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ABSTRACT

CONTACT MECHANICS OF GRADED ORTHOTROPIC COATINGS

Arslan, Onur
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Serkan Dag
February 2016, 147 pages

Analytic and computational studies are performed for contact problems of
orthotropic functionally graded material (FGM) coatings which are bonded to
isotropic homogeneous substrates without any interfacial defects. The orthotropic
FGM coatings possess orhotrophic stiffness gradations through the coating
thickness direction. The variations of each orthotropic stiffness constants are
assumed to behave as exponential functions. In the analytical procedure, the
problems of orthotropic graded coatings which are subjected to contact loads by an
arbitrarily shaped inelastic stamp are examined under plane strain assumption.
After getting the Navier equations of the elasticity problem, Fourier transformation
techniques are used to determine the field expressions that satisfy the boundary
conditions of the related problem. A deformation gradient on the contact region is
used to obtain a singular integral equation (SIE) which is collocated through a
discretization procedure on the roots of Chebyshev polynomials. Computational
approach for the same contact problem is based on the finite element method in
which the coating-substrate systems are divided into finite elements having the
material parameters defined at their centroids. The results produced by using the
analytical technique and the finite element method are compared to assess the
accuracy achieved by both methods. Finally, the complete contact problems on the

orthotropic homogeneneous coatings are also investigated.

Keywords: Frictional sliding contact problems, Singular Integral Equation of the

second kind, Orthotropic FGM coatings, Finite element procedure.
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DERECELENDIRILMiS ORTOTROPiK KAPLAMALARIN TEMAS
MEKANIGI

Arslan, Onur
Doktora, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Serkan Dag
Subat 2016, 147 sayfa

Bu tez izotropik yari-sonsuz homojen govde ile mitkkemmel sekilde yapistirilmis
olan ortotropik fonksiyonel derecenlendirilmis malzeme (FDM) kaplamalarin
temas mekanigi iizerinedir. Kaplama igerisindeki elastik derecelendirme kaplama
kalinlig1 boyuncadir. Ortotropik katilik sabitlerinin eksene bagl olarak degisen
degerleri iistel fonksiyonlar ile gosterilmistir. Gelistirilen Analitik metotda; ¢esitli
yiizey profillerine sahip rijit zzmbalar ile derecelendirilmis ortotropik kaplama
yiizeyi arasindaki siirtiinmeli temas diizlem-gerinimi varsayimi ile ele alinmistir.
Problemin temelini olusturan kismi diferansiyel denklemler ve problemdeki sinir
kosullar1 Fourier doniisiim teknikleri ile formiile edilmistir. Daha sonra problem
bir tekil integral denklemine doniistiiriilmiis ve bu integralin numerik ¢oziimii
“expansion-collocation” teknigi ile saglanmistir. Hesaplamali yontemde ise; ¢esitli
yiizey profillerine sahip rijit zzmbalar ile derecelendirilmis ortotropik kaplama
yiizeyi arasindaki siirtiinmeli temas, sonlu elemanlar metodu ile modellenmistir.
Sozii gecen sonlu elemanlar analizinde; derecelendirilmis kaplama-homojen govde
sistemi sonlu elemanlara boliinerek, her bir sonlu elemanin malzeme 6zelligi kendi
agirlik merkezinde tanimlanmistir. Gelistirilen iki yontemin farkli zimba profilleri
icin iiretilen sonuglari birbirleri ile karsilastirilarak her iki metodun da dogrulugu
ispat edilmistir. Son olarak ise homojen ortotropik kaplamalarin temas mekanigi

diiz zimba profili i¢in incelenmigtir.

Anahtar Kelimeler: Siirtiinmeli kayma temas problemleri, Tekil Integral
Denklemleri, Ortotropik FDM kaplamalari, Sonlu elemanlar metodu.
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CHAPTER 1

INTRODUCTION

This study is performed to investigate frictional contact problems of orthotropic
functionally graded material (FGM) coatings which are bonded to isotropic
homogeneous substrates without any interfacial defects. The problems of
orthotropic graded coatings which are subjected to contact loads by an arbitrarily
shaped rigid stamp are examined under plane strain assumption. In this chapter,
literature review for the related contact mechanics problems is presented. After all,

the purpose of this study is explained.

1.1 Literature Survey

Machine components are generally made of common engineering materials such
as Nickel, Aluminum and Steel alloys. Although such materials are low-cost,
ductile and easy to reform, they do not possess effective bearing performance when
they are exposed to contact tractions. This deficiency results from their weak
hardness and low wear resistance. In such problems, the parts which are made of
the common engineering materials are coated with ceramic based layers to improve
the load bearing capability of the structure. For that reason, the coating materials
are desired to have superior hardness and stiffness compared to the base materials.
The second main necessity for the layered structures is to have a good bonding
strength between two media. Even though the ceramic homogeneous coating
surfaces satisfy the surface hardness and wear resistance requirements, they
generally have weak bonding strength when used with the common engineering
materials. Because a material property mismatch occurs at the interface between
two different homogeneous materials, which may lead to the delamination of the

structure under contact loads. It is possible to remedy the debonding problems if



the coating is produced of FGMs (Functionally Graded Materials) which also have
good surface resistance to mechanical loadings. Because some of the material
properties of an FGM coating at the interface can be matched with the material
properties of the substrate material, which improves the bonding strength between
two media. From a broad perspective, FGMs can be defined as the combination of
two different materials by using special processing techniques (i.e. Plasma spray
and Electron beam techniques) to be able to optimize the material properties at any
spatial location. FGMs have continuously changing material properties due to the
change in the volume fractions of constituent phases. The material gradations are
defined by continuous functions for the analytical and computational purposes and
can be in different characteristics to improve the thermal [1], mechanical [2],

electrical [3] or optical [4] performance of FGMs.

Some practical examples can be mentioned for the graded coatings involving
contact problems. They can be mainly categorized as the load transfer members
and abradable seals. Abradable seals are utilized in gas turbines to provide leak
proofing between the shroud and the turbine blades. The seal is defined as a
ceramic-based graded layer which is bonded to the metallic shroud. The stiffness
of the blade is very large relative to the stiffness of the ceramic coating. Due to this
fact, the blade can be modelled as a rigid stamp forced against the surface of the
elastic seal with a relative frictional motion. In this application, the purpose of
introducing material gradation to the seal is to alleviate the interfacial stresses
improving the bonding strength between two media. Similar concept can be
considered for internal combustion engines. There exists a relative motion between
the piston ring and the coated cylinder potentially yielding a sliding frictional
contact in-between. Due to the graded coating on the aluminum cylinder surface,
wear control is accomplished. The force transferring members such as gears,
bearings, cams and cutting tools can be modelled as contact problems involving
two elastic solids. The contacting surfaces of these members can be coated with
graded ceramic layers to increase the surface wear resistance, which also improves
the bonding strength. The grading in these coatings also plays a vital role to avoid

the loss of toughness, as the surface wear resistance is increased.

Although the utilization of FGM coatings reduces the delamination risks, their
brittle ceramic surfaces could be prone to cracking problems as long as the surfaces
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are subjected to contact tractions. For that reason, some research in the technical
literature focused on the surface performance of the FGM coatings. They mainly
investigate the optimization of the system parameters to alleviate the surface
deficiencies. Experimental investigations reveal the necessity of FGMs in the
engineering applications which are under the risk of contact driven failures. Yue
and Li [5] and Zhang et al. [6] showed that usage of FGM surfaces enables wear
control that results from frictional contact. It can be inferred from the experimental
results generated by Kim et al. [7] that the graded specimens possess significant
resistance to contact driven failures. Additionally, a graded elastic modulus in
thickness direction is proved to avoid cone-shaped cracks that results from surface
penetration [8-10] and prevents the initiation of herringbone crackings due to the
contact loads with friction [11]. Improving the response of the FGMs to frictional
contact, their utilization can be extended to the fields such as high performance

cutting tools [12] and prostheses [13].

Theoretical studies on contact mechanics of elastic solids were originated by Hertz
[14] in which the contact area is accepted very small with respect to the elastic
body. Therefore, a contacting body can be modeled semi-infinitely, which
facilitates mathematical modeling. Some guiding solutions for contact problems in
a semi-infinite graded medium are given in [15-19]. The contact problems are
commonly divided into two types as frictional and frictionless contact problems.
There are some studies associated with frictionless contact mechanics problems
[20-24]. Upon the application of normal contact tractions to a surface, the
tangential forces arise between two bodies. In such problems, Coulomb law of
friction is used. Some studies examining sliding frictional contact problems based

on finite element method are given in [25-27].

In the recent literature, various procedures, loading conditions and geometries are
regarded to investigate the behavior of functionally graded materials involving
contact mechanics problems. Contact mechanics analyses of homogeneous
substrates which are coated with isotropic FGM layers having positive or negative
gradations in the thickness direction are carried out by Guler [28]. Detailed
analytical results considering stress distribution via sliding frictional contact under
plane strain condition are given in this study. Giannakopoulos and Pallot [29]
generated some fully analytical solutions to examine in-plane contact between rigid

3



rollers and graded half planes. When a contact problem can not be solved in closed
form, a singular integral equation (SIE) is enabled to evaluate desired field
variables of the system. Guler and Erdogan [30-32] examined the response of FGM
coatings which are subjected to contact tractions by rigid intenders of various
profiles by using the SIE approach in plane assumptions. Ke and Wang [33-34]
presented a solution based on the SIE method in order to observe the behavior of
FGM’s possessing various material gradations, and loaded by contact tractions
with friction. Partial slip condition can be taken into account in contact problems
when the contacting bodies are in oscillatory motion. Ke and Wang [35-36]
investigated some partial slip contact problems of FGMs. Yang and Ke [37]
examined a 2D problem of FGM - substrate system which is exposed to contact
tractions by a rigid roller. Choi and Paulino [38] investigated the SIE solution by
considering the influences of heat generation resulting from the frictional sliding
motion on the surfaces of interlayered FGM-substrate structures. Guler [39]
presented a SIE solution technique to examine the behavior of some strips and
plates that are fully bonded to FGM media. Dag et al. [40-41] analytically and
computationally solved the contact problem of a semi-infinite medium having
lateral gradations, which is loaded by inelastic intenders of various surface profiles.
Dag [42] outlined an SIE procedure for the complete contact problem of a semi-
infinite medium possessing lateral gradations in such a way that, the coefficient of

friction varies along the horizontal coordinate axis.

As far as the studies dealing with the response of cracks under contact stresses are
concerned, we can mention some articles. Hasebe et al. [43] derived an analytical
formulation for a surface crack on an elastic half-plane under complete contact
loadings by using rational mapping function and complex stress functions. Choi
[44] considered a non-homogeneous medium which includes a homogeneous
coating and a base material, which are combined to each other utilizing a bonding
strip having material gradations. In the related study, the stress intensity factors of
a full-crack lying on the base material are evaluated analytically for which the
coating surface is exposed to contact tractions. Dag and Erdogan [45] analytically
computed the mixed mode stress intensity factors of an edge crack located on the
surface of a semi-infinite medium having gradations in the thickness direction,

such that the medium is under the effect of contact tractions with friction.



developed an analytical procedure which is based on the singular integral equation
(SIE) approach to compute mixed mode SIFs for a surface crack existing in a
graded half-plane loaded by a sliding flat stamp. Choi and Paulino [46] handled an
interface crack problem between an FGM layer and a semi-infinite medium for
which the system is subjected to contact loadings involving friction. Dag [47]
analytically calculated the crack tip parameters of an edge cracking located in a
semi-infinite half plane possessing material gradations. The graded medium is
exposed to contact stresses by frictional sliding stamps of various surface profiles
in this study. The work reported by Dag et al. [48] and Apatay [49] consider an
edge crack lying on the free surface of an FGM strip bonded to a semi-infinite
medium, that are under complete contact loadings. In the related study, the cracking
and contacting phenomena are treated separately. Lajnef and El Borgi [50, 51]
examined an edge crack problem located on a graded coating by using a SIE-based
analytical procedure. In their studies, an FGM layer which is bonded to a semi-

infinite medium is subjected to simple tensional and shear loadings.

In all of the research mentioned above, the materials having spatial gradations are
accepted as isotropic. It is also required to mention some of the studies concerning
contact mechanics problems of anisotropic materials. Borodich [52] analyzed some
dynamic-elastic contact mechanics problems by considering the integral
characteristics procedure in the boundary-initial value problems for anisotropic
structures. Ciavarella et al. [53] generated a numerical procedure to investigate the
response of three dimensional anisotropic materials which are in contact with
second-order surface geometries. Lin and Ovaert [54] focused on examining the
behavior of a generally anisotropic material under plane assumptions, for which
the asperous surface of the medium is subjected to iso-thermal contact loads
involving Coulomb friction. Rand and Rovenskii [55] studied some theoretical
techniques and methodologies needed to build the fundamentals of the elasticity of
anisotropic materials. Ning et al. [56] solved the penetration problem between a
rigid globe and a transversely isotropic strip which locates on an inelastic semi-
infinite medium. Li and Wang [57] investigated the contact phenomenon on
piezoelectric  generally anisotropic parts utilizing Fourier-transformation
techniques. He and Ovaert [58] examined the response of an anisotropic half plane

having asperous free surface to a contacting with an asperous inelastic ball by



handling the Barnet-Lothe tensors based line integral on 3D inclined surfaces.
Larijani et al. [59] examined effects of degree of anisotropy on surface crack

propagations in rail head coatings subjected to rolling contacts.

Due to the processing techniques used in their production, FGM structures could
gain anisotropic behavior. Sampath et al. [60] revealed that coatings having
gradations which are manufactured by Plasma-Spray Method mostly possess a
microscopic anatomy with cleavage planes which is collimated to the boundary.
Additionally, Kaysser and Ilschner [61] found that the coatings having gradations
which are manufactured by the Electron-Beam method possess a shaft-like
anatomy which causes greater stiffness through the thickness direction and non-
stiff surfaces normal to the medium edges. As a conclusion, FGM models should
be considered as elastic orthotropic nonhomogeneous medium, if more realistic
representations of the layered structures are demanded. There are a few studies
performed on the mechanical behavior of orthotropic materials that are under
contact loads. Bakirtas [62] focused on the contact phenomenon of an inelastic
stamp with no friction in an orthotropic nonhomogeneous semi-infinite medium.
Hwu and Fan [63] presented the complete contact phenomenon involving the
penetration of a stamp with no friction through an orthotropic half plane by
applying a similar solution method of interfacial crackings. Shi et al. [64] analyzed
a contacting phenomenon with no friction on orthotropic semi-infinite medium
loaded with an inelastic ellipsoid stamp. Swanson [65] evaluated the stresses that
result from the contact loadings on orthotropic materials by synthesizing two
previously studied solution methods [66-67]. The behavior of a multi-layered
piezoelectric orthotropic half-space forced by a frictionless inelastic parabolic
intender was examined by Ramirez [68]. Guler [69] demonstrated the closed-form
solutions of plane strain frictional contacting phenomenon of an inelastic stamp
sliding on an orthotropic semi-infinite medium by using the SIE based analytical

technique.

1.2 Scope of the Research

In the technical literature, there are no computational or analytical studies on
contact mechanics of orthotropic FGM coatings. Hence, the purpose of this study
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is to perform analytic and computational studies for contact problems of
orthotropic functionally graded material (FGM) coatings which are bonded to
isotropic homogeneous substrates without any interfacial defects. The orthotropic
FGM coatings possess orthotropic stiffness gradations through the coating
thickness direction. The variations of each orthotropic stiffness constants are
assumed to behave as exponential functions. In the analytical procedure, the
problems of orthotropic graded coatings that are subjected to contact loads by an
arbitrarily shaped inelastic stamp are examined. In engineering applications,
coating thickness is generally very small relative to the other dimensions of a
coated member. Hence, in this study, the orthotropic coating thickness should be
considered very small relative to the depth of the model. Under this consideration,
the aforementioned contact problem is modelled using the plane strain assumption.
After deriving the Navier equations of the problem, the Fourier transformation
techniques are used to determine the field expressions that satisfy the boundary
conditions. A deformation gradient on the contact region is used to obtain a
singular integral equation (SIE) which is collocated through a discretization
procedure on the roots of Chebyshev polynomials. Computational approach for the
same contact problem is based on the finite element method in which the coating-
substrate systems are divided into finite elements having the material parameters
defined at their centroids. The solution of the present problem by using two
different solution techniques enables us to assess the accuracy of both methods by
directly comparing their results. Numerical results are obtained regarding flat,
triangular and circular stamp surfaces, which reveal the effects of nonhomogeneity,
degree of orthotropy, friction coefficient and coating thickness on the contact

stresses.

Note that the risks of contact driven damages for orthotropic homogeneous
coatings such as interfacial delamination or surface crackings can be alleviated
with the properly selected orthotropic material and the other problem parameters.
Therefore, in this study, the surface and interfacial stresses of an orthotropic
homogeneous coating under the action of complete contact loading is also

investigated, which is not examined in the technical literature so far.






CHAPTER 2

PROBLEM STATEMENT AND THE ANALYTICAL METHOD

2.1. Definition of the Problem

The analytical method presented in this study is based on the derivation of a SIE to
examine the stress distribution in orthotropic FGM coatings subjected to contact

stresses by a sliding inelastic stamp having an arbitrarily shaped surface (Fig 2.1).
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Figure 2.1: An orthotropic FGM coating subjected to a contact load by an

arbitrarily shaped inelastic stamp.

It is assumed that the orthotropic FGM coating is bonded to an isotropic
homogeneous semi-infinite substrate without any interfacial defects. Coulomb
friction is assumed to exist between the stamp and the coating, which yields lateral

force on the FGM surface. The composite structure is modeled under plane strain
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assumption. The stiffness constants of the orthotropic coating are assumed to
behave as exponential functions through the thickness direction. The endpoints of
the inelastic stamp which is in contact with the FGM surface are located at the

coordinates y=a and y=b.

The presented contact problem is handled by using the plane elasticity and
formulated with the utilization of Fourier transformation techniques. In the
analytical formulation of the problem, contact stresses in the orthotropic FGM
coating and the homogeneous semi-infinite substrate are formulated separately.
After that the required field quantities of the problem are derived by considering

the following continuity and boundary conditions:

0,.0,y)=0(y) a<y<b (2.1a)
axy(O,y):no(y) a<y<b (2.1b)
uth®,y)=u(h™,y) (2.1¢)
v(h', y)=v(h",y) (2.1d)
o.(h",y)=0,(h",y) (2.1e)
o,(h",y)=0,(h",y) (2.1f)
0

gu((),y)=f(y) a<y<b (2.1g)
jaﬂ (0,y)dy =—P (2.1h)

where o(y) is the contact traction existing due to the contact of inelastic stamp,
and which is the primary unknown of the problem. 77 is the coulomb friction
coefficient. f(y) is a known function indicating the surface profile of the inelastic

stamp. The contact stresses and the field quantities are expressed in terms of the

surface normal stress o(y). The displacement gradient in (2.1g) is then used
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to derive a SIE of the second kind. With the numerical solution of the SIE by
utilizing an expansion-collocation procedure, the unknown function of the problem

o(y) is obtained.

The inverse Fourier transformations utilized throughout the derivations of field

quantities are given as

ux, ) == [UCx.p)e?dp (2.22)
27

V) == [V(x.p) e dp (2.2b)
2z

where u(x,y) and v(x,y) stand for the displacement components in x and y axes,

respectively. The Navier equations for the orthotropic FGM coating and the
homogeneous semi-infinite medium are formulated using plane elasticity as

follows:

For orthotropic FGM (0 < x < h):

The constitutive relation for plane orthotropy of FGMs is stated in the following

form [42]

o, ¢ (X)) ¢, (%) 0 £,
o =l cn(x) cp(x) 0 e 2.3)
o, 0 0 Coe (X) || 26,

where o0} (i,j=x,y) and &; (i,j=x,y) are the stress and strain tensors,
respectively. The superscripts ¢ donates the FGM coating. ¢,,(x), ¢,,(x), ¢, (x),

and ¢ (x) are the stiffness coefficients which vary with respect to x axis as [70]
() =c e, () =cppe”, () =cppe’, () =ceoe”. (24)

where 7 is the non-homogeneity parameter. ¢y, C,y, Cjpo and Cq are the

stiffness constants at the coating surface (at x =0) and defined in terms of the

engineering parameters as
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—_— or plane stress
E.-V.E, for p
Ciio = (2.52)
E2 (V)ZVZXEX - vsz) ) .
for plane strain
A
E.E, for i
e or plane stress
E -VE, P
Corp = (2.5b)
v EE} (v, —1) _
for plane strain
A
v EE
— for plane stress
Ex _ny y
Cio = (2.5¢)
Ve E E (v VL E AV E ) )
- A for plane strain
Coso = M, (2.5d)
where
A= v} v, E: +v Vo E t+Vv . EE (sz"zx +2v v v, — 1) (2.5¢)
The engineering parameters have to satisfy the restrictions given below
V. V. E.
MRS N v. < |=L. (2.6)
The strain-displacement relations in plane are
: du’ . av* 1(du® ov*
e y)="-, &xN="", &, (x,y)== + . 2.7
== (%Y 3y (6 y) 2y Tox (2.7

Considering (2.3), (2.4) and (2.7) together, the stress field for orthotropic FGM

coating is obtained as
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c

! 0 ove
o, (x,y)=e" (Cuo au *+ ¢y J (2.8a)
X dy

. ! Ju ove©
G;y (x,y)= e}’*{clzo %"' Co %) (2.8b)

ou WJ 2.80)

ol (x,y)=e"c. | —+
)r)( y) 660(ay 9x

The equilibrium equations o, ; =0 (i, j=x,y) yield the governing equations for

the orthotropic FGM coating as

du o’u’ ove¢ o*v° o’u’
C1107¥+CnoW"'Clzo?/g"'(cno+6660)axay+C66o ayg =0 (2.9a)
ou‘ ove o°u* %ve 2°v¢
Cee0 Y(WJFW] +(cip + Céeo)m"‘ Ce60 WJF Cao W =0 (2.9b)

For homogeneous substrate (4 < x < o):

The stress components for the homogeneous half plane are written by using plane

elasticity as

o (x, ) = L (e ) 2 4 3 1) 2V (2.102)
K—1 0x dy
a m a m
aiii(x,y)zﬁ{@—x) a”x +(x+1) a"y } (2.10b)
du™ ov"
o7 (x,y) = ;{ a“y + avx j (2.10¢)

where K, /£ and vV are the Kolosov constant, shear modulus and Poisson’s ratio of

the homogeneous substrate, respectively. The superscript m denotes the

homogeneous substrate. The Kolosov constant is given for plane stress and plane

strain assumptions as
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3—-v

for plane stress
I+v

K=

3—-4v for plane strain

T . o
The equilibrium equations o} ; =

the homogeneous substrate

aZum aZVm

o’u"
+1 +2 +xk—1)=—5=0
(x )8x2 0x0y (i )8y2
2.,m 2.m 2.,m
(—1)2 - 22 (er1)2 Y -0
ox 0x0y dy

2.2 Formulation

2.2.1 The orthotropic FGM coating

(2.11)

0 (i, j=x,y) yield the governing equations for

(2.12a)

(2.12b)

The inverse Fourier transformations given in (2.2) are used to convert (2.9) into the

system of ordinary differential equations (ODE’s) as follows,

dU¢ d’U¢ . e . dV©
Cio? dx +¢p I —CeeoP U™ +Cpp¥piV +(C120+Céso)lp

=0
dx

d*v¢ dve . . . dU¢
CeﬁoW"‘c%o 7;‘0220102‘/ + 0 ViPU +(C]20+c660)lpE:O

Letting

ave

Vi) =x, U‘(x)=x,, x, and

The system of ODE’s can be written in the form of X, =Ax; as

14
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(2.14)



[ 0 0 1 0 ]
. 0 0 0 : 1 ) A
. . + ]
7'52 _ 2220 ,02 — i —y _ iy Ccéao PL || X, (2.15)
X, 660 660 X3
: +
X, —Cli}{Oi Co60 02 - (Clzo Cﬁso)pl- —y X,
Cio Ciio Cio |

The characteristic equation of the differential equation system is defined as

|A —rl | =0 and its open form becomes

2

rt +27/r3 + ( ;/2 +C1pz)r2 +p27C1r+’0—(;/zcm +p20220)= 0 (2.16)

Ciio

Rearranging (2.16)

2\ 2
£r2+7r+pzclj +p27/2@+p4(@_c_1}:0 (2173)

Cho ¢ 4
where

2
_Cin Tt 2€150Co60 = €110€220

C (2.17b)

C110C660

Consider the solutions of differential equations are in the following exponential

forms
US(x,p)=M, e +M, e +M e + M, e (2.18a)
Vi(x,p))=N,M,e" +N,M,e” + N,M,e" "+ N, M, e (2.18b)

Substituting (2.18) into (2.13a), N, yields

2
N :iC110rj(rj+}/)_C660p j=1,.,4 (2.19)

’ Pleiy(r; + P+ oot}

Solving (2.17a), the roots r, (j=1,..,4) are obtained as
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. :%%W_z,ﬁc] +a,J5, R (7)>0 (2.202)

FZZ_%JF%WZ_MZCI_ME R (1,)>0 (2.20b)
__Z_lJ L_2pC,+445, R (r)<0 2.20
n==o Yy’ -2p°C, + 1 ) (2.20¢)
r4:_%_%\/7,2_2pzcl_4\/§1 R (r,)<0 (2.20d)

where
5 —p4[c_12_cziJ_p2}/2C1i (2 206)
1 .
4 ¢y Ciio

Substituting (2.18) into (2.2), the planar displacement constituents are obtained as

1 7& tiny
u(x,y)=— M .e"d 221a
(x.y) MIZ , p (2.21a)
. 1 - rix+ipy
ve(x,y)=— M . N.e"""'d 2.21b
(60)=7— j Z N, p (2.21b)

Therefore, the field quantities of the orthotropic FGM coating are restated in the

following form

c 1 T . r+y)x+ipy
o (x,y) = J. > M, (cnorj +0120lep)e( TR dp (2.22a)
2 j=1
c 1 < ( . ) (rj+7)x+ipy
7, (6 y) = j Z;Mj CoooT; + N jip)e dp (2.22b)
—0 J=
c Ce60 [~ . (rj+y)x+ipy
o, (xy) =22 | S M (N, r +ip)e " dp (2.22¢)
e j=1
iu"(x )—i T iipM " dp (2.22d)
dy Y 27 2“5 / '
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2.2.2 The homogeneous substrate

The inverse Fourier transformations given in (2.2) are used to convert (2.12) into

ODE’s as follows

d*um dv™

(x+1) e +2pi . —(x-1)p’U" =0 (2.23a)
2yym m

(K—l)d V2 +2pidU —(x+1)p*V" =0 (2.23b)
dx dx

The differentials of U™ (x, p) and V" (x,p) with respect to x axis in (2.23) are

separated by using basic calculus as

a‘u” a’u”

e -2p’ Tt pU" =0 (2.24a)
dyrm 2y7m

v -2p° v +p'V" =0 (2.24b)

dx* dx?

The two differential equations above have similar structure, so do their solutions.

The characteristic equation of (2.24) are then defined as
rt=2p"r+p*=0 (2.25)

(2.25) have two double roots as r,, :|p| and r; , = —| ,0| . Hence the solutions of

(2.24) are expressed as

U™ (x,p)=[ A(p)+xA,(p)] ™" +[ A, (p)+xA (p)] e " (2.26a)

V™(x,p) = B,(p)+xB,(p)]”* +[ B,(p)+xB ,(p)] e " (2.26b)

The relations between A;(p) and B;(p) are defined substituting (2.26) into (2.23)

as
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IpIA (P)+ KA, (P)

B.(p)= (2.27a)
Bz<p>—z@A (p) (2.27b)
B.(p)= i o A3<p>; KA, (p) 0270
B,(p)=—i %A (p) (2.27d)

The stresses O';; (x,y) and O'::; (x,y) should be bounded as ()c2 + y2) tends to

infinity. Thus, A (p)=A,(p)=B,(p)=B,(p)=0should be satisfied and then
(2.26a-b) reduce to

U"(x, p)=[ Ay(p)+xA,(p)] e " (2.282)

V" (x,p) =] By(p)y+xB (p)] e (2.28b)

Substituting (2.28) into (2.2), the planar displacement components are obtained as

o

1 py—|p|x
" () = [[Asp)+xA (p)] P dp (2.292)

1 T ipy—|p|x
Vi) = [[By(p)+xB (p)] P dp (2.29b)

Therefore, the stress components of the homogeneous substrate in (2.10) are

restated as:

m M (K+1 [(1 |p| ) |p|A] lpy |p|x
V== d, :
ol (x,y) 272(x—1) _w{ +G-x)ip[B, +B,] oy (2.30a)
m 2 R (3_K) (1 |p| ) |p|A] lpy |p|x
V) =——F——= d :
O (5) 27( —1)-[0{ +(x+1)ip[B, +xB,] P (2.30b)
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o7 (x,y) == [{(1=|o|x)B, (| B, +ip(A, +xA,) } e " dp (2.30¢)
27~

2.2.3 Determination of unknown constants

The unknown constants in (2.22) and (2.30) are obtained handling the continuity
conditions between the graded coating and the homogeneous half plane, as shown

below. Hence the constants are defined in terms of the unknown of the problem

o(y).

u‘(h,y)=u"(h,y) (2.31a)
vi(h,y)=v"(h,y) (2.31b)
o (h,y)=0u(h,y) (2.31¢)
oy (h,y)=0(h,y) (2.31d)

(2.31a) and (2.31b) are recast considering (2.2) as

—llrrll j U (x, p)el/’)dp:ihm jU (x,p)e” dp (2.32a)

ﬂ' X—h

—hm j Ve(x, p)e'mdp——hm j V" (x, p)e” dp (2.32b)
2T x—h

Substituting (2.18) and (2.28) into (2.2):

Me"+M, e +M,e" + M, " =(A,+hA,)e " (2.33a)
N M " +N,M,e” +N,M,e"" +N,M,e"" =(B,+hB,)e " (2.33b)
Considering (2.27c-d), (2.33) is rewritten as

Me"+M, e +M,e" + M, e =(A,+hA,)e " (2.34a)
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h h
N M e"+N,M,e”" +N,M,e™" +N, M, e"" =

. —|plh
le\p\

[~ Hp)A,~|o|A,]

A,;(p) and A,(p) can be defined in terms of M ; using (2.34) as

! K

J=1

Ag(p) :ieh(rj"'p)M.|:1_h(|p|_ipNj)}

S M, |
A=Y= |pl-ipN))

J=1

(2.34b)

(2.35a)

(2.35b)

The continuity relations in (2.31c-d) are used to define the relations between M ;

(j =1..4) components. Considering (2.2) the stress components in (2.8) and (2.10)

arc expressed as

For orthotropic FGM (0 < x < h):

. e” dU° R
0. (x, }’):E'[o(cuog*'clzo ipV jepydp

. e’ ¢ duc e
o, (x,y)= py I(cno W"' Co 1PV ]e ?ldp

—oo

X

¢ e ave o) iy
ny(xa}’)zgjceﬁo(g"'lp(] Jep’dp

For homogeneous substrate (h <x< oo):

oo

ol (x,y)= L) j((l{+1) au

27(x—1 x

m

+(3—/c)ipV’”Je"”ydp

m ﬂ T dUm . m ipy
() =———= || B- +(x+1)ipV Prd
7=t [ - st iov forap
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(2.36b)

(2.36¢)
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dv m
X

m ﬂ T . m ipy
O'xy(x,y)zg_Jl _—+ipU Je”“‘a’p (2.37¢)

Hence the normal and shear stress components at the interface (x = h) rewritten

as
vh [ oo c
o5, (hey)=S=tim| [[ ey Bt ey ipV* |e*dp (2.38)
27 xon <) dx
. e [ ave ) oy
o, (h, y)=g£%_£c660(?+sz je‘”dp} (2.38b)
m U T au" R
o"(h,y)=—"——1lim K+1 +3—-x)ipV P d 2.38c¢
w(h,y) ZE(K_I)H,[JI( )dx (3-x)ip je ,0} ( )
m 72NV B () 4P
o (h, y)_zﬁg{_jm ( _—+ipU ]e dp (2.38d)

Taking (2.18) and (2.28) into account, (2.38) are substituted into the continuity

equations in (2.31c-d). This operation yields the following expressions

M,=pM,+p,M, (2.392)
M;=pM,+pM, (2.39b)
where

_kyly—ksl, _ kyly—ksl, _ kil =k, kil =k, (2.40)

Pkl P Tkl P T ks P T kL

k,=e" {i 5 Nj[ehycm + ”(KT_lH +e"cyor, + 12| | ( K lj} (2.41a)

K
, \ K+1 , K+1
I, = oM {Nj {cééorjel y +,U|P| (Tﬂ +ip {Cﬁéoeh}/ +'U(Tj - 2,u:|} (2.41b)
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The traction boundary conditions on the contact surface are used to obtain M, and

M, as follows: Applying Fourier transformation on (2.36a) and (2.36¢), following

expressions are obtained

dU¢ I ,
Ciio d—i+c120 ipVi=e™ J.O'ix(x, s)e "'ds (2.42a)
c —yx '
W ipus = [o (x.5)e " ds (2.42b)
dx Co60 oo

The surface stresses are expressed in terms of the unknown of the problem oO(y)

as
o.0,y)=0(y) a<y<b (2.43a)
0,0,y)=n0(y) a<y<b (2.43b)

After taking the Fourier transforms, (2.43) is written rearranging the integral

boundaries as

) b

[o. 0,97 ds=[o(s)e ™ ds = P(p) (2.44a)
o0 b

[0,0.99¢7 ds=n[o(s)e™ds =11 P(p) (2.44b)

(2.44) are substituted into (2.42), then following equations are obtained

duc R o
Ciio g(x, P+ ipVE(x, p)=e " P(p) (2.452)
dve o -
(x.p)+ipU* (x, p) =—1P(p) (2.43b)
dx Ceso
where
U0, p)=M,+M,+M,+M, (2.46a)
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dU¢

O,p)=Mr,+M,r, +M,r;,+M,r, (2.46b)

x
VeO,p)=M,N,+M,N, + M ,N,+M N, (2.46¢)

dv©
0,p)=M,N,r,+M,N,r, + M;N,r,+ M ,N,r, (2.464)

X

Substituting (2.46) into (2.45), following expressions are obtained

oM+, M, +o.M,+p,M, =" P(p) (2.47a)
M, +0,M,+6OM,+60,M,=ne " P(p) (2.47b)
where

P; =Ciply g iPN (2.48a)
8, = coo (N 1, +ip) (2.48b)

Substituting (2.39) into (2.47), the equations of M,and M, are written as

tM,+t,M, =e " P(p) (2.49a)
LM, +t,M, =17 P(p) (2.49b)
where

L=\ D+ 0, + 93Dy (2.50a)
L=¢, D, +P, +Ps5p, (2.50b)
ty=6,p,+6, +06,p, (2.50c)
t,=60,p,+6,+6;p, (2.50d)

Then M,and M, are obtained from (2.49) as
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—yx nt —t,

M, =P(p)e 2.51a

,=P(p) P ( )
t,—nt

M,=P(p)e™ LTI (2.51b)
t2t3_tlt4

Therefore, all the terms are defined in terms of the unknown function ().

2.2.4 Derivation of the Singular Integral Equation

In this section, a singular integral equation is constructed using the stress and
displacement expressions obtained in the previous sections. Then the kernels of the
stress distributions on the coating surface are determined. The boundary conditions
(2.1g) and (2.1h) are used in the construction and solution of singular integral

equations. Hence the term (2.22d) is rewritten considering (2.51) and (2.44a) as

aa_y”c (x,y)= %jw L o(s)e P dsTy,(p,x) e dp (2.52a)
where

(776 —1, )(plerlx +e™' + pse@x)
L, (p.x)=ipe™ +(t3 -1, )(p2€ +pe te ) (2.52b)

1t — 1,

Changing the sequences of the integrals and rearranging the integral boundaries,

(2.52a) is restated as

b
aiu“(x, y)= J- ki (x,y,8)0(s)ds (2.53a)
Yy a
where
1 T —ip(s—
k(5,39 = [ Tatp.x)e ™ dp (2.53b)
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Rewriting (2.53b) in trigonometric form
1 7 ..
k(6 3,9) = [ Ta(p,0)lcos((y—s) p)+isin((y—s) p)ldp (2.54)

Changing the integral boundaries from 0 to « , (2.54) is written as

5. 3.5) = [ (K, c03((y=5) )+ Kosin((r=5) p)lip 2.55)
where

K (0, x)=15(0,x)+15;(=p, %) (2.56a)
Ky (0, %) =i [r33(p’ x)=13(=p,%) ] (2.56b)

The asymptotic expansions of the roots in (2.20) are obtained using Maple as

r"=0.5C,p-05y (2.57a)
r, =05C,p-05y (2.57b)
r, ==0.5C,p-0.5y (2.57¢)
r, ==0.5C, p—05y (2.57d)
where

C, = \/2 lc2 4520 ¢, (2.57¢)
Ci1o
C,= \/—2 lc2 4520 ¢ (2.57f)
Ciio

Note that the error between 7 and = (i =1,..4) are less than 0.06 % for p >10.

The square rooted terms C,; and C,, are realized to be real and greater than
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zero for most of the orthotropic materials either in plane stress or in plane strain
assumptions. This information is used during the extraction of dominant terms as

P — . The engineering constants of materials used in this study are given in

Table 2.1. Alumina is used as the coating surface material and Nickel is used as a

substrate material in most of the parametric analyses.

Table 2.1: Engineering parameters utilized in the parametric analyses.

Property Alumina (Al,04) Nickel

E. 11636 GPa 204GPa
E 9043GPa 204GPa
E 90.43GPa 204GPa
L 3821GPa 77.86 GPa
Vi 0.28 0.31

Ve 0.27 0.31

v, 0.21 0.31

v, 0.14 0.31

Vs 0.14 0.31

Therefore, the asymptotic expansions of (2.56) are calculated as O —> oo using

Maple and some algebra as in the following form

K;I(p’x):|:f10 i flz f]33 fl4+0(pj }3‘0-5*‘(@-2%37)

p P p P
(2.58a)
+{910+J+ _,_h_i_sm +0(LSJ+"':|6 70.5x(Crlp+37)
p PP P p
K;2(p’x):{f20 T f22 f? S +0( ] :|€0‘5X(Cr2p+3}/)
p P P p P
(2.58b)

S s 1 05y
+[szo+l+ +2+ 24+0[—J+..}e 03x{c, p37)

p P popt P
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where the first terms f;; and s are given in Appendix A.

Sios Si0s Soo» S terms are added and subtracted from Ki;, and Ky, in order to

omit the singular behavior of the integrals. Then taking limitas x = 0, k;;(x, y,s)

in (2.55) has the following form:

T Ky, (p,x) = fioe osilepi)
k33 (Oa y’ S) - !{E}%E}[ [ s *0~5X(C,.1,0+3}’) COS(()’ - S) p) dp
10
1 2| (Ko fge o)
* £1_I>l(')lg [ —O.Sx(Crlp+3}/) Sln((y B S) p) dp
0 0
. e TR ~05C., px
+1lim g I fioe T cos((y —s) p)dp (2.59)
0 )
. e ~05C,, px .+
+£1£101 by J- Jre sin((y —s) p)dp
0
. e TR ~0.5C,, px
+Hlim=—— j se P cos((y—s) p)dp
0
. e e ~0.5C,, px
+Hlim=—— [ s20e 2 sin((y—s5) p)dp
0

The 3" to 6™ integrals in (2.59) are calculated considering dirac delta distribution

as
. e e —0.5C,, px flO
lim = j fge 2 cos((y=s) pP)dp =" "8(s~ ) (2.60a)
. e ~05C,, px S10
933 Y ;[ 5108 cos((y—s) p)dp:7§(s—y) (2.60b)
lim < e T fane 2P sin((y —s) p)dp = S 1 (2.60c)
=00 271 g 20 2T s—y '

e —1.5yx = ose s 1
lim sy P sin((y—s) p)dp = -2 —— 2.60d
lim = j 0 (=9 pp=-T-—— (2.60d)

Then (2.59) is rewritten as
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K33l(p, -x) — f‘lOe _0~5x(CV2 p+3},)

.17
ks 0, y,8) = lim— ]cos((y—s)p) dp
x> 27[0

— 5,48 70.5x(C,_] p+37)
. 1T | Ko ) — free 05:{c.p7) .
" lfl—%lg 0 [ —8,€ ~05x(c,, p+37) Sin((y=5)p) | dp (2.61)
i 20
+ Jio+ S0 5(S—y)—(f20+s20j 1
2 27 s—y

In (2.61), dividing the integral boundaries of the first integral into two as 0— A,

and A, —co and also the second integral into two as 0— A, and A, —oo, then (2.61)

can be rearranged as

17
ky;(0,y,s) :ﬂj [(K33](,0,x)—f10 —sm) cos((y—s) p)] dp
w
+ﬂ;!' [(K331(p, x) = fio —Sm) cos((y—ys) p)] dp
1% '
+ﬂ£ [(Kyia(p.3)= fog = 50) sin((y =) p)] dp (2.62)

1 f .
+ﬂ;‘[ [(K332(p’x)_f20 _SZO) Sll’l((y—s) p)] dp

Jiot 510 N fzo+szoj 1
-{ 2 ]ﬁ(s y)( 27 s—y

where A, and A, are the integration cut-off points. (f,,+s,,)/,0 and (f5,+5,,)/ 0
terms cause logarithmic singularities in the integrals. Hence ( fi +s11)/ P term is
added and subtracted from the integral which have the boundary A —o°, and the

term ( I +S21)/ P can be added and subtracted from the integral having integral

boundaries 0—oco. Because the integral having sine term is definite at p=0.

Therefore (2.62) is rearranged as
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A

k330, y.5) = i{j (K351(p.0) = (fig +51)) cos((y—s) p)dp

o

+ [ (Kyui(p.0) - K5, (0.0)) cos((y—5) p) dp

A

+

B —3

[K;;l(p,m—(ﬁmm) f“p Jcos«y s) p)dp
+I Ju ; cos((y — S)p)dp+f f“p tsin((y —s) p)dp
fat
+J.[ zzz(pa()) fzo"‘szo) 0 jsm(()’ s)p)dp

+ J. (K332(p,0) - K;z(p,())) sin((y—s) p) dp

4,

+J( K3, (p,0)— f20+520) fZIp ]Sln((y s)p)dp}

Jiot f20+szoj 1
( 2 J5(s y)( 2r s—y

4™ integral in (2.63) is rearranged in the following form

J fnp cos((y— S)p)dp—_(fu+S11)CiqA1(s_)’)|)

A

where Ci is the cosine integral and formulated as

le) cos(ar)—1
Ci(|A|(S—)’)| )= Ye +1ﬂ| A,(s—y)|+ I Tda
0

and 7, is the Euler-Mascheroni constant ( Y, = 0.57721566).

The 5" integral in (2.63) is calculated as

J. Jutsy Sm((y s) p)dp = (f21+S21)I Md(p(s_y))
0 P 0 p(S—y)

= _(f21 +321)Si((s_ y)w):_(le +521)§Sign(s_ y)

29

(2.63)

(2.64)

(2.65)

(2.66)



where Si is the sine integral.

If the magnitudes of A, and A, are selected large enough, the 2" and 7™ integrals
in (2.63) can be neglected. Then (2.63) is rewritten as

1|7
k35 (0, y,5) :E{J‘ (K331(p70) —(fm +5) )) cos((y—s) p)dp

+I(K;l(p,0)—(ﬁ0+slo) f“p ]cos((y s) p)dp
_(fn"‘su)ClqA(s y)|)__(f21+521 sign(s—y)

)
Fot (2.67)
( Ky, (p,0) - (fzo + Szo = ] sin((y—s) p)dp
1

+

P e— o>

(K;;z(p,o) (fzo + S20 f21 Sln((y - S) p) dp}

S0t 510 _ f20+520j
+(—2 ]5(s y)— ( = .

Using (2.53a) and (2.67), we conclude a second kind singular integral equation as

a_” Jiot f20+s20b(7(s) Lb o)
ay(y)( . J() > !S_yds+27z2|:K(s,y)6(s)ds (2.68)

and the kernel K(s,y) is given as

K(y,s)= j (Ko (000~ (1o +510)) cos((y—s) p)dp

+J.( K3, (p,0) - f]0+310) fllp jCOS((y s) p)dp

_(fu +511)Ci(| Al(s_y)|)_£(f21 +s21)sign(s—y) (2.69)

A,

+_[ (sz(p’o)_(fzo +Szo) f21,0 j sin((y—s) p)dp

0

o

+J. (ng(p’o)_(fzo"'szo) f21p jsm((y s) p)dp

4,
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The gradient of the displacement component V(x,y) with respect to y axis in

(2.21b) is written as

aV 1 °°. - rjx+i 1 T —ips iy
a—y(x,y):g_[ozp;Mije ’”dp:gj j o(s)e P dsT,(p,x)e” dp (2.70a)

—o0 —00

where

(77t2 _t4)(P1N1 e +N,e™ +p3N3er3x)

+(t, - Ne" +p,N,e™ + N, e™
L,(px)=e""ip (3 77t1)(p2 tlt _ttp4 3 4 ) (2.70b)
2%3 174

Changing the sequences of the integrals and rearranging the integral boundaries,

(2.70a) 1s restated as

b
Yy = [ kis(x v, )0 (s)ds (2.71a)
dy /
where
ks(7.8) == [ T(p.x)e " dp (2.71b)
27 °

Rewriting (2.71b) in trigonometric form
15 .
k(5. 3,8) = [ Ta(p0)[cos((y=5) p) +isin((y =5) p) dp 2.72)

Changing the integral boundaries from 0 to «, (2.72) is written as

17 .
ki (6, 7,8) = —— [ [Ky cos((y=9) p)+ Ky sin((y—s) p))dp (2.73)
0
where
Ki5,(0,0) =L15(0,x) +[15(=p, x) (2.742)
K(p0 =i [3(0,0-T5(=p,0) ] (2.74b)
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The asymptotic expansions of (2.74a) and (2.74b) are calculated as 0 —>o° as

Klogl(pax):|:d10+ d +— d + dlf +d—]:+0(i5j+"_:|e _O'SX(Crzp"'?’}’)
p o P P \p

|:h10+h“+h12+h13+]; +0[ 15) “:|eo.5x(C,,p+3y)

p PP p

(2.752)

ng(p, x) = |:d ZO+&+ d 222 + d233 + d 244 +O[LS)+"'j|e_O'SX(C’2p+3y)
et g (2.75b)

+|:hzo +b+@+@+h24+0[ ! J+..}e‘°‘5x(c'"’+37)
p P pop o’

where the terms d;and £ ; are given in the Appendix A.

The kernel k;;(0,y,s) is obtained using similar operations in the previous section.

Hence the displacement derivative is derived as

ov d]() +h10 d20 +h20 O-(S)
Zyy=| 010 - — 2.
5 [ : ]G(y) > js s jK(s )0 (s)ds (2.76)

And K,(s,Y) is given as

K, (3,9 = | (K (p0)=(dy +1,)) cos((y—s) p)dp

=

+] (Kr;<p,0>—(dm+fao) uthy ]cos«y—s)p)dp

4

_(dn +h|1)Ci(| Al(s_y)|)_%(d21 +h21)5ign(s_y) .77)

+] (an(p,m ~(d, %)—%} sin((y—s) p)dp
0

=

+ j (Kljz(p,O)—(dZO +W—%J sin((y—s) p)dp

Ay
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2.2.5 The in plane lateral surface stress o, (0, y)

Once the contact normal stress O (y) is obtained, the in plane stress o, (0,y) can

be derived. The strains for an orthotropic medium in y and z directions are written

as
o Vix
£, == -0 2.78
" E E 7 E % (2.78)
v
£ =g g +% (2.79)
© E, E| E,
For plane strain assumption (€, =0), 0, reduces to
v V.
o,=E, (i o+ iaw) (2.80)
: E. E, -
Substituting O, in (2.78) and taking the limit as x — 0, we obtain
ou
£.0,y)= a(o, ¥) =€3300,,(0, y) =€4490,,(0, y) (2.81)
where
1 - VXZVZX
Cy30 = Tx (2823)
VitV
Cog0=— (2.82b)

Note that the in plane stress 0, (0,y) is formulated by using (2.76), (2.81) and

(2.8b) as
(W"‘Cﬁo 0330)0-()))
1
0, (0.y) = (289
? I+ cpgCug|  Cp (dzo +h20) j‘ G(S)ds+ Ca20 j‘K (s,y)o(s)ds
I 2t ys—y  2my i
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2.2.6 On the solutions of the Singular Integral Equation

In this section, the unknown function 0(y) is obtained with the numerical solution

of the SIE for various stamp profiles. In order to handle numerical solution of the

SIE in (2.68) for various stamp profiles, we first introduce the relations below

y=b;ar+b;a ~1<r<l (2.84a)
s=b=a, bra <<l (2.84b)
2 2
b—a _ b-a — 2
D= \ = g h= h. 2.84c-
1Y > Y 4 > v b—a (2.84c-¢)
— b-a — b-a
A= A, A="""A. (2.84f,9)
2 2
—a b+a -
o(y)= 6( r+ j =0(r) (2.84h)

Considering the normalizations in (2.84), the kernel K(y,s) in (2.69) is expressed

as:

K(y,s) =ﬁl? (r,1) (2.85)
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K(r.0)= [ (Ky,(P)=(f1g+5,0)) cos(r—1) ) dp

fo+5, fatSs fu+s
+J‘ flz_zslz+f13_3s13+f14p4sl4 +j cos((r—1) p)dp

4 P Y
XZ b — -];21+§21 . — —

+I Ky (D)= (f20+52)— 5 sin((r—1) p)dp (2.862)
0

fro+S5y fr+5y fa+S
_I_J' fzz_zszz+f23_3523+f24_4524 ... |sin(—1) p)dp
A P P P

_(Jzn +§11)Ci(‘ E(r_t)‘)_(];m +§21)§Sig”(t_r)

2 ) = _
K331(p):K331(b_apj:K331(p) (2.86b)
2 ) =
K332(p):K332(b_apj:K33z(p) (2.86¢)
- b-a _ b-a ) i
= e HEs ((=12), (j=L....4) (2.86d,e)

Hence the solution of singular integral equation in (2.68) is obtained for flat,

triangular and circular stamp profiles in the following sections.
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2.2.6.1 Flat stamp

Orthotropic FGM

. G hI a 3

Isotropic
Homogeneous
Substrate

|

\/

Figure 2.2: The geometry of the flat stamp problem.

The flat stamp contact problem of an orthotropic FGM coating which is bonded to
a homogeneous semi-infinite medium is shown in Fig.2.2. The FGM surface is
subjected to contact force P by a flat stamp. In this case, consider that the contact
length (b—a) is independent of the normal contact force P (i.e. complete contact)

and the stamp profile is expressed by
J .
gu 0,y)=0 a<y<b (2.87)

The Kernel in (2.85) is substituted into the (2.68) considering the normalizations
in (2.84). Hence the integral equation (2.68) and the equilibrium equation (2.1h)

become

| — i
mE(r)—l.[o-(t)dw ! J'I?(t,r)a(t)dtzo —l<r<l (2.88)
Jaot 520 Tit—r (foo+520)7 7,
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j G(r)dr=-2 (2.89)

where

o(r) =~— (2.90)

According to the theoretic analysis [71, 72], the unknown function & (r) can be

expanded into the series of Jacobi polynomials as in the following form
G(N=w(Y AP ),  o@r)=>1-r"1+r). (2.91a,b)
n=0

where Pf”ﬁ (r) are the Jacobi polynomials of order n and A's are the unknown

I

coefficients. @ and [ are the strengths of singularities at y=»b and y=a

respectively (see Appendix C). These exponents are selected such that —1< a <0,

—1< <0 and a+ =1 [28] depending on the value of A/B as

A
azﬂ—l, ,Bz—ﬂ. for —=0 (2.92a,b)
/4 /4 B
A
o= —Q, B =£—1. for —<0 (2.92¢,d)
/4 /4 B
where
A=flo+5) B=f,)+5,. (2.93a,b)
B T
= arctan|— O<p<— 2.93
@ = arctan A| [ 5 (2.93¢)

Substituting (2.91) into (2.89) and using orthogonality relations [73], A, is

obtained as

2 g - 2P+ )T(B+1)
6,  Da+p+2

(2.94a,b)
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where I' is the Gamma function. The relation needed to regularize singular parts
of Cauchy principal value integrals are formulated by Tricomi [74] in closed form

and by Guler [28] in recurrence formulation form. These formulations are given in

Appendix B. Hence the singular integral equation in (2.88) is rewritten truncating

the infinite series at N as

N

Y A F,(r)=0 -1<r<l1 (2.95a)
n=0

where

F(r)——(l T X A
T

(2.95b)
L j K(t,r)(A-0)*(A+0)” B (t)dt
B "

The unknown constants A (n=1,23,..,N) are determined with the numerical

solution of the singular integral equation (2.95) by using a collocation technique

outlined by Erdogan [71]. In the flat stamp case, (N +1) linear equations are
constructed by applying a collocation method on (2.95) at N points and by using
(2.94). The obtained (N +1) equations are handled together to calculate A,
(n=0,...,N). The roots of Chebyshev polynomials of first kind are used as the
collocation points and given as

= cos (” (2i = )j i=12,..N (2.96)
N

Hence the contact stress is calculated using the truncated form of (2.91) at N points

as

r+

J(b—a b+aj
2 2 = Vi a.p _
T Z&Pl (r) I<r<l (2.97)
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2.2.6.2 Triangular stamp

Isotropic
Homogeneous
Substrate

N

Figure 2.3: The geometry of the triangular stamp problem.

The triangular stamp contact problem of an orthotropic FGM coating which is
bonded to a homogeneous semi-infinite medium is shown in Fig.2.3. The FGM
surface is subjected to contact force P by a triangular stamp. In this case, consider

that contact length (b - a) is strongly dependent on the normal contact force P and

the stamp profile is given by

d

a—uC(O, y) =—tan(@) a<y<b (2.98)
Y

where @ is the stamp inclination angle. Considering (2.98) and the normalizations

in (2.84), the integral equation (2.68) and the equilibrium equation (2.1h) become

1

Fio* 510 g5y ) Ja(t)dH

j K(t,r)o(t)dt

Jao 55 TLt=r (fao +520) 7 5, ) —-1<r<l (2.99)

(St szo):uxy
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‘ 2P
o 2.100
_Ila(r) dr 1, an(8)(b—a) (2.100)

where

_ or)
_ 2.101
o(r) ). tan(6) ( )

According to the theoretic analysis [71, 72], the unknown function & (r) can be

expanded into the series of Jacobi polynomials as in the following form

F(=or> A PP@.  or)=1-n1+r’. (2.102a,b)

where P*”(r) are the Jacobi polynomials of order » and A,'s are the unknown

coefficients. @ and [ are the strengths of singularities at y=b and y=a
respectively (see Appendix C). These exponents are selected such that O<a <1,

—1<f<0and a+pS=0 [28, 73] depending on the value of A/B as

A

0{=£, ,6’=—2. for —2>0 (2.103a,b)
/4 T B
A

o= —Q, ﬁzg—l. for —<0 (2.103¢,d)
/4 T B

where A, B and ¢ are given in (2.93a-c).

Substituting (2.102) into (2.100) and using orthogonality relations [48], the
normalized contact force P/(b—a) is obtained as
P _A000 M., tan(@)

= 2.104
b—a 2 ( )

where 6, is given in (2.94D).

Considering the relations in Appendix B, the singular integral equation in (2.99) is

rewritten truncating the infinite series at N as
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N

2
ZAann(r):—B— ~1<r<l1 (2.1052)
=0

Xy
where

E(l e+ pas ()~ L)

F, ()= o z (2.105b)
+—[K@,nA-01+0" B (0)dt
7B,

The unknown constants A, (n=L123,..,N) are determined with the numerical

solution of the SIE (2.105) by using a collocation technique outlined by Erdogan

[71]. In the case of the triangular stamp, (N +1) linear equations are constructed
by applying a collocation method on (2.105) at (N+1) points. These (N+1)
equations are handled together to calculate A, (n:0,...,N ) The roots of

Chebyshev polynomials of first kind are utilized as the points of collocation and

given as

1, =COS| ———— 71-(21 D i=12,.,N+1 (2.106)
2(N+1)

Hence the contact stress is calculated using the truncated form of (2.91) at N points

as

b—a b+a
0( 5 r+ 5 ) ) N
—_ 1-nN“A+r? > A P** -1<r<1l (2.107

P/(b—a) AOQO( P R " ’ ( :
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2.2.6.3 Circular stamp

Q=npP

l P
LA :
a c b
Orthotropic FGM

Isotropic
Homogeneous
Substrate

N

\J

Figure 2.4: The geometry of the circular stamp problem.

The circular stamp contact problem of an orthotropic FGM coating which is
bonded to a homogeneous semi-infinite medium is shown in Fig.2.4. The FGM
surface is subjected to contact force P by a circular stamp. In this case, note that
the contact length (b - a) is strongly dependent on the normal contact force P
similar to the triangular stamp case. The stamp profile is approximated as in the

following form for R>>b—a

c—y

0
—u‘0,y)= (2.108)
dy

where ¢ and R are the centerline position and the radius of the circular stamp,
respectively. Considering (2.108) and the normalizations in (2.84), the integral

equation (2.68) and the equilibrium equation (2.1h) become
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futsi 17100 I T

=—20(r)—— dt + K(t,r)o(t)dt

Jio ¥ 810 ﬂ:[t—r (fzo"'szo)”:[ “l<r<l (2.109)
_2c-b-a)r—b+a)

ﬂxy (fZ(] + s20 )R

‘ 2P

N 2.110
_jl & (r)dr PR (2.110)
where
5(r) =30 @2.111)

Xy

According to the theoretic analysis [71, 72], the unknown function O (*) can be

expanded into the series of Jacobi polynomials as in the following form

&(r)= a)(r)iAw P*(r), o(r)=1-r)*1+r). (2.112a,b)

n=0

where P*”(r) are the Jacobi polynomials of order , and A,'sare the unknown
coefficients. The & and /3 are selected such that 0<a <1, 0<f<1and a+ =1
[28, 73] depending on the value of A/B as

A
0(=£, ﬂzl—g. for —=0 (2.113a,b)
T T B

A
azl—ﬂ, ﬂzg. for —<0 (2.113c,d)
/4 /4 B

where A, B and ¢ are given in (2.93a-c).

Substituting (2.112) into (2.110) and using orthogonality relations [48], the
normalized contact force P/(b—a) is obtained as

1) ::__[x)éallxy (2.],1£La)

b—a 2

where
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0 - 2ra(l-a)

sin(za) (2.114b)

For the circular stamp case (@+ f=1), the property of Jacobi polynomial given in

Appendix B reduces to:

cot(za)(1—r)*(1+r)? P (r)

1 A=A+’ P (1) | 2.115)
Tz

2
t—r - p P

sin(zar) "

Considering (2.112) and (2.115), the singular integral equation (2.109) is rewritten

truncating the infinite series at N as

(% - cot(ﬂa)j(l -r)*A+r)” ﬁ: A P“P(r)+ i A m, (r)
"= "= -1<r<l  (2.116)
(2c=(b-a)r—(b+a))

1 N
+—Z A m, (r)=
n=0

Brx H,BR
where
2 as
my, (r) =— P (r) —-1<r<1 (2.117a)
sin(zc)
1 E—
m,, (r)= J.K(t, NP () A-1)*(1+1)” dt -1<r<l1 (2.117b)

-1

When the material of the contact surface is Alumina (A/B<0), the first term in

(2.116) becomes zero. Hence (2.116) yields as

S A () +—= 3 4, (1) = 2= 0r =G +a)

—-1<r<l (2.118)
n=0 Bﬂ. n=0 l[lxyBR

Expressing the right-hand side of (2.118) in terms of Jacobi polynomial of the first

order, the following equation is obtained
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(2c—(b-a)2a-1)—(b+a))
H,BR

2(b-a)

4 _BR

Xy

N 1 N
ZAnm]n(r) +E2Anm2n(r) =
n=0 n=0 -1<r<1 (2.119)
R (r)

The variables a/R, b/R and c/R are not independent in the circular stamp
problem. One of them is dependent on the other two. To be able to define the

relationship between a/R, b/R and c/R; first multiply both sides of (2.119) by

(=) *(+r)7? then integrate from -1 to 1 as follows

ZN: A":[mln (NA=r)“A=r)Pdr+ BLzZN: A, I m,, (N =r)*(=r) " dr=

n=0 n=0 -1

(2c-(-a)2a-1)~(b+a)) j(l P dr (2.120)
uBR |
_2(b_a)l N1 _ B p-a-pB
B _Il(l P A=) B (rydr

It is proved by Erdogan [46] that the some of the integrals located in (2.120)
become zero. Note also that the first integral on the right-hand side of (2.120) are

evaluated as

V4
sin(7e)

fa-n=a-r7dr= a+B=1 (2.121)

Hence, rearranging (2.120) the following expression is obtained

1 S AM, - 7(2c—(b - a)2a—1)—(b+a)) 21220
T sin(za)u,, R

where

M, = j m,, (r)(1=r)“(1+r)dr (2.122b)

Considering (2.122) and (2.119) together, the following expression is obtained
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N —
> A F, ()= _20=d) papy —1<r<l (2.123a)
n=0 xy
1 sin(7Tc)
F3,,(r)=ml,,(r)+—(m2n(r)— M”j —-1<r<l (2.123b)
Br T

Note that M, in (2.122b) is a double integral whose computation requires much

more time compared to the integrals in flat and triangular stamp cases. By using

(2.122) the centerline position is obtained as

c_1 sm(7r01),ux) ZA M. (b+a) N (b—a)Ra—1) (2.124)
R 2 7’ R R ’

In the numerical solution, first a/R and b/R are specified, then (2.123) is
collocated at (N +1) points to calculate the unknown constants A, (n =0,...,N )

The roots of Chebyshev polynomials of first kind are used as the collocation points

and given as

1, =COS| ———— 7[(21 D i=12,..,N+1 (2.125)
2(N+1)

Considering (2.114) and the truncated form of (2.91) at N points, the normalized

contact stress is calculated as

b—a b+a
( 2 a 2 j p B
= @ -1 1 2.12
Plb—a) 0 A=r*d+r) nEOA P%7(r) <r< ( 6)

After all the normalized force and the centerline position are calculated using

(2.114) and (2.124), respectively.
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CHAPTER 3

THE FINITE ELEMENT METHOD

Beside the analytical method defined in the preceding section, a finite element (FE)
approach is also conducted to examine the response of orthotropic FGM coatings
under contact loads. The solution of the contact problem by using two different
solution techniques enables assessing the accuracy of both methods directly
comparing their results. By this way, a dependable computational approach can be

generated.

This computational solution procedure is carried out utilizing the finite element
analysis software ANSYS [75]. FE simulations are performed to investigate flat,
triangular and circular stamp contact problems that are shown in Figures 2.2-2.4.
The 2D models of the FGM coating and homogeneous medium are divided into
quadrangular and triangular solid elements. These quadrangular and the triangular
finite elements can be seen in Figure 3.1. In the FE discretization of graded
structures, two foremost procedures are utilized to consider the continuous spatial
gradations in the stiffness constants. In this study, they are named as graded FE
and homogeneous FE methods. The gauss points are used to attribute engineering
parameters for each finite element in the graded FE method (Santare and Lambros
[76]). However, the engineering parameters are computed at the centroids of the
finite elements in the homogeneous FE technique (Yildirim et. al [77] and Dag et

al. [78]).
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Figure 3.1: (a) A quadrangular FE located in the Cartesian coordinate frame; (b)
A triangular FE located in the Cartesian coordinate frame; (c) Quadrangular and
the triangular FE’s located in the iso-parametric coordinate frame.

Hence, in the homogeneous FE method, the material properties attributed to the
elements are constant all through the surface of an element. Previous studies
demonstrate that when an FGM structure is discretized finely enough, one can
capture very correct results utilizing both of these approaches [77, 78]. The
homogeneous FE method is used in this study. The following parametric analyses
illustrates that the results of analytical and computational techniques fit to each
other with a high level accuracy. In the computational analyses, the flat, triangular
and circular stamp boundaries are taken as rigid target elements. The surface of the
FGM coating that might contact with the target surfaces are described as the contact
elements lying on the solid elements. The rigid stamp surfaces are divided into a

group of target segment elements and are coupled with its contacting surfaces.
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These rigid and contact surfaces share the same real constant set [75]. The target
segment elements can be exposed to any translational or rotational displacement,
voltage, magnetic potential and temperature. Moments and forces can also be
applied on target elements. Although these elements can easily model arbitrary
target shapes, the target surfaces are smooth in this study. Each target surface can
be coupled with only one contact surface. However, more than one contact
elements may compose the contact surface and contact with the same target
surface. Similarly, more than one target elements may form the target surface and
gets the contact with the same contact surface. It is valid for both the target and
contact surfaces that any number of elements can be defined in a one target or
contact surface. Alternatively, the contact and target surfaces can be discretized by
dividing the large surfaces into smaller ones which include fewer number of

elements [75].

The augmented Lagrangian method is utilized as an iterative procedure of the
contact problem. The theory details of the Augmented Lagrangian method is given
in a review paper by Mijar and Arora [79]. In this method, the contact pressure and
frictional stresses are increased step by step during equilibrium iterations. the
Augmented Lagrangian method generally yields better conditioning and is less
dependent on the magnitude of the contact stiffness compared to the penalty
method. However, the augmented Lagrangian method might require extra

iterations in some analyses for which the deformed mesh is too distorted [75].

Contact detection points are defined at the Gauss integration points of the contact
elements which are located on the element surface (see Fig. 3.2). The indentation
of the contact element into the target surface is constrained at its integration points.
However, the target surface can penetrate into the contact surface. Surface-to-
surface contact elements are used in this study treating the Gauss integration points
as detection points. This treatment yields more stable stresses than the nodal

detection scheme for which the nodes are used for the contact detection [75].
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Figure 3.2: Contact Detection Points [75].

FE mesh utilized for the flat stamp problem is presented in Figure 3.3. This finite
element mesh includes 500 contact line elements and 60,759 quadrangular and
triangular 2D solid elements. The inelastic flat stamp possesses three rigid target
surfaces, the inelastic triangular stamp possesses two rigid target surfaces and the
inelastic circular stamp has a unique rigid target surface in the FE simulations. In
Figure 3.3; B, H, W and h stand for the width of the inelastic stamp, the vertical
size of the coating-substrate system, the horizontal size of the coating-substrate
system and the thickness of the coating, respectively. H and W are taken large
enough not to cause any influences on the results of the simulation. Hence, B=W
is assigned as 1=10. H=W and B=h are set as 1=1.625 and 1=1, respectively. The
FE mesh denseness is refined apparently on the contact zone to be able to take the
abrupt changes of the field quantities into account particularly near the edges of the
stamps. In the meantime, the FE mesh denseness is also raised through the coating

thickness in order to maintain smooth exponential material gradations.
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FE mesh utilized for the flat stamp problem.

Figure 3.3

The most critical issue managed in the computational contact analysis of this study

is the attribution of different material properties for each finite element depending

This feature is not available in ANSYS and

on their position in the vertical x axis.

it is enabled by adding a proper subroutine into the related ANSYS code.

Note that the computational analyses are optimized such that R >>(b—a) for the

8x107 ) and (b—a)tan(@) <<(b—a) for the

a)/R =

(

convergence of iterative method (Augmented Lagrange) is remedied remarkably.

b—

(

circular stamp problem
triangular stamp problem

Upon these conditions, the

8.73x107).

tan(@)
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CHAPTER 4

NUMERICAL RESULTS

This chapter presents the results produced with the analytical and computational
techniques. In this section, it is needed to mention about the normalizations enabled
in the results of the flat, triangular and circular stamp problems. Hence, the non-

homogeneity constant ¥ introduce material gradations to the orthotropic coating.
The symbols a and b indicate the coordinates of the leading and trailing ends of
the inelastic stamp. ¢ represents the centerline position of the circular stamp. The
numerical results can be presented considering the normalized nonhomogeneity
parameter ¥/ and the normalized contact length (b—a) /h . On contrary to the flat
stamp problem, in the cases of the triangular and circular stamps the contact length
(b—a) is strongly dependent on the normal contact force P. The normalized

contact forces are evaluated by utilizing (2.104) for the triangular stamp and
(2.114a) for the circular stamp. For the flat stamp, such kind of calculations is not

needed since P and (b—a) are independent in that case.

The first group of results are presented in Tables 4.1-4.2 and Figures 4.2—4.14,
which are generated for a flat stamp. Another set of results, produced regarding a
triangular stamp, are presented in Tables 4.3-4.7 and Figures 4.15-4.27. The third
set are for a circular stamp and presented in Tables 4.8-4.17 and Figures 4.28—4.40.
The fourth set of results that show the surface and interfacial behavior of
orthotropic homogeneous coatings under contact loads, are given in Figures 4.42—
4.52. All the results showing the effects of problem parameters on the normalized
surface contact stresses are produced by using the developed analytical procedure.
Note that the interfacial stresses for orthotropic homogeneous coatings given in

Figures 4.49-4.52 are obtained by using FEA.
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In all the parametric analyses of FGM coatings; the coating surface is taken as %

100 Alumina for which the engineering parameters are given in Table 2.1. The

orthotropic stiffness constant cq(x) (0<x<oo) of a material corresponds to its

shear modulus in plane strain assumption, for either the material is orthotropic or

isotropic (see Equation 2.4). In this study, the continuity of stiffness constant
Ceo(X) is satisfied all through the thickness as done in the study by Ben-Romdhane

et al. [41]. This continuity is enabled using the following the procedure: Firstly the

shear modulus at the coating-substrate interface is computed using the relation
Cos(N) = cCype”” for a given normalized non-homogeneity constant ¥/ of the
coating. Then the shear modulus of the isotropic substrate is attributed as
U =ce(h). After that, the elastic modulus E of the isotropic substrate is calculated
by using the restriction E=24(1+V) taking the poison’s ratio of the substrate as a

constant (V=0.31).

Nickel is one of the most commonly used substrate material for Alumina coatings.
Taking the preceding c.(x) continuity procedure into account, the substrate

material is obtained as % 100 Nickel when the normalized non-homogeneity
constant Yh is attributed to 0.712. The engineering parameters of Nickel are
given in Table 2.1. Thus all the FGM coating results presented in this study are
produced for Yh=0.712 except the cases showing the effect of non-homogeneity
constant variations on the normalized contact stresses and the normalized contact

forces. Note that when the non-homogeneity constant ¥/ is taken as negative, the
stiffness coefficients ¢,,(x), ¢,,(x), ¢, (x) are continuously decreasing through
the coating thickness (0<x<h) and increases sharply at the interface (x=h).
However, when Yh>0 the stiffness coefficients ¢, (x), ¢,(x), ¢,,(x) are
continuously increasing through the coating thickness (0<x<h) and also
increases at the interface (x="). Therefore, we can infer that the gradation is much
more feasible for Yh>0 (see Figure 4.1). Hence all the parametric analyses

generated for FGM coatings are produced for yh>0.
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The contact analyses of orthotropic homogeneous coatings are enabled by
attributing the normalized nonhomogeneity constant to zero in the analytical and
computational procedures. In the presented results for the homogeneous
orthotropic coating case, the homogenous coating and the substrate are taken as
Alumina and Nickel, respectively. Their elastic material properties are available in
Table 2.1. Additionally, there is no material property continuity defined at the
interface between the coating and substrate since they are different homogeneous

materials.

Note that the normalized contact stress &, (0, y)/ (P/ (b—a)) and normalized lateral
contact stress o, (0,y) / (P/ (b —a)) calculated by analytical technique are
independent of the radius of the stamp R and the inclination angle of the stamp &

for the circular and triangular stamp problems, respectively. These normalized

stresses are also independent of the magnitude of the contact length (b —a) and
the magnitude of the contact force P for all the stamp cases. Also note that the
normalized contact force of the circular stamp P/ (U,,(b—a)) is dependent on the
ratio (b—a) / R (see Equations 2.114 and 2.123), although the normalized contact
force of the triangular stamp P/ (tan(@),uxy (b—a)) is independent to the contact

length (b —a) (see Equations 2.104-105).

4.1 Flat Stamp

The geometry of the flat stamp problem is shown in Figure 2.2. Figure 4.2 and

Figure 4.3 show the results on the normalized contact stress o, (0, y)/ (P/ (b—a))
and on the normalized lateral contact stress o, (0,y) / (P/ (b—a)), which are

evaluated regarding an orthotropic graded coating which is exposed to contact
tractions of an inelastic flat stamp. In these figures, the analytical and finite element
methods are used to calculate the normalized contact stress results which are
presented together to assess the accuracy and the compatibility of both techniques.

The normalized stresses are plotted versus the normalized y-axis

(2y—(b+a))/(b—a) which is equal to -1 for y=a and 1 for y=b.
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The results are provided for two different normalized nonhomogeneity constants:
yh=0.1 in Figure 4.2 and yh=0.712 in Figure 4.3. Note that when the
normalized nonhomogeneity constant ¥/ is 0.712, the substrate material becomes
%100 Nickel. The fixed parameters in the evaluation of these results are;
(b—a)/h=1.0, n=0.3. Also note that a positive value for A implies that the

stiffness constants of the coating increase in the thickness direction (positive x-

direction). The coating becomes homogeneous when the normalized non-
homogeneity parameter ¥/ is assigned to zero. It is observed from Figure 4.2 and

Figure 4.3 that the analytical and computational methods provide very close results.
The scaled deformed shape which is produced by using the FE solution of a flat
stamp problem is presented by Figure 4.4. Referring to Figure 4.2 and Figure 4.3,

we realize that the contact stress o (0, y) / (P/ (b—a)) and the lateral contact stress
0,0,y / (P/ (b—a)) possess singular behavior at the leading and trailing ends of

the contact zone (at y=b and y=a), due to the sharp edges of the flat stamp.
The normalized contact and lateral contact stress curves generated are not
symmetric about y=0 due to laterally acting frictional forces on the coating
surface. Lateral contact stress is in tension as y —a and in compression as
y — b". After the evaluation of the contact stress 0, (0, y), one can easily calculate

the shear stress 0, (0, y) by using the dry friction law as ¢, (0, y)=70,.(0, ).

In the analytical method, the normalized stresses are evaluated through the
truncated forms of series representation. As the truncation number N is increased,
a stress result should converge to a definite magnitude. Hence, we present some
tables in this Chapter to validate the convergence behavior of the analytical
method. The related results are evaluated regarding the flat stamp and given in
Table 4.1 and Table 4.2. The results are generated for two distinct normalized
contact length values: (b—a)/h=0.4 in Table 4.1 and (b—a)/h=1.0 in Table 4.2.
These tables present 12 cases in total. For each of these cases the normalized

contact stress O (0, y)/ (P/ (b—a)) is evaluated by increasing the truncation

number N six times. Note that N 1is the upper limit for the truncated form of the

series representation given by (2.91). N also indicates the number of discretization
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points utilized for (2.95). As observed in Table 4.1 and Table 4.2, the results
quickly converge as N is raised from 1 to 14. For any combination of the problem
parameters, three-digit convergence is obtained for N =10. Thus, all the analytical

results presented in this study are generated for N =10.

Additionally, the influences of the problem parameters on the contact stresses are
also presented for the flat stamp utilizing the developed analytical technique.
Figure 4.5 shows the effect of the nonhomogeneity parameter Y% on the

normalized contact stress O, (0,y)/ (P/ (b—a)) for (b—a)/n=1.0 an n=03.

Due to the singular behavior of the contact stresses near the leading and trailing
contact ends, the results produced for different normalized non-homogeneity
parameters ¥h cannot be distinguished in these regions. However, the effect of the
nonhomogeneity parameter is observable inside the contact region. Note that when
yh increases from 0.0 to 1.0, the magnitude of the contact stress increases
remarkably inside the contact region. Figure 4.6 shows the influences of the friction
coefficient on the normalized contact stress ©,,(0, y)/(P/(b—a)) for (b—a)/h=1.0
and Yh=0.712 The negative sign of the friction coefficient 7] is implies that the
lateral force Q acts in the negative y-direction. If this sign of the friction coefficient
1 is positive, then lateral force  acts in the positive y-direction. Examining

Figure 4.6, the contact stress reaches its maximum value on the region near the end

point y=b, if 7>0.0 and on the region near the end point y=a, if 7<0.0.
Figure 4.7 shows the effect of the normalized contact length (b—a)/h on the
normalized contact stress 0, (0,y)/ (P/ (b—a)) for 7=0.3 and yh=0.712 Note

that the increase of the normalized contact length (b—a)/h implies either the

decreasing size of the coating thickness relative to a fixed contact length or the

increasing size of the contact length relative to a fixed coating thickness. When
(b—a)/h is increased from 0.1 to 1.0, the magnitude of the contact stress
increases inside the contact region. Figure 4.8 shows the effect of Elastic modulus
ratio E / E | on the normalized contact stress O, (0, y)/ (P/ (b—a)) for n=0.3,
(b—a)/h=1.0 and Yh=0.712 In these plots, the engineering parameters of

Alumina are used as in Table 2.1 such that only the parameter £ is changed to
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get the desired E, / E, ratio. After that, v, and v are recalculated considering

the restrictions given in (2.6). Also note that all the Poisson’s ratio values should
be between O and 0.5. Examining Figure 4.8, the normalized contact stress
c.0,y)/ (P/ (b—a)) slants towards the positive y-direction slightly, when E_ / E,
is increased from 0.6 to 1.5. Figure 4.9 shows the effect of Elastic modulus ratio
E /E. on the normalized contact stress o,(0,y)/(P/(b—a)) for 7=03,
(b—a)/h=1.0 and yh=0.712. In these plots, the engineering parameters of

Alumina are used as in Table 2.1 such that only the parameter E_ is changed to get
the desired E| / E_ ratio. Then v _ and v,, are recalculated obeying the restrictions
given in (2.6). As observed in this figure, variation of the elastic modulus ratio
E /E. has no significant effect on the normalized contact stress
c.0,y)/ (P/ (b—a)). The crack formation or initiation may occur on the ceramic
based surfaces loaded by contact loads involving friction. These defects are
commonly called as herringbone crackings [5] or partial-cone crackings [57] which
results from the existence of the lateral contact stress o, (0, y) on the surface of the
loaded medium. Therefore, the influences of problem parameters on the surface
lateral contact stress O'),),(O, y) are illustrated in this study. Figure 4.10 shows the

effect of nonhomogeneity parameter on the normalized lateral contact stress

o0, y)/(P/(b—a)) for 7=0.3 and (b—a)/h=1.0. On contrary to the normal

stress 0,,(0,y), the lateral contact stress o, (0, y) possesses non-zero distributions

on the free surfaces (y <a, y>b). The effect of the non-homogeneity parameter

on the lateral contact stress is not that significant near the trailing end of the contact.
The magnitude of the compressive stresses decrease significantly as the

nonhomogeneity constant 4 is increased from 0.0 to 1.0. Figure 4.11 shows the
effect of coefficient of friction 77 on the normalized lateral contact stress
o, (0, y)/(P/(b —a)) for yh=0.712 and (b—a)/h =1.0 . Examining Figure 4.11, the
lateral contact stress increases significantly on and outside the contact zone, when

the absolute value of the friction coefficient is increased. Some further analytical

results are presented by considering the flat stamp in Figure 4.12 for 7=0.3 and

yh=0.712, in order to examine the influences of the normalized contact length
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(b—a)/h on the lateral contact stress 0,(0,y) / (P/ (b—a)). As can be seen in Figure

4.12, the lateral contact stress decreases slightly on and outside the contact zone as

the normalized contact length (b—a)/h is increased from 0.1 to 1.0. In other words,

the magnitude of the lateral contact stress increases as the size of the coating
thickness relative to the contact length increases. Figure 4.13 shows the influences

of Elastic modulus ratio E,/E  on the normalized lateral contact stress
o, (0, y)/(P/(b—a)) for 7=0.3 and yh=0.712. As seen in Figure 4.13, the effect
of elastic modulus ratio E,/E, on normalized lateral contact stress is very
significant on and outside the contact zone. If E /E  is increased from 0.6 to 1.5

, it is observed that the magnitude of the lateral contact stress decreases

significantly. Figure 4.14 shows the effect of Elastic modulus ratio £ / E. on the
normalized lateral contact stress &, (0, )/ (P/(b—a)) for n=0.3, (b—a)/h=1.0
and yh=0.712. As observed in this figure, variation of the elastic modulus ratio

E /E, has no significant effect on the normalized lateral contact stress

c,,(0,y)/(P/(b-a)).

4.2 Triangular Stamp

The results produced for an orthotropic FGM coating which is subjected to contact
loads by an inelastic triangular stamp are given in Figures 4.15-4.27 and Tables
4.3-4.7. The view of the triangular stamp problem is presented in Figure 2.3. In

the triangular stamp problem the contact length (b—a) is strongly dependent on

the normal contact force P. The normal contact force is analytically computed for
a specified contact length by using (2.104). Tables 4.3-4.7 tabulates the normalized

contact forces P/ (4, tan(@)(b—a)) evaluated utilizing the analytical method for

different combinations of the f{friction coefficient 7), the normalized non-

homogeneity constant yh, the normalized contact length (b—a)/h, the elastic
modulus ratio E_/E, and the elastic modulus ratio E, /E. . As observed from

these Tables; when the normalized non-homogeneity constant ¥4 is increased
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from 0.1 to 1.0, the normalized contact force P/(,uxy tan(@)(b—a)) increases
significantly for any combination of the other problem parameters. When the
friction coefficient 77 is raised from -0.6 to 0.6, the normalized contact force

P/ (u,, tan(@)(b—a)) also increases significantly regardless of the combination of

the other problem parameters. When the normalized contact length (h—a)/h is
increased from 0.4 to 1.0, the normalized contact force P/(,uxy tan(6)(b — a))
increases slightly in any case. It should be also emphasized that the effect of the
variations of the normalized nonhomogeneity parameter Y2 on the normalized

force P/ (u,, tan(8)(b—a)) become much more significant, when the normalized
contact length (b—a)/h is increased. We can infer from these tables that when the
elastic modulus ratios E /E, and E, JE._ are increased, then the normalized
contact force P/ (U, tan(@)(b—a)) decreases considerably regardless of the change

in other parameters. To be able to obtain accordant stress curves for triangular, flat
and circular stamp problems, the curves for all the stamp profiles are normalized

with respect to the normal force P/(b—a). The comparisons of the normalized

contact and the normalized lateral contact stresses evaluated utilizing the analytic

and FE techniques are presented for two different nonhomogeneity constants yh
in Figure 4.15 and Figure 4.16: yh=0.1 in Figure 4.15 and yh=0.712 in Figure

4.16. The fixed parameters in the computation of these normalized stresses are

(b—a)/h=1.0, 7=0.3. One can observe that the normalized contact stress
becomes singular at point y =a and zero at point y =b. The related behavior of
the triangular stamp results from its sharp edge at y =a and smooth edge at y =b.
Due to the positive friction coefficient, the lateral stress around the trailing end
(y—a ) is tensional and tends to infinity at y=a. The lateral contact stress

around the leading end is compressive and nonsingular since the contact is smooth
at y=>b. Figure 4.15 and Figure 4.16 indicate that the analytic and computational
techniques provide very close results. The scaled deformed shape of the contact
region, which is produced by using the FE solution of a triangular stamp problem

is provided in Figure 4.17. Figure 4.18 shows the behavior of the normalized

contact stress 0,(0,y)/ (P/ (b—a)) with the change in the normalized
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nonhomogeneity constant y4. Examining Figure 4.18, it can be observed that, the

magnitude of the normalized contact stress increases inside the contact region of
the triangular stamp as the nonhomogeneity constant is raised from 0.0 to 1.0.

Figure 4.19 demonstrates the effects of friction coefficient on the normalized

contact stress 0, (0, y)/ (P/ (b—a)). As seen in Figure 4.19, the normalized contact

stress decreases significantly away from the sharp edge of the triangular stamp, as
the coefficient of friction is raised from -0.6 to 0.6. Figure 4.20 shows the effect of

the normalized contact length (h—a)/h on the normalized contact stress
0..(0,)/(P/(b—a)) for 7=0.3 and yh=0.712. When (b—a)/h is raised from 0.1

to 1.0, the magnitude of the contact stress increases inside the contact region.

Figure 4.21 shows the effect of Elastic modulus ratio E / E on the normalized

contact stress o (0,y)/ (P/ (b—a)) for 7=0.3 and yh=0.712. It can be observed

from Figure 4.22 that the change in elastic modulus ratio £ / E | has no significant
effect on the normalized contact stress o _ (0, y)/ (P/ (b —a)) . Figure 4.22 shows the
effect of Elastic modulus ratio E /E, on the normalized contact stress
0..(0,y)/(P/(b—a)) for n=0.3 and yh=0.712. It can be observed from Figure
4.22 that the change in elastic modulus ratio £, /E_ has no significant effect on
the normalized contact stress o (0, y)/ (P/ (b —a)) . Figure 4.23 illustrates the effect

of normalized nonhomogeneity parameter ¥4 on the normalized lateral contact

stress 0, (0, y)/(P/(b—a)) for (b—a)/h=1.0 and 7=03. Unlike the stress

component O, (0, y), the lateral stress o,,(0,y) is not zero in the region outside the

contact zone (y<a, y>b). As can be observed in Figure 4.23 that when the

nonhomogeneity constant increases from 0.0 to 1.0, the magnitude of the lateral
compressive stress decreases on and outside the contact zone, although the effect
is more significant on the contact zone. Figure 4.24 shows the effect of friction

coefficient on the normalized lateral contact stress o (0, y)/(P/(b—a)) for

(b—a)/h=1.0 and yh=0.712. Note that the smooth contact at the end y=b

becomes the trailing end if the friction coefficient is negative, for which the trends

of the lateral contact stress has sharp transitions at y =b. Examining Figure 4.24,
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the effect of the friction coefficient on the lateral contact stress is very remarkable.
The larger the absolute value of the friction coefficient is, the greater the
normalized lateral contact stress near the trailing end we get. Figure 4.25 is

provided to demonstrate the influences of the normalized contact length (b—a)/h
on the normalized lateral contact stress ny(O, y) / (P/ (b—a)) for 7=0.3 and

yh=0.712. As seen in the figure, when the normalized contact length (b—a)/h is

increased from 0.1 to 1.0, the magnitude of the lateral contact stress decreases
slightly on and outside the contact zone. Thus we can conclude that the size of the
coating thickness relative to the contact length can be decreased to reduce the

possibility of damage due to the herringbone cracks near the trailing end. Figure

4.26 shows the influences of elastic modulus ratio E, / E, on the normalized lateral
contact stress 0, (0, y)/ (P/ (b—a)) for 7=0.3 and yh=0.712. As can be seen in
this figure, the effect of elastic modulus ratio £, / E, onnormalized lateral contact
stress 0,,(0,) / (P/ (b—a)) is very significant on and outside the contact zone. If

E / Ey is increased from 0.6 to 1.5, it is observed that the magnitude of the
lateral contact stress decreases remarkably. Hence, the option of increasing the
ratio E, / E, can be used in the graded coating so as to prevent the risk of damage
near the trailing end of the contact zone. Figure 4.27 shows the effect of Elastic
modulus ratio E_/E_ on the normalized lateral contact stress 0,,0,y)/ (P/(b—a))

for 7=0.3, (b—a)/h=1.0 and yh=0.712. As observed in this figure, variation of

the elastic modulus ratio E,/E_ has no significant effect on the normalized lateral

contact stress o, (0, y)/ (P/(b—-a)).

4.3 Circular Stamp

The results produced for an orthotropic FGM coating which is subjected to contact
loads by an inelastic circular stamp are given in Figures 4.28—4.40 and Tables 4.8-
4.17. The view of the circular stamp problem is presented in Figure 2.4. In the

circular stamp problem the contact length (b—a) is strongly dependent on the

normal contact force P, just as in the triangular stamp problem. Tables 4.8-4.12
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tabulates the normalized contact forces P/ (U, (b—a)) evaluated utilizing the
analytical method for different combinations of the friction coefficient 77, the
normalized non-homogeneity constant ¥/, the normalized contact length (b—a)/h
, the elastic modulus ratio E_ / E and the elastic modulus ratio E, / E_ . The end
point locations which are used throughout the computation of the normalized forces
are a/R=0 and b/R=0.02. As observed from these Tables; when the
normalized non-homogeneity constant Y/ is increased from 0.1 to 1.0, the
normalized contact force P/ (U, (b—a)) increases for any combination of the other
problem parameters significantly. When the friction coefficient 77 is raised from
0.0 to 0.6, the normalized contact force P/ (U, (b—a)) decreases slightly in any
case. Similarly, when the normalized contact length (h—a)/h is increased from 0.4
to 1.0, the normalized contact force P/ (luxy (b—a)) increases considerably

regardless of the combination of the other problem parameters. It should be also

emphasized that the effect of the variations of the normalized nonhomogeneity

parameter Yh on the normalized force P/ (,uxy (b—a)) become much more
significant, when the normalized contact length (h—a)/h is increased. We can also
infer from these tables that when the elastic modulus ratios E, /E, and E |E,
are increased, then the normalized contact force P/ (,Ll)Cy (b—a)) decreases

considerably for any case. Tables 4.13-4.17 tabulates the centerline position c/ R

of the circular stamp evaluated utilizing the analytic method for different

combinations of the friction coefficient 77, the normalized non-homogeneity

constant ¥h, the normalized contact length (h—a)/h, the elastic modulus ratio
E. / E and the elastic modulus ratio E. / E, . The end point locations which are
used throughout the computation of the normalized forces are a/R =0 and
b/R=0.02. As observed from these Tables; when the normalized non-

homogeneity constant ¥4 is increased from 0.1 to 1.0, the centerline position c/ R

tends to approach the geometric centerline of the rigid circular stamp independently
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to the combination of any other problem parameters. When the friction coefficient
7 is increased from 0.0 to 0.6, the centerline position c/ R moves away from the

geometric centerline of the stamp to the right significantly. This effect is also
independent to the variation of any other problem parameters. The change in the

normalized contact length (h—a)/h does not seem to have considerable effect on
the centerline position ¢/R for any combination of the problem parameters. It can
be also inferred from these Tables that when the elastic modulus ratios £ / E s

increased, then the centerline position ¢ tends to move to the right considerably.

When the elastic modulus ratios E, / E, is increased, then the centerline position

¢/R remains almost stationary regardless of the change in other parameters. The

comparisons of the normalized contact and the normalized lateral contact stresses
evaluated regarding the analytic and FE techniques are given for two different

nonhomogeneity constants yh in Figure 4.29 and Figure 4.30: yh=0.1 in Figure
4.29 and yh=0.712 in Figure 4.30. The fixed parameters in the computation of
these normalized stresses are (b—a)/h=1.0, 7=0.3. One can observe that the
normalized contact stress is zero at the leading and the trailing ends y=a and

y =b. That is due to the fact that the stamp edges are smooth the leading and the
trailing ends y=a and y = b. Due to the positive friction coefficient, the lateral

contact stress around the trailing end (y—a ) is tensional nonsingular due to

smooth contact. The lateral contact stress around the leading end is compressive

and also nonsingular at y = b. Figure 4.29 and Figure 4.30 indicate that the analytic
and computational techniques provide very close results. The scaled deformed
shape of the contact region, which is produced by using the FE solution of a circular
stamp problem is provided in in Figure 4.28. Figure 4.31 shows the behavior of
the normalized contact stress O, (0,y)/ (P/ (b—a)) with the change in the
normalized nonhomogeneity constant yh. Examining Figure 4.31, it can be

observed that, the magnitude of the normalized contact stress increases inside the
contact region of the circular stamp as the nonhomogeneity constant is raised from

0.0 to 1.0. Figure 4.32 demonstrates the effects of friction coefficient on the

normalized contact stress O, (0,y)/ (P/ (b—a)). As seen in Figure 4.32, the
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normalized contact stress slant towards the positive y direction significantly, as the
friction coefficient is decreased from 0.6 to -0.6. Figure 4.33 shows the effect of

the normalized contact length (h—a)/h on the normalized contact stress
0..(0,)/(P/(b—a)) for n=0.3 and yh=0.712. When (b—a)/h is raised from 0.1
to 1.0, the magnitude of the contact stress increases in the contact region slightly.
Figure 4.34 shows the effect of Elastic modulus ratio £ / E on the normalized
contact stress 0, (0,y)/ (P/ (b—a)) for 7=0.3 and yh=0.712. It can be observed

from Figure 4.34 that as the elastic modulus ratio E / E is decreased from 1.5 to
0.6, the normalized contact stress O, (0, y)/ (P/ (b—a)) slants towards positive y

direction slightly. Figure 4.35 shows the effect of Elastic modulus ratio E, / E. on

the normalized contact stress o (0,y)/ (P/ (b—a)) for 7=0.3 and yh=0.712. It

can be observed from Figure 4.35 that the change in elastic modulus ratio £ / E,
has no significant effect on the normalized contact stress o (0,y)/ (P/ (b—a)).
Figure 4.36 illustrates the effect of normalized nonhomogeneity parameter ¥4 on

the normalized lateral contact stress O, (0, y)/ (P/ (b—a)) for (b—a)/h=1.0 and

7=0.3. On contrary to the normal stress O, (0,y), the lateral contact stress
O'yy(O, y) possesses non-zero distributions on the free surfaces (y<a, y>b). As

can be observed in Figure 4.36, the variation of normalized nonhomogeneity

constant yh possesses significant effect on the lateral contact stresses on and

outside the contact zone. When the nonhomogeneity constant is increased from 0.0
to 1.0, the magnitude of the lateral compressive stress decreases. Figure 4.37 shows

the effect of friction coefficient 77 on the normalized lateral contact stress
o, (0, y)/(P/(b—a)) for (h—a)/h=1.0 and yh=0.712. Note that when the
friction coefficient 77 is positive, the contact end at Yy =a becomes the trailing
end of the contact and the normalized lateral contact stress 0, (0, y) / (P/ (b—a)) has

sharp transitions at that point. However, when the friction coefficient is negative,

the contact end at y = a becomes the leading end of the contact and the normalized

lateral stress o, (0, y)/ (P/ (b—a)) has smooth transitions at that point. Examining
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Figure 4.37, the effect of the friction coefficient 77 on the lateral contact stress is

very remarkable. The larger the absolute value of the friction coefficient is, the
greater the normalized lateral contact stress around the trailing and the leading
ends. Figure 4.38 is provided to demonstrate the influences of the normalized

contact length (h—a)/h on the normalized lateral contact stress
o, 0, y)/(P/ (b—a)) for n=0.3 and yh=0.712. As seen in the figure, when the

normalized contact length (h—a)/h is increased from 0.1 to 1.0, the magnitude of

the lateral contact stress decreases slightly on and outside the contact zone. Thus
we can conclude that the size of the coating thickness relative to the contact length
can be decreased to reduce the possibility of damage due to the herringbone cracks

near the trailing end. Figure 4.39 shows the influences of elastic modulus ratio

E. / E on the normalized lateral contact stress 0, (0, y) / (P/ (b—a)) for 7=0.3 and
yh=0.712. As can be seen in this figure, the effect of elastic modulus ratio E, / E,
on normalized lateral contact stress 0, (0, y) / (P/ (b—a)) is very significant on and

outside the contact zone. If E, / E isincreased from 0.6 to 1.5, itis observed that

the magnitude of the lateral contact stress decreases remarkably. Hence, the option

of increasing the ratio E, / E, can be used in the graded coating so as to prevent
the risk of damage around the trailing end of the contact region. Figure 4.40 shows
the effect of Elastic modulus ratio E / E. on the normalized lateral contact stress
o, (0, y)/(P/(b—a)) for =03, (b—a)/h=1.0 and yh=0.712. As observed in
this figure, variation of the elastic modulus ratio E_/E_ has no significant effect

on the normalized lateral contact stress o, (0, y)/ (P/(b—a)).

4.4 Homogeneous coating

The surface and interfacial contact stresses of an orthotropic homogeneous coating
under the action of complete contact loadings are given in Figures 4.42-4.52. The
view of the circular stamp problem is presented in Figure 4.41. The comparisons

of the normalized contact and the lateral contact stresses evaluated utilizing the
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analytic and FE techniques are presented for various problem parameters in Figures
4.42-4.44: (b—a)/h=1.0 and E /E, =13 (Alumina) in Figure 4.42.
(b—a)/h=04 and E /E =13 (Alumina) in Figure 4.43. (b—a)/h=10,
E. / E, =1.5 in Figure 4.44. It can be inferred from these figures that the results of

analytical and computational methods agree with each other for various problem
parameters, which is the indication of the accuracy for both methods. Some
detailed results showing the influences of problem parameters on surface contact
stresses are also given. Figure 4.45 demonstrates the effects of friction

coefficient 77 on the normalized contact stress o (0, y)/ (P/(b—a)) and on the
lateral contact stress o, (0, y)/(P/(b—a)). Observing Figure 4.45a the contact
stress o (0, y)/ (P/(b—a)) slants toward the positive y-direction, as the friction
coefficient 7 is raised from O to 0.45. Figure 4.45b reveals that the magnitude of
the lateral contact stress o, (0, y) / (P/(b—a)) elevates as the friction coefficient 7

is raised from O to 0.6. Figure 4.46 illustrates the effects of the normalized contact

length (b—a)/h on the normalized contact stress o _ (0, y)/(P/ (b—a)) and on

the lateral contact stress o, (0, y)/(P/(b—a)). One can infer from Figure 4.46 that

the variation of the normalized contact length (b— a)/ h has no effect on the contact
stresses. Figure 4.47 shows the effects the variations in the elastic modulus ratio

E. /Ey on the normalized contact stress o (0, y)/(P/ (b—a)) and the lateral
contact stress o, (0, y)/(P/ (b—a)). Observing Figure 4.47a the contact stress
0,.(0,y)/(P/(b—a)) slants toward the positive y-direction, as the elastic modulus
ratio E, /E, is increased from 0.6 to 1.5. Figure 4.47b reveals that the
magnitude of the lateral contact stress o O, y) / (P/(b—a)) decreases
significantly as the elastic modulus ratio E| / E is increased from 0.6 to 1.5. Thus
the option of selecting orthotropic materials having higher E / E, ratio can be

assessed to prevent surface crackings. Figure 4.48 reveals the influences of the

elastic modulus ratio E _/E_ on the normalized contact stress

0,.(0,y)/(P/(b-a)) and on the lateral contact stress &,,(0,y)/(P/(b—a)). It can
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be inferred from this figure that the variation of the elastic modulus ratio E, /E,

has no significant influence on the contact stresses. Figure 4.49 demonstrates the

effects of friction coefficient on the normalized interfacial contact stress

0, (h,y)/(P/(b—a)) and on the interfacial shear stress o, (h,y)/(P/(b—a)).

Examining Figure 4.49a, the magnitude of the contact stress o (h, y)/ (P/(b—a))
increases remarkably, as the friction coefficient 7 is raised from O to 0.6. Figure

4.49b 1illustrates that the magnitude of the interfacial shear stress

0,,(h,y)/(P/(b—a)) increases significantly as the friction coefficient 77 is raised

from 0 to 0.6. Figure 4.50 reveals the effect of the normalized contact length

(b—a)/h on the normalized interfacial contact stress o (1, y)/(P/(b—a)) and on
the interfacial shear stress o (h,y)/(P/(b—a)). Observing Figure 4.50, the
magnitude of the interfacial contact stresses o (h, y)/ (P/(b—a)) and
o, (h, y)/(P/ (b—a)) increase remarkably, as the normalized contact length
(b—a)/ h is raised from 0.4 to 0.7. In Figure 4.51, the influences of the elastic
modulus ratio E,/E, on the normalized interfacial contact stress
0, (h,y)/(P/(b—a)) and on the interfacial shear stress &, (h,y)/(P/(b—a)) are

plotted. As seen in Figure 4.51, the magnitude of the interfacial contact stresses

0. (h,y)/(P/(b-a)) and o, (h,y)/(P/(b—a)) increase remarkably, as the elastic
modulus ratio E, /E is increased from 0.6 to 1.5. Figure 4.52 illustrates the
influences of the elastic modulus ratio E /E, on the normalized interfacial
contact stress O, (h,y)/(P/(b—a)) and on the interfacial shear  stress
0, (h,y)/(P/(b—a)). It can be inferred from this figure that the variation of

the elastic modulus ratio E /E, has no significant influence on the interfacial

contact stresses.
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4.5 Tables

Table 4.1: Convergence of the normalized contact stresses evaluated for various
values of Yh, N and r regarding the flat stamp, 7=0.3, (b—a)/h=0.4,

r=Q2y-(b+a)/b-a).

0.0,y
N P/(b—a)
yh=0.1 yh=0.6 yh=1.0
1 —0.828 —-0.821 -0.815
2 —-0.831 —-0.838 —-0.843
4 —-0.832 —0.845 —-0.853
r=-0.6 6 —-0.832 —-0.843 —-0.850
10 —-0.832 —-0.843 —-0.850
14 -0.832 —-0.843 —-0.850
1 —-0.755 —-0.763 -0.770
2 —-0.756 —-0.774 —-0.786
r=0.6 4 —-0.757 -0.776 —-0.790
6 —-0.757 —-0.775 —-0.789
10 —-0.757 -0.775 —-0.789
14 —-0.757 —-0.775 —0.789
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Table 4.2: Convergence of the normalized contact stresses evaluated for various
values of yh, N and r regarding the flat stamp, 7=0.3, (b—a)/h =1.0,

r=(2y—(b+a))/(b—a).

0.(0,y)
N P/(b—a)
yh=0.1 yh=0.6 yh=1.0
1 -0.828 —0.820 ~0.814
2 ~0.831 —0.848 —0.859
4 -0.835 ~0.865 —0.882
r=-0.6 6 —0.834 —0.861 ~0.876
10 ~0.834 ~0.861 ~0.876
14 ~0.834 ~0.861 ~0.876
1 —0.755 —0.764 ~0.771
2 -0.758 —0.783 ~0.801
r=0.6 4 -0.759 —0.789 -0.810
6 -0.759 —0.787 —0.806
10 -0.759 ~0.787 —0.807
14 -0.759 ~0.787 —0.807
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Table 4.3: Normalized forces P/ /7% tan@)(b—a)) evaluated for various magnitudes

of the friction coefficient 77, the normalized non-homogeneity constant ¥/ and the
normalized contact length (b — a)/h regarding the triangular stamp for which the

coating surface is Alumina

P
n U, tan@)(b—a)

yh=01  yh=04 yh=07  yh=10

~0.6 2.034 2.222 2416 2.615
~0.3 2.193 2.383 2.578 2.776

(b-a)/h=04 0.0 2354 2.543 2735 2.929
0.3 2513 2.698 2.883 3.070

0.6 2.668 2.843 3.019 3.195

~0.6 2.054 2.335 2.635 2.954

~0.3 2213 2.504 2.813 3.136

(b-a)/h=07 0.0 2375 2.674 2.987 3312
0.3 2.534 2.838 3.153 3.476

0.6 2.688 2.994 3.308 3.627

~0.6 2.066 2414 2.799 3.219

~0.3 2.224 2.590 2.991 3.424

(b-a)/h=10 0.0 2.384 2.767 3.182 3.624
0.3 2.542 2.940 3.366 3.814

0.6 2.693 3.105 3.541 3.996
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Table 4.4: Normalized forces P/ (/7% tan@)(b—a)) evaluated for various magnitudes

of the friction coefficient 77, the normalized non-homogeneity parameter ¥/ and
the normalized contact length (b —a)/h regarding the triangular stamp,
E. / E, =0.6.

P
I, U, tan@)(b—-a)

yh=0.1  yh=04  yh=07  yh=10

~0.60 2343 2.549 2.761 2.977

~030  2.448 2.650 2.857 3.066

(b—a)/h=04 000 2554 2.751 2.950 3.151
030  2.660 2.849 3.040 3.232

060 2766 2.945 3.125 3.306

—0.60 2356 2.668 3.002 3.354

030 2463 2777 3.108 3.455

(b—a)/h=07 000  2.572 2.885 3.213 3.553
030  2.681 2.992 3.315 3.648

060  2.790 3.098 3.414 3.736

~0.60  2.359 2.751 3.182 3.652

~030  2.468 2.866 3.301 3.770

(b—a)/h=10 000  2.578 2.983 3.420 3.887
030  2.689 3.099 3.538 4.001

060  2.800 3.224 3.653 4.111
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Table 4.5: Normalized forces P/ (U, tan(@)(b—a)) evaluated for various

magnitudes of the friction coefficient 77, the normalized non-homogeneity
parameter yh and the normalized contact length (b —a)/h regarding the triangular
stamp, Ex/Ey =1.5.

P
n U, tan(@)(b—a)

yh=0.1 yh=04  yh=07  yh=10

~0.60 1.970 2.155 2.345 2.540
~0.30 2.139 2.327 2.519 2715

(b-a)/h=04  0.00 2311 2.499 2.689 2.882
0.30 2.481 2.664 2.849 3.034

0.60 2.643 2.818 2.992 3.167

~0.60 1.993 2267 2.560 2.873

~0.30 2.162 2.448 2.751 3.071

(b-a)h=07 000 2333 2.629 2.939 3.262
0.30 2.502 2.804 3.116 3438

0.60 2.663 2.968 3.280 3597

~0.60 2.007 2.347 2.722 3.133

~0.30 2.175 2.534 2.928 3354

(b-a)h=10 000 2.344 2.723 3.132 3.570
030 2510 2.905 3327 3.772

0.60 2.666 3.076 3510 3.963
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Table 4.6: Normalized forces P/ (U, tan@)(b—a)) evaluated for various

magnitudes of the friction coefficient 7, the normalized non-homogeneity

parameter yi and the normalized contact length (b - )/ regarding the triangular

stamp, E /E. =0.6.

P
7, U, tan(0)(b—a)

yh=01 yh=04  yh=07  yh=10

—-0.60 2.116 2.319 2.528 2.741

-0.30 2.283 2.488 2.698 2910

(b—a)/h=0.4 0.00 2.454 2.658 2.864 3.072
0.30 2.623 2.822 3.021 3.222

0.60 2.788 2.978 3.166 3.355

-0.60 2.130 2.433 2.756 3.097

-0.30 2.298 2.613 2.944 3.292

(b—a)/h=0.7 0.00 2.470 2.794 3.131 3.481
0.30 2.641 2971 3.310 3.659

0.60 2.807 3.140 3.479 3.826

—-0.60 2.133 2.505 2914 3.361

—-0.30 2.300 2.692 3.119 3.578

(b—a)/h=1.0 0.00 2.469 2.880 3.323 3.793
0.30 2.637 3.066 3.521 3.998

0.60 2.799 3.245 3.712 4.196
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Table 4.7: Normalized forces P/ 07 tan(@)(b—a)) evaluated for various
magnitudes of the friction coefficient 7), the normalized non-homogeneity
parameter yh and the normalized contact length (b —a)/h regarding the triangular
stamp, E_/E_ = 3.0.

P
7 1., tan@)(b—a)

yh=0.1 yh=04  yh=0.7 yh=1.0

-0.60 2.004 2.187 2.375 2.567

—-0.30 2.158 2.342 2.531 2.772

(b—a)/h=0.4 0.00 2.313 2.497 2.682 2.870
0.30 2.467 2.645 2.825 3.005

0.60 2.615 2.785 2.955 3.126

-0.60 2.027 2.300 2.592 2.901

-0.30 2.181 2.463 2.763 3.076

(b—a)/h=0.7 0.00 2.336 2.626 2.930 3.245
0.30 2.490 2.784 3.089 3.401

0.60 2.637 2.933 3.237 3.545

-0.60 2.042 2.382 2757 3.166
-0.30 2.195 2.552 2.942 3.362

(b—a)/h=1.0 0.00 2.350 2.722 3.124 3.553
0.30 2.501 2.887 3.300 3.734
0.60 2.646 3.045 3.467 3.907
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Table 4.8: Normalized forces P/ (,uxy (b—a)) evaluated for various magnitudes of
the friction coefficient 77, the normalized non-homogeneity parameter yh and the
normalized contact length (b - a)/ h regarding the circular stamp, for which the

coating surface is Alumina, a/ R=0, b/ R=0.02.

P
n U (b—a)

yh=01  yh=04  yh=07  yh=1.0

0.00 0.01169 0.01235 0.01300 0.01366
0.15 0.01168 0.01233 0.01299 0.01365
(b-a)h=04 0.30 0.01163 0.01229 0.01294 0.01360

0.45 0.01156 0.01221 0.01286 0.01352
0.60 0.01146 0.01211 0.01276 0.01341

0.00 0.01179 0.01285 0.01394 0.01506
0.15 0.01177 0.01283 0.01393 0.01504
(b-a)/h=0.7 0.30 0.01173 0.01279 0.01388 0.01499
0.45 0.01166 0.01271 0.01380 0.01491
0.60 0.01156 0.01261 0.01368 0.01479

0.00 0.01185 0.01325 0.01473 0.01628
0.15 0.01183 0.01324 0.01472 0.01626

(b-a)/h=1.0 0.30 0.01179 0.01319 0.01466 0.01621
0.45 0.01172 0.01311 0.01458 0.01612
0.60 0.01162 0.01300 0.01447 0.01600
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Table 4.9: Normalized forces P/ 7% (b—a)) evaluated for various magnitudes of

the friction coefficient 7], the normalized non-homogeneity parameter 7/ and the
normalized contact length (b—a)/h regarding the circular stamp, «/R=0,
b/R=0.02 E,|E,=06.

.
7 i, (b—a)

yh =0.1 yh=04 yh=0.7 yh=1.0

0.00 0.01270 0.01337 0.01405 0.01474
0.15 0.01269 0.01337 0.01405 0.01473
(b-a)/h=0.4 0.30 0.01267 0.01335 0.01403 0.01471

0.45 0.01265 0.01332 0.01400 0.01468
0.60 0.01261 0.01329 0.01396 0.01464

0.00 0.01283 0.01431 0.01586 0.01748
0.15 0.01283 0.01430 0.01585 0.01747

(b-a)/h=1.0 0.30 0.01281 0.01428 0.01583 0.01745
0.45 0.01279 0.01426 0.01581 0.01742
0.60 0.01275 0.01422 0.01577 0.01738
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Table 4.10: Normalized forces P/ (,ny (b—a)) evaluated for various values of the
friction coefficient 7, the normalized non-homogeneity parameter yi and the

normalized contact length (b—a)/ h regarding the circular stamp, a/ R=0,
b/R=0.02 EX/E), =1.5.

_r
p H0b-a)

yh=0.1 yh=04  yh=07  yh=1.0

0.00 0.01150 0.01213 0.01278 0.01343
0.15 0.01146 0.01211 0.01276 0.01341
(b-a)/n=0.4 0.30 0.01141 0.01206 0.01270 0.01336
0.45 0.01133 0.01197 0.01261 0.01326
0.60 0.01121 0.01185 0.01249 0.01313

0.00 0.01164 0.01303 0.01449 0.01602
0.15 0.01162 0.01301 0.01447 0.01600

(b-a)h=1.0 0.30 0.01157 0.01295 0.01441 0.0159%4
0.45 0.01149 0.01286 0.01431 0.01583
0.60 0.01137 0.01274 0.01418 0.01569
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Table 4.11: Normalized forces P/ (U, (b—a)) evaluated for various magnitudes
of the friction coefficient 7], the normalized non-homogeneity parameter yh and

the normalized contact length (b—a)/ h regarding the circular stamp, a/R=0,
b/R=0.02, E_/E.=0.6.

P
N H0-a)

yh=0.1 yh=04 yh=0.7 yh=1.0

0.00 0.01220 0.01290 0.01361 0.01432
0.15 0.01218 0.01289 0.01359 0.01430
(b-a)/h=0.4 0.30 0.01214 0.01284 0.01354 0.01425
0.45 0.01206 0.01276 0.01346 0.01417
0.60 0.01196 0.01265 0.01335 0.01405

0.00 0.01232 0.01382 0.01540 0.01707
0.15 0.01230 0.01380 0.01539 0.01705

(b—a)/h=1.0 0.30 0.01226 0.01375 0.01534 0.01699
0.45 0.01218 0.01367 0.01525 0.01690
0.60 0.01208 0.01356 0.01513 0.01677
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Table 4.12: Normalized forces P/ (,uxy (b—a)) evaluated for various magnitudes of
the coefficient of friction 77, the normalized non-homogeneity parameter ¥4 and the

normalized contact length (b—a)/ h regarding the circular stamp, a/R=0,
b/R=0.02, E /E.=3.0.

P
n 00

yh=0.1 yh=04 yh=0.7 yh=1.0

0.00 0.01149 0.01212 0.01276 0.01339
0.15 0.01147 0.01211 0.01274 0.01338
(b-a)/h=04 0.30 0.01143 0.01206 0.01270 0.01333

0.45 0.01136 0.01199 0.01262 0.01325
0.60 0.01127 0.01189 0.01252 0.01315

0.00 0.01166 0.01302 0.01445 0.01594
0.15 0.01164 0.01300 0.01444 0.01593

(b—a)/h=1.0 0.30 0.01160 0.01296 0.01439 0.01588
0.45 0.01153 0.01288 0.01431 0.01580
0.60 0.01144 0.01278 0.01420 0.01568
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Table 4.13: Centerline position c/ R of the circular stamp problem for various

magnitudes of the friction coefficient 7), the normalized non-homogeneity

parameter yh and normalized contact length (b—a)/h, a/R=0, b/R=0.02, for

which the coating surface is Alumina.

¢/R

yh=0.1  yh=04 yh=0.7 yh=10

0.00 0.01000 0.01000 0.01000 0.01000
0.15 0.01035 0.01032 0.01030 0.01028
(b-a)/h=0.4 0.30 0.01070 0.01064 0.01059 0.01055

0.45 0.01103 0.01095 0.01088 0.01082
0.60 0.01136 0.01126 0.01117 0.01109

0.00 0.01000 0.01000  0.01000 0.01000
0.15 0.01034 0.01032  0.01029 0.01027
(b—a)/h=0.7 0.30 0.01068 0.01063 0.01058 0.01053
0.45 0.01102 0.01094  0.01087 0.01079
0.60 0.01135 0.01125 0.01115 0.01105

0.00 0.01000 0.01000 0.01000 0.01000
0.15 0.01034 0.01032 0.01029 0.01027

(b—a)/h=1.0 0.30 0.01068 0.01063 0.01058 0.01053
0.45 0.01102 0.01094 0.01087 0.01079
0.60 0.01135 0.01125 0.01115 0.01105

81



Table 4.14: Centerline position C/ R of the circular stamp problem for various

magnitudes of friction coefficient 7], the normalized non-homogeneity parameter
yh and normalized contact length (b—a)/ h, a/ R=0, b/ R=002, E, / E =0.6.

¢/R

yh=0.1 yh=0.4 yh=0.7 yh=1.0

0.00 0.01000 0.01000 0.01000 0.01000
0.15 0.01021 0.01019 0.01017 0.01015
(b-a)/h=04 030 0.01041 0.01037 0.01034 0.01030
0.45 0.01062 0.01056 0.01050 0.01045
0.60 0.01082 0.01074 0.01067 0.01060

0.00 0.01000 0.01000 0.01000 0.01000
0.15 0.01021 0.01019 0.01017 0.01015

(b-a)h=1.0 030 0.01042 0.01037 0.01033 0.01029
0.45 0.01063 0.01056 0.01049 0.01043
0.60 0.01084 0.01074 0.01066 0.01057

82



Table 4.15: Centerline position c/ R of the circular stamp problem for various
magnitudes of the friction coefficient 7], the normalized non-homogeneity
parameter yh and normalized contact length (h—a)/h, a/R=0, b/R=0.02,
E / E =15.

¢/R

yh=0.1 yh=04 yh=0.7 yh=1.0

0.00 0.01000 0.01000 0.01000  0.01000
0.15 0.01038 0.01035 0.01033  0.01030
(b-a)/h=0.4 0.30 0.01075 0.01070 0.01065  0.01061

0.45 0.01112 0.01104 0.01097  0.01090
0.60 0.01148 0.01138 0.01128  0.01119

0.00 0.01000 0.01000 0.01000  0.01000
0.15 0.01037 0.01034 0.01032  0.01029

(b—a)/h=1.0 0.30 0.01074 0.01069 0.01063  0.01058
0.45 0.01110 0.01102 0.01095  0.01087
0.60 0.01145 0.01135 0.01125  0.01115
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Table 4.16: Centerline position c/ R of the circular stamp problem for various
magnitudes of the friction coefficient 7], the normalized non-homogeneity
parameter yh and normalized contact length (b—a)/h, a/R=0, b/R=0.02,
E /E. =0.6.

¢/R

yh=01  yh=04  yh=07 yh=10

0.00 0.01000 0.01000 0.01000  0.01000
0.15 0.01035 0.01032 0.01030  0.01028
(b—a)/h=0.4 0.30 0.01070 0.01064 0.01060  0.01055

0.45 0.01104 0.01096 0.01089  0.01082
0.60 0.01137 0.01127 0.01118  0.01109

0.00 0.01000 0.01000 0.01000  0.01000
0.15 0.01035 0.01032 0.01030  0.01028

(b—a)/h=1.0 0.30 0.01069 0.01064 0.01060  0.01054
0.45 0.01103 0.01096 0.01088  0.01080
0.60 0.01137 0.01127 0.01117  0.01107
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Table 4.17: Centerline position c/ R of the circular stamp problem for various
magnitudes of the friction coefficient 7], the normalized non-homogeneity
parameter yh and normalized contact length (b—a)/h, a/R=0, b/R=0.02,
E_JE =3.0.

c/R

yh=01  yh=04  yh=0.7  yh=10

0.00 0.01000 0.01000 0.01000 0.01000
0.15 0.01034 0.01032 0.01029 0.01027
(b—a)/h=0.4 0.30 0.01068 0.01063 0.01058 0.01054

0.45 0.01101 0.01094 0.01087 0.01081
0.60 0.01134 0.01124 0.01116 0.01107

0.00 0.01000 0.01000 0.01000 0.01000
0.15 0.01034 0.01031 0.01029 0.01026

(b-a)/h=1.0 0.30 0.01067 0.01062 0.01057 0.01052
0.45 0.01100 0.01092 0.01085 0.01078
0.60 0.01132 0.01122 0.01113 0.01103
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Figure 4.1: Gradation of orthotropic stiffness constants for ¥4 > 0.0.
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Figure 4.2: Comparison plots of the normalized stresses evaluated by the
analytical and computational procedures for a flat stamp problem, (b —a)/h = 1.0,

n =0.3, yh=0.1. a) Normalized contact stress, b) Normalized lateral contact
stress.
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Figure 4.3: Comparison plots of the normalized stresses evaluated by the
analytical and computational procedures for a flat stamp problem,
(b-a)/h=1.0,7=0.3, yh=0.712. a) Normalized contact stress, b)

Normalized lateral contact stress.
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Figure 4.4: Scaled deformed shape of the contact region, which is produced by
using the FE solution of a flat stamp problem, (b—a)/h=1.0, 7=0.3,
yh=0.712.
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Figure 4.5: Effect of normalized non-homogeneity parameter yh variations on the

normalized contact stress for a flat stamp problem, (b — a )/h =1.0 , 7 =0.3.
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Figure 4.6: Effect of friction coefficient 77 variations on the normalized contact

stress for a flat stamp problem, (h—a)/h=1.0, yh=0.712.
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Figure 4.7: Effect of normalized contact length (b—a)/h variations on the

normalized contact stress for a flat stamp problem, 7 =0.3, y h =0.712.
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Figure 4.8: Effect of elastic modulus ratio E / E, variations on the normalized

contact stress for a flat stamp problem, (b —a)/h=1.0, 7=0.3, yh=0.712.
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Figure 4.9: Effect of elastic modulus ratio E /E, variations on the normalized
contact stress for a flat stamp problem, (b —a)/h=1.0, 7=0.3, yh=0.712.
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Figure 4.10: Effect of normalized non-homogeneity parameter yh variations on
the normalized lateral contact stress for a flat stamp problem, (b - a)/h =1.0,
n=0.3.
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Figure 4.11: Effect of friction coefficient 77 variations on the normalized lateral

contact stress for a flat stamp problem, (b —a)/h =1.0, y h =0.712.
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Figure 4.12: Effect of normalized contact length (b—a)/h variations on the

normalized lateral contact stress for a flat stamp problem, 7 =0.3, y h=0.712.
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Figure 4.13: Effect of elastic modulus ratio E_ / E, variations on the normalized

lateral contact stress for a flat stamp problem, (h—a)/h=1.0, 7=0.3,
yh=0.712.
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Figure 4.14: Effect of elastic modulus ratio E, /E_ variations on the normalized

lateral contact stress for a flat stamp problem, (b—a)/h=1.0, n = 0.3, yh=0.712.
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Figure 4.15: Comparison plots of the normalized stresses evaluated by the
analytical and computational procedures for a triangular stamp problem,
(b—a)/h=1.0,7=0.3, yh=0.1. a) Normalized contact stress, b) Normalized

lateral contact stress.
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Figure 4.16: Comparison plots of the normalized stresses evaluated by the
analytical and computational procedures for a triangular stamp problem,
(b—a)/h=1.0,7=0.3, yh=0.712. a) Normalized contact stress, b) Normalized

lateral contact stress.
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Figure 4.17: Scaled deformed shape of the contact region, which is produced by
using the FE solution of a triangular stamp problem, 7=0.3, yh=0.712,

(b—a)/h=1.0.
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Figure 4.18: Effect of normalized non-homogeneity parameter yh variations on
the normalized contact stress for a triangular stamp problem, (h—a)/h=1.0,
n=0.3.
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Figure 4.19: : Effect of friction coefficient 77 variations on the normalized contact
stress for a triangular stamp problem, (h—a)/h=1.0, yh=0.712.
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Figure 4.20: Effect of normalized contact length (b—a)/h variations on the

normalized contact stress for a triangular stamp problem, 7 =0.3, yh=0.712.
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Figure 4.21: Effect of elastic modulus ratio E_ / E variations on the normalized

contact stress for a triangular stamp problem, (h—a)/h=1.0, 7=0.3, yh=0.712.
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Figure 4.22: Effect of elastic modulus ratio E, /E_ variations on the normalized
contact stress for a triangular stamp problem, (h—a)/h=1.0, 7=0.3, yh=0.712.
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Figure 4.23: Effect of normalized non-homogeneity parameter yh variations on
the normalized lateral contact stress for a triangular stamp problem, (b —a)/h =1.0,
n=0.3.
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Figure 4.24: Effect of friction coefficient 77 variations on the normalized lateral

contact stress for a triangular stamp problem, (b—a)/h=1.0, yh=0.712.
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Figure 4.25: Effect of normalized contact length (b—a)/h variations on the
normalized lateral contact stress for a triangular stamp problem, 7=0.3,
yh=0.712.
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Figure 4.26: Effect of elastic modulus ratio E / E, variations on the normalized

lateral contact stress for a triangular stamp problem, (h—a)/h=1.0, 7=0.3,
yh=0.712.
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Figure 4.27: Effect of elastic modulus ratio E, /E_ variations on the normalized
lateral contact stress for a triangular stamp problem, (h—a)/h=1.0, 7=0.3,
yh=0.712.

104



EUNNNNNNY

Figure 4.28: Scaled deformed shape of the contact region, which is produced by
using the FE solution of a circular stamp problem, 7=0.3, yh=0.712,
(b—a)/h=1.0.
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Figure 4.29: Comparison plots of the normalized stresses evaluated by the analytical
and computational procedures for a circular stamp problem, (b—a)/h=1.0, 7 =0.3,

yh =0.1. a) Normalized contact stress, b) Normalized lateral contact stress.
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Figure 4.30: Comparison plots of the normalized stresses evaluated by the
analytical and computational procedures for a circular stamp problem,
(b—a)/h=1.0,17=0.3, yh=0.712. a) Normalized contact stress, b) Normalized

lateral contact stress.
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Figure 4.31: Effect of normalized non-homogeneity parameter yh variations on
the normalized contact stress for a circular stamp problem, (b—a)/h=1.0, 7=0.3.
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Figure 4.32: Effect of friction coefficient 7 variations on the normalized contact
stress for a circular stamp problem, (h—a)/h=1.0, yh=0.712.
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Figure 4.33: Effect of normalized contact length (b—a)/h variations on the
normalized contact stress for a circular stamp problem, 7=0.3, yh=0.712.
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Figure 4.34: Effect of elastic modulus ratio E, /E, variations on the normalized

contact stress for a circular stamp problem, (b—a)/h=1.0, 7=0.3, yh=0.712.
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Figure 4.35: Effect of elastic modulus ratio E, /E_ variations on the normalized

lateral contact stress for a circular stamp problem, (h—a)/h=1.0, 7=0.3,
yh=0.712.
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Figure 4.36: Effect of normalized non-homogeneity parameter yh variations on
the normalized lateral contact stress for a triangular stamp problem, (h—a)/h =1.0,
n=0.3.
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Figure 4.37: Effect of friction coefficient 77 variations on the normalized lateral

contact stress for a circular stamp problem, (h—a)/h=1.0, yh=0.712.
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Figure 4.38: Effect of normalized contact length (b—a)/h variations on the

normalized lateral contact stress for a circular stamp problem, 7 =0.3, yh=0.712.
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Figure 4.39: Effect of elastic modulus ratio E_ / E, variations on the normalized

lateral contact stress for a circular stamp problem, (h—a)/h=1.0, 7=0.3,
yh=0.712.
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Figure 4.40: Effect of elastic modulus ratio E /E_ variations on the normalized

lateral contact stress for a circular stamp problem, (h—a)/h=1.0, 7=0.3,
yh=0712.
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Figure 4.41: The complete contact problem of an orthotropic homogeneous

coating.
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Figure 4.42: Comparison plots of the normalized surface stresses evaluated by the
analytical and computational procedures for a flat stamp problem of the
homogeneous  orthotropic ~ Alumina  coating, (b—a)/h=1.0, 7 = 0.3, a)

Normalized contact stress, b) Normalized lateral contact stress.
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Figure 4.43: Comparison plots of the normalized surface stresses evaluated by the
analytical and computational procedures for a flat stamp problem of the
homogeneous orthotropic Alumina coating, (b—a)/h=0.4, 7=0.3, a) Normalized

contact stress, b) Normalized lateral contact stress.
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Figure 4.44: Comparison plots of the normalized surface stresses evaluated by the
analytical and computational procedures for a flat stamp problem of an
homogeneous orthotropic coating, (h—a)/h=1.0,7=0.3, E,/E, =15, a)
Normalized contact stress, b) Normalized lateral contact stress.
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Figure 4.45: Effect of friction coefficient 77 variations on the normalized surface

stresses for a flat stamp problem of the orthotropic homogeneous Alumina coating,
(b—a)/h=1.0, a) Normalized contact stress, b) Normalized lateral contact stress.
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Figure 4.46: Effect of normalized contact length (b—a)/h variations on the

normalized surface stresses for a flat stamp problem of the orthotropic
homogeneous Alumina coating, 7=0.3, a) Normalized contact stress, b)

Normalized lateral contact stress.

119



-0.7 A
0.0,y
P/(b-a) 0-8 7
-0.9 A
-1.0
1.0 1.0
2y—(b+a)
(b—-a)
— EJE =06
....... EX/Ey =1.0
———EJE =15
0,0.y)
P/b—a) 0 -

Figure 4.47: Effect of elastic modulus ratio £, /E, variations on the normalized

surface stresses for a flat stamp problem of orthotropic homogeneous coatings,
(b—a)/h=1.0, 7=03, a) Normalized contact stress, b) Normalized lateral

contact stress.
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Figure 4.48: Effect of elastic modulus ratio E_/E_ variations on the normalized
surface stresses for a flat stamp problem of orthotropic homogeneous coatings,

(b—a)/h=1.0, 7=0.3, a) Normalized contact stress,

contact stress.
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Figure 4.49: Effect of friction coefficient 7 variations on the normalized

interfacial stresses for a flat stamp problem of the orthotropic homogeneous
Alumina coating, (b—a)/h=1.0, a) Normalized normal stress, b) Normalized

shear stress.
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Figure 4.50: Effect of normalized contact length (b—a)/h variations on the
normalized interfacial stresses for a flat stamp problem of the orthotropic

homogeneous Alumina coating, 7=0.3, a) Normalized normal stress,

Normalized shear stress.
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Figure 4.51: Effect of elastic modulus ratio £, /E, variations on the normalized

interfacial stresses for a flat stamp problem of orthotropic homogeneous coatings,
(b—a)/h=1.0, n=0.3, a) Normalized normal stress, b) Normalized shear stress.
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Figure 4.52: Effect of elastic modulus ratio E_/E_ variations on the normalized

interfacial stresses for a flat stamp problem of orthotropic homogeneous coatings,
(b—a)/h=1.0, n=0.3, a) Normalized normal stress, b) Normalized shear stress.
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CHAPTER 5

CONCLUDING REMARKS

5.1 Conclusions

This study presents analytic and finite element based studies for contact problems
of orthotropic FGM coatings which are bonded to isotropic homogeneous
substrates without any interfacial defects. The analytic procedure is based on the
derivation of a SIE. The comparison figures given in Chapter 4 reveals that the
results computed two distinct procedure agree with each other with a very good
accuracy, which indicates the validity of both methods. The strengths of the
singularities described for the orthotropic FGM coating are independent to the
coating thickness and the non-homogeneity parameter however, dependent on the
engineering parameters and the friction coefficient. Parametric analyses are
provided in Section 4 regarding complete and incomplete punch loadings. In the
complete loading, the FGM surface is exposed to frictional contact tractions by an
inelastic flat stamp. In the related case, the contact stresses tend to infinity at both
leading and trailing ends of the rigid stamp for which the normal point load P is
not a function of the contact length. However, for the incomplete contact problems,
loadings due to rigid triangular and circular stamp profiles are the functions of the
contact size. Among the incomplete contact problems, the circular stamp problem
solutions take more time compared to the triangular stamp problem. Since the
circular stamp problem includes numerically calculated double integrals. In the
FEA of all the stamp problems, homogeneous FE technique is used and the
orthotropic engineering parameters are defined at the centroids of the finite
elements. Compatible results of the analytic and finite element based procedures
indicate the utility of the homogeneous FE method. Numerical results are presented

to demonstrate the effects of the non-homogeneity constant yh, the friction
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coefficient 77, the normalized contact length (b —a)/h, the elastic modulus ratio
E. / E and the elastic modulus ratio E, / E_ on the contact stresses. The effects of

the problem parameters are realized to be remarkable particularly for the lateral

contact stress O, (0, y). It is known that the existence of the lateral tensile stress

triggers the initiation of surface crackings on the ceramic materials. We can infer
for all the stamp problems that; the normalized lateral contact stress decreases as
positive elastic gradation is introduced to an orthotropic coating. Hence,
introducing elastic gradation to a coating it might be possible to avoid the contact
driven damages. If the risk of damage due to lateral contact stress is concerned, the
selection of orthotropic materials having relatively higher elastic modulus ratio

E,/E, should be also taken into account. It is also observed that the change in the

elastic modulus ratio E /E, has no significant effect on the normalized contact

and lateral contact stresses. Additionally, for all the stamp problems, the way of
decreasing the size of the coating thickness (relative to the contact length) seems

such a remarkable alternative to reduce the risk of damage.

In the computational analyses, the triangular stamp inclination angle € is taken as
small as possible whereas the circular stamp radius R is taken as large as possible
with respect to the other dimensions of the problems for the convergence purposes

of the iterative Augmented Lagrange contact algorithm.

As far as the normalized contact forces are concerned, when the coating gets stiffer
in the thickness direction, the normalized contact forces increase significantly for
all the stamp problems for any combination of the other problem parameters. When
the magnitude of the friction coefficient 77 is raised, the normalized contact force
increases significantly in the triangular stamp case and decreases slightly in
the case of circular stamp problem. When the coating thickness is reduced, the
normalized contact force increases slightly for the triangular stamp case and

increases significantly for the circular stamp case. We can also infer from these

tables that when the elastic modulus ratios E, /E, and E, /E. are increased, then

the normalized contact forces decrease for all the incomplete stamp problems
regardless of the change in other parameters of the problems. It should be also

emphasized that the effect of the variations of the normalized non-homogeneity
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parameter yh on the normalized forces become much more significant for the

circular and triangular stamp cases, as the coating gets thinner.

Some results investigating the behavior of homogeneous orthotropic coatings
under contact loads are presented in this study. It is shown by the comparison
figures that the developed analytical and computational approaches work
accurately in the homogeneous coating cases. The homogeneous coatings are under
the risks of interface debonding and the surface damages when they are exposed to
contact loadings. Therefore, in the contact analysis of orthotropic homogeneous
coatings, the effects problem parameters on surface and interfacial stresses are
illustrated. For that reason, the effect of problem parameters on the interfacial and

surface stresses are examined. When orthotropic materials having greater elastic

modulus ratio E, / Ey are selected as a coating material, the risks of surface

crackings are reduced however the risks of interfacial debonding is increased in
that case. Therefore, depending on the application, an optimization should be

carried out during selection of the orthotropic material as far as the effect of the

elastic modulus ratio E_ / E | on the contact stresses are concerned. Increasing the

coating thickness, it could be possible to lower the delamination risks without
providing any negative effect on the surface resistance of the coating surface to the
contact loadings. Finally, if the frictional forces are increased the surface and
interfacial stresses raise, which may encourage the surface and interfacial failures

due to the contact loads.

5.2 Future work

This study can be extended to a partial slip contact problem of an orthotropic FGM
coatings bonded to a homogeneous substrate. Partial slip contact problems have a
great physical correspondence because the damage caused by slip within stationary

contacts play an important role on the formation of fatigue cracks [80].

It might also important to discuss the relative motion for contact problem of
anisotropic materials since dynamic frictional elastic contact may cause dynamic

instabilities [81]. Thus a dynamic contact model between the rigid stamp and the
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FGM coating can be modelled such that the rigid stamp moves frictionally at a
constant speed relative to the FGM surface, as done in the study by Zhou and Lee

[82].

In the sliding frictional contact problems, a remarkable amount of heating due to
frictional motion between the two contacting bodies, which leads to the thermos-
elastic distortion and surface crackings at the contacting surface [83]. In addition,
temperature rise resulting from the sliding frictional contact may considerably
affect the performance of the FGM coated structures [83]. Thus a numerical study
can be handled showing the effect of heat generation on the contact stress on

orthotropic FGM coatings loaded by a rigid stamp.
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APPENDIX A

ASYMPTOTIC EXPANSION COEFFICIENTS

The asymptotic expansion coefficients of kernels that appear in (2.58) and (2.75)
are determined using MAPLE and given below. Due to the long structures of these

coefficients, the first 16 terms in (2.58) are given explicitly:
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APPENDIX B

CLOSED FORM AND RECURRENCE TYPE SOLUTIONS OF CAUCHY
PRINCIPAL VALUE INTEGRALS

The closed form solution of Cauchy principal value integrals for are calculated by

Tricomi [74] and given by

j d- ’) (1”) PP (r)dt = cot(ma)(1— ) (1+ 1)’ P4 (r)

~1<r<1l (B.1)

a+p
_2 r(a)r(n+,5+1)F( R al_r
al(n+a+ fB+1) 2

where a>-1, f>-1, a#0,1,2..., I' is the Gamma function, F() is the

Hypergeometric function. (B.1) can be reduced to the following form for

r=—(a+p)=(-10,1)as:

1 a B
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The recurrence type closed form solutions of Cauchy principal value integrals are

calculated by Guler [28]. The integral can be defined as

1- t) (1+t)
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APPENDIX C

FUNCTION THEORECTIC ANALYSES

The dominants part of the singular integral equation (2.68) have analogous
structure to that derived for isotropic FGM coatings. Therefore, a similar procedure
can be used in order to define the strength of singularities of the contact end for

orthotropic FGM coatings. The aforementioned procedure is given as follows [28]:

Let the dominant part of the SIE is given as
1
A¢(r)—lj&ds=1:(r) —l<r<l (C.1)
T s—r

where the bounded function F(r) contains part of the integral with the Fredholm

kernels. Defining
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And utilizing the consecutive Plemelj formulations
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(C.1) can be reduced to the consecutive Riemann-Hilbert problem for partially

holomorphic function ®(z) as
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Considering the corresponding homogeneous equation
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The fundamental solution X (z) and the fundamental function @(x) of (C.1) are

obtained as
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If A>0, the angle @ can be defined for:
A+i=re” (C.15a)
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Therefore (C.13) and (C.14) becomes
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However, If A=—A) <0, the angle @ can be defined as
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From equation (C.6), G becomes
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Therefore (C.13) and (C.14) becomes
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Then, o and g yield
[
a=N-— (C.26)
V4
6
=M +; (C.27)

where N and M arbitrarily selected integers which are related to the nature of the
problem.
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