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ABSTRACT 

 

CONTACT MECHANICS OF GRADED ORTHOTROPIC COATINGS 

 

Arslan, Onur 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Serkan Dağ 

February 2016, 147 pages 

 

 

Analytic and computational studies are performed for contact problems of 

orthotropic functionally graded material (FGM) coatings which are bonded to 

isotropic homogeneous substrates without any interfacial defects. The orthotropic 

FGM coatings possess orhotrophic stiffness gradations through the coating 

thickness direction. The variations of each orthotropic stiffness constants are 

assumed to behave as exponential functions. In the analytical procedure, the 

problems of orthotropic graded coatings which are subjected to contact loads by an 

arbitrarily shaped inelastic stamp are examined under plane strain assumption. 

After getting the Navier equations of the elasticity problem, Fourier transformation 

techniques are used to determine the field expressions that satisfy the boundary 

conditions of the related problem. A deformation gradient on the contact region is 

used to obtain a singular integral equation (SIE) which is collocated through a 

discretization procedure on the roots of Chebyshev polynomials. Computational 

approach for the same contact problem is based on the finite element method in 

which the coating-substrate systems are divided into finite elements having the 

material parameters defined at their centroids. The results produced by using the 

analytical technique and the finite element method are compared to assess the 

accuracy achieved by both methods. Finally, the complete contact problems on the 

orthotropic homogeneneous coatings are also investigated. 

Keywords: Frictional sliding contact problems, Singular Integral Equation of the 

second kind, Orthotropic FGM coatings, Finite element procedure. 
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ÖZ 

 

DERECELENDİRİLMİŞ ORTOTROPİK KAPLAMALARIN TEMAS 

MEKANİĞİ 

 

Arslan, Onur 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Serkan Dağ 

Şubat 2016, 147 sayfa 

 

 

Bu tez izotropik yarı-sonsuz homojen gövde ile mükemmel şekilde yapıştırılmış 

olan ortotropik fonksiyonel derecenlendirilmiş malzeme (FDM) kaplamaların 

temas mekaniği üzerinedir. Kaplama içerisindeki elastik derecelendirme kaplama 

kalınlığı boyuncadır. Ortotropik katılık sabitlerinin eksene bağlı olarak değişen 

değerleri üstel fonksiyonlar ile gösterilmiştir. Geliştirilen Analitik metotda; çeşitli 

yüzey profillerine sahip rijit zımbalar ile derecelendirilmiş ortotropik kaplama 

yüzeyi arasındaki sürtünmeli temas düzlem-gerinimi varsayımı ile ele alınmıştır. 

Problemin temelini oluşturan kısmı diferansiyel denklemler ve problemdeki sınır 

koşulları Fourier dönüşüm teknikleri ile formüle edilmiştir. Daha sonra problem 

bir tekil integral denklemine dönüştürülmüş ve bu integralin numerik çözümü 

“expansion-collocation” tekniği ile sağlanmıştır. Hesaplamalı yöntemde ise; çeşitli 

yüzey profillerine sahip rijit zımbalar ile derecelendirilmiş ortotropik kaplama 

yüzeyi arasındaki sürtünmeli temas, sonlu elemanlar metodu ile modellenmiştir. 

Sözü geçen sonlu elemanlar analizinde; derecelendirilmiş kaplama-homojen gövde 

sistemi sonlu elemanlara bölünerek, her bir sonlu elemanın malzeme özelliği kendi 

ağırlık merkezinde tanımlanmıştır. Geliştirilen iki yöntemin farklı zımba profilleri 

için üretilen sonuçları birbirleri ile karşılaştırılarak her iki metodun da doğruluğu 

ispat edilmiştir. Son olarak ise homojen ortotropik kaplamaların temas mekaniği 

düz zımba profili için incelenmiştir. 

Anahtar Kelimeler: Sürtünmeli kayma temas problemleri, Tekil İntegral 

Denklemleri, Ortotropik FDM kaplamaları, Sonlu elemanlar metodu. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

This study is performed to investigate frictional contact problems of orthotropic 

functionally graded material (FGM) coatings which are bonded to isotropic 

homogeneous substrates without any interfacial defects. The problems of 

orthotropic graded coatings which are subjected to contact loads by an arbitrarily 

shaped rigid stamp are examined under plane strain assumption. In this chapter, 

literature review for the related contact mechanics problems is presented. After all, 

the purpose of this study is explained. 

 

1.1 Literature Survey 

Machine components are generally made of common engineering materials such 

as Nickel, Aluminum and Steel alloys.  Although such materials are low-cost, 

ductile and easy to reform, they do not possess effective bearing performance when 

they are exposed to contact tractions. This deficiency results from their weak 

hardness and low wear resistance. In such problems, the parts which are made of 

the common engineering materials are coated with ceramic based layers to improve 

the load bearing capability of the structure. For that reason, the coating materials 

are desired to have superior hardness and stiffness compared to the base materials. 

The second main necessity for the layered structures is to have a good bonding 

strength between two media. Even though the ceramic homogeneous coating 

surfaces satisfy the surface hardness and wear resistance requirements, they 

generally have weak bonding strength when used with the common engineering 

materials. Because a material property mismatch occurs at the interface between 

two different homogeneous materials, which may lead to the delamination of the 

structure under contact loads. It is possible to remedy  the  debonding  problems  if  
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the coating is produced of FGMs (Functionally Graded Materials) which also have 

good surface resistance to mechanical loadings. Because some of the material 

properties of an FGM coating at the interface can be matched with the material 

properties of the substrate material, which improves the bonding strength between 

two media. From a broad perspective, FGMs can be defined as the combination of 

two different materials by using special processing techniques (i.e. Plasma spray 

and Electron beam techniques) to be able to optimize the material properties at any 

spatial location. FGMs have continuously changing material properties due to the 

change in the volume fractions of constituent phases. The material gradations are 

defined by continuous functions for the analytical and computational purposes and 

can be in different characteristics to improve the thermal [1], mechanical [2], 

electrical [3] or optical [4] performance of FGMs. 

Some practical examples can be mentioned for the graded coatings involving 

contact problems. They can be mainly categorized as the load transfer members 

and abradable seals. Abradable seals are utilized in gas turbines to provide leak 

proofing between the shroud and the turbine blades. The seal is defined as a 

ceramic-based graded layer which is bonded to the metallic shroud. The stiffness 

of the blade is very large relative to the stiffness of the ceramic coating. Due to this 

fact, the blade can be modelled as a rigid stamp forced against the surface of the 

elastic seal with a relative frictional motion. In this application, the purpose of 

introducing material gradation to the seal is to alleviate the interfacial stresses 

improving the bonding strength between two media. Similar concept can be 

considered for internal combustion engines. There exists a relative motion between 

the piston ring and the coated cylinder potentially yielding a sliding frictional 

contact in-between. Due to the graded coating on the aluminum cylinder surface, 

wear control is accomplished. The force transferring members such as gears, 

bearings, cams and cutting tools can be modelled as contact problems involving 

two elastic solids. The contacting surfaces of these members can be coated with 

graded ceramic layers to increase the surface wear resistance, which also improves 

the bonding strength. The grading in these coatings also plays a vital role to avoid 

the loss of toughness, as the surface wear resistance is increased.  

Although the utilization of FGM coatings reduces the delamination risks, their 

brittle ceramic surfaces could be prone to cracking problems as long as the surfaces  



 

3 
 

are subjected to contact tractions. For that reason, some research in the technical 

literature focused on the surface performance of the FGM coatings. They mainly 

investigate the optimization of the system parameters to alleviate the surface 

deficiencies. Experimental investigations reveal the necessity of FGMs in the 

engineering applications which are under the risk of contact driven failures. Yue 

and Li [5] and Zhang et al. [6] showed that usage of FGM surfaces enables wear 

control that results from frictional contact. It can be inferred from the experimental 

results generated by Kim et al. [7] that the graded specimens possess significant 

resistance to contact driven failures. Additionally, a graded elastic modulus in 

thickness direction is proved to avoid cone-shaped cracks that results from surface 

penetration [8-10] and prevents the initiation of herringbone crackings due to the 

contact loads with friction [11]. Improving the response of the FGMs to frictional 

contact, their utilization can be extended to the fields such as high performance 

cutting tools [12] and prostheses [13].  

Theoretical studies on contact mechanics of elastic solids were originated by Hertz 

[14] in which the contact area is accepted very small with respect to the elastic 

body. Therefore, a contacting body can be modeled semi-infinitely, which 

facilitates mathematical modeling. Some guiding solutions for contact problems in 

a semi-infinite graded medium are given in [15–19]. The contact problems are 

commonly divided into two types as frictional and frictionless contact problems. 

There are some studies associated with frictionless contact mechanics problems 

[20-24]. Upon the application of normal contact tractions to a surface, the 

tangential forces arise between two bodies. In such problems, Coulomb law of 

friction is used. Some studies examining sliding frictional contact problems based 

on finite element method are given in [25–27].  

In the recent literature, various procedures, loading conditions and geometries are 

regarded to investigate the behavior of functionally graded materials involving 

contact mechanics problems. Contact mechanics analyses of homogeneous 

substrates which are coated with isotropic FGM layers having positive or negative 

gradations in the thickness direction are carried out by Guler [28]. Detailed 

analytical results considering stress distribution via sliding frictional contact under 

plane strain condition are given in this study. Giannakopoulos and Pallot [29] 

generated some fully analytical solutions to examine in-plane contact between rigid  
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rollers and graded half planes. When a contact problem can not be solved in closed 

form, a singular integral equation (SIE) is enabled to evaluate desired field 

variables of the system. Guler and Erdogan [30-32] examined the response of FGM 

coatings which are subjected to contact tractions by rigid intenders of various 

profiles by using the SIE approach in plane assumptions. Ke and Wang [33-34] 

presented a solution based on the SIE method in order to observe the behavior of 

FGM’s possessing various material gradations, and loaded by contact tractions 

with friction. Partial slip condition can be taken into account in contact problems 

when the contacting bodies are in oscillatory motion. Ke and Wang [35-36] 

investigated some partial slip contact problems of FGMs. Yang and Ke [37] 

examined a 2D problem of FGM - substrate system which is exposed to contact 

tractions by a rigid roller. Choi and Paulino [38] investigated the SIE solution by 

considering the influences of heat generation resulting from the frictional sliding 

motion on the surfaces of interlayered FGM-substrate structures. Guler [39] 

presented a SIE solution technique to examine the behavior of some strips and 

plates that are fully bonded to FGM media. Dag et al. [40-41] analytically and 

computationally solved the contact problem of a semi-infinite medium having 

lateral gradations, which is loaded by inelastic intenders of various surface profiles. 

Dag [42] outlined an SIE procedure for the complete contact problem of a semi-

infinite medium possessing lateral gradations in such a way that, the coefficient of 

friction varies along the horizontal coordinate axis. 

As far as the studies dealing with the response of cracks under contact stresses are 

concerned, we can mention some articles. Hasebe et al. [43] derived an analytical 

formulation for a surface crack on an elastic half-plane under complete contact 

loadings by using rational mapping function and complex stress functions. Choi 

[44] considered a non-homogeneous medium which includes a homogeneous 

coating and a base material, which are combined to each other utilizing a bonding 

strip having material gradations. In the related study, the stress intensity factors of 

a full-crack lying on the base material are evaluated analytically for which the 

coating surface is exposed to contact tractions. Dag and Erdogan [45] analytically 

computed the mixed mode stress intensity factors of an edge crack located on the 

surface of a semi-infinite medium having gradations in the thickness direction, 

such  that  the  medium  is  under  the  effect  of   contact   tractions  with  friction.  
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developed an analytical procedure which is based on the singular integral equation 

(SIE) approach to compute mixed mode SIFs for a surface crack existing in a 

graded half-plane loaded by a sliding flat stamp. Choi and Paulino [46] handled an 

interface crack problem between an FGM layer and a semi-infinite medium for 

which the system is subjected to contact loadings involving friction. Dag [47] 

analytically calculated the crack tip parameters of an edge cracking located in a 

semi-infinite half plane possessing material gradations. The graded medium is 

exposed to contact stresses by frictional sliding stamps of various surface profiles 

in this study. The work reported by Dag et al. [48] and Apatay [49] consider an 

edge crack lying on the free surface of an FGM strip bonded to a semi-infinite 

medium, that are under complete contact loadings. In the related study, the cracking 

and contacting phenomena are treated separately. Lajnef and El Borgi [50, 51] 

examined an edge crack problem located on a graded coating by using a SIE-based 

analytical procedure. In their studies, an FGM layer which is bonded to a semi-

infinite medium is subjected to simple tensional and shear loadings. 

In all of the research mentioned above, the materials having spatial gradations are 

accepted as isotropic. It is also required to mention some of the studies concerning 

contact mechanics problems of anisotropic materials. Borodich [52] analyzed some 

dynamic-elastic contact mechanics problems by considering the integral 

characteristics procedure in the boundary-initial value problems for anisotropic 

structures. Ciavarella et al. [53] generated a numerical procedure to investigate the 

response of three dimensional anisotropic materials which are in contact with 

second-order surface geometries. Lin and Ovaert [54] focused on examining the 

behavior of a generally anisotropic material under plane assumptions, for which 

the asperous surface of the medium is subjected to iso-thermal contact loads 

involving Coulomb friction. Rand and Rovenskii [55] studied some theoretical 

techniques and methodologies needed to build the fundamentals of the elasticity of 

anisotropic materials. Ning et al. [56] solved the penetration problem between a 

rigid globe and a transversely isotropic strip which locates on an inelastic semi-

infinite medium. Li and Wang [57] investigated the contact phenomenon on 

piezoelectric generally anisotropic parts utilizing Fourier-transformation 

techniques. He and Ovaert [58] examined the response of an anisotropic half plane 

having asperous free surface to  a  contacting  with  an  asperous  inelastic  ball  by  
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handling the Barnet-Lothe tensors based line integral on 3D inclined surfaces. 

Larijani et al. [59] examined effects of degree of anisotropy on surface crack 

propagations in rail head coatings subjected to rolling contacts. 

Due to the processing techniques used in their production, FGM structures could 

gain anisotropic behavior. Sampath et al. [60] revealed that coatings having 

gradations which are manufactured by Plasma-Spray Method mostly possess a 

microscopic anatomy with cleavage planes which is collimated to the boundary. 

Additionally, Kaysser and Ilschner [61] found that the coatings having gradations 

which are manufactured by the Electron-Beam method possess a shaft-like 

anatomy which causes greater stiffness through the thickness direction and non-

stiff surfaces normal to the medium edges. As a conclusion, FGM models should 

be considered as elastic orthotropic nonhomogeneous medium, if more realistic 

representations of the layered structures are demanded. There are a few studies 

performed on the mechanical behavior of orthotropic materials that are under 

contact loads. Bakirtas [62] focused on the contact phenomenon of an inelastic 

stamp with no friction in an orthotropic nonhomogeneous semi-infinite medium. 

Hwu and Fan [63] presented the complete contact phenomenon involving the 

penetration of a stamp with no friction through an orthotropic half plane by 

applying a similar solution method of interfacial crackings. Shi et al. [64] analyzed 

a contacting phenomenon with no friction on orthotropic semi-infinite medium 

loaded with an inelastic ellipsoid stamp. Swanson [65] evaluated the stresses that 

result from the contact loadings on orthotropic materials by synthesizing two 

previously studied solution methods [66-67]. The behavior of a multi-layered 

piezoelectric orthotropic half-space forced by a frictionless inelastic parabolic 

intender was examined by Ramirez [68]. Guler [69] demonstrated the closed-form 

solutions of plane strain frictional contacting phenomenon of an inelastic stamp 

sliding on an orthotropic semi-infinite medium by using the SIE based analytical 

technique.  

 

 

1.2  Scope of the Research 

In the technical literature, there are no computational or analytical studies on 

contact mechanics of orthotropic FGM coatings. Hence, the purpose of  this  study  
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is to perform analytic and computational studies for contact problems of 

orthotropic functionally graded material (FGM) coatings which are bonded to 

isotropic homogeneous substrates without any interfacial defects. The orthotropic 

FGM coatings possess orthotropic stiffness gradations through the coating 

thickness direction. The variations of each orthotropic stiffness constants are 

assumed to behave as exponential functions. In the analytical procedure, the 

problems of orthotropic graded coatings that are subjected to contact loads by an 

arbitrarily shaped inelastic stamp are examined. In engineering applications, 

coating thickness is generally very small relative to the other dimensions of a 

coated member. Hence, in this study, the orthotropic coating thickness should be 

considered very small relative to the depth of the model. Under this consideration, 

the aforementioned contact problem is modelled using the plane strain assumption. 

After deriving the Navier equations of the problem, the Fourier transformation 

techniques are used to determine the field expressions that satisfy the boundary 

conditions. A deformation gradient on the contact region is used to obtain a 

singular integral equation (SIE) which is collocated through a discretization 

procedure on the roots of Chebyshev polynomials. Computational approach for the 

same contact problem is based on the finite element method in which the coating-

substrate systems are divided into finite elements having the material parameters 

defined at their centroids. The solution of the present problem by using two 

different solution techniques enables us to assess the accuracy of both methods by 

directly comparing their results. Numerical results are obtained regarding flat, 

triangular and circular stamp surfaces, which reveal the effects of nonhomogeneity, 

degree of orthotropy, friction coefficient and coating thickness on the contact 

stresses.  

Note that the risks of contact driven damages for orthotropic homogeneous 

coatings such as interfacial delamination or surface crackings can be alleviated 

with the properly selected orthotropic material and the other problem parameters. 

Therefore, in this study, the surface and interfacial stresses of an orthotropic 

homogeneous coating under the action of complete contact loading is also 

investigated, which is not examined in the technical literature so far. 
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CHAPTER 2 

 

 

PROBLEM STATEMENT AND THE ANALYTICAL METHOD 

 

 

 

2.1. Definition of the Problem 

The analytical method presented in this study is based on the derivation of a SIE to 

examine the stress distribution in orthotropic FGM coatings subjected to contact 

stresses by a sliding inelastic stamp having an arbitrarily shaped surface (Fig 2.1). 

 

 

 

 

 

 

 

 

 

Figure 2.1: An orthotropic FGM coating subjected to a contact load by an 

arbitrarily shaped inelastic stamp. 

 

It is assumed that the orthotropic FGM coating is bonded to an isotropic 

homogeneous semi-infinite substrate without any interfacial defects. Coulomb 

friction is assumed to exist between the stamp and the coating, which yields lateral 

force on the FGM surface. The composite structure is modeled  under  plane  strain  
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assumption. The stiffness constants of the orthotropic coating are assumed to 

behave as exponential functions through the thickness direction. The endpoints of 

the inelastic stamp which is in contact with the FGM surface are located at the 

coordinates y=a and y=b. 

The presented contact problem is handled by using the plane elasticity and 

formulated with the utilization of Fourier transformation techniques. In the 

analytical formulation of the problem, contact stresses in the orthotropic FGM 

coating and the homogeneous semi-infinite substrate are formulated separately. 

After that the required field quantities of the problem are derived by considering 

the following continuity and boundary conditions: 

byayyxx <<= )(),0( σσ                                                                            (2.1a) 

byayyxy <<= )(),0( σησ                                                                          (2.1b) 

),(),( yhuyhu
−+ =                                                                                                (2.1c) 

),(),( yhvyhv
−+ =                                                                                                (2.1d) 

),(),( yhyh xxxx

−+ = σσ                                                                                          (2.1e) 

),(),( yhyh xyxy

−+ =σσ                                                                                          (2.1f) 

)(),0( yfyu
y

=
∂

∂
           bya <<                                                                       (2.1g) 

Pdyy

b

a

xx −=∫ ),0(σ                                                                                                (2.1h) 

where )(yσ  is the contact traction existing due to the contact of inelastic stamp, 

and which is the primary unknown of the problem. η  is the coulomb friction 

coefficient. )( yf  is a known function indicating the surface profile of the inelastic 

stamp. The contact stresses and the field quantities are expressed in terms of the 

surface normal stress  )(yσ .  The  displacement  gradient  in  (2.1g)  is  then  used  
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to derive a SIE of the second kind. With the numerical solution of the SIE by 

utilizing an expansion-collocation procedure, the unknown function of the problem 

)(yσ  is obtained.  

The inverse Fourier transformations utilized throughout the derivations of field 

quantities are given as 

ρρ
π

ρ
dexUyxu

yi

∫
∞

∞−

= ),(
2

1
),(                                                                                (2.2a) 

ρρ
π

ρ
dexVyxv

yi

∫
∞

∞−

= ),(
2

1
),(                                                                                 (2.2b)                   

where ),( yxu and ),( yxv  stand for the displacement components in x and y axes, 

respectively. The Navier equations for the orthotropic FGM coating and the 

homogeneous semi-infinite medium are formulated using plane elasticity as 

follows: 

For orthotropic FGM ( )hx <<0 : 

The constitutive relation for plane orthotropy of FGMs is stated in the following 

form [42] 
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where c

ijσ ),,( yxji =  and c

ijε ),,( yxji =  are the stress and strain tensors, 

respectively. The superscripts c donates the FGM coating. ),(11 xc  ),(22 xc  ),(12 xc  

and )(66 xc  are the stiffness coefficients which vary with respect to x axis as [70] 

,)( 11011
x

ecxc
γ=     ,)( 22022

x
ecxc

γ=      ,)( 12012
x

ecxc
γ=     .)( 66066

x
ecxc

γ=       (2.4) 

where γ  is the non-homogeneity parameter. 110c , 220c , 120c  and 660c  are the 

stiffness constants at the coating surface (at 0=x ) and defined in terms of the 

engineering parameters as 
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xyc µ=660                                                                                                           (2.5d) 

where 

( )122222 −+++=∆ zxyzxyzxxzyxxzyxzxyxzxyz vvvvvEEvEvvEvv                                    (2.5e) 

The engineering parameters have to satisfy the restrictions given below 
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<ν                                                                               (2.6) 

The strain-displacement relations in plane are  
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Considering (2.3), (2.4) and (2.7) together, the stress field for orthotropic FGM 

coating is obtained as 
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The equilibrium equations 0, =c

jjiσ ),,( yxji =  yield the governing equations for 

the orthotropic FGM coating as 
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For homogeneous substrate ( )∞<< xh : 

The stress components for the homogeneous half plane are written by using plane 

elasticity as 
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where µκ , and ν  are the Kolosov constant, shear modulus and Poisson’s ratio of 

the   homogeneous   substrate,   respectively.    The   superscript   m   denotes   the  

homogeneous substrate. The Kolosov constant is given for plane stress and plane 

strain assumptions as 
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The equilibrium equations 0, =m

jjiσ ),,( yxji =  yield the governing equations for 

the homogeneous substrate 
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2.2 Formulation 

2.2.1 The orthotropic FGM coating 

The inverse Fourier transformations given in (2.2) are used to convert (2.9) into the 

system of ordinary differential equations (ODE’s) as follows, 
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Letting 
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The system of ODE’s can be written in the form of  ii xAx =ɺ  as 
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The characteristic equation of the differential equation system is defined as 

0=− rIA
 
and its open form becomes 
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Rearranging (2.16) 

0
42

2
1

110

2204

110

12022

2

1
2

2 =







−++








++

C

c

c

c

cC
rr ργρ

ρ
γ                                        (2.17a) 

where 

660110

220110660120
2
120

1

2

cc

ccccc
C

−+
=                                                                           (2.17b) 

Consider the solutions of differential equations are in the following exponential 

forms 

xrxrxrxrc
eMeMeMeMxU 4321

4321),( +++=ρ                                               (2.18a) 
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eMNeMNeMNeMNxV 4321

44332211),( +++=ρ                           (2.18b) 

Substituting (2.18) into (2.13a), jN  yields 
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Solving (2.17a), the roots jr  ( )4,..,1=j  are obtained as 



16 
 

11
22

1 42
2

1

2
δργ

γ
+−+−= Cr                             ( ) 01 >ℜ r                        (2.20a) 

11
22

2 42
2

1

2
δργ

γ
−−+−= Cr                            ( ) 02 >ℜ r                        (2.20b) 

11
22

3 42
2

1

2
δργ

γ
+−−−= Cr                             ( ) 03 <ℜ r                        (2.20c) 

11
22

4 42
2

1

2
δργ

γ
−−−−= Cr                             ( ) 04 <ℜ r                       (2.20d) 

where 

110

12022

110

220
2

14
1

4 c

c

c

cC
γρρδ −








−=                                                                       (2.20e) 

Substituting (2.18) into (2.2), the planar displacement constituents are obtained as  
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Therefore, the field quantities of the orthotropic FGM coating are restated in the 

following form 
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),(                                (2.22b) 

( ) ρρ
π

σ
ργ

deirNM
c

yx
yixr

jj

j

j

c

xy

j ++
∞

∞− =

+= ∫ ∑
)(

4

1

660

2
),(                                            (2.22c) 

ρρ
π

ρ
deMiyxu

y

yixr

j

j

c j +
∞

∞− =
∫ ∑=

∂

∂ 4

12

1
),(                                                                (2.22d) 
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2.2.2 The homogeneous substrate  

The inverse Fourier transformations given in (2.2) are used to convert (2.12) into 

ODE’s as follows 

( ) ( ) 0121 2

2

2

=−−++ m
mm

U
xd

dV
i

xd

Ud
ρκρκ                                                     (2.23a) 

( ) ( ) 0121 2

2

2

=+−+− m
mm

V
xd

dU
i

xd

Vd
ρκρκ                                                     (2.23b) 

The differentials of ),( ρxU
m  and ),( ρxV

m  with respect to x axis in (2.23) are 

separated by using basic calculus as 

02 4

2

2
2

4

4

=+− m
mm

U
xd

Ud

xd

Ud
ρρ                                                                      (2.24a) 

02 4

2

2
2

4

4

=+− m
mm

V
xd

Vd

xd

Vd
ρρ                                                                       (2.24b) 

The two differential equations above have similar structure, so do their solutions. 

The characteristic equation of (2.24) are then defined as 

02 4224 =+− ρρ rr                                                                                         (2.25) 

(2.25) have two double roots as ρ=2,1r and ρ−=4,3r . Hence the solutions of 

(2.24) are expressed as 

[ ] [ ] xxm
eAxAeAxAxU

ρρ ρρρρρ −
+++= )()()()(),( 4321                           (2.26a) 

[ ] [ ] xxm
eBxBeBxBxV

ρρ ρρρρρ −
+++= )()()()(),( 4321                           (2.26b) 

The relations between )(ρjA and )(ρjB  are defined substituting (2.26) into (2.23) 

as 
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ρ

ρκρρ
ρ

)()(
)( 21

1

AA
iB

+
=                                                                          (2.27a) 

)()( 22 ρ
ρ

ρ
ρ AiB =                                                                                          (2.27b) 

ρ

ρκρρ
ρ

)()(
)( 43

3

AA
iB

−
−=                                                                       (2.27c) 

)()( 44 ρ
ρ

ρ
ρ AiB −=                                                                                       (2.27d) 

The stresses ),( yx
m

yyσ  and ),( yx
m

xyσ  should be bounded as  ( )22
yx +  tends to 

infinity. Thus, 0)()()()( 2121 ==== ρρρρ BBAA should be satisfied and then 

(2.26a-b) reduce to 

[ ] xm
eAxAxU

ρρρρ −
+= )()(),( 43                                                                  (2.28a) 

[ ] xm
eBxBxV

ρρρρ −
+= )()(),( 43                                                                  (2.28b) 

Substituting (2.28) into (2.2), the planar displacement components are obtained as  

[ ] ρρρ
π

ρρ
deAxAyxu

xyim −
∞

∞−

∫ += )()(
2

1
),( 43                                                 (2.29a) 

[ ] ρρρ
π

ρρ
deBxByxv

xyim −
∞

∞−

∫ += )()(
2

1
),( 43                                                 (2.29b)    

Therefore, the stress components of the homogeneous substrate in (2.10) are 

restated as: 

( )
( ) ( )[ ]

( ) [ ]
ρ

ρκ

ρρκ

κπ

µ
σ ρρ

de
BxBi

AAx
yx

xyim

xx

−
∞

∞−

∫








+−+

−−+

−
=

43

34

3

11

12
),(

                 
(2.30a) 

( )
( ) ( )[ ]

( ) [ ]
ρ

ρκ

ρρκ

κπ

µ
σ ρρ

de
BxBi

AAx
yx

xyim

yy

−
∞

∞−

∫








+++

−−−

−
=

43

34

1

13

12
),(

                
(2.30b) 
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( ) ( ){ } ρρρρ
π

µ
σ ρρ

deAxAiBBxyx
xyim

xy

−
∞

∞−

∫ ++−−= 43341
2

),(
                   

(2.30c) 

 

2.2.3 Determination of unknown constants 

The unknown constants in (2.22) and (2.30) are obtained handling the continuity 

conditions between the graded coating and the homogeneous half plane, as shown 

below. Hence the constants are defined in terms of the unknown of the problem 

).( yσ  

),(),( yhuyhu
mc =                                                                                          (2.31a) 

),(),( yhvyhv
mc =                                                                                           (2.31b) 

),(),( yhyh
m

xx

c

xx σσ =                                                                                       (2.31c) 

),(),( yhyh
m

xy

c

xy σσ =                                                                                       (2.31d) 

(2.31a) and (2.31b) are recast considering (2.2) as 

ρρ
π

ρρ
π

ρρ
dexUdexU

yim

hx

yic

hx ∫∫
∞

∞−
→

∞

∞−
→

= ),(lim
2

1
),(lim

2

1
                                    (2.32a) 

ρρ
π

ρρ
π

ρρ
dexVdexV

yim

hx

yic

hx ∫∫
∞

∞−
→

∞

∞−
→

= ),(lim
2

1
),(lim

2

1
                                    (2.32b) 

Substituting (2.18) and (2.28) into (2.2): 

( ) hhrhrhrhr
eAhAeMeMeMeM

ρ−
+=+++ 434321

4321                                   (2.33a) 

( ) hhrhrhrhr
eBhBeMNeMNeMNeMN

ρ−
+=+++ 4344332211

4321               (2.33b) 

Considering (2.27c-d), (2.33) is rewritten as 

( ) hhrhrhrhr
eAhAeMeMeMeM

ρ−
+=+++ 434321

4321                                   (2.34a) 
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( )[ ]34

44332211
4321

AAh
ei

eMNeMNeMNeMN

h

hrhrhrhr

ρρκ
ρ

ρ

−−

=+++

−                     (2.34b) 

)(3 ρA  and )(4 ρA  can be defined in terms of jM
 
using (2.34) as 

( ) ( )
∑

=

+








 −
−=

4

1
3 1)(

j

j

j

rh Nih
MeA j

κ

ρρ
ρ

ρ
                                                   (2.35a) 

( ) ( )∑
=

+
−=

4

1
4 )(

j

j

rhj
Nie

M
A j ρρ

κ
ρ

ρ
                                                              (2.35b)                                                                    

The continuity relations in (2.31c-d) are used to define the relations between jM

)4,..,1( =j  components. Considering (2.2) the stress components in (2.8) and (2.10) 

are expressed as  

For orthotropic FGM ( )hx <<0 : 

ρρ
π

σ ρ
γ

deVic
dx

dU
c

e
yx

yic
cx

c

xx ∫
∞

∞−








+= 120110

2
),(                                               (2.36a) 

ρρ
π

σ ρ
γ

deVic
dx

dU
c

e
yx

yic
cx

c

yy ∫
∞

∞−








+= 220120

2
),(                                              (2.36b) 

ρρ
π

σ ρ
γ

deUi
dx

dV
c

e
yx

yic
cx

c

xy ∫
∞

∞−








+= 660

2
),(                                                     (2.36c) 

For homogeneous substrate ( )∞<< xh : 

( )
( ) ( ) ρρκκ

κπ

µ
σ ρ

deVi
dx

dU
yx

yim
m

m

xx ∫
∞

∞−








−++

−
= 31

12
),(                           (2.37a) 

( )
( ) ( ) ρρκκ

κπ

µ
σ ρ

deVi
dx

dU
yx

yim
m

m

yy ∫
∞

∞−








++−

−
= 13

12
),(                           (2.37b) 
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ρρ
π

µ
σ ρ

deUi
dx

dV
yx

yim
m

m

xy ∫
∞

∞−








+=

2
),(                                                         (2.37c) 

Hence the normal and shear stress components at the interface ( )hx =  rewritten 

as 

















+= ∫

∞

∞−
→

ρρ
π

σ ρ
γ

deVic
dx

dU
c

e
yh

yic
c

hx

h
c

xx 120110lim
2

),(                                     (2.38a) 

















+= ∫

∞

∞−
→

ρρ
π

σ ρ
γ

deUi
dx

dV
c

e
yh

yic
c

hx

h
c

xy 660lim
2

),(                                            (2.38b) 

( )
( ) ( ) 
















−++

−
= ∫

∞

∞−
→

ρρκκ
κπ

µ
σ ρ

deVi
dx

dU
yh

yim
m

hx

m

xx 31lim
12

),(                  (2.38c) 

ρρ
π

µ
σ ρ

deUi
dx

dV
yh

yim
m

hx

m

xy 















+= ∫

∞

∞−
→

lim
2

),(                                               (2.38d) 

Taking (2.18) and (2.28) into account, (2.38) are substituted into the continuity 

equations in (2.31c-d). This operation yields the following expressions 

42211 MpMpM +=                                                                                         (2.39a) 

44233 MpMpM +=                                                                                        (2.39b) 

where  

,
3113

2332
1

lklk

lklk
p

−

−
=

    

,
3113

4334
2

lklk

lklk
p

−

−
=

   

,
3113

1221
3

lklk

lklk
p

−

−
=  

 

 .
3113

1441
4

lklk

lklk
p

−

−
=     (2.40) 
















 +
++















 −
+=

κ

κ
ρµ

κ

κ
µρ γγ 11

110120 j

hh

j

hr

j rceceNiek j                       (2.41a) 

















−






 +
++















 +
+= µ

κ

κ
µρ

κ

κ
ρµ γγ 2

11
660660

hh

jj

hr

j eciercNel j           (2.41b) 
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The traction boundary conditions on the contact surface are used to obtain 2M  and 

4M  as follows: Applying Fourier transformation on (2.36a) and (2.36c), following 

expressions are obtained 

dsesxeVic
dx

dU
c

sic

xx

xc
c

ργ σρ −
∞

∞−

−

∫=+ ),(120110                                                   (2.42a) 

dsesx
c

e
Ui

dx

dV sic

xy

x
c

c
ρ

γ

σρ −
∞

∞−

−

∫=+ ),(
660

                                                            (2.42b) 

The surface stresses are expressed in terms of the unknown of the problem )(yσ  

as 

byayyxx <<= )(),0( σσ                                                                          (2.43a) 

byayyxy <<= )(),0( σησ                                                                       (2.43b) 

After taking the Fourier transforms, (2.43) is written rearranging the integral 

boundaries as 

)()(),0( ρσσ ρρ
Pdsesdses

si

b

a

si

xx == −−
∞

∞−

∫∫                                                        (2.44a) 

)()(),0( ρησησ ρρ
Pdsesdses

si

b

a

si

xy == −−
∞

∞−

∫∫                                                   (2.44b) 

(2.44) are substituted into (2.42), then following equations are obtained  

)(),(),( 120110 ρρρρ γ
PexVicx

dx

dU
c

xc
c

−=+                                                    (2.45a) 

)(),(),(
660

ρηρρρ
γ

P
c

e
xUix

dx

dV
x

c
c −

=+                                                           (2.45b) 

where 

4321),0( MMMMU
c +++=ρ                                                                       (2.46a) 
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44332211),0( rMrMrMrM
dx

dU
c

+++=ρ                                                         (2.46b) 

44332211),0( NMNMNMNMV
c +++=ρ                                                     (2.46c) 

444333222111),0( rNMrNMrNMrNM
dx

dV
c

+++=ρ                                       (2.46d) 

Substituting (2.46) into (2.45), following expressions are obtained 

)(44332211 ρϕϕϕϕ γ
PeMMMM

x−=+++                                                     (2.47a) 

)(44332211 ρηθθθθ γ
PeMMMM

x−=+++                                                      (2.47b) 

where 

jjj Nicrc ρϕ 120110 +=                                                                                      (2.48a) 

( )ρθ irNc jjj += 660                                                                                         (2.48b) 

Substituting (2.39) into (2.47), the equations of 2M and 4M  are written as 

)(4221 ργ
PeMtMt

x−=+                                                                                  (2.49a) 

)(4423 ρη γ
PeMtMt

x−=+                                                                              (2.49b) 

where 

332111 ppt ϕϕϕ ++=                                                                                      (2.50a) 

434212 ppt ϕϕϕ ++=                                                                                     (2.50b) 

332113 ppt θθθ ++=                                                                                       (2.50c) 

434214 ppt θθθ ++=                                                                                      (2.50d) 

Then 2M and 4M  are obtained from (2.49) as 
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4132

42
2 )(

tttt

tt
ePM

x

−

−
= −

η
ρ γ                                                                                 (2.51a) 

4132

13
4 )(

tttt

tt
ePM

x

−

−
= −

η
ρ γ                                                                                 (2.51b) 

Therefore, all the terms are defined in terms of the unknown function ).(sσ  

 

2.2.4 Derivation of the Singular Integral Equation 

In this section, a singular integral equation is constructed using the stress and 

displacement expressions obtained in the previous sections. Then the kernels of the 

stress distributions on the coating surface are determined. The boundary conditions 

(2.1g) and (2.1h) are used in the construction and solution of singular integral 

equations. Hence the term (2.22d) is rewritten considering (2.51) and (2.44a) as 

ρρσ
π

ρρ
dexdsesyxu

y

yisic ),()(
2

1
),( 33Γ=

∂

∂
∫ ∫
∞

∞−

−
∞

∞−

                                         (2.52a) 

where 

 

( )( )
( )( )

4132

4213

3142

33

431

321

),(
tttt

eepeptt

epeeptt

eix

xrxrxr

xrxrxr

x

−













++−+

++−

=Γ − η

η

ρρ γ                   (2.52b) 

Changing the sequences of the integrals and rearranging the integral boundaries, 

(2.52a) is restated as 

dsssyxkyxu
y

b

a

c

∫=
∂

∂
)(),,(),( 33 σ                                                                    (2.53a) 

where 

ρρ
π

ρ
dexsyxk

ysi )(
3333 ),(

2

1
),,( −−

∞

∞−

Γ= ∫                                                           (2.53b) 
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Rewriting (2.53b) in trigonometric form  

[ ] ρρρρ
π

dsyisyxsyxk ) )sin(() )cos((),(
2

1
),,( 3333 −+−Γ= ∫

∞

∞−

                       (2.54) 

Changing the integral boundaries from 0 to ∞ , (2.54) is written as 

[ ] ρρρ
π

dsyKsyKsyxk ) )sin(() )cos((
2

1
),,( 332331

0

33 −+−= ∫
∞

                        (2.55) 

where 

),(),(),( 3333331 xxxK ρρρ −Γ+Γ=                                                                   (2.56a) 

[ ]),(),(),( 3333332 xxixK ρρρ −Γ−Γ=                                                              (2.56b) 

The asymptotic expansions of the roots in (2.20) are obtained using Maple as 

γρ 5.05.0 11 −=∞
rCr                                                                                       (2.57a) 

γρ 5.05.0 22 −=∞
rCr                                                                                       (2.57b) 

γρ 5.05.0 13 −−=∞
rCr                                                                                     (2.57c) 

γρ 5.05.0 24 −−=∞
rCr                                                                                     (2.57d) 

where 

1

110

2202
11 242 C

c

c
CCr −−=                                                                             (2.57e) 

1

110

2202
12 242 C

c

c
CCr −−−=                                                                          (2.57f) 

Note that the error between  ir  and ∞
ir  )4,..,1( =i  are less than 0.06 %  for .10>ρ  

The square rooted  terms 1rC  and 2rC  are  realized  to  be  real  and  greater  than   
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zero for most of the orthotropic materials either in plane stress or in plane strain 

assumptions. This information is used during the extraction of dominant terms as 

∞→ρ . The engineering constants of materials used in this study are given in 

Table 2.1. Alumina is used as the coating surface material and Nickel is used as a 

substrate material in most of the parametric analyses.  

 

Table 2.1: Engineering parameters utilized in the parametric analyses. 

 

 

 

 

 

 

 

 

 

Therefore, the asymptotic expansions of (2.56) are calculated as ∞→ρ  using 

Maple and some algebra as in the following form 

( ) ( )

( )γρ

γρ

ρρρρρ

ρρρρρ
ρ

35.0

54
14

3
13

2
1211

10

35.0

54
14

3
13

2
1211

10331

1

2

...
1

...
1

,

+−

+−∞









+







++++++









+







+++++=

r

r

Cx

Cx

eO
ssss

s

eO
ffff

fxK

 

(2.58a) 

( ) ( )

( )γρ

γρ

ρρρρρ

ρρρρρ
ρ

35.0

54
24

3
23

2
2221

20

35.0

54
24

3
23

2
2221

20332

1

2

...
1

...
1

,

+−

+−∞









+







++++++









+







+++++=

r

r

Cx

Cx

eO
ssss

s

eO
ffff

fxK

(2.58b) 

Property   Alumina (�����)  Nickel 

    

    

    

    

    

    

    

    

    

xE GPa36.116 GPa204

yE GPa43.90 GPa204

zE GPa43.90 GPa204

xyµ GPa21.38 GPa86.77

xyv 28.0 31.0

xzv 27.0 31.0

zxv 21.0 31.0

zyv 14.0 31.0

yzv 14.0 31.0
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where the first terms ijf  and ijs  are given in Appendix A.  

10f , 10s , 20f , 20s  terms are added and subtracted from 331K  and 331K  in order to 

omit the singular behavior of the integrals. Then taking limit as 0→x , ),,(33 syxk  

in (2.55) has the following form: 

( )

( )

( )

( )

ρρ
π

ρρ
π

ρρ
π

ρρ
π

ρρ
ρ

π

ρρ
ρ

π

ρ
γ

ρ
γ

ρ
γ

ρ
γ

γρ

γρ

γρ

γρ

dsyes
e

dsyes
e

dsyef
e

dsyef
e

dsy
es

efxK

dsy
es

efxK
syk

xC
x

x

xC
x

x

xC
x

x

xC
x

x

Cx

Cx

x

Cx

Cx

x

r

r

r

r

r

r

r

r

) )sin((
2

lim

) )cos((
2

lim

) )sin((
2

lim

) )cos((
2

lim

) )sin((
),(

2

1
lim

) )cos((
),(

2

1
lim),,0(

1

1

2

2

1

2

1

2

5.0
20

0

5.1

0

5.0
10

0

5.1

0

5.0
20

0

5.1

0

5.0
10

0

5.1

0

35.0
20

35.0
20332

0
0

35.0
10

35.0
10331

0
0

33

−+

−+

−+

−+














−















−

−
+














−















−

−
=

−
∞−

→

−
∞−

→

−
∞−

→

−
∞−

→

+−

+−∞

→

+−

+−∞

→

∫

∫

∫

∫

∫

∫

    (2.59) 

The 3rd to 6th integrals in (2.59) are calculated considering dirac delta distribution 

as 

)(
2

) )cos((
2

lim 105.0
10

0

5.1

0

2 ys
f

dsyef
e xC

x

x

r −=−−
∞−

→ ∫ δρρ
π

ρ
γ

                              (2.60a) 

)(
2

) )cos((
2

lim 105.0
10

0

5.1

0

1 ys
s

dsyes
e xC

x

x

r −=−−
∞−

→ ∫ δρρ
π

ρ
γ

                                (2.60b) 

ys

f
dsyef

e xC
x

x

r

−
−=−−

∞−

→ ∫
1

2
) )sin((

2
lim 205.0

20

0

5.1

0

2

π
ρρ

π
ρ

γ

                                (2.60c) 

ys

s
dsyes

e xC
x

x

r

−
−=−−

∞−

→ ∫
1

2
) )sin((

2
lim 205.0

20

0

5.1

0

1

π
ρρ

π
ρ

γ

                                 (2.60d) 

Then (2.59) is rewritten as 
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( )

( )

( )

( )

ys

sf
ys

sf

dsy
es

efxK

dsy
es

efxK
syk

r

r

r

r

Cx

Cx

x

Cx

Cx

x

−







 +
−−







 +
+














−















−

−
+














−















−

−
=

+−

+−∞

→

+−

+−∞

→

∫

∫

1

2
)(

2

) )sin((
),(

2

1
lim

) )cos((
),(

2

1
lim),,0(

20201010

35.0
20

35.0
20332

0
0

35.0
10

35.0
10331

0
0

33

1

2

1

2

π
δ

ρρ
ρ

π

ρρ
ρ

π

γρ

γρ

γρ

γρ

 (2.61) 

In (2.61), dividing the integral boundaries of the first integral into two as 10 A−

and ∞−1A  and also the second integral into two as 20 A−  and ∞−2A , then (2.61) 

can be rearranged as 

( )[ ]

( )[ ]

( )[ ]

( )[ ]

ys

sf
ys

sf

dsysfxK

dsysfxK

dsysfxK

dsysfxKsyk

A

A

A

A

−







 +
−−







 +
+

−−−+

−−−+

−−−+

−−−=

∫

∫

∫

∫

∞

∞

1

2
)(

2

) )sin((),(
2

1

) )sin((),(
2

1

) )cos((),(
2

1

) )cos((),(
2

1
),,0(

20201010

2020332

2020332

0

1010331

1010331

0

33

2

2

1

1

π
δ

ρρρ
π

ρρρ
π

ρρρ
π

ρρρ
π

                        (2.62) 

where 1A  and 2A  are the integration cut-off points. ( ) ρ1111 sf +  and ( ) ρ2121 sf +  

terms cause logarithmic singularities in the integrals. Hence ( ) ρ1111 sf +  term is 

added and subtracted from the integral which have the boundary ∞−1A , and the 

term ( ) ρ2121 sf +  can be added and subtracted from the integral having integral 

boundaries ∞−0 . Because the integral having sine term is definite at .0=ρ  

Therefore (2.62) is rearranged as 
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4th integral in (2.63) is rearranged in the following form 
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where Ci  is the cosine integral and formulated as 
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and eγ  is the Euler-Mascheroni constant ( )0.57721566=eγ .    

The 5th integral in (2.63) is calculated as 
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where Si  is the sine integral. 

If the magnitudes of 1A  and 2A  are selected large enough, the 2nd and 7th integrals 

in (2.63) can be neglected. Then (2.63) is rewritten as 
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Using (2.53a) and (2.67), we conclude a second kind singular integral equation as 

dssysKds
ys

ssf
y

sf
y

y

u
b

a

b

a

∫∫ +
−

+
−







 +
=

∂

∂
)(),(

2

1)(

2
)(

2
)( 20201010 σ

π

σ

π
σ               (2.68) 

and the kernel ),( ysK  is given as  
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The gradient of the displacement component ),( yxv  with respect to y axis in 

(2.21b) is written as  
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Changing the sequences of the integrals and rearranging the integral boundaries, 

(2.70a) is restated as 
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Rewriting (2.71b) in trigonometric form   
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Changing the integral boundaries from 0 to ∞ , (2.72) is written as 
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The asymptotic expansions of (2.74a) and (2.74b) are calculated as ∞→ρ  as 
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where the terms ijd and ijh are given in the Appendix A. 

The kernel ),,0(13 syk  is obtained using similar operations in the previous section. 

Hence the displacement derivative is derived as 
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And ),(2 ysK  is given as 
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2.2.5 The in plane lateral surface stress ),0( yyyσ  

Once the contact normal stress )(yσ  is obtained, the in plane stress ),0( yyyσ  can 

be derived. The strains for an orthotropic medium in y and z directions are written 

as 
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For plane strain assumption )0( =zzε , zzσ  reduces to 
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Substituting zzσ  in (2.78) and taking the limit as 0→x , we obtain 
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Note that the in plane stress ),0( yyyσ  is formulated by using (2.76), (2.81) and 

(2.8b) as 
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2.2.6 On the solutions of the Singular Integral Equation 

In this section, the unknown function )(yσ  is obtained with the numerical solution 

of the SIE for various stamp profiles. In order to handle numerical solution of the 

SIE in (2.68) for various stamp profiles, we first introduce the relations below 
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Considering the normalizations in (2.84), the kernel ),( syK  in (2.69) is expressed 

as: 
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Hence the solution of singular integral equation in (2.68) is obtained for flat, 

triangular and circular stamp profiles in the following sections. 

 

 

 

 

 

 

 

 



36 
 

2.2.6.1 Flat stamp  

 

 

 

 

 

 

 

 

 

Figure 2.2: The geometry of the flat stamp problem. 

 

The flat stamp contact problem of an orthotropic FGM coating which is bonded to 

a homogeneous semi-infinite medium is shown in Fig.2.2. The FGM surface is 

subjected to contact force P  by a flat stamp. In this case, consider that the contact 

length ( )ab−  is independent of the normal contact force P  (i.e. complete contact) 

and the stamp profile is expressed by 

0),0( =
∂

∂
yu

y

c                      bya <<                                                                   (2.87) 

The Kernel in (2.85) is substituted into the (2.68) considering the normalizations 

in (2.84).  Hence the integral equation (2.68) and the equilibrium equation (2.1h) 
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According to the theoretic analysis [71, 72], the unknown function  can be 

expanded into the series of Jacobi polynomials as in the following form  
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where )(,
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βα  are the Jacobi polynomials of order n and sAn '  are the unknown 

coefficients. α  and β  are the strengths of singularities at by =  and ay =

respectively (see Appendix C). These exponents are selected such that ,01 <<− α  

01 <<− β  and 1=+βα   [28] depending on the value of BA  as 
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Substituting (2.91) into (2.89) and using orthogonality relations [73], 0A
 is 
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where Γ is the Gamma function. The relation needed to regularize singular parts 

of Cauchy principal value integrals are formulated by Tricomi [74] in closed form 

and by Guler [28] in recurrence formulation form. These formulations are given in  

Appendix B. Hence the singular integral equation in (2.88) is rewritten truncating 

the infinite series at N as 
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The unknown constants nA ),..,3,2,1( Nn =  are determined with the numerical 

solution of the singular integral equation (2.95) by using a collocation technique 

outlined by Erdogan [71]. In the flat stamp case, ( )1+N  linear equations are 

constructed by applying a collocation method on (2.95) at N  points and by using 

(2.94). The obtained ( )1+N  equations are handled together to calculate nA  

( ).,...,0 Nn=  The roots of Chebyshev polynomials of first kind are used as the 

collocation points and given as  
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Hence the contact stress is calculated using the truncated form of (2.91) at N points 

as  
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2.2.6.2 Triangular stamp  

 

 

 

 

 

 

 

 

 

Figure 2.3: The geometry of the triangular stamp problem. 

 

The triangular stamp contact problem of an orthotropic FGM coating which is 

bonded to a homogeneous semi-infinite medium is shown in Fig.2.3. The FGM 

surface is subjected to contact force P  by a triangular stamp. In this case, consider 

that contact length ( )ab −  is strongly dependent on the normal contact force P  and 

the stamp profile is given by 
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where θ  is the stamp inclination angle. Considering (2.98) and the normalizations 

in (2.84), the integral equation (2.68) and the equilibrium equation (2.1h) become 
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According to the theoretic analysis [71, 72], the unknown function  can be 

expanded into the series of Jacobi polynomials as in the following form 
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βα  are the Jacobi polynomials of order n  and sAn '  are the unknown 

coefficients. α and β  are the strengths of singularities at by =  and ay =  

respectively (see Appendix C). These exponents are selected such that 10 <<α , 

01 <<− β  and  0=+ βα   [28, 73] depending on the value of BA  as 
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where A , B  and φ are given in (2.93a-c). 

Substituting (2.102) into (2.100) and using orthogonality relations [48], the 

normalized contact force )(/ abP −  is obtained as 
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where 0θ  is given in (2.94b).  

Considering the relations in Appendix B, the singular integral equation in (2.99) is 

rewritten truncating the infinite series at N as 
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The unknown constants nA ),..,3,2,1( Nn =  are determined with the numerical 

solution of the SIE (2.105) by using a collocation technique outlined by Erdogan 

[71]. In the case of the triangular stamp, ( )1+N  linear equations are constructed 

by applying a collocation method on (2.105) at )1( +N  points. These )1( +N  

equations are handled together to calculate nA  ( ).,...,0 Nn =  The roots of 

Chebyshev polynomials of first kind are utilized as the points of collocation and 

given as  
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Hence the contact stress is calculated using the truncated form of (2.91) at N points 

as  
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2.2.6.3 Circular stamp 

 

 

 

 

 

 

 

 

 

Figure 2.4: The geometry of the circular stamp problem. 

 

The circular stamp contact problem of an orthotropic FGM coating which is 

bonded to a homogeneous semi-infinite medium is shown in Fig.2.4. The FGM 

surface is subjected to contact force P  by a circular stamp. In this case, note that 

the contact length ( )ab −  is strongly dependent on the normal contact force P  

similar to the triangular stamp case. The stamp profile is approximated as in the 

following form for abR −>>  

R
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where c  and R  are the centerline position and the radius of the circular stamp, 

respectively. Considering (2.108) and the normalizations in (2.84), the integral 

equation (2.68) and the equilibrium equation (2.1h) become 
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According to the theoretic analysis [71, 72], the unknown function )(rσ  can be 

expanded into the series of Jacobi polynomials as in the following form 
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=
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n
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where )(,
rPn

βα  are the Jacobi polynomials of order n  and sAn ' are the unknown 

coefficients. The α  and β  are selected such that 10 <<α , 10 <<β  and 1=+βα  

[28, 73] depending on the value of BA  as 
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where A , B  and φ are given in (2.93a-c). 

Substituting (2.112) into (2.110) and using orthogonality relations [48], the 

normalized contact force )(/ abP −  is obtained as 

2
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For the circular stamp case )1( =+ βα , the property of Jacobi polynomial given in 

Appendix B reduces to: 
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Considering (2.112) and (2.115), the singular integral equation (2.109) is rewritten 

truncating the infinite series at N as 
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When the material of the contact surface is Alumina ( 0/ <BA ), the first term in 

(2.116) becomes zero. Hence (2.116) yields as 
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Expressing the right-hand side of (2.118) in terms of Jacobi polynomial of the first 

order, the following equation is obtained 
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The variables Ra , Rb  and Rc  are not independent in the circular stamp 

problem. One of them is dependent on the other two. To be able to define the 

relationship between Ra , Rb  and Rc ;  first multiply both sides of (2.119) by 

βα −− +− )1()1( rr  then integrate from -1 to 1 as follows 
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It is proved by Erdogan [46] that the some of the integrals located in (2.120) 

become zero. Note also that the first integral on the right-hand side of (2.120) are 

evaluated as 
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Hence, rearranging (2.120) the following expression is obtained 
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Considering (2.122) and (2.119) together, the following expression is obtained 

1=+ βα
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Note that nM  in (2.122b) is a double integral whose computation requires much 

more time compared to the integrals in flat and triangular stamp cases. By using 

(2.122) the centerline position is obtained as 
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In the numerical solution, first Ra  and Rb  are specified, then (2.123) is 

collocated at ( )1+N  points to calculate the unknown constants nA  ( ).,...,0 Nn =  

The roots of Chebyshev polynomials of first kind are used as the collocation points 

and given as  
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Considering (2.114) and the truncated form of (2.91) at N points, the normalized 

contact stress is calculated as  
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After all the normalized force and the centerline position are calculated using 

(2.114) and (2.124), respectively. 
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CHAPTER 3 

 

 

THE FINITE ELEMENT METHOD 

 

 

 

Beside the analytical method defined in the preceding section, a finite element (FE) 

approach is also conducted to examine the response of orthotropic FGM coatings 

under contact loads. The solution of the contact problem by using two different 

solution techniques enables assessing the accuracy of both methods directly 

comparing their results. By this way, a dependable computational approach can be 

generated.   

This computational solution procedure is carried out utilizing the finite element 

analysis software ANSYS [75]. FE simulations are performed to investigate flat, 

triangular and circular stamp contact problems that are shown in Figures 2.2-2.4. 

The 2D models of the FGM coating and homogeneous medium are divided into 

quadrangular and triangular solid elements. These quadrangular and the triangular 

finite elements can be seen in Figure 3.1. In the FE discretization of graded 

structures, two foremost procedures are utilized to consider the continuous spatial 

gradations in the stiffness constants. In this study, they are named as graded FE 

and homogeneous FE methods. The gauss points are used to attribute engineering 

parameters for each finite element in the graded FE method (Santare and Lambros 

[76]). However, the engineering parameters are computed at the centroids of the 

finite elements in the homogeneous FE technique (Yıldırım et. al [77] and Dag et 

al. [78]).  
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Figure 3.1: (a) A quadrangular FE located in the Cartesian coordinate frame; (b) 

A triangular FE located in the Cartesian coordinate frame; (c) Quadrangular and 

the triangular FE’s located in the iso-parametric coordinate frame. 

 
Hence, in the homogeneous FE method, the material properties attributed to the 

elements are constant all through the surface of an element. Previous studies 

demonstrate that when an FGM structure is discretized finely enough, one can 

capture very correct results utilizing both of these approaches [77, 78]. The 

homogeneous FE method is used in this study. The following parametric analyses 

illustrates that the results of analytical and computational techniques fit to each 

other with a high level accuracy. In the computational analyses, the flat, triangular 

and circular stamp boundaries are taken as rigid target elements. The surface of the 

FGM coating that might contact with the target surfaces are described as the contact 

elements lying on the solid elements. The rigid stamp surfaces are divided into a 

group of target segment  elements  and  are  coupled  with  its  contacting  surfaces. 
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 These rigid and contact surfaces share the same real constant set [75].  The target 

segment elements can be exposed to any translational or rotational displacement, 

voltage, magnetic potential and temperature. Moments and forces can also be 

applied on target elements. Although these elements can easily model arbitrary 

target shapes, the target surfaces are smooth in this study. Each target surface can 

be coupled with only one contact surface. However, more than one contact 

elements may compose the contact surface and contact with the same target 

surface. Similarly, more than one target elements may form the target surface and 

gets the contact with the same contact surface. It is valid for both the target and 

contact surfaces that any number of elements can be defined in a one target or 

contact surface. Alternatively, the contact and target surfaces can be discretized by 

dividing the large surfaces into smaller ones which include fewer number of 

elements [75]. 

The augmented Lagrangian method is utilized as an iterative procedure of the 

contact problem. The theory details of the Augmented Lagrangian method is given 

in a review paper by Mijar and Arora [79]. In this method, the contact pressure and 

frictional stresses are increased step by step during equilibrium iterations. the 

Augmented Lagrangian method generally yields better conditioning and is less 

dependent on the magnitude of the contact stiffness compared to the penalty 

method. However, the augmented Lagrangian method might require extra 

iterations in some analyses for which the deformed mesh is too distorted [75]. 

Contact detection points are defined at the Gauss integration points of the contact 

elements which are located on the element surface (see Fig. 3.2). The indentation 

of the contact element into the target surface is constrained at its integration points. 

However, the target surface can penetrate into the contact surface. Surface-to-

surface contact elements are used in this study treating the Gauss integration points 

as detection points. This treatment yields more stable stresses than the nodal 

detection scheme for which the nodes are used for the contact detection [75]. 
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Figure 3.2: Contact Detection Points [75]. 

 

FE mesh utilized for the flat stamp problem is presented in Figure 3.3. This finite 

element mesh includes 500 contact line elements and 60,759 quadrangular and 

triangular 2D solid elements. The inelastic flat stamp possesses three rigid target 

surfaces, the inelastic triangular stamp possesses two rigid target surfaces and the 

inelastic circular stamp has a unique rigid target surface in the FE simulations.  In 

Figure 3.3; B,  H,  W and  h stand for the width of the inelastic stamp, the vertical 

size of the coating-substrate system, the horizontal size of the coating-substrate 

system and the thickness of the coating, respectively. H and W are taken large 

enough not to cause any influences on the results of the simulation. Hence, B=W 

is assigned as 1=10. H=W and B=h are set as 1=1.625 and 1=1, respectively. The 

FE mesh denseness is refined apparently on the contact zone to be able to take the 

abrupt changes of the field quantities into account particularly near the edges of the 

stamps. In the meantime, the FE mesh denseness is also raised through the coating 

thickness in order to maintain smooth exponential material gradations.  
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Figure 3.3: FE mesh utilized for the flat stamp problem. 

 

The most critical issue managed in the computational contact analysis of this study 

is the attribution of different material properties for each finite element depending 

on their position in the vertical x axis. This feature is not available in ANSYS and 

it is enabled by adding a proper subroutine into the related ANSYS code.   

Note that the computational analyses are optimized such that )( abR −>>  for the 

circular stamp problem ( )5108)( −×=− Rab  and )()tan()( abab −<<− θ  for the 

triangular stamp problem ( )51073.8)tan( −×=θ . Upon these conditions, the 

convergence of iterative method (Augmented Lagrange) is remedied remarkably. 
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CHAPTER 4 

 

 

NUMERICAL RESULTS 

 

 

 

This chapter presents the results produced with the analytical and computational 

techniques. In this section, it is needed to mention about the normalizations enabled 

in the results of the flat, triangular and circular stamp problems. Hence, the non-

homogeneity constant γ   introduce material gradations to the orthotropic coating. 

The symbols a  and b  indicate the coordinates of the leading and trailing ends of 

the inelastic stamp. c  represents the centerline position of the circular stamp. The 

numerical results can be presented considering the normalized nonhomogeneity 

parameter hγ  and the normalized contact length hab )( − . On contrary to the flat 

stamp problem, in the cases of the triangular and circular stamps the contact length 

)( ab − is strongly dependent on the normal contact force P . The normalized 

contact forces are evaluated by utilizing (2.104) for the triangular stamp and 

(2.114a) for the circular stamp. For the flat stamp, such kind of calculations is not 

needed since P  and )( ab−  are independent in that case.  

The first group of results are presented in Tables 4.1-4.2 and Figures 4.2–4.14, 

which are generated for a flat stamp. Another set of results, produced regarding a 

triangular stamp, are presented in Tables 4.3-4.7 and Figures 4.15–4.27. The third 

set are for a circular stamp and presented in Tables 4.8-4.17 and Figures 4.28–4.40.  

The fourth set of results that show the surface and interfacial behavior of 

orthotropic homogeneous coatings under contact loads, are given in Figures 4.42–

4.52. All the results showing the effects of problem parameters on the normalized 

surface contact stresses are produced by using the developed analytical procedure. 

Note that the interfacial stresses for orthotropic homogeneous coatings given in 

Figures 4.49-4.52 are obtained by using FEA. 
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In all the parametric analyses of FGM coatings; the coating surface is taken as % 

100 Alumina for which the engineering parameters are given in Table 2.1. The 

orthotropic stiffness constant )(66 xc  )0( ∞<< x  of a material corresponds to its 

shear modulus in plane strain assumption, for either the material is orthotropic or 

isotropic (see Equation 2.4). In this study, the continuity of stiffness constant 

)(66 xc  is satisfied all through the thickness as done in the study by Ben-Romdhane 

et al. [41]. This continuity is enabled using the following the procedure: Firstly the 

shear modulus at the coating-substrate interface is computed using the relation 

h
echc

γ
66066 )( =  for a given normalized non-homogeneity constant hγ  of the 

coating. Then the shear modulus of the isotropic substrate is attributed as 

)(66 hc=µ . After that, the elastic modulus E  of the isotropic substrate is calculated 

by using the restriction )1(2 νµ +=E  taking the poison’s ratio of the substrate as a 

constant )31.0( =ν .  

Nickel is one of the most commonly used substrate material for Alumina coatings. 

Taking the preceding )(66 xc  continuity procedure into account, the substrate 

material is obtained as % 100 Nickel when the normalized non-homogeneity 

constant hγ  is attributed to .712.0  The engineering parameters of Nickel are 

given in Table 2.1. Thus all the FGM coating results presented in this study are 

produced for 712.0=hγ  except the cases showing the effect of non-homogeneity 

constant variations on the normalized contact stresses and the normalized contact 

forces. Note that when the non-homogeneity constant hγ  is taken as negative, the 

stiffness coefficients ),(11 xc  ),(12 xc  )(22 xc  are continuously decreasing through 

the coating thickness )0( hx <<  and increases sharply at the interface )( hx = . 

However, when 0>hγ  the stiffness coefficients ),(11 xc  ),(12 xc  )(22 xc  are 

continuously increasing through the coating thickness )0( hx <<  and also 

increases at the interface )( hx = . Therefore, we can infer that the gradation is much 

more feasible for 0>hγ  (see Figure 4.1). Hence all the parametric analyses 

generated for FGM coatings are produced for .0>hγ  
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The contact analyses of orthotropic homogeneous coatings are enabled by 

attributing the normalized nonhomogeneity constant to zero in the analytical and 

computational procedures. In the presented results for the homogeneous 

orthotropic coating case, the homogenous coating and the substrate are taken as 

Alumina and Nickel, respectively. Their elastic material properties are available in 

Table 2.1. Additionally, there is no material property continuity defined at the 

interface between the coating and substrate since they are different homogeneous 

materials. 

Note that the normalized contact stress  and normalized lateral 

contact stress  calculated by analytical technique are 

independent of the radius of the stamp  and the inclination angle of the stamp  

for the circular and triangular stamp problems, respectively. These normalized 

stresses are also independent of the magnitude of the contact length )( ab −  and 

the magnitude of the contact force P for all the stamp cases. Also note that the 

normalized contact force of the circular stamp ))(( abP xy −µ  is dependent on the 

ratio Rab )( −  (see Equations 2.114 and 2.123), although the normalized contact 

force of the triangular stamp ))()(tan( abP xy −µθ  is independent to the contact 

length )( ab −  (see Equations 2.104-105). 

 

4.1 Flat Stamp 

The geometry of the flat stamp problem is shown in Figure 2.2. Figure 4.2 and 

Figure 4.3 show the results on the normalized contact stress ( )( )abPyxx −),0(σ  

and on the normalized lateral contact stress ( )( )abPyyy −),0(σ , which are 

evaluated regarding an orthotropic graded coating which is exposed to contact 

tractions of an inelastic flat stamp. In these figures, the analytical and finite element 

methods are used to calculate the normalized contact stress results which are 

presented together to assess the accuracy and the compatibility of both techniques. 

The normalized stresses are plotted versus the normalized y-axis 

)())(2( ababy −+− which is equal to -1 for ay =  and 1 for by = .  

( )( )abPyxx −),0(σ

( )( )abPyyy −),0(σ

R θ
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The results are provided for two different normalized nonhomogeneity constants: 

1.0=hγ  in Figure 4.2 and 712.0=hγ  in Figure 4.3.  Note that when the 

normalized nonhomogeneity constant hγ  is 712.0 , the substrate material becomes 

%100 Nickel. The fixed parameters in the evaluation of these results are; 

,0.1)( =− hab  .3.0=η  Also note that a positive value for hγ  implies that the 

stiffness constants of the coating increase in the thickness direction (positive x-

direction). The coating becomes homogeneous when the normalized non-

homogeneity parameter hγ  is assigned to zero. It is observed from Figure 4.2 and 

Figure 4.3 that the analytical and computational methods provide very close results. 

The scaled deformed shape which is produced by using the FE solution of a flat 

stamp problem is presented by Figure 4.4. Referring to Figure 4.2 and Figure 4.3, 

we realize that the contact stress ( )( )abPyxx −),0(σ  and the lateral contact stress  

( )( )abPyyy −),0(σ  possess singular behavior at the leading and trailing ends of 

the contact zone ( at by =  and ay = ), due to the sharp edges of the flat stamp. 

The normalized contact and lateral contact stress curves generated are not 

symmetric about 0=y  due to laterally acting frictional forces on the coating 

surface. Lateral contact stress is in tension as −→ ay  and in compression as

+→ by . After the evaluation of the contact stress ),0( yxxσ , one can easily calculate 

the shear stress ),0( yxyσ  by using the dry friction law as ),0(),0( yy xxxy ησσ = .  

In the analytical method, the normalized stresses are evaluated through the 

truncated forms of series representation. As the truncation number N is increased, 

a stress result should converge to a definite magnitude. Hence, we present some 

tables in this Chapter to validate the convergence behavior of the analytical 

method. The related results are evaluated regarding the flat stamp and given in 

Table 4.1 and Table 4.2. The results are generated for two distinct normalized 

contact length values: 4.0)( =− hab  in Table 4.1 and 0.1)( =− hab  in Table 4.2. 

These tables present 12 cases in total. For each of these cases the normalized 

contact stress ( )( )abPyxx −),0(σ  is evaluated by increasing the truncation 

number N six times. Note that N  is the upper limit for the truncated form of the 

series representation given by (2.91). N also indicates the number of discretization  
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points utilized for (2.95). As observed in Table 4.1 and Table 4.2, the results 

quickly converge as N  is raised from 1 to 14. For any combination of the problem 

parameters, three-digit convergence is obtained for 10=N . Thus, all the analytical 

results presented in this study are generated for .10=N  

Additionally, the influences of the problem parameters on the contact stresses are 

also presented for the flat stamp utilizing the developed analytical technique. 

Figure 4.5 shows the effect of the nonhomogeneity parameter hγ  on  the  

normalized  contact  stress  ( )( )abPyxx −),0(σ    for   ( ) 0.1=− hab   an .3.0=η  

Due to the singular behavior of the contact stresses near the leading and trailing 

contact ends, the results produced for different normalized non-homogeneity 

parameters  cannot be distinguished in these regions. However, the effect of the 

nonhomogeneity parameter is observable inside the contact region. Note that when 

hγ  increases from 0.0 to 1.0, the magnitude of the contact stress increases 

remarkably inside the contact region. Figure 4.6 shows the influences of the friction 

coefficient on the normalized contact stress ( )( )abPyxx −),0(σ  for ( ) 0.1=− hab  

and .712.0=hγ  The negative sign of the friction coefficient η is implies that the 

lateral force Q acts in the negative y-direction. If this sign of the friction coefficient 

 is positive, then lateral force   acts in the positive y-direction. Examining 

Figure 4.6, the contact stress reaches its maximum value on the region near the end 

point by = , if 0.0>η  and on the region near the end point ay = , if 0.0<η . 

Figure 4.7 shows the effect of the normalized contact length ( ) hab−  on the 

normalized contact stress ( )( )abPyxx −),0(σ  for 3.0=η  and .712.0=hγ  Note 

that the increase of the normalized contact length ( ) hab−  implies either the 

decreasing size of the coating thickness relative to a fixed contact length or the 

increasing size of the contact length relative to a fixed coating thickness. When 

( ) hab−  is increased from 1.0  to 0.1 ,  the magnitude of the contact stress 

increases inside the contact region. Figure 4.8 shows the effect of Elastic modulus  

ratio  yx EE  on  the  normalized  contact stress ( )( )abPyxx −),0(σ  for 3.0=η , 

0.1)( =− hab  and .712.0=hγ  In these plots, the engineering parameters of 

Alumina are used as in Table 2.1 such that only the  parameter yE   is  changed  to   

hγ

η Q
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get  the  desired  yx EE   ratio. After that,  
 
and yxv  are  recalculated considering 

the restrictions given in (2.6). Also note that all the Poisson’s ratio values should 

be between 0 and 0.5. Examining Figure 4.8, the normalized contact stress 

 slants towards the positive y-direction slightly, when yx EE  

is increased from 6.0  to .5.1  Figure 4.9 shows the effect of Elastic modulus ratio 

zx EE  on the normalized contact stress  for , 

0.1)( =− hab  and  In these plots, the engineering parameters of 

Alumina are used as in Table 2.1 such that only the parameter 
zE  is changed to get 

the desired zx EE  ratio. Then 
 
and zxv  are recalculated obeying the restrictions 

given in (2.6). As observed in this figure, variation of the elastic modulus ratio 

zx EE  has no significant effect on the normalized contact stress 

. The crack formation or initiation may occur on the ceramic 

based surfaces loaded by contact loads involving friction. These defects are 

commonly called as herringbone crackings [5] or partial-cone crackings [57] which 

results from the existence of the lateral contact stress  on the surface of the 

loaded medium. Therefore, the influences of problem parameters on the surface 

lateral contact stress  are illustrated in this study. Figure 4.10 shows the 

effect of nonhomogeneity parameter on the normalized lateral contact stress 

( )( )abPyyy −),0(σ  for 3.0=η  and ( ) .0.1=− hab  On contrary to the normal 

stress ),0( yxxσ , the lateral contact stress ),0( yyyσ  possesses non-zero distributions  

on the free surfaces ( )byay >< , . The effect of the non-homogeneity parameter 

on the lateral contact stress is not that significant near the trailing end of the contact. 

The magnitude of the compressive stresses decrease significantly as the 

nonhomogeneity constant hγ  is increased from 0.0 to 1.0. Figure  4.11  shows  the  

effect  of  coefficient of  friction  η  on  the  normalized  lateral  contact  stress

( )( )abPyyy −),0(σ  for 712.0=hγ  and ( ) 0.1=− hab . Examining Figure 4.11, the 

lateral contact stress increases significantly on and outside the contact zone, when 

the absolute value of the friction coefficient is increased. Some further analytical 

results are presented by considering the flat stamp in Figure 4.12 for 3.0=η  and 

712.0=hγ , in order to examine the  influences  of  the  normalized  contact  length 

yzv

( )( )abPyxx −),0(σ

( )( )abPyxx −),0(σ 3.0=η

.712.0=hγ

yzv

( )( )abPyxx −),0(σ

),0( yyyσ

),0( yyyσ
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( ) hab −  on the lateral contact stress ( )( )abPyyy −),0(σ . As can be seen in Figure 

4.12, the lateral contact stress decreases slightly on and outside the contact zone as 

the normalized contact length ( ) hab −  is increased from 0.1 to 1.0. In other words, 

the magnitude of the lateral contact stress increases as the size of the coating 

thickness relative to the contact length increases. Figure 4.13 shows the influences 

of Elastic modulus ratio yx EE  on the normalized lateral contact stress 

( )( )abPyyy −),0(σ  for 3.0=η  and 712.0=hγ . As seen in Figure 4.13, the effect 

of elastic modulus ratio yx EE  on normalized lateral contact stress is very 

significant on and outside the contact zone.  If yx EE  is increased from 6.0  to 5.1

, it is observed that the magnitude of the lateral contact stress decreases 

significantly. Figure 4.14 shows the effect of Elastic modulus ratio zx EE  on the 

normalized lateral contact stress   for , 0.1)( =− hab  

and  As observed in this figure, variation of the elastic modulus ratio 

zx EE  has no significant effect on the normalized lateral contact stress 

. 

 

4.2 Triangular Stamp 

The results produced for an orthotropic FGM coating which is subjected to contact 

loads by an inelastic triangular stamp are given in Figures 4.15-4.27 and Tables 

4.3-4.7. The view of the triangular stamp problem is presented in Figure 2.3.  In  

the  triangular  stamp problem the contact length is strongly dependent on 

the normal contact force P. The normal contact force is analytically computed for 

a specified contact length by using (2.104). Tables 4.3-4.7 tabulates the normalized 

contact forces )))(tan(( abP xy −θµ  evaluated utilizing the analytical method for 

different combinations of the friction coefficient η, the normalized non-

homogeneity constant hγ , the normalized contact length , the elastic 

modulus ratio yx EE  and the elastic modulus ratio zx EE . As observed from 

these Tables;  when  the  normalized  non-homogeneity  constant   is  increased  

( )( )abPyyy −),0(σ 3.0=η

.712.0=hγ

( )( )abPyyy −),0(σ

)( ab −

( ) hab −

hγ
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from 0.1 to 1.0, the normalized contact force  increases 

significantly for any combination of the other problem parameters. When the 

friction coefficient  is raised from  -0.6  to  0.6, the normalized contact force 

 also increases significantly regardless of the combination of 

the other problem parameters. When the normalized contact length  is 

increased from 0.4 to 1.0, the normalized contact force  

increases slightly in any case. It should be also emphasized that the effect of the 

variations of the normalized nonhomogeneity parameter  on the normalized 

force  become much more significant, when the normalized 

contact length  is increased. We can infer from these tables that when the 

elastic modulus ratios yx EE  and zx EE  are increased, then the normalized 

contact force  decreases considerably regardless of the change 

in other parameters. To be able to obtain accordant stress curves for triangular, flat 

and circular stamp problems, the curves for all the stamp profiles are normalized 

with respect to the normal force ( )abP − . The comparisons of the normalized 

contact and the normalized lateral contact stresses evaluated utilizing the analytic 

and FE techniques are presented for two different nonhomogeneity constants hγ  

in Figure 4.15 and Figure 4.16:  in Figure 4.15 and  in Figure 

4.16.  The fixed parameters in the computation of these normalized stresses are 

,0.1)( =− hab  3.0=η . One can observe that the normalized contact stress 

becomes singular at point ay =  and zero at point .by =  The related behavior of 

the triangular stamp results from its sharp edge at ay =  and smooth edge at .by =  

Due to the positive friction coefficient, the lateral stress around the trailing end 

)( −→ ay  is tensional and tends to infinity at .ay =  The lateral contact stress 

around the leading end is compressive and nonsingular since the contact is smooth 

at   Figure 4.15 and Figure 4.16 indicate that the analytic and computational 

techniques provide very close results. The scaled deformed shape of the contact 

region, which is produced by using the FE solution of a triangular stamp problem 

is provided in Figure 4.17. Figure 4.18 shows the behavior of the normalized 

contact   stress    ( )( )abPyxx −),0(σ     with    the    change    in   the   normalized  

)))(tan(( abP xy −θµ

η

)))(tan(( abP xy −θµ

( ) hab −

)))(tan(( abP xy −θµ

hγ

)))(tan(( abP xy −θµ

( ) hab −

)))(tan(( abP xy −θµ

1.0=hγ 712.0=hγ

.by =
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nonhomogeneity constant .hγ  Examining Figure 4.18, it can be observed that, the 

magnitude of the normalized contact stress increases inside the contact region of 

the triangular stamp as the nonhomogeneity constant is raised from 0.0 to 1.0. 

Figure 4.19 demonstrates the effects of friction coefficient on the normalized 

contact stress ( )( ).),0( abPyxx −σ  As seen in Figure 4.19, the normalized contact 

stress decreases significantly away from the sharp edge of the triangular stamp, as 

the coefficient of friction is raised from -0.6 to 0.6. Figure 4.20 shows the effect of 

the normalized contact length ( ) hab −  on the normalized contact stress 

( )( )abPyxx −),0(σ  for 3.0=η  and 712.0=hγ . When ( ) hab −  is raised from 0.1 

to 1.0, the magnitude of the contact stress increases inside the contact region. 

Figure 4.21 shows the effect of Elastic modulus ratio yx EE  on the normalized 

contact stress ( )( )abPyxx −),0(σ  for 3.0=η  and 712.0=hγ . It can be observed 

from Figure 4.22 that the change in elastic modulus ratio yx EE  has no significant 

effect on the normalized contact stress ( )( )abPyxx −),0(σ . Figure 4.22 shows the 

effect of Elastic modulus ratio zx EE  on the normalized contact stress 

 for  and . It can be observed from Figure 

4.22 that the change in elastic modulus ratio zx EE  has no significant effect on 

the normalized contact stress . Figure 4.23 illustrates the effect 

of normalized nonhomogeneity parameter hγ  on the normalized lateral contact 

stress ( )( )abPyyy −),0(σ  for ( ) 0.1=− hab  and .3.0=η  Unlike the stress 

component ),0( yxxσ , the lateral stress ),0( yyyσ  is not zero in the region outside the 

contact zone ( )byay >< , . As can be observed in Figure 4.23 that when the 

nonhomogeneity constant increases from 0.0 to 1.0, the magnitude of the lateral 

compressive stress decreases on and outside the contact zone, although the effect 

is more significant on the contact zone.  Figure 4.24  shows  the  effect  of  friction 

coefficient on the normalized lateral contact stress ( )( )abPyyy −),0(σ  for 

( ) 0.1=− hab  and 712.0=hγ . Note that the smooth contact at the end by =  

becomes the trailing end if the friction coefficient is negative, for which the trends 

of the lateral contact stress has sharp transitions at .by =   Examining Figure 4.24,  

( )( )abPyxx −),0(σ 3.0=η 712.0=hγ

( )( )abPyxx −),0(σ
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the effect of the friction coefficient on the lateral contact stress is very remarkable. 

The larger the absolute value of the friction coefficient is, the greater the 

normalized lateral contact stress near the trailing end we get. Figure 4.25 is 

provided to demonstrate the influences of the normalized contact length ( ) hab −  

on the normalized lateral contact stress ( )( )abPyyy −),0(σ  for 3.0=η  and 

712.0=hγ .  As seen in the figure, when the normalized contact length ( ) hab −  is 

increased from 0.1 to 1.0, the magnitude of the lateral contact stress decreases 

slightly on and outside the contact zone. Thus we can conclude that the size of the 

coating thickness relative to the contact length can be decreased to reduce the 

possibility of damage due to the herringbone cracks near the trailing end. Figure 

4.26 shows the influences of elastic modulus ratio yx EE  on the normalized lateral 

contact stress ( )( )abPyyy −),0(σ  for 3.0=η  and 712.0=hγ . As can be seen in 

this figure, the effect of elastic modulus ratio yx EE  on normalized lateral contact 

stress ( )( )abPyyy −),0(σ  is very significant on and outside the contact zone.  If 

yx EE  is increased from 6.0  to 5.1 , it is observed that the magnitude of the 

lateral contact stress decreases remarkably. Hence, the option of increasing the 

ratio yx EE  can be used in the graded coating so as to prevent the risk of damage 

near the trailing end of the contact zone. Figure 4.27 shows the effect of Elastic 

modulus ratio zx EE  on the normalized lateral contact stress   

for , 0.1)( =− hab  and  As observed in this figure, variation of 

the elastic modulus ratio zx EE  has no significant effect on the normalized lateral 

contact stress . 

 

4.3 Circular Stamp 

The results produced for an orthotropic FGM coating which is subjected to contact 

loads by an inelastic circular stamp are given in Figures 4.28–4.40 and Tables 4.8-

4.17. The view of the circular stamp problem is presented in Figure 2.4. In  the  

circular stamp problem the contact length is strongly dependent on the 

normal  contact  force P,  just as in the triangular  stamp  problem. Tables 4.8-4.12  

( )( )abPyyy −),0(σ

3.0=η .712.0=hγ

( )( )abPyyy −),0(σ

)( ab −
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tabulates the normalized contact forces ))(( abP xy −µ  evaluated utilizing the 

analytical method for different combinations of the friction coefficient , the 

normalized non-homogeneity constant , the normalized contact length 

, the elastic modulus ratio yx EE  and the elastic modulus ratio zx EE . The end 

point locations which are used throughout the computation of the normalized forces 

are 0=Ra  and 02.0=Rb . As observed from these Tables; when the 

normalized non-homogeneity constant  is increased from 0.1 to 1.0, the 

normalized contact force ))(( abP xy −µ  increases for any combination of the other 

problem parameters significantly. When the friction coefficient  is raised from 

0.0 to 0.6, the normalized contact force ))(( abP xy −µ  decreases slightly in any 

case. Similarly, when the normalized contact length  is increased from 0.4 

to 1.0, the normalized contact force ))(( abP xy −µ  increases considerably 

regardless of the combination of the other problem parameters.  It should be also 

emphasized that the effect of the variations of the normalized nonhomogeneity 

parameter  on the normalized force ))(( abP xy −µ  become much more 

significant, when the normalized contact length  is increased. We can also 

infer from these tables that when the elastic modulus ratios yx EE  and zx EE  

are increased, then the normalized contact force ))(( abP xy −µ  decreases 

considerably for any case. Tables 4.13-4.17 tabulates the centerline position Rc  

of the circular stamp evaluated utilizing the analytic method for different 

combinations of the friction coefficient ,  the normalized non-homogeneity 

constant ,  the normalized contact length , the elastic modulus ratio 

yx EE  and the elastic modulus ratio zx EE . The end point locations which are 

used throughout the computation of the normalized forces are 0=Ra  and 

02.0=Rb . As observed from these Tables; when the normalized non-

homogeneity constant  is increased from 0.1 to 1.0, the centerline position Rc  

tends to approach the geometric centerline of the rigid circular stamp independently  

η

hγ ( ) hab −

hγ

η

( ) hab −

hγ

( ) hab −

η

hγ ( ) hab −

hγ
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to the combination of any other problem parameters. When the friction coefficient 

 is increased from 0.0 to 0.6, the centerline position Rc  moves  away  from  the 

geometric centerline of the stamp to the right significantly. This effect is also 

independent to the variation of any other problem parameters. The change in the 

normalized contact length  does not seem to have considerable effect on 

the centerline position Rc   for any combination of the problem parameters. It can 

be also inferred from these Tables that when the elastic modulus ratios yx EE  is 

increased, then the centerline position c tends to move to the right considerably. 

When the elastic modulus ratios zx EE  is increased, then the centerline position 

Rc  remains almost stationary regardless of the change in other parameters. The 

comparisons of the normalized contact and the normalized lateral contact stresses 

evaluated regarding the analytic and FE techniques are given for two different 

nonhomogeneity constants hγ  in Figure 4.29 and Figure 4.30:  in Figure 

4.29 and   in Figure 4.30. The fixed parameters in the computation of 

these normalized stresses are  . One can observe that the 

normalized contact stress is zero at the leading and the trailing ends ay =  and 

.by =  That is due to the fact that the stamp edges are smooth the leading and the 

trailing ends  and .by =  Due to the positive friction coefficient, the lateral 

contact stress around the trailing end )( −→ay  is tensional nonsingular due to 

smooth contact. The lateral contact stress around the leading end is compressive 

and also nonsingular at .by =  Figure 4.29 and Figure 4.30 indicate that the analytic 

and computational techniques provide very close results. The scaled deformed 

shape of the contact region, which is produced by using the FE solution of a circular 

stamp problem is provided in in Figure 4.28. Figure 4.31  shows  the behavior of 

the normalized contact stress  ( )( )abPyxx −),0(σ  with the change in the 

normalized nonhomogeneity constant .hγ  Examining Figure 4.31, it can be 

observed that, the magnitude of the normalized contact stress increases inside the 

contact region of the circular stamp as the nonhomogeneity constant is raised from 

0.0 to 1.0. Figure 4.32 demonstrates  the  effects  of  friction  coefficient  on  the  

normalized   contact    stress     As  seen  in  Figure 4.32,  the  

η

( ) hab −

1.0=hγ

712.0=hγ

,0.1)( =− hab 3.0=η

ay =

( )( ).),0( abPyxx −σ
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normalized contact stress slant towards the positive y direction significantly, as the 

friction coefficient is decreased from 0.6 to -0.6.  Figure 4.33  shows  the  effect of 

the normalized contact length ( ) hab −  on the normalized contact stress 

( )( )abPyxx −),0(σ  for 3.0=η  and 712.0=hγ . When ( ) hab −  is raised from 0.1 

to 1.0, the magnitude of the contact stress increases in the contact region slightly. 

Figure 4.34 shows the effect of Elastic modulus ratio yx EE  on the normalized 

contact stress ( )( )abPyxx −),0(σ  for 3.0=η  and 712.0=hγ . It can be observed 

from Figure 4.34 that as the elastic modulus ratio yx EE  is decreased from 1.5 to 

0.6, the normalized contact stress ( )( )abPyxx −),0(σ  slants towards positive y 

direction slightly. Figure 4.35 shows the effect of Elastic modulus ratio zx EE  on 

the normalized contact stress  for  and . It 

can be observed from Figure 4.35 that the change in elastic modulus ratio zx EE  

has no significant effect on the normalized contact stress . 

Figure 4.36 illustrates the effect of normalized nonhomogeneity parameter hγ  on 

the normalized lateral contact stress ( )( )abPyyy −),0(σ  for ( ) 0.1=− hab  and 

.3.0=η  On contrary to the normal stress , the lateral contact stress 

 possesses non-zero distributions  on the free surfaces . As 

can be observed in Figure 4.36, the variation of normalized nonhomogeneity 

constant hγ  possesses significant effect on the lateral contact stresses on and 

outside the contact zone. When the nonhomogeneity constant is increased from 0.0 

to 1.0, the magnitude of the lateral compressive stress decreases. Figure 4.37 shows 

the effect of friction coefficient η on the normalized lateral contact stress 

( )( )abPyyy −),0(σ  for ( ) 0.1=− hab  and 712.0=hγ .  Note  that  when  the  

friction coefficient  η  is positive, the contact end at ay =  becomes the trailing 

end of the contact and the normalized lateral contact stress ( )( )abPyyy −),0(σ  has 

sharp transitions at that point. However, when the friction coefficient is negative, 

the contact end at ay =  becomes the leading end of the contact and the normalized 

lateral stress ( )( )abPyyy −),0(σ  has smooth transitions at that  point.  Examining  

( )( )abPyxx −),0(σ 3.0=η 712.0=hγ

( )( )abPyxx −),0(σ

),0( yxxσ

),0( yyyσ ( )byay >< ,
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Figure 4.37, the effect of the friction coefficient η on the lateral contact stress is 

very remarkable. The larger the absolute value of the friction coefficient is, the 

greater the normalized lateral contact stress around the trailing and the leading 

ends. Figure 4.38 is provided to demonstrate  the   influences   of  the   normalized   

contact     length     ( ) hab −       on     the     normalized     lateral     contact    stress 

( )( )abPyyy −),0(σ  for 3.0=η  and 712.0=hγ . As seen in the figure, when the 

normalized contact length ( ) hab −  is increased from 0.1 to 1.0, the magnitude of 

the lateral contact stress decreases slightly on and outside the contact zone. Thus 

we can conclude that the size of the coating thickness relative to the contact length 

can be decreased to reduce the possibility of damage due to the herringbone cracks 

near the trailing end. Figure 4.39 shows the influences of elastic modulus ratio 

yx EE  on the normalized lateral contact stress ( )( )abPyyy −),0(σ  for 3.0=η  and 

712.0=hγ . As can be seen in this figure, the effect of elastic modulus ratio yx EE  

on normalized lateral contact stress  ( )( )abPyyy −),0(σ  is very significant on and 

outside the contact zone.  If yx EE  is increased from 6.0  to 5.1 , it is observed that 

the magnitude of the lateral contact stress decreases remarkably. Hence, the option 

of increasing the ratio yx EE  can be used in the graded coating so as to prevent 

the risk of damage around the trailing end of the contact region. Figure  4.40 shows 

the effect of Elastic modulus ratio zx EE  on the normalized lateral contact stress  

 for , 0.1)( =− hab  and  As observed in 

this figure, variation of the elastic modulus ratio zx EE  has no significant effect 

on the normalized lateral contact stress . 

 

4.4 Homogeneous coating 

The surface and interfacial contact stresses of an orthotropic homogeneous coating 

under the action of complete contact loadings are given in Figures 4.42-4.52. The 

view of the circular stamp problem is presented in Figure 4.41. The comparisons 

of the normalized contact and the lateral  contact  stresses  evaluated  utilizing  the  

( )( )abPyyy −),0(σ 3.0=η .712.0=hγ

( )( )abPyyy −),0(σ
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analytic and FE techniques are presented for various problem parameters in Figures 

4.42-4.44:    0.1)( =− hab    and    3.1=yx EE     (Alumina)   in    Figure    4.42. 

4.0)( =− hab  and 3.1=yx EE  (Alumina) in Figure 4.43. 0.1)( =− hab , 

5.1=yx EE  in Figure 4.44.  It can be inferred from these figures that the results of 

analytical and computational methods agree with each other for various problem 

parameters, which is the indication of the accuracy for both methods. Some 

detailed results showing the influences of problem parameters on surface contact 

stresses are also given. Figure 4.45 demonstrates  the  effects  of  friction  

coefficient η  on  the  normalized  contact  stress ))((),0( abPyxx −σ  and on the 

lateral contact stress ))((),0( abPyyy −σ . Observing Figure 4.45a the contact 

stress ))((),0( abPyxx −σ  slants toward the positive y-direction, as the friction 

coefficient η  is raised from 0 to 0.45. Figure 4.45b reveals that the magnitude of 

the lateral contact stress ))((),0( abPyyy −σ  elevates as the friction coefficient η  

is raised from 0 to 0.6. Figure 4.46 illustrates  the  effects  of  the normalized contact 

length hab )( −  on  the  normalized  contact  stress ))((),0( abPyxx −σ  and on 

the lateral contact stress ))((),0( abPyyy −σ . One can infer from Figure 4.46 that 

the variation of the normalized contact length hab )( −  has no effect on the contact 

stresses. Figure 4.47 shows  the  effects  the variations in the elastic modulus ratio 

yx EE  on  the  normalized  contact  stress ))((),0( abPyxx −σ  and the lateral 

contact stress ))((),0( abPyyy −σ . Observing Figure 4.47a the contact stress 

))((),0( abPyxx −σ  slants toward the positive y-direction, as the elastic modulus 

ratio yx EE  is increased from 0.6 to 1.5.  Figure   4.47b   reveals   that   the   

magnitude   of   the  lateral  contact   stress ))((),0( abPyyy −σ  decreases 

significantly as the elastic modulus ratio yx EE is increased from 0.6 to 1.5. Thus 

the option of selecting orthotropic materials having higher  yx EE  ratio can be 

assessed to prevent surface crackings. Figure 4.48 reveals the  influences  of  the 

elastic modulus ratio zx EE  on  the  normalized  contact stress 

))((),0( abPyxx −σ  and on the lateral contact stress  ))((),0( abPyyy −σ .  It  can  
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be inferred from this figure that the variation of the elastic modulus ratio zx EE  

has no significant influence on the contact stresses. Figure 4.49 demonstrates  the  

effects   of   friction   coefficient   on   the   normalized   interfacial  contact  stress

))((),( abPyhxx −σ  and on the interfacial shear stress ))((),( abPyhxy −σ . 

Examining Figure 4.49a, the magnitude of the contact stress ))((),( abPyhxx −σ  

increases remarkably, as the friction coefficient η   is raised from 0 to 0.6. Figure 

4.49b illustrates that the magnitude of the interfacial shear stress 

))((),( abPyhxy −σ  increases significantly as the friction coefficient η   is raised 

from 0 to 0.6. Figure 4.50 reveals the  effect  of  the normalized contact length 

hab )( −  on the normalized interfacial contact stress ))((),( abPyhxx −σ  and on 

the interfacial shear stress ))((),( abPyhxy −σ . Observing Figure 4.50, the 

magnitude of the interfacial contact stresses ))((),( abPyhxx −σ  and 

))((),( abPyhxy −σ  increase remarkably, as the normalized contact length 

hab )( −  is raised from 0.4 to 0.7. In Figure 4.51,  the  influences  of  the elastic 

modulus ratio yx EE  on the normalized interfacial contact stress 

))((),( abPyhxx −σ  and on the interfacial shear stress ))((),( abPyhxy −σ  are 

plotted. As seen in Figure 4.51, the magnitude of the interfacial contact stresses 

))((),( abPyhxx −σ  and ))((),( abPyhxy −σ  increase remarkably, as the elastic 

modulus ratio yx EE is increased from 0.6 to 1.5. Figure 4.52 illustrates the  

influences  of  the elastic modulus ratio zx EE  on the normalized interfacial 

contact stress ))((),( abPyhxx −σ  and on the interfacial shear  stress  

))((),( abPyhxy −σ .  It  can  be  inferred  from  this  figure  that  the variation of 

the elastic modulus ratio zx EE  has no significant influence on the interfacial 

contact stresses. 
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4.5 Tables 

 
Table 4.1: Convergence of the normalized contact stresses evaluated for various 

values of hγ ,  and r  regarding the flat stamp, 3.0=η , 4.0)( =− hab , 

( ) )()(2 ababyr −+−= . 

 

N  

)(

),0(

abP

yxx

−

σ
  

 

 1.0=hγ  6.0=hγ  0.1=hγ  

 1 

828.0−  821.0−  815.0−  

 2  

831.0−  838.0−  843.0−  

 4  

832.0−  845.0−  853.0−  

6.0−=r  6  832.0−  843.0−  850.0−  

 10  832.0−  843.0−  850.0−  

 14  

832.0−  843.0−  850.0−  

     

 1 

755.0−  763.0−  770.0−  

 2  

756.0−  774.0−  786.0−  

6.0=r  4  

757.0−  776.0−  790.0−  

 6  757.0−  775.0−  789.0−  

 10  757.0−  775.0−  789.0−  

 14  

757.0−  775.0−  789.0−  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N
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Table 4.2: Convergence of the normalized contact stresses evaluated for various 

values of hγ , N  and r  regarding the flat stamp, 3.0=η , ( ) 0.1=− hab , 

( ) )()(2 ababyr −+−= . 

 

N  

)(

),0(

abP

yxx

−

σ
  

 

 1.0=hγ  6.0=hγ  0.1=hγ  

 1 

828.0−  820.0−  814.0−  

 2  

831.0−  848.0−  859.0−  

 4  

835.0−  865.0−  882.0−  

 6  834.0−  861.0−  876.0−  

 10  834.0−  861.0−  876.0−  

 14  

834.0−  861.0−  876.0−  

     

 1 

755.0−  764.0−  771.0−  

 2  

758.0−  783.0−  801.0−  

 4  

759.0−  789.0−  810.0−  

 6  759.0−  787.0−  806.0−  

 10  759.0−  787.0−  807.0−  

 14  

759.0−  787.0−  807.0−  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

6.0−=r

6.0=r
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Table 4.3: Normalized forces )))(tan(( abP xy −θµ  evaluated for various magnitudes 

of the friction coefficient η , the normalized non-homogeneity constant hγ  and the 

normalized contact length hab )( −  regarding the triangular stamp for which the 

coating surface is Alumina 

 

η
 

))(tan( ab

P

xy −θµ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

 6.0−  034.2  222.2  416.2  615.2  

 3.0−  193.2  383.2  578.2  776.2  

( ) 4.0=− hab    0.0  354.2  543.2  735.2  929.2  

   3.0  513.2  698.2  883.2  070.3  

   6.0  668.2  843.2  019.3  195.3  

      

 6.0−  054.2  335.2  635.2  954.2  

 3.0−  213.2  504.2  813.2  136.3  

( ) 7.0=− hab    0.0  375.2  674.2  987.2  312.3  

   3.0  534.2  838.2  153.3  476.3  

   6.0  688.2  994.2  308.3  627.3  

      

 6.0−  066.2  414.2  799.2  219.3  

 3.0−  224.2  590.2  991.2  424.3  

( ) 0.1=− hab    0.0  384.2  767.2  182.3  624.3  

   3.0  542.2  940.2  366.3  814.3  

   6.0  693.2  105.3  541.3  996.3  
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Table 4.4: Normalized forces )))(tan(( abP xy −θµ  evaluated for various magnitudes 

of the friction coefficient η , the normalized non-homogeneity parameter hγ  and 

the normalized contact length hab )( −  regarding the triangular stamp, 

.6.0=yx EE  

 

  η ))(tan( ab

P

xy −θµ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

  60.0−  343.2  549.2  761.2  977.2  

  30.0−  448.2  650.2  857.2  066.3  

( ) 4.0=− hab      00.0  554.2  751.2  950.2  151.3  

     30.0  660.2  849.2  040.3  232.3  

     60.0  766.2  945.2  125.3  306.3  

      

  60.0−  356.2  668.2  002.3  354.3  

  30.0−  463.2  777.2  108.3  455.3  

( ) 7.0=− hab      00.0  572.2  885.2  213.3  553.3  

     30.0  681.2  992.2  315.3  648.3  

     60.0  790.2  098.3  414.3  736.3  

      

  60.0−  359.2  751.2  182.3  652.3  

  30.0−  468.2  866.2  301.3  770.3  

( ) 0.1=− hab      00.0  578.2  983.2  420.3  887.3  

     30.0  689.2  099.3  538.3  001.4  

     60.0  800.2  224.3  653.3  111.4  
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Table 4.5: Normalized forces )))(tan(( abP xy −θµ  evaluated for various 

magnitudes of the friction coefficient η, the normalized non-homogeneity 

parameter hγ  and the normalized contact length ( ) hab −  regarding the triangular 

stamp, .5.1=yx EE  

 

η
 

))(tan( ab

P

xy −θµ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

  60.0−  970.1  155.2  345.2  540.2  

  30.0−  139.2  327.2  519.2  715.2  

( ) 4.0=− hab      00.0  311.2  499.2  689.2  882.2  

     30.0  481.2  664.2  849.2  034.3  

     60.0  643.2  818.2  992.2  167.3  

      

  60.0−  993.1  267.2  560.2  873.2  

  30.0−  162.2  448.2  751.2  071.3  

( ) 7.0=− hab      00.0  333.2  629.2  939.2  262.3  

     30.0  502.2  804.2  116.3  438.3  

     60.0  663.2  968.2  280.3  597.3  

      

  60.0−  007.2  347.2  722.2  133.3  

  30.0−  175.2  534.2  928.2  354.3  

( ) 0.1=− hab      00.0  344.2  723.2  132.3  570.3  

     30.0  510.2  905.2  327.3  772.3  

     60.0  666.2  076.3  510.3  963.3  
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Table 4.6: Normalized forces )))(tan(( abP xy −θµ  evaluated for various 

magnitudes of the friction coefficient η, the normalized non-homogeneity 

parameter hγ  and the normalized contact length ( ) hab −  regarding the triangular 

stamp, .6.0=zx EE  

 

η
 

))(tan( ab

P

xy −θµ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

  60.0−  116.2  319.2  528.2  741.2  

  30.0−  283.2  488.2  698.2  910.2  

( ) 4.0=− hab      00.0  454.2  658.2  864.2  072.3  

     30.0  623.2  822.2  021.3  222.3  

     60.0  788.2  978.2  166.3  355.3  

      

  60.0−  130.2  433.2  756.2  097.3  

  30.0−  298.2  613.2  944.2  292.3  

( ) 7.0=− hab      00.0  470.2  794.2  131.3  481.3  

     30.0  641.2  971.2  310.3  659.3  

     60.0  807.2  140.3  479.3  826.3  

      

  60.0−  133.2  505.2  914.2  361.3  

  30.0−  300.2  692.2  119.3  578.3  

( ) 0.1=− hab      00.0  469.2  880.2  323.3  793.3  

     30.0  637.2  066.3  521.3  998.3  

     60.0  799.2  245.3  712.3  196.4  
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Table 4.7: Normalized forces )))(tan(( abP xy −θµ  evaluated for various 

magnitudes of the friction coefficient η, the normalized non-homogeneity 

parameter hγ  and the normalized contact length ( ) hab −  regarding the triangular 

stamp, .0.3=zx EE  

 

    η ))(tan( ab

P

xy −θµ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

  60.0−  004.2  187.2  375.2  567.2  

  30.0−  158.2  342.2  531.2  772.2  

( ) 4.0=− hab      00.0  313.2  497.2  682.2  870.2  

     30.0  467.2  645.2  825.2  005.3  

     60.0  615.2  785.2  955.2  126.3  

      

  60.0−  027.2  300.2  592.2  901.2  

  30.0−  181.2  463.2  763.2  076.3  

( ) 7.0=− hab      00.0  336.2  626.2  930.2  245.3  

     30.0  490.2  784.2  089.3  401.3  

     60.0  637.2  933.2  237.3  545.3  

      

  60.0−  042.2  382.2  757.2  166.3  

  30.0−  195.2  552.2  942.2  362.3  

( ) 0.1=− hab      00.0  350.2  722.2  124.3  553.3  

     30.0  501.2  887.2  300.3  734.3  

     60.0  646.2  045.3  467.3  907.3  
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Table 4.8: Normalized forces ))(( abP xy −µ  evaluated for various magnitudes of 

the friction coefficient η, the normalized non-homogeneity parameter hγ  and the 

normalized contact length ( ) hab −  regarding the circular stamp, for which the 

coating surface is Alumina, 0=Ra , .02.0=Rb  

 

  η )( ab

P

xy −µ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

    00.0  01169.0  01235.0  01300.0  01366.0  

    15.0  01168.0  01233.0  01299.0  01365.0  

( ) 4.0=− hab     30.0  01163.0  01229.0  01294.0  01360.0  

    45.0  01156.0  01221.0  01286.0  01352.0  

    60.0  01146.0  01211.0  01276.0  01341.0  

      

    00.0  01179.0  01285.0  01394.0  01506.0  

    15.0  01177.0  01283.0  01393.0  01504.0  

( ) 7.0=− hab     30.0  01173.0  01279.0  01388.0  01499.0  

    45.0  01166.0  01271.0  01380.0  01491.0  

    60.0  01156.0  01261.0  01368.0  01479.0  

      

    00.0  01185.0  01325.0  01473.0  01628.0  

    15.0  01183.0  01324.0  01472.0  01626.0  

( ) 0.1=− hab     30.0  01179.0  01319.0  01466.0  01621.0  

    45.0  01172.0  01311.0  01458.0  01612.0  

    60.0  01162.0  01300.0  01447.0  01600.0  
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Table 4.9: Normalized forces ))(( abP xy −µ  evaluated for various magnitudes of 

the friction coefficient η, the normalized non-homogeneity parameter hγ  and the 

normalized contact length ( ) hab−  regarding the circular stamp, 0=Ra , 

,02.0=Rb .6.0=yx EE  

 

η
 

)( ab

P

xy −µ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ

    00.0  01270.0  01337.0  01405.0  01474.0

    15.0  01269.0  01337.0  01405.0  01473.0

( ) 4.0=− hab     30.0  01267.0  01335.0  01403.0  01471.0

    45.0  01265.0  01332.0  01400.0  01468.0

    60.0  01261.0  01329.0  01396.0  01464.0

      

    00.0  01283.0  01431.0  01586.0  01748.0

    15.0  01283.0  01430.0  01585.0  01747.0

( ) 0.1=− hab     30.0  01281.0  01428.0  01583.0  01745.0

    45.0  01279.0  01426.0  01581.0  01742.0

    60.0  01275.0  01422.0  01577.0  01738.0
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Table 4.10: Normalized forces ))(( abP xy −µ  evaluated for various values of the 

friction coefficient η, the normalized non-homogeneity parameter hγ  and the 

normalized contact length ( ) hab−  regarding the circular stamp, 0=Ra , 

,02.0=Rb .5.1=yx EE  

 

η
 

)( ab

P

xy −µ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

    00.0  01150.0  01213.0  01278.0  01343.0  

    15.0  01146.0  01211.0  01276.0  01341.0  

( ) 4.0=− hab     30.0  01141.0  01206.0  01270.0  01336.0  

    45.0  01133.0  01197.0  01261.0  01326.0  

    60.0  01121.0  01185.0  01249.0  01313.0  

      

    00.0  01164.0  01303.0  01449.0  01602.0  

    15.0  01162.0  01301.0  01447.0  01600.0  

( ) 0.1=− hab     30.0  01157.0  01295.0  01441.0  01594.0  

    45.0  01149.0  01286.0  01431.0  01583.0  

    60.0  01137.0  01274.0  01418.0  01569.0  
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Table 4.11: Normalized forces ))(( abP xy −µ  evaluated for various magnitudes 

of the friction coefficient η, the normalized non-homogeneity parameter hγ  and 

the normalized contact length ( ) hab −  regarding the circular stamp, 0=Ra , 

,02.0=Rb .6.0=zx EE  

 

η
 

)( ab

P

xy −µ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

    00.0  01220.0  01290.0  01361.0  01432.0  

    15.0  01218.0  01289.0  01359.0  01430.0  

( ) 4.0=− hab     30.0  01214.0  01284.0  01354.0  01425.0  

    45.0  01206.0  01276.0  01346.0  01417.0  

    60.0  01196.0  01265.0  01335.0  01405.0  

      

    00.0  01232.0  01382.0  01540.0  01707.0  

    15.0  01230.0  01380.0  01539.0  01705.0  

( ) 0.1=− hab     30.0  01226.0  01375.0  01534.0  01699.0  

    45.0  01218.0  01367.0  01525.0  01690.0  

    60.0  01208.0  01356.0  01513.0  01677.0  
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Table 4.12: Normalized forces ))(( abP xy −µ  evaluated for various magnitudes of 

the coefficient of friction η, the normalized non-homogeneity parameter hγ  and the 

normalized contact length ( ) hab −  regarding the circular stamp, 0=Ra , 

,02.0=Rb .0.3=zx EE  

 

 η )( ab

P

xy −µ
  

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

    00.0  01149.0  01212.0  01276.0  01339.0  

    15.0  01147.0  01211.0  01274.0  01338.0  

( ) 4.0=− hab     30.0  01143.0  01206.0  01270.0  01333.0  

    45.0  01136.0  01199.0  01262.0  01325.0  

    60.0  01127.0  01189.0  01252.0  01315.0  

      

    00.0  01166.0  01302.0  01445.0  01594.0  

    15.0  01164.0  01300.0  01444.0  01593.0  

( ) 0.1=− hab     30.0  01160.0  01296.0  01439.0  01588.0  

    45.0  01153.0  01288.0  01431.0  01580.0  

    60.0  01144.0  01278.0  01420.0  01568.0  
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Table 4.13: Centerline position Rc  of the circular stamp problem for various 

magnitudes of the friction coefficient η, the normalized non-homogeneity 

parameter hγ  and normalized contact length ( ) hab − , 0=Ra , 02.0=Rb , for 

which the coating surface is Alumina. 

 

     η 
       Rc   

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

    00.0  01000.0  01000.0  01000.0  01000.0

    15.0  01035.0  01032.0  01030.0  01028.0

( ) 4.0=− hab     30.0  01070.0  01064.0  01059.0  01055.0

    45.0  01103.0  01095.0  01088.0  01082.0

    60.0  01136.0  01126.0  01117.0  01109.0

      

    00.0  01000.0  01000.0  01000.0  01000.0

    15.0  01034.0  01032.0  01029.0  01027.0

( ) 7.0=− hab     30.0  01068.0  01063.0  01058.0  01053.0

    45.0  01102.0  01094.0  01087.0  01079.0

    60.0  01135.0  01125.0  01115.0  01105.0

      

    00.0  01000.0  01000.0  01000.0  01000.0

    15.0  01034.0  01032.0  01029.0  01027.0

( ) 0.1=− hab     30.0  01068.0  01063.0  01058.0  01053.0

    45.0  01102.0  01094.0  01087.0  01079.0

    60.0  01135.0  01125.0  01115.0  01105.0
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Table 4.14: Centerline position Rc  of the circular stamp problem for various 

magnitudes of friction coefficient η, the normalized non-homogeneity parameter 

hγ  and normalized contact length ( ) hab− , 0=Ra , 02.0=Rb , .6.0=yx EE  

 

η
 

     Rc  

 

  

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

    00.0  01000.0  01000.0  01000.0  01000.0  

    15.0  01021.0  01019.0  01017.0  01015.0  

( ) 4.0=− hab     30.0  01041.0  01037.0  01034.0  01030.0  

    45.0  01062.0  01056.0  01050.0  01045.0  

    60.0  01082.0  01074.0  01067.0  01060.0  

      

    00.0  01000.0  01000.0  01000.0  01000.0  

    15.0  01021.0  01019.0  01017.0  01015.0  

( ) 0.1=− hab     30.0  01042.0  01037.0  01033.0  01029.0  

    45.0  01063.0  01056.0  01049.0  01043.0  

    60.0  01084.0  01074.0  01066.0  01057.0  
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Table 4.15: Centerline position Rc  of the circular stamp problem for various 

magnitudes of the friction coefficient , the normalized non-homogeneity 

parameter  and normalized contact length , 0=Ra , 02.0=Rb , 

.5.1=yx EE  

 

η
 

     Rc   
 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

    00.0  01000.0  01000.0  01000.0  01000.0  

    15.0  01038.0  01035.0  01033.0  01030.0  

( ) 4.0=− hab     30.0  01075.0  01070.0  01065.0  01061.0  

    45.0  01112.0  01104.0  01097.0  01090.0  

    60.0  01148.0  01138.0  01128.0  01119.0  

      

    00.0  01000.0  01000.0  01000.0  01000.0  

    15.0  01037.0  01034.0  01032.0  01029.0  

( ) 0.1=− hab     30.0  01074.0  01069.0  01063.0  01058.0  

    45.0  01110.0  01102.0  01095.0  01087.0  

    60.0  01145.0  01135.0  01125.0  01115.0  

      

 

 

 

 

 

 

η

hγ ( ) hab −
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Table 4.16: Centerline position Rc  of the circular stamp problem for various 

magnitudes of the friction coefficient , the normalized non-homogeneity 

parameter  and normalized contact length , 0=Ra , 02.0=Rb , 

.6.0=zx EE  

 

η
 

      Rc   
 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ  

    00.0  01000.0  01000.0  01000.0  01000.0  

    15.0  01035.0  01032.0  01030.0  01028.0  

( ) 4.0=− hab     30.0  01070.0  01064.0  01060.0  01055.0  

    45.0  01104.0  01096.0  01089.0  01082.0  

    60.0  01137.0  01127.0  01118.0  01109.0  

      

    00.0  01000.0  01000.0  01000.0  01000.0  

    15.0  01035.0  01032.0  01030.0  01028.0  

( ) 0.1=− hab     30.0  01069.0  01064.0  01060.0  01054.0  

    45.0  01103.0  01096.0  01088.0  01080.0  

    60.0  01137.0  01127.0  01117.0  01107.0  

      

 

 

 

 

 

 

 

η

hγ ( ) hab −
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Table 4.17: Centerline position Rc  of the circular stamp problem for various 

magnitudes of the friction coefficient , the normalized non-homogeneity 

parameter  and normalized contact length , 0=Ra , 02.0=Rb , 

.0.3=zx EE  

 

 η 
      Rc   

 

 1.0=hγ  4.0=hγ  7.0=hγ  0.1=hγ

    00.0  01000.0  01000.0  01000.0  01000.0

    15.0  01034.0  01032.0  01029.0  01027.0

( ) 4.0=− hab     30.0  01068.0  01063.0  01058.0  01054.0

    45.0  01101.0  01094.0  01087.0  01081.0

    60.0  01134.0  01124.0  01116.0  01107.0

      

    00.0  01000.0  01000.0  01000.0  01000.0

    15.0  01034.0  01031.0  01029.0  01026.0

( ) 0.1=− hab     30.0  01067.0  01062.0  01057.0  01052.0

    45.0  01100.0  01092.0  01085.0  01078.0

    60.0  01132.0  01122.0  01113.0  01103.0

 

 

 

 

 

 

 

η

hγ ( ) hab −
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4.6 Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Gradation of orthotropic stiffness constants for .0.0>hγ  
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Figure 4.2: Comparison plots of the normalized stresses evaluated by the 
analytical and computational procedures for a flat stamp problem, ( ) ,0.1=− hab  

,3.0=η  .1.0=hγ  a) Normalized contact stress,  b) Normalized lateral contact 

stress. 
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Figure 4.3: Comparison plots of the normalized stresses evaluated by the 
analytical and computational procedures for a flat stamp problem, 
( ) ,0.1=− hab ,3.0=η  .712.0=hγ  a) Normalized contact stress,  b) 

Normalized lateral contact stress. 
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Figure 4.4: Scaled deformed shape of the contact region, which is produced by 

using the FE solution of a flat stamp problem,  
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Figure 4.5: Effect of normalized non-homogeneity parameter hγ  variations on the 

normalized contact stress for a flat stamp problem, ( ) 0.1=− hab ,  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4.6: Effect of friction coefficient η  variations on the normalized contact 

stress for a flat stamp problem, ( ) ,0.1=− hab  .712.0=hγ  
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Figure 4.7: Effect of normalized contact length hab )( −  variations on the 

normalized contact stress for a flat stamp problem, ,3.0=η  .712.0=hγ  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: Effect of elastic modulus ratio yx EE  variations on the normalized 

contact stress for a flat stamp problem,   
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Figure 4.9: Effect of elastic modulus ratio zx EE  variations on the normalized 

contact stress for a flat stamp problem,   
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Figure 4.10: Effect of normalized non-homogeneity parameter hγ  variations on 

the normalized lateral contact stress for a flat stamp problem, ( ) 0.1=− hab , 

.3.0=η  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 4.11: Effect of friction coefficient η  variations on the normalized lateral 

contact stress for a flat stamp problem, ( ) 0.1=− hab , .712.0=hγ  
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Figure 4.12: Effect of normalized contact length hab )( −  variations on the 

normalized lateral contact stress for a flat stamp problem, ,3.0=η  .712.0=hγ  

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Effect of elastic modulus ratio yx EE  variations on the normalized 

lateral contact stress for a flat stamp problem, ( ) ,0.1=− hab  ,3.0=η

.712.0=hγ  
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Figure 4.14: Effect of elastic modulus ratio zx EE  variations on the normalized 

lateral contact stress for a flat stamp problem,   
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Figure 4.15: Comparison plots of the normalized stresses evaluated by the 
analytical and computational procedures for a triangular stamp problem, 
( ) ,0.1=− hab ,3.0=η  .1.0=hγ  a) Normalized contact stress,  b) Normalized 

lateral contact stress. 
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Figure 4.16: Comparison plots of the normalized stresses evaluated by the 
analytical and computational procedures for a triangular stamp problem, 
( ) ,0.1=− hab ,3.0=η  .712.0=hγ  a) Normalized contact stress,  b) Normalized 

lateral contact stress. 
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Figure 4.17: Scaled deformed shape of the contact region, which is produced by 

using the FE solution of a triangular stamp problem, ,3.0=η  ,712.0=hγ  

.0.1)( =− hab  
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Figure 4.18: Effect of normalized non-homogeneity parameter hγ  variations on 

the normalized contact stress for a triangular stamp problem, ( ) ,0.1=− hab  

.3.0=η  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.19: : Effect of friction coefficient η  variations on the normalized contact 

stress for a triangular stamp problem, ( ) ,0.1=− hab  .712.0=hγ   
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Figure 4.20: Effect of normalized contact length hab )( −  variations on the 

normalized contact stress for a triangular stamp problem, ,3.0=η  .712.0=hγ  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.21: Effect of elastic modulus ratio yx EE  variations on the normalized 

contact stress for a triangular stamp problem, ( ) ,0.1=− hab  ,3.0=η  .712.0=hγ  
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Figure 4.22: Effect of elastic modulus ratio zx EE  variations on the normalized 

contact stress for a triangular stamp problem,    

 
 

( ) ,0.1=− hab ,3.0=η .712.0=hγ

-1.0 -0.5 0.0 0.5 1.0

-2.0

-1.5

-1.0

-0.5

0.0

)/(

),0(

abP

yxx

−

σ

)(

)(2

ab

aby

−

+−

0.1=zx EE

0.1=zx EE

0.3=zx EE

 



102 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.23: Effect of normalized non-homogeneity parameter hγ  variations on 

the normalized lateral contact stress for a triangular stamp problem, ( ) ,0.1=− hab  

.3.0=η  

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Effect of friction coefficient η  variations on the normalized lateral 

contact stress for a triangular stamp problem, ( ) ,0.1=− hab  .712.0=hγ  
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Figure 4.25: Effect of normalized contact length hab )( −  variations on the 

normalized lateral contact stress for a triangular stamp problem, ,3.0=η

.712.0=hγ  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.26: Effect of elastic modulus ratio yx EE  variations on the normalized 

lateral contact stress for a triangular stamp problem, ( ) ,0.1=− hab  ,3.0=η

.712.0=hγ  
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Figure 4.27: Effect of elastic modulus ratio zx EE  variations on the normalized 

lateral contact stress for a triangular stamp problem, ( ) ,0.1=− hab  ,3.0=η

.712.0=hγ  
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Figure 4.28: Scaled deformed shape of the contact region, which is produced by 

using the FE solution of a circular stamp problem, ,3.0=η  ,712.0=hγ  

.0.1)( =− hab  
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Figure 4.29: Comparison plots of the normalized stresses evaluated by the analytical 
and computational procedures for a circular stamp problem, ( ) ,0.1=− hab ,3.0=η  

.1.0=hγ  a) Normalized contact stress,  b) Normalized lateral contact stress. 
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Figure 4.30: Comparison plots of the normalized stresses evaluated by the 
analytical and computational procedures for a circular stamp problem,
( ) ,0.1=− hab ,3.0=η  .712.0=hγ  a) Normalized contact stress,  b) Normalized 

lateral contact stress. 
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Figure 4.31: Effect of normalized non-homogeneity parameter hγ  variations on 

the normalized contact stress for a circular stamp problem, ( ) ,0.1=− hab  .3.0=η  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.32: Effect of friction coefficient η  variations on the normalized contact 

stress for a circular stamp problem, ( ) ,0.1=− hab  .712.0=hγ   
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Figure 4.33: Effect of normalized contact length hab )( −  variations on the 

normalized contact stress for a circular stamp problem, ,3.0=η  .712.0=hγ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.34: Effect of elastic modulus ratio yx EE  variations on the normalized 

contact stress for a circular stamp problem, ( ) ,0.1=− hab  ,3.0=η  .712.0=hγ  
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Figure 4.35: Effect of elastic modulus ratio zx EE  variations on the normalized 

lateral contact stress for a circular stamp problem, ( ) ,0.1=− hab  ,3.0=η  

.712.0=hγ  
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Figure 4.36: Effect of normalized non-homogeneity parameter hγ  variations on 

the normalized lateral contact stress for a triangular stamp problem, ( ) ,0.1=− hab  

.3.0=η  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37: Effect of friction coefficient η  variations on the normalized lateral 

contact stress for a circular stamp problem, ( ) ,0.1=− hab  .712.0=hγ  
 

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

)/(

),0(

abP

yyy

−

σ

)(

)(2

ab

aby

−

+−

6.0−=η

3.0−=η

0.0=η

3.0=η

6.0=η

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

)/(

),0(

abP

yyy

−

σ

)(

)(2

ab

aby

−

+−

0.0=hγ

4.0=hγ

7.0=hγ

0.1=hγ



112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38: Effect of normalized contact length hab )( −  variations on the 

normalized lateral contact stress for a circular stamp problem, ,3.0=η  .712.0=hγ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.39: Effect of elastic modulus ratio yx EE  variations on the normalized 

lateral contact stress for a circular stamp problem, ( ) ,0.1=− hab  ,3.0=η  

.712.0=hγ  
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Figure 4.40: Effect of elastic modulus ratio zx EE  variations on the normalized 

lateral contact stress for a circular stamp problem, ( ) ,0.1=− hab  ,3.0=η  

.712.0=hγ  
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Figure 4.41: The complete contact problem of an orthotropic homogeneous 

coating. 
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Figure 4.42: Comparison plots of the normalized surface stresses evaluated by the 
analytical and computational procedures for a flat stamp problem of the 
homogeneous orthotropic Alumina coating, a) 

Normalized contact stress,  b) Normalized lateral contact stress. 
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Figure 4.43: Comparison plots of the normalized surface stresses evaluated by the 
analytical and computational procedures for a flat stamp problem of the 
homogeneous orthotropic Alumina coating, 4.0)( =− hab , 3.0=η , a) Normalized 

contact stress, b) Normalized lateral contact stress. 
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Figure 4.44: Comparison plots of the normalized surface stresses evaluated by the 
analytical and computational procedures for a flat stamp problem of an 
homogeneous orthotropic coating, 5.121 =EE , a) 

Normalized contact stress,  b) Normalized lateral contact stress. 
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Figure 4.45: Effect of friction coefficient η  variations on the normalized surface 

stresses for a flat stamp problem of the orthotropic homogeneous Alumina coating, 
 a) Normalized contact stress,  b) Normalized lateral contact stress. 
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Figure 4.46: Effect of  normalized contact length hab )( −  variations on the 

normalized surface stresses for a flat stamp problem of the orthotropic 
homogeneous Alumina coating,  a) Normalized contact stress,  b) 

Normalized lateral contact stress. 
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Figure 4.47: Effect of  elastic modulus ratio  variations on the normalized 

surface stresses for a flat stamp problem of orthotropic homogeneous coatings, 
   a) Normalized contact stress,  b) Normalized lateral 

contact stress. 
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Figure 4.48: Effect of  elastic modulus ratio  variations on the normalized 

surface stresses for a flat stamp problem of orthotropic homogeneous coatings, 
   a) Normalized contact stress,  b) Normalized lateral 

contact stress. 
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Figure 4.49: Effect of friction coefficient η  variations on the normalized 

interfacial stresses for a flat stamp problem of the orthotropic homogeneous 
Alumina coating,  a) Normalized normal stress,  b) Normalized 

shear stress. 
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Figure 4.50: Effect of  normalized contact length hab )( −  variations on the 

normalized interfacial stresses for a flat stamp problem of the orthotropic 
homogeneous Alumina coating,  a) Normalized normal stress,  b) 

Normalized shear stress. 
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Figure 4.51: Effect of  elastic modulus ratio  variations on the normalized 

interfacial stresses for a flat stamp problem of orthotropic homogeneous coatings, 
   a) Normalized normal stress,  b) Normalized shear stress. 
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Figure 4.52: Effect of  elastic modulus ratio  variations on the normalized 

interfacial stresses for a flat stamp problem of orthotropic homogeneous coatings, 
   a) Normalized normal stress,  b) Normalized shear stress. 
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CHAPTER 5 

 

 

CONCLUDING REMARKS 

 

 

 

5.1 Conclusions 

This study presents analytic and finite element based studies for contact problems 

of orthotropic FGM coatings which are bonded to isotropic homogeneous 

substrates without any interfacial defects. The analytic procedure is based on the 

derivation of a SIE. The comparison figures given in Chapter 4 reveals that the 

results computed two distinct procedure agree with each other with a very good 

accuracy, which indicates the validity of both methods. The strengths of the 

singularities described for the orthotropic FGM coating are independent to the 

coating thickness and the non-homogeneity parameter however, dependent on the 

engineering parameters and the friction coefficient. Parametric analyses are 

provided in Section 4 regarding complete and incomplete punch loadings. In the 

complete loading, the FGM surface is exposed to frictional contact tractions by an 

inelastic flat stamp. In the related case, the contact stresses tend to infinity at both 

leading and trailing ends of the rigid stamp for which the normal point load P is 

not a function of the contact length. However, for the incomplete contact problems, 

loadings due to rigid triangular and circular stamp profiles are the functions of the 

contact size. Among the incomplete contact problems, the circular stamp problem 

solutions take more time compared to the triangular stamp problem. Since the 

circular stamp problem includes numerically calculated double integrals.  In the 

FEA of all the stamp problems, homogeneous FE technique is used and the 

orthotropic engineering parameters are defined at the centroids of the finite 

elements. Compatible results of the analytic and finite element based procedures 

indicate the utility of the homogeneous FE method. Numerical results are presented 

to  demonstrate  the  effects  of  the  non-homogeneity  constant  hγ ,  the  friction  
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coefficient η, the normalized contact length hab )( − , the elastic modulus ratio 

yx EE  and the elastic modulus ratio zx EE  on the contact stresses. The effects of 

the problem parameters are realized to be remarkable particularly for the lateral 

contact stress ),0( yyyσ . It is known that the existence of the lateral tensile stress 

triggers the initiation of surface crackings on the ceramic materials. We can infer 

for all the stamp problems that; the normalized lateral contact stress decreases as 

positive elastic gradation is introduced to an orthotropic coating. Hence, 

introducing elastic gradation to a coating it might be possible to avoid the contact 

driven damages. If the risk of damage due to lateral contact stress is concerned, the 

selection of orthotropic materials having relatively higher elastic modulus ratio 

yx EE  should be also taken into account. It is also observed that the change in the 

elastic modulus ratio zx EE  has no significant effect on the normalized contact 

and lateral contact stresses. Additionally, for all the stamp problems, the way of 

decreasing the size of the coating thickness (relative to the contact length) seems 

such a remarkable alternative to reduce the risk of damage. 

In the computational analyses, the triangular stamp inclination angle  is taken as 

small as possible whereas the circular stamp radius  is taken as large as possible 

with respect to the other dimensions of the problems for the convergence purposes 

of the iterative Augmented Lagrange contact algorithm. 

As far as the normalized contact forces are concerned, when the coating gets stiffer 

in the thickness direction, the normalized contact forces increase significantly for 

all the stamp problems for any combination of the other problem parameters. When 

the magnitude of the friction coefficient  is raised, the normalized contact force  

increases  significantly  in  the  triangular  stamp  case  and decreases slightly in 

the case of circular stamp problem. When the coating thickness is reduced, the 

normalized contact force increases slightly for the triangular stamp case and 

increases significantly for the circular stamp case. We can also infer from these 

tables that when the elastic modulus ratios yx EE  and zx EE  are  increased,  then  

the  normalized  contact  forces  decrease  for  all  the incomplete stamp problems 

regardless of the change in other parameters of the problems. It should be also 

emphasized that the effect of the  variations  of  the  normalized  non-homogeneity  

θ

R

η
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parameter  on the normalized forces become much more significant for the 

circular and triangular stamp cases, as the coating gets thinner.  

Some results investigating the behavior of homogeneous orthotropic coatings 

under contact loads are presented in this study. It is shown by the comparison 

figures that the developed analytical and computational approaches work 

accurately in the homogeneous coating cases. The homogeneous coatings are under 

the risks of interface debonding and the surface damages when they are exposed to 

contact loadings. Therefore, in the contact analysis of orthotropic homogeneous 

coatings, the effects problem parameters on surface and interfacial stresses are 

illustrated. For that reason, the effect of problem parameters on the interfacial and 

surface stresses are examined. When orthotropic materials having greater elastic 

modulus ratio yx EE  are selected as a coating material, the risks of surface 

crackings are reduced however the risks of interfacial debonding is increased in 

that case. Therefore, depending on the application, an optimization should be 

carried out during selection of the orthotropic material as far as the effect of  the 

elastic modulus ratio yx EE on the contact stresses are concerned. Increasing the 

coating thickness, it could be possible to lower the delamination risks without 

providing any negative effect on the surface resistance of the coating surface to the 

contact loadings. Finally, if the frictional forces are increased the surface and 

interfacial stresses raise, which may encourage the surface and interfacial failures 

due to the contact loads. 

 

5.2 Future work 

This study can be extended to a partial slip contact problem of an orthotropic FGM 

coatings bonded to a homogeneous substrate. Partial slip contact problems have a 

great physical correspondence because the damage caused by slip within stationary 

contacts play an important role on the formation of fatigue cracks [80].   

It might also important to discuss the relative motion for contact problem of 

anisotropic materials since dynamic frictional elastic contact may cause dynamic 

instabilities [81].  Thus a dynamic contact model between the rigid stamp and the  

hγ
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FGM coating can be modelled such that the rigid stamp moves frictionally at a 

constant speed relative to the FGM surface, as done in the study by Zhou and Lee 

[82].  

In the sliding frictional contact problems, a remarkable amount of heating due to 

frictional motion between the two contacting bodies, which leads to the thermos-

elastic distortion and surface crackings at the contacting surface [83]. In addition, 

temperature rise resulting from the sliding frictional contact may considerably 

affect the performance of the FGM coated structures [83]. Thus a numerical study 

can be handled showing the effect of heat generation on the contact stress on 

orthotropic FGM coatings loaded by a rigid stamp. 
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APPENDIX A 

 

 

ASYMPTOTIC EXPANSION COEFFICIENTS 

 

 

 

The asymptotic expansion coefficients of kernels that appear in (2.58) and (2.75) 

are determined using MAPLE and given below. Due to the long structures of these 

coefficients, the first 16 terms in (2.58) are given explicitly: 
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APPENDIX B 

 

 

CLOSED FORM AND RECURRENCE TYPE SOLUTIONS OF CAUCHY 

PRINCIPAL VALUE INTEGRALS 

 

 

 

The closed form solution of Cauchy principal value integrals for are calculated by 

Tricomi [74] and given by 
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where 1−>α , 1−>β , ...2,1,0≠α , Γ is the Gamma function, ()F  is the 

Hypergeometric function. (B.1) can be reduced to the following form for  
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The recurrence type closed form solutions of Cauchy principal value integrals are 

calculated by Guler [28]. The integral can be defined as 
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APPENDIX C 

 

 

FUNCTION THEORECTIC ANALYSES 

 

 

 

The dominants part of the singular integral equation (2.68) have analogous 

structure to that derived for isotropic FGM coatings. Therefore, a similar procedure 

can be used in order to define the strength of singularities of the contact end for 

orthotropic FGM coatings. The aforementioned procedure is given as follows [28]: 

Let the dominant part of the SIE is given as 
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where the bounded function )(rF  contains part of the integral with the Fredholm 
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And utilizing the consecutive Plemelj formulations 
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(C.1) can be reduced to the consecutive Riemann-Hilbert problem for partially 

holomorphic function )(zΦ  as 
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Considering the corresponding homogeneous equation 
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The fundamental solution )(zX  and the fundamental function )(xω  of (C.1) are 

obtained as 
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If 0>A , the angle ϕ  can be defined for: 
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Therefore (C.13) and (C.14) becomes 
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yielding 
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However, If 00 <−= AA , the angle ϕ  can be defined as 
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From equation (C.6), G  becomes 

iA

iA
G

+

−
=

0

0                                                                                                           (C.20b) 

The angle ϕ  can be defined for 
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Therefore (C.13) and (C.14) becomes 
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Then, α  and β  yield 
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where N and M arbitrarily selected integers which are related to the nature of the 

problem. 
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