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ABSTRACT

ABRUPT FAULT DETECTION AND ACCOMMODATION FOR AIR DATA
SYSTEMS

Karahan, Sema

M.S., Department of Aerospace Engineering

Supervisor : Assist. Prof. Dr. Ali Türker Kutay

February 2016, 82 pages

The aim of this thesis is to design a fault detection and accommodation (FDA)

algorithm for air data systems, and o�er a new calibration algorithm for �ve-hole

probes (5hp) that can tolerate one port blockage and continues to give correct

data.

Air data systems use 5hp to measure the magnitude and direction of airspeed.

However, �ve-hole probes are very vulnerable to obstruction. Numerous fatal

accidents happened because of probe blockages. Hardware redundancy is applied

as a precaution for air data system failures, but this does not provide a solution

against common-mode failures. Analytical redundancy arises as a solution, and

di�erent methods have been utilized for FDA. In these methods, wind data

estimation is critical for the detection performance. Wind data are either taken

from another source or estimated. In the scope of this thesis, a signal based fault

detection system that does not require any wind data input is developed. Then,
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a model based fault accommodation algorithm is implemented. The algorithm

is tested under various wind and turbulence conditions. At each trial fault is

detected within 0.5 seconds, and accommodated.

Current calibration algorithms for 5hp do not allow the isolation of a faulty

port reading, and even if one port is blocked, they fail to give correct outputs.

Contrarily, the new calibration algorithm eliminates the erroneous data from

the algorithm, and continues with healthy data. This approach enhances the

operating conditions of 5hp.

Keywords: fault detection and accommodation, �ve-hole probe, calibration, an-

alytical redundancy, air data system
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ÖZ

UÇU� VER� S�STEMLER� �Ç�N AN� ARIZA BULGULAMA VE �KAME

Karahan, Sema

Yüksek Lisans, Havac�l�k ve Uzay Mühendisli§i Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Ali Türker Kutay

�ubat 2016 , 82 sayfa

Bu tezin amac�, uçu³ veri sistemleri için ar�za bulgulama ve ikame sistemi geli³-

tirilmesi ve be³ delikli problar için tek port t�kan�kl�§�n� tolere edip do§ru data

vermelerini sa§layacak yeni bir algoritma sunulmas�d�r.

Uçu³ veri sistemleri hava h�z�n�n büyüklük ve yönünü ölçmek için be³ delikli

prob kullanmaktad�r. Ancak be³ delikli problar t�kan�kl�klara kar³� hassast�r.

Prob t�kan�kl�§�n�n yol açt�§� pek çok ölümcül kaza olmu³tur. Donan�msal ye-

deklilik tedbir olarak uygulanmaktad�r ancak bu tedbir ortak mod hatalar�na

kar³� bir çözüm sunamamaktad�r. Analitik yedeklilik bu noktada çözüm olarak

ortaya ç�kmaktad�r ve ar�za bulgulama-ikame için farkl� metotlar kullan�lm�³t�r.

Bu metotlarda, rüzgar datas�n�n tahmin edilmesi ar�za bulgulama performans�

için krtik önem arz etmektedir. Rüzgar verisi ya ba³ka bir kaynaktan al�nmakta

ya da tahmin edilmektedir. Bu tez kapsam�nda, rüzgar datas�na gereksinim duy-

mayan sinyal tabanl� bir ar�za bulgulama sistemi geli³tirilmi³tir. Ard�ndan mo-

del tabanl� bir ar�za ikame algoritmas� uygulanm�³t�r. Algoritma farkl� rüzgar
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ve türbülans ko³ullar�nda test edilmi³tir. Her seferinde 0.5 saniye içerisinde hata

bulgulanm�³ ve ikame edilmi³tir.

Be³ delikli problar için mevcut kalibrasyon algoritmalar� hatal� bir port okuma-

s�n� izole edememekte ve tek bir port bile t�kansa hatal� sonuç vermektedir. Buna

kar³�l�k yeni kalibrasyon algoritmas� hatal� port datas�n� algoritmadan ç�kararak

sa§l�kl� verilerle çal�³maya devam etmektedir. Bu yakla³�m be³ delikli problar�n

çal�³ma ³artlar�n� geni³letmektedir.

Anahtar Kelimeler: ar�za bulgulama ve ikame, 5 delikli prob, kalibrasyon, analitik

yedeklilik, uçu³ veri sistemi
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Air data systems (ADS) are used to measure airspeed, �ight angles and altitude.

An air data system contains a pitot tube or �ve-hole probe sensor. The outputs

of air data system are of utmost importance for �ight control. Measured dy-

namic pressure is used to calculate Calibrated Air Speed (CAS). CAS indicates

the dynamic pressure acting on aircraft surfaces, and �ight control depends on

CAS. Airspeed data is also used in altitude corrections. Altitude of an aircraft is

calculated from local static pressure which is measured by static pressure ports

located on aircraft fuselage or pitot probe. Due to the body e�ect of aircraft,

measured static pressure di�ers from the freestream static pressure. The dif-

ference between local and freestream static pressure is obtained as a function

of airspeed (Mach) for correction purposes. During the �ight, measured static

pressure is corrected via airspeed, and true altitude is found. On the other hand,

depending on the aerodynamic characteristics of aircraft, the threshold of the

stall warning may change with Mach number. Hence, airspeed is also used to

set stall warnings.

The only sensor that measures airspeed is air data system. Unfortunately, this

critical sensor is very vulnerable to environmental e�ects. Since it is exposed to

the incoming �ow, small particals such as dust, ice can easily block the ports

and cause erroneous air data measurements. In the past, a lot of accidents with

fatal consequences happened because of pitot tube/�ve-hole probe obstruction .
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1.1.1 Air Data System Failure Related Accidents

A list of pitot-tube failure related accidents[1] is given in Table 1.1. Pitot tube

icing during the �ight and port blockage before the take o� are prominent reasons

for the failures. Some of them are explained below.

Austral Líneas Aéreas Flight 2553, 1997 : AMcDonnell Douglas DC-9-32 crashed

on the lands of Estancia Magallanes, Uruguay, on 10 October 1997. During

the �ight, the aircraft's airspeed indicator began to decrease alarmingly. This

case was interpreted as a loss of engine power by the pilots and they increased

the power to maintain the speed. However, airspeed was indicated erroneously

low because of ice accumulation inside the pitot tube and true airspeed was

higher than the indicated. Pilot's reaction increased the airspeed dangerously

and caused structural damage. The aircraft soon became uncontrollable and

crashed. All 74 passengers and crew died. [2]

Birgenair Flight 301,1999 : Birgenair Flight 301 crashed shortly after take o�

from Puerto Plata in the Dominican Republic on 6 February 1996, killing 189

occupants [3]. Air speed indicator was not working properly. While the plane

was climbing through 4,700 feet (1,400 m) with 220 knots, the erroneous airspeed

indicator read 350 knots (650 km/h). The autopilot, which was taking its air

speed information from the erroneous airspeed indicator, increased the pitch-up

attitude and lowered the airplane's speed. The airplane, Boeing 757�225 stalled

and crashed in to the sea o� the northern coast of the Dominican Republic. The

investigators reported that faulty airspeed indication was caused by a blocked

pitot tube[4, 5].

Air France Flight 447, 2009 : Air France Flight 447 was a passenger �ight from

Rio de Janeiro, Brazil to Paris, France, which crashed into the Atlantic Ocean

on 1 June 2009, killing all 228 occupants. The airplane, Airbus A330-203 stalled

and could not be recovered [6]. It was reported that pitot probes were blocked

by ice crystals during the cruise. Pitot tube failure occured 3 minutes before the

crash and resulted in inconsistent airspeed data and autopilot disengagement.

3 pitot tubes were used and heated electrically to protect them from icing.

2



Table1.1: Air Data System Failure Related Accidents

Airline Date Location Aircraft Cause of accident

Scandanavian Air-

lines Flight 630

30 Jan 1973 Oslo-Fornebu Air-

port (FBU)

McDonnell

Douglas

DC-9

Pitot tube was

blocked by ice

crystals

Northwest Airlines

Flight 6231

1 Dec 1974 Stoney Point, New

York

Boeing 727 Pitot tube was

blocked by ice

crystals

Florida Commuter

Airlines Flight 65

12 Sep 1980 Atlantic Ocean

near Grand Ba-

hama Island

DC-3A Pitot tube was

blocked by mud

dauber nest

Air Florida Flight

90

13 Jan 1982 Washington Na-

tional Airport,

Washington, D.C

Boeing 737-

200

Pitot tube was

blocked by ice

crystals

Panorama Flight

Service

28 Jul 1984 Waterville-Robert

La�eur Airport,

ME (WVL)

Learjet 25B Pitot covers were

not removed before

the �ight

Aero�ot 21 May 1986 Approach to

Moscow Airport

Tupolev

154B

Pitot tube was

blocked by ice

crystals

Continental Air-

lines Flight 795

2 Mar 1994 New York - La-

Guardia (LGA)

McDonnell

Douglas

MD-82

Pitot tube was

blocked by ice

crystals

Birgenair Flight

301

6 Feb 1996 Atlantic Ocean Boeing

757�225

Pitot tube was

blocked by mud

dauber nest

Aero Peru Flight

603

2 Oct 1996 Lima, Peru (LIM) Boeing 757 Pitot covers were

not removed before

the �ight

Turkish Airlines

Flight 5904

7 Apr 1999 Adana, Turkey Boeing 737 Pitot tube was

blocked by ice

crystals

FedEx Flight 87 17 Oct 1999 Subic Bay Airport,

Phillipines

McDonnell

Douglas

MD-11

Pitot drain was

clogged

Air France 447 1 Jun 2009 Central Atlantic

Ocean

Airbus A330 Pitot tube was

blocked by ice

crystals

Etihad Airways 13 Nov 2013 Brisbane Airport,

Australia

Airbus A330 Pitot tube was

blocked by mud

dauber nest
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Investigations did not reveal any malfunction of the heaters. However, for severe

conditions, when the concentration of ice crystals is greater than the capacity

for de-icing of the heating unit, it might take 1 to 2 minutes to de-ice and start

to function properly again [7]. Details and �ight data of Air France 447 accident

is given in Chapter 4 .

Ghana International Airlines, 2009: On 28 January 2009, a Boeing 757-200

being operated by Astraeus AL for Ghana Airways experienced a pitot tube

blockage too. Flight Management Computer used the blocked pitot tube for

airspeed input. Since the blocked pitot indicated airspeed higher than the true

airspeed, a false overspeed alarm was given and followed by a pitch-up maneuver

by autopilot which stalled the aircraft. The �ight crew was able to recover from

the stall and return safely. After the �ight, remains of a beetle-like creature

were found in the left hand pitot tube [8].

1.1.2 Measures Against Air Data System Failure

Some precautions are taken by the industry against pitot tube/ 5hp blockage

and icing. All the pitot tubes incorporate heaters that are used to prevent ice

accumulation. However, heater system may fail due to a short circuit, or if

the concentration of ice crystals is greater than the capacity for de-icing of the

heater, ice crystals accumulate and the pitot tube is blocked. In general, around

1 or 2 minutes of heating de-ice the accumulated crystals, and pitot tube starts

to function again[7].

Additionally, hardware redundancy is used to improve safety. Extra probes are

installed and in case a probe fails, it is expected to have data from the other

probes. A voting scheme with majority principle is used to determine the correct

data. However, all the redundant probes are exposed to the same environmental

conditions. As in the case of Air France Flight 447, when one probe fails, there

is a high probability that the others will fail as well. Hardware redundancy does

not provide any solution to this type of common mode failures. In commercial

aircrafts, when there exists a mismatch within the redundant probe outputs and

no majority is reached, autopilot disengages automatically and the pilot takes

4



the control to handle the situation. However, the pilot is left with no reliable

data and it is possible for him/her to act inadequately.

Silva and Nicholson [9] investigated the accidents and incidents caused by un-

reliable airspeed indication. Figure 1.1.2 shows the breakdown of problems. It

shows that inappropriate responses of �ight crew could bring fatal consequences.

A simulation of AF-447 accident scenario is conducted by investigators. Fig-

ure 1.1.2 shows �ight data recorder parameters and simulated accident scenarios

with and without pilot inputs. It shows that if there were no pilot inputs, the

aircraft would not stall.

Figure 1.1: Breakdown of unreliable airspeed events-Sathya S. Silva, Roger K.

Nicholson,"Categorization of Unreliable Airspeed Events Using Rasmussen's Hu-

man Performance Model�,2012

Hardware redundancy and current approaches could not provide enough safety

for air data system failures. Analytical redundancy is sought for an alterna-

tive solution to this burden. Diversity is introduced to avoid common mode

failures. Since there exist no alternative sensor for air data measurement, a vir-

tual sensor is generated with the help of analytical relations. Measurements of

the other sensors are converted into air data via kinematic and dynamic rela-
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Figure 1.2: AF447-Comparison between recorded parameters and the

simulation-BEA, �Final Report: On the accident on 1st June 2009 to the Air-

bus A330-203 registered F-GZCP operated by Air France �ight AF 447 Rio de

Janeiro - Paris�,2012

tionships. Researchers have been working on this over decades, and in the last

decade industry also has paid more attention to this �eld[10]. Projects like ESA

SMART-FDIR, European projects ADDSAFE and some NASA SBIR programs

focus on analytical redundancy.

Another aspect for analytical redundancy implementations is to reduce weight to

obtain greener aircraft. For future applications, it is aimed to reduce redundant

hardwares as much as possible and to obtain light-weight, fuel e�cient aircrafts.

Also, for small uavs it is not feasible to add extra sensors because of size and

weight limitations. Analytical approach provides solutions in this case as well.
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1.2 Objective

The aim of this study is to develop a fault detection and accommodation (FDA)

system for air data systems and o�er a new calibration algorithm for 5hp that can

tolerate one port blockage and continues to give correct data. Numerous fault

detection methods have been utilized for air data systems. In these methods,

wind data are required and critical for the detection performance. In the scope

this thesis, a signal based fault detection algorithm that does not require any

wind data is developed. Also, current calibration algorithms do not allow the

isolation of a faulty port reading and even if one port is blocked, they fail to

give correct outputs. A new calibration algorithm is proposed to enhance the

operating regions of 5hp.

1.3 Thesis Outline

The outline of this thesis is arranged as follows:

In Chapter 2, a literature review is presented on fault detection and accommo-

dation systems used in aerospace industry.

In Chapter 3, �ve-hole probe working principle and calibration methods are

explained. The new calibration algorithm which enhances the operating range

of �ve-hole probe is described and compared with the traditional calibration

methods.

Chapter 4 Air France 447 accident data are studied. Consequences of a port

blockage are investigated.

In Chapter 5, fault detection and accommodation methods used in the study

are explained in detail. Also the simulation environment in which the methods

were studied is explained.

Chapter 6 gives the simulation results of the fault detection and accommodation

algorithm for various scenarios.
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Chapter7 presents some concluding remarks and future studies.
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CHAPTER 2

LITERATURE REVIEW

2.1 Fault Detection and Accommodation

According to IFAC Technical Committee SAFEPROCESS, a fault is de�ned as

�an unpermitted deviation of at least one characteristic property or parameter

of the system from the acceptable / usual / standard condition�. �Determina-

tion of the faults present in a system and the time of detection� is called fault

detection(FD)[11]. Fault accommodation is the replacement of faulty data with

healthy ones. Early detection and correction of faults can avoid fatal accidents

and severe failures.

A fault detection system should be sensitive to faults and insensitive to noise

and disturbances.[12, 13]. Performance criteria for fault detection systems are

given as: [14, 10]

• Rate of missed alarms that system does not indicate any fault when a fault

exists.

• Rate of false alarms that system indicates fault in a fault-free condition

• Detection delay, which is the di�erence between the fault occurance and

fault detection time.

The time-behaviour of a fault must be considered during the FD system design.

It e�ects the sensitivity and performance of FD system. The time-behaviour of

a fault is classi�ed as:[15]
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• abrupt fault (stepwise)

• incipient fault (drift-like,gradual)

• intermittent fault.

On the other hand, in terms of their e�ects on the system parts, faults are

grouped under three categories:[16]

• Sensor fault, which results in anomalous variation in measurements.

• Actuator fault, which leads to malfunction on a device

• Process fault, which caused by unexpected changes in the system param-

eters

Depending on the type of fault, di�erent precautions and FD algorithms are

introduced into the system. Since the focus of this study is on the air data

system faults, sensor faults were studied. Interested readers may refer to [16]

for the other types.

Although di�erent fault detection approaches exist in the literature, generally

they consist of two main tasks: residual generation and residual evaluation. In

residual generation, reference quantities are obtained for measurable variables of

the system. Depending on the methodology applied, reference quantities may be

obtained in di�erent ways, i.e. they might be the outputs of a redundant sensor

or a mathematical model. The di�erence between references and measurements

are taken as residuals. These residuals are used for health monitoring of the

system. Residuals should be close to zero during the fault-free conditions. On

the other hand, they should change signi�cantly and become noticeable when

fault occurs[16, 17]. For the residual evaluation, residual signals are processed

with pre-set decision rules to determine whether a fault is occured or not. The

core idea of residual evaluation is to set a threshold. When residual exceeds this

threshold a fault alarm is given. The threshold setting e�ects false alarm rate,

missed alarm rate and detection delay directly.
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A simple approach for threshold selection is setting a static limit. Upper and

lower limits must be large enough and compensate model uncertainties and

disturbances to avoid false alarms. Thus, small errors may not be detected with

this method. An alternative approach is to set an adaptive threshold that will

be arranged according to the measured signal [18]. Upper and lower bound are

determined online, and are updated according to the signal trend. This approach

reduces the rate of false alarms and detection time.

2.2 Fault Detection and Accommodation for Air Data Systems

It is of utmost importance to have reliable measurements for �ight safety. Un-

detected failures mislead autopilot and �ight crew in a catastrophic way. There

have been numerous accidents caused by unreliable air data readings. A great

deal of countermeasures to air data failures have been proposed by industry and

academy. There exist two main methods; hardware redundancy and analytical

redundancy.

2.2.1 Hardware Redundancy

The standard industrial practice against sensor failures is hardware redundancy[19].

Additional sensors are installed to improve reliability. Commercial aircrafts are

equipped with at least 3 air data systems [20]. Two alternative methods ex-

ist for hardware redundancy; static redundancy and dynamic redundancy [21].

In static redundancy, three or more hardwares are used and their outputs are

evaluated by a voter system. The correct output is determined due to majority

principle. In dynamic redundancy, one hardware is in service while one or more

hardwares are holded as backup. This approach requires a fault detection sys-

tem to monitor hardware health. When a failure is detected stand-by hardware

is put into service. Boeing proposed a signal selection method using multiple

redundant sensor input signals with a variable fault monitoring threshold[22]

and a majority voting system[23].

In normal operation, the median value of the three air data system outputs are
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used. If one of the three indications deviates too much from the other two, it

is rejected by the system and the average of the remaining 2 data is accepted

as true. In case the di�erence between these two values becomes too great, the

system rejects them and autopilot disconnects. [7].

The application of majority principle might oversight failures. If 2 out-of 3

sensors are blocked and show close results, the system accepts the average of

two erroneous data as accurate and eliminates the healthy one. On the other

hand, hardware redundancy is vulnerable against �common mode failures�[14].

If a sensor may fail under certain conditions, it is highly probable that, all of

the redundant sensors may also fail simultaneously . On November 27th, 2008

an Airbus A320 crashed with no survivors, because all of the angle of attack

sensors were frozen at the same time [24]. Air France Flight 447 su�ered from

common mode failure as well. All of the pitot tubes on the board were blocked

by ice crystals simultaneously because of the extreme cold weather. Diversity is

the solution for common mode failures. Di�erent types of sensors with di�erent

vulnerabilities should be deployed. However, airspeed could only be measured

with an air data system.

Ine�cacy of the hardware redundancy leads the industry towards analytical

redundancy and virtual sensor concepts[25, 20].

2.2.2 Analytical Redundancy

Analytical redundancy use mathematical process models or a set of algebraic re-

lationships to estimate reference values that are used in system health monitoring.[15,

26] Analytical redundancy applications can be classi�ed as model-based fault di-

agnosis, signal-based fault diagnosis, knowledge-based fault diagnosis and hybrid

fault diagnosis. Model-based fault diagnosis approaches use mathematical mod-

els of the system to estimate the sensor outputs. The di�erence between the

measurements and the measurement estimations are taken as residuals. A reli-

able system model is critical for FD performance. Model uncertainties, distur-

bances (unknown inputs) and noise should also be considered. Residuals should

be insensitive to these e�ects. Signal-based fault diagnosis methods, the signal
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pattern and characteristics of a system operating in fault-free condition is used

as reference and compared to the measured sensor signals. As the system gets

complicated, mathematical models will not represent the system dynamics com-

pletely. Also there might be no explicit dynamical model of the system. Then

a knowledge-based, or process history based fault diagnosis would be adequate.

Large amount of historical process data is necessary. Arti�cial intelligence is

applied to train diagnosis system that checks the sensor measurements during

the operation. Although it works for complicated systems very well, unknown

fault types that are not included in the training data set are hard to detect. Hy-

brid fault diagnosis brings together previous methods to enhance the detection

capability.[27, 28]

Hansen et al. developed a fault detection algorithm for the pitot tube of a small

unmanned aerial vehicle. GPS velocity measure- ments and propeller thrust

readings were used to calculate airspeed with the help of the wind data taken

from the ground station. These calculated airspeed data were substracted from

the pitot tube output to obtain residual signals. Both raw residual signals and

pre-whitened residual signals were used as detectors. Detectors gave alarms

about 14 seconds after the failure [29].

Imai et al. used error signature approach to detect and accommodate pitot tube

and/or GPS failure. Airspeed was calculated from GPS velocity measurement

and wind data taken from the weather forecast computer. AF 447 accident

scenario was studied. The failure was detected and corrected after 5 seconds

from the onset of the blockage [30].

Fravolini et al. Airspeed was estimated from the �ight dynamics equations. The

di�erence between estimated airspeed and the pitot tube airspeed indication was

taken as the residual. Then, the residual is whitened with an Auto Regressive

(AR) process. The failure on the pitot tube was modeled as an additive o�set to

the airspeed. Generalized Likelihood Ratio Test was used for residual evaluation

and decision making [31].
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CHAPTER 3

AIR DATA SYSTEMS

3.1 Pressure Probes

Five-hole probes (5hp) are widely used in aerospace applications for �ight angles

and velocity calculations. A 5hp has 5 ports on the head and a static chamber

on the body as shown in Figure 3.1. Flow angles are obtained from the pressure

di�erences of the coupled pitch plane (1-3) and yaw plane ports (2-4). Dynamic

pressure is found from the di�erence between the center port(5) and the static

chamber reading (port 6).

3.2 Five-Hole Probe Calibration

The working principle of a 5hp is based on Bernoulli equation and three dimen-

sional velocity data are extracted from pressure measurements. If the �ow is

uniform and 5hp is aligned with the direction of the �ow, the center port mea-

Figure 3.1: A Schematic View of a Five-Hole Probe

15



sures the stagnation pressure. According to Equation 3.1, airspeed is calculated

directly from the dynamic pressure. However, if 5hp is not aligned with the in-

coming �ow, dynamic pressure is built up by the velocity component in 5hp body

axis direction. Hence, the orientation of the velocity vector is required to obtain

total velocity from the measured dynamic pressure. This requirement is ful�lled

by using the pitch and yaw plane ports pressure di�erences. The pitch and yaw

plane pressure di�erences indicate angle of attack (AOA) and angle of sideslip

(AOS) informations, and they are incorporated into the airspeed calculation.

Pt = Ps +
1

2
ρ V 2 (3.1)

where Pt is stagnation pressure, PS is static pressure, ρ is air density and V is

airspeed.

It is not possible to obtain three dimensional velocity data from the measured

pressures via analytical equations. Therefore, an experimental procedure is fol-

lowed. A 5hp is placed in known �ow �elds with di�erent AOA, AOS and Mach

numbers. Then, pressure readings are recorded. It is stated that when probe

pressure readings are nondimensionalized with respect to dynamic pressure, the

resulting coe�cients are found to be inter-related functions of AOA, AOS and

Mach number [32]. Thus nondimensional coe�cients are calculated from pres-

sure data for each case. Then, a data reduction algorithm is applied with these

coe�cients to obtain airspeed and �ow angles. This procedure is called as �5hp

calibration�.

Various calibration algorithms exist in the literature. Dudzinsky and Krause[33]

obtained calibration coe�cients using pressure di�erence between two ports,

then used calibration maps and graphics for data reduction. Treaster and

Yocum[34] de�ned similar coe�cients and applied curve-�tting method for data

reduction process. Wenger and Devenport[35] also used di�erential pressure

readings to obtain coe�cients for seven-hole pressure probe. A two-step data

reduction procedure was developed. First, least squared curve �tting was ap-

plied to coe�cients, and then look up table was used to correct the residual

errors. Yasa and Paniagua[36] de�ned the coe�cients for each head port. They
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normalized the pressure readings with respect to the local static pressure. Since

the local static pressure was one of the unknown variable, an iterative algorithm

was applied with an initial static pressure estimation.

The calibration coe�cients that are generally preferred are given in Equations 3.2

- 3.4.

Cα =
P3 − P1

P5 − P6

(3.2)

Cβ =
P4 − P2

P5 − P6

(3.3)

Gonsalez et al.[37] used a compressibility coe�cient given by Equation 3.4. It

is used to normalize dynamic pressure.

CM =
P5 − P6

P5

(3.4)

Third-order multiple regression models are used for data reduction procedure[37].

K-coe�cients in Equations 3.5 - 3.7 are determined from the calibration process.

Then, during the �ight, pressure readings are normalized to obtain C-coe�cients,

and these coe�cients are put in Equations 3.5 - 3.7 to calculate AOA, AOS and

airspeed.

α = K0,α +K1,αCα +K2,αCβ +K3,αCM + ..+K19,αCαCβCM (3.5)

β = K0,β +K1,βCα +K2,βCβ +K3,βCM + ..+K19,βCαCβCM (3.6)

M = K0,M +K1,MCα +K2,MCβ + ..+K19,MCαCβCM (3.7)
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3.3 The New Calibration Algorithm

Small particles, insects, debris may easily block probe ports. Even if one port is

blocked, current approaches fail to give correct data. Because, the calibration

coe�cients in Equations 3.2 - 3.4 do not allow to isolate an erroneous measure-

ment from the rest of the calculations. As a solution, redundant coe�cients are

proposed for each air data parameter[38]. AOA estimation primarily depends

on ports 1 and 3, whereas for AOS, ports 2 and 4, and for airspeed calculation

port 5 are more critical. It is aimed to estimate AOA, AOS and airspeed cor-

rectly even if one of their critical ports is blocked. Therefore, new coe�cients

are de�ned for each critical port as given in Equations 3.8

C1 =
P1 − P6

P5 − P6

C2 =
P2 − P6

P5 − P6

C3 =
P3 − P6

P5 − P6

C4 =
P4 − P6

P5 − P6

Cav =
Pav − P6

P6

(3.8)

An example of the di�erences between traditional and new approaches are shown

schematically in Figure 3.2 - Figure 3.3. When port 1 is blocked, traditional

methods give incorrect Cα coe�cient and this leads to wrong AOA calculation.

On the other hand, it is still possible to obtain correct result with the new

algorithm. It continues with the redundant coe�cient C3 to �nd AOA. Therefore

it becomes possible to keep using 5hp when any port is blocked.
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Figure 3.2: Traditional Calibration Approaches

Figure 3.3: The New Calibration Approach

Table 3.1 gives the coe�cients that will be used for AOA, AOS and Mach number

calculations in case any head port is blocked.

Table3.1: Calibration Coe�cient Selection for Di�erent Scenarios

AOA AOS Airspeed
No blockage C1&C3 C2&C4 CM
Blocked port: 1 C3 C2&C4 CM
Blocked port: 2 C1&C3 C4 CM
Blocked port: 3 C1 C2&C4 CM
Blocked port: 4 C1&C3 C2 CM
Blocked port: 5 C1&C3 C2&C4 Cav

If there is no blockage Equations 3.9- 3.11 are used. If, as an example, port 1

is blocked, faulty pressure reading is isolated from the calculations by using C3

instead of C with Equations 3.12- 3.14.

α = K0,α+K1,α(C1−C3)+K2,α(C4−C2)+K3,αCM+..+K19,α(C1−C3)(C4−C2)CM

(3.9)

β = K0,β+K1,β(C1−C3)+K2,β(C4−C2)+K3,βCM+..+K19,β(C1−C3)(C4−C2)CM

(3.10)
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M = K0,M +K1,M(C1−C3)+K2,M(C4−C2)+ ..+K19,M(C1−C3)(C4−C2)CM

(3.11)

α = Ka0,1 +Ka1,1C3 +Ka2,1(C4−C2) +Ka1,1CM + ..+Ka19,1C3(C4−C2)CM

(3.12)

β = Kb0,1 +Kb1,1C3 +Kb2,1(C4 − C2) + ..+Kb19,1C3(C4 − C2)CM (3.13)

M = Km0,1 +Km1,1C3 +Km2,1(C4−C2)+ ..+Km19,1C3(C4−C2)CM (3.14)

It is necessary to have a unique relationship between coe�cients and angles, so

that only one solution set exists for air data. Hence, the coe�cient trends are

critical and should be observed. Wind tunnel test results were used to obtain

calibration coe�cients. Both the traditional and new approaches were examined

for comparison. Figure 3.4 shows the contour plots of coe�cients with respect

to AOA and beta.

Plot (a) and (d) show AOA and AOS coe�cients found from traditional way with

Equation 3.2 - 3.3. Plot (b), (c), (e) and (f) show port coe�cients calculated

from Equation 3.8. It is shown that the coe�cient contours do not intersect each

other both for the traditional and the new approaches. Each alpha and beta

combination is represented by a unique value.Therefore uniqueness of solution

is satis�ed. Thus it is deduced that the new coe�cients might substitute the

traditional ones.

Di�erent port blockage scenarios given in Table 3.1 were studied for all the test

points. When a port is blocked, it is identi�ed by the fault detection algo-

rithm proposed in Chapter 5 and data reduction is conducted with redundant

coe�cient.
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Figure 3.4: Comparison of Calibration Coe�cients
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Table3.2: Goodness of Fit For Estimations

alpha beta Mach
NRMSE RMSE NRMSE RMSE NRMSE RMSE

No blockage 0.9962 0.1662 0.9970 0.0879 0.9936 0.0179
Port-1 is blocked 0.9930 0.2245 0.9969 0.0885 0.9936 0.0179
Port-2 is blocked 0.9949 0.1917 0.9788 0.2320 0.9957 0.0146
Port-3 is blocked 0.9949 0.1919 0.9970 0.0871 0.9935 0.0180
Port-4 is blocked 0.9959 0.1715 0.9851 0.1948 0.9957 0.0147
Port-5 is blocked 0.9927 0.2296 0.9845 0.1984 0.9831 0.0290

Figure 3.5: Alpha Estimation Error

Table 3.2 shows the goodness of �t in terms of Normalized Root Mean Square

Error(NRMSE) and Root Mean Square Error(RMSE) for AOA, AOS and air-

speed estimation for 6 scenarios. It can be observed that even a critical port is

blocked errors are small and close to the no-blockage scenario results.

Figure 3.5- 3.6 shows the obtained error at each test point for di�erent Mach

numbers. It is observed that although one port is blocked results are still reliable.

Mach number and velocity errors are given in Figure 3.7. Even though the center

port is blocked airspeed estimation accuracy is still high.
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Figure 3.6: Beta Estimation Error

Figure 3.7: Mach Estimation Error
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CHAPTER 4

PROBLEM FORMULATION

It is important to understand the characteristics of fault to design an appropriate

fault detection algorithm that satis�es the performance criteria mentioned in

Chapter 2.

Air France 447 (AF 447) accident report [7] provides a comprehensive analysis.

Flight Data Recorders (FDR) and Cocpit Voice Recorders (CVR) recovered from

the wreckage provided important data to understand the mechanism and results

of pitot tube icing. According to the report, the aircraft took o� at 22:30 on

June 1,2009 and crashed into the Atlantic Ocean at around 02:15. The causes of

the accident lies within the last �ve minutes of the �ight, when the pitot tubes

obstructed by ice crystals. Until that moment, �ight continued safely without

any problem. Details of the accident and �ight history are investigated through

this chapter.

4.1 Consequences of a Blocked Port on Measurements

Pressure ports are faced towards the incoming �ow and total pressure, which is

the sum of the dynamic and static pressure is measured within these ports.

If the inlet of a port is blocked totally, pressure trapped inside the port equals

to the static pressure at the time of obstruction. Pressure sensed from this

port is equal to that trapped pressure and remains constant throughout the

blockage. Airspeed is calculated from the di�erence between the total and static

pressures. Therefore, if the center port is blocked before the take-o�, indicated
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airspeed shows zero throughout the runway pass. As the altitude increases, static

pressure decreases, whereas the total pressure reading remains constant due to

the blockage. Thus as aircraft climbs, this di�erence grows continuously, and

airspeed is indicated higher than the actual value. Actually, this was the case

for Birgenair Flight Accident [4, 5]. On the other hand, airspeed failure showed

a di�erent trend for AF 447. It su�ered from a sudden decrease in airspeed. The

reason was, aircraft was in the cruise phase when the blockage happened, and

stayed around that level. Static pressure did not decrease dramatically, but the

measured total pressure drops suddenly after the obstruction, and consequently

indicated airspeed decreased.

Figure 4.1 [7] shows the e�ect of obstruction on total pressure, pressure altitude

and baro-inertial vertical speed for Air France 447 �ight. Airbus 330 has 3 pitot-

tubes. ADR 1 is Captain pitot tube, ADR 2 is First O�cer pitot tube and ADR

3 is Standby pitot tube.

Figure 4.1 shows the result of a wind tunnel test conducted with a blocked

and healthy pitot tubes. Blockage is at the center port, Port 5. Output of

the healthy pitot tube is given as reference total pressure. It is observed that

pressure trapped inside the blocked port is equal to static pressure and stays

constant.

4.2 Air France 447 Accident Analysis

Figure 4.2 shows the �ight data displayed on the left PFD and ISIS. A sharp

decrease in computed airspeed is observed at 02:10:07. It is estimated that both

pitot tubes were frozen at that time. For the right pitot tube, it is thought that

it started to freeze at the earliest at 2 h 10 min 03.5 and at the latest at 2 h 10

min 05. The CAS (Calibrated Air Speed) 2 was then more or less equal to CAS

1 and thus equal to the airspeed recorded by the FDR. Icing history for three

pitot tubes are given in Figure 4.4 .

Flight control primary computers (PRIM) monitor and validate air data they

use. A voting mechanism is applied among 3 pitot tube outputs. If one of
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Figure 4.1: E�ect of a drop in total measured pressure on pressure altitude and

vertical speed -BEA, �Final Report: On the accident on 1st June 2009 to the

Airbus A330-203 registered F-GZCP operated by Air France �ight AF 447 Rio

de Janeiro - Paris�,2012

Figure 4.2: Wind Tunnel Test of a blocked port
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Figure 4.3: Speed displays on the Primary Flight Display (PFD)-BEA, �Final

Report: On the accident on 1st June 2009 to the Airbus A330-203 registered

F-GZCP operated by Air France �ight AF 447 Rio de Janeiro - Paris�,2012
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Figure 4.4: Pitot Tube Frozen Period-BEA, �Final Report: On the accident

on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air

France �ight AF 447 Rio de Janeiro - Paris�,2012

the airspeeds deviates too much from the others, it is rejected by the computer

and the average of the other two are taken as voted airspeed and displayed on

PFD. If the di�erence between these 2 airspeed increases, then these airspeeds

are rejected too, and �ight mode changes to Alternate 2 and no speed data is

displayed on PFD. On the other hand, voted airspeed is always monitored, when

it falls by more than 30 kt. in one second, it is rejected as well and Alternate

2 mode is triggered. Within the framework of this algorithm, when 2 pitot

tubes frozen and outputs close results to each other, it is possible that erroneous

airspeed will be displayed and used in the altitude and temperature corrections.

From the �ight data chronology, Figure 4.5 , it is seen that after the autopilot

disconnection, altitude indication decreased 360 ft. in 4 seconds. However true

altitude did not change that much. This erroneous display caused by incorrect
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airspeed data used in altitude corrections. As a reaction this change, pilot made

a pitch up maneuver. Investigators estimated the true Mach number from the

ground speed, wind and static temperature. Figure 4.6, shows the comparison

of true and displayed Mach numbers. As a result of pilot commands, aircraft

stalled and crashed into the ocean.

Figure 4.7- 4.8 shows wind and turbulence condition that the aircraft was ex-

posed to.

In Appendix A, Figure .1- .2- .3 show the �ight history and cocpit voice record-

ings. Figure .4 shows the last 5 minutes of the �ight.

4.3 Findings

The following remarks are made based on the accident analysis and port blockage

studies.

• Fault detection algorithm should be fast. Early detection and rejection

will prevent usage of erroneous data in consequent altitude, vertical speed

and temperature corrections.

• Consequences of a blocked port on air data parameters depend on at which

�ight phase it occurs. If it happens before the �ight, total pressure mea-

sured will be constant and equal to the static pressure at the ground level.

If it happens during a cruise, measured pressure will abruptly decrease

from total pressure to the static pressure at that level. In the scope of this

thesis, cruise-level blockages were studied.

• When a port is obstructed at cruise, measured pressure is around static

pressure and stays almost constant. Only small �uctuations due to pres-

sure transducer noise are expected. Therefore, a sudden drop in signal

energy is observed.

• Instead of constant wind assumption, time-varying wind with turbulence

should be studied to make the scenarios more realistic.
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• When the airspeed error is detected, speed display goes o� and autopilot

disconnects. All of a sudden, �ight crew �nd themselves controlling the

aircraft without a valid �ight data. Most of the time, they were not aware

of the real problem. Therefore, fault accommodation is very critical.
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Figure 4.5: AF 447 Flight Data Recorder Chronology-BEA, �Final Report: On

the accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP oper-

ated by Air France �ight AF 447 Rio de Janeiro - Paris�,2012
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Figure 4.6: Evolutions of recorded angles of attack and of the stall warning

trigger threshold-BEA, �Final Report: On the accident on 1st June 2009 to the

Airbus A330-203 registered F-GZCP operated by Air France �ight AF 447 Rio

de Janeiro - Paris�,2012

33



Figure 4.7: Wind velocity and direction-BEA, �Final Report: On the accident

on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air

France �ight AF 447 Rio de Janeiro - Paris�,2012

Figure 4.8: Level of turbulence during the �ight-BEA, �Final Report: On the

accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated

by Air France �ight AF 447 Rio de Janeiro - Paris�,2012
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CHAPTER 5

METHODOLOGY

In the light of the �ndings of Chapter 4 an air data system fault detection and

accommodation algorithm was designed. A 6 DOF Simulink model was used to

design and test the algorithm.

5.1 Simulation

A 6 DOF Boeing 747 model was used to simulate aircraft cruise level dynam-

ics. Wind and turbulence models are introduced. Wind is given in 3 direction.

Turbulence model is taken from Matlab/Simulink library, Dryden Wind Tur-

bulence Model. Five-hole probe wind tunnel results are embedded as lookup

tables to model the pressures built at each port. 6 lookup tables used for 5

ports on the head and 1 static chamber. Lookup table dimensions are given as

angle of attack (AOA), angle of sideslip(AOS) and airspeed in Mach number(M).

AOA,AOS and airspeed outputs of 6 DOF Boeing model is fed into the �ve-hole

probe model. Corresponding pressures are taken from lookup tables and sent to

health monitoring system. This system monitors output pressures and generate

healthy �ag or fault �ag that indicate health status for each port. Monitoring

system sends port pressures and �ags to air data computing algorithm. This

algorithm uses �ve-hole probe calibration equations to calculate AOA, AOS and

airspeed. Air data outputs of the algorithm are fed into a data fusion system.

This system checks the health condition of each port and determine whether to

use or not the outputs of �ve-hole probe sensor. INS and GPS measurements

are also input to the data fusion system. Using the kinematic relations air data
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Figure 5.1: Outline of the Simulation

are estimated. The outline of the simulation is given in Figure 5.1. Simulation

runs at 100Hz, whereas �ve-hole probe model at 50 Hz and aircraft model at 20

Hz.

5.2 Fault Detection Method

5.2.1 Residual Generation

A residual is used to monitor system health[11]. Performance criteria mentioned

in Chapter 2 should be considered for residual selection. It should be sensitive

to failures and insensitive to any disturbance. Various methods, such as model

based and signal based, exist in the literature for residual generation. It depends
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on the failure mechanism and sensor characteristics to select an appropriate

residual.

Model based methods generate reference air data values from kinematic or dy-

namic equations. Then the di�erence between Air Data System outputs and

reference values are taken as residuals. Generally, constant wind assumption

is used in model based fault detection methods. Stochastic processes such as

turbulence and time varying wind speed are problems in model based fault de-

tections. It may cause false alarms and unreliable monitoring systems. For some

applications, wind data are taken from the weather forecast computer [30], how-

ever this introduce a hardware dependency to the FDA algorithm.

On the other hand, considering the behavior of an obstructed port measurement,

signal based approach promises a better solution for abrupt air data system fail-

ures. Energy level of pressure signal is suddenly decreases and stays at that

level throughout the blockage. Monitoring the pressure signal, it is possible to

detect abrupt changes that corresponds to port obstruction. Frequency level

di�erences between wind, aircraft dynamics and obstruction will be used to ob-

tain an appropriate monitoring signal that gives maximum reaction to blockage

caused pressure changes and minimum reaction to disturbance related pressure

changes.

First order di�erence equation was used for online �ltering of pressure data and

to remove the e�ects of wind and aircraft dynamics that have lower frequency

compared to blockage e�ect. Di�erent time window size were chosen, i.e [0.5-1-

2-3-5] seconds. Backward di�erence was taken for each data for all window size.

Di�erence formula is given in Equation 5.1, where w corresponds to window

size. Filtered data were used as monitoring residual signals. It is desired to

have minimum reaction to disturbances and fast response to failure. Di�erent

disturbances were studied to observe the trend of �ltered signal at various time

window size, and then determine the appropriate one. Results are given in

Figure 5.2- 5.6.

Pw(t)) = P (t)− P (t− w) (5.1)
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5.2.2 Adaptive Threshold Setting

Threshold for fault alarm will set online adaptively considering residual data.

Window shifted mean and standard deviation of residual signal are obtained.

Data sampling frequency is 100 Hz. and window size is selected as 0.1 sec. In

the simulation, �rst 1000 samples of pressure data are used to initialize threshold

limits. Therefore, no fault detection is conducted meanwhile. Standard devia-

tion is multiplied with 5 and 10 for trial , then added to mean value to create

the upper and lower limits of monitoring system, as given in Equation 5.2. Time

varying wind with light, moderate and severe turbulence scenarios are studied

to the threshold limit and determine the gain to multiply standard deviation.

Figure 5.7- 5.13 show the results. Considering the high turbulence level, it is

safer to select the gain higher or equal to 10. Threshold setting is very critical.

As described in Chapter 2, it should be large enough to avoid false alarms due

to disturbances etc, and small enough to not to miss any failure and be fast.

Pthr(t) = ¯P (t)± γσ(t) (5.2)

where ¯P (t) and σ(t) correspond to window shifted mean and standard deviation

of monitored pressure data. γ is a pre-determined threshold gain. Pressure

levels are di�erent for each port, so it should be a adjusted according to selected

port.

Wind and altitude change are 2 prominent factors that e�ect measured pressure.

Therefore time variant wind, turbulence and changing altitude scenarios were

studied. Details of the scenarios are given in Table 5.1. First 3 case were stud-

ied for residual selection and the last case studied for threshold determination.

Simulation results are given in Figure 5.2 - 5.13. Small window size eliminates

environmental disturbances. As the window size increases e�ect of low frequency

components become signi�cant. Residual signal should be close to 0 as much as

possible when there is no failure to decrease the threshold limit. Window size

0.5 sec. arises as the most suitable one for fault monitoring in all cases.
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Table5.1: Fault Detection Case Study Scenarios

Case Altitude change (m/s) Wind velocity change Turbulence

1 Constant altitude Time varying wind No

1.1 Amp: 5m/s Freq:0.02 rad/s

1.2 Amp: 15m/s Freq:0.01 rad/s

1.3 Amp: 15m/s Freq:0.03 rad/s

2 Constant altitude Constant wind Yes

2.1 [10 10 -5] 10−2 - Light

2.2 [10 10 -5] 10−3 - Moderate

2.3 [10 10 -5] 10−5 - Severe

3 Altitude Change Constant wind No

3.1 5 m/s for 60 sec. [10 10 -5]

3.2 10 m/s for 60 sec. [10 10 -5]

3.3 20 m/s for 60 sec. [10 10 -5]

3.4 50 m/s for 60 sec. [10 10 -5]

4 Constant altitude Time varying wind Yes

4.1 Amp: 15m/s Freq:0.02 rad/s 10−2 - Light

4.2 Amp:1 5m/s Freq:0.02 rad/s 10−3 - Moderate

4.3 Amp: 15m/s Freq:0.02 rad/s 10−5 - Severe

4.4 Amp: 30m/s Freq:0.02 rad/s 10−2 - Light

4.5 Amp: 30m/s Freq:0.02 rad/s 10−3 - Moderate

4.6 Amp: 30m/s Freq:0.02 rad/s 10−5 - Severe
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Figure 5.2: Case1: Wind Data
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Figure 5.3: Case1: Port 5 pressure change and time-windowed results
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Figure 5.4: Case2: Wind Data
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Figure 5.5: Case2: Port 5 pressure change and time-windowed results

Figure 5.6: Case3: Port 5 pressure change and time-windowed results
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Figure 5.7: Case4: Wind Velocities
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Figure 5.8: Case4.1: Thresholds and Fault Detection
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Figure 5.9: Case4.2: Thresholds and Fault Detection
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Figure 5.10: Case4.3: Thresholds and Fault Detection
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Figure 5.11: Case4.4: Thresholds and Fault Detection
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Figure 5.12: Case4.5: Thresholds and Fault Detection
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Figure 5.13: Case4.6: Thresholds and Fault Detection
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5.3 Fault Accommodation Method

5.3.1 Method Selection

It is aimed to estimate air data from di�erent sources like INS and GPS. Model

based methods employ kinematic and dynamic relations for this adaptation.

Classical model based approaches introduce pilot inputs to state equations.

Force and momentum equations are used to model the aircraft motion. In this

method, a well de�ned system model is required. Modeling uncertainties, un-

modeled dynamics and disturbance inputs e�ect estimation results. On the other

hand, kinematic equations do not involve control inputs. INS and GPS sensor

outputs are processed through kinematic equations to estimate air data. Mod-

eling errors and unknown disturbance inputs do not lead to any problem, but

sensor accuracy is critical. As a result of these trade-o�s, method selection for

model based applications becomes problem speci�c. Kinematic relations based

approach is more suitable for sensor FDA, whereas dynamic relations based

methods are preferred for actuator FDA[16].

In this study, kinematic equations were used to eliminate modeling and distur-

bance related uncertainties. Following equations were used to generate a virtual

air data sensor from INS and GPS outputs.

V̇ = g(−sinθ cosα cosβ + sinφ cosθ sinβ + cosφ cosθ sinα cosβ)+

Ax cosα cosβ + Ay sinβ + Az sinα cosβ
(5.3)

α̇ = g/(V cosβ)(cosφ cosθ cosα + sinθ sinα)+

1/(V cosβ)(Az cosα− Ax sinα) + q − tanβ(p cosα + r sinα)
(5.4)

β̇ = g/V (sinθ cosα sinβ + sinφ cosθ cosβ − cosφ cosθ sinα sinβ)+

1/V (−Ax cosα sinβ + Ay cosβ − Az sinα sinβ) + p sinα− r cosα
(5.5)
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φ̇ = p+ q sinφ tanθ + r cosφ tanθ (5.6)

θ̇ = q cosφ− r sinφ (5.7)

ψ̇ = q (sinφ/cosθ ) + r (cosφ/cosθ ) (5.8)

Ax, Ay and Az correspond to the measured speci�c forces in the center of gravity,

g is the gravitational acceleration which is assumed to be constant and p, q and

r are the rotational rates. [39, 40].

5.3.2 Kalman Filtering

Kalman �ltering is an optimal and recursive state estimator of linear dynamic

systems. For nonlinear systems, Extended Kalman Filter and Unscented Kalman

Filter are used widely.

Extension to non-linear systems is achieved through linearization around the

current mean estimate within the extended Kalman �lter (EKF). Mean and co-

variance matrix of the state vector are updated through the �rst order linearized

system model. [41]. This �rst-order approximation may introduce large errors

as system nonlinearity increases and cause to sub-optimal performance of the

�lter. Contrary to the EKF, the unscented Kalman �lter (UKF) use the nonlin-

ear system model to propagate the state vector. The state distribution is taken

as a Gaussian Random Variable, and this distribution is represented through a

carefully selected sample points. Then, these sample points, i.e. sigma points,

are propagated through the non-linear system model to obtain posterior mean

and covariance matrix [42].

The Unscented Transform (UT) is a convenient way to compute the mean and

variance of a random variable that undergoes a nonlinear transformation. Con-
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sider a random variable x with mean x̄ and covariance Px, and it goes through

a nonlinear function, y = f(x). Then, 2L + 1 sigma points,X, are generated

through the following equations to represent GRV distribution of x , and to

calculate the statistics of y[43].

X0 = x̄ (5.9)

Xi = x̄+ (
√

(L+ λ) Px)i i = 1, .., L (5.10)

Xi = x̄− (
√

(L+ λ) Px)i−L i = L+ 1, .., 2L (5.11)

W
(m)
0 =

λ

(L+ λ)
(5.12)

W
(c)
0 =

λ

(L+ λ)
+ (1− α2 + β) (5.13)

W
(m)
i = W

(c)
i =

1

2(L+ λ)
i = 1, .., 2L (5.14)

where

λ = α2 (L+ κ)− L

λ is used for scaling. The spread of the sigma points around the mean value is

deterimned by α, it is usually taken as a small positive number. κ is a secondary

scaling parameter and usually set to 0, and β indicates the prior knowledge of

the distribution and is taken as 2 for Gaussian distributions. Wi are sigma point

weights.

If a non-linear system equations are given as:

xk+1 = fk(xk) + wk (5.15)

yk = hk(xk) + vk (5.16)

53



Following steps [43] are followed in Unscented Kalman Filter.

Initialize with:

x̂0 = E(x0)

P0 = E((x0 − x̂0)(x0 − x̂0)T )
(5.17)

For kε{1, ..,∞}, calculate sigma points:

Xk−1 = [x̂k−1 x̂k−1 + γ
√
Pk−1 x̂k−1 − γ

√
Pk−1] (5.18)

Time update equations:

Xk|k−1 = F [Xk−1, uk−1] (5.19)

x̂−k =
2L∑
i=0

W
(m)
i Xi,k|k−1 (5.20)

P−k =
2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k ][Xi,k|k−1 − x̂−k ]T +Rv (5.21)

Yk|k−1 = H[Xk|k−1] (5.22)

ŷ−k =
2L∑
i=0

W
(m)
i Yi,k|k−1 (5.23)

Measurement update equations:

Pȳk,ȳk =
2L∑
i=0

W
(c)
i [Yi,k|k−1 − ŷ−k ][Yi,k|k−1 − ŷ−k ]T +Rn (5.24)

Pxk,yk =
2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k ][Yi,k|k−1 − ŷ−k ]T (5.25)

Kk = Pxk,ykP
−1
ȳk,ȳk

(5.26)

x̂k = x̂−k +Kk(yk − ŷ−k ) (5.27)
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Pk = P−k −KkPȳk,ȳkK
T
k (5.28)

where γ =
√

(L+ λ), L: dimension of the state, Rv: process noise covariance,

Rn: measurement noise covariance
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CHAPTER 6

RESULTS AND DISCUSSION

FDA algorithm was tested under various conditions. First, no blockage scenario

was tested to observe the healthy case. Then a scenario that no FDA algortihm

was implemented to judge the critical role of FDA. Then one port blockage

scenarios are tested to see the e�ciency of the new calibration algorithm. Fi-

nally, more than one blockage is tested under time varying wind and turbulence

conditions.

Port failures onset at 240 sec. and continue until the end of the simulation. In

the graphs, 5hp usage time is given. If one port blockage is detected by the

algorithm, redundant port coe�cient is used. For example, if Port 1 is blocked,

Port 3 coe�cient, C3 is used instead. Port coe�cient usage times are also shown

in the graphs. AOA, AOS and airspeed data is fed from 5hp model to autopilot.

When more than one port blockage is detected, 5hp outputs are disregarded and

air data is supplied from kinematic equations.

It is observed that algorithm detects the blockage quickly at every trial. In all

the cases residuals were responsive to failures and disturbances were �ltered out.

No false alarm was observed. Only the e�ect of blockage is prominent in residual

signals..

Extreme conditions were tried for time varying wind conditions. Even though,

fault detection was accomplished. Residuals were insensitive to environmental

e�ects and thresholds were set adaptively. No false alarm was given.
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Figure 6.1: Scenario-1: No failure
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Figure 6.2: Scenario-1: No failure (cont'd)
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Figure 6.3: Scenario-2: Failure at 240 sec, No FDA
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Figure 6.4: Scenario-2: Failure at 240 sec, No FDA (cont'd)
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Figure 6.5: Scenario-3: Port-1 blockage with FDA
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Figure 6.6: Scenario-3: Port-1 blockage with FDA (cont'd)
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Figure 6.7: Scenario-4: Port-2 blockage with FDA
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Figure 6.8: Scenario-4: Port-2 blockage with FDA (cont'd)
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Figure 6.9: Scenario-5: Full blockage with FDA, Time varying wind, Severe

turb.
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Figure 6.10: Scenario-5: Full blockage with FDA, Time varying wind, Severe

turb. (cont'd) 67



Table6.1: FDA Algorithm Test Scenarios

Scenario FDA Wind (m/s) Turbulence Blocked port

1 No Constant [10 10 0] Light No blockage

2 No Constant [10 10 0] Light Full blockage

3 Yes Constant [10 10 0] Light Port 1

4 Yes Constant [10 10 0] Light Port 2

5 Yes Time varying, Amp:30 Severe Full blockage
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CHAPTER 7

CONCLUSION

The aim of this thesis was to develop a fault detection and accommodation algo-

rithm for air data systems during the level �ight, in which pitot tube obstruction

led to numerous fatal accidents. A simulation built in Simulink/Matlab environ-

ment which consists of 6 DOF Boeing 747 and �ve-hole-probe sensor model was

used to conduct analysis. The model was consistent with the working principle

of a �ve-hole probe. Wind tunnel test results for a �ve-hole probe were used

to model pressure readings at 5 hole probe ports for di�erent AOA, AOS and

airspeed (Mach) values. Then, a calibration algorithm was applied to estimate

air data. Port blockage was introduced as a sudden drop in pressure readings. A

signal based fault detection and a model based fault accommodation algorithms

were designed. These algorithms were veri�ed and validated for di�erent wind

and turbulence conditions and Air France 447 accident scenario as well.

Initially, the basic information about the air data systems and �ve-hole probes

were presented. The importance of air data for �ight control and airspeed-

dependent corrections such as altitude and temperature corrections were men-

tioned. Afterwards, the adequacy of industrial applications for fault detection

and accommodation were evaluated. It was deduced from the accident scenarios

that pitot failure does not cause an accident by itself. Following the pitot tube

failure, autopilot disconnects and either the erroneous air data is displayed or

no indication is given to �ight crew. Exposure to unreliable airdata, indication

and warnings, �ight crew may react inappropriately and lead to a fatal accident.

It is essential to understand the distinct characteristics of failure mechanism.
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Therefore, Air France 447 Accident (2009), which was caused by frozen pitot

tubes in level �ight, was studied in detail to comprehend the characteristics and

consequences of an abrupt pitot tube failure.

Mainly two approaches exist for failure detection of pitot tubes; model based

and signal based. Model based approaches create a virtual air data sensor.

GPS and INS provide aircraft velocity and attitude information with respect

to ground and aircraft body-axis, and with the knowledge of wind speed, it is

possible to �nd out the airspeed. This airspeed is used as reference to monitor

air data system health. Hence, wind data becomes critical for fault detection

performance. Most of the approaches in literature use constant wind assumption

or obtain wind data from another resource. In this study, the requirement of

wind data is eliminated by implementing a signal based fault detection method.

It was observed that frequency is a distinctive feature between blockage and

disturbances. A sharp change in pressure data is observed when blockage occurs.

Environmental factors such as wind and turbulence have lower frequency. This

property is used for fault detection. Signal based monitoring is used and an

online high pass �lter is applied. Threshold is generated during the process

adaptively. Light, medium and severe turbulence conditions with time varying

wind pro�le were tested and fault detection was accomplished on each trial.

Fault is detected at less than 0.5 seconds even at high wind and turbulence

conditions with no false alarm. Early detection and isolation of erroneous data

are very critical for �ight safety. Figure 4.5 shows that, in Air France 447

�ight, 4 seconds after the pitot tube failure, faulty air data was used in altitude

corrections and altitude was indicated lower than the actual value. This false

indication confused the pilots and led to inappropriate responses.

Simulation used in the analysis models the cruise �ight of Boeing 747. Probe

model was integrated. Pressure built up at each port to the corresponding air

data was taken from lookup tables generated from wind tunnel data. Therefore,

it is not suitable to simulate altitude variations or climbing period. However, to

compare the rate of change of altitude related pressure variation and blockage re-

lated variation with high pass �lter, a pressure drop was introduced at each port

measurements. Static pressure di�erence corresponding to altitude change was
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subtracted. It was an approximation and did not represent the true measured

data, but in the scope of this analysis frequency was considered. Therefore,

the rate of change is important, not the amount of change. Simulating probe

with wind tunnel data is a restriction to evaluate the actual performance of

the proposed FDA system. For future studies, �ve-hole probe pressure readings

obtained from real �ight data should be used.

A new algorithm was developed for �ve-hole probe calibration. The purpose was

to enhance the operating region of �ve-hole probes. In case one of the head ports

is blocked, the faulty measurement is eliminated from the rest of the calculations

and 5hp continues to function properly. On the other hand, it is not possible to

eliminate faulty input in traditional approaches. By virtue of this method, the

operating range of 5hp is enhanced and �ight incidence and Mach number are

still available with good accuracy in case of any pressure-reading error.
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Figure .1: AF 447 Flight Parameters from 2 h 10 min 04 to 2 h 10 min 26 -

BEA, �Final Report: On the accident on 1st June 2009 to the Airbus A330-

203 registered F-GZCP operated by Air France �ight AF 447 Rio de Janeiro -

Paris�,2012
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Figure .2: AF 447 Flight Parameters from 2 h 10 min 26 to 2 h 10 min 50 -

BEA, �Final Report: On the accident on 1st June 2009 to the Airbus A330-

203 registered F-GZCP operated by Air France �ight AF 447 Rio de Janeiro -

Paris�,2012
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Figure .3: AF 447 Flight Parameters from 2 h 10 min 50 to 2 h 11 min 46 -

BEA, �Final Report: On the accident on 1st June 2009 to the Airbus A330-

203 registered F-GZCP operated by Air France �ight AF 447 Rio de Janeiro -

Paris�,2012
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Figure .4: AF 447 Flight Parameters - BEA, �Final Report: On the accident

on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air

France �ight AF 447 Rio de Janeiro - Paris�,2012
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Figure .5: ECAM displays after the pitot tubes failure - BEA, �Final Report:

On the accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP

operated by Air France �ight AF 447 Rio de Janeiro - Paris�,2012
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