
MODELING TEMPERATURE AND PRICING WEATHER DERIVATIVES
BASED ON TEMPERATURE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

MODELING TEMPERATURE AND PRICING WEATHER DERIVATIVES
BASED ON TEMPERATURE

Taştan, Birhan

Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

February 2016, 75 pages

Weather Derivatives are financial contracts prepared to reduce weather risks faced by
economic actors to regulate cash flows and protect earnings. The weather derivatives
may be in the forms of options, futures, swaps, and bonds whose payout are dependent
on some weather indices. The firms in the sectors like energy, insurance, agriculture,
construction use weather derivatives mostly. Weather derivatives are different than the
traditional financial derivatives on several occasions. Traditional financial derivatives
are based on some assets like stocks, bonds, foreign exchange, interest rate etc. that are
traded on the market. Besides, weather derivatives are based on a weather index, which
is not traded. Also financial derivatives are generally used to hedge price risk, while
weather derivatives are used to hedge volume risk. Because of different nature of the
weather derivatives its pricing is different than the pricing of other financial derivatives.
In addition, although it is possible to write a derivative that uses any weather index like
temperature, humidity, and wind speed etc. most of the weather derivatives that are
traded on market are based on temperature. Within this context, in this thesis, models
for temperature and pricing issues of the weather derivatives based on temperature will
be evaluated. Moreover, the applicability of the weather derivatives to Turkey will be
investigated.

Keywords : weather derivatives, temperature-based derivatives, temperature modeling,
temperature risk, jump processes, option valuation in incomplete markets
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ÖZ

SICAKLIĞIN MODELLENMESİ VE SICAKLIĞA DAYALI İKLİM
TÜREVLERİNİN FİYATLANDIRILMASI

Taştan, Birhan

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Azize Hayfavi

Şubat 2016, 75 sayfa

İklim türevleri ekonomik aktörler tarafından, nakit akımını düzenlemek ve karlılığı ko-
rumak amacıyla, karşı karşıya kaldıkları iklim risklerini azaltmak için düzenledikleri
finansal sözleşmelerdir. İklim türevleri, getirileri belli hava endekslerine bağlı olan,
opsiyon, futures, swap ve tahvil şeklinde olabilirler. Çoğunlukla enerji, sigorta, tarım,
inşaat gibi sektörlere dahil firmalar iklim türevlerini kullanırlar. İklim türevleri, ge-
leneksel finansal türevlerden bir kaç noktada ayrılırlar. Geleneksel finansal türevler
pazarda ticareti yapılan hisse senedi, tahvil, döviz kuru, faiz oranı gibi varlıklara dayanırlar.
Fakat iklim türevleri ticareti söz konusu olmayan bir hava endeksine bağlıdır. Ayrıca
finansal türevler genellikle fiyat riskine karşı önlem amacıyla yapılırken iklim türevleri
hacim riskine karşı yapılır. Farklı doğası nedeniyle iklim türevlerinin fiyatlandırılması
diğer finansal türevlerin fiyatlandırılmasından farklıdır. Ek olarak, sıcaklık, nem, rüzgar
hızı gibi herhangi bir hava endeksine bağlı olarak bir türev ürün yazmak mümkün ol-
makla birlikte, piyasada ticareti yapılan iklim türevlerinin büyük kısmı sıcaklık üzerinedir.
Bu bağlamda, bu tez çalışmasında sıcaklık modelleri ve sıcaklığa dayalı iklim türevlerinin
fiyatlandırılması değerlendirilecektir. Ayrıca, iklim türevlerinin Türkiye’de uygulan-
abilirliği araştırılacaktır.

Anahtar Kelimeler : iklim türevleri, sıcaklığa dayalı türevler, sıcaklık modellemesi,
sıcaklık riski, sıçrama süreçleri, eksik piyasada opsiyon değerlemesi
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CHAPTER 1

INTRODUCTION

1.1 General Information

Weather affects businesses from agriculture to tourism[35].Estimates showed that a big
portion of the business activity are weather sensitive [43]. The impact of weather on
business can be in the form of a reduction on profits to a total disaster in case of a
heavy storm [28].

Story about weather derivatives (WD) began in 1990s with climate extremes and ma-
jor storms that caused financial losses. The response of the financial markets was to
present instruments called weather derivatives to be used for transferring or reducing
the risk caused by weather [35, 43].

Weather derivatives are tools where companies use against non-catastrophic weather
events. These may include warmer or colder than the usual periods, rainy or dry periods
etc. These unusual periods are frequent and can cause significant decrease in profits
that depend to the weather. The stability of profits is an important topic such that
weather derivatives are desirable tools in case of existence of sensitivity of business to
weather conditions. Benefits of stable profits are listed as [28]

• low volatility in profits can reduce cost of borrowed money

• when a company is open to public low volatility in profits results with a high value
for the company

• bankruptcy risk is reduced by low volatility in profits

In the literature it is seen that particularly the energy and power sectors use tools for
hedging weather risks [39, 38]. But weather derivatives can be used by many different
companies from many different sectors.

First appearance of the weather derivatives was in the US energy industry in 1997.
While there exists a trade on contracts based on electricity and gas prices it was realized
that this trade can be extended to the contracts based on the weather that may hedge
weather risk. The market grew fast as other companies realized the benefits of these
contracts. Later, the market was extended to Europe and Japan[28, 12].
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1.1.1 What is a Weather Derivative?

Weather derivatives are contingent claims written on some weather indices whose val-
ues are obtained from weather data. Some of these weather indices include daily aver-
age temperature, cumulative annual temperature, heating degree days, cooling degree
days, precipitation, snowfall, wind [35].

1.1.2 Examples of Weather Hedging

In the following, examples were given to reveal effect of weather on different busi-
nesses. In most of the time, volume of sales is affected [28].

• a natural gas supply company may sell less gas in a winter season that is warmer than
the usual

• a ski resort attracting less visitors in case of little snow

• a clothes retailing company may have problems with sales in summer clothes in case
of a colder than the usual summer

All these risks could be hedged using WD [28].

1.1.3 Why Weather Derivatives Exist?

There are four effects that discussed in the literature as the cause of emerging of
weather derivatives:

• Climate change and weather variability: Climate change accepted as a fact for a
majority of people. This also resulted with rising concerns about its economic, social,
political effects. Financial impacts of climate change may be hedged by WD[43].

• Deregulation of the US energy sector: This is perhaps the most important key factor
in development of WD. By losing monopoly power on prices, deregulated companies
focused on profits more[43, 39, 38, 12].

• Convergence: Increased awareness about hedging and protection against risks led
capital and insurance markets come closer. WD can be considered as an extension in
this process[2].

• Commoditization of weather and climate: Developments in weather observations
through better equipment and better processing capacities of computers led production
of accurate and valuable weather data. This also resulted with commoditization of
weather forecasting [43].
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1.1.4 Differences Between Weather and Ordinary Derivatives

Several items make WD different than classical derivatives:

• The most important one is that the weather is not traded. In other words, the under-
lying is not a traded asset [39, 7].

• Another fundamental difference is that financial derivatives are used for price hedg-
ing. On the other hand, WD are useful for quantity hedging [7].

• The weather derivative markets are much less liquid than traditional commodity mar-
kets. This is mainly due to the fact that weather is a location-specific issue and as a
result it is not a standard commodity [7].

1.1.5 Differences Between Insurance and Weather Derivatives

Although many similarities exist between insurance policies and WD contracts, there
are some important differences regarding coverage and payouts. Some of the important
differences may be listed as following [43, 28, 39, 2]:

• For standard insurance contracts, it is needed for a proof of loss and an interest to be
insured. WD differs from these kinds of insurance contracts because they have neither
of these two requirements.

• The moral risk removed since the weather indices are out of control of the parties.

• There is a minor difference between the loss and the payout in an insurance contract.
In WD, on the other hand, the returns from the contract may not match the risk faced
by the buyer.

• Derivative positions must be re-evaluated as time passes, but this is generally not the
case in insurance contracts.

• Tax liabilities may be different.

• The accounting treatment and contractual structure may be different.

• A WD can be used to produce profit from the weather in addition to hedging.

• One important difference is that insurance contracts are designed for high risk – low
probability events. On the other hand, WD are designed for low risk – high probability
events.

• In WD, two parties having counter effects from the weather can come together and
hedge each other’s risk.
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1.1.6 Weather Forecasts

One question may be asked about usage of weather forecasts instead of WD. Never-
theless, the main obstacle against weather forecasts is in their forecasting horizon. A
company with long term plans that cover several years cannot use weather forecasts.
On the other hand, WD can be used for extended time periods.

1.1.7 Weather Derivatives Market

The first weather derivative was issued by US energy firm Enron on over-the-counter
market in USA in 1997 [18]. Today, there are two main markets that offer standard
products to be automatically traded:

• Chicago Mercantile Exchange (CME)

• London International Financial Futures and Options Exchange (LIFFE)

1.1.7.1 Weather Contracts

Weather contracts may be in the form of swaps, futures, and call/put options based on
weather indices [35]. Following parameters are used in weather contracts[35, 28]

• The contract type

• The contract period (e.g. February 2016)

• The underlying index: Specifies one of the indices that discussed below.

• An official weather station where weather data will be obtained

• The strike level

• The tick size: This is the monetary amount to be paid or received for each index
value

• The maximum payoff: Some contracts may contain a maximum monetary value to
be paid or received for the contract.

Some indices can be listed as following:

• Based on Temperature: These types of contracts mainly based on Heating Degree
Day (HDD) and Cooling Degree Day (CDD). A degree day corresponds to the mea-
sure of deviation temperature from 65”F (or equivalently 18”C). The idea is that as
temperature deviates from 65”F, more energy will be needed for heating and cooling.
As a result, these type of contracts offer companies to hedge against unexpectedly
cold or warm periods. In practice, HDDs are used for winter periods and CDDs are
used for summer periods. Other variables may include the monthly or daily average
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temperature in addition to monthly and yearly cumulative temperatures.

• Rainfall: Total rainfall on a given area is measured to be based on rainfall contracts.
Nevertheless, these type of contracts attracted less interest compared to temperature
based contracts because of difficulties in modeling of rainfall [35].

•Wind speed: As electricity production through wind mills increased, special attention
was given to wind speed contracts that are based wind power indices [35].

Some contract types can be listed as following:

• Options: Mostly used options are HDD/CDD calls and puts as well as some combi-
nation strategies.

• Bonds: In these types of contracts, payments about interest and nominal values are
made contingent to an index [39].

• Swaps: Based on a weather index, two parties agree to exchange a variable and a
fixed amount on a given date [2].

• CME Futures: These are agreements to buy or sell an index at a specific future date
[35].

1.2 Problem Statement

As stated in the excellent book by [40] derivative pricing is different from asset pricing;
basic securities can be used to determine an arbitrage-free price of a security without
taken into consideration other assets or markets. This is done with some formulas
obtained from equivalent martingale measures and partial differential equations. Al-
ternatively, the essence of arbitrage pricing of derivatives lies in the assumption that
the market is complete [58]. When a market is complete, one can create risk-free port-
folios that mimic the behavior of an asset. Converting asset behavior into a martingale
by changing measures eliminates the need to consider an individual’s risk preferences.
However, in the case of weather derivatives based on temperature, none of the above-
mentioned methods can be used. When underlying is not a traded asset market will be
incomplete. As a result, the problem of pricing temperature-based derivatives is basi-
cally the problem of pricing in incomplete markets. Related with this, a second issue
will be to define risk attitudes of the economic entities. When market is incomplete
there are basically two ways that can be followed: First one requires certain techniques
to change the market to a complete one. Second method continues to consider the mar-
ket as incomplete. Besides, in the second case, some utility functions have to be used
to reveal risk preferences. Some of the important studies about incomplete markets
were mentioned in the literature review part.

Current study offers a third way to deal with pricing in incomplete markets. As a first
step, a temperature model will be defined. By using the model, index calculations will
be done. With these index values, a new setup will be defined for pricing. In this setup,
the market will continue to be incomplete as this situation represents a more realistic
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approach. Another motivation behind continuation of incompleteness of the market
will be obtained from usage of risk-neutral probabilities. In fact, it will be shown that
usage of risk-neutral probabilities ends up with super-hedging that limits its usage in
weather derivatives. As a result, after defining risk of the temperature, the differences
between the risk of an ordinary asset and the risk of the temperature will be revealed.
This is a necessary step because temperature affects businesses in different ways. In
other words, temperature affects different entities in a personalized way. For example,
a warmer than the usual winter season affects a retail gas selling company different
than a beverage company. The personalized risk of the temperature will be, then, used
to define a personalized price for a candidate company. Then by using some functions
called as objectives, which are set by the entity itself, trading behavior of the candidate
company will be revealed. In the study, profit maximization will be considered as the
objective of a candidate company. With the aim of profit maximization, the trading be-
havior of the mentioned company will be investigated. Moreover, it will be shown that
the discussion regarding market price of risk of temperature is inconclusive supporting
the need for a new setup for pricing.

The difference of this study from the existing studies appears on two grounds: In
the first, current study defines risk in a different way than the literature that results
development of a personalized price of an option. In the second, current study uses
objective functions instead of utility functions. By this way, a more realistic approach
for the trading behavior of the candidate company will be revealed.

1.3 Related Literature

The literature about weather derivatives can be divided into several groups: first group
is about modeling weather events; second is about pricing issues related with WD; and
third one is about potential uses of WD. It is normal that some studies fall into two
or three groups while others study just one of the above. As the focus of this study is
about modeling temperature and pricing temperature based derivatives, in the literature
review part, mainly temperature-based studies were covered.

In the literature, the main tool that was used to model temperature was mean-reverting
processes, namely Orstein-Uhlenbeck (OU) processes. In one of the mostly cited study,
[2] develops an OU process to represent temperature. By using equivalent martingale
measures approach, the authors determines the price of an option by taking market
price of risk as a constant and by considering temperature is a traded asset. [4] models
temperature as a continuous time autoregressive process for Stockholm. They report a
clear seasonal variation in regression residuals. Their proposed model is a higher-order
continuous time autoregressive process, driven by a Wiener process with seasonal stan-
dard deviation. While pricing futures and options they consider Gaussian structure of
temperature dynamics. [38] develop a stochastic volatility model to represent evolu-
tion of temperature. They work in an environment of equilibrium previously defined
by [2]. Vasicek model was used in describing stochastic model for temperature. [59]
propose a model that uses wavelet neural networks to model an OU temperature pro-
cess with seasonality in the level and time-varying speed of mean reversion. They
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argue that wavelet networks can model the temperature successfully. [58] use neural
networks to model seasonal component of the residual variance of an OU temperature
process, with seasonality in the level and volatility. Authors also use wavelet analysis
to identify seasonality component in temperature process as well as in the temperature
anomalies. They suggest that this approach can be used in pricing weather deriva-
tives by performing Monte Carlo simulations. [1] use an OU process driven by a Levy
noise to model daily average temperatures. Model also includes a seasonally adjusted
asymmetric ARCH process for volatility. Author uses Normal Inverse Gaussian and
Variance gamma distributions to model disturbances. Then prices of out of the money
call and put options compared. [25] extends the model proposed by [2] with a con-
sideration to ARCH/GARCH effects to reflect clustering of volatility in temperature.
They report that HDD/CDD call price is higher under ARCH-effects variance than un-
der fixed variance, while put price is lower. Further they declare that despite weather
options have different pricing methods than traditional financial derivatives, the effect
of mean and standard deviation is same in both of the cases.

Instead of dynamic models, some authors offered time-series models to represent tem-
perature. [7] apply a time series approach in modeling temperature. Time series mod-
eling shows conditional mean dynamics and strong conditional variance dynamics in
daily average temperature. Their model included a trend, seasonality represented by
a low-ordered Fourier series, and cyclical patterns represented by autoregressive lags.
For conditional variance dynamics the contributions are coming from seasonal and
cyclical components. Authors used Fourier series and GARCH process to represent
seasonal volatility components and cyclical volatility components respectively. [8] use
an equilibrium model that is a generalization of Lucas model of 1978 [36] to include
weather as another source of uncertainty. Temperature in their case was modeled with
seasonal cycles and uneven variations throughout the year. Temperature was related to
aggregate dividend or output. Finally they suggest that market price of weather risk
is significant for temperature derivatives. They also add the only time for temperature
derivative to be discounted with risk free rate is when correlation between aggregate
dividend and temperature is low and/or investor’s risk aversion is low. They said that
these were not supported by empirical evidence. [18] focus on estimation of average
temperature as an analysis of extreme values that is used to find a model for tempera-
ture maxima and minima. Author states that AR-GARCH model, which is the model
offered by [7] and regression model, which is actually the model of [4] yield superior
point estimates for temperature but extreme value model outperform these models in
density forecasting. [54] uses marginally normalized time series where original data of
the temperatures are standardized using the mean values and variances of the estimated
deterministic seasonal cycles. Standardization is done by subtracting mean values of
seasonality data from the original data and then dividing these by the corresponding
standard deviations. A non-stationary AR model was used to quantify anomalies by
applying normalized data. They report that this model fits better than an ordinary
AR model for the normalized temperature data sets and exhibits a significant seasonal
structure in their autocorrelation. [21] extends the study by [8] such that instead of
using a given risk aversion coefficients, authors used generalized method of moments
and simulated method of moments to estimate it. [11] extends the study of [8] by em-
ploying time series model of [7] and using extended power utility function instead of
constant proportional risk aversion utility function.
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Complying with the aim of the study, two more articles were found within literature
that uses comparison of existing models. The article by [41] compares six different
models. They argue that models that rely on auto-regressive moving average processes
offer better fit than models that use Monte Carlo simulations. But this situation is not
valid when predictions considered. Second article by [48] uses four models to compare
and suggests that all models perform better when predicting Heating Degree Days
than Cooling Degree Days. Continuously they argue that all models underestimate the
variance of errors.

Several models offered for pricing, which is the most problematic issue of weather
derivatives. In this case, it was seen that pricing of WD is mainly based on two ap-
proaches: First one is the dynamic valuation; second one is about equilibrium asset
pricing. In his famous book, [26] uses a valuation framework for temperature deriva-
tives where probability distribution estimation of the temperature index was used as
expected payoff of the option. After assigning a tick value, option price was calcu-
lated by discounting by the risk free rate. In another famous book by [6], temperature
derivatives are priced according to a given benchmark derivative with the idea that
derivatives are related to each other and that there are certain rules for derivatives to
follow in these relationships to prevent arbitrage possibilities. [56] focuses on indif-
ference pricing that aims to bridge financial and actuarial approaches for the valuation
of financial assets. Indifference pricing does not attempt to predict a market price but
rather calculates price boundaries. Indifference pricing is about as described by the
authors that the amount of money where a potential buyer (or seller) of weather in-
surance is indifferent in terms of expected utility between buying (or selling) and not
buying (selling), constitutes an upper (lower) limit for the contract price. It does not
require assumption of continuous trading. It is actually based on utility maximization.
Another study about pricing issue is revealed by [46]. Authors use Lucas model [36]
to find an equilibrium pricing model that was emphasized as superior to other mod-
els. The authors suggest that a temperature series for Fresno follows a mean-reverting
BM with discrete jumps and autoregressive conditional heteroscedastic errors. They
use this model to price CDD options. Burn-rate method, Black-Scholes and Merton
approximation and equilibrium Monte Carlo simulations were developed to compare
prices of options. They argue that these prices developed by three different methods
showed differences. Since underlying is not traded it is not possible to define arbitrage
free pricing but this can be addressed by designing an appropriate equilibrium pricing
model, which is established by calculating prices for CDD put and call options in a
representative production region. An equilibrium pricing model in a multi commodity
setting is offered by [33]. Authors define a model where agents optimize their hedging
portfolios that include weather derivatives. Supply and demand for hedging activi-
ties were combined in an equilibrium pricing model. Summer day options, which are
popular in Japan were priced by good deal bounds by [30]. [31] finds price of weather
options based on [2] and [4]. In addition, by using Korea Composite Stock Price Index,
they calculates market price of risk.

Some of the studies that focus on different aspects of modeling temperature and pric-
ing issues can be listed as following: An analysis of weather derivatives and market is
given by [45], by adopting a cultural economy approach. [57] discusses weather risk
hedging in three European countries by the weather derivatives traded at CME. [47]
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incorporates meteorological forecast into pricing of weather derivatives. Authors state
that inclusion of meteorological forecasts accurately explains market prices of temper-
ature futures traded in CME. [16] state that, by analyzing observed prices of US tem-
perature futures, an index modeling approach without de-trending captures the prices
well and weather forecasts influence prices up to 11 days ahead. Without de-trending
temperature futures yield biased valuations by overpricing winter contracts and under-
pricing summer contracts. Use of the principal component analysis in generation of
daily time series to be used in weather derivatives market was discussed in [17]. [19]
develops four different regime-switching models of temperature to be used in pricing
temperature based derivatives. They revealed that a two-state model; governed by a
mean-reverting process as the first state and by a Brownian motion as the second state,
was superior than the others. [49] argue that weather ensemble predictions consist of
multiple future scenarios for a weather variable. They can be used to forecast density
of the payoff from a weather derivative. Mean of the density is the fair price of deriva-
tive and distribution of the mean is important for a couple of factors like value at risk
models. In their paper authors use 10-day-ahead temperature ensemble predictions to
forecast mean and quantiles of density of the payoff from 10-day HDD put option.
They also argue that ensemble based forecasts compare favorably with those based on
a univariate time series GARCH model. Focusing on the temperature indices density,
[9] proposed a generalization of ARFIMA-GARCH model with time-varying memory
coefficients. Usage of weather forecasts in pricing of weather derivatives is discussed
in [29]. Authors presented two methods for strong seasonality in probability distribu-
tions and auto-correlation structure of temperature anomalies. For the first case, they
offer a new transform that allows seasonality varying non-normal temperature anomaly
distributions to be cast into normal distributions. For the second case, they present a
new parametric time series model that captures both the seasonality and the slow decay
of the autocorrelation structure of observed temperature anomalies. Their model was
supposed to be valid in case of slowly varying seasonality. In addition, they offered a
simple method that was valid in all cases including extreme non normality and rapidly
varying seasonality.

Pricing in incomplete markets has been discussed by many researchers. The theory
of incomplete markets was discussed in [37]. In another study [10] tries to connect
standard arbitrage pricing with expected utility maximization. [55] uses partial hedg-
ing where hedging portfolio formed by minimizing convex measure of risk. [24] uses
effect of risk aversion on investment timing and value of the option to define a param-
eter region where investment signals were given. [15] use marginal substitution value
approach for pricing in incomplete markets.

1.4 Scope and the Structure of the Thesis

1.4.1 Scope

Although weather derivatives are written on highly varied weather indices this thesis
focuses on weather derivatives based on temperature as a big portion of the weather
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contracts are written on temperature. On the other hand, the ideas proposed in this
thesis can be extended to other forms of contracts especially in the areas of definition
of weather risk and pricing.

1.4.2 Structure of the Study

This thesis mainly composed of 4 parts:

• Introduction contains general information about weather derivatives and problem
statement

• Second part contains information about temperature itself; its properties, existing
models for temperature, comparison of existing models in predicting temperature, and
finally a new model for temperature will be proposed. In addition, an approximated
distribution for the temperature and value of an HDD will be defined.

• Third part is about defining temperature risk and pricing

• Fourth part contains conclusions.
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CHAPTER 2

MODELING TEMPERATURE

2.1 Preliminaries

As this thesis is mainly about temperature-based derivatives, some basic terminology
is defined in the following:

• Daily temperature:

Ti =
Tmaxi + Tmini

2
(2.1)

where i represents a certain day, and Tmaxi and Tmini are maximum and minimum
temperatures of the given day.

• HDD for a given day:

HDDi = max(0, Base− Ti) (2.2)

where Base is a pre-determined temperature level, Ti is the average temperature cal-
culated as in Equation (2.1) for a given day i. As a standard, Base is equal to 65
Fahrenheit or 18 Celsius degrees.

• Cumulative HDD (CHDD):

CHDD =
N∑
i=1

HDDi (2.3)

where HDDi is calculated as in Equation (2.2), and N is the time horizon, which is
generally a month or a season.

• CDD for a given day:

CDDi = max(0, Ti −Base) (2.4)

where Base is a pre-determined temperature level, Ti is the average temperature cal-
culated as in Equation (2.1) for a given day i. As a standard, Base is equal to 65
Fahrenheit or 18 Celsius degrees.
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• Cumulative CDD (CCDD):

CCDD =
N∑
i=1

CDDi (2.5)

where CDDi is calculated as in Equation (2.4), and N is the time horizon, which is
generally a month or a season.

• Payoff of a call option on HDD:

VT = max(0, CHDD −K) ∗ tick (2.6)

where VT is the value of the call option at time T , K is the exercise value, and tick is
a monetary value that provides conversion from degrees to money.

Pricing of a WD based on temperature usually starts with modeling of the underlying
temperature indices. As stated by [7], temperature modeling is important for both
supply and demand side. On demand side, one needs to know the risk that will be
caused by weather to determine the hedging. On supply side, weather forecasting is
required to define derivative prices since other methods do not work.

In this chapter, comparison of the existing models will be discussed first; then, the
properties of the temperature will be revealed; in the light of all available information,
a model for temperature and resulting indices that are based on temperature will be
given; finally, calculations regarding index values will be revealed.

2.2 Comparison of Existing Temperature Models

2.2.1 Methodology

As mentioned earlier in the study, although a number of models exist for temperature,
five models have the biggest emphasis in the literature whether as a base model to
be further developed or as models to be compared with the newly developed models.
Simulations based on these models will be developed and compared to find the model
with highest efficiency and predict the data well. These models are:

•Model based on Historical Burn Analysis

•Model based on [8], which will be called as Cao Model

•Model based on [7], which will be called as Campbell Model

•Model based on [2], which will be called as Alaton Model

•Model based on [4], which will be called as Benth Model

Calculations and analysis were done by the R statistical software. In the remaining
parts of the section above models will be introduced in addition to the data used.
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2.2.2 Data

In this part of the study, mean temperature data of Chicago from O’Hare Interna-
tional airport and Ankara from Esenboga airport in Fahrenheit will be used. Chicago
daily temperature data starts from 1/1/1974 to 12/31/2010 and contains 13502 values.
Ankara daily temperature data includes same time span and contains 13480 values.
Because of the limited number, missing values were completed by linear interpolation.
As a result 13505 values were obtained for each of the cities. For the ease of calcula-
tions Feb 29s were excluded from series. Temperature data was obtained from National
Climatic Data Center. Mean temperature data was obtained by Equation (2.1). Data is
partially shown in Figure 2.1.

0 200 400 600

20
30

40
50

60
70

80

Days

Tem
per

atu
re

Ankara
Chicago

Figure 2.1: Temperatures of Ankara and Chicago between 2009-2010

In Table 2.1, some statistics about temperature data of two cities are given:

Table 2.1: Temperature Statistics

Ankara Chicago
Mean 49.86 50.67
Median 50.45 52.4
Standard Deviation 15.74 19.85
Maximum 84.75 91.95
Minimum -10.05 -20.05
Skewness -0.2438 -0.3258
Kurtosis -0.656 -0.747

Figure 2.2 and Figure 2.3 show the bimodal structure of the data as shown on the
histograms although bimodality is more apparent in Ankara.

In Figure 2.4 and Figure 2.5 yearly mean temperatures and yearly standard deviations
are given for both of the cities respectively. Simple regressions for yearly mean tem-
peratures of the two cities revealed an upward trend being higher in Ankara. The coef-
ficients of trend variables are 0.081445 for Ankara and 0.0345 for Chicago. But only
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Figure 2.3: Ankara Temperature Histogram

the coefficient of Ankara is statistically significant. On the other hand, yearly standard
deviations show a negative trend for Chicago and a positive one for the Ankara. Nev-
ertheless the results are not statistically significant. The coefficients of independent
variables are 0.02243435 for the Ankara and -0.04215 for the Chicago.

When averages and standard deviations of the means and standard deviations of monthly
mean temperatures are calculated, it is shown that highest average of the monthly av-
erage temperatures belongs to June and the lowest average temperature belongs to
January for Chicago. In addition, the lowest average of standard deviation belongs
to August and the highest to March. For Ankara, the highest average of the monthly
average temperatures belongs to August and the lowest average temperature belongs
to January while the lowest average of standard deviation belongs to August and the
highest to February. When monthly mean temperatures and standard deviations are
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Figure 2.4: Yearly Mean Temperatures
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Figure 2.5: Yearly Standard Deviations

investigated for possibility of existing trends, for Chicago, only standard deviations of
June and November showed negative trends with statistically significant coefficients,
whereas in Ankara, there are positive trends from June to September monthly mean
temperatures and none in the standard deviations.

Figure 2.6 shows averages of daily temperatures for both of the cities. To constitute
this figure, first temperatures of each day of a year were found and then their averages
were calculated. Figure 2.7 shows standard deviations of temperatures of each day. As
shown in the figures, there is a seasonal pattern in both of the cities. Averages increase
and variations decreases in summer months and vice versa.

In the following part, the models that were selected for comparison purposes will be
introduced.

15



0 100 200 300

20
30

40
50

60
70

Days

Tem
per

atu
re

Ankara
Chicago

Figure 2.6: Daily Temperatures
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Figure 2.7: Daily Standard Deviations

2.2.3 Models

2.2.3.1 Historical Burn Analysis

This approach simply considers past data to calculate price of a weather derivatives. In
this study, HDDs and CDDs of the two cities calculated for 37 years and their averages
were found.
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2.2.3.2 Cao Model

[8] stacked daily temperature observations in a vector Yt for t = 1, 2, 3, . . . , T and
corresponding historical average temperature for each day is stacked in vector Ȳt. After
removing mean and trend, the residual daily temperature is expressed as

Ut = Yt − ( β
365

(t− T
2
) + Ȳt) (2.7)

where β is global warming trend parameter and t = 1, 2, . . . , T . Authors assume that
Ut, daily temperature residual, follows a k-lag auto-correlation process as following:

Ut =
k∑
i=1

ρtUt−i + σtξt (2.8)

where σt = σ0 − σ1

∣∣sin( πt
365

+ φ)
∣∣ and ξt ∼ i.i.d.N(0, 1)

In this setup, ξt represents randomness in the temperature changes. Volatility spec-
ification using the sine wave reflects the requirement of high volatility in the winter
and lower in the summer. φ captures starting point of sine wave. Autocorrelation setup
captures autoregressive nature of temperature. Seasonal variation is captured by Ȳt and
since Ȳt represents daily historical average temperature within the sample, half of the
sample must be over historical average and other half must be lower than it.

2.2.3.3 Campbell Model

[7] define a model of temperature that is composed of a trend, a seasonal effect, and a
cycle effect. The first effect is defined by a polynomial deterministic trend function. A
Fourier series is used to define seasonality. The cycle effect is defined by autoregressive
lags. Authors allow conditional variance where contributions come from seasonal and
cyclical components. Seasonal volatility component approximated by a Fourier series
and cyclical volatility by a generalized autoregressive conditional heteroscedasticity
(GARCH) model. Then, model for temperature is shown by the following formulas:

Tt = Trendt + Seasonalt +
L∑
l=1

ρt−1Tt−l + σtεr (2.9)

Trendt =
M∑
m=0

βmt
m and Seasonalt =

P∑
p=1

(σc,p cos(2πpd(t)
365

) + σs,p sin(2πpd(t)
365

))

(2.10)
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σ2
t =

Q∑
q=1

(γc,q cos(2πq d(t)
365

) + γs,q sin(2πq d(t)
365

)) +
R∑
r=1

αr(σt−rεt−r)
2 +

S∑
s=1

βsσ
2
t−s

(2.11)
where εt ∼ i.i.d(0, 1) and d(t) is a repeating function that cycles 1...365.

2.2.3.4 Alaton Model

[2] suggests a mean reverting process with the variation term that differs between
months but constant within each month. Then model becomes:

dTt =
dTmt
dt

+ a(Tmt − Tt)dt+ σtdWt (2.12)

Tmt = A+Bt+ C sin(wt+ ϕ) (2.13)

where w = 2π
365

and ϕ is the phase angle.

2.2.3.5 Benth Model

[4] define a general continuous time autoregressive model, which is continuous time
analogue of an AR(p) time series. This class of models are called CAR(p). The model
is defined by following Ornstein- Uhlenbeck process X(t) in Rp for p > 1:

dX(t) = AX(t) + epσ(t)B(t) (2.14)

where B(t) is a Brownian motion, ek is the kth unit vector in Rp, k = 1, .., p. In
addition, σt > o is a real-valued and square integrable function and A is pxp matrix of
the form:

[A =


0 1 0 ... 0
0 0 1 ... 0
. . . ... .
0 0 0 0 1
−αp −αp−1 −αp−2 ... −α1

] (2.15)

where αk, k = 1..p are constants.

Following CAR (p) model, the temperature dynamics was introduced as:

T (t) = Λ(t) +X1(t) (2.16)
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where Λ(t) is a deterministic seasonal function representing average temperature.
Stochastic process X(t) can be represented explicitly as:

X(S) = exp(A(s− t))x+

∫ s

t

exp(A(s− u))epσ(u)dB(u) (2.17)

where s > t > 0 and X(t) = x ∈ Rp.

2.2.4 Results and Discussion for Comparison of Existing Models

When structures of the temperature models studied it is seen that they are mainly com-
posed of two parts: A seasonal + trend parts, and a variation part. This may be anal-
ogous to pricing conventional derivatives by BSM method, which considers asset re-
turns in two parts: Deterministic contribution part and a stochastic contribution part
[27]. The seasonal + trend parts can be considered as a body that is used to determine
a mean structure of the temperature data. The variation part is what is left after re-
moving seasonal or the mean part. It is the discrepancy over the long term mean. In
this part of the study seasonal + trend, and variation parts will be examined separately
first and then their power to represent actual data will be considered in terms of fitting
the data. In addition, model’s prediction powers will be evaluated. To do this, models
applied to data that covers 1974 to 2010. After finding necessary coefficients, models
run one year ahead to evaluate how models will fit to the year 2011. Fits to exist-
ing data was evaluated in two parts: First, revealed model’s seasonality + trend parts
and data’s correlation coefficient was calculated. Then all model parameters including
variation were used to find correlation coefficient again. This process was repeated for
year 2011.

Table 2.2 summarizes models according to their approaches for the seasonality + trend
and variation, how the models fit the data, and how they predict one year ahead.

Table 2.2: Model’s fit to Past and Predicted Data

Seasonality + Trend Seasonality+Trend+Variation
Model R2 (1974-2010) R2 (2011) R2 (1974-2010) R2 (2011)

Ankara Chicago Ankara Chicago Ankara Chicago Ankara Chicago
Cao 0.911 0.900 0.932 0.918 0.970 0.960 0.931 0.917
Campbell 0.909 0.897 0.927 0.918 0.970 0.959 0.882 0.913
Alaton 0.905 0.894 0.931 0.917 0.968 0.944 0.930 0.918
Benth 0.905 0.894 0.930 0.919 0.905 0.894 0.930 0.919
Average 0.908 0.896 0.930 0.918 0.953 0.939 0.918 0.917

A general look at the table first indicates that all models have values close to each
other. There is no clear model that fits better than the others. This is especially true for
predictions part that tried to measure fit of the models for year 2011.

In all cases seasonality and trend explains 90% percent and over of the existing tem-
perature data. When variation part included all models increase their fit up to 97%.
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This is, on the other hand, not true when prediction fits considered. Addition of vari-
ation part does not increase the fit. This suggests that prediction is mainly done by
seasonality + trend parts of the models. This is supported by the fact that prediction
fits outperform fits of the years 1974 to 2010.

Table 2.3 to 2.6 was formed to represent predictive powers of the models. After running
simulations for each model, the temperature of the year 2011 was predicted and HDD
and CDD values for the months of January, February, March, November, December,
May, June, July, August, and September were calculated according to the predictions.
These HDD and CDD values then compared with actual values of 2011. A positive
percentage in the tables represents over prediction and a negative percentage means
the opposite.

Table 2.3: HDDs of Ankara

Cao Campbell Alaton Benth HBA
Actual Pre. Dif. Pre. Dif. Pre. Dif. Pre. Dif. Pre. Dif.

January 993 1125 132 1122 129 1041 48 1036 43 1124 131
February 856 923 67 1011 155 889 33 892 36 922 66
March 818 783 -35 945 127 794 -24 794 -24 783 -35
November 926 711 -215 569 -357 649 -277 649 -277 712 -214
December 942 985 43 934 -8 918 -24 919 -23 987 45
Total 4535 4527 492 4581 776 4291 406 4290 403 4528 491

*Pre.: Predicted **Dif.:Difference

Table 2.4: HDDs of Chicago

Cao Campbell Alaton Benth HBA
Actual Pre. Dif. Pre. Dif. Pre. Dif. Pre. Dif. Pre. Dif.

January 1353 1253 -100 1268 -85 1180 -173 1192 -161 1280 -73
February 1065 1037 -28 1114 49 1011 -54 1011 -54 1037 -28
March 874 820 -54 975 101 868 -6 868 -6 820 -54
November 559 707 148 558 -1 733 174 734 175 708 149
December 916 1130 214 1025 109 1061 145 1060 144 1131 215
Total 4767 4947 544 4940 345 4853 552 4865 540 4976 519

Table 2.5: CDDs of Ankara

Cao Campbell Alaton Benth HBA
Actual Pre. Dif. Pre. Dif. Pre. Dif. Pre. Dif. Pre. Dif.

May 0 0 0 0 0 0 0 0 0 5 5
June 16 8 -8 0 -16 73 57 71 55 42 26
July 227 148 -79 47 -180 191 -36 190 -37 163 -64
August 166 159 -7 108 -58 143 -23 143 -23 174 8
September 17 4 -13 20 3 8 -9 9 -8 30 13
Total 426 319 107 175 257 415 125 413 123 414 116

When the tables investigated, it is seen that:

• Although winter months have higher variation HDD calculations were more accurate
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Table 2.6: CDDs of Chicago

Cao Campbell Alaton Benth HBA
Actual Pre. Dif. Pre. Dif. Pre. Dif. Pre. Dif. Pre. Dif.

May 66 3 -63 0 -66 9 -57 9 -57 52 -14
June 194 145 -49 55 -139 199 5 200 6 177 -17
July 444 299 -145 252 -192 342 -102 343 -101 301 -143
August 273 249 -24 253 -20 270 -3 270 -3 255 -18
September 78 59 -19 88 10 46 -32 45 -33 101 23
Total 1055 755 300 648 427 866 199 867 200 886 215

than CDD calculations for all methods. This is consistent with the literature.

• Related with the above result best predictions came to Chicago HDD values where
Chicago winter months have the higher variation.

• Best predictions for each group achieved by different models, which is considered as
best model for temperature depends on geography and time.

• Interestingly, the HBA, which is only based on average of CDD and HDD values
performed well in all cases. It has been thought that this maybe because of having
moderate levels of variation of variations. So that averages have a comparable predic-
tion power. This is consistent with the data fitting results of Table 2 where seasonality
+ trend parts of the models fitted data mainly without an additional increase from vari-
ation parts.

• A big portion of calculations underestimated both CDD and HDD values. This sit-
uation becomes more valid in case of CDD calculations. This suggests that models
underestimate the variation part. This is again consistent with the literature.

• Benth and Alaton Models produced highly close values. Within this context, when
absolute value of all error values summed the lowest value belongs to Benth Model
with a value of 1266. Second one is Alaton Models with a value of 1282. Others are
listed as; HBA = 1341, Cao Model= 1443, and Campbell Model= 1805.

2.2.5 Conclusions for Comparison of Existing Models

The calculations showed that the best model to predict temperature for temperature
based derivatives changes according to time and geography. So that all models must
be examined for their fit to data and then simulations must be run to select appropriate
one for specific location and timing. Although this makes pricing of temperature based
derivatives a complex one, it is still possible to find local prices by using existing
models. One advantage of this situation is that location specific entities would develop
or use products more suitable to their needs. On the other hand, a disadvantage would
be since products will become more location specific the illiquidity for the weather
derivatives will continue if not worsen.
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2.3 Properties of Temperature

After the comparison of the some of the existing models and having a non-conclusive
result, it has been made an extensive research on the literature to find other models
that may show better results than the compared models. Within this context, a wide
range of volatility models and more general models have been studied ranging from
parametric to non-parametric, from discrete-time to continuous-time models. These
research and additionally, investigation on the existing data revealed that temperature
has some important properties to consider. In the following, these properties are listed.

• Trend: There is a slowly moving upward trend in temperature. In almost all of the
cities a positive trend was captured as shown in Figure 2.8.
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Figure 2.8: Trend in Temperature of Ankara

• Seasonality: There is seasonality in temperature. Figure 2.9 shows existing season-
ality in temperature of Ankara.

• Mean reversion: It is not possible for daily temperature to deviate from mean tem-
perature for long terms. Again, a closer look at Figure 2.8 clearly shows existence of a
mean reversion property in temperature data.

• Auto-correlation: A day’s temperature is not independent than previous day’s tem-
perature. Also, it means that short-term behavior will differ from the long-term behav-
ior. A closer look at Figure 2.10 clearly indicates existence of autoregressive nature of
the data. This is also shown in Figure 2.11.

• Higher variation in winter and lower in summer: Another important feature of the
temperature data is that winter months have higher variation than summer months. This
is shown in Figure 2.7. In other words, variance of temperature rises in the winters and
declines in the summers.

•GARCH like disturbances: When mean temperature subtracted from the temperature
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Figure 2.10: Auto-correlation Function of Ankara

data volatility of temperature was obtained. An investigation on this volatility indicates
that there exist volatility clusters similar to asset returns. Secondly volatility evolves
over time in a continuous manner. Third volatility does not converge to infinity. Lastly,
the response of the volatility to big positive and big negative changes is different [51].

• Estimation limits of models: This one is actually not a property of temperature. It is
a property of the models that try to explain temperature such that all the models have
some limitations in explaining existing data and in predictions. This means it does
not matter whatever model is used, some of temperature data will not be included or
predicted by models.

• Jumps: Since there are limits in explaining the data and making predictions by the
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Figure 2.11: Partial Auto-correlation Function of Ankara

existing models it was found that there are out-of-the-bound values that were called
as jumps. Existing models fails to cover these jumps and it was found that prediction
error were mainly caused by these values.

• Locality: Temperature behaves locally that requires caution in making generaliza-
tions.

• Smoothness: Depending on the selection of the time span of the temperature data,
parameters tends to be differ. As time span gets longer parameters start to be smoother.

2.4 Proposal of a Temperature Model

Keeping all these information in mind, a model for temperature was offered as follow-
ing: To represent trend, seasonality, and mean reversion properties, a mean reverting
process was offered by using a periodic function to represent mean process similar to
[2]. To represent conditional structure of volatility ARCH process were selected af-
ter careful examination of wide range of models such as stochastic volatility models,
ARIMA etc. The problem for all these models were their incapacity to create volatility
clusters. By choosing an ARCH-type model, this problem was solved.

In addition, models with a Brownian motion suffer from the fact that the model will
not be able to represent data if there are values above a threshold. This is a known fact
as defined in theorem of “modulus of continuity”. In the literature, especially in econo-
metrics, there are methods to exclude these above-the-threshold values namely jumps.
But in the context of weather derivatives one must do the reverse. It means these jumps
must be included in the calculations. The reason for this is that the aim of a tempera-
ture model for weather derivatives is to find some index values like HDD, CDD. Since
these index values are a summation that collects departures from some base value, ex-
cluding jumps will result underestimation of the index. To overcome this problem an
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additional entity to represent jumps must be added. In addition, observations showed
that there are actually two types of jumps: slowly and fast mean reverting jumps. As a
result, two different types of jumps were included into the model.

As a note, observations on temperature data revealed an interesting property. In some
simulations, it was found that long term value of Hurst component, which is a tool from
fractional Brownian motion, in temperature is equal to 0,5. This value validates usage
of BM. But when short term Hurst component is considered, this value changes in a
band of 0,36 – 0,66. This really affects the success of the model by simply changing
the jump behavior. When Hurst component moves downward or upward from 0.5,
number of jumps increases. This is an important factor in considering how many data
to include in finding parameters of any model. This is due to the fact that having a long
time span for the data will result with smoothness such that finding lower values for
the parameters of any model.

2.4.1 The Temperature Model

The temperature model is a OU-process driven by a Levy process that contains a
Brownian motion (BM), and two mean reverting compound Poisson processes (CPP).
Volatility of Brownian motion is a process whose coefficients derived from ARCH
disturbances. The model is represented as following:

dTt = {dTt
dt

+ b(Tmt − Tt)}dt+ dLt (2.18)

Tmt is a cyclical process of temperature and represented in Equation 2.19.

Tmt = A+Bt+ C sin(wt+ ϕ) (2.19)

where w =
2π

365
and ϕ is the phase angle.

Differential of the driving Levy process dLt is defined as following:

dLt = σtdWt + dYt + dZt (2.20)

Brownian component of Lt will be approximated by the ARCH (1) model. To rep-
resent the temperature’s different jump structures, dYt and dZt are defined as quick
and slow mean-reverting OU processes driven by compound Poisson processes with
intensities of λY and λZ , respectively. A similar usage of a mean-reverting jump pro-
cess combination was found in the modeling of spot electricity prices in [23]. All the
components of the driving Levy process are assumed independent.

dYt = −αYtdt+ dQt (2.21)

where Qt =
∑NY

t
i=1 Ui, Ui are i.i.d. random variables and Ui ∼ N(µY , δ

2
Y ).
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and

dZt = −βZtdt+ dRt (2.22)

where Rt =
∑NZ

t
i=1 Vi, Vi are i.i.d. random variables and Vi ∼ N(µZ , δ

2
Z).

The solution of these non-Gaussian processes are [14]:

Yt = y0e
−αt +

∫ t

0

eα(s−t)dQs (2.23)

and

Zt = z0e
−βt +

∫ t

0

eβ(s−t)dRs (2.24)

Solution of the Equation 2.18 is given as follows:

d(Tt − Tmt ) = b(Tmt − Tt)dt+ dLt

Let Kt = Tt − Tmt . Then;

dKt = −bKtdt+ dLt where dLt = σtdWt + dYt + dZt.

Kt = e−btMt

Mt = ebtKt

dMt = bebtKtdt+ ebtdKt = bebtKtdt+ ebt(−bKtdt+ dLt)

dMt = ebtdLt

Mt = M0 +
∫ t

0
ebudLu

Kt = e−btMt

M0 = K0

Kt = e−btK0 + e−bt
∫ t

0
ebudLu

Tt − Tmt = e−bt(T0 − Tm0 ) + e−bt
∫ t

0
ebudLu

Tt = Tmt + e−bt(T0 − Tm0 ) + e−bt
∫ t

0

ebudLu (2.25)

To find value of a temperature-based derivative, one needs distribution of the under-
lying temperature defined in Equation 2.25. Nevertheless, there is no closed form
solution for the distribution of temperature. One way to address this problem is to use
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characteristic functions. Then by applying inversion techniques, it may be possible to
find required information.

In the following, methods to derive characteristic function of the temperature and ap-
plication of inversion techniques will be represented.

2.5 The Characteristic Function of the Temperature

To find characteristic function of the Equation 2.25, [14] will be followed. A summary
of the method offered by [14] can be found in the Appendix. As a first step, it is needed
to find characteristic exponent of the driving Levy process defined in Equation 2.20.
Characteristic exponent ψ(u) is given by EeiuL = eψ(u). The characteristic exponent
of the Equation 2.20 will be obtained through the solution of the L1. A closer look
to the Equation 2.20 reveals that it is composed of three independent processes. In
addition, dYt and dZt terms in Equation 2.20 have exactly same structure as the pro-
cesses defined in Equation A.1. In other words, the Equation A.1 represents solutions
of processes Yt and Zt. As a result the solution can be written directly by using the
Equations A.1, A.2, and A.3.

L1 =

∫ 1

0

σudWu + y0e
−α +

∫ 1

0

eα(s−1)dQs + z0e
−β +

∫ 1

0

eβ(s−1)dRs (2.26)

Now, the Equation 2.26 will be investigated part by part to find their characteristic
exponents.

2.5.1 Characteristic Exponent of Brownian Motion

Characteristic exponent of Brownian part will be:

ψBM(u) = −1

2
u2C (2.27)

where C = E(
∫ 1

0

√
σ2
t dWu)

2 =
∫ 1

0
σ2
udu

2.5.2 Characteristic Exponents of Jump Processes

In the current model, jump processes dYt and dZt have exactly the same structure
with the Equation A.1. Levy part of the Equation A.1 will correspond to Compound
Poisson processes (CPP) of the current model. Then, by the Equation A.3 and A.4,
characteristic exponent of CPP will be found. Consider following:

Let φf be characteristic function of jump size distributions.
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φf (w) =
∫∞
−∞ e

iwzf(x)dx = E[eiwx]

The characteristic exponent of CPP will be:

ψf (w) =
∫∞
−∞{e

iwx − 1}λf(x)dx = λ
∫∞
−∞{f(x)eiwx − f(x)}dx

ψf (w) = λ{
∫∞
−∞ f(x)eiwxdx−

∫∞
−∞ f(x)dx} = λ{φf (w)− 1}

Now, by the Equation A.4, characteristic exponent and characteristic function of jump
processes Yt and Zt will be as follows:

E{eiuY1} = exp{iuy0e
−α +

∫ 1

0
λY {φfY (ueα(r−1) − 1}dr

E{eiuZ1} = exp{iuz0e
−β +

∫ 1

0
λZ{φfZ(ueβ(r−1) − 1}dr

Because jump size distributions are normal, these expressions can be written more
explicitly as following:

E{eiuY1} = exp{iuy0e
−α + λY

∫ 1

0

{eiuµye
−α(r−1)−1

2
u2δ2Y e

2α(r−1)} − 1}dr (2.28)

E{eiuZ1} = exp{iuz0e
−β + λZ

∫ 1

0

{eiuµZe
−β(r−1)−1

2
u2δ2Ze

2β(r−1)} − 1}dr (2.29)

The integrals in the Equations 2.28 and 2.29 are hard to be evaluated, if not impossible.
As a result, an approximation method was developed as following:

Let A = iuµY e
−α and B =

1

2
u2δ2

Y e
−2α. Let eαr = g(r). Then;

E{eiuY1} = exp{iuy0e
−α + λY

∫ 1

0
{eAg(r)−Bg2(r) − 1}dr}

Further, let D(r) = Ag(r)−Bg2(r) where eD(r) = 1 +D(r) +
D2(r)

2!
+ ...

It is known that, being −∞ < x <∞, ex =
∑∞

n=0

xn

n!
<∞, such that |x| <∞. As a

result, |D(r)| <∞. Then, by using linear approximation,

E{eiuY1} = exp{iuy0e
−α + λY

∫ 1

0
{1 +D(r)− 1}dr}

E{eiuY1} = exp{iuy0e
−α + λY

∫ 1

0
{Ag(r)−Bg2(r)}dr}

E{eiuY1} = exp{iuy0e
−α + λYA

∫ 1

0
eαrdr − λYB

∫ 1

0
e2αrdr}

E{eiuY1} = exp{iuy0e
−α + λY iuµY e

−α(
eα − 1

α
)− λY

1

2
u2δ2

Y e
2α(

e2α − 1

2α
)}
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E{eiuY1} = exp{iuy0e
−α + λY iuµY (1−e−α

α
)− λY 1

2
u2δ2

Y (1−e−2α

2α
)}

Similarly, the Equation 2.29 was changed to:

E{eiuZ1} = exp{iuz0e
−β + λZiuµZ(1−e−β

β
)− λZ 1

2
u2δ2

Z(1−e−2β

2β
)}

Information regarding error of this approximation is given in the appendix.

The characteristic exponents of the jump processes will be:

ψY (u) = iuy0e
−α + λY iuµY (1−e−α

α
)− λY 1

2
u2δ2

Y (1−e−2α

2α
) (2.30)

ψZ(u) = iuz0e
−β + λZiuµZ(1−e−β

β
)− λZ 1

2
u2δ2

Z(1−e−2β

2β
) (2.31)

2.5.3 Characteristic Function of the Temperature

Finally, the characteristic function of the temperature model is ready to be written
explicitly. By the Equation A.4,

E{eiuTt} = exp{iu(Tmt + e−bt(T0 − Tm0 )) +
∫ 1

0
ψT (ueb(s−t))ds}

where∫ t
0
ψT (ueb(s−t))ds = −

∫ t
0

1
2
u2e2b(s−t)Cds+

∫ t
0
iueb(s−t)y0e

−αds+∫ t
0
λY iue

b(s−t)µY (1−e−α
α

)ds−
∫ t

0
λY

1
2
u2e2b(s−t)δ2

Y (1−e−2α

2α
)ds+∫ t

0
iueb(s−t)z0e

−βds+
∫ t

0
λZiue

b(s−t)µZ(1−e−β
β

)ds−
∫ t

0
λZ

1
2
u2e2b(s−t)δ2

Z(1−e−2β

2β
)ds∫ t

0
ψT (ueb(s−t))ds = −1

2
u2C(1−e−2bt

2b
) + iuy0e

−α(1−e−bt
b

) + λY iuµY (1−e−α
α

)(1−e−bt
b

)−
λY (1

2
)u2δ2

Y (1−e−2α

2α
)(1−e−2bt

2b
) + iuz0e

−β(1−e−bt
b

) + λZiuµZ(1−e−β
β

)(1−e−bt
b

)−
λZ(1

2
)u2δ2

Z(1−e−2β

2β
)(1−e−2bt

2b
)

More explicitly,

E{eiuTt} = exp{iu(Tmt + e−bt(T0 − Tm0 )) − 1
2
u2C(1−e−2bt

2b
) + iuy0e

−α(1−e−bt
b

) +

λY iuµY (1−e−α
α

)(1−e−bt
b

)− λY 1
2
u2δ2

Y (1−e−2α

2α
)(1−e−2bt

2b
) + iuz0e

−β(1−e−bt
b

) +

λZiuµZ(1−e−β
β

)(1−e−bt
b

)− λZ 1
2
u2δ2

Z(1−e−2β

2β
)(1−e−2bt

2b
)}

or,

E{eiuTt} = φT (u) = exp{iu(Tmt + e−bt(T0 − Tm0 ))+

iu(1−e−bt
b

){y0e
−α + λY µY (1−e−α

α
) + z0e

−β + λZµZ(1−e−β
β

)}

− 1
2
u2(1−e−2bt

2b
){C + λY δ

2
Y (1−e−2α

2α
) + λZδ

2
Z(1−e−2β

2β
)}} (2.32)
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2.6 Measuring a HDD by Using Characteristic Function

In the rest of the study, the focus will be on measuring HDDs. It is easy to transport
the calculations into other index types. In the current case, inversion techniques will
be used to find value of a HDD and its distribution. Thereon, CHDD values will be
obtained.

2.6.1 Approximating Density Function of the Temperature

First inversion formula will be applied to characteristic function of the temperature
defined in Equation 2.32. Before applying inversion formula, following shortcuts that
derived from the Equation 2.32 will be defined and used. Let f(x) and φ(z) be density
function and characteristic function of temperature, respectively.

T ∗ = Tmt + e−bt(T0 − Tm0 ) (2.33)

M = (1−e−bt
b

){y0e
−α + λY µY (1−e−α

α
) + z0e

−β + λZµZ(1−e−β
β

)} (2.34)

M∗ = T ∗ +M (2.35)

V = (1−e−2bt

2b
){C + λY δ

2
Y (1−e−2α

2α
) + λZδ

2
Z(1−e−2β

2β
)} (2.36)

Then, by inversion formula:

f(x) = 1
2π

∫∞
−∞ e

−izxφ(z)dz

f(x) = 1
2π

∫∞
−∞ e

−izxeizM
∗−1

2
z2V dz

f(x) = 1
2π

∫∞
−∞ e

−iz(M∗−x)−1
2
z2V dz

f(x) = 1
2π

∫∞
−∞ e

−1
2
z2V+iz(M∗−x)dz

By completing the square;

f(x) = 1
2π

∫∞
−∞ e

−V
2

(z−
i(M∗−x)

2V
)2−

(M∗−x)2

4(
V
2

) dz

Let u = i(M∗−x)
2V

.

f(x) = e

−
(M∗−x)2

4(
V
2

)

2π

∫∞
−∞ e

−V
2
u2dz
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f(x) = e

−
(M∗−x)2

4(
V
2

)

2π

√
2π
V

, by using the identity
∫∞
−∞ e

−ax2dx =
√

π
a

f(x) = 1√
2πV

e−
(x−M∗)2

2V (2.37)

2.6.2 Inversion Formula Applied to HDD

The main motivation behind option valuation is to find expected value of a contingent
claim. In other words, value of a contingent claim is its expected value obtained from
payoff function of the claim. When the HDDs are considered it is clear that they are
contingent claims on how temperature deviates from a base temperature. As a result,
the aim of this part is to find expected value of a HDD to be based in calculations
regarding pricing. One way to do this is obtained by, first, finding Fourier transform of
the HDD. Then, inverse Fourier transform will be applied to both Fourier transform of
a HDD and characteristic function of the temperature [34].

2.6.2.1 Fourier Transform of a HDD

For a given day, HDD is calculated by Equation 2.2. Fourier transform of this expres-
sion can be found as following:

Let x = Tt, w(x) is HDD’s payoff function given in the Equation 2.2, Base = B, and
ŵ(z) = F [w(x)], z ∈ C be its generalized Fourier transform. Then,

ŵ(z) =
∫∞
−∞ exp(izx)w(x)dx

ŵ(z) =
∫ B
−∞Be

izxdx−
∫ B
−∞ xe

izxdx

By using integration by parts,

ŵ(z) = Beizx

iz

∣∣B
−∞ −

xeizx

iz

∣∣B
−∞ −

eizx

z2

∣∣B
−∞

For the convergence, it must be Im (z) < 0.

ŵ(z) = −e
izB

z2
, Im (z) < 0 (2.38)

2.6.2.2 Inversion Applied to the Equation 2.38 and Characteristic Function of
the Temperature

In this case, inversion will be applied to ŵ(z)φT (−z), where ŵ(z) is defined in the
Equation 2.38 and φT is the characteristic function defined in the Equation 2.32.
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Let temperature in Equation 2.25 defined in shorthand notation as Tt = T ∗ + Λt,
where T ∗ is defined as in Equation 2.33 and Λt = e−bt

∫ t
0
ebudLu , which is derived

from Equation 2.25. Characteristic function of the Λt can be obtained from Equation
2.32 and be written as;

φΛ(u) = exp
(
iu(1−e−bt

b
){y0e

−αλY µY (1−e−α
α

) + z0e
−β + λZµZ(1−e−β

β
)}

− 1

2
u2(1−e−2bt

2b
){C + λY δ

2
Y (1−e−2α

2α
) + λZδ

2
Z(1−e−2β

2β
)}
)

Then,

E[HDD] = E[ 1
2π

∫ iv+∞
iv−∞ e−izTtŵ(z)dz] where E represents expectations.

E[HDD] = 1
2π
E[
∫ iv+∞
iv−∞ e−iz(T

∗+Λt)ŵ(z)dz]

E[HDD] = 1
2π
E[
∫ iv+∞
iv−∞ e−izT

∗
e−izΛtŵ(z)dz]

By Fubini theorem, interchanging the order of integration will give;

E[HDD] = 1
2π
E[
∫ iv+∞
iv−∞ e−izT

∗
φΛ(−z)ŵ(z)dz]

To find an appropriate contour, consider following;

According to Cauchy’s Theorem, if f(z) is analytic everywhere within a simply-
connected region, then;

∮
C
f(z)dz = 0 for every simple closed path C lying in the

region of analyticity. Consider rectangular contour in complex plane as shown in Fig-
ure 2.12. Then,

Figure 2.12: Cauchy’s Theorem∮
C1
f(z)dz +

∮
C2
f(z)dz +

∮
C3
f(z)dz +

∮
C4
f(z)dz = 0

It can be shown that, R→∞,
∮
C2
f(z)dz = 0 and

∮
C4
f(z)dz = 0. It can be said that;∫ iv2+∞

iv2−∞ f(z)dz = −
∫ iv1−∞
iv1+∞ f(z)dz =

∫ iv1+∞
iv1−∞ f(z)dz
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By Equation 2.38, Im (z) < 0. In addition, by Cauchy’s Theorem, it is possible to
select any line parallel to the x-axis. Let z = u + iv. For ease, it is selected that
v = −1. Now, the problem becomes, by using the contour shown in Figure 2.13, to
evaluate following integral:

Figure 2.13: Selected contour

E[HDD] = 1
2π

∫ −i+∞
−i−∞ e−izT

∗
φΛ(−z)ŵ(z)dz where z = u− i.

E[HDD] = 1
2π

∫
R
e(−1−iu)T ∗

φΛ(−u+ i)ŵ(u− i)du

E[HDD] = e−T
∗

2π

∫
R

e−iuT
∗
φΛ(−u+ i)ŵ(u− i)du (2.39)

Nevertheless, it was not possible to evaluate this integral analytically. As a result,
the elliptic package of R statistical software [22] was applied to evaluate the integral
numerically. The results indicated that the integral is equal to the B −M − T ∗. So, it
was concluded that;

E[HDD] = B −M − T ∗ (2.40)

2.7 Finding CHDD

Previous result was about HDD of a single day. Temperature options are generally
written on for a month or a season. To find cumulative HDD values for a period,
independence of HDDs for each day will be considered. It was found that, with linear
approximation, HDDs follow normal distribution with mean M∗ and variance V . It is
known that sum of independent random variables with a normal probability distribution
corresponds to a new random variable that follows again normal distribution with a new
mean that equals to sum of means and sum of variances. As a result, for P days, the
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mean of the CHDD will be PB − PM − PT ∗ and the approximated distribution will
be;

CHDD ∼ N(PB − PM − PT ∗, PV ) (2.41)

2.8 Numerical Estimates

As part of the study, the success of the temperature model offered has been tested in
terms of representing the data and forecasting. Within this respect following steps were
conducted.

Data: Temperature data is available for 12 cities covering a time span of 38 years
starting from 1974 to 2011. In the first part of the estimates 37 years of data were
used to estimate parameters. The temperature data of year 2011 was used to make
one-year-ahead predictions.

Design: Simulation was designed to be run in two dimensions. First one is to be run
on different cities. Second dimension is designed to capture changes in the parameters
through time for each city. Within this respect, simulations were started to be run by
using 5 years initially. Then they continued by including one more year for each turn.
In each turn error estimates, HDD and CDD estimates were calculated. Results were
compared with actual HDD and CDD values. A turn, on the other hand, consisted
of 10000 runs. At the end of runs average value of 10000 runs were calculated. In
other words, we have started with 5 years of data. By using this data parameters were
estimated. Then, 10000 runs were conducted and their average was calculated. The
whole process were repeated by adding one more year of data reaching 6,7,8,. . . years
of data. Finally, parameters of the year that offered best estimates of the HDDs and
CDDs were chosen to be used in one-year-ahead predictions.

Discretization: Discretization was done by using Euler approximation [27, 52, 20] as
following:

Tt+1 = Tt+T
m
t+1+Tmt +b(Tmt −Tt)+Ht+1+Yt−αYt+(Qt+1−Qt)+Zt−βZt+(Rt+1−Rt)

(2.42)
where Ht+1 =

√
γ0 + γ1Htεt, γ0 and γ1 are ARCH parameters and ε ∼ N(0, 1)

Parameter Estimation: Parameters of Tmt were found by least squares method. To
make this, Yt = a1 + a2t + a3sin(wt) + a4cos(wt) was fitted to temperature data
[2]. Then, parameters were obtained by A = a1, B = a2, C =

√
a2

3 + a2
4, and

ϕ = arctan(a4
a3

)− π.

Mean reversion parameter b were estimated as b̂ = −log
(∑n

i=1

[(Ti−1−Tmi−1)(Ti−Tmi )]

σ2
i−1∑n

i=1

[(Ti−1−Tmi−1)2]

σ2
i−1

)
by

[5].
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Mean reversion parameters of jump parts were estimated as α̂ = 1 and
β̂ = −log

(∑n
i=1 xi−1xi∑n
i=1[X2

i−1]

)
[27].

Simulation of jumps: Having a different structure, jumps were simulated separately
and then the results were added to discretized model. For this aim, first, jumps were de-
tected. To do this, after removing the mean from the actual data, the values above two
standard deviations were selected. These jumps then, separated into two categories as
single jumps and more than one jump to constitute fast and slow mean reverting jumps
respectively. Sample means and sample standard deviations were found to represent
jump sizes. In addition, intensities were found by λ̂ = no.ofjumps

no.ofobservations
. Then, 10000

runs were realized. In each run, first, jump times were found by using intensities.
Then, on each jump time, random draws were realized by using means and standard
deviations obtained from data. Finally, discretized jumps were added into discretized
jump model.

Parameter estimates for 12 cities were shown in the Appendix. Moreover, R scripts
that were written to find parameter estimates were included in the Appendix. Using
these parameter estimates, one-year-ahead simulations were conducted to find predic-
tion power of the current model along with three other models. In addition, HDD pre-
dictions were calculated based on the Equation 2.40. Following results were obtained
and shown in Table 2.7 and Table 2.8.

Table 2.7: One-year ahead prediction and error values for HDDs

City Actual The Model Error Campbell Error Benth Error HBA Error Eq. 40 Error
Ankara 6047 4980 -17.65% 6203 2.58% 5377 -11.08% 5940 -1.77% 6398 5.81%
Beijing 5880 5705 -2.98% 5571 -5.26% 5039 -14.30% 5319 -9.54% 6218 5.75%
Cairo 573 322 -43.81% 746 30.19% 353 -38.39% 701 22.34% 718 25.31%
Chicago 5980 5814 -2.78% 6098 1.97% 5849 -2.19% 6337 5.97% 3560 -40.67%
Dallas 2151 1777 -17.39% 2202 2.37% 1767 -17.85% 2176 1.16% 1118 -48.02%
Istanbul 3607 2872 -20.38% 3808 5.57% 2972 -17.61% 3485 -3.38% 4520 25.31%
Los Angeles 1441 1250 -13.26% 1127 -21.79% 1119 -22.35% 1244 -13.67% 1608 11.59%
New York 4378 4391 0.30% 4699 7.33% 4516 3.15% 4683 6.97% 4949 13.04%
Paris 3940 4988 26.60% 5006 27.06% 4190 6.35% 4781 21.35% 4902 24.42%
Sydney 1277 1000 -21.69% 1381 8.14% 1002 -21.54% 1343 5.17% 1086 -14.96%
Tokyo 2925 2648 -9.47% 3238 10.70% 2671 -8.68% 764 -73.88% 3309 13.13%
Washington 3572 3758 5.21% 3751 5.01% 3724 4.26% 3851 7.81% 3749 4.96%

Table 2.8: One-year ahead prediction and error values for CDDs

City Actual The Model Error Campbell Error Benth Error HBA Error
Ankara 426 742 74.18% 175 -58.92% 412 -3.29% 417 -2.11%
Beijing 1576 1542 -2.16% 1214 -22.97% 1647 4.51% 1447 -8.19%
Cairo 3221 4243 31.73% 2763 -14.22% 3427 6.40% 3218 -0.09%
Chicago 1071 771 -28.01% 647 -39.59% 866 -19.14% 909 -15.13%
Dallas 3585 2556 -28.70% 2353 -34.37% 2903 -19.02% 2792 -22.12%
Istanbul 1428 1297 -9.17% 792 -44.54% 1224 -14.29% 1089 -23.74%
Los Angeles 426 490 15.02% 569 33.57% 495 16.20% 681 59.86%
New York 1297 1104 -14.88% 906 -30.15% 988 -23.82% 1046 -19.35%
Paris 264 118 -55.30% 63 -76.14% 189 -28.41% 314 18.94%
Sydney 1308 1251 -4.36% 840 -35.78% 1206 -7.80% 1157 -11.54%
Tokyo 1832 1608 -12.23% 1282 -30.02% 1716 -6.33% 434 -76.31%
Washington 1927 1739 -9.76% 1451 -24.70% 1503 -22.00% 1609 -16.50%

Analysis of numerical estimates:
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• Best estimates of HDDs and CDDs were obtained for different time periods as shown
in the Appendix. This is mainly a characteristic of the temperature as it changes in its
long-term behavior. It can be said that it is not a good way to use all the existing data
for a city. Instead, every location must be scanned and evaluated for different time
periods to obtain best prediction results.

• The current model is equally successful in HDD and CDD predictions.

• Having a good estimate of HDD and CDD values does not necessarily correspond to
best fit of the model to temperature data. Main motivation behind this result might be
that inclusion of jumps is ending up a better estimation of index values while deterio-
rating the fit of the model to the data.

• Current model showed its capacity in changing conditions of temperature data. For
example, in Chicago both of the jump types were statistically significant and the model
predicted HDDs accurately for Chicago. On the other hand, Tokyo did not have any
jumps during entire data span and the current model was still able to make accurate
predictions for HDDs in Tokyo.

• Interestingly, Historical Burn Analysis that contains long term HDD and CDD av-
erages were successful in predictions. This is mainly due to the fact that temperature
does not have change in large especially for certain locations.

•As expected, approximated HDD calculations obtained from Equation 2.40 were less
accurate than simulations. Nevertheless, predictions based on Equation (40) were still
successful. Estimated HDDs of Los Angeles and Washington were better than any
other model.

• Final comment: There are 125.000 weather stations around the world. In this com-
parison only 12 stations were compared. As a result, it is impossible to say a model is
better than all others. However, it was concluded that the current model and Equation
2.40 are successful in certain locations and for certain time periods and have a value to
be evaluated.
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CHAPTER 3

PRICING

Classical option valuation is based on the idea of risk-neutral valuation. The process
is that, instead of usage of real probabilities to obtain asset price averages, risk-neutral
probabilities that are also called as Q-probabilities are found that eliminates the need
to investigate risk-aversion behavior of the market participants. This permits to define
a unique price for the derivative based on this asset. If these Q-probabilities were not
defined it might not be possible to define a unique price because each market partici-
pant has a unique risk aversion behavior that leads different price perceptions for the
asset price that also lead different price perceptions for the derivative written on this
asset. After defining Q-probabilities, a hedge portfolio is composed of a riskless and a
risky asset that, for each time increment, will mimic the behavior of the derivative.

The setup with Q-probabilities and the hedge portfolio cannot be realized without the
concept of complete market. In practical terms, this means that, for each possible value
of the asset within the described time horizon, there exist potential buyers and sellers
such that any amount of the asset and resultantly any hedge portfolio can be realized.

In the current case of pricing temperature-based derivatives, there are crucial differ-
ences from the mentioned pricing method. These differences may be concentrated into
two questions:

•What will happen when the underlying, temperature, is not traded?

• Then, what will be the market price of risk?

These two differences make WD market incomplete [18]. When the market is in-
complete one cannot apply no-arbitrage pricing since there is no way to replicate the
portfolio (or payoff of a portfolio) by portfolio of basic securities [49]. As a result,
there is no generally accepted pricing formula. This led some ad hoc solutions to be
used in pricing. Some of the current pricing methods can be listed as following:

• Historical Burn analysis: To estimate a fair value, historical burn analysis calculates
the average of realized payoffs. For example, to find the value of a put option written
on CHDD for January, method considers last 10-20 years of past data for realized
CHDDs.

• Modeling and Simulating Weather Events: Focusing on a certain weather events,
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models and simulations are run to find expected values of the event. First step is to de-
velop a model for the process. After specifying the model, expectation of discounted
future payoff is calculated to be used to price contingent claims. But this process is
path-dependent which means one needs Monte Carlo simulations since it is not pos-
sible to find closed form solutions. Then a large number of simulations are run to
determine possible average simulated payoffs that are further discounted for the time
value of money. As easily seen, the success of this process is dependent on temperature
process.

• Dynamic Valuation Methods: These are mainly attempts to apply risk-neutral valua-
tion into temperature-based derivatives. An example can be found in [2].

Apart from current pricing methods, current study offers a different approach based on
an analysis of “Who needs a temperature-based derivative?” and “Under what condi-
tions an economic entity trades a temperature-based derivative?” By answering these
questions, it will also be possible to find some solutions for the cases of non-traded
underlying and related market price of risk. The approach is explained and presented
later in the chapter as follows:

• First step contains an answer to the question “Who needs a temperature-based deriva-
tive?” Within this concept, temperature risk will be defined. It will be shown that
certain businesses are affected from temperature in an adverse way and need hedging.

• In second step, the temperature risk and classical asset risk will be compared to
reveal differences between them. In addition, it will be presented that the discussion
regarding market price of temperature risk is inconclusive.

• A fair value for a temperature-based derivative will be presented with real probabili-
ties to be used for hedging purposes.

• It will be shown that the value of a temperature-based derivative ends up with super-
hedging if risk-neutral probabilities were used.

• By considering inconclusive results regarding market price of temperature risk and
inappropriateness of usage of risk-neutral probabilities in valuation of temperature-
based derivatives, a new approach for pricing was offered. The new approach is based
on the idea that the temperature risk is dependent on the business type such that it
is personal. In return, this personal risk will be reflected in a personal price of the
derivative. Within this respect, a company with an objective of profit maximization is
considered to form the derivative price. The company is evaluated to reveal “Under
what conditions an economic entity trades a temperature-based derivative?”

3.1 Measuring Temperature Risk

First step is to define temperature risk. There seems to be a general consensus on the
definition of temperature risk. There is an adverse effect of temperature on business,
and this effect reveals itself in volume. In simple terms, temperature risk is volume
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risk; it affects sales [8].

Once having identified temperature risk, the problem arises of how to measure it.
Change in expected sales is a good candidate to begin with. The main problem with
measuring change in expected sales is that many other factors may cause a change in
expected sales. In other words, temperature risk needs to be isolated. In the domain
of derivatives based on temperature, this problem may be the least discussed. In any
case, a multivariate linear regression method to isolate the effect of temperature on
sales can be used [44]. Another study that deals with measuring weather risk can be
found in [50]. Next is to consider how a change in sales will be reflected in profits of
the company.

The next idea is not an observation but rather a requirement for any company to sur-
vive. It will be assumed that each economic entity is able to measure its exposure to
temperature.

At this point, the focus will be on a single company with an obvious exposure to tem-
perature to reveal the relationship between temperature index and sales of the company.
As a candidate company, consider a retail gas seller where the company is concerned
about sales and profit of the next January. For this type of a company, it is expected
that a relationship between sales and temperature will exist. Some examples for exis-
tence of this relationship can be found in [44, 42]. In summary, for the mentioned gas
company, it is expected a relationship between its sales and temperature as shown in
following figure:

Figure 3.1: Relationship Between Sales and Temperature

By using Equation 2.2, a new form of Figure 3.1 will be established in terms HDDs
derived from temperature as shown in Figure 3.2.

For this company, it is now possible to reveal the relationship between sales and HDDs
by using regression analysis such that, for each additional HDD, there will be an in-
crease in sales. With the additional assumption that this relationship will continue in
the near future, another relationship can be constructed between expected sales (ES)
and CHDD as shown in the following equation:
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Figure 3.2: Relationship Between Sales and HDDs

ES = a+ bCHDD (3.1)

where ES is expected sales.

An important note for the the Equation 3.1 is that CHDD is a stochastic value in reality,
but in this case a corresponding value is assumed for each possible value of CHDD.
This actually shows a payoff function where for each CHDD there is a certain amount
of sales.

The above setup is shown in Figure 3.3 where the Equation 3.1 corresponds to ES Line
in the figure.

Figure 3.3: Relationship Between Sales and CHDD

To ascertain the magnitude of the effect of temperature, some additional assumptions
are made regarding cost and revenue functions of this company. For simplicity, linear
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cost and revenue functions will be used as in the following equations.

ExpectedCost = C = Θ + ExpectedSales (3.2)

where Θ is a constant.

ExpectedRevenue = R = Price ∗ ExpectedSales (3.3)

where Price is the constant price of the commodity sold by the company and Price >
1.

Therefore, profits of the company can be written as the following equation:

ExpectedProfit = P = R−C = Price∗ES−Θ−ES = ES(Price−1)−Θ (3.4)

The aim is to construct a relationship between CHDD and profit functions to ascertain
magnitude of effect of temperature on the company. This relationship is shown Figure
3.4 with the assumption that Θ > a ∗ Price.

Figure 3.4: Relationship Between Expected Profit and CHDD

What is achieved by Figure 3.4 was that it is constructed a relation between each
CHDD and profit of the company such that every CHDD value now represents a mone-
tary value in terms of positive and negative profits. In the figure, there is a deterministic
relation between each level of CHDD and a certain level of profit. What is unknown is
that what will be the CHDD value for the proposed period.

Now, the risk of the company can be defined as having a low value of CHDD for a
certain period that leads to a loss. In other words, the risk of the company will fall left
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of CHDD1 and will be covered by P Line. This possible loss will be referred to as
temperature risk (TR) and is equal to the area covered by 0CHDD1a(Price−1)−Θ.
This is actually the total TR (TTR) and can be realized if CHDD for the next January
becomes zero. In reality, the CHDD for the next January is not known because it is a
stochastic value. Therefore, TR can be written as:

TR = TTR−
∫ chdd

0

PdCHDD =

∫ CHDD1

chdd

PdCHDD (3.5)

where chdd is unknown value of CHDD for a certain period.

After defining temperature risk, the focus can be shifted to differences between classi-
cal asset risk and temperature risk. The market price of temperature risk will also be
evaluated.

3.2 Temperature risk vs. classical asset risk

To reveal the differences between temperature-based derivatives and classical deriva-
tives, consider the underlying of an ordinary derivative namely stock and the under-
lying of a temperature-based derivative namely CHDD. Assume that they both have a
value of 100 at present time. It is calculated that they both have equal probabilities for
an up or down movement after a certain period.

At the first sight, both of the underlying items are similar, at least in their values and in
their expected values. Besides, there are some fundamental differences:

• First, stock is about having something. On the other hand, temperature is about
something is exposed to. Besides, to continue, assume that they represent the same
thing.

• For the owner of the stock, a decrease in the price will mean a loss in wealth of
the owner. In case of CHDD, a decrease in index value does not necessarily mean
a decrease in the wealth. For example, for a gas company, a decrease in the index
value means a decrease in the sales. But, at the same time, this decrease may result an
increase in the sales of a beverage company.

• In addition, a decrease of the price of the stock from $100 to $50 means a decrease
that equals to $50 for the owner. Besides, a decrease in the index value from 100 to 50
may result an unknown amount of loss for the mentioned gas company. This fact also
requires considering the well-known concept of ‘risk aversion in the small’ and ‘risk
aversion in the large’. These concepts emphasize the fact that people show different
risk aversion behavior when there is a change in the amount of risk exposed.

• One share of Intel Inc. means the same thing for anybody who owns it in every part
of the world. On the other hand, index value of CHDD will have a meaning only for
the periphery of the weather station where temperature is measured.
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These differences, simply, imply that the amount of temperature risk is related with
business type. It is something personal for each of the economic entities. In fact, this
conclusion will lead to a personalized price as described at the end of this chapter.

On the other hand, although different in nature, the temperature risk still be investigated
in terms of market price of risk. It was found that there are studies in the literature
that investigate risk premiums for weather derivatives with inconclusive results. For
example, [13] examines the efficiency of weather futures on CME in HDD and CDD
futures. They stated that risk premiums varied from negative to positive values across
cities.

One interesting perspective for the market price of risk about temperature-based deriva-
tives comes from Hull [26] and Turvey [53]. Hull [26] states that weather derivatives
have no systemic risk. Consequently, the payoffs of these claims can be calculated with
real probabilities. Turvey [53] also developed and supported this idea. He suggested
using CAPM to estimate the market price of risk.

These different approaches regarding market price of temperature risk supported the
idea that considers trading behavior of a company that is exposed to temperature risk
instead of considering risk attitudes of the same company in valuation of a temperature-
based derivative.

Next section offers a value for an option written on CHDD with real probabilities that
can be used in hedging the temperature risks.

3.3 An Approximated Fair Price of Temperature Based Put Option

Under linear approximation, it was found that temperature distributed normally with
mean M∗ and variance V as defined in the Equations 2.35 and 2.36, respectively.
Consider following:

CHDD = HDD of Day 1 +HDD of Day 2 + ..+HDD of Day P

In addition, the idea of independence of HDDs will be followed. Then the distribution
function will beCHDD ∼ N(PB−PM∗, PV ). LetK, which may be set toCHDD1

from the Figure 3.4, is the strike value, x = CHDD, and f(x) is the probability
density function of CHDD. Then, the value of a put option on CHDD will be equal to:

E[max(K − x, 0)] =
∫ K
−∞(K − x)f(x)dx

E[max(K−x, 0)] = K√
2πPV

∫ K
−∞ e

−
(x−PB+PM∗)2

2PV dx− 1√
2πPV

∫ K
−∞ xe

−
(x−PB+PM∗)2

2PV dx

Let u = x− PB + PM∗, then;

E[max(K − x, 0)] = K−PB+PM∗
√

2πPV

∫ K−PB+PM∗

−∞ e−
u2

2PV du

− 1√
2πPV

∫ K−PB+PM∗

−∞ ue−
u2

2PV du
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Let N(x) =
∫ x
−∞ f(x)dx = P (X ≤ x). In other words N(x) is the probability that

a variable with a mean ofPB − PM∗ and a variance of PV is less than x, the first
integral after the equality is:

(K − PB + PM∗)N(K − PB + PM∗)

The second integral after equality is equal to
√
PV√
2π
e
−A2

2PV where A = K − PB + PM∗.
The solution will be

E[max(K − x, 0)] = (K − PB + PM∗)N(K − PB + PM∗) +
√
PV√
2π
e
−A2

2PV

Now, when this result is multiplied with tick value, which is a pre-agreed monetary
value that converts each CHDD into money and discount the result with risk-free rate,
price of the option will be obtained.

E[max(K−x, 0)] = e−r(T−t)
[
(K−PB+PM∗)N(K−PB+PM∗)+

√
PV√
2π
e
−A2

2PV
]
∗tick
(3.6)

What is found with the Equation 3.6 is a fair price based on real probabilities. It may
be also called as actuarial price since it is based on expected values.

Next section will show that option value will be super-hedging value if risk-neutral
probabilities were used.

3.4 Risk-Neutral Pricing

In this section, a put option written on CHDD with a strike value of K will be priced.
Besides, CHDD is composed of HDDs. A closer look at HDDs reveals that realizations
of HDDs can be represented by binomial model such that if HDD is realized there will
be an up movement and otherwise there will be 0. As a result, binomial model for
option pricing can be used for this case. The calculations were done by the book of
Bjork [6]. For the up movement, the best candidate for HDD will be the mean value
of an HDD, which was found in the Equation 2.40. Let U = Equation 2.40. Then,
following representation can be defined.

For each day, there will be either an up movement that equal to mean HDD or a down
movement that adds nothing to the cumulative index. The probability for the up move-
ment, pu is found by

∫ B
−∞ f(x)dx, while the probability of down movement is equal

to pd = 1 − pu. Let risk-free rate R = 0. The model satisfies the condition of being
arbitrage-free in the form of d ≤ 1 + R ≤ u by definition. In addition, martingale
measure for the current model is defined as CHDDt = EQ[CHDDt+1]. The prob-
lem arises when it is calculated the risk neutral probabilities. Because the CHDD
is either up or remain same, the only possibility to satisfy the condition CHDDt =
EQ[CHDDt+1] is to set risk neutral probability for up to 0 and risk neutral probability
for down to 1 i.e. qu = 0, qd = 1 if R = 0. In addition, the value for the up movement

44



Figure 3.5: Construction of CHDD Tree

represented by u must be changed for each node of the binomial tree and the d that
represents down movement must be equal to 1 for each node in the tree. If it is set that
K = PU , under the given setup, the value of the option will be equal to K itself.

The reasons behind the above result are due to the fact that CHDD is a summation
process and certainly a sub-martingale compared to underlying of an ordinary option.
The only possibility to obtain martingale form of the underlying process CHDD is then
to consider the whole summation process and reflect it as a constant.

One interesting implication of this result can be found with re-investigation of Figure
3.4. Figure 3.6 is constructed with the combination of Figure 3.4 and Figure 3.5.

In the figure, each level of TR is connected to up movements created by HDDs. This
time TR becomes a super-martingale and when TR is converted into a martingale it
will be equal to TTR. These ideas supported with following propositions.

Proposition 3.1. Temperature Risk (TR) is a super-martingale.

Proof. Assume (Ω,F ,P) be a probability space. Ω = [0, CHDD1],F = σ(CHDD),
CHDD = 0. . . CHDD1, TR is adapted to F , P is Gaussian with (µ, σ2). It is ob-
vious that CHDD values obtained at time horizon do not fit perfectly into a Gaussian
distribution. However, they were assumed as Gaussian by Equation 2.37. Let ct be any
CHDD value between 0 and CHDD1, and s < t < CHDD1. P(ct) is profit function
evaluated at ct. Then E[TRt] =

[ (CDDD1−E(ct))E[Pct ]
2

]
and E[TRs] can be written sim-

ilarly. Here, E[Pct ] = Price ∗ a + Price ∗ b ∗ E(ct) − Θ − a − b ∗ E(ct). As seen
from the equations, the differences come from E[ct] and E[cs]. Because these pairs are
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Figure 3.6: Evolution of TR

obtained from a cumulative process, and for each time step, expected value of HDD
is positive, E[ct] > E[cs] at F0. Additionally, E[Pct ] > E[Pcs ] (corresponding to a
lower level of loss), and ct > cs. Then, E[TRt] < E[TRs]. Given Fs, E[ ctFs ] > cs and
E[TRtFs ] < TRs.

Proposition 3.2. Total Temperature Risk (TTR) is a martingale.

Proof. The same probability space defined in Proposition 3.1 is still valid. TR value
is calculated as the difference between areas under revenue and cost functions sub-
tracted from TTR such that, for any CHDD value, ct < CHDD1, and E[TRt] =
CHDD1(a(Price−1)−Θ)

2
− ((a(Price−1)−Θ)+E[Pct ])E(ct)

2
. By Proposition 2.3.1 of Lamber-

ton [32] also referred to as Doob decomposition, super-martingales can be written as
SMt = Mt − At, where SMt is a super-martingale process, Mt is a martingale, and
At is an non-decreasing sequence. The above equation exhibits the same structure:
CHDD1(a(Price−1)−Θ)

2
is a constant being a martingale by definition,

((a(Price−1)−Θ)+E[Pct ])E(ct)

2
is an increasing function. Similarly, E[TRs] can be written

for any cs < ct < CHDD1 and
| ((a(Price−1)−Θ)+E[Pct ])E(ct)

2
| > | ((a(Price−1)−Θ)+E[Pct ])E(ct)

2
|

The importance of the propositions lies in the fact that a company who wants a hedge
for a possible risk with a certain amount will be willing to pay for the hedge an amount
related with the magnitude of the risk. Nevertheless, in the current case with risk-
neutral probabilities, it is not the actual risk but the total risk is considered for the
hedge. For example, assume that the actual risk with real probabilities are calculated
as the area covered by 2UP2UCHDD1. What is expected in this case is that if com-
pany enters into a transaction for a put option written on CHDD with a strike value
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of CHDD1 it will be willing to pay an amount related with the mentioned area. But
instead, the risk neutral valuation forced the company to consider the total risk instead
of the mentioned area. This means that the company will use total risk in pricing the
put option. This example shows the importance of usage of real probabilities in risk
measuring.

The situation described in previous paragraph is a known subject called as super-
hedging. It means in simple words that hedging the total risk. In a pricing manner,
the price of the hedge will be equal to total risk. Using the total risk instead of actual
risk will definitely prevent any form of transaction both in terms of hedge demanders
and suppliers. As a result using risk-neutral probabilities are not ideal for pricing a
temperature based derivative.

The discussion in this section up to now can be summarized as follows:

• The risk of temperature has different structure than underlying of an ordinary deriva-
tive like stocks. In case of stocks, the risk has emerged from themselves in the form of
a decrease in their prices. On the other hand, the risk of temperature emerged from its
effect on businesses. In this case the type of the business becomes important.

• The concept of market price of risk is inconclusive. This is observed both in theoret-
ical and empirical studies.

• Risk-neutral pricing of temperature based derivatives ends with super-hedging that
prevents any form of trade.

Under these circumstances, only option remained for pricing a temperature based
derivative is to use utility functions. This brings additional problems. For example,
what will be the utility function of a company? Is it the utility of owners or man-
agers? To overcome this problem, researchers assign utility functions like exponential,
power etc. Besides, this brings another problem. Depending on the choice of the utility
function, the price that is calculated will change.

By considering all above obstacles, a different perspective was developed and pre-
sented in the next section.

3.5 A New Setup for Pricing

In this setup, utility functions are replaced by some objective functions. As a result,
instead of maximizing a utility function, any economic entity either being an individual
or a company will try to achieve an objective. In the current case a natural objective for
the mentioned company is to maximize its expected profit given in Equation 3.4. Then
the question becomes under what conditions this company will maximize its profits.
The answer of this question will reveal the trading behavior of the company. Consider
following theorem:

Theorem 3.3. The mentioned company will buy a put option if following condition is

47



satisfied:
E[max(K − CHDD, 0)]N(K − PB + PM∗) ≥ C (3.7)

where E[max(K −CHDD, 0)] and N(K −PB+PM∗) is given in Equation 3.6. C
is the cost of the put option.

Proof. The Equation 3.4 is the expected profit in case where there is no trade for op-
tions. If there is a chance to trade an option, the mentioned company will prefer a put
option with a strike value equal to chdd from the Figure 3.4. Assume that company
buys an amount of the put option equal to ε with a cost of C. Let tick value equal
to $1. There will be two states at the end of the determined period depending on the
payout of the option. The setup is given in the following:

Let x to represent CHDD. Then;

State 1:(
(a+bE[x])(Price−1)−Θ−εC+εE[max(K−x, 0)]

)
whereE represents expectation

State 2:(
(a+ bE[x])(Price− 1)−Θ− εC

)
The probability N(K − PB + PM∗) also defines the probability of State 1. Then,
probability of State 2 will be 1−N(K − PB + PM∗). Under these probabilities the
expected value of the two states will be:

(
(a+ bE[x])(Price− 1)−Θ− εC + εE[max(K − x, 0)]

)
N(K − PB + PM∗)+(

(a+ bE[x])(Price− 1)−Θ− εC
)
(1−N(K − PB + PM∗)) (3.8)

The mentioned company will enter a trade for a put option if the Equation 3.8 is greater
or equal to no trade case such that(
(a+bE[x])(Price−1)−Θ−εC+εE[max(K−x, 0)]

)
N(K−PB+PM∗)+

(
(a+

bE[x])(Price−1)−Θ− εC
)
1−N(K−PB+PM∗) > (a+ bE[x])(Price−1)−Θ

Besides, the profit function with no trade case is also reflected in the left hand side
of the equation with a probability of 1. Consequently, subtracting the right hand side
from the left hand side will result;

−εC + εE[max(K − x, 0)]N(K − PB + PM∗) ≥ 0

E[max(K − x, 0)]N(K − PB + PM∗) ≥ C

Although above calculations are given for a candidate company, since profit function
dropped out and tick value is equal to $1, the Equation 3.7 defines a general case
valid for any company dealing with a put option with K = chhd where chdd obtained
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from Figure 3.4. As a result, following definition is given for the case E[max(K −
CHDD, 0)]N(K − PB + PM∗) = C:

Definition 3.1. When E[max(K − CHDD, 0)]N(K − PB + PM∗) = C, the value
C is called the general price valid for any economic entity.

The above setup can be extended by an idea called as shadow price, which gives the
effects of the resources in a production process on profit. In the current case, the profit
function is designed as a deterministic function such that it is a payoff function of the
index value CHDD. As a result, CHDD can be seen as the resource that produces the
profit. It is possible to measure the effect of one unit of change in CHDD on profit
and use it as the price of one unit of CHDD. Again assuming CHDD = x, consider
following:

dProfit(x)
dx

= b(Price− 1) (3.9)

The value given in Equation 3.9 is a good candidate for the tick value mentioned in
Equation 3.6. Now, by using the Equations 3.6 and 3.9, a new definition can be given:

Definition 3.2. A personalized price for a specific company of the put option
E[max(K − CHDD, 0)] is given by

E[max(K − CHDD, 0)]N(K − PB + PM∗)b(Price− 1) = C (3.10)

Discussion for A New Setup for Pricing

Equation 3.7 defines the profitable conditions for the company. Three conditions can
be revealed from the Equation 3.7. WhenE[max(K−x, 0)]N(K−PB+PM∗) ≥ C,
the company will buy the option. If E[max(K − x, 0)]N(K − PB + PM∗) = C, the
company will be indifferent between buying the option or doing nothing. As a final
case, when E[max(K − x, 0)]N(K − PB + PM∗) ≤ C, it is the best interest of the
company to sell the option as it maximizes the profit. The value C, when E[max(K−
x, 0)]N(K − PB + PM∗) = C, can be defined as the fair price as it does not result
with a positive profit.

From here a connection between the current approach and the utility approaches can
be established. Since the current setup is based on the idea of profit maximization, it
coincides with the utility approach based on wealth maximization. The gain is that this
statement is true for any utility function choices.

By using Equations 3.7 and 3.6 a numerical estimate for the price of a HDD for several
cities was developed. For this aim, one day ahead estimate of temperature was found.
Mean and standard deviation of the approximated distribution were calculated accord-
ing to the Equations 2.33 to 2.36. The value of C in Equation 2.36 was approximated
by conditional variance of the ARCH model. Tick value was taken as $1. Strike value
K was taken as an interval from 65 to 100. The estimated values are shown in Figure
3.7.
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Figure 3.7: Estimated Values of an HDD
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As mentioned earlier, Equation 3.7 defines a general price and trading behaviors for
any company as profit function dropped out from the equation. Besides, this generality
does not give much insights about what actually a put option with strike value of K
means for a specific company. This deficiency was corrected with replacement of tick
value with Equation 3.9. This replacement was rationalized with the idea that, unlike to
ordinary assets, temperature affects economic entities on different scales. As a result,
a personalized price must apply for each of the economic entities. Moreover, Equation
3.10 and Definition 3.2 state that the mentioned company will enter a trade for the
option if there is a possibility for arbitrage. If the fair price available, the company will
be indifferent to enter a trade or do nothing. In the presented case, the expected profit
will always be at maximum. As a result, the utility of the company will always be
at maximum. The case of risk aversion will prevent this kind of maximums for profit
and utility. It is believed that having a profit at maximum and resulting maximum at
utility will direct the company to follow the presented approach not the sub-optimal
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risk aversion behavior.

Final words can be said for potential uses of temperature-based derivatives in Turkey.
It is clear that, like the rest of the world, some Turkish companies are exposed to tem-
perature risk. With the models and methods presented in this study, Turkish companies
may have hedge their risk. As a starting point in this process, HDD and CDD futures
and options can be offered within Borsa Istanbul for major cities of Turkey.
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CHAPTER 4

Conclusions

Temperature based derivatives are the result of business act that seeks hedging mecha-
nisms for adverse effect of temperature on business. The aim of the study was to cover
the topic of temperature derivatives from defined properties of temperature to describe
how pricing can be done. Keeping applicability of proposed models and methods, the
study started with defining a temperature model based on its properties. After that, in-
version methods applied on to the characteristic function of the temperature to obtain
expected value of one type of temperature based index namely HDD. In addition, inver-
sion method led finding an approximated distribution for the temperature and HDDs.
The, expected values of the HDDs were combined to obtain cumulative HDDs, which
are base for temperature based derivatives.

In pricing part of the study, after defining temperature risk, it was found that the dis-
cussion about market price of temperature risk was inconclusive. In addition, it was
shown that risk-neutral pricing of a temperature-based derivative will result with super-
hedging. Moreover, the temperature risk was shown to be different than classical asset
risk in the sense that temperature risk is related with the business type i.e. it is personal.
Summing all these information led to development of a personalized price based on
personalized temperature risk.

In summary, following conclusions and contributions to the literature were derived:

• Derivatives written on temperature are based on index values obtained from temper-
ature data. These indices are basically measured as deviations of temperature from a
threshold value. This makes measuring deviations from a base temperature in the form
of jumps important for any temperature model. In the current study, different kind
of jumps were included into the temperature model and handled by using different
techniques.

• Simulation results showed that each location must be evaluated for different time
periods during parameters estimation to obtain best predictions of temperature index
values.

• Unlike to existing models that consider temperature risk as the result of the tempera-
ture itself like in stocks, current model shows that financial risk caused by temperature
is different from classical asset risk. This risk is dependent on the business type. It is in
fact a personal risk. For example, in case of a rise in the temperature levels in January,
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we expect a rise in the profits of a beverage firm while we expect a decline in the profits
of a retail gas seller. In our study we showed a way to measure this temperature risk.

• Almost all of the existing pricing methods are based on risk-neutral valuation. This
study showed that risk-neutral valuation in temperature based derivatives ends with
super-hedging.

• Current study offers a pricing scheme that is different than the classical pricing ap-
proaches that are based on risk-neutrality or risk-aversion concepts. Instead of utility
functions, current study employs more realistic and practical approach in terms of ob-
jective functions that are set by the firm itself. In return, a personalized price was
obtained based on personalized temperature risk as a result of realization of an objec-
tive.
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APPENDIX A

Summary of [14] for non-Gaussian OU processes

Current model can be considered as a non-Gaussian OU process. These type of pro-
cesses were studied by [14]. According to the authors, given a Levy process (Zt),(yt)t>0

is defined as;

yt = y0e
−λt +

∫ t

0

eλ(s−t)dZs (A.1)

The process (yt) verifies the SDE:

yt = y0 − λ
∫ t

0

ysds+ Zt (A.2)

Its local behavior id defined as;

dyt = −λytdt+ dZt

To find the characteristic function of the Equation A.1, following Lemma is defined:

Lemma 15.1 from [14]:

Let f : [0, T ]→ R be left-continuous and (Zt)t>0 be a Levy process. Then;

E{exp(i
∫ T

0

f(t)dZt)} = exp{
∫ T

0

ψ(f(t))dt (A.3)

where ψ(u) is the characteristic exponent of of Z.

Then characteristic function of yt is found by applying Equation A.3 to Equation A.1:

E{eiuyt} = exp{iuy0e
−λt +

∫ t

0

ψ(ueλ(s−t))ds} (A.4)
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APPENDIX B

Error of Approximation

The error of the linear approximation is equal to [3]:

ex − 1− x =
x2

2!
+
x3

3!
+ ... = E1(x) =

∫ x
0

(x− t)etdt

Interestingly, the evolution of the characteristic functions shows that inclusion of an
element from the approximation series affects the characteristic function through cor-
responding moment. For example, inclusion of the third element from the series starts
to affect the characteristic function from the third moment of the function. This is,
actually, the result of the structure of the approximation. Approximation requires in-
clusion of powers of D. The u parameter within the D, then, will have powers of D at
least equal to the power value itself. As a result, it can be concluded that linear ap-
proximation finds the first moment correctly, while approximating the variance. Other
moments are found to be zero. Likewise, second degree approximation fixes the vari-
ance and brings in approximations of the third and fourth moments. Continuously,
third degree approximation does not change first two moments, fixes the third moment,
updates the fourth moment, and brings in fifth and sixth moments and so on.
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APPENDIX C

Parameter Estimates for 12 Cities
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Table C.1: Parameter Estimation for HDD Calculations

City Year A B C phase b γ0 γ1 Fast Intensity Fast Mean Fast SD Slow Intensity Slow Mean Slow SD beta

Ankara 5 50.19 0.001854 21.32 -2.77 0.19 95.95 0.964 0.0016438 -0.5543834 0.4924429 0.0054795 -6.1314104 5.1345993 0.38

Beijing 5 56.73 -0.00176 27.73 -2.89 0.37 66.18 0.980 0 0 0 0.00109589 -3.161959 2.420366 0.48

Cairo 29 70.23 0.000344 13.69 -2.73 0.35 239.81 0.955 0.0042513 -0.4124696 1.585721 0.00302315 -1.690717 2.075651 0.70

Chicago 15 50.57 0.00014 24.71 -2.79 0.27 117.25 0.961 0.004414 -3.119119 2.524564 0.005632 -6.375580 5.517740 0.34

Dallas 34 65.32 0.000232 20.00 -2.83 0.30 294.61 0.936 0.0045931 -2.498749 2.391683 0.00604351 -6.1932845 4.966445 0.29

Istanbul 9 58.54 0.00081 18.12 -2.67 0.24 184.55 0.948 0.004262 -0.958549 2.047743 0.002740 -3.133173 1.813471 0.56

Los Angeles 21 63.83 -0.0001 6.65 -2.47 0.23 338.76 0.917 0.0062622 0.3575345 1.352837 0.01108937 0.81062689 2.798516 0.46

New York 7 54.64 0.000548 21.78 -2.72 0.29 165.02 0.945 0.0015656 -1.6825421 2.360227 0.00508806 -3.8112152 3.30503 0.68

Paris 6 54.58 -0.00122 15.45 -2.83 0.21 147.12 0.949 0.0054795 -0.0954452 1.895953 0.00547945 -1.67898 3.505224 0.55

Sydney 37 63.45 0.000154 9.5 -2.81 0.64 527.0 0.876 0.0146612 1.5064313 2.606529 0.0033321 1.5601199 3.226385 0.91

Tokyo 8 61.22 0.000375 18.38 -2.62 0.53 180.28 0.954 0 0 0 0 0 0 0

Washington 34 58.62 0.000030 21.75 -2.79 0.28 173.30 0.952 0.0045125 -1.980577 1.755655 0.00354553 -4.9014241 4.06658 0.39

Year represents amount of data in years that produced best estimation results.

SD represents standard deviation.
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Table C.2: Parameter Estimation for CDD Calculations

City Year A B C phase b γ0 γ1 Fast Intensity Fast Mean Fast SD Slow Intensity Slow Mean Slow SD beta

Ankara 5 50.19 0.001854 21.32 -2.77 0.19 95.95 0.964 0.0016348 -0.5543834 0.4924429 0.0054795 -6.1314104 5.1345993 0.38

Beijing 19 54.97 0.000003 27.15 -2.92 0.35 63.31 0.981 0.000721 -1.5276715 1.531992 0.00100937 -2.9315846 2.019894 0.39

Cairo 5 71.94 0.002198 13.39 -2.74 0.37 104.84 0.983 0.0021918 0.3088935 1.644226 0.00273973 -1.7313942 0.945926 0.54

Chicago 7 51.70 -0.00034 25.18 -2.80 0.25 108.27 0.964 0.003131 -3.281461 3.025694 0.005871 -5.240072 4.234712 0.39

Dallas 5 69.86 -0.00172 20.02 -2.83 0.27 314.93 0.934 0.0032877 -3.2390974 1.069774 0.00657534 -3.3012769 3.345035 0.44

Istanbul 5 59.32 0.00134 18.10 -2.69 0.26 183.29 0.950 0.002192 0.067349 0.601966 0.002740 -2.406968 1.833246 0.56

Los Angeles 32 63.81 -0.000056 6.70 -2.47 0.21 312.83 0.923 0.0058219 0.3913695 1.425177 0.00984589 1.02398907 3.358289 0.40

New York 7 54.64 0.000548 21.78 -2.72 0.29 165.02 0.945 0.00155656 -1.6825421 2.360227 0.00508806 -3.8112152 3.30503 0.69

Paris 8 54.66 -0.00085 15.60 -2.84 0.22 150.30 0.949 0.005137 -0.4207048 1.581089 0.00513699 -0.1355112 4.770146 0.26

Sydney 9 65.07 0.000171 9.54 -2.86 0.54 426.97 0.903 0.0152207 1.6436984 1.81751 0.00182648 2.58516471 2.615411 0.77

Tokyo 18 61.60 0.000031 18.53 -2.63 0.50 214.39 0.945 0 0 0 0 0 0 0

Washington 8 57.78 0.000801 22.01 -2.78 0.28 169.08 0.953 0.0041096 -1.6365612 1.493845 0.00376712 -3.2540612 2.309414 0.56

Year represents amount of data in years that produced best estimation results.

SD represents standard deviation.
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Table C.3: P-values of Parameters for HDD Calculations

City a1 a2 a3 a4 γ0 γ1 Fast Mean Slow Mean
Ankara 0 0 0 0 NS 0.00263 0.1609 0
Beijing 0 0 0 0 NS 0.0082 0.3174 0.02142
Cairo 0 0 0 0 NS NS 0.0879 0
Chicago 0 NS 0 0 0 0 0 0
Dallas 0 0 0 0 NS 0 0 0
Istanbul 0 0 0 0 NS NS 0.1021 0
Los Angeles 0 0 0 0 NS NS 0.07382 0
New York 0 <0.001 0 0 NS <0.001 0.2038 0
Paris 0 0 0 0 NS <0.01 0.8557 0.01075
Sydney 0 0 0 0 NS <0.05 0 0
Tokyo 0 0 0 0 NS NS NA NA
Washington 0 <0.05 0 0 NS 0 0 0
NS:Not statistically significant
NA:Not available
a1 to a4 are regression parameters as explained in Section 2.8

Table C.4: P-values of Parameters for CDD Calculations

City a1 a2 a3 a4 γ0 γ1 Fast Mean Slow Mean
Ankara 0 0 0 0 NS 0.00263 0.1609 0
Beijing 0 NS 0 0 NS 0 0.096 0
Cairo 0 0 0 0 NS NS 0.6717 0.001395
Chicago 0 NS 0 0 <0.01 0 0.03218 0
Dallas 0 0 0 0 NS NS 0.01897 0
Istanbul 0 0 0 0 NS NS 0.7978 0
Los Angeles 0 0 0 0 NS NS 0.02789 0
New York 0 <0.001 0 0 NS <0.001 0.2038 0
Paris 0 0 0 0 NS <0.01 0.3038 0.8347
Sydney 0 <0.01 0 0 NS NS 0 0.0056
Tokyo 0 <0.01 0 0 NS <0.01 NA NA
Washington 0 0 0 0 NS <0.001 0.009 0
NS:Not statistically significant
NA:Not available
a1 to a4 are regression parameters as explained in Section 2.8
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APPENDIX D

R Codes for Parameter Estimation

• Main function:

rm(list=ls(all=TRUE))
source("Path\\find_jumps.R")
source("Path\\find_arch.R")
source("Path\\Arch_Sim.R")
source("Path\\Jump_Sim.R")
source("Path\\Mean_Rev.R")
source("Path\\find_beta.R")

Temperature=read.csv(Path)
Temperature=Temperature$temp

Year=5;End=13505
Results=array(0:0,c(33,18))
for(kk in 1:33){
Beginning=End-Year*365+1
Dump_Temp=Temperature[Beginning:End]

Size=Year*365;time=1:Size
temperature.lm=lm(Dump_Temp˜time+sin(2*pi*time/365)
+cos(2*pi*time/365))
Parameters=coef(temperature.lm)
A=Parameters[1]
B=Parameters[2]
C=sqrt(Parameters[3]ˆ2+Parameters[4]ˆ2)
phase=atan(Parameters[3]/Parameters[4])-pi
Resid=residuals(temperature.lm)
Fit=fitted.values(temperature.lm)

Jump_Parameters=find_jumps(Size,Dump_Temp)

Arch_Parameters=find_arch(Dump_Temp)
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b=Mean_Rev(Dump_Temp,Fit,Size)
TA=Arch_Sim((Dump_Temp[1]-Fit[1]),Arch_Parameters,Size)

alpha=1;
TY=Jump_Sim(Jump_Parameters[1:3],Size,alpha)

beta=find_beta(Jump_Parameters[7:(Size+6)],Size)
TZ=Jump_Sim(Jump_Parameters[4:6],Size,beta)

T=array(0:0,Size);T[1]=Dump_Temp[1]
HDD=0;CDD=0
if(T[1]>65)
CDD=T[1]-65
if(T[1]<65)
HDD=65-T[1]

for(j in 2:Size){
T[j]=T[j-1]+Fit[j]-Fit[j-1]+
b*(Fit[j-1]-T[j-1])+TA[j]+TY[j]+TZ[j]
if(T[j]>65)
CDD=CDD+(T[j]-65)
if(T[j]<65)
HDD=HDD+(65-T[j])
}

HDD_exact=0;CDD_exact=0
for(i in 1:Size){
if(Dump_Temp[i]>65)
CDD_exact=CDD_exact+(Dump_Temp[i]-65)
if(Dump_Temp[i]<65)
HDD_exact=HDD_exact+(65-Dump_Temp[i])
}
Difference=sum((T-Dump_Temp)ˆ2)

Results[kk,1]=A;Results[kk,2]=B;Results[kk,3]=C;
Results[kk,4]=phase
Results[kk,5]=Arch_Parameters[1];
Results[kk,6]=Arch_Parameters[2];
Results[kk,7]=Jump_Parameters[1];
Results[kk,8]=Jump_Parameters[2]
Results[kk,9]=Jump_Parameters[3];
Results[kk,10]=Jump_Parameters[4]
Results[kk,11]=Jump_Parameters[5];
Results[kk,12]=Jump_Parameters[6]
Results[kk,13]=beta;Results[kk,14]=HDD;
Results[kk,15]=HDD_exact
Results[kk,16]=CDD;Results[kk,17]=CDD_exact;

68



Results[kk,18]=b

Year=Year+1
print(kk)
}
write.table(Results,Path)

• Script that find jumps

find_jumps=function(S,DT){
jump_array=array(0:0,S);
jump_array_slow=array(0:0,S);
jump_array_fast=array(0:0,S)
SD=sd(DT);MEAN=mean(DT);DT=DT-MEAN
for(i in 1:S){
if(DT[i]>=0){
if(DT[i]>2*SD)
jump_array[i]=DT[i]-2*SD
else
jump_array[i]=0
}
else{
DT1=DT[i]*(-1)
if(DT1>2*SD)
jump_array[i]=DT[i]+2*SD
else
jump_array[i]=0
}
}
if(jump_array[1]==0){
jump_array_slow[1]=0
jump_array_fast[1]=0
}
else{
if(jump_array[2]==0)
jump_array_fast[1]=jump_array[1]
else
jump_array_slow[1]=jump_array[1]
}
if(jump_array[S]==0){
jump_array_slow[S]=0
jump_array_fast[S]=0
}
else{
if(jump_array[(S-1)]==0)
jump_array_fast[S]=jump_array[S]
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else
jump_array_slow[S]=jump_array[S]
}
for(j in 2:(S-1)){
if(jump_array[j]!=0){
if(jump_array[j-1]==0&&jump_array[j+1]==0)
jump_array_fast[j]=jump_array[j]
else
jump_array_slow[j]=jump_array[j]
}
else{
jump_array_fast[j]=0
jump_array_slow[j]=0
}
}
Dump_Fast=array(0:0,sum(jump_array_fast!=0))
Dump_Slow=array(0:0,sum(jump_array_slow!=0))
CF=1;CS=1
for(k in 1:S){
if(jump_array_fast[k]!=0){
Dump_Fast[CF]=jump_array_fast[k]
CF=CF+1}
if(jump_array_slow[k]!=0){
Dump_Slow[CS]=jump_array_slow[k]
CS=CS+1}
}
Mean_Fast=mean(Dump_Fast);SD_Fast=sd(Dump_Fast)
Mean_Slow=mean(Dump_Slow);SD_Slow=sd(Dump_Slow)

Slow_Counter=0
for(i in 1:(S-1))
if(jump_array_slow[i]!=0&&jump_array_slow[i+1]==0)
Slow_Counter=Slow_Counter+1

Fast_Intensity=(S-sum(jump_array_fast==0))/S
Slow_Intensity=Slow_Counter/S
if((S-sum(jump_array_fast==0))<2){
Fast_Intensity=0;Mean_Fast=0;SD_Fast=0}
if((S-sum(jump_array_slow==0))<2){
Slow_Intensity=0;Mean_Slow=0;SD_Slow=0}
return(c(Fast_Intensity,Mean_Fast,SD_Fast,
Slow_Intensity,Mean_Slow,SD_Slow,
jump_array_slow,jump_array_fast))
}

• Script to find Arch Parameters
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library(tseries)
find_arch=function(DT){
Coef_Arch=coef(garch(DT,order=c(0,1),
grad=’numerical’,trace=FALSE))
return(Coef_Arch)
}

• Script to find beta

find_beta=function(J,S){
Sum1=0;Sum2=0;
for(i in 2:S){
Sum1=Sum1+(J[i]*J[i-1])
Sum2=Sum2+(J[i-1])ˆ2
}
beta=(-1)*log(Sum1/Sum2)
if(!is.finite(beta))beta=0
return(beta)
}

• Script to find mean reversion parameter

Mean_Rev=function(T,F,S){

Sum1=array(0:0,11680)
Sum2=array(0:0,11680)

for(i in 2:S){

Sum1[i]=((T[i-1]-F[i-1])*(T[i]-F[i]))/sd(T[1:i])
Sum2[i]=(T[i]-F[i])ˆ2/sd(T[1:i])
}

Sum1[!is.finite(Sum1)]=0
Sum2[!is.finite(Sum2)]=0

b=(-1)*log(sum(Sum1)/sum(Sum2))
return(b)
}

• Script for Arch based simulation

Arch_Sim=function(Init,AP,S){
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S1=10000
AS_Dump=array(0:0,c(S1,S))
AS_Dump[,1]=Init
AS=array(0:0,S)
for(i in 1:S1){
for(j in 2:S){
AS_Dump[i,j]=sqrt((AP[1]+AP[2]*AS_Dump[i,j-1]))*rnorm(1)
if(!is.finite(AS_Dump[i,j]))AS_Dump[i,j]=0
}
}

for(k in 1:S)
AS[k]=mean(AS_Dump[,k])

return(AS)
}

• Script for jump simulation

Jump_Sim=function(JP,S,P){
Sim_Size=10000
Y=array(0:0,dim=c(Sim_Size,S));J=array(0:0,S);Y[,1]=0

for(k in 1:Sim_Size){
t=0;t_count=array(1);t_count[1]=0;lambda=JP[1]

for (i in 1:S){
u=runif(1)
t=t+(-log(u)/lambda)
if(t>0&&t<S){
t_count=append(t_count,t)
}
else{
i=S}
}
t_count=round(t_count)

Q=array(0:0,S)
Q[1]=0
Dump=array(1)

for(i in 2:length(t_count)){
q=rnorm(1,JP[2],JP[3])
Dump=append(Dump,q)
x=t_count[i]
Q[x]=Q[x]+q
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}

for(i in 2:S)
Y[k,i]=Y[k,i-1]-P*Y[k,i-1]+Q[i]
}
for(j in 1:S)
J[j]=mean(Y[,j])
return(J)
}

73



74



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Taştan, Birhan
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