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ABSTRACT 

 

 

NONLINEAR AND DYNAMIC PROGRAMMING MODELS 

FOR AN INVENTORY PROBLEM 

 IN A PARTIALLY OBSERVABLE ENVIRONMENT  

 

Darendeliler, Alp 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Yasemin Serin 

 

January 2016, 46 Pages 

 

 

In this study, a single-item periodic-review inventory system is considered in a 

partially observable environment with finite capacity, random yield and Markov 

modulated demand and supply processes for finite-horizon. The exact state of the 

real process, which determines the distribution of the demand and supply, is 

unobservable so the decisions must be made according to the limited observations 

called observed process. Partially Observable Markov Decision Process is used to 

model this problem. As an alternative to the dynamic programming model, a 

nonlinear programming model is developed to find optimal policies. The optimal 

policies of the nonlinear program is more practical to obtain and use compared to 

the dynamic programming model. Computational study is performed for the three 

data sets in order to compare the results of the two models. The results show that 

the optimal policies of the two models are the same. 

 

Keywords: Markov-modulated demand, Markov-modulated supply, Partially 

Observable Markov Decision Process 

 

  



vi 

 

 

ÖZ 

 

 

KISMĠ GÖZLEMLENEBĠLEN ORTAMDAKĠ ENVANTER PROBLEMĠ ĠÇĠN 

DĠNAMĠK VE DOĞRUSAL OLMAYAN MODELLER 

 

 

Darendeliler, Alp 

Yüksek Lisans, Endüstri Mühendisliği Bölümü  

Tez Yöneticisi: Prof. Dr. Yasemin Serin 

 

Ocak 2016, 46 Sayfa 

 

 

Bu çalışmada, kısıtlı olarak gözlenebilen ortamda, kapasite sınırlı, tek parça, 

periyodik olarak incelenen ve Markov-modüle talep ve arz dağılımlı olan sonlu 

zamanlı envanter sistemi incelenmiştir. Talep ve arz dağılımlarını belirleyen 

sürecin durumu tamamen gözlenememektedir. Bu nedenle, kararlar gözlenen 

sürece göre verilmektedir. Problemi modellemek için Kısmi  Gözlemlenebilen 

Markov Karar Süreci kullanılmıştır. Optimum sonuçları bulmak için dinamik 

programlama modeline alternatif olarak doğrusal olmayan bir model 

geliştirilmiştir. Modelden elde edilen optimum kararların bulunması ve 

uygulanması dinamik programlamaya göre daha pratiktir. Belirtilen iki modelden 

çıkan sonuçları karşılaştırmak için üç veri seti üzerinden sayısal çalışma 

yapılmıştır. Bu çalışmalardan çıkan sonuçlar birbirinin aynısıdır. 

 

Anahtar Kelimeler: Markov-modüle talep, Markov-modüle arz, Kısmi 

Gözlemlenebilen Markov Karar Süreci 
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CHAPTER 1 

 

 

PROBLEM DEFINITON AND LITERATURE REVIEW 

 

 

 

1.1 PROBLEM DEFINITION 

 

In this study, a single-item periodic-review inventory system is considered in a 

randomly changing environment, where demand, supply and cost parameters are 

affected by it. Outside environment is influenced by many factors such as 

economic, political, social and financial conditions. These factors are modeled by 

a discrete time discrete state Markov chain called real process that represents the 

state of the outside world. Decision maker cannot identify all of the factors that 

determine the state of the real process so he has incomplete information about it. 

He must make ordering decisions based on his limited observations. These 

observations are defined as observed process which does not necessarily satisfy 

Markov property. For instance, a production company may not have adequate 

information about the economy to estimate the distribution of demand of its 

product. Instead, it could obtain partial information about the state of the 

economy. Based on this, the company can determine how much to produce in 

order to minimize its expected total inventory cost. 

 

It is assumed that demand is random and it is modulated by the state of the real 

process. In different states of the unobserved (real) process, the distribution of 

demand varies. For instance, if the state of the economy is good, demand follows 

a distribution with a high mean. In contrast, in case of economic decline, demand 

has distribution with a lower mean. 
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Besides, inventory manager may face random yield in some cases and a random 

proportion of the order can be received. The factors that cause yield randomness 

are breakdowns, repairs, maintenance, learning and introduction of new 

technologies. 

 

The aim of this study is to find practical policies for finite-horizon inventory 

system which is subject to random yield, fixed capacity and uncertain demand in a 

partially observed environment. Besides, the impact of the randomly changing 

environment on demand, supply and cost parameters and also on optimal policies 

are analyzed. The outside world is modeled by a Markov chain called real process. 

It cannot be fully observed. Demand and supply are modulated by this process. 

Decision maker has imperfect information and the observations he made are 

defined by an observed process which is probabilistically related to the real 

process. Inventory costs are also affected by the external factors. Partially 

Observable Markov Decision Process (POMDP) is used to find and analyze the 

optimal policies for the problem. POMDP’s are generally used for modeling 

sequential decision processes. It consists of set of states, set of actions, transition 

probabilities, costs, set of observations and discount factor. Internal process 

cannot be fully observed. Instead, decision maker has imperfect observations 

called observable process and it is probabilistically related to the unobserved 

process.  

 

 

1.2 LITERATURE REVIEW 

 

Demand has been modeled by Markov modulated process by many authors so as 

to consider the effect of the fluctuating environment on demand. Because outside 

environment influenced by many factors such as economic conditions, price 

competition and product differentiation, modeling demand as stationary is not 

sufficient to reflect demand uncertainty. Therefore, outside environment is 

represented by state-of-the-world of a Markov process in order to consider the 

effect of outside environment on demand. 
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Karlin and Fabens (1959) consider an inventory model in which the distribution of 

the demand is determined by the state of the Markov chain. They prove that 

different       type inventory policies are optimal for each state of the Markov 

chain. Iglehart and Karlin (1962) study single-item periodic-review inventory 

model with non-stationary stochastic demands for finite-horizon and analyze the 

structure of the optimal policies. They model demand as a Markovian process. 

Distribution of demand is different for each state of the Markov Chain. They 

found out that base-stock policy is optimal where critical numbers are determined 

by the state of the demand process under convexity assumptions. 

 

Sethi and Cheng (1993) extend the Karlin and Fabens (1959) study. They model 

outside environment by Markov chain as in the previous studies. The 

inventory/backlog costs are state-dependent and convex. They prove that state- 

dependent       policies are optimal for finite horizon inventory model. 

 

Song and Zipkin (1993) also study Markov modulated demand process. They 

model “outside world” as a continuous-time, discrete state space Markov process. 

It is assumed that demand distribution, whose parameter depends on “outside 

world”, is Poisson. They allow countably-infinite state space, stochastic lead 

times, fixed and linear order costs as an extension to the Iglehart and Karlin 

(1962). The world dependent base-stock policy is optimal where order cost is 

linear in quantity. In the case of fixed ordering cost, world-dependent       policy 

is optimal where   and   are functions of the state of the Markov process 

representing outside environment. 

 

Another issue in inventory control is supply uncertainty. Supply uncertainties are 

generally considered in two groups: random yield, random capacity in literature. 

Henig and Gerchak (1990) studied the effect of the yield randomness on the 

optimal policies for single-item periodic-review inventory model for single-

period, finite-horizon and infinite horizon. They assumed that the environment is 

stationary, demand is uncertain and yields are stochastically proportional to input 
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level. For the single period, order point is same as the constant yield case under 

general conditions. The optimal policy is called nonorder-up-to policy for finite-

horizon. They also show that the infinite-horizon order point is higher than when 

there is no proportional yield. 

 

Federgruen and Zipkin (1986) studied single-item, periodic-review inventory 

model with uncertain demands where the order capacity is fixed. They assumed 

that demand is stationary, cost functions are convex and distribution of the 

demand is continuous. They found out that modified base-stock policy is optimal 

for both finite and infinite horizons. In this policy structure, it is optimal to order 

up to the critical number or order as close to it as possible when the initial stock is 

below that number. If the amount of initial inventory exceeds base-stock level, no 

order should be given. 

 

Uncertain capacity in production planning is studied by Ciarallo et al. (1994). 

They analyze the effect of random capacity on production planning decisions for 

single-period, finite-horizon and infinite-horizon in a stationary environment. 

Demand is uncertain and the costs are linear. Optimal policy, which is identical to 

the classic newsboy problem, is not influenced by the random capacity for the 

single-period problem. The cost function is unimodal and nonconvex. Base-stock 

policy is shown to be optimal for finite-horizon and infinite-horizon problems. 

 

Wang and Gerchak (1996) study both the variable capacity and random yield for 

the production planning problem where demand is stationary and uncertain. They 

analyze optimal policies for finite-horizon and infinite-horizon. It is showed that 

the objective function is quasi-convex. The optimal policy that minimizes total 

expected discounted cost is characterized by a single critical point for finite-

horizon problem. However, the structure of the optimal solution is not base-stock 

policy. It differs from the work of Ciarallo et.al (1994) where variable capacity 

was considered as the only supply uncertainty. 
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Later, studies have considered the effect of fluctuating environment on supply. 

Özekici and Parlar (1999) consider infinite-horizon periodic-review, single-item 

inventory model with unreliable suppliers. Demand, supply and cost parameters 

are driven by the randomly changing environment which is modeled by time-

homogeneous Markov chain. Distribution of demand depends on this process. 

Yield randomness is modeled different from the previous random yield supply 

models. Amount of order received is either full with probability    or nothing is 

delivered with probability       . The probabilities change according to the 

state of the environment. When the inventory ordering cost is linear with ordered 

quantity, state-dependent base-stock policy is optimal. If there is also a fixed 

ordering cost, then the optimal solution is state-dependent       policy. Erdem 

and Özekici (2002) extends Özekici and Parlar (1999). They analyzed similar 

problem for single-period, finite-horizon and infinite-horizon. However, they 

modeled supply uncertainty by random yield and supplier is assumed to be always 

available. In all cases, the optimal policy is state-dependent base-stock policy. 

Order-up-to levels differs according to the state of the environment.  

 

Gallego and Hu (2004) analyze single-item, periodic review inventory problem 

with random yield and finite capacity. Distribution of the demand and supply 

depend on two time-homogeneous Markov chains. Decision maker chooses 

actions according to the state of the demand and yield. Gallego and Hu defines 

optimal policy as “modified state dependent inflated base-stock policy”. In this 

policy structure, there are two critical values (              , which depend on the 

current state of the supply and demand processes, determine the optimal policy. If 

the inventory level is below         then it’s optimal to order the capacity. If it is 

above       , then nothing should be ordered. For the case where the inventory 

level is between these two critical values, optimal order-up-to level is greater and 

equal to the       . Besides, it is decreasing in the amount of inventory level. 

 

Finding optimal policies for unobservable Markov chains with finite states for 

finite horizon is first introduced by Smallwood and Sondik (1971). They redefine 

the process as an observable chain over a continuous state space.  The optimal 
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policies were difficult to find and essentially not deterministic over the original 

state space. Treharne and Sox (2002) analyzed the finite-horizon inventory control 

problem where the demand is nonstationary and partially observed. They do not 

consider supply uncertainty in this work. It is assumed that distribution of the 

demand is determined by the state of the Markov chain called core process. This 

process has finite number of states and each of them generate different demand 

distribution. Decision maker cannot exactly determine which of the distributions 

generate the demand in any period. He can observe only the actual demand of the 

previous periods. State-dependent base-stock policy is shown to be optimal. 

 

Arifoğlu and Özekici (2010) use POMDP to model the uncertain demand, finite 

capacity and random yield for single-period, multiple-period and infinite-period 

problems. Demand and supply processes are modulated by the Markov Chain 

called real (unobserved) process. Decision maker cannot directly observe this 

process. They show that state-dependent modified inflated base-stock policy is 

optimal. Another study of Arifoğlu and Özekici (2011) also use POMDP for the 

modeling inventory problem. They consider supply uncertainty in terms of 

random capacity of production and random availability of transportation. They 

analyze optimal policies for single-period, multiple-period and infinite-period 

problems. In these POMDP based studies, since the state variable has current 

probability distribution of the states, the optimal policy is nondeterministic with 

respect to the original states. 

 

Serin and Avşar (1997) use nonlinear programming model to find optimal policies 

for the Markov Decision Process with restricted observations for finite horizon. In 

their study, internal process cannot be observed but the states are grouped so that 

the group that a state belong to is observable. Decisions are made according to the 

groups of the states so as to minimize expected total discounted cost. This model 

can be used as an approximation to the POMDP models.  The optimal policy is 

guaranteed to be deterministic over the original state space.  
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In the present study, two models in Arifoğlu and Özekici (2010) and Serin and 

Avşar (1997) for a finite horizon inventory problem are compared in terms of their 

solutions. The performance of the second as an approximation to the first is 

analyzed. 
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CHAPTER 2 

 

 

MODELS 

 

 

 

2.1 PROBLEM  

 

A single-item periodic-review multi-period inventory system is considered in a 

partially observable environment with finite capacity, random yield and Markov 

modulated demand and supply processes as in Arifoğlu and Özekici (2010). 

Outside environment is modeled by discrete-time discrete-state Markov chain 

called real process that represents the state of the outside world whose state 

generates the demand and supply distributions. The state of the real process is not 

exactly known so decision maker has imperfect information. The ordering 

decisions must be made based on the limited observations. These observations are 

defined as observed process which need not to satisfy Markov property. The 

purpose is to find practical policies for finite-horizon inventory system under 

these conditions. Arifoğlu and Özekici (2010) solved this problem using dynamic 

programming model with a continuous-state space. 

 

In the present work, the nonlinear programming model in Serin and Avşar (1997) 

which is used for solving POMDP for finite-horizon, is adapted to model and 

solve the inventory problem posed in Arifoğlu and Özekici (2010). Since the 

policies that are obtained from nonlinear programming model are deterministic 

with respect to the original states of the problem, they are more practical to find 

and apply compared to the dynamic programming model. Next, these two models 

are presented. 
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2.2 DYNAMIC PROGRAMMING MODEL 

 

A T-period dynamic programming model is constructed for a single-item 

periodic-review inventory system under partially observable environment in 

Özekici and Arifoğlu (2010). Real state    , is a discrete-time and time-dependent 

Markov chain with state space             and transition matrix        . 

Environment is represented by    which directly affects demand and supply 

distributions. The states of    cannot be observed since it depends on many 

factors such as economic, financial, political and other factors. Therefore, true 

state of the environment is unobservable. However, there is an observed process 

called     with state space            and it is probabilistically related to the real 

state. Sondik and Smallwood (1971) calls    as “Internal Markov Process” and    

as “Observable Output”. The conditional probability of    given    is 

 

      |                 (2.1) 

 

                  represents all of the observations up to time t;   
  indicates 

the probability of state   of the unobserved real state at time t given all of the 

observations until time t;    
  is 

 

  
        |                        (2.2) 

 

and 

 

   = [  
    

     is the conditional distribution of    given     satisfying 

 

∑   
          where   

                                               (2.3) 

 

At time  , information vector π, is updated according to the observed process      

by the equation 
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          |         

∑   
                    

∑   
                      

   

 

and     ;     } is a fully observable continuous state Markov process. 

(2.4) 

Demand process, denoted by             , depends on unobserved state   . 

The conditional cumulative distribution function of the demand given the real 

state is 

 

              |                     . (2.5) 

 

Let    denotes the inventory level and    denotes order-up-to level at time t. At 

each time period, inventory manager places an order of        to the supplier. 

Here, the order up-to level    is the action taken at time t, of the dynamic 

programming model. Inventory manager cannot receive the order completely 

because of the factors such as defective production, transportation problems. 

         is the proportion of the order that is received at time t. The cumulative 

distribution of    for a given real state   at time   is 

 

              |       (2.6) 

 

The conditional expectation of the random yield is  

 

         |      , (2.7) 

 

Let   be the capacity of the supplier that is the bound of the order. Then, the 

amount of random order received in period t is 

 

                           .                                                 (2.8) 

  

   is assumed to be greater than zero which means that there must be a state a 

such that     , with the probability         |      < 1. In this model, 

cost parameters are not fixed. All the costs depend on the state of the observable 
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process    since inventory manager can only see this process. The purchasing, 

holding and shortage cost are defined as   ,    and    respectively given that the 

observed process is  . Holding and shortage costs are incurred at the end of the 

each period. Purchasing cost is incurred at the beginning of each period. It is 

computed with respect to quantity received not to the quantity ordered. Moreover, 

it is assumed that         and       for all   and all of them are finite. The 

discount factor   is in interval       which is used to compute multi-period total 

cost. 

 

Lead time is assumed to be zero for the computations. In addition, all of the 

unsatisfied demand is backlogged. To compute          ,               are 

sufficient as the Equation (4) illustrates. Hence, the problem can be modeled as a 

completely observable discrete-time continuous state Markov Decision Process 

with states (           

 

Assuming that the inventory level at the beginning of period is x, the initial 

distribution is π, the observed state is  , and the actual state is  , the one-period 

costs are computed by the equations: 

 

            ∫                ∫             
 

 

  
 

 

 (2.9) 

 

                       

 

(2.10) 

 

            ∫   (            )          
 

 

 

 

(2.11) 

 

             ∑   

   

             

 

(2.12) 

 

One-period total holding and shortage costs are computed by Equation (9). 

Equation (11) computes the one-period expected total costs for states         and 
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order-up-to level   by considering proportional yield denoted by  . Because 

actual state   cannot be exactly observed, the one-period total expected cost 

according to the information vector   is calculated by Equation (12). 

 

Single period minimum cost function           is  

 

                                 . 

 

(2.13) 

Arifoğlu and Özekici (2010) prove that optimal ordering policy for the single-

period model is a state-dependent modified inflated base-stock policy 

 

          = {

                              
    

  
               

        
    

                                       
    

 

 

(2.14) 

 

where single-period variables   
      ,   

   
 and   

   
 are unique   values that are 

obtained from the solution of  

 

∑   
 

   

∫       
 

 

                           (2.15) 

 

∑   
 

   

  (            )     

 

  (2.16) 

 

∑   
 

   

∫       
 

 

                     

 

  (2.17) 

 

for all    and   respectively. In this policy structure   
   

 depends on the mean of 

the proportional yield and optimal order-up-to level is nonincreasing for 

all               
   

,   
    .  In case of     with probability 1, all of order can 

be received and optimal policy is independent of the      
      

      This type of 
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policy is called state-dependent modified base-stock policy in which it is optimal 

to order to the amount   
   

 when      
      

       Otherwise, same policy is 

applied as in previous case.  

 

For the multi-period problem, dynamic programming equation involves the single 

period costs plus expected discounted cost of the next period. Assuming that the 

inventory level at the beginning of the horizon is  , the observed state is  , the real 

state is  , and the information vector is π at time t, then multi-period costs are 

computed by the equations: 

 

                        

  ∑        |       
                   

   

 
(2.18) 

 

            ∫   (              )          
 

 

 

 

(2.19) 

 

             ∑   

   

                 
(2.20) 

 

At time   when there is (     periods remaining, the one-period holding and 

shortage costs plus the expected total discounted cost of the remaining periods is 

calculated by equation (18). Equation (19) computes the total discounted expected 

cost when the state is         and order-up-to level is  . Since actual state   

cannot be observed, the multiple-period total expected cost according to the 

information vector  , is calculated by Equation (12).   
  is the expectation with 

respect to the random demand   for the unobserved state  .  

 

Multiple period optimal cost function satisfies: 

 

              
       

             (2.21) 
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It is strictly convex which is proved by Özekici and Arifoğlu (2010). Özekici and 

Arifoğlu (2010) prove that the optimal ordering policy for the T-period model is a 

state-dependent modified inflated base-stock policy 

 

          = {

                              
    

  
               

        
    

                                       
    

 

 

(2.22) 

 

where   
      ,   

   
,   

   
 are the   values which uniquely satisfy 

 

∑   

   

∫  
 

 

  
                            (2.23) 

 

∑   

   

    
              

(2.24) 

 

∑   

   

∫     
 

 

 

                       
(2.25) 

 

for all   and   respectively. The optimal policy structures are the same as in the 

single-period model for the case of no proportional yield and random yield. 

 

Note that critical values are computed by the dynamic programming algorithm not 

from the solution of these equations. 
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2.3 A NONLINEAR PROGRAMMING MODEL FOR FINITE HORIZON 

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS 

 

A fully observable Markov Decision Process consists of a set of states F, a set of 

actions  , the expected cost of taking action   in state   is    .    denotes the 

state of the system which is fully observed and    is the action taken at time t. The 

probabilities of one-step transition probability matrix      of the MDP under 

action    is stated as: 

 

               |                          F, y   . (2.26) 

 

There are   time periods in which decision maker chooses an action at each 

decision epoch according to the past states and observations (              . 

The cost incurred at every each period is         . Its expected value given that 

current state and action is 

 

              |                for all                 (2.27) 

Let     be total discounted cost at time   when there is       time periods 

remaining and the state is  . The expected   period total discounted cost, starting 

in an initial state   is  

         ∑       

 

   

                                

(2.28) 

 

where   is the discount factor which is between   and  . The total expected 

discounted cost is computed by the equation: 

 

  ∑      

   

 
(2.29) 
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where the initial distribution                       is the probability that 

the system is in each state at the beginning of the process, is assumed to be 

known. The sum of all   ’s are equal to 1. 

 

For this finite horizon Markov Decision Process problem, the objective is finding 

the optimal policy which minimizes  . There are three main approaches to find the 

optimal solution: policy-iteration algorithm, value-iteration algorithm and linear 

programming are used to solve the problem. In this study, linear programming is 

considered. The optimal total discounted cost is 

 

   
     

   
      ∑             

  

 

   

                     

       

 

(2.30) 

 

The linear program for the finding optimal policy of a fully observable MDP over 

finite horizon is expressed as in Serin and Avşar (1997)  

 

               ∑       

 

   

 

           

          ∑              

   

                   

              

(2.31) 

  

                                                                     . (2.32) 

 

In case of partial observability, actual state    cannot be observed. Instead, there 

is an observable process    that gives partial information about the real state.  

Unlike the POMDP methodology adopted in the above dynamic programming 

model, the decisions may be based on only the current observation in order to 

obtain more practical policies to apply. This is a suboptimal but easy to use 
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approximation to the POMDP solution. The following nonlinear program is 

adapted from the study of Serin and Avşar (1997) for this purpose. 

 

A new Markov decision process with state         where      represents the 

unobservable state of the original process taking values in          } and    is 

the observable process taking values in           and    need not to be 

Markovian. Let the action space be            . In that case a policy vector 

    is defined with the following the probabilities: the probability of taking action 

  when the state is             is 

 

                 |          . (2.33) 

 

In this new Markov decision process, the decision maker must take an action with 

the same probability whenever he observes a state          with the same 

observation value   : 

 

                     .                                         (2.34) 

 

These implicit constraints are called observability constraints since it limits 

actions according to the observations. 

 

       | || | 

  ∑                                           

 

   

      
(2.35) 

 

                                                                         

 

(2.36) 

 

The probability of transition to the state             from the state       

           under policy α is 
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                  ∑           

   

                 

                                      

(2.37) 

 

The cost incurred at the beginning of each period depends on the state of the 

system and the action taken. That is 

 

            ∑                                           

   

             (2.38) 

 

where     is computed by the equation (24). 

 

Total expected cost from the beginning of period   to the last period    starting 

from the state       is denoted by      
. It is expressed as 

 

                   ∑∑                

   

 

   

           (2.39) 

 

The model program for the new Markov Decision Process minimizing expected 

cost over a T-period horizon is 

 

                   ∑∑  

      

     

                

                  ∑∑                 

   

 

   

          

                            

(2.40) 

. 

∑           

   

                                            (2.41) 

 

                                                            

 

(2.42) 
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(2.43) 

 

                                                . 

 

(2.44) 

 

Note that both   and  ’s are unknown and the above model is a nonlinear 

program. 

 

Equation (41) provides that the sum of the probabilities for taking actions     

for each of the state         is equal to  . The same probability of taking action   

for the same observed state   is ensured by equation (42). It is stated that the 

discounted cost variable      at time  , when there is no period remaining, is 

equal to   in equation (42). 

 

Serin and Avşar (1997) proved that the optimal policy is deterministic. This 

means that                    Hence this nonlinear program can be solved with 

binary variables. 

 

 

2.4 PARAMETERS OF THE NONLINEAR PROGRAM FOR THE 

PARTIALLY OBSERVABLE MULTIPLE-PERIOD INVENTORY 

PROBLEM 

 

Multiple-period inventory problem in a partially observable environment can be 

solved by the previous nonlinear program. The notations used in this part are the 

same as the Dynamic Programming Model.    is the real process and    is the 

observed process.         denotes the same probability as in (1) and         

represents transition probabilities of                   States of the Markov 

Decision Process are denoted by             where    is the inventory level at the 

beginning of period  . It can take negative values because unsatisfied demand is 

backlogged.     is the discrete set of inventory levels Actions are the amount of 

the inventory that is to be ordered. The order up to level for each period   is 
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denoted by    which is also an action for this MDP. At time  , actions space must 

be in the interval            ). It cannot exceed on-hand inventory plus 

capacity of the order. 

 

The continuous demand is discretized in order to use in the nonlinear model. The 

demand distribution depends on the state of the unobservable process   . So, let 

        be the discrete probability mass function of the demand if the 

unobservable state is    and   takes values according to the discretization. 

Discrete approximation is also made for the random yield  . Let P       be 

the discrete probability mass function of the demand if the unobservable state is 

        and   takes values according to the discretization 

 

Transition probability from the state                 to the              

        under action   can now be computed as: 

 

        (                )                               

                                       
(2.45) 

 

The amount of on-hand inventory    and order-up-to level inventory    do not 

have an effect on transition probabilities. 

 

Costs are incurred at each period according to the state            and amount of 

order which is        . The cost at time   is denoted by            where   is the 

real process,   is the observed process,   is the amount of inventory in hand and   

is order up to level. Then,            is computed by the equation (10). (Notations in 

the dynamic programming model are used for computing costs): 
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A model can be adapted to find minimum expected discounted cost. It is 

expressed as: 

 

         ∑ ∑ ∑             

         

 

           

 

 

 

          

 ∑                        

   

   

 ∑ ∑ ∑ ∑                            

              

                             

                                        

(2.46) 

 

∑             

   

   

                              
 

(2.47) 

 

                                                               

 

(2.48) 

 

                                                      

 

(2.49) 

 

                                                                  

         

 

(2.50) 

 

Note that both α and V are unknown and the above model is a nonlinear program.   
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The one-period expected total inventory cost at time t plus the expected 

discounted cost of the next period is computed by the equation (46) by taking the 

expectation with respect to the demand and yield distributions. Equation (47) 

ensures that the sum of the probabilities of making all possible orders are equal to 

1 for each defined state. The same probability of taking action   for the same 

observed state   is ensured by equation (49).  
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CHAPTER 3 

 

 

COMPUTATIONAL STUDY 

 

 

 

In this chapter, computational study is performed to analyze the optimal policies 

that are obtained from the nonlinear programming model and the dynamic 

programming model of Arifoğlu and Özekici (2010). To see the effect of the 

different demand, supply, cost structures and observation levels on optimal 

policies, three different data sets are used in Arifoğlu and Özekici (2010).  So, the 

comparison of the results of these models is done using these sets and over the 

results that they report in Arifoğlu and Özekici (2010). 

 

The aim in Arifoğlu and Özekici (2010) is to analyze the optimal decisions for 

different observation levels and the impact of the demand and supply 

uncertainties. To perform this analysis, different demand and supply distributions 

are used in Data Set 1, Data Set 2 and Data Set 3. In the present study, the optimal 

policies obtained from dynamic programming and nonlinear programming 

models, are compared in terms of optimal policies and optimal costs. Besides, 

Data Set 3 is used to analyze the impact of different levels of demand, holding and 

shortage costs on optimal ordering policies. 

 

 

3.1 DATA SET 1 

 

In this part, optimal policies are found for different observation levels in which 

decision maker’s precision of observing the real state changes. There are two 

states of the outside environment   , denoted by         where   represents 

good and   represents bad state. The state of the observed process    is    
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       The initial probability of the real process is in good and bad state are 

             and              respectively at time    Demand is 

normally distributed with mean   and standard deviation    and with mean   and 

standard deviation   when the real process is in good and bad state respectively. 

Normal distribution is truncated three standard deviations from the mean of the 

demand and discretized as three point approximation. Random yields are 

uniformly distributed on the intervals         and            for good and bad 

states respectively. Transition probability matrix of the real process is  

 

  [
      
      

]  . (3.1) 

 

For the analysis of optimal policies, different observation levels are taken into 

account through the emission matrix 

 

   [
                    
                    

]. (3.2) 

 

for           . The emission matrix gives the conditional probability of the 

observed states given that the unobserved states. When    , the emission matrix 

is     and the precision of the observations are at lowest level and observations do 

not give any information about the state of the real process, every state is equally 

likely.  Precision of the observations increase as observation level (   increases. 

    represents the case where observations are perfect so the conditional 

probabilities are equal to    

 

The parameters are 

 

 Purchasing cost     = 0.5 

 Holding cost      = 2  

 Shortage cost     = 10 

 Discount factor      = 0.9 

 Number of periods     = 2. 
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 Capacity of Order     = 5 

 

Because main focus in this part is to observe the effect of the precision of 

observations on optimal policies, cost parameters are assumed to be same for each 

state of the observed process. If there is random yield in supply, the optimal order-

up-to level is characterized by two numbers (  

       

    ) when there are two 

periods remaining at time 0. The vector    is the conditional distribution of the 

real process    given           . If the initial inventory level is below   

       it 

is optimal to order the capacity    . If it is above   

    , then order should not be 

made. When the initial inventory level is between these points, optimal order-up-

to level   

     is greater than    

     and it is nonincreasing with the inventory level. 

The structure of the optimal policy is the same when there is one period remaining 

at time  . This type of optimal policy is defined by state-dependent modified 

inflated base-stock policy. It is proved that this policy is optimal for single and 

multiple periods. 

 

Table 3.1.1 Optimal threshold levels for different emission matrices (Results of 

Dynamic Programming Model) 

 

Emission Time 0 Time 1 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

   
    

 

   2.9 7.3 2.9 7.3 1.9 6.4 1.9 6.4 

   2.9 7.3 2.9 7.3 1.9 6.5 1.8 6.3 

   2.9 7.3 2.9 7.3 1.9 6.5 1.8 6.2 

   2.9 7.3 2.9 7.3 1.9 6.6 1.8 6.1 

   2.9 7.3 2.9 7.3 2 6.6 1.8 6 

   2.9 7.3 2.9 7.3 2 6.7 1.7 5.8 

   2.9 7.3 2.9 7.3 2 6.7 1.7 5.6 

   2.9 7.3 2.9 7.3 2 6.7 1.7 5.4 

   2.9 7.3 2.9 7.3 2 6.8 1.6 5.2 

    2.9 7.3 2.9 7.3 2 6.8 1.6 5 

    2.9 7.3 2.9 7.3 2 6.8 1.5 4.8 
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Table 3.1.1 shows optimal threshold values that are obtained from dynamic 

programming model. Inventory levels is incremented with     between    and 

    and the order-up-to levels are between    and    with the same level of 

increments. The length of the intervals are the same with the Arifoğlu and Özekici 

(2010) to compare the results appropriately. MATLAB is used for solving 

dynamic program. The threshold levels are same except   

     values that are     in 

their study. 

 

In our nonlinear programming model, initial inventory level is discretized by 76 

equidistant points between -5 and 10 for the approximation of normal distribution. 

More points for the inventory level cannot be considered due to the capacity 

limitation of GAMS. We assume that the yield is not random (   ) in our 

computations. The problem is also solved via dynamic programming with the 

same precision of the inventory levels.  Table 3.1.2 shows optimal threshold levels 

of both models at time  . 

 

Table 3.1.2 Optimal threshold levels for different emission matrices at time 0 

using 0.2 increments  

 

Emission Nonlinear Model Dynamic Programming Model 

   
    

    
    

    
    

   
    

   
    

   
    

 

   1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

   1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

   1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

   1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

   1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

   1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

   1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

   1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

   1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

    1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 

    1.8 6.8 1.8 6.8 1.8 6.8 1.8 6.8 
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Figure 3.1.1 shows optimal order-up-to levels, which are obtained from our 

nonlinear program, for the inventory levels between -5 and 10 for the emission 

matrixes               When there are two periods remaining at time 0, optimal 

order-up-to level is characterized by two numbers (  
         

     ) that are 

independent of the observation   in this particular case . The structure of the 

optimal policy is the same as the solution of the dynamic programming program. 

The optimal threshold levels are presented in Table 3.1.1 for different observation 

levels. The optimal policy from dynamic program is characterized by two 

numbers (  

       

    ) when there are two periods remaining at time 0. If   

[  

       

    ], it is optimal to order to the amount   

    , if x is less than   

     it is 

optimal to order    . Otherwise, no order is made. 

 

 

 

Figure 3.1.1 Optimal order-up-to level at time 0 for              and Observed 

State = 1, 2 

 

At time 0, the initial distribution of the unobserved process (    is known so 

observing good or bad states does not affect the transition probabilities. Cost 

parameters are the same for each state of the observed process. Therefore, in the 

results of our nonlinear model, the critical levels (  
    

 ) are the same for both of 

the observed states. They are also the same for each emission matrix in the 
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solutions that need not hold in general. The results of dynamic programming and 

nonlinear program are the same. 

 

When the outside environment   , is completely unobservable with the emission 

matrix   , optimal policies are the same whether good or bad state is observed. 

This results from the fact that the observations do not give any information about 

the state of the real process   . It can be observed from the Table 3.1.3 that 

threshold values are nondecreasing with the observation level when the state is 

good. When the observation is good (   ) and the emission matrix is    where 

the environment is completely unobservable, the threshold levels are (  
  

      
      .When the environment is completely observable and the emission 

matrix is      the threshold values are (  
        

      . In the former, when 

the observation is good, the probability of real state being good is only 0.5 where 

in the latter that probability is 1.  Since good state means higher mean demand, the 

thresholds increase. When     is observed, the observation is bad and the 

threshold levels are (  
        

       for the emission matrix    where the 

environment is completely unobservable. When the emission matrix is    , the 

environment is completely observable and the threshold values are (  
      

  

      In the latter case, real process    is perfectly observable which means if the 

decision maker observes the state as good (bad) then it is            with 

probability    

 

Table 3.1.3 Optimal threshold levels for different emission matrices at time 1 

 

Emission Nonlinear Model Dynamic Model 

   
    

    
    

    
    

   
    

   
    

   
    

 

   1.6 6.6 1.6 6.6 1.6 6.6 1.6 6.6 

   1.6 6.6 1.6 6.6 1.6 6.6 1.6 6.6 

   1.8 6.8 1.4 6.4 1.8 6.8 1.4 6.4 

   1.8 6.8 0.4 5.4 1.8 6.8 0.4 5.4 
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Table 3.1.3 (Continued) 

 

   1.8 6.8 0.4 5.4 1.8 6.8 0.4 5.4 

   1.8 6.8 0.2 5.2 1.8 6.8 0.2 5.2 

   1.8 6.8 0.2 5.2 1.8 6.8 0.2 5.2 

   1.8 6.8 0 5 1.8 6.8 0 5 

   1.8 6.8 0 5 1.8 6.8 0 5 

    1.8 6.8 0 5 1.8 6.8 0 5 

    1.8 6.8 0 4.8 1.8 6.8 0 4.8 

 

Figure 3.1.2, Figure 3.1.3, Figure 3.1.4 and Figure 3.1.5 show optimal order-up-to 

levels for the inventory levels between 0 and 10 for the emission matrices 

             respectively at time   when there is one period remaining. The 

optimal order-up-to levels are represented by         and         in the graphs 

when the observed states is      (1) and     (2) respectively. The results of 

dynamic programming and nonlinear program are exactly the same.  These figures 

demonstrate the effect of the accuracy of the observations about the real state on 

the optimal order-up-to levels as explained above. 

 

 

 

Figure 3.1.2 Optimal order-up-to levels at time 1 for    and Observed State = 1, 2 
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Figure 3.1.3 Optimal order-up-to level at time 1 for    and Observed State = 1, 2 

 

 

 

 

Figure 3.1.4 Optimal order-up-to level at time 1 for    and Observed State = 1, 2 
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Figure 3.1.5 Optimal order-up-to level at time 1 for     and Observed State = 1, 2 

 

As Table 3.1.4 shows that optimal cost functions at time   are decreasing in the 

precision of the observations for       . This results from the fact that the 

probability of observing different state than the real state is decreasing. Therefore, 

the cost due to the difference between real and observed states decreases. Figure 

3.1.6 shows the optimal expected cost against the initial inventory. The convex 

behavior is due to the excess or shortage created by the initial inventory.  

Obviously, starting with the inventory level close to the optimal provides the 

minimum optimal cost for every emission level. The value of the accurate 

observation is higher around the “best” initial inventory level.  If the initial 

inventory is too low       or too high       , the saving due to accurate 

observation is low. 
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Table 3.1.4 Expected total optimal costs values for different initial inventory 

levels for              

 

Initial 

Inventory Level 

Emission Matrices 

             

0 21.497 21.486 21.360 20.980 

2 12.830 12.777 12.417 11.570 

4 11.830 11.783 11.439 10.614 

6 10.830 10.783 10.439 9.614 

8 11.863 11.077 10.583 9.543 

10 14.190 14.102 13.666 12.852 

 

 

 

 

Figure 3.1.6 Optimal objective values for different initial inventory levels for 
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3.2 DATA SET 2 

 

In this part, the distribution of the demand is Poisson and the yield distribution is 

uniform. In addition, Poisson distribution is truncated three standard deviations 

from its mean for the demand distributions. Parameters of both of these 

distributions depend on the state of the observed process   . Costs are different for 

each state of the observed process. All other parameters are the same as in Data 

Set 1. Integer values are considered for the inventory levels because demand is 

distributed as Poisson and inventory level is rounded to the nearest integer after 

some proportion of the order received. Uncertainty in demand and supply is 

measured by the coefficient of variation. 

 

The cost parameters are 

 

 Purchasing costs:             

 Holding costs:           

 Shortage costs:            . 

 

Parameters of the Poisson and Uniform distribution are  

 

 Good Bad 

Mean Demand     4 2 

Supply Interval                          . 

 

The results, which are obtained from dynamic programming program and 

nonlinear program are stated in Table 3.2.1, are considered for the initial 

inventory level between 0 and 10 at time 0. MATLAB is used for solving dynamic 

program. 

 

In the nonlinear program, initial inventory level is considered as integer points 

between 0 and 10. GAMS is used for solving the nonlinear program. We assume 

that there is no proportional yield (   ) in our computations. 
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Figure 3.2.1 shows the optimal order-up-to levels at time  . When there are two 

periods remaining at time 0, optimal order-up-to level is characterized by two 

numbers (  
       

   ) for      . The structure of the optimal policy is the 

same as the solution of the dynamic programming program. The optimal policy is 

characterized by two numbers (  

       

    ) when there are two periods remaining 

at time  . If x  [  

       

    ], it is optimal to order to the amount   

    , if x is less 

than   

     it is optimal to order    . Otherwise, no order is made. This solution 

(  
       

   ), is the same for all observation levels. 

 

 

 

Figure 3.2.1 Optimal order-up-to levels at time 0 for               and Observed 

State = 1, 2 

 

When the outside environment   , is completely unobservable with the emission 

matrix   , optimal policies are the same whether good or bad state is observed. 

This results from the fact that the observations do not give any information about 

the state of the real process   . It can be observed from the Table 3.2.1 that 

threshold values are nondecreasing with the observation level when the state is 
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    . When the environment is completely observable and the emission 

matrix is      the threshold values are (  
      

    . In the former, when the 

observation is good, the probability of real state being good is only 0.5 where in 

the latter that probability is 1.  Since good state means higher mean demand, the 

thresholds increase. When     is observed, the observation is bad and the 

threshold levels are (  
      

     for the emission matrix    where the 

environment is completely unobservable. When the emission matrix is    , the 

environment is completely observable and the threshold values are (  
      

  

    In the latter case, real process    is perfectly observable which means if the 

decision maker observes the state as good (bad) then it is            with 

probability    

 

Table 3.2.1 Optimal threshold levels for different observation levels at time 1 

 

Emission Nonlinear Model Dynamic Programming Model 

   
    

    
    

    
    

   
    

   
    

   
    

 

   0 5 0 5 0 5 0 5 

   0 5 0 4 0 5 0 4 

   0 5 0 4 0 5 0 4 

   0 5 0 4 0 5 0 4 

   0 5 0 4 0 5 0 4 

   0 5 0 4 0 5 0 4 

   0 5 0 4 0 5 0 4 

   0 5 0 3 0 5 0 3 

   0 5 0 3 0 5 0 3 

    0 5 0 3 0 5 0 3 

    1 6 0 3 1 6 0 3 

 

Figure 3.2.2, Figure 3.2.3, Figure 3.2.4 and Figure 3.2.5 show optimal order-up-to 

levels for the inventory levels between 0 and 10 for the emission matrices 

             respectively at time 1 when there is one period remaining. The 

optimal order-up-to levels are represented by         and         when the 

observed states is      (1) and     (2) respectively. The results of dynamic 

programming and nonlinear program are exactly the same.  These figures 
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demonstrate the effect of the accuracy of the observations about the real state on 

the optimal order-up-to levels as explained above 

 

 

 

Figure 3.2.2 Optimal order-up-to levels at time 1 for    and Observed State = 1, 2 

 

 

 

 

Figure 3.2.3 Optimal order-up-to levels at time 1 for    and Observed State = 1, 2 
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Figure 3.2.4 Optimal order-up-to levels at time 1 for    and Observed State = 1, 2 

 

 

 

 

Figure 3.2.5 Optimal order-up-to levels at time 1 for     and Observed State = 1, 
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3.3 DATA SET 3  

 

In this part, the effect of different demand levels and cost parameters on optimal 

policies are analyzed. Different levels of demand, holding cost and shortage cost 

are considered under three cases. Demand is assumed to be two point discrete. It 

is assumed that cost parameters are the same for each observed state and the states 

of the real process, observable process and transition probabilities are the same as 

in Data Set 1. The problem is solved by both dynamic programming model and 

nonlinear programming model and the same results are obtained. The multiple-

period optimal ordering policy is a state-dependent modified base-stock policy for 

all of the cases that are considered. This policy structure is characterized by two 

numbers (  
    

 ) when there are two periods remaining at time  . If   [  
    

 ], 

it is optimal to order to the amount   
 , if   is less than   

  it is optimal to order 

capacity. Otherwise, no order is made. 

 

The parameters of the problem are 

 

 Purchasing cost     = 0.5 

 Discount factor      = 0.9 

 Number of periods     = 2 

 Capacity of Order (K) = 5. 

 

Figure 3.3.1 shows the optimal order-up-to levels for different mean demands. 

The mean of the demand increases from Case 1 to Case 3 so there is more risk of 

shortage if the same ordering decision is made for different cases. The optimal 

threshold levels are (  
      

   ), (  
      

   ), (  
       

    ) for 

Case 1, 2, 3 respectively.  It is reasonable that the optimal order-up-to levels from 

Case 1 to Case 3 increase as the mean of the demand increases to minimize total 

expected cost. 

 

The effect of different holding costs on optimal policies are considered in Figure 

3.3.2. The holding cost increases from Case 1 to Case 3 so more holding cost is 
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incurred for the same level ordering decision. Therefore, the optimal order-up-to 

levels decrease from Case 1 to Case 3 as expected. The optimal threshold levels 

are (  
      

    ), (  
      

   ), (  
      

   ) for Case 1, 2, 3 

respectively. 

 

Figure 3.3.3 illustrates the optimal order-up-to levels for different shortage costs. 

Shortage costs increase from Case 1 to Case 3 so more shortage cost is incurred 

for the same ordering level in different cases. Therefore, the optimal order-up-to 

levels increase from Case 1 to Case 3 as expected. The optimal threshold levels 

are (  
      

   ), (  
      

    ), (  
      

    ) for Case 1, 2, 3 

respectively. 

 

 

 

Figure 3.3.1 Optimal order-up-to level at time 0 and Observed State = 1, 2 for 

different demand levels (            ) 
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Figure 3.3.2 Optimal order-up-to level at time 0 and Observed State = 1, 2 for 

different holding costs (           

 

 

 

 

Figure 3.3.3 Optimal order-up-to level at time 0 and Observed State = 1, 2 for 

different shortage costs (             
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3.4 CONCLUSION 

 

In this study, a finite horizon inventory problem with random demands that are 

generated by a partially observable Markov environment posed in Arifoğlu and 

Özekici (2010) is taken.  There is an observable process that is probabilistically 

related to the real process. Arifoğlu and Özekici (2010) constructed a dynamic 

program to minimize the total cost over the finite horizon using POMDP 

methodology.  They showed that the optimal ordering policy depends on the 

probability distribution over the states and it is control limit type. They provide 

numerical examples for two periods. 

 

Serin and Avşar (1997) constructed a nonlinear problem that provides 

approximate simpler solutions to the POMDP problems. The nonlinear 

programming model for the above inventory problem is constructed and the 

results are compared for several cases. The optimal policies that are found by the 

dynamic programming model and nonlinear programming model are exactly the 

same for all of the data sets so there is no difference in the objective function 

values. The structure of the optimal policy is state-dependent modified base-stock 

policy as expected.  

 

The effect of the precision of the observations on the optimal policies are 

considered by the different emission matrices with different observation levels 

from the completely unobservable case to the completely observable case. The 

optimal objective function values are decreasing as the precision of the 

observations increase as expected in all of the data sets. 

 

The effect of the initial inventory on the optimal expected cost for different 

observation levels are analyzed. The value of the accurate observation is higher 

around the “best” initial inventory level.  If the initial inventory is too low or too 

high, the saving due to accurate observation is low. 
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The effects of some model parameters such as the mean demand, the holding and 

shortage costs on the optimal order up-to-levels are also analyzed.  
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