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Signature :

iv



ABSTRACT

A GENETIC ALGORITHM FOR HEALTHCARE FACILITY LOCATION
PROBLEM

İŞBİLİR, MELİKE

M.S., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Pelin Bayındır

Co-Supervisor : Assoc. Prof. Dr. Cem İyigün

February 2016, 77 pages

In this study, we consider the problem of locating emergency healthcare facilities in
urban areas. Upon emergency occurrence, patients are directed to any one of the
emergency centers with a likelihood that depends on the travel time. Moreover, the
survival, that represents the severity of the consequences of the emergency situation,
is also probabilistic and is a function of the travel time. A mathematical model is
constructed under the objective of maximizing expected number of survivors while
determining the location of predetermined number of facilities. Characteristics of this
model under certain situations, such as when a concave or convex survival function
is used, or when the facility is located on a line or a network, are investigated. After
presenting the analytical findings, we propose a Genetic Algorithm based solution
approach to solve the model for locating healthcare facilities on a network. Lastly,
we present its performance and findings of the numerical study.

Keywords: Facility Location Models, Gravity Models, Gradual Coverage, Health-
care, Genetic Algorithm
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ÖZ

SAĞLIK KURULUŞU KONUMLANDIRMA PROBLEMİ İÇİN BİR GENETİK
ALGORİTMA

İŞBİLİR, MELİKE

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pelin Bayındır

Ortak Tez Yöneticisi : Doç. Dr. Cem İyigün

Şubat 2016 , 77 sayfa

Bu çalışmada, kentsel bir alanda acil durum sağlık kuruluşlarının konumlandırılması
problemi düşünülmüştür. Acil durumun gerçekleşmesi üzerine, hastalar acil müda-
hele merkezlerinden her birine, ulaşım sürelerine bağlı olasılıklarla yönlendirilebilir-
ler. Bunun yanı sıra, hastanın durumunun ağırlığını temsil eden hayatta kalma ola-
sılığı da, hastaneye ulaşım süresine bağlı olan bir fonksiyondur. Bu kapsamda, belli
sayıda tesisi beklenen hayatta kalan hasta sayısını ençoklayacak şekilde konumlan-
dırmak üzere bir matematiksel model kurulmuştur. Modelin matematiksel özellikleri,
konveks ya da konkav hayatta kalma olasılığı fonksiyonu kullanılması, tesislerin bir
çizgi ya da ulaşım ağı üzerine konumlandırılması gibi farklı durumlar için incelen-
miştir. Analitik bulguların sunumundan sonra, bir ulaşım ağı üzerinde tesislerin ko-
numlandırılmasına yönelik modelin çözümü için Genetik Algoritma (GA) tabanlı bir
çözüm yöntemi önerilmiştir. Son olarak, önerilen yöntemin performansı değerlendi-
rilmiştir ve sayısal analizlerden elde edilen bulgular sunulmuştur.

Anahtar Kelimeler: Tesis Yer Seçimi Modelleri, Yerçekimi Modelleri, Kademeli Kap-
sama, Sağlık Hizmeti, Genetik Algoritma
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CHAPTER 1

INTRODUCTION

Facility location models are used extensively for locating public facilities where peo-

ple’s well-being is one of the main concerns. Models developed so far are utilized as a

part of significant efforts to improve healthcare services as well, and new approaches

continue to emerge in this area. As there are several problems in healthcare that re-

quire use of operations research techniques, we are particularly interested in locating

a given number of healthcare facilities in this thesis.

There is an ongoing effort to increase the applicability of location models and make

better decisions by incorporating new features that represent real life situations. In

this study, we will mainly consider two of these. To begin with, coverage idea is an

old and important concept in facility location models, which mainly represents the

view that a demand region with a distance to the facility beyond a given threshold

value can not be served. Despite its extensive usage in many fields including health-

care as well, binary coverage idea is later criticized and gradual and partial coverage

models are proposed. Secondly, while it is assumed that customers are served by the

closest facility in the traditional models, this is later questioned and behaviors of cus-

tomers are analyzed. Consequently, several gravity models, which consider factors

such as distance to facilities, and size, attractiveness of the facilities, are proposed for

reflecting customer choice.

In this study, we approach the problem of locating healthcare facilities considering

those two mentioned features. Here, we particularly consider emergency medical

situations. Instead of assuming a patient is covered if he/she is within the service

border of an hospital, we take into account the time it takes to reach that hospital
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and evaluate his/her survival probability based on this time. Additionally, as gravity

models suggest, we can not know for sure if the patient will be treated at the closest

hospital. Therefore, a likelihood function, which represents the probability that this

patient will choose a particular hospital is taken into account.

The problem environment is considered to be a city, where each demand region is

represented by a node. Demand amounts, which is the number of patients having

a medical emergency, are considered to be in accordance with the population of re-

gions. A weighted complete graph is used to represent the city and a given number of

identical, noncapacitated healthcare facilities are located in the scope of this problem.

The proposed mathematical model for this problem has a nonlinear objective function.

Moreover, as the number of demand regions and the number of facilities to be located

increases, complexity increases significantly. Therefore, a Genetic Algorithm based

solution approach is presented in this study.

The remainder of this thesis is organized as follows. In Chapter 2, literature survey on

coverage models and gravity theory as well as their usage in healthcare area are pre-

sented. Later, in Chapter 3, proposed problem is given and the problem environment

is explained in detail. In Chapter 4, characteristic of the problem is investigated under

certain conditions; such as when concave and convex survival probability functions

are used, and when single or multiple facilities are located. Analytical findings are

presented in this section. In Chapter 5, a Genetic Algorithm based solution approach

is presented for the given problem. Later in Chapter 6, computational study is con-

ducted, results are presented and discussed. Lastly, evaluation of the study and future

research directions are given in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

As average lifetime and consequently population of the world increases, difficulties in

planning and management of healthcare systems have arisen. Similar to many other

systems, considerable efforts have been observed to improve healthcare systems in

the last few decades by utilizing Operations Research (OR). A survey by Rais and

Viana [20] reveals that the main academic studies on healthcare optimization issues

include demand forecasting, capacity planning, patient scheduling, resource schedul-

ing, logistics and location selection. As for the location selection, it is stated that

there are two main areas; namely, healthcare centers and emergency vehicle loca-

tions. This thesis is about the problem of locating emergency centers. Daskin and

Dean [10] classify facility location models used in healthcare applications as the set

covering model, the maximal covering model, and the P-median model. Nature of

our problem led us to a special case of covering models. For this reason, first cov-

ering models are introduced in Section 2.1, later the special case, gradual covering

models and their applications in the literature are reviewed in Section 2.2. Lastly,

attractiveness models in facility location are introduced and a few studies considering

attractiveness concept in healthcare are reviewed in Section 2.3.

2.1 Covering Problems in Facility Location

Before starting to give details about different covering models developed in the liter-

ature, coverage idea should be explained simply. A customer is "covered" if (s)he is

served by a facility that is located within a prespecified distance from (her)him. This

idea was firstly introduced by Hakimi [14]. In this study, the objective of the model
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is determining the minimum number of policeman in highway network such that no

one is farther from a policeman than a predetermined distance S. He formulates the

problem in a weighted graph denoted by G, and d(x, y) denotes the distance between

points x and y on G. Let Xp be a subset of vertices consisting of p nodes on the graph

and let

d(vi, Xp) = (min[d(vi, x1), d(vi, x2), ..., d(vi, xp)]) (2.1)

All the nodes in G are covered by the subset Xp if:

d(vi, Xp) ≤ S (2.2)

Subset Xp is said to be an optimum set if there is no other set Xr that covers G, where

r < p.

Two traditional covering models, set covering problems and maximal covering loca-

tion problems are presented in Section 2.1.1 and Section 2.1.2, respectively.

2.1.1 Set Covering Problem

While Hakimi [14] was the first one coming up with the idea of coverage, first math-

ematical model in covering problems was developed by Toregas et al [26]. Objective

of this model is to minimize the total number of located facilities while satisfying cov-

erage constraints for all demand nodes. Toregas et al [26] state that the problem can

be most applicable to location of emergency services, as well as other services such

as schools, libraries etc. For this reason, S is defined as the response distance, even

though it may be considered as coverage distance or time for other types of problems.

The notation used for the Set Covering Problem (SCP) is summarized in Table 2.1.

4



Table 2.1: The Notation Used for the Set Covering Problem

Indices:
i Index for demand points
j Index for alternative facility locations

Sets:
N Set of demand nodes, i=1,2, ... , |N |
M Set of alternative facility locations, j=1,2, ... , |M |
Ni Set of facility locations that covers node i=1,2, ... , |N |

Decision variables:
xj Equals 1 if facility is established at point j, 0 otherwise

Parameters:
dij Distance or response time from location j to demand point i
S Coverage distance

Formulation of the set covering problem is as follows:

Min
∑
j∈M

xj (2.3)

s. to
∑
j∈Ni

xj ≥ 1 ∀i ∈ N (2.4)

xj ∈ {0, 1} ∀j ∈ M (2.5)

The objective function (2.3) minimizes the number of facilities located. Constraint

(2.4) ensures that each demand is being covered, and (2.5) is the integrality constraint.

Toregas et al [26] utilize linear programming supplemented by the addition of a single

cut constraint. Suppose that p0 is the optimal solution of the linear programming

relaxation and it is a fractional value. This means, in any feasible integer solution,

at least ⌊p0⌋ +1 servers must be located. It is claimed that addition of this single cut

constraint always resulted in integer solutions, therefore the proposed model solves

the set covering problem to optimality.

The set covering problem was extended in several ways later. Weighted Set Cover-
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ing Problem (WSCP) attaches costs to facilities and minimizes the cost of locating

facilities while ensuring all demand nodes are covered. In the set covering problem,

when facilities are assumed to be noncapacitated, demand of different customers are

not needed to be represented on the model. In order to make the problem more adapt-

able to real-world situations, Current and Storbeck [8] present a formulation for the

capacitated set covering problem including demand explicitly in the model. Addition-

ally, Murray et al [19] use spatial representation of demand areas and proposes two

models; namely, Location Set Covering Problem (LSCP)-Implicit and LSCP-Explicit.

Both of these models minimize the number of facilities located while allowing a de-

mand area being covered by multiple facilities. Under implicit covering problem,

coverage levels which represent the maximum number of facilities a coverage com-

bination can include are defined and there is a given minimum acceptable coverage

percentage for each level. The facilities are partitioned in discrete sets for each de-

mand node depending on whether they provide coverage at the acceptable percentage

for each level. Eventually, each demand area must be completely covered by some

combination of facilities at some level k. Explicit covering, on the other hand, creates

sets of facility combinations for each demand area that completely cover that area,

which enables one to keep track of facilities serving to each demand region.

Due to the probabilistic nature of emergency situations, the set covering model was

extended later considering some probabilistic factors. ReVelle and Hogan [22] esti-

mate the busy fractions of servers in the zones around each demand region and aim to

minimize number of servers while ensuring each demand is served with a reliability

of at least α. ReVelle and Hogan [24] present the derivations of this probabilistic set

covering problem; namely, "α-reliable P-center problem" and "maximum reliability

allocation problem". Both models locate P facilities by taking busy probabilities of

the service vehicles into account. The fist one minimizes the maximum time or dis-

tance within which service is available with α reliability. The solution is obtained by

solving the original probabilistic model successively for smaller values of S. When a

decrease in S causes an increase in the number of facilities to be located, the previous

S value gives the smallest time or distance within which service can be provided with

α reliability. The second problem aims to maximize the minimum reliability of ser-

vice. The solution is obtained by solving the original probabilistic model successively

6



for larger values of α. If an increase in α causes an increase in the number of facilities

to be located, the previous α value gives the largest minimum reliability provided by

P facilities.

2.1.2 Maximal Covering Location Problem

As mentioned earlier, another covering concept utilized extensively in locating health-

care facilities is Maximal Covering Location Problem (MCLP). MCLP is based on the

idea of maximal service distance, that is used to label a demand region as covered or

not. When location decisions are to be made with limited budget, covering all de-

mand areas without changing S may not be feasible. In this case, a cost-effectiveness

curve obtained by SCP is examined to observe the effect of changing S on total cost,

i.e., minimum number of facilities to be located. The model proposed by Church and

ReVelle [5] seeks to cover as many customers as possible within S using the limited

resources. Sets, parameters and decision variables needed to designate MCLP can be

seen in Table 2.2.

MCLP is formulated as follows:

Max
∑
i∈N

aiyi (2.6)

s. to
∑
j∈Ni

xj ≥ yi ∀i ∈ N (2.7)

∑
j∈M

xj = P (2.8)

xj ∈ {0, 1} ∀j ∈ M (2.9)

In the model, (2.6) maximizes the total demand covered while (2.7) ensures that yi

will be equal to 1 only when demand point i is covered by one or more facilities. The

number of facilities to be located is limited to P as stated in (2.8) and (2.9) is the

integrality constraint. Church and ReVelle [5] state that objectives of public sector

location problems rather than the ones in private sector are taken into consideration in

MCLP better, which makes it an extensively used model in healthcare facility location

7



Table 2.2: Notation Used for Maximal Covering Location Problem

Indices:
i Index for demand regions
j Index for alternative facility locations

Sets:
N Set of demand nodes, i=1,2, ... , |N |
M Set of alternative facility locations j=1,2, ... , |M |
Ni Set of facility locations that covers node i=1,2, ... ,

|N |

Decision variables:
xj Equals 1 if facility is established at point j, 0 other-

wise
yi Equals 1 if node i is covered by at least one facility, 0

otherwise

Parameters:
dij Distance or travel time from location j to demand

point i
S Coverage distance
P Number of facilities to be located
ai Demand amount at node i

problems. Two greedy heuristic solution approaches and two different techniques

for resolving the fractional solutions obtained by the linear programming model are

proposed for solving the problem.

Later, various extensions of the model proposed by Daskin and Dean [10] are studied.

As in SCP, Murray et al [19] present the implicit and explicit versions of the problem.

Church [6] solves the model on a continuous plane without defining discrete facility

locations. Like it was applied to SCP, Current and Storbeck [8] consider capacitated

facilities and propose the capacitated version of MCLP.

Besides these extensions, probabilistic version of MCLP that was presented by ReV-

elle and Hogan [23] is an important problem in healthcare facility location problems.

This model locates P servers while considering that a server may not always be avail-

able to serve demand points. The problem is known as the the Maximum Availability

8



Location Problem (MALP). The objective of the model is to maximize the popula-

tion covered with a predefined reliability. There are two versions of the model that

differ in computation of the fraction of time that the servers are busy. The first ver-

sion, MALP I, assumes that busy fractions of all servers in the system is the same.

Whereas, MALP II, relaxes this assumption and computes site-specific busy fractions

rather than system-wide measures.

Another probabilistic extension of MCLP is presented by Daskin and Mark [9]. The

model, which is known as Maximum Expected Covering Location Model (MEXCLP),

is based on the idea that not all located facilities will be able to respond to demands

at all times. It is assumed that the state of a facility may be "broken down" with a

known probability r. This probability is the same for all facilities, and the problem

aims to maximize expected covered population under these assumptions. Besides an

integer programming model, a heuristic approach that aims to find solutions for all P

values is presented. Results of the heuristic approach tested on a network for different

ranges of r are given as well.

As mentioned before, set covering and maximal covering location problems are the

two traditional classes in covering problems. Main principles and objectives of both

models are explained as well as some extensions of them in this section. These mod-

els and their extensions are being used extensively to solve healthcare facility location

problems. However, most of them are constituted based on the traditional coverage

idea, which labels demand points as covered or not. Our problem definition considers

all demand regions as being covered to some extent, which is represented by a sur-

vival probability. This situation requires understanding partial and gradual coverage

concepts, which are explained in Section 2.2.

2.2 Partial Coverage and Gradual Coverage Problems

Defining a coverage distance specific to a service means that locating a facility is

purposeful for a customer only if the distance between them is within the predefined

critical value. When such a critical value is known, objectives such as minimizing

total distance or cost may not be meaningful and coverage models that aim to min-
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imize the number of facilities located or maximize covered population are used in-

stead. Despite this advantage, binary coverage concept, which means dividing points

as "covered" or "uncovered" has been criticized later on.

Figure 2.1: Facility and Demand Nodes

In Figure 2.1, there exists one facility and four demand nodes around it. ti values

represent the travel time between each demand region i and the facility. Demand

nodes beyond the dashed lines are not served since they are not within a distance S of

the facility. It can be seen that although relative distances of customer 1 and customer

3 to the facility are close to each other, node 1 is considered as covered while node 3 is

considered not covered according to the binary coverage principle. Moreover, there

is not a way to differentiate states of nodes 1, 2, and nodes 3, 4 even though their

distances to the facility are quite different. In order to reflect the effect of distances

or travel times between demand regions and facilities to their state of coverage in a

more realistic approach, partial and gradual coverage concepts have been proposed.

2.2.1 Partial Coverage

The Generalized Maximal Covering Location Problem (GMCLP) presented by Berman

and Krass [1] is an extension of the MCLP. This study states that binary coverage as-
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sumption may be unrealistic in many applications. From the retailers’ point of view,

the situation is expressed as follows: customers within 1-2 miles of the facility are

considered as fully covered since they are believed to constitute primary trading area

of the facility. Beyond that distance, customers are only partially covered, which can-

not be represented by binary coverage approach. In order to incorporate decreasing

levels of coverage into location models, they define a decreasing stepwise function of

the distance. Consider a network G = (N,E), where N and E represents the nodes

and edges, respectively. There is a weight assigned to each node i, wi, which can for

example represent the population of node i. Distance between any two point i,j ∈G
is denoted by d(i, j). For a given set of locations Xp on G, the distance between node

i and its closest facility in the set is defined as

d(Xp, i) = min
j∈Xp

d(j, i) (2.10)

As explained earlier, it is assumed that a customer can be covered at different lev-

els depending on its distance to the closest open facility. Coverage level decreases

as distance increases, and partial coverage uses a step-function to represent this sit-

uation. Predefined critical levels on distances constitute ranges, and there exists a

corresponding coverage level for each distance range. For each node i, k coverage

radii are defined such as r0i < r1i < r2i < . . . < rki = ∞ with associate coverage

levels a1i = 1 > a2i > . . . > aki ≥ 0. For a given set of locations Xp and level l≤k, let

N(Xp, l) =
{
i ∈ N |rl−1

i ≤ d(Xp, i) < rli
}

(2.11)

Equation (2.11) is used to define the set of all nodes whose shortest distance to Xp is

in the range [rl−1
i ,rli). The defined set is discrete for all values of l and each i belongs

to exactly one such set. Depending on the range of the set i belongs to, a coverage

level ali is attributed to node i. If M is the set of potential locations and P is the

number of facilities to be located, the GMCLP can be written as

max
Xp⊆M,|Xp|=p

k∑
l=1

∑
i∈N(Xp,l)

wia
l
i (2.12)
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It is proven by Berman and Krass [1] that an optimal set of solutions exist on nodes

of the network. This study also presents several integer programming formulations of

the problem. Two solution approaches based on LP-relaxation and a greedy heuris-

tic are proposed. IP model and the proposed solution approaches are tested on 226

instances and the computational results are presented in the study.

2.2.2 Gradual Coverage

As mentioned earlier, Berman and Krass [1] find binary coverage assumption unre-

alistic. Similarly, Berman et al [2] state that the assumption of "abrupt" termination

of coverage in MCLP may be unrealistic in many potential applications. Therefore,

an alternative approach to coverage, which can be considered as an extension of GM-

CLP, is presented. Single coverage distance is replaced with two coverage radii l and

u. A point is assumed to be fully covered if it is within distance l of it’s closest facility

and is not covered if the distance to the closest facility is beyond distance u. When

the distance to facility takes a value between two coverage radii, the node is assumed

to be partially covered, which is represented by a "coverage decay function".

They consider the problem of locating p facilities on a network G = (N,E) where

N and E are the set of nodes and the links, respectively. Demands are assumed

to be originated from nodes. Characteristic of the problem has been examined for

particular situations. When the gradual decay function is taken to be a decreasing

convex function, it is proven that an optimal set of locations exists in a discrete subset

of G consisting of N and certain breakpoints on the edges. These breakpoints are

the points on the network which are at a distance li or ui from each node i ∈ N .

However, a similar conclusion could not be obtained for the gradual decay functions

with a structure other than convex. They also present a mathematical formulation,

and the notation used can be seen in Table 2.3.

(2.13) maximizes the total "value". (2.14) ensures that P facilities will be located. A

node can be covered from i only if there is a facility at i (2.15). Each demand can be

covered only once (2.16). (2.17) is the integrality constraint.
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Table 2.3: Notation Used for the Gradual Covering Decay Location Problem on a
Network

Indices:
i Index for demand regions
j Index for alternative facility locations

Sets:
N Set of demand nodes, i=1,2, ... , |N |
M Set of alternative facility locations, j=1,2, ... , |M |
Mi(1) Set of facility locations that fully covers node i, j ∈

M ; 0 ≤ di(j) ≤ li
Mi(2) Set of facility locations that partially covers node i,

j ∈ M ; li<di(j) ≤ ui

Decision variables:
yj Equals 1 if a facility is established at point j ∈ M , 0

otherwise
gxij Equals 1 if a facility is located at j, 0 otherwise, ∀j

∈ Mi(x), x=1,2
gij Equals g1ij if j ∈Mi(1) , g2ij if j ∈ Mi(2), 0 otherwise
cij Equals wi if j ∈ Mi(1) , wifi(dij) if j ∈ Mi(2), 0

otherwise

Parameters:
dij Distance or response time from any node j to any

node i

wi Demand weight associated with node i ∈ N

P Number of facilities to be located
dij Distance from node i to facility j

fi(d) Gradual decay function of distance d

Max
∑
i∈N

∑
x∈M

gijcij (2.13)

s. to
∑
j∈M

yj = P (2.14)

yj ≥ gij ∀i ∈ N, j ∈ M (2.15)∑
j∈M

gij ≤ 1 ∀i ∈ N (2.16)

yj, gij ∈ {0, 1} i ∈ N, j ∈ M (2.17)
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Since the gradual covering decay location model is a special case of uncapacitated

facility location problem, Berman et al [2] state that the same solution approaches;

namely, the greedy heuristic and LP-relaxation, are applicable to this problem as well.

Drezner et al [12] solve the gradual covering problem on 2-dimensional plane. Ob-

jective function of the problem is formulated as minimizing noncoverage rather than

maximizing coverage. In this way, the objective function becomes similar to the We-

ber problem except that the cost function is not linear in the distance. Two coverage

radii, li and ui are used as in [1], as well. The problem is to find the best location of

a facility while the total cost for all demand points is minimized. Notation used to

formulate the problem is given in Table 2.4.

Table 2.4: Notation Used for the Gradual Covering Problem

Indices:
i Index for demand regions

Sets:
N Set of demand nodes, i=1,2, ... , n

Decision variables:
X Unknown location of the new facility
di(X) Distance between point i and the new facility

Parameters:
wi Demand weight associated with node i ∈ N

Cost function used is defined as:

ci(d) =


0 d ≤ li (2.18)

wi(d− li) li ≤ d ≤ ui (2.19)

wi(ui − li) d ≥ ui (2.20)

Objective function is:

Min F (X) =
∑
i∈N

ci[di(X)] (2.21)
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When Euclidean distance is used as the distance metric, the solution to the problem

is proven to be in the convex hull of the demand points. A branch and bound solu-

tion procedure is proposed to solve the problem in finite steps within an acceptable

accuracy. They also discuss the potential areas that gradual covering problem may

be applied to. One of these applications is medical facility location. It is stated that,

survival rate decreases with the time it takes to reach the patient. Given model can be

applied to represent this situation by taking survival rate constant until a critical point

and severity of the disease starts after that point, li. Condition of the patient no longer

worsens after the second critical point, ui.

A modified version the mathematical model in [12] is presented by Karasakal and

Karasakal [16]. Here, demand points are identical in terms of their weights. There

exists two critical points, li and ui with the same applications in [12]. Coverage

function, on the other hand, may be of any type; continuous or discrete; linear or

nonlinear. It is stated that large size problems can not be solved using mathematical

programming packages and heuristic approaches do not guarantee reaching an opti-

mal solution. Therefore, a lagrangean relaxation based solution procedure is proposed

and it is claimed to be effective based on computational results.

Applications of Gradual Coverage in Healthcare

As mentioned by Drezner et al [12], gradual coverage can be used to represent sur-

vival rate in healthcare related problems. So far, there is a limited number of studies

incorporating gradual coverage into healthcare problems. Among these, one of them

is closely related to the subject of this thesis and must be explained in detail.

Gradual coverage was first introduced in emergency medical service models by Erkut

et al [13]. This study focuses on ambulance location problem and aims to maximize

the expected number of survivors from patients having a cardiac arrest. Four survival

probability functions are examined which may take different parameters such as time

spent until cardiopulmonary resuscitation (CPR), defibrillation and advanced cardiac

life support (ACLS) into account. Among these, the survival function presented by

Valenzuala et al [28] is used and simplified by making some assumptions on time re-
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lated parameters. Survival probability depends on response time, which is represented

as a function of distance, R(d), and some explanatory variables O, such as qualifi-

cation of ambulance staff, existence of a witness, receiving CPR from a bystander

or not. Assuming that probability distributions of R(d) and O are known, Monte

Carlo simulation is used to derive survival probability as a function of distance. How-

ever, uncertainty in the response time was ignored and survival probability is taken as

E[S(E[R(d)],O)] in the firstly presented model. Notation used is given in Table 2.5.

Table 2.5: Notation Used for Ambulance Location Problem

Indices:
i Index for demand regions
j Index for alternative facility locations

Sets:
N Set of demand nodes, i=1,2, ... , |N |
M Set of alternative facility locations, j=1,2, ... , |M |

Decision variables:
yj Equals 1 if facility is established at point j, 0 other-

wise
xij Equals 1 if demand node i is served by the facility

established at point j, 0 otherwise

Parameters:
wi Demand weight associated with node i ∈ N

tji Travel time from candidate location j to demand node
i

td Pretravel delay
s(t) Survival rate as a function of response time
P Number of facilities to be located

The mathematical model based on MCLP aims to maximize expected number of pa-

tients who survive. (2.23) ensures that demand point i can be served by j only if an

EMS vehicle is located there. Each demand point is served by a single facility (2.24).

No more than P facilities can be located (2.25). (2.26) is the integrality constraint.
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Max
∑
i∈N

∑
j∈M

wis(tji + td)xij (2.22)

s. to
∑
i∈N

xij ≤ nyj ∀j ∈ M (2.23)

∑
j∈M

xij = 1 ∀i ∈ N (2.24)

∑
j∈M

xj ≤ P (2.25)

yj, xij ∈ {0, 1} ∀i ∈ N, j ∈ M (2.26)

After presenting the main model, they also give some extensions in order to make the

model more realistic. First one of them, referred as the maximal expected survival

location problem (MEXSLP), is based on MEXCLP. This model incorporates busy

probabilities and allows allocation of more than one EMS vehicle to each demand

point. The second one, the maximal survival location problem with probabilistic

response time (MSLP+PR), only modifies the objective function of the base model.

This extension uses precomputed survival rates for each i − j pair, considering the

uncertainty in response times. The last one considers both the uncertainty in response

time and the busy probabilities of vehicles, and is referred as the maximal expected

survival location problem with probabilistic response time (MEXSLP+PR). Results

of the optimization models tested on real life data are also presented in the study.

Similarly, Knight et al [17] focuses on locating EMS vehicles by incorporating sur-

vival functions as well. While the study by Erkut et al [13] was restricted to car-

diac arrest patients, they consider multiple-classes of patients and define category

based survival probabilities. Another contribution of the study is taking into account

stochastic utilization of ambulances and congestion at each ambulance station. While

doing this, an iterative approach is used to calculate busy probabilities based on queu-

ing theory.

Providing equity is an important issue in emergency management, and Chanta et al [4]

aim to locate EMS vehicles while minimizing inequity of the system. The problem

considers both survival rates and availability of EMS vehicles. Survival function

given by Valenzuala et al [27] is rewritten based on some assumptions made in this
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study. These assumptions are related to times spent until a call is placed to the emer-

gency center, the start of CPR and defibrillation. Eventually, a survival function that

only depends on response time is obtained and busy probabilities are estimated based

on hypercube queuing model. Objective of the study is minimizing total envy, where

envy is defined as the difference between satisfaction levels of customers. Satisfac-

tion levels are associated with survival probabilities rather than distance to facilities.

An integer programming formulation is presented, and results for varying P values

are given as well.

2.3 Attractiveness Models in Facility Location Problem

Most of the coverage models explained in the previous sections use the assumption

of single allocation, that is each demand point is served by its closest facility. In spite

of that, attractiveness models are constituted based on the idea that customers are not

necessarily served by the closest facility. This idea is firstly put forward by Reilly [21]

and supported by an empirical national study. The model proposed in that study is

later criticized by Huff [15] and an alternative model is proposed.

History of development of attractiveness models starts with the pilot study of Reilly

[21], in which data collected from retail merchants and by door-to-door question-

naires are analyzed. Main purpose is to find out the interaction between smaller towns

and large cities; on the other hand, field survey results bring him to the conclusion

that only size of the residual areas is not enough to explore this interaction. A third

dimension, population of the cities, must be considered as a predictive factor as well.

Following that, a nationwide survey is conducted in the United States. Reilly’s infer-

ence based on this data is that population and size of the cities are enough to identify

breakpoints between two cities. As a result, he presents the following equation:

Ba

Bb

= (
Pa

Pb

)N ∗ (Db

Da

)n (2.27)
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where

Ba: the business which City A draws from any intermediate given town,

Bb: the business which City B draws from any intermediate given town,

Pa: population of city A,

Pb: population of city B,

Da: distance of city A from the intermediate town,

Db: distance of city B from the intermediate town,

N : Increase rate of the outside trade as population increases,

n: Decrease rate of the outside trade as distance from city increases.

Three decades after this first attractiveness model was presented, a more extensive

field survey is conducted and an alternative model is proposed by Huff [15]. Data

collected by interviewing households and firms are analyzed and the results show

that the proportion of customers patronizing a given shopping center varied with dis-

tance, size of the merchandise, product type and proximity of the shopping area to its

competitors. In addition to these findings, Huff states that Reilly’s model had some

limitations. Firstly, the model assumes that an area may fall into coverage zone of

only one store, whereas there may exist gradual declines of sales potential as dis-

tances increased. Secondly, while Huff’s field survey reveals that customers may

be willing to travel further distances for certain product types, Reilly’s model does

not differentiate product types in terms of their effect on trading areas. In order to

overcome these limitations, a new model is proposed which represents a theoretical

abstraction of consumer spatial behavior. Notation used is given in Table 2.6 and a

formal expression of the probability that a customer at point i traveling to shopping

center at point j is as follows:

Pij =

Sj

tijλ∑
j∈M

Sj

tijλ

(2.28)
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Also, the expected number of customers in place i that shop at area j can be estimated

by

Eij = PijCi (2.29)

where Ci represents the number of customers at i.

Table 2.6: Notation Used for the Gravity Model

Indices:
i Index for demand regions
j Index for shopping centers

Sets:
N Set of demand nodes, i=1,2, ... , |N |
M Set of shopping centers, j=1,2, ... , |M |

Parameters:
tij Travel time from demand node i to shopping center j
λ Parameter reflecting the effect of travel time on various

kinds of shopping trips
Sj Size of shopping area j

Pij Probability of a consumer at i travelling to shopping center
j

The idea of relaxing proximity assumption is later used in several traditional facility

location models. Among them, "The gravity p-median model" presented by Drezner

and Drezner [11] is closely related to our study, since we aim to locate a given number

of healthcare facilities by incorporating the attractiveness principle. Their problem is

to locate p facilities on nodes of a network by minimizing the total distance traveled

by all customers to their selected facilities. The probability of a customer selecting

a particular facility is proportional to the attractiveness of that facility and inversely

proportional to the distance between them. They also prove that optimal locations are

not always on nodes of the network, but restrict facilities to be located on nodes. Two

heuristic approaches, namely, the steepest descent and tabu search, are proposed in

the study and claimed to give impressive results.
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Even though attractiveness models are initially constituted to define trading areas,

their applications are extended to various location problems, including public sector

facility locations as well. In the next section, we will focus on attractiveness models

applications in healthcare problems.

Applications of Gravity Models in Healthcare

Bucklin [3] studies the applicability of attractiveness models in healthcare. This study

reviews all attractiveness models, and comments on interpretations and possible val-

ues of parameters. The main purpose is to examine the relation between the value of

exponent −λ and distance. In the process of exploring this relationship, patient data

for a group of hospitals are analyzed. As a result, a curve representing the hypoth-

esized logistic relationship between λ and distance is obtained. This curve reveals

that small exponents close to zero are suitable for relatively short distances. A rapid

increase in λ occurs as distance increases until some point. Later, it continues to in-

crease with decreasing slope and reaches a maximum value. However, it is stated by

Bucklin [3] that this hypothesis is very tentative and requires further evaluation.

The study by Lowe and Sen [18] uses the attractiveness model given by Sen and

Sööt [25] in order to estimate the effects of certain changes in healthcare system

in an urban hospital market. These include the changes in hospital payment policy

and hospital closures. In this study, diseases are also categorized and the effects are

examined for each category. It is also shown that people will travel further distances

for more specialized health services, as in the case of shopping for certain type of

products.

Congdon [7] analyzes the impact of reconfigurations of emergency hospital services

on patient flows from homes to hospitals. These configurations may include strate-

gic decisions such as opening new facilities or closure of existing ones, expanding

capacities of hospitals in terms of number of beds. Flows are modeled based on at-

tractiveness models. Simulation based Bayesian methods are used for estimation.
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CHAPTER 3

PROBLEM DEFINITION

In this section, the problem studied will be explained. The idea behind splitting de-

mand to different facilities and benefits of using survival functions in healthcare fa-

cility location problems are explained, and the assumptions made are described.

As mentioned in Section 2.3, attractiveness models brought the idea that customers

are not necessarily served by the closest facility. It is seen in cases such as capacitated

facilities are considered, or servers are not always available to serve customers, that

allocating customers to different facilities may be allowed. Otherwise, when prox-

imity of demand nodes and facilities brings improvement to the objective function,

customers are considered to be served by the closest facility.

Considering an emergency situation, it is obvious that time spent until first medical

intervention is of vital importance. This time depends on factors such as the distance

between incident location and the hospital chosen to go, traffic on the selected route,

availability of necessary medical staff and the equipment. As it is of high impor-

tance to reach medical service as quick as possible upon occurrence of emergency, it

is naturally thought that the patient would prefer to be treated at the closest facility.

However, this may not always be the case observed in real life situations. Upon oc-

currence of a medical emergency situation, patients are either transported to a nearby

hospital by an emergency service vehicle or this transportation is conducted by a wit-

ness or the patient himself/herself. In the first case, EMS vehicle’s destination may be

predetermined for certain incident types and locations, or EMS staff may be directed

to a certain hospital after arrival of the call. In an environment where all the hospitals

are identical and uncapacitated, the optimal choice would be transferring the patient
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to the closest hospital. In the latter case, patient or a bystander makes the decision

about which treatment centre to go. This decision may be affected by many factors

some of which originates from the fact that hospitals are not identical in people’s

perception. These factors can include their past experiences, reputation of the nearby

hospitals, suggestions from friends as well as the distances from the patient’s location

to the hospitals under consideration.

As human mind is a complex system, a perfect mathematical representation of this

choice would require all of these factors and more. In order to reach a simpler repre-

sentation, the idea behind attractiveness models is used. Even though gravity models

first emerged from the observations from travels to shopping centers, its usage spread

to other areas including healthcare as explained in Section 2.3. Among these limited

number of studies, one of the factors whose effect on patient’s behavior is studied is

distance to the hospitals, which can also be considered as the travel time. Since one

of the leading factors affecting patients’ choice in emergency situation is travel time,

it is found acceptable to use a likelihood representation function of travel time in this

thesis. In this way, we not only reflect the importance of travel time on this decision

fairly, but also relax the assumption of always choosing the closest hospital with a

more realistic one.

Figure 3.1: Facilities and the Demand Node

The likelihood function proposed gives the probabilities of a patient to travel each one

of the open facilities. Consider the small example given in Figure 3.1. There are three

hospitals surrounding the patient and travel times between the patient and them are

tA, tB and tC . When the likelihood of this patient traveling to any of these hospitals
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is represented by Pfacility, the value corresponding to visiting facility A is as follows;

PA =
1
tA

1
tA

+ 1
tB

+ 1
tC

(3.1)

Equation 3.1 is a special form of equation (2.28), where Sj values are all equal to

one, which can be considered as all the facilities are identical. λ value reflecting the

effect of travel time is taken to be one as well. General form of the function will be

presented in Section 4.2.

As mentioned in Section 2.2, partial and gradual coverage models emerged as a result

of binary coverage models being insufficient to represent real life situations. This was

demonstrated with the help of a small example in Figure 2.1.

Now let’s expand the example in order to see the effects of using binary coverage and

gradual coverage. Consider the example in Figure 3.2, where tij values represent the

travel times between two points. Suppose that there are 10 patients on each node, and

S value is equal to 10, the nodes are located on a line and the facility can be located

anywhere on this line. A continuous maximal covering approach would result in

coverage of three nodes with a single facility. This can be achieved by locating the

facility anywhere between the points A and B in Figure 3.2. Point A is at a distance

6 minutes away from node 2 and 10 minutes away from node 4. Node B is located

at a distance 10 minutes away from node 2 and 6 minutes away from node 4. Any of

these alternate solutions covers 30 patients.

Figure 3.2: Locating a Single Facility on a Line
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Now, let’s examine the effect of using a gradual coverage function instead of binary

coverage. Survival probability at point x equals to e−tx/4, where tx stands for the

travel time between the facility located and the patient at point x. Figure 3.3 shows

expected number of survivors for each node separately and all the patients on the

network, when facility is located at any point from A through B.

In the first situation, where maximal coverage is aimed, node 1 is not considered as

covered, however changing the location of the facility between A and B has a small

effect on the expected number of survivors at this demand point. Similarly, while

anywhere on the line [AB] is optimal for the first situation, it is seen that expected

number of survivors change remarkably for nodes 2, 3 and 4 as facility is moved

from A to B. In total, there are approximately 2.5 more survivors that can be gained

by moving facility from point A to point B, whereas this gain could not be noticed by

maximizing the total demand covered.

This was the case where all demand points has 10 patients. Consider that there are 10

patients on nodes 1, 2 and 3 while there are 50 on node 4. In this case, moving the

facility from A to B would increase the expected number of survivors from 12.85 to

22.17. It is seen that the gain obtained by using a survival probability function and

maximizing the expected number of survivors can improve the decision substantion-

ally depending on the number of patients, which are partly neglected while using the

maximal coverage approach.

As mentioned before, this study locates emergency hospitals by using an objective

function which considers survival probabilities. There are many studies in the lit-

erature examining the relationship between incident type dependent factors and the

survival probability. Most of them focus on cardiac arrest survivals, and only a few

among them provides survival functions of response time. In this study, different

hypothetical functions are considered. In this way, it is aimed to include emergency

situations that may differ in terms of degree of urgency. Our model considers a single-

class of patients which means only one type of survival function is used at a time.

As both the survival probability and likelihood functions are dependent on response

time, computation of this value plays an important role on the decision. Travel time

in an urban area is known to be traffic dependent; however, in this study, stochasticity
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Figure 3.3: Change in the Expected Number of Survivors as the Facility Moves from
A to B

in travel time is ignored. The assumption given in the study by Chanta et al [4] is

used and it is assumed that 2 minutes are required to travel 1 mile.

Since the budget constraint should be considered as well, a specified number of facili-

ties are to be located within the scope of this problem. These facilities are assumed to

be identical and noncapacitated, which means that survival probability is not affected

by the facility type and it is not required to consider number of patients a hospital can

serve, while calculating likelihood values.
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CHAPTER 4

MATHEMATICAL MODEL AND ANALYTICAL RESULTS

In this section, mathematical models for single facility and multiple facilities location

problem are given and some analytical findings about the optimal locations when

different survival functions are in use are explained.

4.1 Locating a Single Facility

4.1.1 Locating a Single Facility on a Line

Consider the problem of locating a single facility on a line, [AB]. This line has n

vertices in set V = {v1, v2, ..., vn}, consisting of the beginning and ending points as

well and having a distance li from the beginning of the line. Patients are located on

these nodes and are allowed to travel in both directions to reach the hospital. There

are hi patients on each node i whose time to the hospital is ti(x), and their survival

probabilities are represented by π(ti(x)). The facility can be located anywhere on

the line, and x represents the travel time from facility to the beginning node. Under

these circumstances, the problem is designed as a continuous location problem, and

the following formulation maximizes the expected number of survivors on this line:
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P

Max
n∑

i=1

hi ∗ π(ti(x)) (4.1)

s. to ti(x) ≥ x− li ∀i ∈ N (4.2)

ti(x) ≥ li − x ∀i ∈ N (4.3)

x ∈ [AB] (4.4)

Now, let’s analyze the properties of this formulation under two cases: (1) π is a

convex function decreasing in travel time, (2) π is a concave function decreasing in

travel time.

Theorem 1. The optimal solution to problem P occurs at a demand node when a

single facility is located on a line under case (1).

Proof

Consider the first case and let k, k + 1 represent two adjacent demand nodes on the

line. If the single facility is located on s∗ ∈ [k,k + 1], a θ function for defining the

relative location of s∗ is expressed as follows;

θ =
tks∗

tk,k+1

(4.5)

Equation 4.5 implies that s∗ moves from k to k+1 through the line as θ changes from

0 to 1, where t values define travel times between any two points. In this case, travel

time from any demand node i to point s∗ can be defined as a function of θ.

δi(θ) = min {tik + θtk,k+1; ti,k+1 + (1− θ)tk,k+1} (4.6)

By utilizing Equation 4.6, the objective function of the problem is rewritten as fol-

lows;

Max
n∑

i=1

hi ∗ π(δi(θ)) (4.7)
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Since δi(θ) is a linear function of θ and π is convex decreasing in t, π(δi(θ)) is found

to be a convex function of θ. Consequently, the objective function is convex between

k and k+1 which implies that moving the facility from anywhere on the line [k,k+1]

to k or k+1 cannot cause the objective function value worsen. This shows that optimal

solution always exists on one of the demand nodes when a convex decreasing survival

function is used.

Existence of the optimal solution on the nodes in every case enables us to replace con-

tinuous formulation by a discrete location problem mathematical formulation. Addi-

tional indices, parameters, variables and the formulation are as follows:

Indices

j = 1, ..., n ∈ V Candidate facility locations

Parameters

tij The travel time between point i and point j

π(tij) Survival probability of a patient at point i who travels to the hospital at point

j

Decision Variables

yj =

1 if a facility is located at point j

0 otherwise
.

Max
n∑

i=1

m∑
j=1

hi ∗ π(tij) ∗ yj (4.8)

s. to
m∑
j=1

yj = 1 (4.9)

yjϵ {0, 1} ∀j ∈ V (4.10)
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Objective function (4.8) maximizes the expected number of survivors on the network.

Constraint set (4.9) ensures that only one hospital is opened and set (4.10) specifies

the integrality constraints.

Now, let’s consider case (2). Under this case, it is not possible to show that optimal

solution to P occurs at a demand node when a single facility is located on a line.

If the survival function is concave decreasing, π(δi(θ)) is found to be concave in

θ between two adjacent points as well, whereas this does not give a clue about the

optimal location of the facility. Therefore, the characteristic of the objective function

between the beginning and ending point should be examined. For this purpose, let 1

and N represent the first and last demand nodes on the line, respectively. θ and the

travel time function are modified as follows:

θ =
t1,s∗

t1,N
(4.11)

δi(θ) = max {θt1,N − t1,i; t1,i − θt1,N} (4.12)

Since δi(θ) is convex in θ, when survival function is concave decreasing in travel

time, π(δi(θ)) becomes a concave function. This proposes that the optimal solution

can exist anywhere on the line, not necessarily on demand points. The θ value that

equates first derivative of the objective function to 0 will give the optimal result.

4.1.2 Locating a Single Facility on a Network

As our problem definition is to locate hospitals in an urban area, a network is required

to represent demand regions and the transportation paths between them. Let N(V,E)

be this connected and undirected network where the node set V represents demand

points and E represents the links connecting them. Consider the two cases that convex

and concave survival functions are used as in Section 4.1.1.
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Theorem 2. The optimal solution to problem P occurs at a demand node when a

single facility is located on a network under case (1).

Proof

Let π be a convex decreasing function of the travel time, and k, k +1 represent the

source and sink nodes of any arc e ∈ E. When the single facility is located on s∗

which exists on the arc e, θ and δ functions in Equations (4.5) and (4.6) are applicable

to this case as well. However, shape of the δ function will be concave in this instance.

Consequently, π(δi(θ)) is found to be convex, and so is the objective function given

in Equation (4.7). This corresponds to optimal solution being on the nodes, which

enable one to consider demand points as the candidate facility locations and use the

discrete location problem formulation given by Equations (4.8), (4.9) and (4.10).

When a single facility is located on a network under case (2), which means π is

taken to be a concave decreasing function of the travel time, characteristic of the

objective function between two adjacent demand points is found to be neither convex

nor concave. Therefore, an inference about the optimum location of the facility could

not be made.

4.2 Locating Multiple Facilities

When more than one facility are to be located on a given network or line, the objec-

tive function includes one more term besides demand values and the survival prob-

abilities. A likelihood function is used to represent the probability of a patient at a

particular node selecting a specific hospital. When this probability is incorporated

into the model, any conclusion about the optimum location of facilities on a line or

network, under the use of concave or convex function could not been obtained. When

the candidate set of facilities are defined as the demand nodes and certain breakpoints

on the arcs of a network, it is observed computationally by complete enumeration that

the optimal solution is not always on the demand nodes when a concave function is

used. However, a similar counter example could not be found when a convex sur-

vival probability function is considered, which means that optimal solutions always
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appeared on the demand nodes.

Berman et. al [2] present a theorem that optimal locations exist on nodes when a

convex non-increasing decay function is used with the objective of maximizing total

demand weight covered. Suppose S∗ is an optimal set of locations, which contains a

point s∗ that is an interior point on a link. Set of nodes on the network are partitioned

as Ns∗ and N s∗ , representing the nodes that are closer to s∗ and nodes that are closer

to some other location on the network, respectively. The resulting objective function

utilizing these set definitions is as follows:

Max
∑
i∈Ns∗

hi ∗ π(δi(θ)) +
∑
i∈Ns∗

hi ∗ π(ti(S∗ − s∗)) (4.13)

While the first term in Equation (4.13) is a function of θ, the second term is a constant.

Since π(δi(θ)) is a convex function with respect to θ as shown in Section 4.1.1, setting

θ value to 0 or 1 cannot decrease the objective function value. While it is assumed

that each demand point is served by their closest facility in this study, our model

considers that demand points are served by all facilities with varying probabilities.

As these probabilities are calculated based on the travel times between facilities and

demand nodes, changing θ value between 0 and 1 would change the travel times,

consequently the probabilities. Under the condition that, likelihood values would not

change as θ changes, the proof in [2] applies to our problem as well.

In this study, candidate facility locations are restricted to the set of demand points and

the mathematical formulation constructed for the single facility location problem is

modified as follows for the multiple facility location problem:

Decision Variable:

ESi: Expected survival probability of the patient at node i

34



P1

Max Z1 =
∑
i∈V

hi ∗ ESi (4.14)

s. to
∑
j∈V

yj = P (4.15)

ESi = (

∑
j∈V yj ∗ 1

tij
∗ π(tij)∑

k∈V yk ∗ 1
tik

) ∗ (1− yi) + π(tii) ∗ yi ∀i ∈ V (4.16)

yjϵ {0, 1} ∀j ∈ V (4.17)

In the context of this problem, it is also assumed that a patient will be treated at

the hospital that is located on its region if such a facility exists. This is ensured by

constraint (4.16).

As we deal with a healthcare facility location problem, providing equity in service to

patients should be taken into account as well. For this purpose, two more objective

functions are defined for this problem. The first one given in Equation (4.18) aims

to maximize the minimum survival rate of patients on the network. The correspond-

ing problem, P2, considers each patient separately: that is, number of patients on

nodes are not taken into account. The gap between the survival rates is minimized

only by increasing the lowest value. On the other hand, the second function given

in Equation (4.19) has rather a system-wide approach. P3 aims to minimize the total

weighted envy in the system, where envy is defined as the difference between sur-

vival probabilities of nodes in the network. If survival probability of a node A is less

than another one, objective function value is increased by the multiplication of the

difference between these two values and number of patients at node A.

P2

Max Z2 = Min
i∈V

{ESi} (4.18)

s. to 4.15- 4.17
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P3

Min Z3 =
∑
i∈V

∑
l∈V,l ̸=i

hi ∗Max {0, ESl − ESi} (4.19)

s. to 4.15- 4.17

In addition to these, the problem that aims to maximize expected number of survivors

where each patient is served by the closest facility and survival rate depends on the

response time is presented. This version of the problem will be called P4 from now

on.

Decision Variable

xij =

1 if demand node i is served by the facility j

0 otherwise
.

P4

Max Z1 =
∑
i∈V

hi ∗ π(tij) ∗ xij (4.20)

s. to
∑
j∈V

yj = P (4.21)

∑
j∈V

xij = 1 ∀i ∈ V (4.22)

xij ≤ yj ∀i, j ∈ V (4.23)

yj, xijϵ {0, 1} ∀j ∈ V (4.24)

Drezner and Drezner [11] show in their study that the objective function value of

standard p-median problem is not higher than the objective function value of gravity

p-median, where the objective is minimizing the total distance traveled. A similar

proof can be done for our problem as well.
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Theorem 3. Let P define a set of facility locations. In this case, it can be claimed

that the optimal objective function value of model P1 is not higher than the objective

function value of P4.

Proof

∑
i∈V

hi ∗
∑

j∈V π(tij) ∗ yj ∗ 1
tij∑

k∈V (yk ∗
1
tik
)

(4.25)

=
∑
i∈V

hi ∗
∑

j∈P π(tij) ∗ 1
tij∑

k∈P
1
tik

(4.26)

≤
∑
i∈V

hi ∗

∑
j∈P Max

j∈P
{π(tij)} ∗ 1

tij∑
k∈P

1
tik

(4.27)

=
∑
i∈V

hi ∗ Max
j∈P

{π(tij)} (4.28)
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CHAPTER 5

SOLUTION METHODOLOGY

The mathematical programming model presented in Section 4.2 is nonlinear, there-

fore it is not guaranteed to reach an optimal solution using commercial optimization

solvers. Moreover, computation time increases enormously as number of nodes and

facilities to be located increases. For this reason, a Genetic Algorithm based solu-

tion approach is developed which successfully solves large instances in reasonable

computation times. Structure of the algorithm is as follows;

• Representation Scheme

Our problem has two sets of decision variables and the ones defining likeli-

hood values are nonlinear functions of location decisions variables. Therefore,

defining a representation scheme only for yj variables would be enough.

We represent the facility location with a 1×P vector where P is the number of

facilities to be located. Considering there are n candidate sites, each element of

the array can take any value ranging from 1 to n as long as they are different. In

this representation, ith element shows which candidate site is opened as the ith

one, where i is defined in the set {1, · · · , P}. An example with P=4 and n=90

candidate locations is

10 28 35 79

• Fitness Function

Z1 is used as the fitness function. As we aim to maximize the expected number

of survivors in P1, higher values stand for higher fitness.
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• Initial Population Generation

Pop_size individuals are generated randomly.

• Parent Selection

In any generation, all individuals in the population are allowed to be selected as

parents. Two parents are selected randomly to generate offspring and removed

from the population. This process is repeated for pop_size/2 times to select all

parents for reproduction.

• Crossover Operators

Crossover is applied to all parents with a determined probability pc. Crossover

operator merges the arrays representing two parents. If the same gene appears

in both individuals, it is copied to both offspring. Later, an array consisting of

remaining genes is constructed and shifted in order to ensure diversity. First

and second halves of the newly constructed array are transmitted to first and

second offspring, respectively. An example of crossover process is

Parent 1: 10 28 35 79

Parent 2: 10 32 46 83

As 10 appears in both parents, it becomes the first gene of both offspring. Mer-

gence of remaning genes and newly consructed array by reordering remaining

genes are as follows;

1: 28 35 79 32 46 83

2: 79 46 35 28 83 32

Resulting offspring;

Offspring 1: 10 79 46 35

Offspring 2: 10 28 83 32
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• Nearest Neighbor Search

Since pop_size can not be large enough to capture all candidate locations in the

initial population, ensuring the generation of each location in the further steps

is desired. In order to manage this wisely rather than generating random genes,

a nearest neighbor search algorithm has been proposed which is applied to all

children. A random gene is selected in each individual and two more offspring

are generated by altering the subject gene with two closest nodes. An example

of this this process is as follows:

Offspring 1: 10 79 46 35

A number between 1 and p is generated randomly.

Say p=3. Let the closest nodes to node 46 be 51 and 65. In this case, nearest

neighbor search algorithm generates the following offspring.

Offspring 2: 10 79 51 35

Offspring 3: 10 79 65 35

The best of these three individuals in terms of fitness function value is selected

as the offspring and other two are disposed.

• Mutation Operators

Mutation is applied to each individual bit of each offspring with a predeter-

mined probability pm. If a gene is to be mutated, it is replaced with a location

chosen randomly from the candidate set as long as it does not cause same genes

taking place in the subject individual. Otherwise, random selection process

continues until a feasible solution is obtained.

• Fitness Function Evaluation and New Population Generation

The population generated in the previous iteration and children generated by

crossover and succeeding local search, mutation operations are gathered in a

pool. After fitness functions are calculated, individuals are sorted in decreas-

ing fitness values. In order to ensure spreading good features, best pop_size

individuals are selected to form the new population.
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• Stopping Condition

When 95% of the individuals in the population reach to the same objective

function value, the algorithm stops.
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CHAPTER 6

COMPUTATIONAL STUDY

In this section, first, computational study on the assessment of the proposed solution

approach is presented. In more detail, in Section 6.1 problem instances and survival

probability functions used for testing the model are given. In Section 6.2, the pa-

rameters of GA are fine tuned. Section 6.3 gives the results of the proposed solution

approach, and evaluates them by comparing with the optimal values. Here, we also

statistically analyze the effects of factors such as city structure and problem size on

the algorithm performance. While the first three parts are mainly about construct-

ing the computational setting and a successful solution procedure, in the rest of this

section, characteristics of the presented problems are analyzed using computational

results and effects of some parameter changes on decisions are investigated. In Sec-

tion 6.4, we aim to observe the differences brought by the gravity idea on location

decisions. Location decisions of three problems presented in the previous section are

given and compared in Section 6.5. The effect of number of facilities on the optimal

objective function values is analyzed, and some properties worth discussing are ex-

plained with the help of a small example in Section 6.6. Finally, decisions obtained

by alternative objective functions are evaluated using the performance measures in

Section 6.7.

6.1 Computational Setting

This section presents the specifications of two important points of the computational

setting, namely, city structure and survival function. Demand regions are randomly

generated in a way to represent two different city structures. In the first one, demand
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Figure 6.1: Uniformly Distributed
Demand Regions

Figure 6.2: Clustered Demand
Regions with 3 Centers

Table 6.1: Problem Instances

N City Structure Number of Centers p

20 Uniform - 3,4,5,6,7
30 Uniform - 3,4,5,6,7
40 Uniform - 3,4,5,6,7
50 Uniform - 3,4,5,6
100 Uniform - 2,3,4
20 Clustered 2,3 3,4,5,6,7
30 Clustered 2,3,4 3,4,5,6,7
40 Clustered 2,3,4 3,4,5,6,7
50 Clustered 2,3,4,5 3,4,5,6
100 Clustered 2,4,6,8,10 2,3,4

regions are uniformly distributed in a 30x30 miles city. Second structure consists of

normally distributed centers and normally distributed demand regions around those

centers. They can be seen in Figures 6.1 and 6.2, respectively. It is assumed that

all regions are connected, therefore Euclidean distances are used when travel times

between any nodes are calculated. Problem instances used for testing the performance

of the proposed solution approach are given at Table 6.1.

For simplicity, instances are named based on the following rule:

City Structure (C for Clustered, U for Uniform)_k(Number of clusters)_(Number of

demand regions)_p(Number of facilities to be located)

The second point needs to be determined for computational study is the survival prob-
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ability. Two survival functions used in the literature for reflecting survival chance

from a cardiac arrest situation are mentioned in Section 2.2. These are decreasing

convex functions of the response time, which lead to death in minutes. In order to

include other emergency situations except cardiac arrests and observe the effect of

using different survival functions, two hypothetical functions are generated, which

can be seen in Figure 6.3. The convex function is given by Equation (6.1), and the

concave one is given by Equations (6.2a) and (6.2b). In order to prevent negative

survival rates, it is assumed that survival probability is 0 for travel times higher than

or equal to 74. Representing the emergency situation with a concave function instead

of the convex one obviously reflects a decrease in the level of urgency. Since the

survival functions used for a similar purpose in the previous studies are convex de-

creasing, parameter setting and performance evaluation of the algorithm is conducted

using the hypothetical convex function generated. The concave function is used for

the comparison made in Section 6.4.

scvx(t) = (e0.262t + 0.1)−0.15 (6.1)

scnv(t) =

{ 0 if ≥ 74 (6.2a)

0.99− (
t1.8 ∗ 3
842

) otherwise (6.2b)

It should also be noted that we mainly focus on maximizing expected number of sur-

vivors on the network in this study, which is presented by P1. Therefore, the proposed

solution approach is developed particularly to solve P1 successfully. However, it is

also used to solve P2 and P3 by only altering the objective function equation in the

algorithm. In the next section, fine tuning of GA parameters using this computational

setting is explained.

6.2 Calibration of Genetic Algorithm Parameters

As initial runs of the genetic algorithm based solution approach gives satisfying re-

sults, no more attempt have been made to try a new approach or add new features to
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Figure 6.3: Survival Functions

the existing one. Alternatively, it is aimed to improve performance of the solution ap-

proach by tuning the algorithm parameters. Trial experiments led us to use the values

given in Table 6.2 for parameters and conduct a full factorial design with two levels

and three factors.

Table 6.2: Levels of Parameters

Factors
Levels
- +

Population size 50 (30) 100 (50)
Crossover probability 0.6 1
Mutation probability 0.01 0.05

The number of feasible solutions in our instances range between 1140 and 18,643,560.

As the population size constitutes only a small proportion of the search space, in-

creasing it further than 100 individuals is not approved. However, for small in-

stances, working with 100 individuals may unnecessarily increase the computation

time. Therefore, for problems with less than 20,000 solutions, levels of pop_size are

defined as 30 and 50, for the low and high levels, respectively. Two problem in-
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stances, which have uniformly distributed demand regions, are selected to represent

the small and large instances in the experimental design;

• Ins1: N=50, p=3

• Ins2: N=100, p=4

Objective function values for Ins1 and Ins2 are compared with the optimal values and

percentage errors are taken into account for an experimental design. Minitab outputs

consisting of main effects and interaction plots of the percentage errors for Ins1 can

be seen at Figure 6.4 and 6.5. Figure 6.4 shows that increasing population size and

crossover probability has a decreasing effect on the percentage error, while mutation

probability does not change it remarkably. However, Figure 6.5 suggests that there is

an interaction between crossover probability and mutation probability, so this should

be analyzed in order to decide which level of mutation probability should be selected

for higher level of crossover probability. When crossover probability is equal to 1,

increasing mutation probability from 0.01 to 0.05 decreases percentage error as well.

Therefore, for small instances, parameter values are selected as 50, 1 and 0.05 for

pop_size, pc and pm, respectively.

Figure 6.4: Main Effects Plot for Percentage Error for Ins1
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Figure 6.5: Interaction Plot for Percentage Error for Ins1

Figure 6.6: Main Effects Plot for Percentage Error for Ins2

Minitab outputs consisting of main effects and interaction plots of the percentage

errors for Ins2 is can be seen at Figures 6.6 and 6.7. These two figures illustrate that

the algorithm gives better results for higher values of all three parameters and that

there is no interaction between them. Therefore, for large instances, parameter values

are selected as 100, 1 and 0.05 for pop_size, pc and pm, respectively.
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Figure 6.7: Interaction Plot for Percentage Error for Ins2

6.3 Performance Evaluation of the Solution Approach

Four sets of instances given in Table 6.1 are generated randomly for testing the model.

Optimal solutions of these instances are obtained by total enumeration, and the pro-

posed solution approach is run for 100 replicates. Table A.1 summarizes the average

values reached by comparing total enumeration and genetic algorithm results of four

sets. These experiments were run on a 3.10 GHz Intel Core i7-4770S computer with

16.0 GB of RAM.

Table A.1 presents the performance of the proposed solution approach for each prob-

lem instance. Percent deviation stands for the gap between GA solution and optimal

value. Minimum, maximum deviations in 100 replications and average of them are

given under this measure. Quality gives the number of replications that optimal value

was reached in 100 replications, which can be considered as the probability of finding

the optimal solution using our solution approach. A summary of these results are as

follows;

• Average quality in 93 instances are 96.33%

• Maximum of the maximum deviations from optimal is 0.438% observed for
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instance C_k2_100_p2.

• Minimum quality value is 76.25% observed for instance C_k8_100_p2. Maxi-

mum deviation from optimal for this instance is 0.322%.

• It takes in total 863.96 seconds to solve 93 instances using GA, while 273279.86

seconds are necessary when total enumeration is used.

As mentioned before, instances consist of differently structured cities and different

number of clusters, demand regions and facilities to be located. This enables us

to analyze the possible factors that may affect performance of our algorithm. We

are particularly interested in how the algorithm performs in different city structures,

with different problem sizes and with different number of clusters of demand regions.

Quality and average deviation values are considered for these tests.

Observation 1 The proposed solution approach performs in clustered cities at least

as good as it does in uniformly distributed demand regions.

Table 6.1 shows 22 instances have uniform structures and 71 instances have clustered

structures. Considering all instances for a comparison would mean including different

number of instances for different N values in clustered and uniform sets. For a fair

comparison, three paired tests are applied and performance in uniform structures are

compared with clustered ones with 2, 3 and 4 centers. As normality assumption is not

satisfied for both the quality and average deviation values, Wilcoxon Signed Rank

Test is utilized. Notation used is as follows;

Difference_q = Quality for uniform structure - Quality for clustered structure

Difference_d = Maximum deviation for uniform structure - Maximum deviation

for clustered structure

1) Comparison for uniform and 2 centered clustered structures

H0= Mddifference_q= 0

H1= Mddifference_q ̸= 0
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H0 = Mddifference_d= 0

H1 = Mddifference_d ̸= 0

Table 6.3: Test Results for Uniform and 2 Centered Clustered Structures

N
Wilcoxin
Statistics

p
Estimated
Median

Difference_q 22 174.0 0.127 1.750
Difference_d 22 142.0 0.626 0.0002

P values for both quality and average deviation reveal that algorithm performance

does not differ in these structures at a 0.05 significance level.

2) Comparison for uniform and 3 centered clustered structures

For this case, hypothesis testing for the inequality of performances shows that al-

gorithm success changes between two structures. Therefore, the following tests are

applied in order to understand for which one the performance improves;

H0 = Mddifference_q= 0

H1 = Mddifference_q ≤ 0

H0 = Mddifference_d= 0

H1 = Mddifference_d ≥ 0

Table 6.4: Test Results for Uniform and 3 Centered Clustered Structures

N
Wilcoxin
Statistics

p
Estimated
Median

Difference_q 19 32.5 0.011 -1.313
Difference_d 19 149.0 0.003 0.0015
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P values reveal that average deviation is significantly lower and quality is significantly

higher for 3 centered clustered structures.

3)Comparison for uniform and 4 centered clustered structures

H0 = Mddifference_q= 0

H1 = Mddifference_q ̸= 0

H0 = Mddifference_d=0

H1 = Mddifference_d ̸= 0

Table 6.5: Test Results for Uniform and 4 Centered Clustered Structures

N
Wilcoxin
Statistics

p
Estimated
Median

Difference_q 19 53.5 0.287 -1.000
Difference_d 19 107.0 0.156 0.0016

P values for both quality and average deviation reveal that algorithm performance

does not differ in these structures at a 0.05 significance level.

To sum up, three tests show that algorithm performance either improves or does not

change significantly when it is used in a clustered structure instead of a uniform one.

Observation 2 Problem size does not affect algorithm performance significantly.

In this part, it is aimed to observe how the algorithm performs for different problem

sizes. Since all solutions containing p different nodes are feasible for P1, number of

all p-combinations in set N defines the problem size. Considering the break points

of number solutions in our instances, five classes for problem sizes are determined.

Due to violation of normality assumption, a Kruskal-Wallis Test is applied to these

samples. Results are presented in Tables 6.6 and 6.7.

52



Table 6.6: Test Results of Five Classes for Average Deviation Values

Class Number of solutions N Median Ave. rank Z

1 1000-10000 20 0.0026 58.1 2.08
2 10000-100000 23 0.0005 37.1 -2.02
3 100000-1000000 22 0.0006 44.3 -0.53
4 1000000-10000000 19 0.0009 45.5 -0.27
5 10000000-20000000 9 0.0017 57.2 1.20

DF=4 p=0.091

Table 6.7: Test Results of Five Classes for Quality Values

Class Number of solutions N Median Ave. rank Z

1 1000-10000 20 97.88 44.6 -0.45
2 10000-100000 23 99.25 59.2 2.49
3 100000-1000000 22 98.38 48.6 0.32
4 1000000-10000000 19 97.75 40.5 -1.17
5 10000000-20000000 9 96.25 31.1 -1.86

DF=4 p=0.058

There are two main results obtained by these analyses. First, it is seen that algorithm

performance does not differ significantly between these five classes at a 0.05 signif-

icance level. Second, there is not a decreasing trend on the performance as problem

size increases. On the contrary, it is seen that algorithm performance is at lowest

values for classes 1 and 5, which are the smallest and largest instances.

Observation 3 A trend in algorithm performance with increasing number of clusters

in cities is not observed.

We are interested in how our algorithm performs for different number of clustered

regions in a city where number of nodes on the network remain constant. Since

sample sizes for these observations are rather small, hypothesis testing is not utilized.

Instead, we take averages of two performance measures over valid p values for cities

having 100, 50 and 40 demand regions. Results are presented in Figures 6.8 and 6.9.
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Figure 6.8: Change in the Average
Deviation with Increasing Num-
ber of Clusters

Figure 6.9: Change in the Quality
with Increasing Number of Clus-
ters

It is seen that both measures are most of the time in accordance with each other and

neither of them shows a trend in performance. So, it is not possible to claim that

algorithm performs better for a specified number of clusters.

To sum up, based on given analyses, we claim that the proposed solution approach is

robust to problem size, city structure and number of centers in clustered cities.

6.4 Analyzing the Effects of Gravity Idea on the Location Decisions

Our study combines gradual coverage and gravity models in order to approach the

problem of locating healthcare facilities in a more realistic way and make better de-

cisions for the sake of all. Examples given in Section 2.2 and Chapter 3 reveals the

effect of using a survival function instead of partitioning regions as covered or not

on location decisions. Similarly, contribution of incorporating the gravity idea when

locating healthcare facilities is questioned using the computational results in this sec-
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Figure 6.10: Z1 Values Under the Optimal Solution to P1 and P4 for N=20

tion. Therefore, results of P1 are compared with results P4. Figure 6.10 presents

the optimal objective function values of P1 and P4 which are solved using the same

network and same survival probability function.

As the figure illustrates, Z1 values obtained under P4 are higher than Z1 values ob-

tained under P1 for all p values, which is an expected result as proposed in Section

4.2. Secondly, locating first 2 to 4 facilities makes the greatest contribution both when

P1 and P4 are considered. Later, as p value increases, marginal increase in Z1 under

P1 does not change remarkably, which means the shape of the function is close to lin-

ear. However, there is a rapid decrease in the marginal increase of Z1 under P4 when

5 facilities are located instead of 4. This is caused by the fact that locating one more

hospital changes the state of less regions as p increases since each node is served by

the closest facility, where state stands for the expected survival probability. However,

when P1 is solved, locating one more facility is beneficial for some regions while it

worsens the state of other regions whose expected distance to the existing facilities

were shorter than distance to the the newly located facility. Reasons of this situation

will be explained in detail and simplified by an example in Section 6.6. Here, we

analyze how the marginal increase in objectives of two models should be interpreted

for practical reasons. In facility location problems, it may be aimed to select the best

locations for p facilities or decide the number of facilities to be located due to the
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Table 6.8: Comparison of P1 and P4

Demand
Convex Function Concave Function
CinL(%) CinES(%) CinL(%) CinES(%)

Unit 98.9 5.81 98.9 1.65
Random values
between [1,10]

98.9 4.52 100 1.15

budget constraint. When p is a decision variable, the gain on the objective function

value obtained by locating p + 1 facilities instead of p may be evaluated in order to

decide if the gain justifies additional expense. At this point, we see from the figure

that marginal increases and changes in the slope differ remarkably under P1 and P4.

This suggests that decisions about the optimal number of locations may differ when

proximity assumption in P4 is relaxed. That is, locating 8 facilities instead of 7 may

be found unnecessary when the gain and costs are evaluated under the assumption of

each patient being treated at the closest hospital. However, when this assumptions is

replaced with a more realistic one, P1 is obtained and the marginal increase of Z1 may

suggest that locating more hospital is affordable considering the resulting increase in

wellness of people.

With the intention of observing to what degree decisions change when proximity

assumption is relaxed, P1 and P4 are solved on the instances given at Table 6.1.

Instances are solved with both convex and concave survival functions in order to see

whether the level of urgency affects the percentage change of solutions obtained by

P1 and P4. For similar purposes, it is firstly assumed that there is a single patient at

each demand point. Then, number of patients on each node are given random values

values between [1,10]. For a fair comparison, total expected number of survivors

obtained by solutions of P4 are calculated by using the objective function and the

likelihood function of P1.

Observation 4 Relaxing proximity assumption changes solutions almost always re-

gardless of the survival function shape and demand quantities.

Results obtained by comparing solutions of 93 problem states are presented in Table

6.8. CinL shows the percent of problem instances for which the optimal locations
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under P1 and P4 change. If the optimal location sets are not exactly the same, then

they are assumed to be different. CinES presents the percent change in total expected

number of survivors when P1 is used instead of P4. CinL values suggest that optimal

locations change almost always when gravity idea is incorporated into the decision

process. Having varying demand over regions do not alter CinL values remarkably.

However, the decrease on CinES values for both convex and concave functions may

suggest that optimal locations tend to be on nodes having higher demand amounts in

both P1 and P4, which results in having more nodes in the intersection of optimal

location sets of these problems.

6.5 Comparison of Alternative Objective Functions

It is mentioned before that providing equity is an important issue in healthcare prob-

lems, which led us to consider two more objective functions for location decisions of

healthcare facilities. Among these, P2 has an individual basis approach and it aims to

increase the minimum expected survival probability on the network as much as possi-

ble. On the contrary, P3 has rather a system-wide approach and aims to minimize the

total difference between survival levels, which is defined as "envy". With the purpose

of observing the difference on locations decision each problem leads to, P1, P2 and

P3 are solved on the same network having 50 regions and one patient in each region.

Empty circles in Figure 6.11 represent demand regions, while filled squares repre-

sent demand regions with a facility located on it. When the figure is analyzed, it is

seen that P1 locates facilities either close to center of city or around the regions be-

tween center and corners. Facilities are not located exactly on nodes lying closest

to the corners since proximity to as much regions as possible is desired. Due to a

similar reason, optimal locations exist near the center of clusters consisting of close

neighboring regions. P2 divides the city in four (equal to p value) regions and locates

hospitals close to the centers of them. In this way, a big proportion of the patients’

expected distance to hospitals become neither too short nor too long. By pursuing

proximity of hospitals to every single region, minimum survival rate in the system

is maximized. As mentioned before, P3 tries to minimize the total envy system by

keeping survival probabilities of regions close to each other. At this point, one may
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concern about that if this situation could lead to keeping probabilities at low levels

without pursuing high number of survivors in the system. However, since there have

to be p facilities located, we already know that it is inevitable to have 4 regions with

maximum possible survival rate. Therefore, the model tries to bring other regions’

survival probabilities to levels which are not far distant from each other and also

close to the maximum survival rate as much as possible. In a way, it could be stated

that variance in the system is minimized by this problem when there are equal number

of patients at each region.

Later, it is assumed that 16 regions taking place on the upper left side of the city

could have more than one patient and randomly generated values between [1,10] are

assigned to them as demand amounts. There are still one patient at the each one of

other regions. It is aimed to observe the effect of demand concentrating over a re-

gion on decisions of all three problems. Results of P1, P2 and P3 with new demand

amounts are presented in Figure 6.12. As P1 aims to maximize expected number

of survivors in the system, proximity to more patients is taken into account primar-

ily. Therefore, hospitals are located on the upper left part of the city, where most

of the patients take place. P2 considers each individual’s survival probability sep-

arately, so demand amounts on nodes do not alter location decisions as seen. P3

minimizes total weighted envy, where weights are associated with number of patients

on nodes. Therefore, we see that it gives priority to service of higher demand nodes

when compared to the solution in Figure 6.11; however, proximity to furthest areas is

not neglected completely, even if there is a single patient there.

6.6 The Effect of Number of Facilities on the Optimized Objective Functions

In this section, we will analyze how Z1, Z2 and Z3 values change as number of

facilities to be located increases. All P1, P2 and P3 are solved on a network consisting

of uniformly distributed 20 demand regions with one patient at each one.
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Figure 6.13: Results of P1

Results of P1 are shown in Figure 6.13. As discussed before, optimized expected

number of survivors (ENS) on the network strictly increases as p value increases.

The curve has a linear-like shape which means marginal increases have close values.

Figure 6.14: Results of P2
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Results of P2 are presented in Figure 6.14. We see that Z2 values monotonously

increase as more facilities are located. Increasing p until 5 brings a remarkable im-

provement to minimum expected survival probability (MESP) on the network. The

concave-like shape of the objective function curve until p=10 indicates that marginal

increases tend to lower as more facilities are located.

Figure 6.15: Results of P3

Results of P3 are presented in Figure 6.15. As mentioned before, P3 aims to min-

imize the total expected weighted envy (TEWE) on the network. However, we see

that TEWE strictly increases, that is Z3 value worsens, as number of located facili-

ties increases up to some point. After that critical p value, Z3 has a monotonously

decreasing behavior.

Observation 5 Increasing the number of facilities located sometimes causes a wors-

ening in Z2 and Z3.

Even though it has not been observed on the objective function value of P2 in Figure

6.14, locating a new facility causes a decrease in MESP for some problem instances.

An example of this situation is seen when the model is solved on a network of uni-

formly distributed 30 demand regions and it is presented in Figure 6.16. Reasons

of why P2 and P3 behave in this manner are explained with the following simple
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example.

Figure 6.16: Results of P2 for N=30

Figure 6.17: Solutions of P2 and P3 Separately

Consider the network given in Figure 6.17 consisting of 5 demand regions and equal

number of patients on each of them. For simplicity, exact values of travel times

between nodes are not given, instead, survival probabilities obtained by a hypothetical

survival function are presented in the figure. Other probabilities are as follows;

• π(t12)=π(t14)=π(t45)=π(t25)

• π(t13)=π(t23)=π(t34)=π(t35)
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• π(t15)=π(t24)

• π(t11)=π(t22)=π(t33)=π(t44)=π(t55)=1

Additionally, likelihood values are calculated using the t12=
√
2t13 equation and other

equalities in distances implied by the items given above.

Let’s consider P2 first and locate a single facility with the aim of maximizing MESP

on this network. Locating it on one of 1, 2, 4 and 5 would results in MESP value being

equal to 0.2. When it is located at the center instead, that is node 3, this value becomes

0.5. Now let’s examine what happens when p=2 for this problem. Alternatives and

resulting survival expected probabilities at each node are given at Table 6.9.

Table 6.9: Resulting Survival Probabilities When Two Facilities are Located

Locations Node 1 Node 2 Node 3 Node 4 Node 5

Minimum
expected
survival
probability
in the
system

1&2 1 1
(1
2
*0.5)

+(1
2
*0.5)

=0.5

( 0.5
0.85

*0.4)
+(0.35

0.85
*0.2)

=0.31
0.31 0.31

1&3 1
(0.5
1.2

*0.4)
+(0.7

1.2
*0.5)

=0.46
1 0.46

(2
3
*0.5)

+(1
3
*0.2)

=0.4
0.4

1&5 1
(1
2
*0.4)

+(1
2
*0.4)

=0.4

(1
2
*0.5)

+(1
2
*0.5)

=0.5
0.4 1 0.4

At it is seen from Table 6.9, maximum value of MESP is obtained by locating fa-

cilities either on 1 & 3 or 1 & 5, and this value is equal to 0.4. When two facilities

are located instead of one, we assume that patients could go to any of them with the

given probabilities. For some regions, that are closer to 3 than 1, this means traveling

to the further hospital from time to time, which causes a worsening in their state of

wellness. If it was assumed that each node is covered by the closest region as in tra-
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ditional models, then locating the second facility on node 1 would only change state

of node 1 and not cause any worsening in terms of the objective function value.

Table 6.10: Results of the Instances in Figure 6.17

p=1 (Facility is
located at node 3)

p=2 (Facilities are
located at nodes 1&3

Expected Survival
Probability

Expected Survival
Probability

Node 1 0.5 1

Node 2 0.5 0.46

Node 3 1 1

Node 4 0.5 0.46

Node 5 0.5 0.4

Min. expected
survival probability
in the system

0.5 0.4

Total expected
weighted envy
in the system

0.5+0.5+0+0.5+0.5
=2

0+(0.54+0.54)+(0.54
+0.54)+(0.6+0.6
+0.06+0.06)=3.48

Now, let’s consider P3 and minimize total expected weighted envy when a single

facility is located. Alternatives and the resulting TEWE are as follows;

• Located at node 1: 0+(0.6+0.1)+(0.5)+(0.6+0.1)+(0.8+0.2+0.3+0.2)=3.4

• Located at node 3: (0.5)+(0.5)+0+(0.5)+(0.5)=2

A single facility is located on node 3 considering the envy values above. When two

facilities are to be located, survival probabilities given in Table 6.9 are considered and

envy amounts for alternatives are calculated as follows;

• Located at node 1&2: 0+ 0+ (0.5+0.5)+ (0.69+0.69+0.19)+ (0.69+0.69+0.19)

=4.14
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• Located at node 1&3: 0+ (0.54+0.54)+ (0.54+0.54)+ (0.06+0.06+0.6+0.6) +0

= 3.48

• Located at node 1&5: 0+ (0.6+0.1+0.6) + (0.5+0.5)+ (0.6+0.1+0.6) +0 =3.6

Optimal locations for two facilities are determined as nodes 1 & 3 considering these

values. When the second facility is located, survival probability of one more demand

node becomes 1, and this results in other patients feeling envy of one more region.

Consequently, TEWE increases from 2 to 3.48. This increase would continue until a

critical number of facilities are located on the network.

This example demonstrates that even though increasing number of hospitals in a city

would be beneficial for public on any ground, gain obtained may not be explicitly

observed by evaluating MESP and TEWE values. Therefore, regardless of the fact

that P2 and P3 performs better compared to P1 when it comes to provide equity for

public, these two problems can not be used by themselves when discussing how many

hospitals to establish. In this case, evaluating other performance measures, such as

ENS becomes necessary.

6.7 Evaluation of Decisions Under Alternative Objective Functions

In this section, we will evaluate the performances of problems P1, P2 and P3 using

ENS, MESP and TEWE values. A city consisting of 20 uniformly distributed demand

regions with a single patient on each region is considered for this analysis. As we

mainly present the problem of locating facilities while maximizing expected number

of survivors in this thesis, how the corresponding model, P1, performs in terms of

equity measures should be investigated. Similarly, we want to analyze the sacrifice

made from ENS values while aiming equity in the system by P2 and P3. It is also

aimed to examine results of P2 and P3, in order to see if they have similar behaviors in

terms of MESP and TEWE measures since both seeks equity with different objective

functions.

Z1 is evaluated under the solutions obtained by P1, P2 and P3, and resulting ENS

values are presented in Figure 6.18. It is seen that, when problems P2 and P3 are
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Figure 6.18: Evaluation of Solutions Under P1, P2 and P3 According to ENS Values

solved, ENS in the system may decrease even when number of located facilities on

the network is increased. However, this situation is observed for smallest p values and

after a certain number of facilities, ENS values strictly increase under the solutions

of all models. It is also seen that P1 and P3 gives exactly the same results when more

than 8 facilities are located.

Figure 6.19: Evaluation of Solutions Under P1, P2 and P3 According to MESP Values
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Values obtained by evaluating Z2 under the solutions of all three problems are pre-

sented in Figure 6.19. Here, it is seen that outmost demand regions are neglected

when P1 is solved since it aims to locate facilities close to high demand areas. The

gap between MESP values obtained by P1 and P2 is highly likely to get bigger when

demand nodes have different number of patients. We also see that when number of

facilities are increased from 6 through 12, MESP under the solution found by P1

monotonously increases and reaches the optimal level at the end. However, the same

is not true for results of P3 since their MESP values fluctuate as p increases. Still, it

can be claimed that P3 has a better performance than P1 for this performance mea-

sure since its MESP values are most of the time closer to optimal. This is an expected

result as both problems pursue equity in the system.

Figure 6.20: Evaluation of Solutions Under P1, P2 and P3 According to TEWE Val-
ues

Z3 is evaluated under the solutions obtained by P1, P2 and P3, and resulting TEWE

values are presented in Figure 6.20. Similarity of behaviors of P2 and P3 are observed

in this figure as well. TEWE values under both of them have a concave-like shape

and marginal increase-decrease amounts are close to each other in both curves. On the

other hand, since P1 favors high demand areas for locating facilities, further regions

are ignored and it creates an increase in TEWE for small number of facilities. Due to

the nature of Z3, locating more facilities decreases TEWE after some p value. This
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explains the improvement in this measure of P1 after the 5th facility.

All in all, three important observations are obtained from these three figures.

Observation 6 For p values that are higher than a certain value, problems P1, P2

and P3 give close results in terms of the three performance measures proposed.

Observation 7 When small number of facilities are to be located, it is seen that P1

has an inferior performance in terms of providing equity in the system. Similarly, it

is observed that for the same levels of p, ENS values obtained by the results of P2

and P3 are quite different from the optimal value. Therefore, when limited budget

allows locating only a small number of facilities, neither of these alternative objec-

tive functions gives satisfying results and multi-objective decision making approaches

may need to be utilized.

Observation 8 That Z3 value worsens until locating a certain number of facilities

makes the objective function of this problem open to criticism. However, it should

also be noted that the decisions obtained by this problem gives the closest values to

optimal ones in terms of ENS and MESP measures. This could indicate that the model

gives meaningful results in terms of providing balance between MESP and ENS val-

ues.
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CHAPTER 7

DISCUSSION AND CONCLUSION

In this thesis, we studied the problem of locating healthcare facilities where well-

being of patients having a medical emergency is aimed by three different objective

functions. Firstly, literature survey of location models used in this area are reviewed

by focusing on two particular subjects; namely, gradual coverage models and gravity

theory. Studies considering these models in healthcare related problems are reviewed

as well. Later, gradual coverage idea is utilized since we consider that survival prob-

ability of a patient is represented by a decreasing function of response time. Addi-

tionally, by relaxing the assumption of proximity, it is considered that a patient could

visit any one of the hospitals with some probability. A likelihood function is obtained

by modifying a gravity model in the literature and is used to calculate the mentioned

probabilities. In this context, we define our problem as locating a given number of

healthcare facilities with the aim of maximizing expected number of patients. Where

a weighted complete graph is used to represent the city that we would like to locate

facilities, demand regions are denoted by nodes and weight of the nodes give the num-

ber of patients in that region. Under the given objective, characteristic of the problem

in which facilities can be located anywhere on the network is analyzed by examining

certain conditions. First, it is shown that the optimal location would always be on a

node when a single facility is located on a line with the use of a convex decreasing

survival probability function. Later, it is shown that under the same conditions, opti-

mal facility location would not necessarily be on a node when a concave decreasing

function is considered. Similarly, it is proven that optimal location of a single facility

on a network will exist on one of the ones when a convex decreasing function is used.

An optimality condition for the case of locating multiple facilities on network could
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not be reached for either of survival functions. However, there exists a proof in the

literature that optimal location of facilities exist on nodes under the use of a convex

decreasing function and when each region is served by the closest facility. It is shown

that under certain conditions, this proof applies to our problem as well. In addition

to these, when a discretized model in which some points on links are denoted as can-

didate facility location is solved using a convex function, obtained optimal locations

were always on demand regions. In contrast, locating facilities on links are encoun-

tered when a concave function is used. Consequently, demand regions are considered

as candidate facility locations in our problem definition. Since the proposed model is

nonlinear and computation time increases significantly as the number of demand re-

gions and facilities increases, a heuristic solution approach is developed which gives

satisfying results in reasonable time.

As providing equity is an important issue in public facility location problems, we con-

sider two more additional objective functions with the same setting and constraints.

One of them aims to maximize the minimum expected survival rate on the network,

while the other one aims to minimize total envy where envy emerges from the in-

equities between expected survival probabilities of patients. In the computational

study, location decisions of three problems are presented and compared. It is seen

that as p value increases, Z1 value always improves while Z2 and Z3 may worsen

from time to time. Behavior of objective function of P2 is important in the sense that

it shows effects of opening one more facility on an individual basis. It suggests that

state of a particular individual is improved remarkably only when the facility is lo-

cated nearby. Consider the facilities could be any type, not necessarily a hospital. In

this case, the convex decreasing function we use would represent customers’ utility

as a function of the travel time. In this general case of the problem, results of P2

show the expected utility of a particular customer may worsen when a new facility is

located far away. As an illustration, with the view of a customer, locating a new shop-

ping center in addition to a certain number of centers will decrease his/her expected

utility as long as it is not located very close to that customer. In the computational

study, it is also showed that relaxing the proximity assumption when P1 is under con-

sideration changes location decisions in almost all instances regardless of the survival

function shape and number of patients on regions.
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A weakness of the model proposed is the assumption of identical and noncapacitated

facilities. As a future study, different sized facilities can be incorporated into the

problem definition. This would bring two features: first, likelihood function is to

be modified since different sizes may mean different attractiveness, second, patients

may need to travel from one hospital to another due to full capacity which changes the

response time. Another weak point of the thesis is about the travel times between re-

gions. In this thesis, it is assumed that travel time is an linear function of the distance;

however, it has a stochastic feature especially in a city environment. As travel time

affects both the survival probability and likelihood values, expected survival proba-

bility of a patient on a particular node may change depending on the time of day. For

instance, probability of choosing a facility may be higher at night then it is at daytime.

Therefore, one focus can be towards considering stochastic travel times in this model

as a future study. A final future study can be made by considering that patients may

exist not only on nodes but also on paths connecting them. In this way, emergency

situations such as traffic accidents can be taken into account as well. As demand

amounts on links would be in accordance with road traffic intensity, considering this

with stochastic travel times together can be an interesting extension for the problem

presented.
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APPENDIX A

Table A.1: Performance of the Solution Approach

Instance

Name

Optimal objective

function value

Percent Deviation Quality

(%)

Total Time

Min Max Ave. GA Enum

U_k0_20_p3 11.356 0.000 0.059 0.002 99.250 1.657 0.647

U_k0_20_p4 12.107 0.000 0.000 0.000 100.000 1.936 2.562

U_k0_20_p5 12.734 0.000 0.092 0.006 98.250 2.451 8.061

U_k0_20_p6 13.340 0.000 0.000 0.000 100.000 5.655 20.093

U_k0_20_p7 13.829 0.000 0.020 0.000 99.750 7.185 40.630

U_k0_30_p3 16.598 0.000 0.189 0.011 95.750 2.224 2.948

U_k0_30_p4 17.402 0.000 0.011 0.000 99.500 5.718 20.268

U_k0_30_p5 18.135 0.000 0.000 0.000 100.000 7.574 106.611

U_k0_30_p6 18.753 0.000 0.022 0.000 90.250 9.293 448.971

U_k0_30_p7 19.333 0.000 0.015 0.001 98.000 10.900 1559.452

U_k0_40_p3 21.379 0.000 0.012 0.002 96.000 2.743 9.481

U_k0_40_p4 22.226 0.000 0.103 0.001 99.750 7.637 88.718

U_k0_40_p5 23.000 0.000 0.049 0.009 94.500 10.230 644.569

U_k0_40_p6 23.653 0.000 0.091 0.002 99.000 11.200 3821.755

U_k0_40_p7 24.207 0.000 0.016 0.002 97.250 14.328 18767.868

U_k0_50_p3 26.002 0.000 0.213 0.005 97.250 3.685 23.275

U_k0_50_p4 26.848 0.000 0.019 0.004 90.250 10.863 276.009

U_k0_50_p5 27.574 0.000 0.087 0.002 99.000 12.807 2570.721

U_k0_50_p6 28.198 0.000 0.085 0.008 87.500 17.819 19605.948

U_k0_100_p2 54.977 0.000 0.287 0.012 95.750 4.738 11.493

U_k0_100_p3 57.001 0.000 0.006 0.001 96.750 16.212 379.047

U_k0_100_p4 58.644 0.000 0.036 0.001 98.250 20.148 9277.828

C_k2_20_p3 16.108 0.000 0.066 0.001 99.000 1.567 0.566
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Table A.1 (Continued)

Instance

Name

Optimal objective

function value

Percent Deviation Quality

(%)

Total Time

Min Max Ave. GA Enum

C_k2_20_p4 16.490 0.000 0.006 0.000 98.500 1.899 2.426

C_k2_20_p5 16.689 0.000 0.033 0.001 95.500 2.319 7.929

C_k2_20_p6 16.932 0.000 0.003 0.000 93.750 6.889 20.105

C_k2_20_p7 17.153 0.000 0.004 0.000 99.000 7.846 40.607

C_k2_30_p3 23.715 0.000 0.059 0.001 97.750 2.179 2.948

C_k2_30_p4 24.122 0.000 0.011 0.000 98.750 6.457 20.148

C_k2_30_p5 24.347 0.000 0.008 0.000 98.750 7.764 106.213

C_k2_30_p6 24.595 0.000 0.000 0.000 100.000 9.265 449.314

C_k2_30_p7 24.807 0.000 0.025 0.000 94.750 11.486 1559.070

C_k2_40_p3 31.253 0.000 0.140 0.013 88.250 3.355 9.477

C_k2_40_p4 31.862 0.000 0.037 0.001 99.000 8.496 88.546

C_k2_40_p5 32.001 0.000 0.019 0.001 98.500 10.755 644.725

C_k2_40_p6 32.333 0.000 0.025 0.000 95.750 13.246 3814.926

C_k2_40_p7 32.527 0.000 0.047 0.003 84.000 16.521 18744.140

C_k2_50_p3 38.016 0.000 0.157 0.004 96.500 3.725 23.334

C_k2_50_p4 38.735 0.000 0.050 0.001 99.250 10.232 276.695

C_k2_50_p5 38.969 0.000 0.017 0.001 97.750 13.738 2570.378

C_k2_50_p6 39.345 0.000 0.044 0.001 96.250 17.148 19631.275

C_k2_100_p2 76.161 0.000 0.438 0.051 84.000 5.011 11.509

C_k2_100_p3 75.999 0.000 0.096 0.009 90.750 19.145 379.149

C_k2_100_p4 77.305 0.000 0.045 0.004 89.750 23.096 9277.493

C_k3_20_p3 16.003 0.000 0.000 0.000 100.000 1.346 0.562

C_k3_20_p4 15.014 0.000 0.085 0.005 98.500 2.004 2.445

C_k3_20_p5 15.338 0.000 0.080 0.002 99.500 2.320 7.905

C_k3_20_p6 15.653 0.000 0.000 0.000 100.000 5.971 20.183

C_k3_20_p7 16.259 0.000 0.055 0.001 99.250 8.100 40.790

C_k3_30_p3 22.406 0.000 0.030 0.001 99.500 1.918 2.968

C_k3_30_p4 22.596 0.000 0.000 0.000 100.000 6.076 20.132

C_k3_30_p5 22.970 0.000 0.069 0.001 99.750 8.385 106.299

C_k3_30_p6 23.420 0.000 0.000 0.000 100.000 9.428 450.394

C_k3_30_p7 23.690 0.000 0.012 0.000 99.750 10.998 1563.972

C_k3_40_p3 29.179 0.000 0.000 0.000 100.000 2.556 9.465

C_k3_40_p4 29.313 0.000 0.013 0.000 99.500 7.905 88.605

C_k3_40_p5 29.600 0.000 0.007 0.001 95.250 10.140 644.850

C_k3_40_p6 29.993 0.000 0.023 0.001 96.250 13.524 3824.376
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Table A.1 (Continued)

Instance

Name

Optimal objective

function value

Percent Deviation Quality

(%)

Total Time

Min Max Ave. GA Enum

C_k3_40_p7 30.235 0.000 0.020 0.000 99.500 14.490 18766.912

C_k3_50_p3 36.791 0.000 0.027 0.000 99.250 3.328 23.330

C_k3_50_p4 36.997 0.000 0.053 0.002 98.250 11.027 276.793

C_k3_50_p5 37.461 0.000 0.038 0.001 98.750 13.276 2580.299

C_k3_50_p6 38.031 0.000 0.051 0.001 99.750 16.132 19698.706

C_k4_30_p3 21.098 0.000 0.000 0.000 100.000 1.826 2.960

C_k4_30_p4 21.868 0.000 0.000 0.000 100.000 5.456 20.175

C_k4_30_p5 22.199 0.000 0.030 0.000 99.750 7.384 106.521

C_k4_30_p6 22.504 0.000 0.030 0.000 99.750 9.279 453.475

C_k4_30_p7 22.860 0.000 0.000 0.000 100.000 10.969 1573.734

C_k4_40_p3 27.172 0.000 0.140 0.006 96.250 2.928 9.469

C_k4_40_p4 28.436 0.000 0.055 0.001 99.250 8.157 88.585

C_k4_40_p5 28.708 0.000 0.026 0.001 97.750 10.274 646.831

C_k4_40_p6 29.103 0.000 0.012 0.001 91.250 13.531 3844.067

C_k4_40_p7 29.515 0.000 0.073 0.005 82.500 17.895 18945.896

C_k4_50_p3 33.713 0.000 0.111 0.001 98.500 3.447 23.322

C_k4_50_p4 35.606 0.000 0.000 0.000 100.000 9.860 276.839

C_k4_50_p5 35.915 0.000 0.004 0.000 99.750 12.918 2580.865

C_k4_50_p6 36.383 0.000 0.017 0.000 97.000 15.007 19762.870

C_k4_100_p2 62.272 0.000 0.143 0.003 95.500 4.709 11.493

C_k4_100_p3 67.417 0.000 0.127 0.001 99.500 14.050 378.330

C_k4_100_p4 70.387 0.000 0.085 0.013 83.000 19.381 9292.032

C_k5_50_p3 31.683 0.000 0.149 0.024 91.500 3.630 23.353

C_k5_50_p4 33.263 0.000 0.000 0.000 100.000 9.703 277.284

C_k5_50_p5 34.914 0.000 0.000 0.000 100.000 12.432 2581.512

C_k5_50_p6 34.550 0.000 0.124 0.018 93.250 16.464 19780.482

C_k6_100_p2 60.945 0.000 0.200 0.009 94.000 4.596 11.505

C_k6_100_p3 63.854 0.000 0.045 0.003 96.000 15.207 378.997

C_k6_100_p4 66.094 0.000 0.042 0.004 84.500 20.777 9299.633

C_k8_100_p2 57.990 0.000 0.322 0.036 76.250 4.627 11.556

C_k8_100_p3 60.855 0.000 0.076 0.003 95.250 14.160 380.135

C_k8_100_p4 62.567 0.000 0.177 0.005 93.750 19.972 9327.405

C_k10_100_p2 57.657 0.000 0.120 0.004 98.000 4.416 11.540

C_k10_100_p3 61.082 0.000 0.040 0.012 92.250 13.059 380.385

C_k10_100_p4 63.028 0.000 0.044 0.001 94.250 19.776 9301.681
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