25M concentrations. Mannitol and 

arginine were tested at 0.005M, 0.02M, 0.05M, 0.1M, 0.2M, 0.4M, 0.5M and 0.625M 

concentrations. Tween 80 and Pluronic F-68 were tested at %0.005, %0.01, %0.025, 
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%0.05, %0.1, %0.25, %0.5 and %1 concentrations. Histidine was tested at 0.005M, 

0.002M, 0.05M, 0.1M, 0.15M, 0.2M and 0.25M concentrations. Glycerol was tested 

at %0.5, %1, %2, %2.5, %5, %10, %15 and %20 concentrations. Excipients were 

tested upto their maximum saturated solubility levels in water. Furthermore tests were 

also performed by mixing these excipients with each other at various concentrations. 

 

2.3 Computational Methods 

 

2.3.1 Protein Similarity Search 

  

The homology of the internal and N-terminal amino acid sequences of Panomycocin 

was checked. FASTA program [136] was used to find protein similarity from the 

sequences. FASTA was opened with http://www.ebi.ac.uk/Tools/sss/fasta/. 

UniProtKB/Swiss-Prot was chosen as protein database. The amino acid sequences 

were put as an input protein. SSEARCH (local search) was selected as a program, 

submitted and the result was obtained. Various matrices were also used in ‘the 

additional options’ and the results were recorded. 

 

2.3.2 Determination of Signal Peptide and KEX2 Cleavage Site 

 

After FASTA search the signal peptide of the homologue protein (AJ222862) was 

determined by using various servers such as SignalP 4.1 [137], Signal-CF [138], 

PrediSi [139] and Signal-3L [140]. The species type was selected as eukaryotic, 

FASTA format of the protein was pasted as an input and ‘submit’ was clicked in these 

servers. The results appeared in a short period of time. 

 

Cleavage site predictors such as PROSPER(PROtease Specificity Prediction serVER) 

[141] and SMART (Simple Modular Architecture Research Tool) [142] were used to 

predict the KEX2 cleavage site.  According to the estimated cleavage sites, various 

models with different cleavage sites were generated. These models were compared 

with each other by their DOPE (Discrete Optimized Protein Energy) score and energy 

http://www.ebi.ac.uk/Tools/sss/fasta/
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results. In addition to this literatures related with the protein were used to decide the 

exact KEX2 cleavage site. 

 

2.3.3 Homology Modeling 

 

2.2.3.a Homology Modeling by MODELLER 

 

2.3.3.a.1 Generating Models 

 

After the KEX2 cleavage site was determined, the upstream sequence was cleaved and 

the modeling of downstream sequence was started. The FASTA format of the protein 

was obtained from UniProt [143] with its accession number (AJ222862). The sequence 

was analysed by BLAST (Basic Local Alignment Search Tool) [144]. NCBI (National 

Center for Biotechnology Information) [145] was opened. BLAST which is on the top 

right hand side under ‘popular resources’ menu was clicked. Among the list of 

programs, ‘protein blast’ was clicked. FASTA sequence, after upstream of the 

cleavage site was cleaved, was pasted into the query box. PSI-BLAST (Position 

Specific Iteration BLAST) algorithm was selected among the algorithms listed and 

‘BLAST’ was clicked. 

 

To download structures from PDB (Protein Data Bank) [146], www.rcsb.org/pdb was 

opened. PDB IDs of the templates were written in to the search box. In the window of 

the respective template, the arrow of ‘download files’ which is found in the right upper 

hand side was clicked. PDB file (text) was downloaded. Then the file was saved. 

 

In order to access MODELLER [81] license agreement was filled and academic license 

key was obtained through e-mail. 32 bit version of the windows installer was 

downloaded and saved to desktop. MODELLER 9.11-32 bit was double clicked to 

start the installer. ‘User account control’ window warning about an unidentified 

program poped up and ‘allow’ was clicked and continued. The place to install 

MODELLER was specified and MODELLER license key was entered when 
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prompted. After the installation was over, Python 2.7 [147] was installed from Python 

website. At this point every thing was ready for modeling. Modeling steps are 

presented as follows. 

 

In the first step query sequence and its templates were loaded. EasyModeller 4.0 [83] 

was opened. Under the tab ‘load inputs’ the FASTA format of the query sequence 

downstream of the KEX2 cleavage site was pasted into load query sequence. The 

sequence was checked whether there was a gap or not. The templates were loaded 

using ‘add template’ button under ‘load template structures’. 

 

 

 

 

 

Figure 2.2 Query sequence and templates loaded into EasyModeller. 
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In the second step templates were aligned. The selected templates were aligned using 

‘align template’ button under ‘align templates’ tab by clicking them. By doing this 

salign command of MODELLER was implemented. When ‘align templates’ was 

clicked, selected templates poped up and ‘proceed’ was clicked. In seconds 

information that shows the task is complete was poped up and ‘ok’ was clicked. 

 

In the third step the query sequence was aligned with the templates. ‘Align query’ tab 

was clicked and then ‘align query with templates’ button was clicked to make the 

alignment. 

 

In the last step models were generated. ‘Build model’ tab and ‘generate models’ button 

was clicked respectively to generate the models. In the box that poped up the number 

of models to be generated was increased to nine. The other options in the box were 

used in the default form. The effect of changing parameters on the model was also 

investigated later. This step is slower than the above steps and it takes a few minutes. 

‘DOPE profile’ was clicked and all the models were selected to generate the DOPE 

profile plot under the DOPE profile viewer. After this ‘view model’ was clicked and 

each model was investigated and saved using UCSF Chimera [148]. 

 

 2.3.3.a.2 Comparing the Generated Models 

 

DOPE score, energy, TM (Template Modeling) score and RMSD (Root Mean Square 

Deviation) values were used to compare the generated models. MODELLER gives the 

DOPE score under the DOPE score viewer. On the other hand the rest of the 

parameters were calculated using other various methods. 

 

The energy of the models was calculated with GROMOS96 (GROningen MOlecular 

Simulation96) [114] in the SPDBViewer (Swiss PDB Viewer) [149]. The ‘compute 

energy’ under the ‘tools’ was clicked to calculate the energy. To find the minimized 

energy of the models each model was selected and ‘energy minimization’ under the 

‘tools’ was clicked. 
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TM score calculator [113,150] was used to measure the TM score. Models and 

templates were given as inputs for comparison. Then ‘run TM score’ was clicked. And 

this was done for each model in relative to the three templates used. 

 

VMD (Visual Molecular Dynamics) [151] was used to calculate the RMSD values of 

all models.  At first VMD 1.9.2 was downloaded. VMD 1.9.2 was double clicked and 

VMD main was opened. In the ‘VMD main file’ the ‘new molecule’ was clicked. 

Molecule file browser appeared. Molecules were browsed and ‘load’ was clicked to 

upload the molecules as shown in figure 2.3. Then the mouse curser was put over 

‘extensions and analysis’ and then ‘RMSD calculator’ was clicked. RMSD tool 

appeared. The residue lengh and other specifications were changed according to the 

protein. Finally ‘RMSD’ in the RMSD tool was clicked. This was done for all models 

in relative to the templates. 

 

 

 

 

 

Figure 2.3 Models loaded to VMD.  

 

 

 



50 

 

 

2.3.3.a.3 Loop Modeling 

 

MODELLER gives the opportunity of loop modeling. After the best model was 

determined by the above methods, loop modeling was undertaken over the best model 

(model 1). The DOPE profile of model 1 with respect to templates, structural analysis 

and the analysis of the alignment between the query and the templates were used to 

determine the regions that loop modeling might give a better model. 

 

Loop modeling was undertaken at various positions. The effect of loop modeling at 

these positions was analysed by the DOPE score and energy of the resulting models. 

Furthermore TM score and RMSD values were calculated. Then the positions that gave 

a better result were considered in the following steps. The results obtained were 

compared with model 1. However, to compare the effect of loop modeling up to the 

last stage, thermostabilization was done for both models. 

 

2.3.3.a.4 Optimization, Verification and Validation 

 

Optimization of the best model (model 1) and its loop model was done by 

MODELLER. The models were selected and ‘optimize’ was clicked to get the 

optimized model. 

 

The optimized models were evaluated with SAVES (Structure Analysis and 

Verification Server). PDB format of the models was uploaded in the SAVES server. 

‘Run all programs on this file’ was clicked. Then the results obtained were recorded. 
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2.2.3.b Homology Modeling by I-TASSER 

 

In order to compare and learn how accurate the model generated with MODELLER 

was, another model was genearted by I-TASSER (Iterative Threading ASSEmbly 

Refinement) server [84,85,86]. At first registration to I-TASSER server was done. 

Using the e-mail and password of registration, FASTA format of the protein down 

stream of the KEX2 cleavage site was submitted to the server. In two days the result 

of modeling was available. After the I-TASSER model was generated, its energy, TM 

score and RMSD values were calculated with the methods explained before. I-

TASSER model was also evaluated with SAVES. Then the two models which were 

genereated with MODELLER and I-TASSER were compared. 

 

2.3.4 Determination of Binding Site 

 

COACH [152], COFACTOR [153], MetaPocket [154], CASTp (Computed Atlas of 

Surface Topography of Proteins) [155] and DoGSiteScorer [156] were used to predict 

the binding site of the models. FASTA format of the protein down stream of the KEX2 

cleavage site was submitted to COACH. COACH gave combined results with 

COFACTOR, FINDSITE and ConCavity too. PDB format of the models was uploaded 

and ‘run COFACTOR’ was clicked to do COFACTOR calculations. For MetaPocket 

PDB format was uploaded and the number of pockets to be generated was specified. 

For CASTp ‘calculation request’ was clicked and PDB format was submitted. The 

results of the above methods were obtained through e-mail. For DoGSiteScorer PDB 

format was uploaded and ‘calculate and analyse pockets’ was clicked. The result was 

presented soon and it was saved. 
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2.3.5 Thermostabilization of Models 

 

Thermostabilization of the models was first done with GROMOS96 in the 

SPDBViewer. Energy of each position in the models was predicted and energy profiles 

of the alignment were investigated. All of the amino acids in the unstable regions were 

substituted with the rest nineteen amino acids. Those which gave lower energy were 

recorded. Among them the best ten were selected. ‘Compute energy’ under the ‘tools’ 

was clicked to calculate the energy. To find the minimized energy of the models the 

models were selected and ‘energy minimization’ under the ‘tools’ was clicked. 

Mutations were done with SPDBViewer. The respective models were opened in the 

SPDBViewer. To color the position that will be mutated differently ‘wind’ and then 

‘control panel’ was clicked. In the control panel the box beside the amino acid was 

clicked and the suitable color was selected. ‘Mutate’ was clicked and went over the 

marked amino acid in the opened model. As the mouse cursor is over it, it was clicked. 

At this time all the twenty amino acids appeared and by clicking on one of them the 

amino acid that will substitute the position was selected. ‘Mutate’ was clicked again. 

Then a box that gives a general information about the mutation poped up. By clicking 

‘yes’ the mutation of the position with the amino acid selected was accepted. 

 

After the ten best positions were determined, the combinations among them were also 

tested. Those that gave a higher energy were removed. In addition to this the best three 

thermostabilizer positions in the binding site were determined. 

 

The above calculations were in KJ/mol. These changes were changed in to temperature 

(K) by CNA (Constraint Network Analysis) [123] server.  Various programs were used 

to make the models ready for analysis. The PDB format was opened with 

SPDBViewer. ‘All’ under ‘select’ menu was clicked to select the model. The energy 

was minimized using ‘energy minimization’ under the ‘tools’ menu and was saved. 

And then this was opened with UCSF Chimera. In the Chimera ‘tools’ menu was 

clicked and went over ‘structure editing’ and ‘add H’ was clicked to add hydrogen. 

This was also saved and opened with SPDBViewer again. Since the CNA server 

showed that there was deficiency of residues at isoleucine’s of the models, deficient 
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residues were added. To do this ‘select’ menu was clicked and went over ‘group kind’ 

and then ‘Ile (I)’ was clicked. At last ‘build’ and then ‘add residues’ was clicked. As 

the model was ready, it was submitted to CNA server. Single network-single structure 

was marked as analysis structure and stability map was requested for the output. The 

other parameters were set as default. The results were obtained through e-mail. 

 

Furthermore to increase the accuracy of the predictions made various servers that are 

used to estimate the effect of mutation on a protein were also used. I-Mutant2.0 [157] 

is one of the commonly used methods for this purpose. I-Mutant2.0 main page was 

opened and ‘protein sequence’ was marked as an input for single point mutation 

stability changes. Protein sequence was pasted, the positions and new residues were 

entered and free energy change calculations were requested. The results were obtained 

through e-mail. Next PDB format of the protein was given, the mutations made were 

specified and this was submitted to AUTO-MUTE [130]. The results were available 

soon. Eris [132] server was the other program used. First membership registration was 

done. PDB file of the protein was given as an input. The mutations were done over the 

sequence presented by the server. The other parameters were set as default and the task 

was submitted. The results were sent to the e-mail of registration. For MUpro [131] 

protein sequence which is recommended by the server was given as an input. The 

positions and substitutions were entered one by one. The results were available soon. 
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CHAPTER 3 

 

 

RESULTS 

 

 

 

3.1 Laboratory Results 

 

3.1.1 Production of Crude Panomycocin 

 

Panomycocin was produced and isolated according to the method described by Izgü 

and Altınbay [33]. Since the production of Panomycocin depends on the pH of the 

cultivation medium and incubation temperature, P. anomala cells were grown in 

YEPD pH 4.5 medium with the addition of 5% glycerol as protein stabilizer at 18 ºC 

to maintain high production and thus the highest degree of killing activity [33]. 

 

3.1.2 Determination of Killer Activity of Panomycocin 

 

To determine the killer toxin activity of Panomycocin YEPD agar plates with pH 4.5 

were prepared. S. cerevisiae (NCYC 1006) cells with a 0.5 McFarland standard (1 to 

5 million cells/mL) were prepared in a sterile water. These cells were spread and 

cultivated into the plates with cotton buds. Fifty μL Panomycocin samples were 

spotted onto petri dishes and incubated at 25ºC. A clear growth inhibition zone was 

observed after 24 hours of incubation at 25 ºC (figure 3.1). 

 

 



56 

 

 

 

 

              Figure 3.1 Killer activity of Panomycocin. 

 

 

 

3.1.3 Isolation of Panomycocin 

 

Centrifugation was used to remove P. anomala cells from the culture medium, 

cellulose membrane filters were used to sterilize the supernatant obtained from 

centrifugation and then concentration was made by ultrafiltration systems. 

Furthermore concentrated killer protein was purified by using a fully automated FPLC 

system (Biocad 700E Perseptive Biosystems, USA)  with a gel filtration column TSK 

G 2000SW (Particle size 10 μm, Pore size 125 Å, Sample MW 5 - 100 kDa) (figure 

3.2). The fraction that consists of Panomycocin was eluted at approximately 11.5 mL 

as it is depicted in figure 3.2. 
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Figure 3.2 Elution profile of Panomycocin on TSK G2000SW column. Column size: 

7.5 mmD/ 30 cmL; Sample: 80 μL; Elution buffer: 100 mM Na2HPO4 pH 4.5 with 100 

mM Na2SO4; flow rate 1 mL/min; Detection: 280 nm UV. The fraction containing 

Panomycocin was eluted at 11.5 mL. 

 

 

 

After some runs the active fractions collected were concentrated by using 5 kDa 

molecular mass cut off ultrafilters (Vivaspin VS2021, Sartorius, AG, Germany) to a 

desired protein concentration. 

 

3.1.4 Determination of Protein Concentration 

 

Nanodrop 2000 UV-Vis spectrophotometer at a wavelength of 280 nm was used to 

determine the protein concentration after purification and it was measured as 8 μg/mL. 

 

3.1.5 SDS Polyacrylamide Gel Electrophoresis 

 

For purity test nearly ten μg isolated Panomycocin was electrophoresed on a 12.5% 

linear SDS-PAGE gel in a discontinuous buffer system under denaturing conditions. 

Single protein band was observed on the coomassie brilliant blue stained gel that 
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shows the absence of contamination in the sample. The protein band on lane 2 between 

d and e markers was found to be the band that belongs to Panomycocin (figure 3.3) 

since the molecular mass of Panomycocin is 49 kDa. 

 

 

 

 

 

Figure 3.3 Denatured SDS-PAGE. Lane 2 is pure Panomycocin, lane 3 is crude 

Panomycocin and lane 1 is molecular mass markers (kDa) a) α2-macroglobulin (170), 

b) β-galactosidase (116.353), c) fructose-6-phosphate kinase (85.204), d) glutamate 

dehydrogenase (55.562), e) aldolase (39.212), f) triose phosphate isomerase (26.626), 

g) trypsin-inhibitor (20.100), h) lysozyme (14.307). 
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3.1.6 Results of Thermostability Tests Using Excipients 

 

Fifty μL samples which consist of 25 μL protein and 25 μL excipients with gradient 

of concentrations were prepared. These samples were spotted on dried YEPD petri 

dishes at pH 4.5 in which 0.5 McFarland standard (1 to 5 million cells/mL) S. 

cerevisiae (NCYC 1006) cells were spread over. These petri dishes were put at 

increasing tempratures from 37.5 ºC to 39 ºC for incubation. The results were checked 

for a clear zone of killing after 48 hours. 

  

These tests were done using excipients from various groups of excipients that includes 

sucrose, glucose, lactose, mannitol, sorbitol, trehalose, tween 80, pluronic F-68, 

histidine, lysine, arginine, glycine, proline and glutamic acid. However, none of them 

increased the thermostability of Panomycocin (table 3.1). The results of glycine are 

presented in figure 3.4 to demonstrate. 
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Table 3.1 Results of the killing activity of the protein with excipients at various temperatures. 

 

Excipients Concentration 

of excipients 

Amount 

of 

excipient 

solution 

(in μL) 

Amount of 

Panomycocin 

(in μL) 

Killing activity of the total 

mixture (50μL) at various 

temperatures (in ºC) 

 

 

37.5 

 

 

38 

 

 

38.5 

 

 

39 

G
lu

co
se

, 
G

lu
ta

m
ic

 a
ci

d
, 

G
ly

ci
n
e,

 L
ac

to
se

, 
L

y
si

n
e,

 

P
ro

li
n

e,
 S

o
rb

it
o
l,

 S
u
cr

o
se

, 
 

T
re

h
al

o
se

  

 

0.005M 

 

25 

 

25 

 

- 

 

- 

 

- 

 

- 

0.02M 25 25 - - - - 

0.05M 25 25 - - - - 

0.1M 25 25 - - - - 

0.2M 25 25 - - - - 

0.5M 25 25 - - - - 

1M 25 25 - - - - 

1.25M 25 25 - - - - 

  A
rg

in
in

e,
 M

an
n
it

o
l 

 

0.005M 25 25 - - - - 

0.02M 25 25 - - - - 

0.05M 25 25 - - - - 

0.1M 25 25 - - - - 

0.2M 25 25 - - - - 

0.4M 25 25 - - - - 

0.5M 25 25 - - - - 

0.625M 25 25 - - - - 

Histidine 0.005M 25 25 -       - - - 

0.02M 25 25 - - - - 

0.05M 25 25 - - - - 

0.1M 25 25 - - - - 

0.15M 25 25 - - - - 

0.2M 25 25 - - - - 

0.25M 25 25 - - - - 

 P
lu

ro
n

ic
 F

-6
8
, 

T
w

ee
n

 8
0

  

%0.005 25 25 - - - - 

%0.01 25 25 - - - - 

%0.025 25 25 - - - - 

%0.05 25 25 - - - - 

%0.1 25 25 - - - - 

%0.25 25 25 - - - - 

%0.5 25 25 - - - - 

%1 25 25 - - - - 

Glycerol %0.5 25 25 - - - - 

%1 25 25 - - - - 

%2 25 25 - - - - 

%2.5 25 25 - - - - 

%5 25 25 - - - - 

%10 25 25 - - - - 

%15 25 25 - - - - 

%20 25 25 - - - - 
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Figure 3.4 Results of thermostability tests with excipients a) killing activity of 

Panomycocin at 25ºC, b) results of glycine at 0.005M, 0.02M, 0.05M and 0.1M 

concentrations, c) results of glycine at 0.2M, 0.5M, 1M and 1.25M concentrations. 
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3.2 Computational Results 

 

3.2.1 Protein Similarity Search 

 

Matrices with high target identity like MDM10 and VTML10 gave %100 identities 

and positives with some proteins as shown in figure 3.5. 

 

 

 

 

 

Figure 3.5 FASTA search results of matrices with high target identity. 

 

 

 

But matrices with low target identity gave lower percentage of identities and positives. 

For example, the default matrix BLOSUM50 gave %81 identities and %90.5 positives 

as the best homologue (figure 3.6). 

 

 

 

 

 

Figure 3.6 FASTA search results of BLOSUM50 which has low target identity. 
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The FASTA program analysis that was performed showed that exo-β-1,3-glucanase 

from Hansenula (Pichia) anomala is the best homologue of the sequences of the 

protein. The sequence was obtained from UniProt using its accession number 

(AJ222862) [143]. The sequence found is gene sequencing with 427 amino acids. The 

sequence obtained from UniProt is presented below. 
 

MLISTFIISSLLSIALANPIPSRGGTQFYKRGDYWDYQNDKIRGVNLGGWFVL

EPFITPSLFEAFENQGQDVPVDEYHYTKALGKDLAKERLDQHWSSWIVEADF

QSIAGAGLNFVRIPIGYWAFQLLDNDPYVQGQESYLDQALEWAKKYDIKVW

IDLHGAPGSQNGFDNSGLRDSYEFQNGDNTQVALDVLQYISNKYGGSDYGD

VVIGIELLNEPLGSVLDMGKLNDFWQQGYHNLRNTGSSQNVIIHDAFQTWD

SFNDKFHTPDYWNVVIDHHHYQVFSPGELSRSVDEHVKVACEWGANSTKE

NHWNLCGEWSAAMTDCTKWLNGVGRGSRYDQTFDYDPSQNQNYIGSCQG

SQDISTWDDDKKSNYRRYIEAQLDAFEKRSGWIFWTWKTETTLEWDFQKLS

YYGIFPSPLTSRQYPGQCD 

 

As a result modeling and thermostabilization works were done with this sequence. 

 

3.2.2 Signal Peptide and KEX2 Cleavage Site 

 

SignalP 4.1, Signal-CF, PrediSi and Signal-3L results showed that the signal peptide 

includes the first seventeen amino acids. SignalP 4.1 results are presented in figure 3.7. 
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Figure 3.7 Signal peptide results of SignalP 4.1: C-score is high immediately after the 

cleavage site; S-score is high at all positions before the cleavage site; Y-score is the 

estimation of cleavage site that is optimized by considering regions where the C-score 

is high and the S-score changes from high to low value. 
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As it was estimated by SMART server, KEX2 cleavage may occur at 30-32 positions 

as shown in figure 3.8. In addition to this amino acid sequencing at the N-terminal 

showed that the secreted mature protein starts with glycine at 32. position. As a result 

the cleavage occurs after the 31. position on -Arg-Gly- bond. 

 

 

 

 

 

Figure 3.8 KEX2 cleavage site estimation of SMART server. 

 

 

 

3.2.3 Homology Modeling 

 

3.2.3.a Homology Modeling by MODELLER 

 

3.2.3.a.1 Generating Models 

 

The BLAST result showed that 1EQP, 1CZ1 and 2PB1 are the best homologs with the 

protein with %98 coverage and %66 identity. 
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Figure 3.9 PSI-BLAST search result of the protein. The marked proteins 3D structure 

has been determined. 

 

 

 

There are proteins which have upto %100 identity and coverage with the protein but 

their 3D structure has not been determined yet. As a result those proteins whose 

structures were determined and put into PDB were selected as templates. The three 

proteins marked in figure 3.9, with PDB ID: 1EQP, 2PB1 and 1CZ1, were selected as 

templates. They have %66 identity and %98 coverage in relative to the protein. 

 

There was not any gap in the protein sequence. So the next steps were pursued and the 

templates were aligned (figure 3.10). The templates were found to have almost the 

same sequence. 
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Figure 3.10 Alignment of the templates. The amino acids in the alignment were 

colored in accordance with the similarity and the conserved residues were marked by 

a red square below the alignment. 
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Then the query sequence was aligned with the templates. Since a wide gap was not 

observed in the predicted secondary structure regions of the alignment, the code of the 

alignment was not edited. 

 

 

 

 

 

Figure 3.11 Alignment of the query with the templates. In the result window conserved 

residues in the alignment are shown in red squares. Alpha and beta helices are also 

predicted. The occurence of these secondary structures is a function of color such that 

deeper red indicates high confidence and deeper green indicates low confidence. 
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At last the models were generated. DOPE profile was also plotted as shown in figure 

3.12. 

 

 

 

 

 

Figure 3.12 Generated models and their DOPE profile. 
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3.2.3.a.2 Determination of the Best Model 

 

Generated models were compared with DOPE score, energy, TM score and RMSD 

values. MODELLER gives DOPE score under DOPE profile viewer when it is 

requested. The results were represented in a graph (figure 3.13). 

 

 

 

 

 

Figure 3.13 Graph of DOPE score of the models. 

 

 

 

Energies of the models were calculated with GROMOS96 in Swiss PDBViewer. It 

was calculated separately for each model and the results were put in a graph (figure 

3.14). 
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Figure 3.14 Graph of energy of the models. 

 

 

 

TM scores were calculated for each model in relative to the three templates used. The 

results are shown in table 3.2. 

 

 

 

Table 3.2 TM scores for the models. 

 

Mod

el 

1 2 3 4 5 6 7 8 9 

Mea

n 

TM 

0.40

99 

0.41

08 

0.41

13 

0.410

9 

0.411

8 

0.411

7 

0.412

1 

0.412

3 

0.409

9 
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RMSD values were calculated with VMD. Calculations were done for all models with 

respect to a template. This was done for all the templates. The average of the resulting 

RMSD values were calculated and shown in table 3.3. 

 

 

 

Table 3.3 RMSD values of the models. 

 

Mod

el 

1 2 3 4 5 6 7 8 9 

Mean 

RMS

D (Å) 

5.55

40 

6.32

75 

5.03

80 

5.48

37 

5.68

13 

7.20

66 

5.92

65 

6.20

07 

6.44

63 

 

 

 

As it was shown in the above graphs and tables, model 1 gave the best result in energy 

and second in DOPE score. In addition to this it gave a good result in measurements 

related with topology and position even if it was not the best. Since model 1 gave a 

good result in all measurements, it was choosen as the best model. So that the next 

stages were continued with it. 

 

3.2.3.a.3 Loop Modeling 

 

DOPE profile of model 1 with respect to templates as shown in figure 3.15, structural 

analysis and analysis of the alignment between the query and the templates were used 

to determine the regions that loop modeling might give a better model. As a result loop 

modeling was undertaken at 1-5, 228-242, 311-320, 330-340 and 358-362 positions. 
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Figure 3.15 DOPE score profile of model 1 relative to the templates. Red is profile of 

model 1 and the others are templates. 

 

 

 

DOPE score and energy of the models were calculated and the results were 

summarized in table 3.4. 

 

 

 

Table 3.4 DOPE score and energies of loop modeling at different positions. 

 
Loop Modeling Positions 

 

DOPE Score Energy (KJ/mol) 

1-5 
 

-50587.976562 

 

-19859.064 

228-242 
 

-49398.257812 

 

-17632.781 

311-320 
 

-50808.406250 

 

-19918.740 

330-340 
 

-50226.585938 

 

-19458.766 

358-362 
 

-50715.792969 

 

-19540.637 
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Loop modeling at positions 311-320 gave a better result in both measurements. The 

first and the fifth regions in the table showed a decrease which is not significant in 

one of the parameters but an increase in the other. The rest two gave worse result 

than model 1 in both measurements. As a result only loop modeling at position 311-

320 was undertaken over model 1. The resulting DOPE profile is shown in figure 

3.16. 

 

 

 

 

 

Figure 3.16 DOPE profile of model 1 (turquise) and the model after loop modeling   

was    undertaken (red). 

 

 

 

The energy and DOPE score of the loop model was lower than model 1. TM score 

was found to be 0.4083 which is near but lower than the result of model 1 (0.4099) 

and RMSD 5.5950 Å which is near to but higher than the result of model 1 (5.5540 

Å). Since the result was not good in topology and position measurements, 

thermostabilization was performed with both models. 
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3.2.3.a.4 Optimization, Verification and Validation 

 

Optimization gave a model with a better characteristics. DOPE score and energy was 

lower. TM score and RMSD values were also better. The optimized model was 

verified and validated with SAVES. The results are presented below. 

The overall quality factor estimated by ERRAT was 89.175. This value is acceptable 

since the results are out of the rejection limit (%95) in most areas. 

 

 

 

 

 

Figure 3.17 ERRAT generated result of the loop model where 95 % indicates rejection 

limit. 

 

 

 

Verify 3D result showed that 96.97% of the residues had an average 3D to 1D score 

greater than or equal to 0.2. This indicates that the loop model generated is reliable. 

 

 

 

 

        

Figure 3.18 Verify 3D result generated for the loop model. 
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In addition to this most of the results of WHATCHECK were either green or yellow 

that show the reliability of the model. As a result the over all results showed that the 

loop model generated is reliable and the model is presented in figure 3.19. 

 

 

 

 

 

Figure 3.19 3D structure of the best model after loop modeling. 
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3.2.3.b Homology Modeling by I-TASSER 

 

After the I-TASSER model was generated, its energy, TM score and RMSD values 

were calculated. The energy was -16787.990 KJ/mol and with energy minimization 

it was -22267.980 KJ/mol. The average TM score and RMSD value were 0.3480 and 

78.0966 Å respectively. The energy was lower than the loop model which is good. 

But TM score and RMSD values of the loop model were better. The match between 

MODELLER and I-TASSER model is presented in figure 3.20. I-TASSER model 

was also evaluated with SAVES. The overall quality factor estimated by ERRAT was 

90.979. Verify 3D showed that 96.72% of the residues had an average 3D to 1D score 

of greater than or equal 0.2. Most of the results of WHATCHECK were either green 

or yellow that show the reliability of the model. These results show that the generated 

model is reliable. 

 

 

 

Figure 3.20 The match between MODELLER’s best model (blue) and I-TASSER 

model (gray). 
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3.2.4 Binding Sites 

 

From the results of the COACH, COFACTOR and MetaPocket binding site pocket 

may include Glu23, Phe25, His129, Asn140, Asn185, Glu186, Tyr248, Phe251, 

Glu285, Trp361 and Trp371. Binding site predictions by CASTp and DoGSiteScorer 

also gave a similar result but with a wider coverage. The best binding site of CASTp 

is presented in figure 3.21. All of the positions which are listed above are part of the 

best pocket of CASTp. In addition to this exo-β-1,3-glucanase has active sites at 

Glu217 and Glu316 positions as indicated by UniProt. These are Glu186 and Glu285 

positions of the protein which was modeled after the first 31 sequences were cleaved 

by KEX2.  These sequences are part of the binding site pocket which was calculated 

by the computational methods mentioned above. 
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Figure 3.21 A) The table of the area and the volume for different binding sites of the 

model. B) The three dimensional structure of the best binding site. C) Binding site 

analysis by CASTp server.  Green color illustrates the binding site position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

 

3.2.5 Thermostabilization of the Models 

 

Thermostabilization was first done with GROMOS96 in SPDBViewer. The results are 

summarized in table 3.5. 

 

 

 

Table 3.5 The best ten stabilizing positions in the allosteric region of the loop model. 

 

Mutation Leu52Arg Tyr120Arg Gly130Ala Gly195Pro Gly204Arg 

Energy 

change 

(KJ/mol) 

-580.623 -531.240 -584.131 -541.701 -627.356 

 

Table 3.5 (continued). 

 

Mutation Phe223Arg Ile243Arg Gly254Arg Cys293Arg Gly299Arg 

Energy 

change 

(KJ/mol) 

-549.100 -469.840 -799.483 -510.106 -553.352 

 

 

 

The total energy with site directed mutations was measured as -20993.869 KJ/mol. 

This means -1129.170 KJ/mol energy minimization was achieved with site directed 

mutation at 10 positions. 

 

Then combinations were tested among these best stabilizing positions. Combinations 

that gave a higher energy are listed in table 3.6. 
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Table 3.6 Combinations that gave a higher energy. 

 

Nonmutated 

position 

52 120 204 223 254 

Energy 

(KJ/mol) 

-20743.613 -20431.449 -20803.203 -20791.016 -20698.871 

 

Table 3.6 (continued). 

 

Nonmutated 

positions 

254,293 254,299 195,223 223,299 223,293 

Energy 

(KJ/mol) 

-20719.742 -20682.580 -20775.824 -20767.078 -20812.621 

  

Table 3.6 (continued). 

 

Nonmutated 

positions 

130,204 52,130 52,243 53,130 130,223 

Energy 

(KJ/mol) 

-20759.754 -20700.242 -20814.043 -20211.770 -20746.279 

 

 

 

As it is shown in table 3.6 positions 130, 243, 293 and 299 in combination with others 

gave a higher energy but that was lower than the values gained by changing only the 

positions that gave a higher energy solely. As a result 52, 120, 204, 223 and 254 

positions can be mutated if the other methods give a similar result. By doing this the 

total energy was -21047.369 KJ/mol. This means -1182.670 KJ/mol energy 

minimization was achieved with site directed mutations at 5 positions. The result is 

better than what was gained by mutating the ten best positions. 

  

In addition to this the best three stabilizing positions in the binding site were estimated. 

Phe25Arg, Glu186Arg and Trp371Arg were found to be the best three stabilizers in 

order with -322.826 KJ/mol, -285.887 KJ/mol and -244.387 KJ/mol changes 

respectively. 

 

These changes were estimated in terms of K by CNA (figure 3.22). 
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Figure 3.22 Global indices for the thermal unfolding of the loop model: (A) floppy 

mode density F; (B) mean rigid cluster size S; rigidity order parameter P1 (C) type 1 

and (D) type 2; cluster configuration entropy H (E) type 1 and (F) type 2. The red 

vertical lines (C–F) indicates the phase transitions. 
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The cluster configuration entropy type 2 (H type 2) which have been found to be 

related with melting point of the protein was -4.84 kcal/mol equivalent to 396.74 K 

without any mutation. 

 

 

 

 

 

Figure 3.23 CNA result of the loop model. 

 

 

 

Values after those positions mutated and estimated were compared with the 

nonmutated result. As an example Leu52Arg mutation gave the following result. 

 

 

 

 

 

Figure 3.24 CNA result after Leu52Arg mutation was done. 
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H type 2 was found to be -5.15 kcal/mol equivalent to 403.00 K.This means there is 

an increase of 6.26 K by Leu52Arg mutation. Similarly 0, -0.06 K, 6.26 K and 8.27 K 

changes were achieved with mutations Tyr120Arg, Gly204Arg, Phe223Arg and 

Gly254Arg respectively. From this we can say that mutations at 52, 223 and 254 

positions gave consistent result with the above method. 

 

I-Mutant2.0 gave a result that shows most of the mutations for the best ten stabilizers 

are stabilizing. Eris results showed that most of them are stabilizers. AUTO-MUTE 

also gave a similar result. According to MUpro results all the ten positions are 

stabilizers. Results were obtained for each position separately. To illustrate this MUpro 

result for Leu52Arg is presented in figure 3.25. 

 

From the three best stabilizing positions in the active site, Glu186Arg was found to be 

stabilizer by most methods used. 9.58 K increase can be achieved with this mutation 

as CNA estimated it. 

 

 

  

 

Figure 3.25 MUpro result of Leu52Arg mutation.  
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These results were obtained for I-TASSER model too. The results are summarized 

below. 

 

 

 

Table 3.7 The best ten stabilizing positions in the I-TASSER model. 

 

Mutation Gly38Arg Gly53Arg Gly81Arg Gly105Arg Gly137Arg 

Energy 

change 

(KJ/mol) 

-377.844 -365.002 -375.975 -355.661 -394.256 

 

Table 3.7 (continued). 

Mutation Gly175Arg Gly212Arg Gly301Arg Gly322Arg Gly326Arg 

Energy 

change 

(KJ/mol) 

-364.934 -342.795 -344.219 -354.147 -354.383 

 

 

The total energy with site directed mutations was measured as -25396.039 KJ/mol. 

This means -3128.059 KJ/mol energy minimization was achieved with site directed 

mutations at 10 positions. 

 

In addition to this combinations were tested among these best stabilizing positions. All 

combinations among these positions gave higher than -25000 KJ/mol. This shows us 

that all of the best ten positions can be mutated if the other methods give a consistent 

result. 

 

However, only Gly53Arg gave 29.46 K increase according to CNA results. The other 

positions did not give a consistent result. 
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CHAPTER 4 

 

 

DISCUSSION 

 

 

 

Increased use of wide spectrum antibiotics, secondary resistance development towards 

conventional drugs, immunosuppressive infections or diseases, the use of 

chemotherapeutic agents, long term use of corticoids, invasive medical interventions 

and high level of immunosuppresed population due to the survival of patients with 

severe illnesses resulting from advanced medical technology increased the risk of 

fungal infections [3-5]. These changes has increased the rate of invasive fungal 

infections substantially as WHO reports show. As a result the demand for antifungal 

agents has risen and the global market for these agents is expected to reach nearly to 

$13.9 billion in 2018 [7]. 

 

Many of the currently used antifungal agents target the cell membrane or intracellular 

molecules and processes like the mitotic division of fungi and some other new agents 

act on the cell wall. Fungi cells share many of the biochemical pathways and 

subcellular structures with mammalian cells because they are eukaryotic cells. This 

means the antifungal agents affect the host cells too if their targets are these common 

pathways and structures. Therefore, many of the currently used antifungal agents have 

many side effects and there is high resistance development. Furthermore they interact 

with other therapeutics unfavourably, have a narrow spectrum of activity, have limited 

formulation and are fungistatic. Thus antifungal agents that act on fungal cell wall 

compounds are superior to other antifungal drugs since they are selective to the fungi, 

the cross-resistance with the other antifungal agents does not develop and have wide 

spectrum fungicidal activity. As a result antifungal agents that target the cell wall are 

a promising, attractive novel antifungals [11,12,16]. 
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Yeast killer proteins are naturally occuring substances secreted by killer yeast strains 

that are lethal to sensitive yeast cells. They have various modes of action but the 

common mechanisms of action are hydrolyzing or inhibiting the synthesis of β-1,3-

glucans which are the major cell wall components and forming ion channels on cell 

membrane leading to ion leakage. Their way of action and sources show that they are 

good candidates as novel and potent antifungal agents. K5 type yeast killer protein, 

Panomycocin, is an example [27]. 

 

Panomycocin is a K5 type yeast killer protein which is produced by Pichia anomala 

NCYC 434 strain. Panomycocin is a glycosylated monomer protein. Its molecular 

mass is 49 kDa and it has a pI value of 3.7. Panomycocin has a wide range pH (2.5-

5.5) stability and has high affinity to β-1,3- glucans which is the component of fungal 

cell wall. As a result Panomycocin has a high potential to be used as a therapeutic 

antifungal agent in the medications of fungal infections due to its novel mechanism of 

action, selectivity and stability. However, its activity decreases above 37 ºC. 

Thermostability of Panomycocin should be increased so that formulations that are 

stable at high temperature can be prepared. Various excipients and computational 

methods were used to thermostabilize the protein [27,33]. 

 

Excipients from various groups which have various mechanisms of interactions are 

used to increase thermostability of proteins. However, depending on the concentration 

of excipients and the working environment, excipients may have different effects on 

the thermostability. Therefore, gradient concentrations of the excipients with 

increasing temperatures were tested in this work. Buffering agents are used to keep the 

pH at the point in which the protein is highly active and stable. Since the optimum pH 

for Panomycocin is 4.5, the test medium petri pH was made 4.5 with citrate phosphate 

buffer.  

 

Thermostabilization of proteins using amino acids is achieved through preferential 

hydration and direct binding. They are also buffering agents and have antioxidant 

properties that are important in stabilizing proteins [42]. Stabilizing effects of amino 

acids are based on the interactions of amino acids with proteins. These interactions are 
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highly influenced by the nature of amino acids and proteins, concentrations and the 

environment. Arginine is one of the amino acids which are used to stabilize proteins. 

It interacts with proteins in various ways. It may interact through hydrogen bonding, 

electrostatic interactions, direct interactions with the backbone structure, association 

with the hydrophobic patches of the protein and formation of cation-π interactions with 

aromatic amino acids of the protein [41]. However, these interactions might differ 

based on concentrations as it was observed for arginine-BSA (Bovine Serum Albumin) 

interactions [41]. Arginine’s effect on thermostability was found to vary depending on 

the protein. For example, Arakawa et al. have seen arginine has no effects on the 

melting point of lysozyme and RNAse but Thakkar et al. seen varying effects of it on 

monoclonal antibodies [42,158]. Glycine is another amino acid which is used in the 

thermostabilization of proteins. It has various interactions with various proteins 

depending on the concentration and type of protein. The interactions of glycine are 

mainly with charged side chains at low concentrations, with peptide backbone at 

intermediate concentrations and with competition for water. Platts et al. observed that 

glycine stabilizes BSA, myoglobin and lysozyme proteins at concentrations above 

0.1M but destabilizes myoglobin at lower concentrations and it has varying effects on 

the others. This shows how the effect of glycine is protein specific and unpredictable 

[159]. In our work none of the amino acids used to increase the thermostability of 

Panomycocin gave a positive result. This might be the consequence of the complicated 

interactions and thus effects of amino acids on proteins. 

 

The stabilizing effects of carbohydrates and sugars result from the interactions 

between these excipients and proteins. The interactions are mainly hydrogen bonding, 

dispersive interactions, preferential hydration and aromatic interactions such as 

hydrophobic and CH-π interactions. Special conformational interactions with proteins 

and formation of viscous matrices which are important in the improvement of 

thermostability are the effects of these interactions. A study by Zhong et al. showed 

that sucrose, glucose and lactose can improve the thermostability of whey protein-

maltodextrin conjugates by increasing the viscosity of continuous phase and stability 

of conjugates [160]. However, they have also destabilizing effects depending on the 

condition and the nature of excipients and proteins. Some of them can degrade or may 

contain impurities that destabilize proteins. For example, sucrose may hydrolyze to 
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glucose and fructose. This results in the formation of a reducing sugar that may cause 

protein glycation at lycine residues [161]. The carbohydrates and sugars tested did not 

increase the thermostability of Panomycocin perhaps due to these complicated 

interaction mechanisms and effects on it. 

 

Osmolytes act similar to carbohydrates and sugars since they have similar nature. 

However, polyols which are representatives for this group including glycerol decrease 

the surface tension of water and therefore their stabilizing effect is mainly solvophobic 

in nature [43]. Depending on temperature, pH, concentration and the nature of the 

protein the thermostabilizing effects of osmolytes vary. For example, although 

trehalose and sorbitol lead to preferential hydration of RNAse A at low temperatures, 

they have been found to bind weakly to RNAse A at high temperatures [162]. As a 

result they may not show their thermostabilizing effect at high temperatures like it was 

observed in our work. 

Surfactants’ major ways of interactions with proteins are electrostatic and dispersive 

interactions. These are essentially used to prevent aggregation due to agitation or 

shaking. In addition to this Tween 80 and Pluronic F-68 has been found to increase the 

thermostability of toxoid A and toxoid B. These excipients too act variably. Wang et 

al. have observed that Tween 80 has a dual effect on the stability of IL-2 (Interleucin-

2). Tween 80 has been found to inhibit the aggregation of IL-2 due to shaking but 

adversely affected the stability of IL-2 in the solution storage form. These effects 

depend highly on temperature and formulation [163]. So, in a similar way these 

excipients did not thermostabilize the protein in our work. 

 

All of the excipients tested did not thermostabilize Panomycocin over 37 ºC. Thus 

computational methods were pursued. Computational methods have the additional 

advantage of stabilizing the protein through its synthesis process resulting in higher 

production and purification yields. Prior to thermostabilization, modeling of the 

protein was undertaken. MODELLER and I-TASSER (Iterative Threading ASSEmbly 

Refinement) server were used in homology modeling of the protein.  

 

MODELLER is a popular and widely used homology modeling tool. MODELLER has 

many advantages over the other programs used in homology modeling. It is freely 
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available, has many powerful features and gives relaible results. It has freely available 

graphic user interface called EasyModeller. EasyModeller enables users to build a 

model easily even if they did not have experience in modeling because it is simple and 

straightforward. Moreover, assessment, vizualization and optimization of the 

generated model is possible. EasyModeller has many features that makes it user 

friendly and reliable. These features are: 1) tab based logical modeling steps which are 

easy to implement; 2) provides the opportunity of loading unlimited number of 

templates; 3) enables users to generate many models; 4) colorful alignment viewer 

with alignment editor; 5) MODELLER code editing; 6) inbuilt DOPE profile viewer, 

Ramachandran plot viewer, loop modeling, model optimization and dynamics for a 

selected model [83]. 

 

I-TASSER server is an internet based service for protein structure predictions. It 

allows academic users to generate high quality 3D structure predictions. CASP 

(Critical Assessment of Structure Prediction) experiments have been developed to get 

an objective assessment of the state of modeling tools. The competition takes place 

every two years since 1994. I-TASSER server participated in the competition since 

2006 and was found to be one of the best modeling tools in the servers section of the 

CASP experiments. In addition to this I-TASSER has many good features that makes 

it superior to other modeling servers.  I-TASSER: 1) enables users to select and align 

templates; 2) can also predict the function of the protein; 3) can give upto five models; 

4) gives a confidence score, TM score and RMSD value for the first model; 5) the 

output includes GIF images of the predicted models and top 10 proteins in PDB that 

have similar structures to the predicted models [84]. 

 

Using the internal and N-terminal sequences made, protein similarity search was 

performed with FASTA program. Exo-β-1,3-glucanase from Pichia anomala strain K 

with accession number AJ222862 was found to be the best homologue of the 

sequences as it was also indicated by Izgü et al. before [27]. The sequence of the 

homologue protein was obtained from UniProt [143] with its accession number. The 

sequence found is gene sequencing which was done by Jigakli et al. [164] and thus it 

contains the signal peptide and amino acids that are cleaved by KEX2 before the 

secretion of the protein. So, the sequences which are not part of the mature protein 
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should be determined and cleaved before beginning homology modeling. The signal 

peptide was determined by SignalP 4.1, Signal-CF, PrediSi and Signal-3L. It was 

found to include the first seventeen amino acids. Before secretion of the protein, a few 

amino acids are cleaved by KEX2. To determine the KEX2 cleavage site SMART 

(Simple Modular Architecture Research Tool) was used. SMART estimated the KEX2 

cleavage site to be between 30-32 positions (-Lys-Arg-Gly-). Since N-terminal 

sequencing of the protein yielded GDYWDYQNDKIR [27], the secreted mature 

protein starts with Gly. So, the KEX2 cleavage takes place after the 31. position at the 

-Arg-Gly- bond. Then the sequence upstream of the KEX2 cleavage site was cleaved 

and modeling was performed with the downstream sequence. 

 

First templates that would be used in the homology modeling of the protein were 

found. PSI-BLAST (position specific iteration BLAST) algorithm of BLAST (Basic 

Local Alignment Search Tool) in the NCBI (National Center for Biotechnology 

Information) was used to find the templates. The template search showed that there are 

homologue proteins to the protein with %100 identity and coverage but their 3D 

structure has not been determined yet. As a result those proteins whose structures were 

determined and put into PDB were selected as templates. These are exo-β-1,3-

glucanases from Candida albicans with PDB IDs 1EQP, 2PB1 and 1CZ1 whose 

structures were determined by X-ray diffraction. They have %66 identity and %98 

coverage in relative to the protein. According to Rost et al for the protein being 

modelled which consists of 396 amino acids downstream of the KEX2 cleavage site, 

above %30 identity is in the safe homology modeling zone [52]. So, %66 identity is a 

high identity level and thus the query and templates are expected to fold in to the same 

structure. 

 

MODELLER licence was obtained. Then MODELLER 9.11 was installed. As all the 

necessary inputs and programs for homology modeling by MODELLER were ready, 

modeling began. First the query sequence and the templates were loaded in 

EasyModeller 4.0, the graphic user interface for MODELLER. The query sequence 

was checked whether there is a gap in it or not. Since there was not any gap, the next 

steps were pursued. Second the templates were aligned and it was observed that their 

sequences are almost the same. Then the query sequence was aligned to the templates. 
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The predicted secondary structure was investigated but since there was not a wide gap 

no need of MODELLER code editing. At last nine models were generated together 

with DOPE profiles under the DOPE profile viewer. 

 

Among the generated models, the best model was chosen by comparing them with 

their DOPE score, energy, TM (Template Modeling) score and RMSD (Root Mean 

Square Deviation) values. DOPE score was obtained from MODELLER; energy was 

calculated with GROMOS96 (GROningen MOlecular Simulation96) in the 

SPDBViewer (Swiss PDB Viewer); TM score was calculated with TM score 

calculator; RMSD was calculated with VMD (Visual Molecular Dynamics). The 

results of these calculations showed that model 1 gave the best result in energy and 

second in DOPE score. In addition to this it gave a good result in measurements 

related with topology (TM score) and position (RMSD) even if it was not the best. In 

short the results showed model 1 is good in all the measurements used. So, it was 

choosen as the best model and thus the next stages were performed with it. 

 

Since MODELLER gives the opportunity of loop modeling, loop modeling was 

performed over the best model (model 1). In order to estimate the regions that loop 

modeling might give a better model, analysis of the alignment between the query and 

the templates, observation of the 3D structure of the model and analysis of the DOPE 

profile of model 1 with respect to templates were used.   Then loop modeling was 

undertaken at various positions and its effects were analyzed by comparing the DOPE 

score, energy, TM score and RMSD values of the resulting models to the best model. 

Only loop modeling at positions 311-320 gave a better result in DOPE score and 

energy. However, the TM score and RMSD values of the loop model were worse than 

the best model. Therefore, computational thermostabilization was performed with 

both models. 

 

The best model and loop model were optimized by MODELLER to get models with 

better properties. The optimized models were verified and validated with SAVES 

(Structure Analysis and Verification Server). The overall quality factor estimated by 

ERRAT was 89.175. Colovos et al put that a model should be out of the rejection 

limit (%95) at least with 80 overall quality factor [165]. Therefore, the result obtained 
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is in the acceptable region. Verify 3D result showed that 96.97% of the residues had 

an average 3D to 1D score of greater than or equal to 0.2. According to Eisenberg et 

al. this value is a measurement of the compatibility of a protein model with its 

sequence. It can have values from −%100 (bad value) to +%100 (good value) [166]. 

So, our model is good according to this criteria. In addition to this most of the results 

of WHATCHECK were either green or yellow that show the reliability of the model. 

As a result the overall results showed that the model generated is reliable. 

 

A model was also generated by I-TASSER and compared with the model which was 

generated by MODELLER. Although I-TASSER model was found to be better in 

energy, it was worse than the MODELLER model in TM score and RMSD values. I-

TASSER model was also evaluated with SAVES. The overall quality factor estimated 

by ERRAT was 90.979. Verify 3D showed that 96.72% of the residues had an average 

3D to 1D score of greater than or equal to 0.2. Most of the results of WHATCHECK 

were either green or yellow that show the reliability of the model. These results show 

that the generated model is reliable. 

 

The roles of binding sites and allosteric regions in the activity of proteins are 

different. Binding site plays a crucial role in the binding of a protein to its substrate. 

Therefore, binding site was determined and its thermostabilizaton was made 

separately as it needs special treatment. COACH, COFACTOR, MetaPocket, CASTp 

(Computed Atlas of Surface Topography of Proteins) and DoGSiteScorer were used 

to predict the binding site of the models.  From the predictions made by these methods 

binding site pocket may include Glu23, Phe25, His129, Asn140, Asn185, Glu186, 

Tyr248, Phe251, Glu285, Trp361 and Trp371. Moreover, UniProt indicates exo-β-

1,3-glucanase has active sites at Glu217 and Glu316 positions that are Glu186 and 

Glu285 positions of the protein which was modeled after the first 31 sequences were 

cleaved by KEX2. These are part of the binding site pocket which was estimated by 

the computational methods. 

 

Thermostabilization of the models was first done with GROMOS96 in the 

SPDBViewer. Energy of each residue in the models was predicted and energy profiles 

of the alignment were investigated. The energy calculated here is the sum of the 
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energies of angles, bonds, torsions, improper interactions, nonbondeds, electrostatics 

and constraints. All of the amino acids in the unstable regions were substituted with 

the rest nineteen amino acids using SPDBViewer and the energies were calculated. 

Those residues which gave lower energy than the nonmutated ones were recorded. 

Among them the best ten were chosen. Leu52Arg, Tyr120Arg, Gly130Ala, 

Gly195Pro, Gly204Arg, Phe223Arg, Ile243Arg, Gly254Arg, Cys293Arg, 

Glyc299Arg were found to be the best ten stabilizing mutations in the allosteric region 

of the protein. Then the combinations among the best ten stabilizing positions were 

tested. The interactions between the newly mutated amino acids can be destabilizing 

since the properties of the amino acids differ from each other. Those that are 

destabilizing gave a higher energy. Leu52Arg, Tyr120Arg, Gly204Arg, Phe223Arg 

and Gly254Arg were found to be stabilizing in the combinations too and thus these 

positions can be mutated to get a themostable protein if the other methods give a 

similar result. The total energy decrease achieved by mutating only these five positions 

was better than that of the ten best positions. The energy calculations made by 

GROMOS96 in SPDBViewer are in KJ/mol. Therefore, calculations were made in 

terms of temperature (K) by CNA (Constraint Network Analysis) server. CNA results 

together with various servers that are used to estimate the effect of mutations on a 

protein such as I-MUTANT2.0, AUTO-MUTE, Eris and MUpro were used to increase 

the accuracy of the predictions made. CNA predictions showed that Leu52Arg, 

Phe223Arg and Gly254Arg mutations can stabilize the protein with 6.26K, 8.27K and 

6.26K temperature increase respectively. Moreover, the other methods used also 

predicted these positions as thermostabilizing. So, substitution of 52, 223 or 254 

positions with arginine is expected to increase the thermostability of Panomycocin to 

the desired level. 

 

The thermostability problem may result from the deformation and thus deactivation of 

the binding site of the protein. Incase Panomycocin has a similar problem, 

thermostabilizing positions in the binding site were also predicted and Phe25Arg, 

Glu186Arg and Trp371Arg were found to be the best three thermostabilizers. From 

the three best thermostabilizing positions in the binding site, Glu186Arg was found to 

be thermostabilizer by the other methods too. 9.58 K temperature increase can be 

achieved with this point mutation as estimated by CNA. 
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The aim of the thermostabilization work is to design a thermostable protein without 

changing its activity. The 3D structure and binding site of the protein did not change 

after the best stabilizing positions mutated. So, the mutant strain protein is expected to 

bind to the same substrate and show the same activity with the wild strain protein. 

  

All of the above mentioned calculations were performed on the I-TASSER model one 

by one. All of the best ten positions were substitutions of glycine by arginine. In the 

combination tests, all the ten positions were found to be thermostabilizers in the 

combined form too. However, only a position gave a consistent result with the other 

methods used. 

 

In our computational thermostabilization work, most of the thermostabilizing 

mutations were substitutions of a residue by arginine. Since several studies before 

showed that the change of hydrophobicity to hydrophilicity of residues in solvent 

exposed surface of proteins is a good strategy of stabilizing proteins, substituting a 

hydrophobic residue by arginine which is a positively charged hydrophilic amino acid 

is expected to increase the stability of proteins in general and thermostability in 

particular. Strub et al. increased the stability of acetylcholinesterase by substituting 

solvent exposed hydrophobic residues by arginine [167]. Even substitutions of 

hydrophilic residues on the surface by arginine may increase the thermostability of 

proteins. Sokalingam et al. increased the stability of green flourescent protein (GFP) 

by substituting solvent exposed surface lysines by arginines. Although lysine and 

arginine are both positively charged basic amino acids, the guanidium group of 

arginine permits interactions in three directions that enables it to form a higher number 

electrostatic interactions and its basic residue has higher pKa that may generate more 

stable ionic interactions [168]. Mortazavi et al. enhanced the thermostability of firefly 

luciferases by substituting solvent exposed hydrophobic residues by arginine [169]. 

Zhou et al. increased the thermostability of xylanase II from Aspergillus usamii E001 

by replacing serines and threonines on the solvent exposed surface of the enzyme with 

arginines [170]. Moreover, bioinformatics analysis showed that one of the most 

striking features of thermostable proteins is the higher proportion of arginine in the 

exposed surfaces [169]. For example, Kumwenda et al. observed high frequency of 
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arginine (on the surfaces) and alanine (in well buried areas) in thermostable proteins 

of Thermus thermophilus HB27 [171]. The three thermostabilizing positions detected 

in the allosteric region of the protein are all substitutions of amino acids with arginine. 

As it is depicted in figure 4.1 all the three positions are on water exposed surface of 

the protein. Moreover, leucine and phenylalanine are nonpolar that increases the 

hydrophobicity of the residues being mutated and glycine is a flexible amino acid in 

which its substitution may contribute to the thermostabilization of proteins. So, the 

result obtained is in accordance with the computational and practical researches 

conducted before. 

 

 

 

   

Figure 4.1 Surface of the model generated. The blue regions are expected to be 

hydrophobic. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

1) Various excipients were tested on S. cerevisiae NCYC 1006 at increasing 

temperatures with gradient of concentrations but none of the excipients 

increased the thermostability of Panomycocin. 

 

2) The signal peptide of the protein was determined by SignalP 4.1, Signal-CF, 

PrediSi and Signal-3L and it was found to include the first 17 amino acids. 

 

3)  The KEX2 cleavage site was determined using SMART and the mature 

secreted protein sequencing made before and was found to be after the 31. 

amino acid at the -Arg-Gly- . 

 

4) Binding site was predicted by COACH, COFACTOR, MetaPocket, CASTp 

and DoGSiteScorer. Binding site may include Glu23, Phe25, His129, Asn140, 

Asn185, Glu186, Tyr248, Phe251, Glu285, Trp361 and Trp371. 

 

5) Thermostabilization of the models was done by GROMOS96, CNA, I-

MUTANT2.0, AUTO-MUTE, Eris and MUpro. In the allosteric part of the 

protein Leu52Arg, Phe223Arg and Gly254Arg were found to be the best 

thermostabilizing mutations with 6.26 K, 6.26 K and 8.27 K temperature 

increases respectively. In the binding site Glu186Arg was found to be the best 

thermostabilizer mutation with 9.58 K temperature increase. 
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6)  In this study single site mutations that can increase the thermostability of 

Panomycocin to the desired level were detected computationally. In future 

studies these thermostable mutant strains can be produced and isolated. This 

mutant strains can be used in the formulation of Panomycocin as a novel 

antifungal drug which is stable at high temperatures. 
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APPENDIX A 

 

 

CHEMICALS AND THEIR SUPPLIERS 

 

 

 

Acetic Acid (Sigma-Aldrich, Germany) 

Acrylamide (Boehringer Mannheim, Germany) 

Ammoniumpersulphate (Pharmacia Biotech, Sweden) 

Arginine (Sigma, Japan) 

Bacto-agar (Merck, Germany) 

Bacto-peptone (Fluka, Denmark) 

Bis-acrylamide (Pharmacia Biotech, Sweden) 

Bromophenol Blue (Sigma, USA) 

Butanol (Merck, Germany) 

β-mercaptoethanol (Sigma, USA) 

Citric Acid (Merck, Germany) 

Coomassie Brilliant Blue R-250 (ICN, USA) 

Di-sodium Hydrogen Phosphate (Merck, Germany) 

Ethanol (Merck, Germany) 

Formaldehyde (Reidel-de Haen, Germany) 

Glucose (Sigma-Aldrich, France) 

Glutamic acid (Merck, Germany) 

Glycerol (Sigma-Aldrich, Germany) 

Glycine (Sigma, USA) 

Hydrochloric Acid (Merck, Germany) 

Histidine (Sigma-Aldrich, USA) 

Lactose (Fluka, Netherlands) 

Lysine (Aldrich, Switzerland) 
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Mannitol (Sigma-Aldrich, China) 

Methanol (Sigma-Aldrich, Poland) 

PEG 4000 (Merck, Germany) 

PEG 6000 (Sigma-Aldrich, Germany) 

Pluronic F-68 (Life Technologies, USA) 

Potassium Dihydrogen Phosphate (Merck, Germany) 

Proline (SAFC, USA) 

Propanol (Merck, Germany) 

Sodium Dodecyl Sulfate (Sigma, Japan) 

Sodium Hydroxide (Merck, Germany) 

Sodium Sulfate (Merck, Germany) 

Sorbitol (Sigma, Germany) 

Sucrose (Sigma, Switzerland) 

TEMED (Pharmacia Biotech, Sweden) 

Trehalose (Sigma, USA) 

Trichloroacetic Acid (Merck, Germany) 

Tris (Merck, Germany) 

Tween 80 (Sigma-Aldrich, France) 

Yeast extract (Fluka, India) 
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APPENDIX B 
 

 

BUFFERS AND SOLUTIONS 

 

 

 

Table B.1 SDS PAGE Gel Components and Staining Solutions. 

 

Buffers/Solutions Composition 

 

1.SDS-PAGE 

 

  Monomer Solution 

 

 

30.8% T, 2.7% Cbis 

  4X Running Gel Buffer 

 

1.5 M Tris-Cl at pH 8.8 

  4X Stacking Gel Buffer 

 

0.5 M Tris-Cl at pH 6.8 

  SDS 

 

10% 

  Initiator 

 

10% Ammonium Persulfate 

  2X Treatment Buffer 

 

0.125 M Tris-Cl, 4% SDS, 20% Glycerol, 

10% β-mercaptoethanol and 0.02% 

Bromophenol blue at pH 6.8 

  Tank Buffer 

 

0.025 M Tris, 0.192 M Glycine and 0.1% 

SDS 

2.COOMASSIAE BRILLIANT BLUE 

STAIN 

 

 Staining solution 

 

 

 

0.025% Coomassiae brilliant blue R-250, 

7% Acetic acid, 40% Methanol 

 

  Destain Solution I 7% Acetic Acid, 40% Methanol 

  Destain Solution II 

 

7% Acetic Acid, 5% Methanol 
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APPENDIX C 
 

 

PROGRAMS AND SERVERS 

 

 

 

Table C.1 Programs and servers used. 

 

Programs/Servers Website 

AUTO-MUTE http://proteins.gmu.edu/automute/ 

BLAST http://www.ncbi.nlm.nih.gov/blast/ 

CASTp http://sts.bioe.uic.edu/castp/ 

CNA http://cpclab.uni-duesseldorf.de/cna/ 

COACH http://zhanglab.ccmb.med.umich.edu/COACH/ 

COFACTOR http://zhanglab.ccmb.med.umich.edu/COFACTOR/ 

DoGSiteScorer http://dogsite.zbh.uni-hamburg.de/ 

EasyModeller http://modellergui.blogspot.com.tr/ 

Eris http://troll.med.unc.edu/eris/ 

ERRAT http://services.mbi.ucla.edu/ERRAT/ 

ExPASy http://expasy.org/ 

FASTA http://www.ebi.ac.uk/Tools/sss/fasta/ 

I-MUTANT2.0 http://folding.biofold.org/i-mutant/ 

I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER/ 

MetaPocket http://projects.biotec.tu-dresden.de/metapocket/ 

MODELLER https://salilab.org/modeller/ 

MUpro http://mupro.proteomics.ics.uci.edu/ 

NCBI http://www.ncbi.nlm.nih.gov/ 

PDB http://www.rcsb.org/pdb/ 

PrediSi http://www.predisi.de/ 

PROSPER https://prosper.erc.monash.edu.au/ 

Pymol http://www.pymol.org/ 

Python https://www.python.org/ 

SAVES http://services.mbi.ucla.edu/SAVES/ 

Signal-3L http://www.csbio.sjtu.edu.cn/bioinf/Signal-3L/ 

Signal-CF http://www.csbio.sjtu.edu.cn/bioinf/Signal-CF/ 

SignalP 4.1 http://www.cbs.dtu.dk/services/SignalP/ 

SMART http://smart.embl-heidelberg.de/ 

SPDB Viewer http://spdbv.vital-it.ch/ 

TM Calculator http://zhanglab.ccmb.med.umich.edu/TM-score/ 

UCSF Chimera https://www.cgl.ucsf.edu/chimera/ 

UniProt http://www.uniprot.org/ 

Verify 3D http://services.mbi.ucla.edu/Verify_3D/ 

VMD http://www.ks.uiuc.edu/Research/vmd/ 

WHATCHECK http://swift.cmbi.ru.nl/gv/whatcheck/ 

http://www.ncbi.nlm.nih.gov/blast/
http://www.ebi.ac.uk/Tools/sss/fasta/
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