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ABSTRACT

THE STATE OF THE ART IN HDR DEGHOSTING AND AN OBJECTIVE HDR
IMAGE DEGHOSTING QUALITY METRIC

Tursun, Okan Tarhan
Ph.D., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Ahmet Oğuz Akyüz

January 2016, 120 pages

Despite the emergence of new HDR acquisition methods, the multiple exposure tech-
nique (MET) is still the most popular one. The application of MET on dynamic
scenes is a challenging task due to the diversity of motion patterns and uncontrollable
factors such as sensor noise, scene occlusion and performance concerns on some plat-
forms with limited computational capability. Currently, there are already more than
50 deghosting algorithms proposed for artifact-free HDR imaging of dynamic scenes
and it is expected that this number will grow in the future. Due to the large number of
algorithms, it is a difficult and time-consuming task to conduct subjective experiments
for benchmarking recently proposed algorithms. In this thesis, first, a taxonomy of
HDR deghosting methods and the key characteristics of each group of algorithms are
introduced. Next, the potential artifacts which are observed frequently in the outputs
of HDR deghosting algorithms are defined and an objective HDR image deghosting
quality metric is presented. It is found that the proposed metric is well correlated with
the human preferences and it may be used as a reference for benchmarking current
and future HDR image deghosting algorithms.

Keywords: HDR Imaging, Deghosting, Scene Motion Analysis
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ÖZ

YDA GÖRÜNTÜ GÖLGELEME GİDERMEDE GELİŞMİŞLİK SEVİYESİ VE
YDA GÖRÜNTÜLER İÇİN NESNEL BİR GÖLGELEME GİDERME KALİTE

METRİĞİ

Tursun, Okan Tarhan
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ahmet Oğuz Akyüz

Ocak 2016 , 120 sayfa

Son zamanlarda yeni YDA görüntüleme teknikleri ortaya çıkmasına rağmen, çoklu
pozlama tekniği (ÇPT) hala en popüler teknik olmaya devam etmektedir. Ancak hare-
ket örüntülerinin çeşitliliği, algılayıcı kaynaklı gürültü, sahnedeki kapamalar ve sınırlı
hesaplama kabiliyeti olan platformlardaki performans kaygıları gibi sebeplerle ÇPT
tekniğinin hareketli sahnelere uygulanması hala zorlu bir işlemdir. Hareketli sahnele-
rin hatasız bir şekilde YDA görüntülenmesi için literatürde önerilmiş olan halihazırda
50’den fazla gölgeleme giderme algoritması bulunmakta ve bu sayının gelecekte arta-
cağı öngörülmektedir. Önerilmiş olan algoritmaların fazlalığı nedeniyle, yeni algorit-
maları karşılaştırmak üzere öznel deney yapmak zor ve zaman alıcı bir yöntem haline
gelmiştir. Bu tezde, ilk olarak, YDA gölgeleme giderme algoritmaları için bir sınıf-
landırma sunulmakta ve her sınıfın anahtar özelliklerinden bahsedilmektedir. Ardın-
dan, YDA gölgeleme algoritmalarının çıktılarında en sık gözlemlenen görsel hatalar
tanımlanmakta ve nesnel bir YDA gölgeleme giderme kalite metriği sunulmaktadır.
Önerilen metriğin insan tercihleriyle anlamlı korrelasyona sahip olduğu ve algoritma-
ların değerlendirilmesinde bir referans olarak kullanılabileceği gözlemlenmiştir.

Anahtar Kelimeler: YDA Görüntüleme, Gölgeleme Giderme, Sahne Hareket Analizi
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CHAPTER 1

INTRODUCTION

The real world encompasses a wide range of luminance values that exceeds the capa-

bilities of most image capture devices. However, in general it is desirable to capture,

store, process, and display this wide range of luminance values. The field of HDR

imaging is primarily developed to address this problem, that is to bridge the gap be-

tween what is available in the real-world in terms of light levels and what we can do

to represent it using digital equipment [108].

1.1 Problem Definition

The first stage of the HDR imaging pipeline is acquisition. There have been many

studies in HDR image and video acquisition, which can be grouped under three cat-

egories. The first category consists of the methods that use specialized hardware to

directly capture HDR data. The second category consists of the techniques based on

reconstructing an HDR image from a set of low dynamic range (LDR) images of the

scene with different exposure settings, methods that are collectively called as multi-

ple exposure techniques (MET) (see Figure 1.1). The third category consists of the

techniques which aim to expand the dynamic range of a normally LDR image – be it

through pseudo-multi-exposure or inverse tone mapping [7].

In general, the techniques in the first and third categories produce inherently ghost-

free HDR images as they operate on data captured at a single time instance. The

techniques in the second category, however, must deal with moving objects as the

image capture process takes a longer time due to necessity of capturing multiple ex-

1



(a) L1 (EV -4) (b) L2 (EV -3) (c) L3 (EV -2) (d) L4 (EV -1) (e) L5 (EV 0)

(f) L6 (EV +1) (g) L7 (EV +2) (h) L8 (EV +3) (i) L9 (EV +4) (j) I

Figure 1.1: Input images L1, ..., L9 (a-i) and HDR image I (j) (tonemapped) obtained

using MET.

(a) A moving light source with high noise (b) Non-deformable body motion with large dis-

placements

(c) Deformable body motion (d) Deformable body motion with occlusions

Figure 1.2: Different types of ghost artifacts.

posures. This is due to the fact that the ensuing HDR image reconstruction process

simply computes a weighted average of all exposures, resulting in different objects

being blended together in case of object movement. The artifacts that occur as a

result of such blending are collectively termed as ghosts or ghosting artifacts (see

2



Table 1.1: Notation used in this dissertation

L1, L2, ..., LN Input LDR images
Lref Reference LDR image
Ln(p) Pixel intensity at position (p) in image Ln

I Output HDR image
f(·) Camera Response Function

gnm(·) Intensity Mapping or Color Transfer
Function from exposure n to m

∆tn Exposure time of the input image Ln
wn(p) Weight of pixel Ln(p)

E1, E2, ..., EN Input LDR image in radiance domain (Eq. 1.2)

Figure 1.2).

It is possible to formalize this notion as follows (see Table 1.1 for the terminology

used in this chapter). Let L(p) represent an LDR image pixel p which is obtained

when the corresponding sensor location is exposed to an irradiance E(p) for ∆t units

of time (see Table 1.1):

L(p) = f(E(p) ·∆t), (1.1)

where f represents the camera response function (CRF) which depends on several

factors such as the white balance and gamma correction setting, analog-to-digital

conversion parameters, physical characteristics of the sensor, camera manufacturer

preferences, etc. If the function f is known, it is possible to recover the correct sensor

irradiance from the image pixel intensity using the following relation:

E(p) =
f−1(L(p))

∆t
. (1.2)

Most of the time, f is not known but can be recovered using various techniques [16,

25, 39, 82, 90, 96, 110]. Alternatively, the images can be captured in RAW formats

which are typically linear (thus f(x) = mx for an easily recoverable slope value, m).

Once f is recovered, the HDR value I(p) can be computed as:

I(p) =

N∑
n=1

wn(p)f
−1(Ln(p))

∆tn

N∑
n=1

wn(p)

, (1.3)

where α is a weighting function which depends on the pixel intensity level. Although

one can use a simple triangular weighting function that gives high weights to the
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center of the intensity range while penalizing the extremes as proposed by Debevec

and Malik [25], recent research has shown that other parameters such as the camera

noise must be taken into account to determine an optimal weighting function [34].

The critical assumption of Equation 1.3 is that all input images L1, ..., LN measure

the same scene radiance value for each pixel position p:

f−1(Ln(p))

∆tn
=
f−1(Lm(p))

∆tm
∀n,m, p. (1.4)

If this assumption, known as reciprocity, does not hold, I(p) will be equal to the

weighted sum of different sensor irradiance values, resulting in semi-transparent ob-

ject appearances known as ghosts. The reciprocity assumption may break down for

saturated pixels – a problem that is to be dealt with by using a good α function.

The main requirement of a pixel measuring the same irradiance in all input expo-

sures necessitates that the camera and the captured scene remain static throughout the

capture process. While stabilizing a camera can be achieved by using a tripod, ensur-

ing a static scene is much more difficult as most real-world scenes contain dynamic

objects. Many deghosting algorithms have been proposed to address this problem

ranging from simple alignment methods to sophisticated computer vision algorithms.

To this date, more than 50 deghosting algorithms have been proposed.

As in all fields, the proliferation of these algorithms gave rise to subjective experi-

ments that aim to evaluate their performance [42, 43, 44, 136]. However, subjective

comparisons of HDR deghosting algorithms is problematic for several reasons. First,

ideally the comparison medium must be an HDR display [114], as otherwise some

artifacts may be lost or new artifacts may be generated during tone mapping. Sec-

ondly, the comparison task is challenging as participants need to compare a stack of

LDR images with one or more deghosted images. Finally, the findings of subjective

experiments become outdated as new algorithms are being proposed on a rapid basis.

In order to overcome these problems, there is a clear need to define objective metrics

to compare HDR deghosting algorithms. A number of quality assessment metrics

have been proposed for HDR images [108, Chapter 10] [5,64,83,106,124]. However,

none of these metrics are suitable for evaluating deghosting artifacts.
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1.2 Contributions and Outline of the Thesis

The first goal of this dissertation is to conduct an extensive and up-to-date survey and

classification of the state of the art in the field of HDR deghosting. To this end, this

work includes approximately 50 HDR deghosting methods grouped into a taxonomy

based on the approaches they follow. This survey and the taxonomy are presented in

Chapter 2.

Due to the increasing number of deghosting algorithms that are being proposed each

year, there is a growing need to evaluate these methods systematically and there is

a need to have a reliable benchmark dataset for HDR image deghosting as it exists

in other fields of computer vision such as optical-flow [6], image retrieval [119], and

image retargeting [112]. Thus, the second goal of this dissertation is to present new

benchmark datasets and the results of subjective experiments aimed to compare sev-

eral deghosting algorithms. The results of this comparison is provided in Chapter 3.

Third, this work addresses the requirement for objective evaluation of HDR image

deghosting algorithms. In Chapter 4, the types of most common deghosting artifacts

are identified and objective HDR image deghosting quality metrics are introduced for

detecting these artifacts. It is shown that the objective metrics are well correlated with

the results of two subjective experiments. Moreover, the individual objective metrics

are merged and a unified deghosting quality metric obtained, which has even better

correlation with the participant preferences. An application of the objective metric to

hybrid deghosting is demonstrated for getting a high quality deghosting result from

two input deghosting algorithms.

Fourth, the strengths and weaknesses of different classes of deghosting algorithms

and challenges in designing and evaluating deghosting algorithms are discussed in

Chapter 5. Finally, a summary of the works done and the future research directions

are provided in Chapter 6.
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CHAPTER 2

THE STATE OF THE ART IN HDR DEGHOSTING

Despite the large number of HDR deghosting methods that have been proposed, there

exists only a few studies that aim to survey, classify, and compare them.

Srikantha and Sidibé [126] provided the first survey and classification of HDR deghost-

ing methods. In their study, they classified 17 algorithms according to how they detect

motion regions and remove ghosts. In addition, the ghost detection accuracy is eval-

uated quantitatively in terms of sensitivity and specificity by comparing the ghost

detection bitmaps with the ground truth. Although this study is important as being

the first review of deghosting methods, it does not cover a large number of methods

and is now outdated since it misses the surge of activity that took place in the field

after 2011.

Karaduzovic-Hadziabdic et al. [43] proposed a methodology for evaluating deghost-

ing algorithms and compared the methods of Sen et al. [115] and Zimmer et al. [155]

together with two commercial products, namely Photomatix and Photoshop, in a psy-

chophysical experiment with 30 subjects and 9 scenes. It was found that Sen et al.’s

algorithm has the fewest artifacts. In their more recent work [44], the authors ex-

tended their comparison to include the algorithm of Hu et al. [51] and performed an

expert evaluation.

In order to organize and highlight the similarities and differences between existing

deghosting algorithms, here a taxonomy of approximately 50 methods is presented

based on how they approach the deghosting problem.

Global exposure registration methods aim to align individual exposures globally.
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Moving object removal methods aim to remove the motion by estimating a static

background.

Moving object selection methods detect the inconsistencies in the input pixel in-

tensities which are affected by motion and remove the ghosting artifacts by ei-

ther locally using a single source image or combining a set of multiple sources

which are consistent.

Moving object registration methods focus on recovering or reconstructing the ghost

pixels by searching for the best matching region in other exposures or in the af-

fected image. The matching regions are used to transfer information to the

problematic region. These algorithms may find pixel or patch based dense cor-

respondences.

Video deghosting methods are tailored to remove the potential ghosting artifacts in

HDR videos. In this regard, they make use of the temporal information of

videos during processing.

The detailed taxonomy is given in Figure 2.1 with accompanying references. It should

be noted that although this taxonomy is valid for most cases, there exist some hybrid

approaches which are difficult to classify as belonging to a single class. Such algo-

rithms are classified based on their most dominant characteristics.

2.1 Global Exposure Registration

Although there are a few exceptions, almost all ghost removal methods assume that

the input exposures are pre-registered either by capturing images by using a static

camera or by using one of the methods discussed here. The objective of global regis-

tration algorithms is to compensate for the effects of the camera motion by estimating

the parameters of transformations which will be applied to each one of the input im-

ages. These methods do not focus on the object displacements or assume that the

scene is static. The types of the transformations and the methods of parameter esti-

mation are the discriminative properties of the algorithms in this class.
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Figure 2.1: Taxonomy of HDR motion compensation methods

In their early work, Mann et al. [81] use global homography to align differently ex-

posed frames of a panning video with unknown relative exposure settings to produce

an image mosaic. They propose three methods based on comparametric equations for

the simultaneous estimation of the CRF and image registration. Each frame is mod-

eled as a function of quantity of light falling on the sensor where the functions are in

the form of projective coordinate transformations with unknown parameters. The first

method is based on minimizing the sum of squared errors between the irradiance val-

ues with smoothness and monotonicity constraints on the CRF. The second method

estimates the CRF as a two-parameter closed-form function. While being simple, this

method provides a fit with lower accuracy. The third method applies spline interpo-

lation to the data points produced by a procedure called “log-unrolling”. The output

image obtained using these methods is as good as input images where there is no

overlap between the images. In the regions where there is overlap, the output image

is better than the individual input images since it combines the additional information

from multiple images.

Candocia [17] introduces another method based on comparametric equations similar

to Mann et al.’s method [81], where spatial and tonal registration of the input images

are performed simultaneously. The parameters minimizing the variance of the pixel

values at all spatial image coordinates are found using the Levenberg-Marquardt al-
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gorithm. Since this optimization is nonlinear with multiple local minima, the initial

parameter set is initialized by pair-wise registering the input images using pyramidal

decomposition of the images. While being successful at correcting registration errors,

the author states that the method may suffer from increasing running times due to the

computation of the Hessian matrix at each iteration of the optimization.

Ward [140] presents a fast translational registration of different exposures by aligning

bitmaps obtained from the input images. A Median Threshold Bitmap (MTB) Mi of

image Li is defined as:

Mi(p) =

1, if Li(p) < µi

0, otherwise
(2.1)

where µi is the median value of the pixel intensities in image Li. Ward’s approach

is based on the observation that Mi is robust to the changes in the exposure settings,

due to the monotonicity property of camera response functions. In the study, each

Mi, Mj pair is aligned using a multi-scale pyramid structure, starting from the lowest

resolution. Later, the translations found using the pyramid are applied to the input

images to obtain a co-registered set of input images. The method of Ward does not

require the CRF estimation and the computational cost is very low since it is possible

to process multiple bits of the bitmaps in one clock cycle of the CPU.

Cerman and Hlaváč [19] introduce an HDRI method to estimate the unknown expo-

sure time from a set of RAW images. As a part of their work, they present a method

to register the input images in order to eliminate the camera motion present in the

hand-held acquisition settings. Prior to the image registration, the input exposures

are normalized using the estimated CRF. Later, the amount of image shift is esti-

mated using the correlation in the Fourier domain. The scope of this initial estimation

is limited to translational camera motion only. The estimates are used to initialize the

local optimization of the sum of squared differences between the input images. The

optimization phase includes both translational and rotational motion in subpixel accu-

racy. Instead of choosing a reference image, the registration is applied on consecutive

image pairs.

Eden et al. [27] present a method for the mosaicing of images with large exposure

difference and scene motion to create an HDR panorama. As the first step, the input
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images are aligned using feature-based registration method of Brown and Lowe [14].

Next, the input images are mapped to the radiance domain. In this procedure, a pre-

calibrated camera with a known CRF is used. The output panorama is constructed in

two phases. In the first phase, a reference panorama is constructed based on Agarwala

et al. [2]. Although the created reference panorama covers the full angular extent with

smooth transitions between the input images, it does not use the full dynamic range.

In the second phase, the full dynamic range is introduced to the reference panorama

using a max-flow graph cut which encourages large SNR while preserving the smooth

transitions between the images. Since each pixel of the output is constructed using

only one of the input images, potential ghosting artifacts are eliminated.

Gevrekci and Gunturk [33] propose a novel contrast-invariant feature transform (CIFT)

algorithm which does not require a photometric registration as a preprocessing step

of the spatial registration. Based on the assumption that the Fourier components are

in phase at the corners, the algorithm detects the corners by applying a local contrast

stretching operation to each pixel of an input image and using the Phase Congru-

ency (PC) function [63]. Next, the input images are spatially registered by feature

matching using RANSAC.

Tomaszewska and Mantiuk [133] aim to correct misalignments due to the camera

motion by estimating a general planar homography using SIFT [74] features and

RANSAC [30]. First, the proposed algorithm extracts SIFT keypoints in the input

images. Second, the correspondences between the keypoints are established and the

number of correspondences is decreased to four pairs using the RANSAC algorithm.

The RANSAC algorithm selects the keypoints which are compatible with a homog-

raphy and which are present in all of the input images. Since the transformation

provided by the homography has subpixel accuracy, the output pixel values are cal-

culated using bilinear interpolation. In addition, the keypoint search procedure is

performed in the contrast domain to provide robustness against the changes in the

exposure and using a multi-scale difference-of-Gaussian pyramid to improve the key-

point detection. In order to increase the accuracy of the registration process, SIFT

algorithm is modified to choose an automatic threshold value instead of a fixed one.

Rad et al. [102] start with estimating the CRF, f , based on Debevec et al. [25]. Then
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f−1 is applied to the input images to transfer the images to the radiance domain.

Alignment of the input images is performed in the frequency domain, using Fourier

transform and ignoring the pixels closer to the limits of the pixel intensity range.

Different from Cerman and Hlaváč [19], this method estimates both the translation

and the rotation parameters in the frequency domain only. Later, these parameters are

used to create a super-resolution HDR image by interpolating in a higher-resolution

image grid in the HDR reconstruction phase.

Im et al. [53] propose an algorithm based on the elastic registration (ER) method of

Periaswamy et al. [101]. In their study, Im et al. model the motion between the con-

secutive image pairs using affine transformations. The transformation parameters are

estimated by minimizing the sum of squared differences between the pixel intensities

of transformed image pairs. Their other work [54] propose an improvement to the ER

by selecting the best target image for the registration. The target image is selected by

averaging the hue channel of the input images. Later, the image which has the small-

est mean of squared error with this average hue map is chosen as the target image.

This operation improves the estimation accuracy of the ER by avoiding the selection

of over- and under-exposed images as targets.

Akyüz [3] eliminates the misregistrations due to the translational camera motion only.

The proposed approach is based on the observation that unless they are not under- or

over-exposed, the relation between the intensities of neighboring pixels in a set of

aligned images (e.g. a pixel having smaller intensity than its bottom neighbor and

larger intensity than its right neighbor) should be insensitive the exposure changes.

In other words, pixel order relations should be preserved. For each input image, a

correlation map is created which maps such relations to ordinal values. Later, input

images are aligned pairwise by minimizing the Hamming distance between the cor-

relation maps of the input images. Rotation and other more complex camera motion

patterns are not addressed by this method.

Yao [144] provides another method based on the use of phase congruency (PC) im-

ages. Different from Gevrekci and Gunturk [33], the proposed method registers PC

images in the frequency domain using the phase cross-correlation technique, rather

than using them to identify the keypoints for a registration in the spatial domain. In
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addition to the translational registration, the rotational registration is also performed

using log-polar coordinates, in which rotational motions are represented with trans-

lational transformations in the coordinates. In order to detect the subpixel shifts,

evolutionary programming is used to find the optimal transformation parameters.

2.2 Moving Object Removal

The main objective of the algorithms in this class is to remove all of the moving ob-

jects in the scene by estimating the static background. One important assumption of

the most of these algorithms is that for each pixel, the majority of the input exposures

capture the static part of the scene. Due to this assumption, insufficient number of

input exposures, dynamic backgrounds, and deformable-body motions with overlap-

ping regions between exposures have a negative effect on the deghosting quality for

this class of approaches.

Khan et al. [62] propose an iterative method for the removal of moving objects in

the output HDR image. The method is based on the calculation of the probability

P (En(p)|F ) that a pixel En(p) belongs to the background class F . The authors use

the kernel density estimator:

P (En(p)|F ) =

j∑
i=1

ai ·KH(En(p)− yi)
/ j∑
i=1

ai, (2.2)

where j is the number of pixel neighbors and KH is the multi-variate kernel function:

KH(x) = |H|−
1
2 (2π)−

d
2 exp(−1

2
xTH−1x), (2.3)

where H is the bandwidth matrix. In the calculation of Equation 2.2, yi belongs to

3 × 3 neighborhood of the pixel p in all exposures. a is initially set to a hat function

then both ap and P (En(p)|F ) are updated iteratively until convergence:

ap,t+1 = ap,0 · ap,t, (2.4)

where t is the iteration number. At the end of each iteration, ap,t takes the new value

of P (En(p)|F ). After the convergence, the probabilities P (En(p)|F ) are used instead

of the weighting function w in Equation 1.3 to construct the HDR image.
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Pedone and Heikkilä [100] improve the method of Khan et al. [62] by estimating the

parameters of the bandwidth matrix H. Instead of setting it to the identity matrix, the

i-th diagonal entry of H is calculated as:

h̃i = n−
1

d+4 σ̃i, (2.5)

where σ̃ is the weighted standard deviation of the ith dimension. In addition, due to

similarity of some objects with the background, the authors state that using Khan et

al.’s algorithm [62], it is possible to observe ghosting in the output. To improve the

deghosting quality, they propose to apply morphological operations to the bitmaps

obtained by thresholding the weight maps before merging the exposures.

Granados et al. [36] provide an energy-minimization based background estimation

method whose application to HDRI is also given. For each pixel p, the proposed

method assigns the source image a label Lp ∈ {1, ..., N} which minimizes:

E(L) =
∑
p

Dp(Lp) +
∑

(p,q)∈N

Vp,q(Lp,Lq) +
∑

(p,q)∈N

Hp,q(Lp,Lq), (2.6)

where Dp(Lp) is the data term, Vp,q(Lp,Lq) is the smoothness term, and Hp,q(Lp,Lq)
is the hard constraint. The data term measures how well p satisfies the estimated

density function and the approximated motion boundaries. The smoothness term

Vp,q(Lp,Lq) penalizes intensity differences. The hard constraint Hp,q(Lp,Lq) pre-

vents half-included objects by allowing only previously observed labeling transitions.

The energy function in Equation 2.6 is minimized via graph cuts [13]. Resulting la-

beling determines the input source image for each pixel in HDR construction.

Sidibe et al. [120] detect ghost regions using the pixel order relation. If a pixel does

not contain scene motion then the pixel intensity values must follow the same order

as the exposure times, i.e. if ∆ti > ∆tj , then Li(p) ≥ Lj(p). For each pixel in

the ghost-regions, the LDR images are put into two sets D and S. S contains the

exposures with no motion for current pixel and D contains the exposures with motion

for the current pixel. Quasi Continuous Histograms (QCH) [23] are used to separate

the input images into these two sets. The main approach of QCH is to calculate the

mode of the pixel intensity values and use this information to identify the pixels with

motion. During HDR image construction phase, only the images in the set S are used.
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Silk and Lang [121] introduce a method which employs two different strategies de-

pending on the type of the motion. The algorithm starts with performing a change

detection which consists of applying a fixed threshold on the absolute difference of

irradiance values in each color channel. This initial motion mask does not respect the

object boundaries. In order to refine the initial mask according to the object bound-

aries, the images are first over-segmented using SLIC superpixels [1] and then the su-

perpixels are categorized into motion and non-motion regions according to the num-

ber of inconsistent pixels marked by the initial change detection. The super-pixels

with motion are assigned smaller weights in the HDR reconstruction. This operation

is called pairwise down-weighting (PWD). The algorithm has a second type of output

in the presence of fluid motion (FM), which is described in Section 2.3.1.

Zhang and Cham [149, 150] propose an exposure fusion algorithm of static and dy-

namic scenes, where the pixel weights are determined using gradient-domain based

quality measures instead of absolute pixel intensities. The per-pixel weight map of

each image is calculated as a multiplication of visibility and consistency scores. The

visibility score assigns larger weights to the pixels with larger gradient magnitudes.

On the other hand, consistency score assigns larger weight to a pixel if its gradient

direction is consistent with the collocated pixels in other exposures.

2.3 Moving Object Selection

The algorithms that fall into this class are characterized by the approaches they em-

ploy to detect the presence of motion, e.g. variance-based, pixel-value prediction,

thresholding, pixel-order relation, etc. Different from the moving object registration

methods, the moving object selection does not compute correspondences among the

input LDR images to recover the pixel intensities using all exposures while compen-

sating for motion. Instead, they select one (single source) or multiple (multi source)

input images for each dynamic region. Hence, while computationally efficient, mov-

ing object selection algorithms, in particular single source ones, have a drawback that

the resulting image may not be HDR in dynamic regions.

The major difference of the moving object selection methods from the moving object
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removal methods is that the former select one or more source images for the regions

affected by motion. As a result, the output HDR contains the moving objects which

appear in the selected input image(s). On the contrary, moving object removal meth-

ods do not select a particular reference image. They perform a consistency check for

each pixel across exposures. This results in complete removal of dynamic objects if

they do not stay stationary in the majority of the input exposures.

2.3.1 Single Source

Single source methods use a single input image for each dynamic region. Some sim-

pler methods use the same input image for all dynamic regions whereas more sophis-

ticated ones may choose a different input image for different dynamic regions based

on a well-exposedness criteria.

Kao et al. [61] works on two RAW LDR images with ±2 EV difference. First, a

block-based global alignment is performed which removes the effects of camera mo-

tion. Due to the ±2 EV difference the following relation between the pixel intensity

value of two input images L1 and L2 is expected:

L2(p)/L1(p) = 4, ∆t2 = 4∆t1. (2.7)

If a pixel is not consistent with this relation (excluding saturated pixels), it is marked

as a potential ghost. Next, the exposure normalized version of the low exposure image

is calculated as L̃1(p) = 4 · L1(p), and the output HDR image I is then obtained by

fusing the input images as follows:

I(p) =

L̃1(p), if p is marked or L2(p) is ill-exposed

L2(p), otherwise.
(2.8)

Grosch [38] provides an extension to Median Threshold Bitmaps (MTB) [140] by

including rotational alignment where MTB alignment is performed on the graphics

hardware to accelerate the computations. This first stage of utilizing the MTBs pre-

vents the potential artifacts caused by the camera movement. The next step includes

a CRF estimation which is based on the histogram-based method of Grossberg and

Nayar [39] and used to predict pixel intensity values of each image in consecutive
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image pairs Li and Lj . A pixel p is marked as ghost if the following relation does not

hold: ∣∣∣∣f (∆tj
∆ti

f−1(Li(p))

)
− Lj(p)

∣∣∣∣ < ε (2.9)

The pixels of the ghost regions are not used in the HDR image construction. In order

to minimize the loss in the dynamic range and noise, the pixel intensities in these

regions are predicted using the estimated CRF and the intensities of the co-located

pixels from the source image with the lowest number of poorly-exposed pixels in the

motion region.

The algorithm of Jacobs et al. [57] consists of two steps. First, similar to [38], a global

image alignment is performed based using MTBs [140]. Next, the ghosting artifacts

caused by moving objects are eliminated by making use of the so-called variance

images (VI) and local-entropy based uncertainty images (UI). The VI is created by

calculating the per-pixel intensity variance over all exposures in the radiance domain,

excluding the saturated exposures. To have better region boundaries, the VI is thresh-

olded with a fixed value and morphological operations are applied to the resulting

bitmap. Since the calculation of the VI is performed in the radiance domain, inaccu-

rate CRF estimation may result in unreliable variance values. Therefore, the authors

use the uncertainty images (UI) as a supplementary movement detection source since

the UI does not require the CRF. The use of UI is based on the assumption that lo-

cal contrast sources such as edges correspond to object boundaries and the entropy

around these regions should be similar if the region is not affected by the scene mo-

tion. The final UI is created by taking a weighted difference of UI corresponding to

each input image, and then by applying thresholding and morphological operations

to obtain motion region clusters. In the HDRI generation phase, the source image

used in the movement regions is chosen as the input image with the least amount of

saturation and the longest exposure time.

Lin and Chang [71] propose a method to eliminate ghosting artifacts caused by stereo

mismatches in stereoscopic HDR. The input is a pair of images captured with differ-

ent exposure time settings using two cameras. The disparity map between the input

images are found using the SIFT matching scheme after normalizing input images

with the estimated CRF. If the absolute difference between the corresponding pixels

of the normalized images are larger than a threshold in a region, it is identified as a
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ghost region caused by a stereo mismatch.

Reinhard et al. [108] calculate the weighted variance at each pixel location and selects

the regions where the variance is above a threshold as a motion region. The method

works well when the moving object is significantly different from the background in

terms of the contrast and color similarity.

Pece and Kautz [99] propose a motion-region detection approach called Bitmap Move-

ment Detection (BMD) which is also based on MTBs [140]. They start by extracting

MTBMi of each input exposure Li. Then any pixel p, for which the following is true,

is marked in the motion map:

N∑
i=1

Mi(p) /∈ {0, N} (2.10)

To remove the effects of the noise, the obtained motion map is refined using mor-

phological operations such as erosion and dilation. The pixels in the motion map are

clustered according to their connectivity using the connected component labeling al-

gorithm of Haralick and Shapiro [116], and finally, the detected motion regions are

filled from the best-exposed input image for each individual motion region.

Lee et al. [68] propose a histogram-based deghosting method which improves the

studies of Min et al. [88, 89] by detecting ghost regions as a difference in the ranks

of pixels according to their intensities. In order to be able to scale the computational

load, the pixel ranks are normalized to B bits using:

r̃n(p) = round

(
rn(p)− 1

Rn − 1
× 2B

)
, 0 ≤ r̃n(p) ≤ 2B − 1, (2.11)

where rn(p) is the rank of the pixel p in Ln and r̃n(p) is the normalized rank. Larger

B gives smaller quantization error with higher computational load. If the absolute

difference of normalized ranks between an image Ln and Lref is larger than a user-

defined threshold, the pixel is marked in a motion map. The rank-based motion maps

are combined with the weighting function of Mertens et al. [87] so that only Lref is

used to produce output pixels in motion regions.

The algorithm of Silk and Lang [121] was introduced in Section 2.2 with its pairwise

down-weighting (PWD) approach which is applicable when the minority of the input

image stack is affected by the motion. However, in the presence of foliage, flags and
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fluids, some super-pixels may contain motion in each one of the input images. This

motion type is called fluid motion (FM) and is not resolved correctly by the PWD. For

such cases, the algorithm offers a second output which uses only the best exposure

maximizing the sum of pixel weights in the region affected by the motion.

2.3.2 Multi Source

Multi source methods try to maximize dynamic range by using as many exposures

as possible for each dynamic region. That is, different from single source, the input

exposures which are consistent with a selected reference exposure contribute to the

HDR image.

Gallo et al. [32] start by determining the reference image Lref , which is selected

either by the user or by minimizing the number of saturated pixels. Next, the ghost

regions are found based on the reciprocity assumption:

ln(Ln(i, j)) = ln(Lm(i, j)) + ln(emn), (2.12)

where emn is the relative exposure between Lm and Ln. This assumption states that

there should be a linear relation if two pixels measure the same irradiance level. Any

pixel violating this linear relation is considered as an inconsistent pixel containing

scene motion. In order to increase the robustness, the method operates on rectangu-

lar image patches instead of the pixels. The inconsistent patches do not contribute

to the HDR construction process. In order to avoid the artifacts between the patch

boundaries, the HDR construction operation is performed in the image gradients do-

main [28].

Min et al. [88] extract multi-level threshold maps from each one of the input LDR

images. A multi-level threshold map is a segmentation of the image into multiple

regions according to the pixel intensity values where each region has the same number

of pixels. Any difference between the threshold maps of input images andLref , which

is selected as the mid-exposure is marked as a motion-region, and the pixels in the

motion-regions are assigned smaller weights during HDR construction. While the

proposed approach is simple and very fast, the presence of texture-less surfaces and

the differences in the threshold maps due to other factors such as noise may result in
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false detections.

Raman et al. [105] assumes that the first 5-10 horizontal lines of {L1, ..., LN} do not

contain motion, since motion is usually present in the ground plane of the scenes.

These static regions are used to estimate the intensity mapping function (IMF). Sim-

ilar to Gallo et al. [32], this approach checks the inconsistency between the input

images and Lref using rectangular patches. If a large number of pixels in a patch

does not follow the IMF, the patch is marked as motion region in the source image

and ignored in the exposure fusion operation [87].

Raman and Chaudhuri [103] improve the simple heuristic of Raman et al. [105] by us-

ing a weighted variance measure based on Reinhard et al. [108] and Jacobs et al. [57]

to identify the static regions. The detected motion-free regions are used to estimate the

IMF by fitting a polynomial curve with a degree of 4 to the observed pixel intensities

in each pair of images. Then, each one of the input LDR images are over-segmented

into super-pixels. A super-pixel is classified as a motion-region if the number pixels

which do not follow the estimated IMF is above a certain level. The neighbor super-

pixels with motion are merged and these regions are ignored, while the remaining

static patches are merged using the exposure fusion technique of Mertens et al. [87].

Li et al. [70] use a bidirectional pixel similarity measure between each LDR image

and Lref to identify the regions affected by motion. For a particular pixel, if the pixel

intensity measured inLref is more reliable (with an intensity value closer to 128), then

the similarity is calculated by mapping the intensity of input image to Lref using the

IMF. Otherwise, it is calculated by mapping the intensity value of Lref to the input

image exposure. An adaptive threshold is applied to the similarity map in order to

detect movement regions, which is a function of ∆t and pixel intensities. The regions

with motion are filled using the assumption that if for two pixels Lref (p) = Lref (q),

then for any source image Ln(p) = Ln(q) must be satisfied.

Wu et al. [142] introduce a non-iterative ghost-free HDR imaging method without

manual threshold tuning, which consists of alignment, movement detection, CRF es-

timation, and progressive image correction steps. The regions where the direction of

the RGB vector remains fixed with respect to the exposure change are assumed to be

free of motion and used for the CRF estimation. Later, this initial movement detection
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is refined using the pixel order relation:

∆ti > ∆tj =⇒ Li(p) ≥ Lj(p), (2.13)

and the pixel error criterion, which is given by Equation 2.9 in Grosch [38]. The

refined movement detection mask is obtained by merging the binary movement masks

of the color error criterion, pixel order relation, and the pixel error criterion. Then a

progressive image correction is applied by starting from the reference exposure Ln

and filling the motion regions with the predicted pixel values in the exposures Ln−1

and Ln+1. The image correction is performed progressively for other exposures until

all the input images are corrected. Formation of artifacts around object boundaries is

prevented using the image inpainting technique of Olivera et al. [109].

Heo et al. [47] detect motion-regions using joint probability density functions (PDF)

of pixel intensities from different exposures. After Lref is selected, the global align-

ment of input images is performed to eliminate the effects of the camera motion.

Next, the joint PDFs are estimated by applying Parzen windowing [98, 111] to joint

histograms between each pair:

{〈Lref , Ln〉|Ln ∈ {L1, ..., LN} − {Lref}}. (2.14)

For each one of the nonreference images, a ghost bitmap is calculated by thresholding

the joint PDF. Since the initial motion detection is noisy, it is refined with an energy

minimization approach using graph cuts [13]. In the next phase, the CRF is estimated

using the pixels in the static regions. The HDR reconstruction weights wn(p) are

based on bilateral filtering weights [132] and they are a function of pixel exposure,

geometric distance and the color difference between Ln(p) and Lref (p).

An et al. [4] propose another LDR exposure-fusion algorithm. Different from Ra-

man et al. [105] and Raman and Chaudhuri [103], the motion detection operation is

embedded into the exposure fusion equation with the following weighting formula:

wn(p) = Wn(p) · Zn(p) ·On(p), (2.15)

where Wn(p) is the weighting term used by Mertens et al. [87] which depends on

contrast, saturation, and well-exposedness, Zn(p) is the zero-mean normalized cross

correlation (ZNCC) factor between Ln and a previously selected Lref , On(p) is a

binary map which is zero if Ln(p) < Lm(p) when ∆tn > ∆tm.
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In their more recent work, Raman and Chaudhuri [104] propose some improvements

to their previous study [103] by replacing the exposure fusion approach of Mertens

et al. [87] with a gradient domain solution. The fusion in the gradient domain is

performed by placing larger weights to the pixels whose intensities are in the middle

of the intensity range and which have higher local contrast. The effect of the noise on

the local contrast is eliminated by smoothing the images.

In their more recent work, Min et al. [89] improve their previous motion detection

algorithm based on multi-level threshold maps [88] and employ a noise reduction

operation in the HDR reconstruction phase. As a preprocessing step, all input images

are registered to Lref . The false motion detection which occurs near the threshold

values is eliminated by removing a pixel group in image Ln from the motion bitmap

if the following two conditions hold:

1. The difference between the multi-level threshold maps of Ln and Lref is low

for that pixel group.

2. The pixel group is not a spatial neighbor of another pixel group whose multi-

level threshold map is highly different from that of Lref .

In the HDR reconstruction phase, Debevec and Malik’s method [25] is modified by

incorporating a down-weighting term for ghost regions and filtering for noise reduc-

tion using a structure adaptive anisotropic filter [77, 78, 143].

Moon et al. [92] handle the ghosting problem by introducing an additional term to the

weighting formula of Mertens et al. [87], similar to An et al. [4]. First, a histogram

matching operation is applied between each input image Ln and the reference image

Lref . Then, the ghost presence probability for each pixel is calculated as:

Mn(p) = exp

−
(
Lref (p)− L̃n(p)

)2

2cσ2
noise

 , (2.16)

where L̃n(p) is the pixel value obtained after applying the histogram matching oper-

ation to Ln, c is a user-set threshold and σnoise is the image noise level. The value

obtained as Mn(p) is multiplied with the contrast, saturation, and well-exposedness

terms of Mertens et al. [87] to obtain the enhanced output LDR.
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Srikantha et al. [127] propose a method which works on input images with linear

CRF. Their work is based on the assumption that if the pixels from different expo-

sures capture a static region of the scene, they must be linearly dependent since they

are equal to the multiplication of sensor irradiance and exposure time. The pixels

which do not follow the linearity and potentially cause ghosting are found using sin-

gular value decomposition (SVD) of a matrix containing pixel intensities from all

exposures. This matrix is reconstructed using only the largest singular values, forcing

the linearity between the corresponding pixel intensities of different exposures. The

reconstructed pixel intensities are used to produce a ghost-free HDR image.

Zhang and Cham [151] improve their previous gradient-based deghosting method [149,

150] which assume that the majority of the pixels capture the static part of the scene

for each motion region. Since this requirement is not satisfied for frequently changing

scenes, here they introduce a consistency check with the pixels of the reference image

instead of the majority of the exposures.

Oh et al. [94] solve a rank minimization problem which simultaneously aligns the

input images and detects moving objects together with ill-exposed regions. The pro-

posed method works on input images with linear CRF. There are two assumptions

used in this study. First, it is assumed that motion regions and under-/over-exposed

pixels are sparse but cause large changes in the pixel intensities. Second, it is assumed

that the camera motion is in the form of an homography transformation. With these

assumptions each image Ln is represented as:

In ◦ h = f(k(R + Sn) ·∆ti)

= kR ·∆ti + kSn ·∆ti

= An + Sn,

(2.17)

where In = Ln ◦ h−1, ◦ is the element-wise mapping operator, h is the homography

transformation, k is a scaling factor, f is the CRF, R is the sensor irradiance, and Sn

is the sparse error term representing motion and the saturation. The matrix A and S

are calculated by stacking the elements of each An and Sn column-wise, respectively.

It is expected that A is a rank-1 matrix and all the artifacts are contained in the matrix

S with S = 0 in an artifact-free acquisition. The matrix of observed intensities O ◦
h is decomposed into a rank-1 matrix A and a sparse matrix S. The result of the
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decomposition is used to recover the artifact-free observation of the scene.

Sung et al. [129] apply a local thresholding to the zero-mean normalized cross corre-

lation (ZNCC) [134] maps, which is robust to the changes in illumination, to find the

motion regions. After Lref is selected, the translational and rotational alignment of

the input images are performed using the SIFT-based approach of Tomaszewska and

Mantiuk [133]. Next, the motion regions are detected with an adaptive local thresh-

olding of ZNCC maps obtained from the luminance channels of the input images,

excluding the saturated pixels. In the HDR construction, the weights of the pixels in

the motion regions are set to zero.

Granados et al. [35] introduce a Markov Random Field (MRF) based approach for

ghost-free HDR imaging of dynamic scenes. In their study, if the camera motion is

present, input images are aligned with a global homography using SURF key-points

at first. Later for each pixel, consistent and inconsistent subset of input exposures are

found by minimizing:

E(F ) =
∑
p

(
1{Pr(p|F (p)) < α} + γ · V (F (p))

)
+ β ·

∑
(p,q)∈N

1{Pr(p|F (p,q) < α ∨ Pr(q|F (p,q)) < α},
(2.18)

where 1 is the indicator function, F is a mapping which assigns a set of input expo-

sures as labels to each pixel, N is 4-neighborhood, and α, β, and γ are the user-set

parameters. The first summation consists of consistency and noise potential terms

while the second summation is the prior potential. The consistency and prior poten-

tials penalize the inconsistent assignment of pixel labels by F . On the other hand,

the noise potential penalizes the worsening of SNR in final HDR image due to trivial

solutions to the energy function such as selecting only one image as a source and

ignoring other input images. Using this proposed method, reference image selection

and background estimation are not performed. The authors state that their method

cannot recover the dynamic range of moving objects since moving objects are recon-

structed from a single image. In addition, since there is not any semantic constraint in

the HDR reconstruction, there may be inconsistencies such as object repetitions and

half-included objects.

Wang and Tu [137] normalize the brightness level of all input images to the brightness
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level of the reference image Lref in Lab colorspace. A ghost mask is obtained by

thresholding the absolute difference of pixel intensities from each input image Ln

and Lref . The adaptive threshold Tn(p) is given as:

Tn(p) = |∆l̄n|β +

(
Ln(p)− 50

15

)2

, (2.19)

where ∆l̄n is the average brightness difference and β is a user-selected tolerance fac-

tor. The ghost masks are refined using morphological operations and the complement

of the ghost mask is used as the fourth term of the weight formula of Mertens et

al. [87] to produce the output.

Lee et al. [67] propose another rank minimization approach which is very similar to

Oh et al. [94]. The optimization function used in Lee et al. [67] does not contain

homography mappings but instead includes a separate variable as the ghost mask.

2.4 Moving Object Registration

Moving object registration methods focus on recovering or reconstructing the pixels

affected by the movement by finding a local correspondence for the regions affected

by motion. The main difference between the registration-based deghosting algorithms

is their alignment strategy, such as feature matching (e.g. SIFT, Harris corner detector,

etc.) or the alignment quality metric they use (e.g. Sum of Squared Differences,

Cross-Correlation, etc.). Since the image registration task is a well-studied problem

in other image processing domains, the set of algorithms in this class is very diverse

and divided into subgroups. While optical-flow based approaches find a pixel-wise

matching between the input images, patch-based methods use image patches and

patch-based matching strategies to eliminate ghost regions. However, it should be

noted that patch-based may also register individual pixels (similar to optical-flow) by

computing the dense correspondence of overlapping patches around pixels.

2.4.1 Optical-flow based

The approaches in this group are mostly based on optical-flow estimation, which is

a well-studied problem especially in stereo vision applications. In the HDR domain,
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optical-flow estimation must also take the exposure differences between the input

images into account. The accuracy of the estimation is very critical for the quality

of the outputs since any mismatch results in undesirable artifacts. In addition, use of

optical-flow presents other challenges such as handling the occlusion, noise, or large

displacements in the scene.

Bogoni [11] introduces a pattern-selective fusion process which uses Laplacian pyra-

mid [15] representation of the input images. This fusion process is very sensitive to

the correct alignment of the input images. In order to prevent ghosting artifact due

to motion, their method employs a two-phase alignment strategy. First, global affine

transformation is performed to eliminate the effects of the camera motion. Second,

optical-flow is estimated between the input images and Lref . The use of Laplacian

pyramid representation in both image fusion and optical-flow estimation decreases

sensitivity to the changes in exposure.

Hossain and Gunturk [49] begin with estimating the intensity mapping function gnm

from the input image Ln to another input image Lm. Then the dense motion fields

un are estimated using the optical-flow estimation algorithm of Zach et al. [147],

minimizing the forward and backward flow residuals rn and rm:

rn(p) = Lm(p− un(p))− gnm(Ln(p)),

rm(p) = Ln(p+ un(p))− gmn(Lm(p)).
(2.20)

Starting with a static motion field u(p) = 0, u and g are updated iteratively by min-

imizing the residuals until convergence. In order to obtain an estimate of gnm which

is robust to the effects of occlusion, each pixel p in each image Ln is assigned an

occlusion weight wn(p) with the following sigmoid function:

wn(p) = 0.5− tan−1((|rn(p)| − µ)/πσ), (2.21)

where µ and σ are the parameters controlling the shape of the function. The weights

wn(p) measure the likelihood of the visibility of pixel p in the other image Lm. The

intensity mapping functions are estimated on the weighted histograms using wn(p).

Zimmer et al. [155] present an energy-based method for estimating the optical-flow.

This approach is claimed to be robust in the presence of noise and occlusion. One of

the images in the input LDR set is selected as reference and dense displacement fields
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un between Lref and each input image Ln is estimated by minimizing:

E(un) =
∑
p

[D(un) + γS(∇un)] , (2.22)

where γ is the weighting coefficient, D is the data term measuring the quality of the

alignment in the gradient domain and S is a spatial smoothness term penalizing sharp

changes. The output displacement fields have subpixel precision and they are used to

construct a super-resolution HDR image.

Ferradans et al. [29] find dense correspondence of input images in the radiance do-

main with respect to Lref . In order to detect the mismatches in the estimated flow

fields un, the input images are warped using the estimated fields and the absolute

difference map Mn(p) of each pixel Ln(p) is calculated. Instead of applying a fixed

threshold to Mn(p), its histogram is modeled as a mixture of Gaussians. un(p) is

detected as a mismatch if the following is true:

|Mn(p)− µ| > βσ, (2.23)

where µ and σ are the mean and standard deviation of the most probable Gaussian

fit, respectively, and β is a user-defined factor. The pixel intensities corresponding to

the flow vectors causing the mismatch are assigned zero weight in HDR reconstruc-

tion. The information from the remaining pixels in each Ln are fused in the gradient

domain.

Jinno and Okuda [58] use a novel weighting function which has significantly smaller

overlap between the contribution of input LDR images to the radiance domain. The

proposed method assumes that the global alignment is already performed. Displace-

ment, occlusion, and saturation regions are modeled as Markov Random Fields d =

{d(p)}, o = {o(p)} and s = {s(p)} respectively, where p ∈ Λ and Λ = {(i, j)|(i, j) ∈
R2} is the discrete sampling lattice. o and s are binary random fields. The optimal d,

o, and s are found by minimizing the following energy function:

(d∗,o∗, s∗) = argmin
d,o,s

{U(Li|d,o, s, Lj) + U(d|o, s, Lj)

+ U(o|s, Lj) + U(s|Lj)}.
(2.24)

U(Li|d,o, s, Lj) measures the accuracy of the motion estimation, ignoring satura-

tion and occlusion regions. U(d|o, s, Lj) measures the smoothness of displacement
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vectors. U(o|s, Lj) and U(s|Lj) penalize isolated small regions in saturation and oc-

clusion maps. The resulting motion estimates, saturation and occlusion regions are

used to combine the input images.

Hafner et al. [45] propose an energy-minimization approach which simultaneously

calculates HDR irradiance together with the displacement fields. The displacement

fields have sub-pixel accuracy, similar to Zimmer et al. [155]. The energy function is

defined as:

E(I,W) =

∫
Ω

(
N∑
i=1

Mi + w ·
N∑
i=1

Sui
+ β · SI

)
dx, (2.25)

where Ω represents the rectangular image domain, W = {u1, ...,uN} is the set of

displacement fields, Mi is the data term measuring the difference between the pre-

dicted and actual pixel values, Sui
is the spatial smoothness term of the displacement

field and SI is the spatial smoothness term of the irradiance map. A coarse-to-fine

pyramid structure is used in the minimization to avoid local minima.

2.4.2 Patch-based

Patch-based algorithms aim to recover or reconstruct the potential ghost regions in

the output image by transferring information from a subset of input images which are

determined via a patch-based matching strategy. Empirically, the methods described

in this class seem to generate the highest quality outputs. However, due to the inten-

sive searching and patching operations, they are computationally the most costly as

well.

Menzel and Guthe [86] introduce a motion compensation method which addresses

both the camera and the scene motion. Their study takes into account the paral-

lax and occlusion effects caused by the camera movement as well. The proposed

method is limited to three input images {L1, L2, L3}. First, L1 and L3 are aligned

to L2 using a method called hierarchical block matching (HBM). The HBM opera-

tion is based on the motion estimation of each macroblock M in Lref , maximizing

the cross correlation between each Li and the reference image Lref . Instead of us-

ing a fixed macroblock size, the matching procedure is performed in an hierarchical
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manner. The pixel-wise displacements are estimated using bilinear interpolation of

the smallest macroblocks in the hierarchy. Then the HDR image is synthesized us-

ing Equation 1.3. Possible mismatches and ghost regions are detected using cross

correlation. The weights, wn(p), of the pixels in these regions are set to zero.

The algorithm of Park et al. [97] operates on two uncompressed Bayer RAW images

Rs and Rl with different exposures. In their study, Park et al. handle the unsuc-

cessful alignments and color artifacts caused by over and underexposed pixels in or

around the moving objects. From the two input images Rs with short exposure and

Rl with long exposure, Rs is selected as the reference image. In Rs, instead of clip-

ping the under-exposed pixels with low SNR, the wavelet denoising method of Yoo

et al. [146] is applied. After the denoising, the exposure of Rs is normalized using

histogram matching. The exposure-normalized Rs and Rl are spatially aligned using

hierarchical block matching. Ghost regions are detected in two steps. In the first

step, pixel intensity differences are thresholded using a large threshold value, which

provides a high confidence detection. In the second step, a region growing operation

is applied to the initial ghost regions using a smaller threshold value. Therefore, the

ghost regions with lower confidence are ignored if they are not spatially connected to

any high confidence detection. The ghost regions in Rl are patched using Rs. During

HDR reconstruction, Rl and Rs are registered in two steps. In the first step, back-

ground alignment is performed to handle the camera movement. In the second step,

foreground alignment is performed which addresses object movements.

Zheng et al. [152] introduce a method which consists of a pixel-level movement de-

tection followed by a hybrid patch-based scheme. First, the inconsistent pixels which

may cause ghosting artifacts are identified using the method of Li et al. [70] (see

above) with pairwise comparison of the subsequent LDR images. Among the com-

pared pair of images, if the IMF is reliable, the inconsistent pixels are reconstructed

by transferring pixel intensities using the IMF. The IMF is assumed to be unreliable if

the pixel intensity values are closer to 0 or 255. In those cases, the absolute derivative

of the camera response function tends to get very large and the IMF does not provide

a one-to-one mapping between pixel intensities of different exposures. If the IMF

is unreliable, then iterative block-based patching is performed instead of the pixel-

wise patching. The block-based patching searches for the best matching block in a
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predefined search window in both pairs of the compared LDR images. The resulting

patched LDR images are fused to an HDR image using the method of Debevec and

Malik [25].

Hu et al. [50] introduce a homography-based patching approach to handle the scene

movement. First, they find the dense correspondence between each input image and

the reference image based on HaCohen et al. [41]. Then, the IMF is estimated for each

color channel by fitting cubic Hermite splines using RANSAC [30] to the observed

pixel intensity pairs. The estimated IMF is used to find motion regions where the pixel

intensities are not consistent with the IMF. The gaps formed after the forward warp-

ing operation and the motion regions detected using the IMF are filled by defining

local homographies between the images using RANSAC. Due to the irregular shapes

of the gaps, a rectangular bounding box is defined around each gap which typically

covers some of the pixels previously synthesized using forward warping as well. To

test for the robustness of the defined homography, the normalized cross-correlation

is measured between the pixels which are already synthesized and the correspond-

ing pixels from the source images. A high normalized cross-correlation indicates a

consistent patch, in which case the patching is performed successfully. Otherwise,

only the reference image is used to fill the gaps. Resulting images are fused with the

method of Mertens et al. [87].

Sen et al. [115] propose a PatchMatch [8] based energy minimization approach for

HDR reconstruction. The proposed approach is designed for LDR images with lin-

earized CRFs. The energy function is in the following form:

E(I) =
∑

p∈pixels

[
wref (p) · (Eref (p)− I(p))2

+ (1− wref (p)) · EMBDS(I|L1, ..., LN)] ,

(2.26)

where EMBDS is the Multisource Bidirectional Similarity (MBDS) measure which is

an extension to BDS introduced by Simakov et al. [122]. In case of poorly exposed

pixels, wref (p) function decreases the weight of the information transferred from the

reference image, while the weight of the second term is increased, which transfers

information from the other input images. Subsequently, the output HDR image is

aligned to the reference LDR image and it contains maximum amount of information

from the reference image if the pixels are well-exposed. Instead of solving for output
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HDR image directly, auxiliary images are obtained using the search and vote scheme

of Simakov et al. [122]. Later these auxiliary images are merged to obtain an interme-

diate HDR image. The auxiliary images are iteratively initialized and updated until

convergence using the intermediate HDR image and the search and vote approach.

This procedure is performed over multiple scales.

Orozco et al. [95] presents a method which consists of both ghost detection and im-

age registration steps. In the ghost detection step, the detection algorithms of Pece

and Kautz [99], Jacobs et al. [57], Sidibe et al. [120] and Grossberg et al. [39] are

compared and it was found that the IMF based ghost detection of Grossberg et al. is

the most accurate. In the image registration phase, an intensity-based method with-

out feature detection is employed. The image with the best exposure is selected as

the reference image. A bounding box is fitted around the previously detected motion

regions. Next, the region in each bounding box is registered by translation and rota-

tion to the reference image. The Sum of Squared Distances (SSD), Normalized Cross

Correlation (NCC), Mutual Information (MI) and Median Bitmap Difference (MBD)

are compared as a similarity measure for the registration. The authors state that NCC

has the best computational cost and performance. In order to speed up the process,

the registration is performed using the pyramid structure of the images, from coarse

to fine resolution. However, since the registration applies only translational and ro-

tational transformations, more complex motions caused by objects with deformable

bodies are not handled.

Hu et al.’s more recent work [51] proposes another PatchMatch [9] based HDR re-

construction algorithm with energy minimization. Among the input LDR images, the

one with the largest number of well-exposed pixels is selected as Lref . Next, for each

input LDR image Li, a latent image Ti is synthesized. Latent images are similar to

Lref where it is well-exposed. In under- or over-exposed regions, a matching patch

is found using the PatchMatch algorithm in other input images. Using the match-

ing patches and the intensity mapping function obtained with the histogram-based

method of Grossberg and Nayar [39], the latent images are obtained by minimizing

the following energy function:

E(T, τ,u) = Cr(T, Lref , τ) + Ct(L,T,u), (2.27)
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where L, T and u are the sets of input images, latent images and coordinate mappings

to matching patches, respectively. The Cr and Ct terms measure the radiometric and

the texture consistencies between the reference image and the input images, respec-

tively. As opposed to Sen et al. [115], Hu et al. does not require the CRFs of the

input images to be linear. In one comparison study [135], it is observed that Hu et al.

was more successful at producing noise-free outputs whereas Sen et al. was better at

preserving texture details.

In their more recent work, Zheng et al. [153,154] formulate the patching operation as

an optimization problem minimizing the following function for each input image Ln:

∑
p∈Mn

‖∇Λn,r(n)(Ln(p))−∇Lr(n)(p)‖2, (2.28)

where Mn is the set of pixels affected by motion,∇ is the gradient operator, Λn,r(n) is

the intensity mapping function from Ln to Lr(n) and r(n) is the index of the reference

image for Ln.

2.5 HDR Video Deghosting

The methods introduced in this section are specially crafted for HDR video deghost-

ing. Although they share some common approaches with the previous HDR deghost-

ing methods, such as the optical-flow and patch-based registration operations, they

have some distinct properties which are only applicable to videos.

Kang et al. [60] proposed an optical-flow based image warping method which is ap-

plied to the LDR frames captured using temporal exposure bracketing to produce

an HDR video. Similar to [11], they apply a global affine transformation followed

by a local optical-flow based correction. For the motion estimation, a variant of the

Lucas-Kanade [76] is used, which works on the Laplacian pyramid representation

as proposed by Bergen et al. [10]. With three consecutive exposures Ln−1, Ln, Ln+1

and Ln being the target, Ln−1 and Ln+1 are unidirectionally warped to Ln. If Ln is

ill-exposed, the unidirectional optical-flow estimation is unreliable. In that case, an

interpolated frame In is created using only Ln−1 and Ln+1 in bidirectional motion

estimation. In order to align In with Ln, the authors use a hierarchical homography-
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based registration.

Sand and Teller [113] propose an approach for the spatio-temporal alignment of the

frames from two videos of a dynamic scene. Their alignment algorithm provides both

an optical-flow field and a temporal offset between matching frames. The flow field

is estimated by finding pixel-wise correspondences using Harris corner detector [46]

and assigning a weight to each one of them, depending on the correspondence quality.

The weights consist of two terms; namely, a pixel matching probability and a motion

consistency probability. The pixel matching probability is calculated by comparing

the pixel intensity of the primary frame with the minimum and maximum intensities

observed in the 3×3 neighborhood of the corresponding pixel in the secondary frame.

The second term of the weight, the motion consistency probability, is based on the

difference between the observed motion vector and the motion vector predicted using

adaptive locally weighted regression.

Mangiat and Gibson [79] propose a deghosting method designed for HDR video re-

construction from the frames of an LDR video with alternating short and long expo-

sures similar to Kang et al. [60]. The motion estimation process begins with normal-

izing short exposure frame Ls using:

L̃l = g−1(g(Ls)− ln ∆ts + ln ∆tl), (2.29)

where g = ln f−1, Ll is the long exposure frame, ∆ts and ∆tl are the correspond-

ing exposure times. The authors state that an optical-flow approach similar to Kang et

al. [60] is not suitable here due to amplified noise and the possibility of large displace-

ments. Instead, block-based forward and backward motion vectors for the current

frame Ln is estimated using the previous frame Ln−1 and the next frame Ln+1. Mo-

tion vectors are calculated using Enhanced Predictive Zonal Search (EPZS) in H.264

JM Reference software using Sum of Absolute Differences (SAD) matching measure.

After forward and backward motion estimation, similar to Kang et al. [60], bidirec-

tional motion estimation is performed. Bidirectional motion estimation provides the

motion vectors for the saturated blocks in Ln. The obtained motion fields are refined

using a method similar to the pixel-level refinement of Matsushita et al. [84]. In order

to prevent the boundary artifacts around blocks, cross-bilateral filtering is applied to

the output HDR frames. The outputs may contain some registration artifacts on the
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saturated moving objects, which is addressed by the authors’ more recent work [80].

Castro et al. [18] propose an algorithm which is suitable for portable platforms with

limited computational resources. The input of the algorithm is the frames of an LDR

video with 0, +1 and −1 EV. After a photometric calibration step, for each frame in

the triplet, the alignment of the remaining 2 frames is performed using the method of

Ward [140]. The object motion is addressed by calculating the variance of each pixel

in three exposures. If the variance is low, it is assumed that the set of three frames is

free of motion and all of them are used during radiance map construction. Otherwise,

a larger weight is given to a single frame.

Chapiro et al. [20] provide an application of the exposure fusion [87] to HDR videos

by introducing a fourth term to the weighting function. This term takes lower values

in the presence of motion, which is detected by using the total absolute difference of

pixel blocks as a measure.

Kalantari et al. [59] introduce a patch-based HDR synthesis method. Similar to Kang

et al. [60] and Mangiat and Gibson [79], the inputs are frames of an LDR video with

periodically alternating exposures. There is no reduction in the number of frames

in the HDR reconstruction process. For each frame Ln, different exposures are con-

structed using the information from temporally neighbor frames Ln−1 and Ln+1. The

proposed framework is an extension of Sen et al. [115] to video with temporal coher-

ence. This is done by replacing Bidirectional Similarity (BDS) term with Temporal

Bidirectional Similarity (TBDS), which measures BDS of Ln with Ln−1 and Ln+1.

In order to accelerate the search and vote procedure, the patch searches in TBDS

are constrained around an initial motion estimation which is based on planar model

for global motion estimation and optical flow for local motion estimation. Although

perceptually insignificant, the authors state that use of motion estimation and optical

flow may sometimes result in artifacts around motion boundaries such as blurring and

partially disappearing object parts.

34



CHAPTER 3

SUBJECTIVE EVALUATION

Each class of methods introduced in Chapter 2 has different key characteristics. In or-

der to find out the ranking between a selected subset of these algorithms, the perceived

visual quality of their outputs are compared with a subjective experiment. In this

chapter, the details of the subjective experiment, including the methodology, bench-

marking dataset and the results together with their statistical significance analysis is

given.

3.1 The Experiment

The subjective evaluation methodology is similar to the approach followed by Ru-

binstein et al. [112] where the authors conducted a pairwise comparison experiment

via a web-based interface. The set of evaluated deghosting algorithms were: (A)

Grosch [38], (B) Khan et al. [62], (C) Sen et al. [115], (D) Silk and Lang [121],

(E) Hu et al. [51], (F) a simple baseline deghosting algorithm discussed in the next

subsection, and (G) no deghosting as a control condition.

Among these algorithms, (A) was selected as a relatively simple older-generation

deghosting algorithm. (B) was selected as the representative of the category which

aims to completely eliminate moving objects. (C) and (E) were selected as they rep-

resent highly sophisticated state-of-the-art algorithms. (D) was selected as a relatively

simple but more recent algorithm. (F), which is described in the next subsection, was

selected as a simple baseline algorithm. Finally, (G) which represents no deghosting

was selected as a control condition to assess the reliability of the subjective experi-
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ment.

The implementations of A, C, D, and E were made available by the authors of the

algorithms (for A as an executable kindly provided by the author). For D the fluid

motion (FM) outputs were tested since the number of input images was relatively low

and they were dynamic throughout whole acquisition process. Although an imple-

mentation of B is provided as part of open-source software Hugin-2013.0.0 [52], it

is reimplemented in MATLAB as the Hugin results did not replicate the same results

for the images used by Khan et al. in their original paper. The simple deghosting

algorithm, F, was also implemented in MATLAB.

3.1.1 Simple Deghosting Algorithm

The simple deghosting algorithm is implementation of a simple ghost detection fol-

lowed by a Laplacian pyramid [15] blending operation for merging images. The in-

put images were generated from the RAW files with linear camera response functions

(CRF). For each pair of input images Li and Lj , a ghost bitmap Gij is obtained with:

Gij(p) =
|Li(p)∆tj

∆ti
− Lj(p)|

Lj(p)
> 0.1, (3.1)

which marks a pixel in the bitmap if there is more than 10% deviation in the pre-

dicted pixel intensity value. Only well-exposed pixels are used in this ghost detection

operation. The final ghost detection mask is obtained by merging all bitmaps with

logical-OR operation. In the final step, HDR image I is obtained by using the method

of Debevec and Malik [25] and the regions which are marked in the ghost detection

mask are filled using the pixel values from only the middle exposed image in the ra-

diance domain. Laplacian pyramid [15] is used to avoid seams between the regions

taken only from the middle exposure and the neighboring pixels computed from mul-

tiple images. Note that this algorithm does not involve global exposure registration.

However, in case of camera movement the MTB algorithm [140] could be used to

align the exposures in a pre-processing step.
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(a) Cafe (b) Candles

(c) FastCars (d) Flag

(e) Gallery1 (f) Gallery2

(g) LibrarySide (h) Shop1

(i) Shop2 (j) WalkingPeople

Figure 3.1: A representative image for each scene
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3.1.2 Benchmark Dataset

For the experiments, 10 different scenes are acquired with different characteristics.

The acquisition settings and the image properties of the scenes used in the experi-

ment are given in Table 3.1. The stacks are taken with a tripod and no preliminary

global registration is applied to the images. Each scene consisted of 3 LDR images

with ±1 EV difference. Each input image was resized to 1024 × 683 dimensions

for computational considerations. For any specific scene, only the exposure time was

varied among the exposures while the ISO setting and F-number parameters were

fixed. The input image with 0 EV was used as the reference exposure if a reference

image was required by the tested algorithms. All images were captured in the RAW

format. Subsequently, RAW images were converted to 8-bit LDR images with lin-

ear camera response function (CRF) using the DCRaw [22] software. The output of

HDR images were tone mapped using the photographic tone mapping operator [107]

for visualization purposes. A representative image for each of these scenes is shown

in Figure 3.1.

The priority is given to covering the most frequently observed real-world ghosting

scenarios as much as possible in the set of test scenes. Both indoor and outdoor

scenes, small and large object displacements, deformable and non-deformable motion

patterns as well as different types of moving objects, lighting conditions and noise

levels are mostly represented in the dataset.

3.1.3 Experimental Setup

As mentioned above, the experimental design was pairwise comparisons similar to

Rubinstein et al. [112]. However, as deghosting algorithms operate on an exposure

stack, rather than a single image as in image retargeting, the participants were pre-

sented with 3 exposures on the left side of the screen. To maximize image size, only

one exposure was shown in high resolution. By hovering the mouse over the thumb-

nails at the top the participants could view each input exposure in high resolution.

Furthermore, by hovering the mouse over the exposures a zoomed-in view of the re-

gion under the mouse pointer was presented as an overlay in a small window. A pair
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Table 3.1: Acquisition settings and image properties for the scenes used in the exper-
iment.

Scene Camera Exposure Time ISO F-number Properties

Cafe Nikon D5100 1/250 320 5.0 Indoor scene with multiple moving
human subjects

Candles Canon 550D 1/128 6400 4.6 Indoor scene with low-lighting
conditions including moving light
sources and high noise

FastCars Canon 550D 1/256 1600 5.0 Outdoor scene including non-
deformable body motion with large
spatial displacements

Flag Canon 550D 1/256 100 11.3 Outdoor scene with deformable-body
motion

Gallery1 Nikon D5100 1/250 250 4.0 Indoor scene with moving human
subjects on dim background

Gallery2 Nikon D5100 1/250 2500 3.5 Indoor scene with moving human
subjects on strongly-lit background

LibrarySide Canon 550D 1/100 6400 3.5 Outdoor scene with low-lighting con-
ditions including moving people in
strongly-lit environment

Shop1 Nikon D5100 1/250 320 5.6 Indoor scene with reflections and
moving human subjects on strongly-
lit background

Shop2 Nikon D5100 1/250 320 7.1 Indoor scene with a single moving
human subjects

WalkingPeople Canon 550D 1/256 200 4.6 Outdoor scene with moving human
subjects with occlusion

of deghosting results were presented on the right side of the screen which could be

switched and zoomed-in similar to the input exposures. To indicate their preference,

the participants first selected the thumbnail that corresponds to the preferred result

and then clicked the submit button at the bottom of the page (see Figure 3.2).

For each participant, the experiment started with a short warm-up session comprised

of 3 comparisons during which the responses were not recorded. During the actual

experiment, each participant compared 60 pairs of images. The exact phrase used in

the comparison page was “Please select the image that you think is the better deghost-

ing result created from the multiple exposures.” The progress bar at the bottom of the

page showed the participants’ progress. All participants performed the experiment

using their own computers (as in a crowd-sourcing study) and were able to finish the

experiment within 30 minutes.

The first page of the web-interface briefly informed the participants about the HDR

deghosting problem and what was expected of them. It also collected information

about the participants’ age, gender, and familiarity with computer graphics and image
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Figure 3.2: Screenshot of the pairwise comparison task.

processing. In total, 63 participants (13F and 50M) finished the experiment from the

beginning to the end, and their data was used in the subsequent analysis. Of the

63 participants, 33 indicated they work in the field of computer graphics and image

processing, 14 indicated they consider this field as a hobby, and 16 indicated that they

do not have any specific interest in the field. The participants ages were distributed

between 21 and 50 with the mode age being 25 and the mean 31.

The total number of comparison pairs was equal to 10 ×
(

7
2

)
= 210. Each partici-

pant evaluated a random selection of 60 pairs among these. To ensure that each pair

was evaluated equal number of times, the information about how many times a pair

was compared is saved. When a new participant started the experiment, the least fre-

quently compared 60 pairs were selected in random order. This ensured that when 7

participants completed the experiment, each of the 210 pairs was compared exactly

twice (7×60 = 210×2). Thus, after all 63 participants finished the experiment, each

possible pair was compared exactly 18 times.

3.1.4 Data Analysis

In a paired comparison test, each participant makes a binary choice in each one of the

possible pairs of items. With t items, there are
(
t
2

)
pairs to compare. The results of

the comparisons are represented by an aggregate preference matrix A = [aij] where
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Table 3.2: The aggregate preference matrices for each scene used in the experiment.

Each cell shows the number of times the row algorithm is preferred over the column

algorithm. Please refer to text for the algorithm labels. The statistical similarity

groups are indicated in the last column with lower group numbers corresponding to

higher preference.
Cafe Gallery2

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 18 3 17 2 2 17 59 2 A 0 16 2 17 10 6 18 69 2

B 0 0 4 18 0 2 13 37 3 B 2 0 1 17 4 2 17 43 3

C 15 14 0 18 13 16 16 92 1 C 16 17 0 18 17 11 16 95 1

D 1 0 0 0 0 0 0 1 4 D 1 1 0 0 2 1 3 8 4

E 16 18 5 18 0 8 16 81 1 E 8 14 1 16 0 0 16 55 2,3

F 16 16 2 18 10 0 18 80 1 F 12 16 7 17 18 0 17 87 1

G 1 5 2 18 2 0 0 28 3 G 0 1 2 15 2 1 0 21 4

Candles LibrarySide

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 18 1 17 1 0 10 47 3 A 0 16 12 18 11 16 18 91 1

B 0 0 0 0 1 1 2 4 4 B 2 0 2 17 1 1 13 36 3

C 17 18 0 18 15 17 18 103 1 C 6 16 0 17 13 17 16 85 1

D 1 18 0 0 0 1 0 20 4 D 0 1 1 0 1 1 3 7 4

E 17 17 3 18 0 15 18 88 1, 2 E 7 17 5 17 0 14 16 76 1

F 18 17 1 17 3 0 17 73 2 F 2 17 1 17 4 0 14 55 2

G 8 16 0 18 0 1 0 43 3 G 0 5 2 15 2 4 0 28 3

FastCars Shop1

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 18 1 17 2 1 17 56 3 A 0 15 9 17 6 7 18 72 1

B 0 0 1 8 2 1 12 24 4 B 3 0 4 12 4 4 15 42 2

C 17 17 0 18 4 10 17 83 1, 2 C 9 14 0 18 5 10 18 74 1

D 1 10 0 0 0 2 8 21 4 D 1 6 0 0 1 2 13 23 3

E 16 16 14 18 0 15 17 96 1 E 12 14 13 17 0 11 17 84 1

F 17 17 8 16 3 0 17 78 2 F 11 14 8 16 7 0 17 73 1

G 1 6 1 10 1 1 0 20 4 G 0 3 0 5 1 1 0 10 3

Flag Shop2

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 18 12 17 10 6 15 78 2 A 0 12 2 13 2 1 16 46 2

B 0 0 0 1 0 1 7 9 4 B 6 0 4 14 3 2 17 46 2

C 6 18 0 18 9 3 15 69 2 C 16 14 0 14 15 7 17 83 1

D 1 17 0 0 2 0 15 35 3 D 5 4 4 0 1 3 17 34 2

E 8 18 9 16 0 2 16 69 2 E 16 15 3 17 0 11 17 79 1

F 12 17 15 18 16 0 18 96 1 F 17 16 11 15 7 0 17 83 1

G 3 11 3 3 2 0 0 22 3, 4 G 2 1 1 1 1 1 0 7 3

Gallery1 WalkingPeople

A B C D E F G Sum Group(s) A B C D E F G Sum Group(s)

A 0 15 6 14 6 9 16 66 2 A 0 16 8 17 2 12 17 72 2,3

B 3 0 1 9 2 2 16 33 3 B 2 0 2 16 1 1 16 38 4

C 12 17 0 16 6 10 16 77 1, 2 C 10 16 0 17 5 16 18 82 1,2

D 4 9 2 0 0 1 12 28 3, 4 D 1 2 1 0 0 1 6 11 5

E 12 16 12 18 0 13 16 87 1 E 16 17 13 18 0 15 18 97 1

F 9 16 8 17 5 0 17 72 1, 2 F 6 17 2 17 3 0 17 62 3

G 2 2 2 6 2 1 0 15 4 G 1 2 0 12 0 1 0 16 5
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aij is the number of times item i is preferred over algorithm j. The probability of

item i being preferred over item j is πij . The mean of the probability of an algorithm

i being preferred over other algorithms is:

πi =
1

t− 1

t∑
j=1,j 6=i

πij. (3.2)

An estimate of πi is given by:

πi =
ai

n(t− 1)
, (3.3)

where n is the number of comparisons per item and ai =
∑t

j=1 aij . In order to ana-

lyze the significance of the scores, the statistical data analysis method of Starks and

David [128] is used which tests the following null hypothesis:

H0 : πi = πj,∀i, j. (3.4)

A special case of the test given by Durbin [26] expects that if H0 is true (i.e. all com-

pared items are alike), the following D value follows approximately χ2 distribution

with t− 1 degrees of freedom:

D =
t∑
i=1

d2
i =

4

nt

t∑
i=1

(ai − ā)2

=
4

nt

t∑
i=1

a2
i −

1

4
tn2(t− 1)2.

(3.5)

Using the formula of Durbin, if D is greater than the critical value χ2
α for a selected

significance level α, it is possible to reject H0. For a significance value of α =

0.05, the corresponding χ2
0.05 = 12.592. In the experiment, it was possible to reject

H0 for each scene with D values greater than 100 (with the minimum D as 118.5

for the Shop2 scene). Rejection of H0 allows one to perform pairwise comparison

tests in order to group the algorithms into statistical significance groups. For two

scores ai and aj , Starks and David [128] calculate the smallest amount of statistically

significant difference required as:

mc = d1.96(0.5nt)0.5 + 0.5e. (3.6)

If |ai − aj| ≥ mc is satisfied, it is possible to conclude that there is a statistically

significant difference between the scores of compared items with a significance level
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Table 3.3: Total aggregate preference matrix of the participants in the subjective ex-
periment and algorithm scores consisting of total number of preferences

A B C D E F G Sum

A 0 162 56 164 52 60 162 656
B 18 0 19 112 18 17 128 312
C 124 161 0 172 102 117 167 843
D 16 68 8 0 7 12 77 188
E 128 162 78 173 0 104 167 812
F 120 163 63 168 76 0 169 759
G 18 52 13 103 13 11 0 210

of α = 0.05. In this study, it is found that mc = 17 for each scene and mc = 50 for

aggregate results. The significant groups determined using these mc values are given

in Table 3.2 for each scene and in Table 3.4 for total aggregate preference matrix.

3.2 Results

In this section, first the results of the subjective experiment are presented and inter-

preted based on the outputs generated by the algorithms. Next, the runtime perfor-

mance of the algorithms is discussed.

3.2.1 Experimental Results

The results of the subjective experiment for each scene is given in Table 3.2. In this

table, each matrix represents the results for a single scene. The cell values indicate

how many times the row algorithm was preferred over the column algorithm. The last

column for each scene indicates the statistical similarity groups with lower numbered

groups corresponding to higher preference. The aggregate results obtained by accu-

mulating the preference matrices for each scene is given in Table 3.3. The statistical

similarity groups for the aggregate results are separately presented in Table 3.4 for

clarity purposes.

From these results it is possible to make the following observations. Sen et al.’s [115]

and Hu et al.’s [51] methods are clear winners based on the aggregate rankings. These

methods also outperform all other methods for each scene with a few exceptions. In
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Table 3.4: Ranks and significant groups of the algorithms according to the scores (ai)

Group Algorithms

1 C - Sen et al. [115] (843),
E - Hu et al. [51] (812)

2 F - SimpleDG (759)

3 A - Grosch [38] (656)

4 B - Khan et al. [62] (312)

5 G - NoDG (210),
D - Silk and Lang [121] (188)

general, Sen et al.’s method was selected as the best algorithm for all scenes except

the Flag scene. Hu et al.’s method was also in the first group except the Gallery2

and Flag scenes. When these methods were not the winner, they ranked the second.

This suggests that these two patch-based algorithms are quite stable with respect to

changing scene contents and different types of ghosting artifacts. In general, both

methods appeared to be artifact-free. However, it was observed that they may pro-

duce outputs that have slightly less contrast compared to Grosch [38] and the simple

deghosting algorithm discussed in Section 3.1.1. This may explain their second rank-

ing for the Flag scene as all four methods produced artifact-free images but the latter

two produced higher contrast.

An interesting observation is that the simple deghosting algorithm (F) explained in

Section 3.1.1 performed relatively well in the experiment; it was placed by itself in

the second group. In fact, the per-scene results suggest that many times this simple

algorithm was ranked in the first significance group (for Cafe, Gallery2, Shop1, Flag,

Shop2, and Gallery1). The worst result for this algorithm was observed in Walk-

ingPeople where the simple algorithm was ranked as the third. This suggests that,

when it comes to deghosting, a simple solution may sometimes outperform more

sophisticated algorithms assuming that the exposures are captured using a tripod or

registered during a preprocessing step (this simple method generally outperformed

Grosch, Khan et al., and Silk and Lang’s algorithms). This may be attributed to the

fact that the simple method does not generate any additional artifacts which are some-

times observed in more sophisticated algorithms.
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Grosch’s method [38] seems to have the highest amount of variance between the

rankings in different scenes. While it performs very well (ranked in the first group)

for LibrarySide, Shop1, and Flag scenes it performs the worst for the Candles scene.

In other scenes, it occupies the second and third rankings. This variation suggests that

this algorithm’s results are highly sensitive to scene content and the types of ghosting

artifacts that are present. Figure 3.3 illustrates some of the artifacts created by this

algorithm and discusses their causes.

Khan et al.’s method [62] performed relatively poorly in the experiment with also a

high degree of variation. It performed the worst for the Candles scene which depicts

a low-light environment with high noise. It is quite possible that the amount of noise

present in the exposures interfered with the algorithm’s weight computation. For a

few scenes such as Shop1 and Shop2, this algorithm performed relatively well, occu-

pying the second ranking. For the remaining scenes, Khan et al.’s algorithm occupied

the third and fourth rankings. As such, this algorithm also exhibited a high degree

of variation across scenes. One possible reason for the low performance of this algo-

rithm may be attributed to the fact that the exposure stacks were comprised of only

three images. Because this algorithms assigns weights to each pixel by considering its

similarity to the 3D neighborhood around it, using only three images may have given

rise to a too small neighborhood. Some of the artifacts with their possible causes are

presented in Figure 3.4.

The worst performing deghosting algorithm was found to be Silk and Lang’s method

[121]. Overall, this algorithm was preferred the fewest number of times in pairwise

comparisons, receiving a score even lower than the no deghosting condition. This is

attributed to the artifacts produced by this algorithm. In the outputs of Silk and Lang,

it is observed that, especially in low-lit surfaces, the outputs have black regions (even

if these regions are completely static). It is found that these type of artifacts are caused

by mathematical singularities during weight estimation in poorly exposed regions. In

addition, possibly due to the blending operation used, the transition in the super-

pixel boundaries may become very sharp or they may produce color discontinuities

as shown in Figure 3.5.

In overall, the obtained rankings give confidence about the reliability of the subjec-
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Table 3.5: Algorithm running times in seconds. Please refer to text for details.
Grosch Khan et al. Sen et al. Silk and Lang Hu et al. SimpleDG NoDG

Cafe 1.06 615.03 218.08 24.95 208.28 8.80 3.89
Candles 1.09 624.05 308.77 8.17 299.34 7.03 2.30

FastCars 1.05 620.86 184.77 11.77 239.42 7.72 2.70
Flag 1.06 616.94 161.09 12.64 232.52 6.36 3.41

Gallery1 1.02 613.92 173.36 18.44 221.47 6.42 2.86
Gallery2 0.98 611.28 218.83 14.66 243.59 6.45 2.05

LibrarySide 1.09 616.89 238.58 18.09 215.77 7.58 2.72
Shop1 1.00 614.42 203.77 11.02 215.91 6.78 2.53
Shop2 0.95 613.14 199.63 10.61 218.44 6.88 3.45

WalkingPeople 1.09 617.96 190.97 12.92 208.83 6.88 3.47

Average 1.04 616.45 209.78 14.33 230.36 7.09 2.94

tive experiment. Sen et al. and Hu et al., being very similar algorithms, shared the

first ranking. The no deghosting control condition and Silk and Lang’s [121] algo-

rithm occupied the last position, a finding that is expected from the artifacts in their

outputs. Simple deghosting and Grosch’s methods [38] received rankings that are

similar to each other. This is also expected as both algorithms are similar but the

simple deghosting includes a Laplacian blending stage whereas Grosch’s algorithm

simply uses pixels from the reference exposure.

3.2.2 Runtime Performance

Running times of each algorithm is provided in Table 3.5. The running times were

obtained by measuring the CPU time used by each algorithm on a computer platform

with Intel Core i7-3770 CPU @ 3.40 GHz, 8 GB RAM and NVIDIA GeForce GT

630 GPU.

For Sen et al. [115], the “normal” quality setting was used. For Khan et al. [62], the

iteration count was set to 10. However, the running times per-iteration are reported as

it is observed that 4 − 5 iterations were sufficient for convergence, most of the time.

All algorithm implementations were in MATLAB, excluding Grosch [38] which was

kindly provided to by the author in executable format. The fast running times can be

attributed to its being native code and the algorithm’s utilization of the GPU.

From Table 3.5 it is possible to observe that Sen et al.’s and Hu et al.’s methods take

about 3− 4 minutes to process an exposure stack comprised of 3 exposures with each
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exposure 1024 × 683 resolution. Khan et al.’s running times take about 10 minutes

for a single iteration of the algorithm. The other methods are much faster, especially

Grosch’s method, producing results in about a second (including disk IO times).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.3: Outputs of Grosch [38] for selected scenes. (a), (c), and (e) show the

results for Candles, FastCars and Shop2 scenes, (g) shows one of the input LDR

exposures for Shop2, (b), (d), (f) and (h) magnify the problematic regions. In (b), the

sharp transition between the source images is easily observable which is attributed to

the lack of a smooth blending operation. In (d), some parts of the car are replaced

with the background on the left and some parts of another car remain on the right due

to the color similarity between the object and the background. In (f), the presence of

the black colored cloth (underexposed pixels) and the movement at the same regions

result in incorrect filling of the region, leaving visible boundaries. The same region

of a single input exposure is provided in (h) for reference.

48



(a)

(b)
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(d)

(e)

(f)

(g)

(h)

Figure 3.4: Outputs of Khan et al. [62] in (a) FastCars, (c) Gallery2 and (e) Flag

scenes. The problematic regions are magnified in (b), (d), (f) and (h). In FastCars

scene, the critical assumption of the algorithm does not hold. A vehicle in the scene

takes the position of another vehicle from the previous frame; therefore, the majority

of the exposures do not capture the background in these regions, which is required for

a correct pixel-weighting operation. This situation results in even increased amount

of weights where the pixels are affected by the motion in (b). Since there is not a

semantic constraint in the pixel down-weighting operations, two copies of the same

person appears in the Gallery2 (d) scene. (f) shows the output of Khan et al. in the

presence of deformable body motion. The overlapping parts of the moving object are

kept whereas other parts are cleared by the algorithm giving rise to a broken appear-

ance. In (h), the same region is shown with no deghosting operation for reference.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.5: Outputs of Silk and Lang [121] for (a) Cafe, (c) Candles, (e) Flag, and

(g) Shop2 scenes. In the outputs of the algorithm some of the regions become black,

especially if the they have low pixel-intensity values in the input images. In (b), two

such regions are shown. In (d), two regions are shown where the boundaries of super-

pixels are visually noticeable. (e) and (f) shows the observed color artifacts after the

blending operation. (h) shows a region in Shop2 scene where multiple sources are

used to fill an underexposed region.

50



CHAPTER 4

OBJECTIVE METRIC AND EVALUATION

Conducting a large-scale subjective experiment for comparing HDR deghosting algo-

rithms is a challenging task. With new algorithms being proposed on a regular basis,

the findings obtained from a subjective experiment can be quickly outdated. There-

fore, it is important to develop objective metrics which can be used to quickly and

quantitatively evaluate the performance of newly proposed algorithms.

The objective metric proposed in this dissertation is the result of analyzing the out-

puts of several HDR deghosting algorithms to identify the most prevalent artifacts

that are present. To validate the compliance of the objective metric with subjective

judgements of real observers, a new subjective experiment that involves 16 scenes of

varying characteristics, 10 deghosting algorithms, and 52 participants is conducted.

Results of this new experiment and new dataset is used for both validation and esti-

mating the best objective metric weights, while the results and dataset from Chapter 3

is used only for validation for improved reliability. It is found that there is a high

degree of correlation between the subjective and objective results.

The proposed metric has several applications such as automatic comparison of deghost-

ing algorithms, automatic image quality inspection, understanding the strengths and

weaknesses of existing algorithms, optimizing parameter selection, providing feed-

back for developing better HDR deghosting algorithms, and hybrid deghosting in

which multiple deghosting results are combined to obtain a superior one.
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4.1 Related Work

Image quality metrics are generally categorized into three classes, namely full-reference

(FR), reduced-reference (RR), and no-reference (NR) metrics. FR metrics require

a ground-truth reference image in addition to the image whose quality is to be in-

spected. VDP [24], PSNR [131], VDM [75], SSIM [139], VIF [117], FSIM [148]

are some commonly used FR metrics. RR metrics, on the other hand, do not have a

ground-truth image but employ some partial information about the reference [12, 69,

125]. Finally, NR metrics do not require any information about the reference. They

commonly employ knowledge about specific types of distortions and detect their ‘sig-

natures’ in the distorted images [141, Chapter 5] [21, 72, 138]. There are some NR

metrics as well, which depend on natural scene statistics derived from artifact-free

images [91, 118, 123]. Alternatively, a number of studies learn some objective qual-

ity assessment functions from a collection of images and their subjective scores or

user-selected artifacts and use them to provide NR metric scores [48,66,73,130,145].

In the literature, there are some studies for building quality metrics for HDR im-

ages [108, Chapter 10] [5, 64, 83, 93, 106, 124]. These metrics operate on a pair of

images with arbitrarily different dynamic ranges to which the standard quality as-

sessment metrics cannot be directly applied. The metric in this dissertation differs

from these previous works in that, it is the first objective quality assessment metric

designed to detect deghosting artifacts in HDR images. It can be considered as an RR

metric as it requires the individual exposures in addition to the deghosting output.

4.2 Subjective Experiment

In order to validate the compatibility of the objective metrics with subjective pref-

erences, an additional subjective experiment is conducted involving 10 deghosting

algorithms and 16 scenes. The selected algorithms were: Grosch [38], Khan et

al. [62], Sen et al. [115], Silk and Lang’s [121] fluid-motion (FM) and pairwise-

downweighting (PWD) methods, Srikantha et al. [127], Hu et al. [51], Lee et al. [67],

a simple deghosting approach based on using a single reference image in all dynamic

regions (see Section 3.1.1), and no deghosting as a control condition. These algo-
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.1: Typical deghosting artifacts. (a), (c) and (e) show the blending, gradient

inconsistency and visual difference artifacts, respectively with problematic regions

magnified in (b), (d) and (f). The images in this figure are obtained by directly merg-

ing the exposures without deghosting (a, b), by selecting the best-exposed input image

as the only source for each pixel (c, d), and by incorrectly setting the weight values

which causes singularities during the HDR assembly process (e, f).

rithms were selected as representatives of different types of deghosting approaches.

They range from simple point operations to sophisticated computer vision algorithms.

The source codes and/or executables of each of these algorithms are acquired from

the original authors except for Khan et al.’s method [62], was reimplemented in MAT-

LAB. In addition, Silk and Lang’s algorithm [121] was slightly modified to prevent it

producing NaN values due to mathematical singularities in poorly exposed regions.

As for the input scenes, an independent dataset of diverse characteristics is created

with both indoor and outdoor environments and motion patterns with varying com-

plexities. Each scene was captured using 3 exposures (-1, 0, +1 EV) with a Canon

DSLR camera in RAW format. These scenes are depicted in Figure 4.8 and their

properties are summarized in Table 4.3.

Due to a large number of algorithm/scene combinations, an online rating experiment

was performed. Similar to the experiment described in Chapter 3, the experiment
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started by a warm-up trial to familiarize the participants with the web-interface. The

interface consisted of thumbnails of three individual exposures on the left and ten

deghosting results on the right. The selected exposure and the deghosting result were

shown in higher resolution side-by-side in the middle of the screen. Hovering the

mouse over these images brought a zoomed-in view of the region under the cursor to

allow detailed analysis.

Different from the subjective experiment described in Chapter 3, instead of perform-

ing a pairwise comparison, the participants’ task was to give a rating between 0 and

100 for each deghosting result by setting the sliders below each thumbnail. To fa-

cilitate these ratings, 0, 25, 50, 75, and 100 values are marked as ‘very bad’, ‘bad’,

‘medium’, ‘good’, and ‘very good’ quality, respectively. However, the participants

could assign any rating between 0 and 100 with a step size of 5 (e.g. a good image

could be rated as 75 whereas a slightly better one as 80). After each trial, the partici-

pants viewed the next set of images by pressing the ‘Next’ button at the bottom of the

page. The experiment took between 30 to 40 minutes for each participant. Partially

completed experiments are discarded to have equal number of ratings for all condi-

tions. In total, 52 participants finished the experiment in its entirety and their mean

ratings are shown in Figure 4.2.

For the statistical analysis of the ratings collected from the subjective experiment,

two-way ANOVA for repeated measures is performed with the following factors:

• The deghosting algorithm

• The scene

According to the Mauchly’s sphericity test [85], sphericity assumption is violated

(p < 0.005) and Greenhouse-Geisser [37] correction is applied. The results of the

tests of within-subject effects are provided in Table 4.1. It is possible to reject the

null hypothesis (average population means being statistically indifferent) with a sig-

nificance level p < 0.001.
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Figure 4.2: Average ratings of the compared algorithms in the subjective experiment.

The red lines indicate the standard error.

Table 4.1: Tests of within-subject effects
Source Type III Sum of Squares df Mean Square F Sig.

Algorithm 2511773.173 2.827 888645.286 291.624 .000
Error(Algorithm) 439266.490 144.152 3047.235
Scene 1252215.815 8.093 154734.465 77.394 .000
Error(Scene) 825169.498 412.726 1999.313
Algorithm * Scene 1331140.724 26.708 49840.727 37.405 .000
Error(Algorithm*Scene) 1814970.214 1362.102 1332.477

4.3 Deghosting Artifacts

The outputs of several deghosting algorithms for a variety of exposure sequences are

studied in order to understand what types of deghosting artifacts are produced. The

following four types of artifacts were found to be the most common (Figure 4.1).

Blending. Blending artifacts occur when a dynamic object is blended to its back-

ground. This type of artifact is the most common for algorithms which aim to elimi-

nate moving objects, such as Khan et al. [62], but other types of algorithms were also

found to exhibit blending artifacts to some extent.

Gradient inconsistency. Gradient inconsistencies occur when the HDR image con-
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Table 4.2: Ranks and significance groups of the algorithms according to 95% confi-
dence interval about the average algorithm ratings.

Group Algorithms

1 Sen et al. [115] (80.91),

2 Srikantha et al. [127] (58.53)
SimpleDG (56.06)
Grosch [38] (55.30)

3 Hu et al. [51] (43.80)
Lee et al. [67] (40.01)

4 Silk and Lang [121]-FM (28.41)
No deghosting (27.77)
Khan et al. [62] (26.71)
Silk and Lang [121]-PWD (25.25)

tains new gradients that are absent in all of the exposures or the gradients that exist

in the exposure stack are lost in the HDR image. This type of artifacts may occur

due to banding (as new gradients will be created), blending (as gradients would be

weakened), and structural distortions.

Visual differences. Visual differences occur when the deghosting result contains

image details that cannot be produced from any of its constituent exposures due to

various causes such as noise and corruption. Such differences can also be observed if

a feature that exists in all input exposures is lost in the HDR image.

Dynamic range. This refers to the loss of contrast in dynamic regions of an exposure

stack. This may happen if an algorithm chooses a single reference exposure for a

dynamic region instead of using information from multiple exposures.

Not all artifacts are mutually exclusive and a single problematic region may contain

multiple types of artifacts. However, taken together, they explain the majority of the

problems in deghosting outputs.
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(a) Moving people generate blending (red) and vi-

sual difference (blue) artifacts.

(b) Over-smoothing gives rise to gradient inconsis-

tency (green) artifacts.

Figure 4.3: The objective metric detects several kinds of HDR deghosting artifacts. In

(a), Khan et al.’s [62] output is shown in the bottom-left corner and the metric’s result

in the bottom-right. The same for (b), except Hu et al.’s [51] deghosting algorithm

is used. Exposure sequences are shown on the top. Cyan color occurs due to both

gradient and visual difference metrics producing high output.

4.4 Objective Deghosting Metric

The inputs to the objective metrics are the input exposures with accompanying ex-

posure time and camera response information as well as the deghosted HDR image.

The outputs are the distortion maps that show the location and the magnitude of the

blending, gradient inconsistency, and visual difference artifacts. As for the dynamic

range metric, a single scalar is produced which measures the dynamic range in the

dynamic regions.

In all metrics, it is assumed that the input exposures are aligned either by use of a

static camera or by applying a global alignment algorithm such as median threshold

bitmaps [140]. Without this assumption, it would be required to align the images

within the metric, which would make the results dependent on the quality of the

alignment algorithm used.

4.4.1 Blending Metric

Blending artifacts occur when two or more pixels that have different irradiance values

are combined to produce an HDR pixel (Figure 4.1 (a-b)). The presence of this artifact

can be detected if one knows the weights, w, used during the HDR creating process
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as these weights determine how much each pixel contributes to the final result:

I(p) = k
N∑
n=1

wn(p)En(p). (4.1)

Here, I is the HDR image, p represents the pixel index and k represents a normaliza-

tion constant1. En is the nth exposure transferred into irradiance domain by divid-

ing with the exposure time and applying the sensor-specific inverse camera response

function.

The essence of the blending metric is the detection of pixels which differ in irradiance

but are assigned high weights. However, these weights are typically unknown and

must first be estimated.

4.4.1.1 Weight Estimation

Given the set of input images L and the HDR image I , the actual weights wn used

to reconstruct I are unknown; therefore, their estimates w̃n are obtained with the

following non-negative least squares estimation:

w̃′(p) = arg min
α
‖I(p)−D(p) · α‖2

2, α ≥ 0, (4.2)

where w̃′(p) = [w̃′1(p) w̃′2(p) ... w̃′n(p)]ᵀ is the vector of non-negative weight esti-

mates for pixel p and D(p) is 3×N dictionary matrix of irradiance vectors from each

irradiance map:

D(p) =
[
E1(p) | E2(p) | ... | EN(p)

]
. (4.3)

To comply with Equation 4.1, the weights are normalized to obtain the final weights

that will be used in the blending metric: w̃(p) = [w̃1(p) w̃2(p) ... w̃n(p)]ᵀ:

w̃n(p) = w̃′n(p)
/ N∑

n=1

w̃′n(p). (4.4)

For the least squares estimation, Lawson-Hanson [65] algorithm is used, which re-

covers the non-negative HDR reconstruction weights via `1-minimization [31]. This

eliminates the need for a regularization term in the weight estimation.
1 The normalization is performed to make the mean irradiance of the HDR image equal to that of the middle

exposure. It serves to simplify the comparisons between pixel values.
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The weight estimation scheme is evaluated to determine how well it can recover the

actual weights used during the HDR creation. To this end, three HDR images are

created using three different weighting functions, namely triangular (wT ), broad-hat

(wBH), and Gaussian (wG) functions. These functions were defined as follows:

wT (x) = 1− |2(x− 0.5)| , (4.5)

wBH(x) = 1− (2x− 1)32, (4.6)

wG(x) = exp(−25(x− 0.5)2), (4.7)

where x is the normalized pixel value. The correlation between the estimated weights

and the actual weights were found to be moderate (in the range [0.3, 0.6] for different

weighting functions). This is expected as there may be many different set of weights

which produce the same HDR pixel from a set of LDR pixels. The critical require-

ment should be that the final HDR images that are obtained with the actual weights

and the estimated weights should be highly correlated. These correlation values were

found to be greater than 0.99 for all three weighting functions.

A follow-up experiment is performed to evaluate the similarity of the blending maps

obtained using the actual weights and estimated weights. As shown in Figure 4.4,

an artificial exposure sequence was created, which contained a single moving ob-

ject. These exposures are combined using a triangular weighting function and without

ghost removal to obtain the results shown in (b). Then the blending map is computed

using these known weights as shown in (c). Next, the weights are estimated from

the HDR image and the input exposures using the weight estimation scheme. The

blending map computed from these estimated weights are shown in (d). These two

blending maps are visually very similar and have a Pearson correlation coefficient of

0.96 when 3 input exposures are used. Next, 7 input exposures are used to understand

how well the weight estimation scheme can deal with a larger number of exposures

and a correlation of 0.88 is found between the maps computed from the actual and

estimated weights. The HDR image obtained from the estimated weights shown in

(e) is also highly correlated with the HDR image reconstructed by using the actual

weights (b).

These experiments support that the estimated weights can be reliably used to detect

blending artifacts in most cases. The only limitation of the presented weight estima-
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tion scheme is that if two irradiance values are linearly dependent to each other. In

that case, the deghosting algorithm may have assigned non-zero weights to two dif-

ferent exposures with different but linearly dependent irradiance vectors, producing

a ghost artifact. This type of artifact is not detected by the blending metric as the

`1-minimization would assign a non-zero weight only to the higher irradiance pixel

value. However, in practice, the probability of having linearly dependent color vectors

in the same pixel of two different exposures is low due to noise.

Another implication of this weight estimation scheme is that if the number of ex-

posures is larger than the number of color channels, the non-negative least squares

estimation algorithm performs a sparse recovery of the weights. As a result, the num-

ber of non-zero elements in α is limited to 3 in the weight estimation, even if the

number of input exposures is greater than 3. However, this does not preclude detect-

ing blending artifacts as shown in the bottom row of Figure 4.4. It simply means that

it is possible to detect the blending artifacts caused by the three highest irradiance

pixels.

4.4.2 The Metric

As discussed earlier, blending artifacts occur when two irradiance values that are

different from each other are simultaneously given high weights. This phenomenon

is captured using the following metric:

QB(p) =
N−1∑
n=1

N∑
m=n+1

(w̃n(p) + w̃m(p)

2
g(w̃n(p), w̃m(p))h′(En(p), Em(p))Wn,m(p)

)
,

(4.8)

where the function g computes the similarity of its inputs:

g(w̃n(p), w̃m(p)) = 1− |w̃n(p)− w̃m(p)| . (4.9)

The function h′ returns the normalized Euclidean distance between two input irradi-

ance vectors if this distance is large and 0 otherwise:

h′(En, Em) =

0, if h(En, Em) ≤ τ

h(En, Em), otherwise,
(4.10)
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EV -3 EV -2 EV -1 EV 0 EV +1 EV +2 EV +3

(a) Input Exposures

(b) Output HDR (no

deghosting)

(c) Blending map from

actual weights

(d) Blending map from

estimated weights

(e) HDR from estimated

weights

Figure 4.4: Blending metric outputs for 3 and 7 exposures using the actual and es-

timated HDR reconstruction weights on a set of synthetic input images. It can be

observed that the blending metric maps in (c) and (d) are consistent with the visible

artifacts in (b).

h(En(p), Em(p)) =
‖En(p)− Em(p)‖2

‖Mn,m(p)‖2

, (4.11)

Mn,m(p) =


max{Er

n(p), Er
m(p)}

max{Eg
n(p), Eg

m(p)}
max{Eb

n(p), Eb
m(p)}

 . (4.12)

Here, τ represents a tolerance threshold. It is assumed that if the input irradiances

are similar, their blending will not cause visible blending artifacts. Various values of

τ are experimented and it is found that τ = 0.30 gives the highest correlation with

subjective preference. This value is used for all results in this dissertation.

Finally, Wn,m(p) represents the joint well-exposedness of a pixel p for exposures n
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and m. A broad-hat function is used to represent well-exposedness:

wBH = 1− (2x− 1)32, (4.13)

Wn,m(p) = wBH(Ln(p))wBH(Lm(p)). (4.14)

Wn,m(p) attenuates the blending metric output for pixel p when one or both of the

input pixels are under- or over-exposed. In summary, the blending metric detects

those pixels in the HDR image that are created from merging well-exposed irradiance

values that differ by at least 30%. The greater the magnitude of this difference, the

higher the corresponding blending map value will be.

4.4.3 Gradient Inconsistency Metric

It is assumed that an HDR image should not contain any gradients that do not exist

in any of its constituent exposures. Similarly, if there is a gradient in all exposures,

this gradient should exist in the HDR image as well (Figure 4.1 (c-d)). The pixels

which fail these requirements are captured in the gradient inconsistency map, which

is defined as follows:

QG(p) =

0, if QG′(p) ≤ τ

QG′(p), otherwise.
(4.15)

Akin to the blending metric, this branching on the magnitude of the gradient differ-

ence is made to allow small gradient differences to be tolerated. Furthermore, as a

gradient is defined by its magnitude and orientation, separate metrics are developed

to measure these two properties. The gradient magnitude metric is defined as:

QG′mag
(p) = min

n

∣∣∣‖∇En‖2
‖∇I‖2

‖∇I(p)‖2 − ‖∇En(p)‖2

∣∣∣
max

{
‖∇En‖2
‖∇I‖2

‖∇I(p)‖2 , ‖∇En(p)‖2

} , (4.16)

where ∇ is the image gradient computed by using Sobel’s operator, ‖∇En‖2 and

‖∇I‖2 are the mean values of ‖∇En‖2 and ‖∇I‖2, respectively. Normalization with

the mean values is performed to make the gradient magnitudes of the HDR image

compatible with the gradient magnitudes of the individual exposures. The denomina-

tor ensures that the metric output is in the range [0, 1].
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As for the gradient orientation, the minimum angle between the directions of gradient

vectors is measured:

QG′dir
(p) = min

n
|[(θI(p)− θn(p) + π) mod 2π]− π| /π (4.17)

The division by π scales the output value to the range [0, 1]. Furthermore, gradi-

ent magnitude and orientation inconsistencies are computed in a multi-scale fashion

to capture gradient differences in multiple scales. An image pyramid of 5 levels is

computed by Gaussian smoothing and downsampling. Equations 4.16 and 4.17 are

evaluated for each pixel of each level giving rise to 5 gradient magnitude and orien-

tation maps. Then artifact maps of all levels are upsampled and merged to determine

the artifact maps at the finest level. During this process, the inconsistencies in higher

levels are given more weight than the inconsistencies in lower levels as they corre-

spond to more important gradient differences. It is found that assigning 4 times more

weight to the errors at a higher level than its immediate lower level gives the highest

correlation with subjective results. This is expected as ratio of the number of pixels

between neighboring pyramid levels is also 4.

4.4.4 Visual Difference Metric

Besides blending and gradient artifacts, deghosting outputs may also contain certain

artifacts that may be collectively termed as visual differences. These may be in the

form of noise, corruptions, banding, etc. To capture these general types of artifacts,

the HDR-VDP-2.2 metric [93] is extended. HDR-VDP-2.2 metric is the latest and

most accurate incarnation of the HDR-VDP family, to enable comparisons between a

single HDR image and multiple LDR exposures.

To make the VDP metric compatible with multiple exposures, the input images, Ln,

and the HDR image, I , are scaled to set their mean irradiance values to unity. Then

for each pixel p, the minimum probability obtained among each HDR-LDR pair is

taken as the probability of visual difference detection for that pixel:

QV (p) = min
n
V ′(I(p)/I, Ln(p)/Ln), (4.18)

where V ′ is the map of the visual difference detection probability generated by the

HDR-VDP-2.2. The color encoding parameter of HDR-VDP-2.2 is set to ITU-R
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(a) Scene StreetDay (b) Scene Plants

(c) Scene Pendulum (d) Scene ToyTrain

Figure 4.5: Dynamic region bitmaps detected by the heuristic described in the text.

Note that the bitmaps successfully capture dynamic objects such as people, foliage,

pendulum, and a toy train while generating only a few false positives.

BT.709 RGB and the pixels per degree parameter is given as 30, which is an approx-

imate value for a computer screen with a standard resolution from a typical viewing

distance. Note that, this metric is not tailored for a specific type of artifact but it

reports errors for any predicted visual differences.

4.4.5 Dynamic Range Metric

The metrics discussed so far do not award an algorithm for producing a higher dy-

namic range output. However, simply producing a higher dynamic range output is

also not sufficient if the output contains visual artifacts. As such, an ideal algorithm

should maximize the dynamic range without producing visually disturbing artifacts.

In this metric, only the dynamic range in the dynamic image regions is computed.

Otherwise, if the static regions have higher dynamic range, they could mask the dy-
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(a) Input exposures

(b) Deghosting output (c) Blending artifact (d) Grad. magnitude artifact

(e) Grad. direction artifact (f) Visual difference (g) Combined visualization

Figure 4.6: Khan et al.’s [62] output showing blending, gradient inconsistency and

visual difference artifacts.

namic range in the dynamic regions. To this end, a simple heuristic is used to estimate

a dynamic region bitmap:

DR(p) =

0, if DR′(p) ≤ τ

1, otherwise,
(4.19)

where

DR′(p) = max
c∈{r,g,b},n∈{1,...,N−1}

h(Ec
n(p), Ec

n+1(p))Wn,n+1(p) (4.20)

In Figure 4.5, the output of this heuristic is demonstrated for several dynamic scenes.

The dynamic range,D, is then computed from the HDR image pixels whereDR(p) =

1. A small percentage of the outliers are excluded to obtain a more stable measure:

QD = log10 I(p99%)− log10 I(p1%). (4.21)
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(a) Input exposures

(b) Deghosting

Output

(c) Blending Map (d) Grad. Magni-

tude Inconsistency

(e) Grad. Direc-

tion Inconsistency

(f) Visual Differ-

ence Map

Figure 4.7: Metric outputs for scene ToyTrain using 7 exposures with the algorithm

of Silk and Lang [121].

4.5 Results and Validation

In this section, first the visual output of the objective quality metric is demonstrated

for several deghosting algorithms applied on different exposure sets. The correlation

of the proposed metric is compared with the results of a subjective experiment. Next,

it is shown that existing metrics that are not specialized for HDR deghosting are in-

adequate for detecting deghosting artifacts. Finally, the objective metric is leveraged

to illustrate an application called hybrid deghosting in which different algorithms’

outputs are merged to obtain a higher quality deghosting result.

4.5.1 Visual Evaluation

Three sample visual outputs of the objective metric are demonstrated in Figures 4.3,

4.6, and 4.7. In Figure 4.3 (a), Khan et al.’s [62] output is shown in the bottom-left

corner. The corresponding artifact maps are shown to its right as an overlay on top of

the deghosting result. Here, and in all figures in this dissertation, blending artifacts

are shown in red, gradient magnitude artifacts in green2, and visual difference artifacts

in blue. It can be seen that the objective metrics detect regions that are affected by

deghosting artifacts while generating only a few false positives. In Figure 4.3 (b),

the objective metric primarily reports gradient magnitude inconsistencies and visual
2 In overlay visualizations, only gradient direction artifacts are shown for clarity. As will be shown later, they

have a significant overlap with gradient magnitude artifacts.
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StreetNight Museum1 Museum2 Museum3

StreetDay Plants Exit Pendulum

Cars Pedestrians Fountain Yard

Turtles Building Flames ToyTrain

Figure 4.8: The representative images of the input scenes used in the experiment.

differences for the output of Hu et al.’s algorithm [51]. Comparison of this output

with individual exposures reveal that there is indeed a loss of details at the back of

the person as well as in the distant corridor.

In Figure 4.6, the individual as well as the combined outputs of the objective metric

are demonstrated. The input exposures are shown in (a) and the deghosting result in

(b). Individual maps are shown in (c) to (f) and the combined result is shown in (g).

Again, it is observed that most of the problematic regions in (b) are captured by the

objective metric while generating only a few false positives.

Finally, it is shown that the objective metric can be used to detect artifacts in a larger

exposure sequence as shown in Figure 4.7. Here, seven input exposures shown in (a)

are used to obtain the deghosting result in (b) by Silk and Lang’s algorithm [121].

The outputs of the objective metric are shown in (c) to (f).
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Table 4.3: Properties of the scenes used in the experiment.

Scene Properties

StreetNight Walking person with some distance to the camera, outdoors, night,
motion blur

Museum1 Walking person close to the camera, indoors
Museum2 Mostly static high contrast scene with a person in one exposure
Museum3 Movement of a close person across a high contrast distant door
StreetDay Multiple moving people, outdoors, day

Plants Complex motion of plants across sunset
Exit Person exiting from dark indoors into sunny outdoors

Pendulum Complex motion of objects with specular highlights
Cars Fast motion of cars across sunset

Pedestrians Slow motion of pedestrians across sunset
Fountain Complex motion of water fountain with crowded background

Yard Multiple people walking away from the camera
Turtles Relatively still water with changing reflections

Building Closeby person walking in front of large windows
Flames Complex motion of flames

ToyTrain Movement of a toy train along tracks with flashing lights

4.5.2 Validation

To understand whether these visual observations can be generalized to a larger set

of images, a subjective experiment is conducted involving 10 deghosting algorithms

belonging to different classes (with one of them being no-deghosting as a control

condition), 16 scenes of varying characteristics, and 52 participants. The input scenes

are represented in Figure 4.8 and their characteristics are described in Table 4.3. The

purpose of this experiment was to collect subjective rating data and then evaluate the

correlation of the objective metric outputs with this data. The details and the results

of this subjective experiment are given in Section 4.2.

As three of the objective metrics generate a distortion map whereas participants assign

a single quality score, a global quality score is computed from each distortion map, i,

as follows:

Qi = −
∑
p∈P

Qi(p)/|P |, (4.22)

where each quality metric is substituted for i and |P | represents the number of image

pixels. The result is negated to yield more negative scores for worse results. As for
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the dynamic range metric, the dynamic range in dynamic regions (Equation 4.21) is

directly used. The Pearson and Spearman correlation coefficients are computed be-

tween these scores and the aggregate ratings obtained from the subjective experiment.

Furthermore, the metric scores are computed in two modes. In the first mode, the

metric outputs are computed as defined by Equation 4.22. In the second mode, first

a visual saliency map is computed using Itti et al.’s model [56] using the deghosting

output as the input image to this model3. Using the saliency maps the visually impor-

tant image pixels are taken into account while estimating the metric scores. Then the

weighted average of the saliency map with the distortion maps is computed:

Qs
i = −

∑
p∈P

√
Qi(p)S(p)/|P |, (4.23)

where S(p) represents the saliency map value. It is found that using saliency only im-

proves correlations for the gradient metrics while having a slightly adverse effect for

the blending metric. This could be because the image regions that contain blending

artifacts are not that salient due to the softened appearance of objects. The dynamic

range metric produces a single scalar value so it is inappropriate to be used in this

equation. Finally, the extended VDP metric is a self-contained model which is al-

ready based on visual perception, so it is not combined with the saliency map.

As can be seen in Table 4.4 and Table 4.5, all of the objective metrics are positively

correlated with the subjective experiment results. In Table 4.4, the aggregate corre-

lations of all metrics except Qs
G′mag

are above 0.50 with the extended VDP being the

highest (0.68) followed by blending (0.66), gradient direction (0.62), dynamic range

(0.59), and gradient magnitude (0.49) metrics. As for the consistency across scenes,

blending metric yields the lowest standard deviation (0.14) followed by VDP (0.21),

dynamic range (0.21), gradient direction (0.23), and gradient magnitude (0.31). The

negative correlation of Qs
G′mag

with the participant preferences for scene ‘StreetNight’

may be attributed to gradient artifacts being perceived as ‘correction’ of the motion

blur from the input exposures by the participants.

Next, the correlation of the individual metrics is computed with each other for all

scene-algorithm combinations. This was performed to understand the degree of the
3 The implementation by Jonathan Harel: A Saliency Implementation in MATLAB: http://www.klab.

caltech.edu/~harel/share/simpsal is used.
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Table 4.4: Pearson correlations of the individual metrics with subjective ratings.

Scene QB Qs
G′dir

Qs
G′mag

QD QV

StreetNight 0.68 0.06 -0.22 0.66 0.24
Museum1 0.91 0.87 0.85 0.65 0.65
Museum2 0.66 0.56 0.45 0.57 0.76
Museum3 0.70 0.67 0.18 0.28 0.41
StreetDay 0.85 0.55 0.34 0.62 0.85

Plants 0.57 0.76 0.64 0.63 0.82
Exit 0.65 0.32 0.07 0.49 0.25

Pendulum 0.82 0.77 0.59 0.73 0.83
Cars 0.60 0.63 0.79 0.51 0.58

Pedestrians 0.57 0.39 0.33 0.84 0.78
Fountain 0.65 0.82 0.43 0.20 0.70

Yard 0.55 0.39 0.27 0.51 0.72
Turtles 0.51 0.81 0.84 0.93 0.91

Building 0.65 0.73 0.81 0.52 0.81
Flames 0.39 0.76 0.66 0.40 0.67

ToyTrain 0.78 0.79 0.76 0.94 0.85

Average 0.66 0.62 0.49 0.59 0.68
Std. Dev. 0.14 0.23 0.31 0.21 0.21

overlap between the outputs produced by different metrics. Table 4.6 summarize

these results. According to this table, there is a high degree of correlation between the

gradient magnitude and direction metrics. As the latter has a higher mean correlation

and lower standard deviation, the gradient magnitude metric is dropped for improved

reliability.

The analyses of the individual scenes reveal that these metrics support each other. In

some scenes, they all have high correlations with subjective ratings (scenes Pendulum

and ToyTrain) while in others one or two metrics make up for the low correlation of

other metrics. For example in scene StreetNight the QB and QD have high Pearson

correlations (0.68 and 0.66 respectively) whereas Qs
G′dir

, Qs
G′mag

, and QV have low

Pearson correlations (0.06, −0.15, and 0.24). This suggests that combining these

metrics to yield a single quality score could in fact produce a higher correlation than

all metrics taken alone. To test this hypothesis, a unified deghosting quality metric

(UDQM) score QU is computed for each deghosting result as a weighted sum of the
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Table 4.5: Spearman correlations of the individual metrics with subjective ratings.

Scene QB Qs
G′dir

Qs
G′mag

QD QV

StreetNight 0.70 -0.03 0.04 0.49 0.27
Museum1 0.83 0.85 0.83 0.72 0.60
Museum2 0.45 0.20 0.38 0.73 0.68
Museum3 0.61 0.34 0.21 0.64 0.51
StreetDay 0.83 0.45 0.60 0.70 0.83

Plants 0.52 0.65 0.53 0.77 0.75
Exit 0.64 0.36 0.18 0.61 0.44

Pendulum 0.92 0.76 0.67 0.71 0.84
Cars 0.60 0.20 0.47 0.74 0.46

Pedestrians 0.27 0.44 0.20 0.88 0.86
Fountain 0.71 0.39 0.15 0.50 0.67

Yard 0.63 0.24 0.46 0.36 0.67
Turtles 0.38 0.73 0.82 0.84 0.83

Building 0.49 0.84 0.95 0.55 0.72
Flames 0.14 0.76 0.61 0.47 0.64

ToyTrain 0.89 0.88 0.83 0.76 0.95

Average 0.60 0.50 0.50 0.65 0.67
Std. Dev. 0.22 0.28 0.28 0.15 0.18

individual metrics:

QU =[QB Q
s
G′dir

QV QD 1] · [wB wG wV wD wc]ᵀ, (4.24)

where wi indicates the weight of the quality score i and wc is the weight of the con-

stant term, which will be used during the regression analysis.

In order to find the best weights, adaptive simulated annealing [55] is used for maxi-

mizing the average Pearson correlation between QU and subjective ratings. For simu-

lated annealing, the initial temperature is set to T0 = 100 and the following annealing

schedule is used:

T = 0.95kT0, (4.25)

where k is the annealing parameter. The probability of acceptance function is:

P =
1

1 + exp

(
∆E

max
i

(Ti)

) , (4.26)

where ∆E is the difference between the present and past values of the energy function

and Ti is the current temperature of component i. No upper and lower bounds are
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Table 4.6: Pearson correlation coefficients between absolute metric scores in all
scene-algorithm combinations.

QB Qs
G′dir

Qs
G′mag

QD QV

QB 1.00 0.60 0.45 -0.51 0.53
Qs
G′dir

0.60 1.00 0.83 -0.24 0.64
Qs
G′mag

0.45 0.83 1.00 -0.21 0.66
QD -0.51 -0.24 -0.21 1.00 -0.51
QV 0.53 0.64 0.66 -0.51 1.00

imposed on the metric weights; however, the resulting value of vector w is normalized

to have a length of 1. The normalization has no effect on the value of the energy

function (i.e. average Pearson correlation) and it is only performed to have metric

weights with comparable scales in different scenes for analysis.

Leave-one-out cross-validation (LOOCV) is performed to help validate if the weights

learned from all images except one is a good indicator for the left-out image. The

individual weights estimated by using adaptive simulated annealing after leaving out

each one of the images is given in Table 4.7. It is observed that the estimated weights

are consistent with each other. The mean LOOCV value is found to be 0.77 with a

standard deviation of 0.14. This high correlation and low standard deviation suggest

that the weights learned from a subset of the scenes (training) can be used to estimate

the quality of outputs that are not part of the dataset (testing). Therefore, to produce

the final set of weights all scenes are included in the optimization, which resulted in

the weights shown in Table 4.8.

As an additional validation of the proposed weights, they are used to compute a

UDQM score for a set of images used in the independent subjective experiment whose

details are given in Chapter 3. The goal was to investigate how well the computed

scores correlate with the subjective responses from an entirely independent dataset.

The rating of an algorithm is computed as the number of times an algorithm was se-

lected over another one, and then correlated the UDQM scores with those ratings.

The resulting correlations are given in Table 4.9. As can be seen from this table, a

mean Pearson correlation of 0.65 is obtained with 0.20 standard deviation. Although

the mean correlation was somewhat smaller than the correlation of the subjective

experiment described in this chapter, it is still high enough to be predictive of the
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Table 4.7: Best metric weights found in LOOCV and their corresponding Pearson
correlations in training and testing scenes. The scene which is left out is given in the
first column.

Scene wB wG wD wV wc Train Test

StreetNight 0.548 0.722 0.025 0.035 0.420 0.79 0.63
Museum1 0.510 0.413 0.021 0.051 0.753 0.77 0.87
Museum2 0.495 0.822 0.031 0.045 -0.276 0.77 0.88
Museum3 0.449 0.891 0.035 0.048 -0.036 0.79 0.59
StreetDay 0.794 0.600 0.023 0.044 -0.090 0.77 0.86

Plants 0.631 0.491 0.018 0.036 -0.600 0.78 0.78
Exit 0.415 0.881 0.030 0.036 0.223 0.80 0.43

Pendulum 0.628 0.705 0.025 0.036 0.325 0.77 0.89
Cars 0.547 0.780 0.028 0.043 0.299 0.78 0.75

Pedestrians 0.539 0.810 0.023 0.028 0.230 0.78 0.82
Fountain 0.086 0.813 0.035 0.037 -0.573 0.78 0.64

Yard 0.425 0.898 0.033 0.031 0.106 0.78 0.72
Turtles 0.695 0.717 0.024 0.027 -0.039 0.78 0.80

Building 0.424 0.848 0.032 0.037 -0.315 0.78 0.80
Flames 0.248 0.934 0.041 0.072 0.244 0.77 0.90

ToyTrain 0.411 0.905 0.034 0.056 0.094 0.77 0.95

Average 0.490 0.764 0.029 0.041 0.048 0.78 0.77
Std. Dev. 0.169 0.151 0.006 0.011 0.361 0.01 0.14

algorithms’ performance.

Finally, an analysis is performed to understand how well an individual participant’s

responses correlate with the mean responses of all participants except herself. As

the number of participants was 52, this produced 52 correlation scores with the mean

score being 0.75 and the standard deviation 0.22. Given that the mean UDQM correla-

tion for the test set was 0.77 with a standard deviation of 0.14, it is not unreasonable to

assume that the combined metric’s responses resemble that of an average observer. In

addition, by observing close correlation scores, it is possible to state that the UDQM

is consistent in a significant amount with the human quality perception patterns from

the subjective experiments and contribution of additional auxiliary quality metrics

would be insignificant since the correlation score of an average observer is reached.

73



Table 4.8: Best metric weights obtained using adaptive simulated annealing [55].

wB wG wD wV wc

0.427 0.811 0.029 0.037 0.397

Table 4.9: Pearson correlation coefficients of QU from the dataset of Tursun et
al. [136] using the weights in Table 4.8.

Cafe Candles FastCars Flag Gallery1 Gallery2
0.90 0.67 0.64 0.27 0.64 0.61

LibrarySide Shop1 Shop2 WalkingPeople Average Std. Dev.
0.95 0.66 0.43 0.71 0.65 0.20

4.5.3 Comparison with Other Quality Metrics

In this section, the outputs of the two of the potentially relevant quality metrics are

demonstrated, namely the dynamic range independent quality metric (DRIM) [5] and

a blind deblurring quality metric [73]. The former metric is selected as it can compare

images with different dynamic ranges and the latter is selected because deblurring

artifacts may be somewhat similar to deghosting artifacts.

The distortion map produced by the DRIM for the images shown in Figure 4.3 are

shown in Figure 4.10. To compute these results, the middle exposure of the exposure

sequence is compared against the deghosting output. In DRIM outputs, red indi-

cates reversal of contrast, green loss of contrast, and blue amplification of contrast.

Although the DRIM metric detects problematic regions it also generates many false

positives which correspond to mostly static parts of the scenes (blue regions). As

such, the DRIM metric is not suitable to be used for detecting deghosting artifacts.

The other metric that is tested was Liu et al.’s [73] no-reference metric for evaluating

the quality of motion deblurring. The motivation for using this metric is that blurring

artifacts and ghosting artifacts are somewhat similar and therefore a metric for the

former may be used to predict the quality for the latter.

The blind deblurring metric of Liu et al. [73] produces a single quality score instead

of a distortion map. In order to calculate this quality score, all input HDR images

are tone mapped with the tone mapping operator of Reinhard et al. [107] and gamma

corrected (γ = 2.2). For no-reference ringing detection, the original metric uses the
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Table 4.10: Pearson correlations for Liu et al.’s [73] deblurring metric with the sub-
jective experiment.

Exit Pendulum Cars Pedestrians Fountain Yard
0.16 -0.01 0.30 0.64 0.11 0.50

Turtles StreetNight Building Flames ToyTrain Museum1
0.76 0.08 -0.24 -0.22 0.24 0.22

Museum2 Museum3 StreetDay Plants Avg. Std.
0.36 -0.21 0.33 0.58 0.23 0.30

Table 4.11: The objective scores obtained using Liu et al. [73] (larger is better) and
Spearman’s rank correlation ρ with the subjective experiment scores. The average
correlation ρ̄ = −0.001.

Grosch Khan et al. Sen et al. Silk and Lang Hu et al. SimpleDG NoDG ρ

Cafe 5.68 4.60 4.86 8.44 4.68 7.31 6.33 -0.46
Candles -0.31 -0.74 -0.42 -1.03 -1.14 -0.12 -1.17 0.25

FastCars 1.36 1.54 1.20 0.72 1.36 1.91 1.00 0.45
Flag 0.03 -0.73 -0.32 -0.01 -0.38 0.46 -0.50 0.88

Gallery1 1.29 0.48 1.02 1.06 1.39 1.87 1.42 0.04
Gallery2 0.77 -0.28 -0.37 0.37 -0.19 0.53 0.06 -0.11

LibrarySide 4.90 4.13 3.82 5.42 3.69 4.38 3.55 -0.04
Shop1 9.61 8.29 8.45 9.69 8.77 10.31 9.24 -0.18
Shop2 6.88 6.16 6.38 7.42 6.06 7.07 6.33 -0.02

WalkingPeople 1.61 1.94 1.72 3.04 1.53 2.03 1.82 -0.82

blurry input image in addition to the deblurred images. As blurry input image does not

exist in this scenario, instead the image obtained by directly merging the exposures

is used without applying deghosting. The quality scores are generated for all scenes

used in the subjective experiment and the correlations with participant ratings are

computed. As shown in Table 4.10, this metric has a low correlation with subjective

ratings and therefore is not suitable to be used as a deghosting quality metric.

For improved reliability this metric is also tested on the dataset previously introduced

in Chapter 3 and results are provided in Table 4.11. In general, it can be seen that there

is low correlation, a finding which confirms that Liu et al.’s metric is not suitable for

evaluating HDR deghosting algorithms.
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4.5.4 Comparison with Ground Truth

In order to show how well the objective metric captures the visual artifacts, ground

truth HDR images are prepared and the absolute difference map is created between

the deghosting result and one of the ground truth HDR images for comparison. For

this purpose, three exposures are captured with EV -1, 0 and +1 for three different po-

sitions of an object in Figure 4.9. After this process, it was possible to create a ground

truth HDR image for each position of the object in the scene. Then the deghosting

algorithm of Silk and Lang [121] is applied to create an HDR image using EV -1, 0

and +1 from object positions 1, 2 and 3, respectively. Ground truth HDR 2 is chosen

as the reference for creating the difference map since it is visually the most similar

ground truth image. The minimum and 99th percentile absolute radiance differences

are scaled between 0-1 for visualization in the difference map. It is observed that

the highest responses of the objective metrics correspond to the pixels with largest

absolute differences. The visual difference metric is more sensitive to the artifacts

over a larger area while blending and gradient inconsistency metrics give more local

responses.

4.5.5 Application: Hybrid Deghosting

Finally, it is demonstrated how to leverage the objective metric for combining the

outputs of multiple deghosting algorithms to obtain a higher quality deghosting re-

sult. To perform hybrid deghosting, the UDQM map is computed for each one of the

input HDR images. Then the binary mask of pixels is extracted from each one of

the input HDRs, which will contribute to the hybrid HDR. A pixel is marked in the

corresponding binary mask if it has the best UDQM value among all the input HDR

images. Before combining the images by using Laplacian blending by using these

masks, histogram matching is applied to ensure that the irradiance distributions of the

two images are similar.

Two sample outputs are provided in Figures 4.11 and 4.12. In Figure 4.11, Lee et

al.’s [67] output is combined with the simple deghosting approach (see Section 3.1.1),

which involves selecting the middle exposure in all dynamic regions. In Figure 4.12,
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on the other hand, Hu et al. [51]’s and Lee et al.’s [67] results are combined using

their distortion maps. In both figures, the combined outputs have fewer artifacts than

the individual results.

It should be noted, however, that hybrid deghosting is not suitable to be used for all

pairs of algorithms, especially for those which select different reference exposures.

In such cases, multiple copies of the same object could appear in the combined result.

An example of this limitation is shown in Figure 4.13 where the inconsistency of the

HDR images due to the difference in object positions result in an hybrid HDR with

noticeable blending and gradient inconsistency artifacts.
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Pos. 1 (EV -1) Pos. 1 (EV 0) Pos. 1 (EV +1)

Pos. 2 (EV -1) Pos. 2 (EV 0) Pos. 2 (EV +1)

Pos. 3 (EV -1) Pos. 3 (EV 0) Pos. 3 (EV +1)

(a) Input exposures for three different positions of the mug

(b) Ground truth 1 (c) Ground truth 2 (d) Ground truth 3

(e) Output HDR (f) Difference Map (g) The metric results

Figure 4.9: Comparison of the objective metric result (g) with the absolute difference

(f) between the output of Silk and Lang [121] (e) and ground truth HDR (c). The input

exposures with EV -1, 0 and +1 are shown in (a). For each position of the moving

object, the ground truth HDR image obtained by using the input exposures is given in

(b-d).

78



(a) DRIM (Khan et al. [62]) (b) DRIM (Hu et al. [51])

Figure 4.10: The DRIM [5] outputs for two sample scenes. In DRIM, blue represents

amplification of contrast, green loss of contrast, and red reversal of contrast. The

objective metric results were shown in Figure 4.3.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 4.11: The outputs of Lee et al. [67] (a-b) and simple deghosting approach (c-d),

the objective metric results for Lee et al. [67] (e-f) and simple deghosting approach,

and the hybrid deghosting result (i-j).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 4.12: The outputs of Hu et al. [51] (a-b) and Lee et al. [67] (c-d), the objective

metric results for Hu et al. [51] (e-f) and Lee et al. [67], and the hybrid deghosting

result (i-j).
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(a) (b) (c)

Figure 4.13: The hybrid HDR (c) obtained from two HDR outputs of Srikantha et

al. [127] (a) and Lee et al. [67] (b), which are inconsistent with each other in terms of

object positions.
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CHAPTER 5

DISCUSSION

In both of the subjective experiments, it is observed that the patch-based deghost-

ing algorithms provide the best visual quality. The algorithm of Sen et al. [115] had

the first ranking due to its mostly artifact-free results. The main strength of this al-

gorithm may be attributed to its deghosting strategy, which aims at using as much

information as possible from the reference input image when it is correctly exposed.

One of the weaknesses of this algorithm is that the underlying patch-match algo-

rithm [122] may perform poorly in the over-exposed regions of the reference input.

In addition, although performance improvements are introduced by the recent imple-

mentations [8, 9], the patch-match operation is still computationally very intensive,

making this type of deghosting algorithms unsuitable for the platforms with limited

computational power and video deghosting applications.

Simpler algorithms based on moving object selection provide a fast solution to the

deghosting problem. However, the number of input images used while reconstructing

the dynamic regions limits the amount of dynamic range recovered from the dynamic

areas of the scene. In addition, boundary artifacts severely deduce the perceived

output quality unless an effective blending method is employed. It is observed that

severity of such artifacts highly depends on the scene content.

The poor performance of moving object removal algorithms in the subjective exper-

iments may be related to the small number of input exposures used in the subjective

experiments. The performance of algorithms in this class is very sensitive to the

number of input exposures capturing the static background. Therefore, they are not a

good choice if the number of exposures is limited or if the scene is constantly chang-
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ing among the input exposure set. In addition, iterative methods in this class perform

pixel-wise weight adjustment operations which may take a long time to converge.

Nevertheless, the algorithms in this class are the only option if it is desired to remove

the moving objects in the HDR scene and estimate the static background.

In both of the subjective experiments, it is surprising that a simple artifact-free deghost-

ing algorithm such as the simple deghosting method achieved a high rank. With this

observation it is possible to state that the participants often put a higher priority on

artifact-free outputs over the limited dynamic range. This finding is also confirmed

by the recent work of Gryaditskaya et al. [40].

Although within-subject designs is a popular methodology for benchmarking, there

are several challenges in the evaluation of the deghosting algorithms. First of all, the

definition for the “best” algorithm is highly application-dependent. In some cases

observers may place a higher priority on the preservation of the moving objects in

the outputs. While in some other cases it is possible to observe that the opposite

is desirable (e.g. in architectural photography). Therefore, the ranking of the algo-

rithms is highly dependent on expectations from the deghosting algorithm in specific

application areas.

Second, post-processing operations are an important factor which may have an effect

on the ranking. In the subjective experiments the global tone mapping operator of

Reinhard et al. [107] is used for preserving the original stimuli as much as possible.

However, in real-world conditions use of different tone mapping operators may have

a large impact on the preferences of the observers by masking or amplifying some

types of artifacts. In addition, observing the outputs in an actual HDR display without

any post-processing is probably going to change the ranking of the algorithms as

the observers will be able to experience the actual dynamic range provided by the

deghosting algorithms.
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CHAPTER 6

CONCLUSION

In this dissertation, an extensive review of the state of the art in HDR deghosting

literature and a novel hierarchical taxonomy of deghosting algorithms is provided.

Using this taxonomy, approximately 50 HDR deghosting algorithms are classified.

The distinguishing characteristics of the algorithms within each class are provided.

The algorithms are also evaluated in two subjective experiments on different bench-

mark datasets. The benchmark datasets and the proposed evaluation framework are

suitable to be used in future evaluation studies as well.

This dissertation aims at fulfilling the growing need for the evaluation of recently

proposed methods due to the increasing number of algorithms in this field. To this

end, an objective HDR deghosting quality metric, comprised of individual metrics

tuned for different types of artifacts is presented and it is shown that they correlate

well with visual observations and subjective preferences. The first application that

the objective metric enables is automatic quality evaluation of deghosting algorithms.

By using the objective metric, one can often avoid comprehensive subjective experi-

ments which are both tedious and may become outdated as new algorithms are pro-

posed. Secondly, the proposed metrics can be used to optimize parameter selection

for deghosting algorithms. For instance, a deghosting method of choice may be run

in batch-processing mode and allowed to explore a parameter space until it finds the

combination that gives the least distortions as computed by the metric. The objective

metric can also be used to rapidly assess the strengths and weaknesses of different

algorithms for different images sets and ultimately design improved algorithms. Fi-

nally, as demonstrated in the last chapter, the objective metric also enables a novel
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application called hybrid deghosting, whereby multiple deghosting results are com-

bined to obtain a higher quality result.

Despite the large amount of HDR deghosting algorithms proposed during the last

decade, the HDR deghosting is still a popular problem that is being worked on. As the

trend is shifting towards mobile computation there is still room for improvement in

this field. In addition, HDR video deghosting is still an unsolved problem. The HDR

image deghosting algorithms cannot be applied to videos in their current form, since

the temporal dimension of the video data must be taken into account. Failing to do so,

results in different types of artifacts such as flickering and semantic inconsistencies

between subsequent frames of an HDR video.

Using the objective metric to provide feedback for artifact removal is another natural

research direction to improve the outcomes of the HDR deghosting algorithms. As a

more ambitious future work, a no-reference quality metric may me explored which

takes only the deghosted HDR image as input, but not its constituent exposures.
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[44] K. K. Hadziabdic, J. H. Telalović, and R. Mantiuk. Expert evaluation of
deghosting algorithms for multi-exposure high dynamic range imaging. In
HDRi2014 - Second International Conference and SME Workshop on HDR
imaging, Sarajevo, Bosnia and Herzegovina, April 2014.

[45] D. Hafner, O. Demetz, and J. Weickert. Simultaneous HDR and optic flow
computation. In Proceedings of 22nd International Conference on Pattern
Recognition (ICPR 2014). IEEE, 2014.

[46] C. Harris and M. Stephens. A combined corner and edge detector. In Alvey
Vision Conference, volume 15, page 50. Manchester, UK, 1988.

[47] Y. S. Heo, K. M. Lee, S. U. Lee, Y. Moon, and J. Cha. Ghost-free high dynamic
range imaging. In Computer Vision–ACCV, pages 486–500. Springer, 2010.
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APPENDIX A

DATASET FROM THE FIRST SUBJECTIVE EXPERIMENT
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Figure A.1: Representative images for the scenes from the first subjective experiment
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Figure A.1 (cont.): Representative images for the scenes from the first subjective

experiment
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APPENDIX B

OUTPUTS OF HDR DEGHOSTING ALGORITHMS FOR THE

FIRST DATASET
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Figure B.1: Outputs of Grosch [38], Khan et al. [62] and Sen et al. [115] for the first

dataset
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Figure B.1 (cont.): Outputs of Grosch [38], Khan et al. [62] and Sen et al. [115] for

the first dataset
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Scene Silk&Lang-FM [121] Hu et al. [51] SimpleDG
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Figure B.2: Outputs of Silk&Lang-FM [121], Hu et al. [51], SimpleDG for the first

dataset
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Scene Silk&Lang-FM [121] Hu et al. [51] SimpleDG
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Figure B.2 (cont.): Outputs of Silk&Lang-FM [121], Hu et al. [51], SimpleDG for

the first dataset
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APPENDIX C

DATASET FROM THE SECOND SUBJECTIVE EXPERIMENT
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Figure C.1: Representative images for the scenes from the first subjective experiment
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Figure C.1 (cont.): Representative images for the scenes from the first subjective

experiment
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Figure C.1 (cont.): Representative images for the scenes from the first subjective

experiment
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APPENDIX D

OUTPUTS OF HDR DEGHOSTING ALGORITHMS FOR THE

SECOND DATASET

Scene Grosch [38] Khan et al. [62] Sen et al. [115]

St
re

et
N

ig
ht

M
us

eu
m

1
M

us
eu

m
2

M
us

eu
m

3

Figure D.1: Outputs of Grosch [38], Khan et al. [62] and Sen et al. [115] for the

second dataset
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Figure D.1 (cont.): Outputs of Grosch [38], Khan et al. [62] and Sen et al. [115] for

the second dataset
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Figure D.1 (cont.): Outputs of Grosch [38], Khan et al. [62] and Sen et al. [115] for

the second dataset
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Figure D.2: Outputs of Silk&Lang-FM [121], Silk&Lang-PWD [121], Srikantha et

al. [127] for the second dataset
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Figure D.2 (cont.): Outputs of Silk&Lang-FM [121], Silk&Lang-PWD [121], Srikan-

tha et al. [127] for the second dataset
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Figure D.2 (cont.): Outputs of Silk&Lang-FM [121], Silk&Lang-PWD [121], Srikan-

tha et al. [127] for the second dataset
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Scene Hu et al. [51] Lee et al. [67] SimpleDG
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Figure D.3: Outputs of Hu et al. [51], Lee et al. [67], SimpleDG for the second dataset
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Figure D.3 (cont.): Outputs of Hu et al. [51], Lee et al. [67], SimpleDG for the second

dataset

116



Scene Hu et al. [51] Lee et al. [67] SimpleDG

B
ui

ld
in

g
Fl

am
es

To
yt

ra
in

Figure D.3 (cont.): Outputs of Hu et al. [51], Lee et al. [67], SimpleDG for the second

dataset
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