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ABSTRACT 

STOCHASTIC SIMULATIONS OF BIOLOGICAL NETWORKS UNDER 

IMPULSES  

 

 

 

Yazıcı, Müge 

M.S., Department of Statistics 

Supervisor: Assoc. Prof. Dr. Vilda Purutçuoğlu 

 

April 2016, 88 pages 

 

The impulses are one of the sources of fluctuations which lead to the sharp 

changes in the biochemical systems such as the changes in epidemic and 

population models. In this study, as the novelty, we implement these effects in 

exact stochastic simulation algorithms, namely, the Gillespie method and the first 

reaction method, by changing the chemical master equations (CME) with 

impulses. Hereby in the extension of these approaches with impulses, we consider 

different scenarios such as the sudden decrease of the number of molecules. 

Finally, we evaluate each of these alternatives under small and realistically large 

biochemical systems. 

 

Keywords: Gillespie algorithm, chemical master equations, impulses.  
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ÖZ 

İMPULSLAR ALTINDA BİYOLOJİK AĞLARIN STOKHASTİK 

SİMÜLASYON ALGORİTMALARI 

 

 

Yazıcı, Müge 

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Doç. Dr. Vilda Purutçuoğlu 

 

Nisan 2016, 88 sayfa 

 

İmpulslar biyokimyasal sistemlerde salgın ve popülasyon modellerindeki 

değişimler gibi ani değişikliklere sebep olan temel kaynaklardan biridir. Bu 

çalışmada yenilik olarak Gillespie metod ve ilk reaksiyon metodu olarak bilinen 

tam stokastik simülasyon algoritmalarını, temel kimyasal denklemini (CME) 

impulsları içerecek şekilde uygulacağız. Gillespie algoritması, değişikliklerin 

etkisi olmaksızın temel kimyasal denklemler yardımıyla gerçek biyokimyasal 

sistemin rassal yapısını yaratabilen, bu alandaki en iyi bilinen metottur. 

Dolayısıyla bu metodun impulslar ile geliştirilmesinde, molekül sayısındaki ani 

artış impulsların bulunması gibi farklı senaryoları düşünmekteyiz. Sonuç olarak 

ise bu alternatiflerin her birini, küçük ve büyük sistemler altında 

değerlendirmekteyiz. 

 

 

Anahtar Kelimeler: Gillespie algoritması, temel kimyasal denklemleri, impulslar. 
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CHAPTER 1 

INTRODUCTION 

The biochemical modeling is the mathematical way of explaining the dynamic of 

biological systems such as the interaction of proteins and molecules. The theory of 

the biochemical systems was improved by Michael Savageau in 1960s. By 

understanding the effects, complexity and the importance of the interactions in the 

systems, the necessity of the computer has become crucial because the description of 

the cellular activations and the analyses of the data have turn into very complicated 

and costly calculations. Accordingly, the idea of analyzing these chemical reactions 

by deterministic methods has been concerned for many years. The advantage to study 

the deterministic methods is its explicit form of model parameters and its simplicity 

in calculation. Hereby, as the model parameters, it uses the mass action kinetics. The 

mass action assumes that the reactions are continuous and deterministic and the 

researcher needs a low level of information for the description of the biochemical 

systems. The stochastic modeling has been more researched in recent years and 

found more realistic to describe in vivo reactions (Turner, 2004). The stochastic 

processes are random, resulting in slightly different outputs in every application, 

particularly, in simulation because in this process, the changes in the system occur 

probabilistically. Furthermore, different from other biochemical models, the main 

interest in stochastic choices is the changes in the number of molecules of the 

system’s elements under a homogenous environment (Bower and Bolouri, 2001). 

Thereby, in stochastic model, the random fluctuations are considered when the 

volume of the system is small and the molecular population is low. The main 

fluctuation is discovered by using fluorescent probes. On the other hand, the 

impulses are one of the main items of fluctuations which cause sharp changes in 

biological systems and in this study; we add the impulses in stochastic simulations of 
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different dimensional systems to detect its effect in the calculation and validity of the 

results.  

1.1 Aim of study 

The impulses are one of the sources of fluctuations which lead to the sharp changes 

in the biochemical systems such as the changes in epidemic and population models. 

In this study, we use the Gillespie and the first reaction methods which are the most 

common exact stochastic simulation algorithms to implement the effects of impulses. 

The Gillespie algorithm and its extension, the first reaction algorithms are the two 

well-known methods which can generate the random nature of the actual biological 

system by means of chemical master equations (CME) without the effect of sharp 

fluctuations.  

In the analyses, we consider different scenarios in the application of impulses to the 

systems such as impulses at fixed states of the species and at fixed periodic time. 

Then, we evaluate each of these alternatives under small and realistically large 

biochemical systems in terms of the computational demand. Later, we also perform 

the same analyses via the first reaction algorithm. Finally, we compare both outputs 

in order to assess the capacity of these methods with/without impulses.  

1.2 Motivation 

The model deals with the states of elements and interactions to obtain reliable 

information about the system. Regarding the given details about the system such as 

for the given reaction rates, the number of molecules or the amount of concentration 

of species, the model can explain the entire organism at different levels.  

On the other side, the description of the biological system is challenging because of 

its complexity. Because the vivo/vitro analyses of the biological systems can be 

expensive and limited. In this situation, we can perform the simulation method so 

that we can visualize the behavior of the real system artificially but under realistic 

assumption. Furthermore, as we have a chance to alter the inputs of the systems in 

every simulation, we enable to predict the activation of the system under new 

conditions. By this way we can better detect the crucial components of the system, 
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their presumed effects and finally find new biologically interesting questions about 

the system.  

Hereby, in this study, we aim to compare the performance of the stochastic 

simulation algorithms of the biological systems and to evaluate their performances 

under abrupt changes. In real systems, such abrupt changes are called as impulses 

and in biological networks; these changes are performed in the description of cancer, 

diabetes or similar diseases whose attacks are observed suddenly and stochastically.   

Therefore, in the application, we choose distinct dimensional and actual systems. In 

the calculation, we apply the JAK-STAT pathway under realistic complexity and the 

Lotka Voltera model as the toy example. We also investigate the PKC Pathway and 

Lysis–Lysogeny model as moderate networks. Finally, we use the combination of the 

JAK-STAT and PKC pathways as a single and large pathway. In the simulation, we 

perform the Gillespie and the First Reaction Algorithms which are the two well-

known stochastic simulation algorithms. In both methods, the assumption is that the 

molecules of the species, which constitute a system, mix well in a constant volume 

and under a constant temperature. Indeed, we decrease/increase suddenly the number 

of molecules for each model and search the effect of these sudden changes in the 

computational demand to decide on the best exact algorithm under impulses. 
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CHAPTER 2 

 LITERATURE BACKGROUND 

2.1 Biological Modeling 

A biological model is a biological description constructed to explain the biological 

behavior of a system whose major elements are species, proteins, or genes through 

time and their interactions between each other (Wilkinson, 2006). In terms of 

biological description, it is always better to deal with detailed and precise model 

since it provides us to obtain reliable results which can validate the actual behavior 

of the biological process. Hereby, the modeling tools are needed to explain the 

complex structure of molecular and cellular interactions. Moreover, there is a strong 

relation between modeling and experiment as well. For instance, after constructing a 

model, it is tried to obtain experimental results which can be validated by the 

suggested model. In fact, the modeling and the computer simulation are corporate in 

order to improve predictions about the complex biological systems. 

Thereby, a mathematical model in biology aims to describe a biological/biochemical 

process in a numerical and more explicit way. In such description, we typically need 

to explain the major activation in the system that can be listed as the translation, 

transcription, gene regulation, cellular signaling, DNA damage and repair process, 

homeostatic processes, cell cycle and the apoptosis. By this way, the function of a 

tissue, organ and even the entire organism at a higher level can be described under 

certain conditions (Wilkinson, 2006; Bower and Bolouri, 2001). 

Accordingly, the simulation of a system can help us to generate the behavior of the 

data artificially. Hereby by simulating the model, we can suggest a prediction of the 

interested system. On the other hand, if we do experiments to obtain the real data, 

then we can have a chance to compare the actual data with simulated measurements. 
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If both results are conformed, we can rely on the model (Wilkinson, 2006; 

Purutçuoğlu, 2010). 

On the other hand, although the modeling has many advantages, there can be some 

problems in the sense that it can be hard to explain the entire organisms due to the 

actual complexity in the system. For instance, the actual organisms have detailed 

variables for each individual cell and the suggested model cannot have ability to 

include all such gene specific details in a single mathematical expression (Bower and 

Bolouri, 2001). 

Hereby, below, we initially describe several well-known definitions such as DNA, 

RNA, and protein, which are commonly used in biology and then present main 

approaches in mathematical modeling of biological processes. Later, we combine 

these explanations within the simulation of the systems. 

2.1.1 Major Biological Terms 

In this part, first of all, we represent certain major components/elements in all 

algorithms. These are DNA, RNA, receptor, ion channel, enzymes and transcription 

factor. 

Then, we explain the responsibility of each element in the regulation of the gene. 

Here, we briefly describe the translation and the transcription process. 

DNA, deoxyribonucleic acid, is a cell material including all genetic information, 

called genes. It is allocated in the nucleus of all eukaryotes, whereas, it is placed in 

the cytosol for the prokaryotic cells. Each cell of the organism has the same DNA 

and it is composed of four chemical bases, which are adenine (A), guanine (G), 

cytosine (C), and thymine (T). Each base should be paired certain base such that the 

adenine is matched with thymine and the guanine is paired by cytosine. DNA can 

replicate itself and after the cell division, there exists one more DNA chain having 

the same genetic information with the mother cell (National Institutes of Health, 

2014). 

On the other hand, RNA, ribonucleic acid, is the other main macromolecules of the 

cells. RNA is a transmittor between DNA and proteins and provides to make a 
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protein. In fact, RNA is produced in the nucleus for eukaryotes. Then, it goes out to 

cytosol and is transcribed there. After it attaches ribosomes that represent the sites of 

cohics translation of the messenger RNA and protein, it is translated into proteins. 

DNA and RNA look like each other. But there are some small structural differences 

between them in the sense that RNA has a single-strand, on the contrary, DNA is 

double-stranded. In addition, the uracil base in DNA is substituted for the thymine 

base in RNA (The RNA Society, 2014). 

The gene is a specific type of proteins having two regions, namely, the coding region 

and regulatory region. The protein is encoded in coding region while the regulatory 

region is related part for the control of the gene. The receptor, ion channel and 

enzymes describe different types of proteins. The amino acids construct proteins and 

each protein has different functions due to its distinct amino acid sequence (Bower 

and Bolouri, 2001).  

Finally, the transcription factor, TF, is a class of proteins, which is responsible for 

binding to the DNA sequences and controls the transcription of the genetic 

information from DNA to mRNA. Furthermore, it can affect the gene expression 

alone or with other proteins positively (as an activator) and negatively (as a 

repressor) (Wilkinson, 2006). 

By using these listed biological cellular elements, we can describe the major 

functions in a system. These are the transcription and the translation that are also 

known as the central dogma. The transcription is a process that initiates the transport 

of the genetic information from DNA to mRNA. This step starts when TF binds to 

DNA. The prokaryotes have basic transcription states than eukaryotes in the sense 

that their biological process can be described by few reactions. On the other hand, as 

the eukaryotes have more complex states, their transcription’s description becomes 

complex too. The RNA-polymerase (RNAP), which refers to an enzyme producing 

RNA, originates this process. RNAP fastens the activation by attaching the up-stream 

of the interested gene which is called the promoter region. After this step, the 

translation process begins and mRNA binds to ribosomes by three bases at a time. 

The underlying three-base combination is called the codon. In fact, a codon is 

translated into one of 20 amino acids. Therefore, the protein is produced in this step. 
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On the other hand, the transportation is a process between transcription and 

translation. In this process, mRNA is moved from nucleus to cytoplasm. 

If the mRNA transcript of a gene of interest is transformed to nothing, this is named 

as the degradation. The ribonuclease, also denoted by RNase, is an RNA-degrading 

enzyme (Wilkinson, 2006). 

The transcription process can be modeled as follows:    

g+TF1↔TF1.g                      (1) 

TF1.g+TF2↔TF2.TF1.g          (2) 

RNAP+TF2.TF1.g↔RNAP.TF2.TF1.g        (3) 

RNAP.TF2.TF1.g→TF2.TF1.g+RNAP+r        (4) 

 

In Equation 1 and 2, g, TF1 and TF2 represent the gene, transcription factor 1 and 2, 

in order. They are single entities in the model. RNAP binds to the combination of 

gene and transcription factors and initiates the transcription process. TF2.TF1.g and r 

denote the complete proteins and the mRNA transcript of the gene (Wilkinson, 

2006). Finally, the two-sided arrow between reactions denotes the reverse reaction 

between both sides of the given reaction. 

2.1.2 Chemical Reactions 

The change and speed of a system can be expressed with chemical equations. The 

chemical reaction, which is briefly shown as below, is a way to express a biological 

activation so that it can be represented by a mathematical description. 

     
 
→                                  (5) 

where ma and mb are called the stoichiometric coefficient of the reactant and 

product, respectively. In this description, the reactant shows the species written in the 

left hand side of the arrow and the product indicates the species given on the right 

hand side of the arrow. For Equation 5, the reactant and the product are presented by 
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A and B, in order. Here, k is the rate constant of the reaction which is dependent on 

the temperature and the volume of the environment. This value is a representation of 

the time for the execution of a reaction. Hereby, Equation 5 implies that ma 

molecules of A reacts to produce mb molecules of B while the molecules move with 

respect to the Brownian motion (Turner, 2004; Bower and Bolouri, 2001). 

The petri nets are mathematical explanation of models with a graphical 

representation. These systems are simply described as below: 

Petri Net = (P, T, Pre, Post, M) where P is a finite set of places, T is a finite set of 

transitions and M is the current state of the system (Wilkinson, 2006). Accordingly, 

if we consider the following model for the genes A, B2, AB2 and C, we can define a 

system that can be also represented as in Table 1. 

                    (6) 

 →                (7) 

 →                (8) 

 

      Table 1: Description of the system in Equation 6-9 in order, pre and post terms 

 Reactants (Pre) Products (Post) 

 AB2 A C B B2 AB2 A C B B2 

Reaction 1 

(Equation 6) 

 1   1 1     

Reverse Reaction  of 
Reaction 1 

1      1   1 

Reaction 2 

(Equation 7) 

 1     1 1   

Reaction 3 

(Equation 8) 

  1     1 1  

Reaction 4 

(Equation 9) 

   2      1 
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The reactant (pre) and products (post) matrices of this model are shown in Table 1 

and the difference between these matrices, which is called as the net effect matrix, is 

represented as below. 

Net effect = 

[
 
 
 
 
                
                  
                    
                    
                  ]

 
 
 
 

.                                                            (10) 

As seen beforehand, there can be more than one reactant and product in a reaction. 

For instance, 

       
 
→                                                                    (11) 

indicates a reaction with three substrates, namely, A, B and C with ma, mb, and mc 

stoichiometric coefficients, respectively. Hence, it presents that the ma amount of A 

molecules reacts with the mc amount of C molecules to form the mb amount of 

molecule B (Wilkinson, 2006). 

Also the system is called equilibrium if there is no change in the number of 

molecules. In other words, all of the inputs are used and only the outputs are 

presented in the system. 

Finally, if the biological activation is explained via a list of reactions, it generates a 

network whose genes are the elements of the reaction list (Bower and Bolouri, 2001). 

In the following part, we initially describe the major mathematical methods to model 

these sets of genes and then, combine this idea in the simulation of networks under 

stochasticity. 

2.2 Modeling Approaches of Biological Systems 

There are three major approaches in modeling the biological systems. These are: 

i. Boolean models, 

ii. Deterministic models, 

iii. Stochastic models. 
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The “Boolean models” represent the state as a list of positions while “Deterministic 

models” present it as a list of concentrations. Finally, the “Stochastic models” deal 

with the list of the actual number of molecules. More details about these major 

approaches are given in the following parts. On the other hand, apart from these main 

techniques, there exists some alternative methods which lie between the Boolean 

model and the deterministic approaches as well as between the deterministic and the 

stochastic choices.  

 

      Table 2: The main differences of the deterministic and stochastic modelings. 

 

 

2.2.1 Boolean Models 

The Boolean models represent a state with 0 and 1 values in such a way that 0 means 

not-expressed and 1 displays the expressed gene. Actually, it can be thought like a 

dummy variable and deals with whether the gene is active or inactive. Accordingly, 

for a system with n elements, the system contains second possible states and we can 

express a truth table indicating the changes in the system for every chance in states 

for small biological networks because all possible next states can be predicted in 

small systems. Moreover, it can be expressed using the operators AND (1 if all 

inputs are 1), OR (1 if any of the inputs are 1) and NOT (1 if all inputs are 0) (Bower 

and Bolouri, 2001; Jong, 2002). 

 Deterministic Models Stochastic Models 

Equations Based on the ordinary 

differential equations 

Based on the chemical 

master equations 

Representation of the 

amount of species 

Concentration amount of 

the species 

Number of molecules of 

the species 

Parameters of the models 

Reaction rates Stochastic reaction rate 

constants 
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2.2.2 Models of Differential Equations 

The differential equation (DE) models assume that the states are continuous and they 

change over time by the change in the concentration of the genes as follow. 

 
 
→                             (12) 

In this equation, C describes the reactant and C′ is the product. In this expression, the 

concentration of C′ increases while the concentration of C decreases. Hereby, the 

derivative of the concentrations for C is equal to the multiplication of concentration 

of C′ and gives the changes in the concentration of C during the reaction as shown 

below. Finally, the meaning of minus sign presents the decrease in the C 

concentration. 

    

  
                (13) 

On the other hand, if we write this expression to describe the change in product C′, it 

becomes 

     

  
                            (14) 

since the concentration of C raises continuously. From Equation 13 and 14, it is seen 

that the rate constant depends only on the reactants. If there are n reactants, the 

derivative becomes the multiplication of k and n reactants and the sign is minus, 

whereas, the sign of products is taken as positive. For instance 

                                (15) 

can be written as 

    

  
                                (16) 

      … 

    

  
                                 (17) 

and finally, 
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                                (18) 

If the reactant or product has a form of multiplication with a constant, it can be 

written as a multiplication of concentrations and constants in the derivative form too. 

On the other side, if the reactant or the product has an index, the index can be written 

as a power of concentrations in the derivative. For instance, 

                              (19) 

can be converted as the following set of differential equations. 

    

  
                       (20) 

    

  
                       (21) 

        

  
                    (22) 

So the underlying relation in the rate of reaction which is the reactant concentration 

with respect to the power of stoichiometry, is called as the mass action kinetics. In 

general, the DE modeling explains successfully the gene regulation of the system 

(Wilkinson, 2006; Bolouri, 2008; Jong, 2002). 

2.2.3 Stochastic Models 

The stochastic simulation provides to understand the distribution related to time and 

gives information about the shape of data. In fact, stochastic methods explain the 

changes in the number of molecules in a system by using a probabilistic 

approximation.  By applying the Monte Carlo technique, the system simulation can 

be also done to find the statistics. Accordingly, a reaction can be shown as in 

Equation 23, 

 
 
→                                    (23) 

In Equation 23, it can be defined that the probability of B molecules generated from 

molecule A is proportionally found by c×dt. Here, c is the stochastic reaction rate 

constant and dt shows the change in time. In addition, the number of molecule B at 
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the end of the reaction is computed as c[A]dt where [.] indicates the number of 

molecule for a gene.  

Finally, this modeling type is successful in explaining the stochastic behavior of a 

system like the transcription and the translation (Turner, 2004; Wilkinson, 2006).  

2.2.4 Other Models 

In addition to the Boolean models, differential equations and stochastic models 

which are three main models in the gene regulation, there are also some models to 

express biological systems, called hybrid methods. They are the kinetic logic model, 

continuous logical model, Langevin approach and the Fokker-Planck equation. 

The kinetic logic model places between the Boolean and the differential equation 

(DE) methods by expressing the states as discrete values. Actually, it is one step 

along Boolean models. The state of each gene of this model is expressed as a discrete 

value. Under this model, it is assumed that all the states do not change at the same 

time, which is also known as the asynchronicity property, and the change in the 

system is shown by partial linear/nonlinear functions for a given threshold. So unlike 

the Boolean approach, there are more than two states such as low, nearly low, strong, 

and nearly strong levels. Thereby, it needs more complicated information about the 

data and the changes of the states are independent on each other. In addition, this 

model needs more data than Boolean models. Therefore, it provides reliable 

predictions.  

The continuous logical model generates models between the kinetic logic and DE 

models and on comparison with the kinetic logic method, the states are still discrete, 

whereas, it requires more detailed data. In fact, DE is used to describe the transition 

from one state to another. 

The Langevin approach is a method between DE and stochastic models. Different 

from DE, a noise is added to the model where the noise, i.e. error term, has zero 

mean and no correlation as shown in Equations 24 and 25. e(t), noise function, is 

random and does not depend on the current state. 

dc/dt = f(c),               (24) 
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dc/dt = f (c) + e(t).         (25) 

In Equation 24, the given expression indicates DE modeling, whereas, Equation 25 

describes the Langevin approach of the same expression. Here, e(t) denotes the 

random noise term and it is a function of time. The error term is not dependent on the 

previous state because of its no-correlation. 

The Fokker-Planck equation deals with both discrete and continuous variables. 

Thereby, at the beginning of modeling, it starts by a stochastic model and then, it 

transforms the model to the differential equation. The change in the probability 

distribution is the main interest of this equation and this change is continuous and has 

a discrete distribution based on concentration of molecules (Bower and Bolouri, 

2001). 

2.3 Mass-Action Stochastic Kinetics 

To better understand the biological processes, the associated reactions need to be 

understood. So the biochemical modeling is a helpful method for making clear the 

reaction of proteins and molecules.  

Hereby, as described in Section 1.2, if there is a system of reactions included a 

species and r reactions (r>a), the qualitative structure of the reaction network can be 

denoted by N= (P, T, Pre, Post, M) which is called as the Petri Net. In this 

representation, P shows the set of species and T is the set of reactions. Pre presents 

the path from places to transitions and Post is the path from transitions to places. 

Finally, M denotes the current state of system as used beforehand.   

On the other hand, each reaction has a hazard function whose components are the 

current state x and the rate constant c, i.e , hi(x,ci) for the ith reaction. Regarding the 

type of the reaction, this function is computed in different ways. Below, we list most 

widely used reaction types and their hazard functions. 

1) Hazard function is equal to the constant rate in the zeroth-order reactions as 

shown in Equation 26 for the product gene X and the reaction rate c. Hence, 

the hazard of this reaction is found as h(x,c)=c. 

 
 
→                                (26) 
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2) The hazard function is a combination of a constant rate and a molecule X in 

the first-order reactions as presented in Equation 27. Then, the associated 

hazard is calculated via h(x,c)=cx. 

 
 
→             (27) 

3) If a particular pair of molecules reacts, the hazard is the combination of the 

pair of molecules and the constant rate as described below. The hazard for 

Equation 28 is computed as h(a,b,c)=abc and for Equation 29 if is found as 

     
      

 
. 

   
 
→           (28) 

  
 
→                      (29) 

4) In higher order reactions as represented below, the calculation of the hazard is 

obtained as follows: 

  
 
→                      (30) 

where c is the rate constant and k is the stoichiometry coefficient of x. Hence, 

the hazard is calculated by        ( 
 
) for Equation 30. 

2.4 Computational Cost Analysis 

In other to assess the performance of different simulation methods in terms of the 

computational demand, certain measures are suggested in the literature. Among 

alternatives, the most widely used ones can be listed as the average search depth, 

average weighted degree and the central processing unit. In our analyses, we also 

choose these measures to compare the findings of distinct simulation algorithms. 

Below we define each with more details. 

 

Average search depth: A biochemical system has many reactions such as r = 

1,2,…R. Here, r shows which reaction happens in the system. Accordingly, the 

average search depth, denoted by SD, indicates the average number of operations by 

following expression. 

 SD=
∑    

 
 

∑   
 
 

 .          (31) 
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In the equation above, j represents which reaction occurs during the simulation and 

j  stands for the time of the occurrence of the jth reaction. Apart from SD, some 

systems apply the dependency graph before the simulation.  

 

Average weighted degree: The average weighted degree, shown by WD, calculates 

the average degree for the dependency graph for each occurring reaction. This term 

is related to the nodes and the pathway between edges of nodes. Here, the degree 

implies how many reactions are affected by the occurrence of the reaction. Thus WD 

is computed by the equation below. 

WD=
∑     

∑   
           (32) 

in which    represents the degree of the jth node and j  describes the number of 

firing times of the jth reaction as used in expression of SD.  

 

Central processing unit: The central processing unit (CPU) is the necessary unit to 

understand and translate the program codes. RAM (shared memory) has many CPUs 

connections such that they can access each private memory and are independent on 

each other. Due to this feature, CPUs can be used to compare the performance of 

systems. 

2.5 Stochastic Simulation Algorithms 

The gene regulation is generally modeled by deterministic mathematical formulation 

(DE) in detail. This model defines the chemical species as continuous and chemical 

interaction as DE (McCollum and Peterson, 2006). However, the DE method does 

not give effective results on the molecular level. Therefore, the stochastic algorithm 

is used to model the biochemical systems. This algorithm defines species as discrete 

values and chemical interactions as random processes. The stochastic simulation 

algorithm (SSA) of the biochemical reaction, which is exact and homogenous, is 

based on the master equations, also named as the Chapman-Kolmogorov equation.  
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This algorithm analyzes each reaction stochastically under a time evaluation of 

species’ populations. Here, the main assumption is the system in thermal 

equilibrium. Actually, these equations are used in small systems while Monte Carlo 

is preferred in large systems. Because the master equations cannot be solved 

numerically when the system is complex. In the representation of this type of 

equations, let’s Y be the number of molecules in the reactant parts in a reaction. 

Moreover, assume that the system has r reactions and v known as the state change 

vector denote the net effect matrix. Hence, the probability of occurrence of the jth 

reaction while changing state from (Y-vj) to (Y) at time interval [t,t+dt] is described 

by 

       

  
 ∑  

 

   
                                                          (33) 

In Equation 33, P(Y,t) shows the probability for Y amount of molecules in the time t 

and dt denotes the changes in time. Accordingly, hj(Y-vj) presents the hazard function 

for the state (Y-vj) when the net effect is described by vj for the jth reaction (j=1,… r).  

There are three methods to stochastically generate a system. The main aim of these 

algorithms is to answer two questions. The first interest is when the next reaction 

occurs and the second one is which reaction will occur next. These methods are 

similar in accuracy and deviation since they are all exact simulation algorithms. But 

they differ within each other in terms of their computational time. In the following 

part, we explain each of these algorithms in details (Wilkinson, 2006). 

2.5.1 Gillespie Algorithm 

The Gillespie algorithm, also called as the direct method, is the fastest simulator in 

the calculation of time, especially, for small systems (Wilkinson, 2006, Gillespie, 

1977; Turner, 2004). However, its application is hard in heterogeneous situation and 

not computationally efficient in simulation of large networks as the calculation takes 

long time. 

The Gillespie algorithm is known as discrete event simulation and its procedure is as 

follows for a system with r reactions and n species. The system at time t=0 with rate 
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constants c1, c2,….,cr and the molecule numbers for each species x1, x2,….,xn are 

initialized. 

i) The hazard functions, hi(x,ci) are calculated for each reaction (i=1,…,r). 

ii) The combined reaction hazard is calculated via h0(x,c)=∑   
 
         . 

iii) The time interval for the next event, i.e, reaction, is generated from the 

exponential density with rate h0, i.e. Exp(h0(x,c)). 

iv) The reaction is simulated with probabilities hi(x,ci)/h0(x,c) under the 

assumption that the reactions are independent of each other. 

v) The outputs x and t are updated via x:=x+S
(j)

 and t:=t+t’ respectively. Here 

S
(j)

(j=1,…,n) indicates the jth column of the stoichiometry matrix and t 

denotes the time interval. In the stoichiometry matrix, the rows show the 

reaction and the columns denote the number of species. Hence, it is a (r n) 

matrix for totally r reactions and n species (r n). 

vi) If t<T, the algorithm is repeated from step (ii) until t T, where T is the 

predetermined total time. 

vii) The hazard functions, hi(x,ci) are calculated for each reaction (i=1,…,r). 

2.5.2 First Reaction Method 

The first reaction method is a simulation method which uses shorter calculation and 

is based on the Gillespie method (Gillespie, 1992; Turner, 2004). Hereby, it has 

advantage over Gillespie for the complicated systems. 

The step of this algorithm for r reactions and n species in a system can be explained 

as follows: 

i) The system at time t=0 with rate constants and the numbers of molecule for 

species are initialized. 

ii) The hazard function for each reaction, hi (i=1,…,r) is calculated. 
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iii) The time interval for each reaction, ti (i=1,…,r) is computed by 

ti=Exp(hi(x,ci)), where ci is the reaction rate for the ith reaction. 

iv) The smallest ti is chosen as a time interval for the next reaction. 

v) The number molecules x and the time t are updated via t:=t+tjandx:=x+S
(j) 

in 

which S
(j)

 denotes the jth row of the stoichiometry matrix. 

vi) If t<T, step (ii) is returned and the algorithm is repeated until t T for the total 

time T. 

The methods of the direct and the first reaction are similar to each other. But the first 

reaction method does not use T-1 reaction times. Hence, it is less efficient than the 

direct method. 

2.5.3 Gibson-Bruck Algorithm 

The Gibson-Bruck algorithm, also known as the next reaction method, is more 

efficient than Gillespie and faster than the first reaction method in large systems 

since the time interval and the hazard function are calculated together in this method 

(Gibson and Bruck, 2000; Turner, 2004). This method modifies T-1 reaction times to 

reuse for the system. 

The calculation of this algorithm for a system with r reactions and n species has the 

following steps. 

i) The rate constants and the number of molecules are initialized for t=0. Then 

the initial reaction hazards and the time interval depending on the hazard 

function are calculated. 

ii) The smallest time interval tj (j=1,…,r) is chosen. 

iii) The state vector x, the hazard function and the time based on the jth reaction 

are updated. 

iv) For each reaction j   , the hazard and the time are computed by   
    (x,ci) 

and   =t+(hi/  
     -t), respectively. Then, the old hi is deleted. Finally, the 
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system is updated via t:=t+ti and x:=x+S
(j)

 for the time and the number of 

reactions, in order. 

v) If t<T, step (ii) is returned and the algorithm is repeated until t>T for the total 

time interval T. 

2.5.4 Optimal Direct Method 

The optimal direct method (ODM) developed by Cao et al. (2004) is the most 

efficient method of SSA for the formulation. The main idea of this method is to 

reduce the complexity in the selection stage of reactions which need to be simulated 

stochastically. To optimize the underlying selection, we aim to get the total number 

of stochastically simulated reactions very small. Accordingly, the algorithm modifies 

the reactions in such a way that we can decrease the frequency of the occurrence of 

reactions by using pre-simulations of the system so that the presumed speed of each 

reaction can be categorized like slow, moderately fast and very fast reactions. Then, 

the reactions having slow or moderate speeds are generated later and the speediest 

ones simulated at first. Such a change in the simulation of certain reactions reduces 

the computational demand in the overall simulation of the system since the highly 

stochastically behaved reactions, in place of all, get the priority in the simulation.   

Hence with more mathematical details, if we simulate the jth reaction with a reaction 

time   , we can reallocate this reaction by optimizing the average search depth SD  

of the system. The optimized SD, denoted by SD*, is obtained by sorting reactions in 

a decreasing order based on how often they react. This order provides a smaller SD* 

by optimizing the cost of simulation. Hereby to find   , we need one of more 

presimulations of the system as, typically, no prior information is provided about 

  ’s in the simulation of the complex biochemical networks. If  

  
    

  for i j          (34) 

when i and j denote two reactions in a system, this method moves the reaction 

happening most frequently, i.e.   
 , to the beginning of the reaction order so that the 

computational time can decrease. 
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On the other hand, if the average weighted degree WD is very smaller than the total 

number of reaction chains R, i.e. RWD  , then we compute the hazards of the 

reactions chains affected by the last reaction. Under such situations, we need to 

calculate only the WD amount of hazards in order to find the cost for the calculation 

of all R amounts of hazards.   

2.5.5 Sorting Direct Method 

The optimal direct method needs to execute several pre-simulations to determine the 

reaction order. However, this method cannot be effective for sharp changes because 

pre-simulations cannot effectively predict the system behavior. Therefore, the sorting 

direct method (SDM) is detected to eliminate the pre-simulation. This method 

modifies the changes. Indeed, the gene regulation network model explains this 

modification.  

G1 →G1+mRNA1            (35) 

mRNA1 →mRNA1+Protein1        (36) 

mRNA1 → ∅           (37) 

Protein1 → ∅                                    (38) 

G2 →G2+mRNA2           (39) 

mRNA2 →mRNA2+Protein2                        (40) 

mRNA2 → ∅           (41) 

Protein2 → ∅                                           (42) 

G2+Protein1 →G2 Induced         (43) 

G2 Induced →G2 Induced+mRNA2                   (44) 
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This network explains the transcription and translation Gene1/Gene2 into 

Protein1/Protein2. Gene2 is induced as a result of the combination of Gene2 and 

Protein1. In fact, Gene2 Induced transcribes at a high accelerated rate.  

The difference between the ODM and SDM is shown in the Figure 1. The sharp 

changes occur for ODM while SDM remains constant because of its adaption to the 

changes. When Gene2 reacts more frequently than Gene1, Gene 1 can be 

overemphasized during the pre-simulation. The pre-simulation cannot effectively 

predict the behavior of the reaction for this situation. Therefore, the average search 

depth increases and the system performance decreases. If the firing of the reaction 

frequencies has constant frequency, ODM predicts the optimal order for the 

reactions. Hereby, in general, SDM performs as well as or better than ODM and have 

better strategy for large shifts.  

 

 

Figure 1: Average search depth for ODM and SDM for a system with 20 genes 

(McCollum and Peterson, 2006).  

 

2.6 Impulses 

The natural activity is generally dynamic and can have sudden changes which are 

called as the impulses. The shocks, natural disasters and vaccinations are some 

examples of the impulses. Hereby, these dynamic changes can happen into two 

different ways, namely, deterministically and stochastically. If the concentration of 

species in the system is low and the stochastic fluctuations have a significant effect 
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Fig. 8. Stochastic simulation of the gene regulation network model. Notice that

the dynamics of the simulation change just before time 200 when the inducer

protein binds to the gene and induces the production of Protein2.

10 genes induced by proteins that the other 10 genes pro-

duce. Fig. 10 shows periodic measurements of the average

search depth as the simulation executes for both simulators.

The ODM shows sharp changes in the reaction search depth

as the simulation executes. Our results show that these sharp

changes occur as genes are induced. As the run continues,

the average search depth increases because the pre-simulation

has not effectively predicted the reaction execution behav-

Fig. 10. Measured average search depth for the ODM and the SDM while run-

ning the 20-gene model. Sharp decreases or increases occur in the search depth

for the ODM when genes are induced, while the SDM remains small and constant

throughout the simulation.

ior for the run. The SDM successfully adapts to changes

in reaction execution behavior and consistently remains at

or below the average search depth measured by the ODM.

Because the SDM is able to maintain a relatively small aver-

age search depth, it is able to perform the simulation at a rate of

1.55 MRxns/s (millions of reactions executed per second) while

the ODM is only able to perform the simulation at a rate of

1.29 MRxns/s.

Fig. 9. Pseudo-code for the sorting direct method (SDM).
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the ODM is only able to perform the simulation at a rate of

1.29 MRxns/s.

Fig. 9. Pseudo-code for the sorting direct method (SDM).
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on the system, the stochastic impulses are used to describe the sudden changes in the 

model. For instance, the impulsive effect can be seen in the diabetes model. When 

the diabetic patient eats overdose sugary food, then this causes an instant effect, i.e. 

impulse, in the blood measure of the patient. The diabetic model and the explanation 

of its impulsive effect have been also worked on the study of Belle et al. (2009) and 

Jonge et al. (2014). Apart from diabetes, most of the cancer diseases can be 

explained via an external and big stimulus of the growth factor, resulting in impulses 

in the regular activation of the pathway. For instance, the MAPK-ERK system whose 

mis-function causes cancer, triggers by an external stimulus to its growth factor 

(Kolch, 2000; Kolch et al., 2005; Hornberg, 2005). Therefore, it is mainly used in 

oncogene researches. Besides the MAPK-ERK pathway, other EGF receptor 

signaling networks (Haley and Gullick, 2008) can be modelled by impulses and the 

full description of their reaction lists can be found from KEGG, GO or Ensembl 

databases. More details about the biological information in these databases can be 

also seen in Purutçuoğlu and Ayyıldız (2014). 

The deterministic impulses are simply based on the ordinary differential equations 

(ODE) with impulses and the random behavior is ignored in this approach. In order 

to define the time of impulses, the hybrid strategies are used. The hybrid methods 

basically split the species and the reactions into two distinct groups, namely, 

continuous and discrete. The former describes fast reactions and associated species 

and the latter represents relatively slow reactions and related species. On the other 

hand, the time of impulses in the deterministic approach is called as the jump times 

that are determined by the discrete groups of reactions in the implementation of the 

hybrid methods.  

Hence, as previously presented, the simple ODE system can be summarized as 

shown in Equation (45).  

     
  

  
                 (45) 

where y=(y1,..., ya) is the state vector when the system is defined by a number of 

species and r number of reactions. Accordingly, the deterministic impulse model is 

based on this general ODE modeling with a jump function, called impulse function, 
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as indicated in Equations 46 and 47 for a given initialization of the system via the (t0, 

y0) point. Here, t0 and y0 refer to the initial time and the associated initial state, 

respectively. 

                                                                                                                     (46) 

     (     )    (     )                                                        (47) 

In Equation 47,    denotes the impulse function at time     .  When the impulse 

occurs at time   , the state vector y(t) = y(t;t0,y0) is transferred to the new position 

y(t) = y(t;     
     ) where  

     ) is new y(t) point for                 ). 

On the other side, the stochastic impulses are based on CME, given in Equation 33 

with impulses at fixed or varying times. Hereby, the time of impulses can be a 

continuous function, threshold function or a fixed value from a poisson distribution. 

For the continuous function, the impulse occurs at time t=     , where x is the d-

dimensional vector of y. For the threshold function, the time of jumps depends on a 

threshold defined by xT, (t: x(t)  xT). Finally, in the last case, the time of jumps is 

determined from a random value from a poisson distribution. In this study, we 

merely deal with the stochastic impulses. 

As the application of the stochastic simulation methods with and without impulses, 

we consider different dimensional systems, namely, small, moderately large and 

large systems. As the small system, we choose the Lotka-Volterra model having 3 

reactions and 2 species (i.e. prey and predator). We run the Gillespie algorithm and 

the first reaction algorithm. Then, we include impulses under two scenarios: Abrupt 

changes are observed at fixed and at random time points by adding impulses to the 

state vector for the time interval [ts, ts+1].  
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CHAPTER 3 

 APPLICATION 

3.1 Description of Systems 

In order to evaluate the performance of stochastic simulation algorithms, we select 

different dimensional systems, namely, small, moderately large and realistically large 

networks. For the toy system, we choose the Lotka-Voltera model (Wilkinson, 2006) 

as it is one of the well-known networks, in particular, for comparative studies. The 

description of this system is shown as below. 

  →              (48) 

     →              (49) 

   →  ∅                                (50) 

The set of reactions represented in Equation 48-50, describes the relations between 

the predator and the prey with 2 species and 3 reactions. Here,    and     denote the 

prey and the predator species, respectively. With more details, Equation 48 indicates 

the reproduction of the prey and Equation 49 identifies that the prey behaves as a 

food supply for the predator. Thereby, the reproduction of the predator depends on 

the population of the prey. Finally, Equation 50 represents the death of predators. 

On the other hand, for the moderately large system, we use the reaction list of the 

PKC pathway. This system stands for a model of the protein kinease C signal 

transduction pathway, related to the significant neural functions, especially, for the 

memory and the learning process. Moreover, it has importance at neuronal functions 

such as the synaptic long-term potentiation (LTP) and the depression (LTD) 

(Manninen, 2006).  
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PKC is activated by the rachidonic acid (AA), Ca
2+

 and the diacylglycerol (DAG). 

AA, cis-unsaturated fatty acid, affects the neural activities and the synapses during 

LTP. Hereby, the reaction of AA and Ca
2+

 triggers the sensitivity of the GAP-43 

phosphorylation that is related to the synaptic connections. In fact, GAP43 is the 

main element of this pathway and increases during the phosphorylation of the LTP 

persistence. Furthermore, the PKC pathway is Ca
2+

 dependent and needs to DAG 

that is the product of phosphatidylinositol, for the activation. PKC translocates from 

the cytosol to the membrane by stimulating the variability in basal. In the reaction, 

AA affects the phosphorylation of GAP-43 by interacting with Ca
2+

 and DAG 

(Schaechter and Benowitz, 1993).  Hence, the description of the system can be 

described by the following reaction list in Appendix B. 

The other system for the assessment of large systems, we apply the JAK-STAT 

pathway (Maiwald et al., 2010), with realistic complexity. This network is one of the 

major signaling pathways controlling the immune system based on the regulation of 

interferons. The interferons (IFN’s) are the proteins synthesized by host cells in reply 

to pathogens like viruses or bacteria and are used for the bridge between cells to 

activate defenses of the immune system against pathogens. The proteins are included 

by the family of glycoproteins known as cytokines and are probed into the three 

classes based on the type of receptors, namely, Type I IFN, Type II IFN and Type III 

IFN. In this study, we discuss Type I IFN which is a large subgroup of the IFN 

proteins.  

On the other hand, IFNα is the family of Type I IFN and it stimulates immune 

responses against the viral infection by binding a receptor (IFNAR) of IFNα 

containing of IFNAR1 and IFNAR2 chains. 

Hereby, Type I IFN activates the JAK/STAT pathway. In fact, the JAK activation 

triggers by the cellular events such as the cell migration or the cell proliferation 

(Rawlings, 2004) and it is suggested that the effect of this pathway is reduced by the 

mutation. The interaction of cytokines and receptors determines the cellular 

behavior. As a result of the binding ligand to the receptor, the activator of STAT1 

and STAT2 which is the member of JAK1, i.e. the Janus kinases and TYK2, the 

tyrosine kinases 2 are activated. Specifically, the IFNAR dimer stimulates IRF9, 
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which is the interferon regulatory factor 9, and this causes to form ISGF3, that is 

known as the interferon stimulated gene factor 3. SOCS, which is the suppressor of 

cytokine signaling, affects negatively the cytokine signaling. Accordingly, IRF9 has 

a significant influence on the IFNα signal transduction, resulting in the achievement 

of the antiviral response. In Figure 2, we briefly summarize the biological process of 

the JAK-STAT pathway for a simple visual representation and the complete list of 

reactions for this system is presented in Appendix A. 

 

 

Figure 2: The simple presentation of the JAK-STAT pathway (Selice Wordexpress, 

2011). 

 

In addition, we investigate the Lysis–Lysogeny model. In fact, the viral and the 

temperant phages can select the pathway lysis and lysogenic circuit. The selection 

depends on the competition of the cro and CI protein. Here, CI and cro are required 

for the lysogenic and the lytic cycle, in order. The T4 phage is the protype of the 

viral phage. On the other hand, the λ phage is the prototype of the temperant phage. 

Indeed, the lysogenic cycle is the reproduction of viral issues and the lytic means that 

the cell integrity is distorted. The mechanism of the lytic system is initiated with the 

transcription and the translation. Actually, the cycle of the lytic phage starts with a 
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stick to the cell-wall. The virus DNA enters to the cell in order to synthesize the virus 

protein. Therefore, the virus DNA can multiply themselves. Then, the lysogenic 

cycle starts with an entrance dependent on three proteins, CI, CII, CIII. The CI 

protein is produced after the viral DNA interacts with an individual cell. Then, the 

production of CII and CIII starts. CII provides the production of CI and CIII prevents 

the degradation of CII by enzymes. After the completion of the integration, only CI 

produces. Finally, the phage is integrated with the bacterial genome and this stage is 

called as the pro-phage and the associated bacteria are named as the lysogen bacteria. 

Generally, these systems have low concentration of species and slow reaction rates. 

The complete list of reactions for this system is presented in Appendix B. 

Finally, we investigate the convergence of the JAK-STAT and PKC pathway to 

observe the response of the methods for large systems. Here, the reaction of the 

STAT1 and GATA4 proteins trigger the convergence of the JAK-STAT and PKC 

pathways. In this extended pathway, the vasoactive hormone and AII change the 

gene transcription. AII reacts with AT1R and AT1R modifies the biological effects 

of AII. AT1R is generally used for the treatment of the cardiovascular disease. In 

fact, some STAT molecules are activated by AII. Hereby, the link of two pathways, 

which are JAK-STAT and PKC, are based on the AT1R and AII activation. The 

description of the additional reactions which bind these two systems are presented in 

Appendix part.  

3.2 Comparison of Methods 

3.2.1 Comparison for long and short time 

The LV, PKC, JAK-STAT and Lysis – Lysogeny systems are investigated for the 

time t= 5, 20 and 50 for both the Gillespie and the First Reaction Methods. In 

simulations, the initial number of molecules is taken as 100 arbitrarily for each 

system. On the other hand, the reaction rate constants are equated as used in most of 

the comparative studies about these systems whose details are given for the LV 

system in Wilkinson, 2006. As seen in Figures 3, 4 and 5, the increase in the number 

of preys affects the number of predators due to the fact that the predators need foods 

which are preys in our system as described in the reaction list as well. Accordingly, 
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when the number of preys decreases, their main nutritional sources are shortened, 

resulting in the extinction of these species. Indeed, a decrease in the time interval 

enables us to better visualize the fluctuation in the system. On the other hand, while 

the number of species decreases, the total hazard falls down as represented in Figure 

3, 4, 5. In the end, when we compare the computational demands of the direct and 

the first reaction algorithms for this system with respect to the selected criteria S, D 

and CPU, the direct method indicates a less computation cost with respect to the first 

reaction method under no impulsive scenarios.  

 

 

 

 

 

 

 

 

 

 

Figure 3: The plots indicate the changes in the number of preys, predators and the 

changes in hazards of the LV system via Direct Method (DR) and First Reaction 

Method (FR) for the time 5 when the system has no impulse. 
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Figure 4: The plots indicate the changes in the number of preys, predators and the 

changes in hazards of the LV system via Direct Method (DR) and First Reaction 

Method (FR) for the time 20 when the system has no impulse. 
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Figure 5: The plots indicate the changes in the number of preys, predators and the 

changes in hazards of the LV system via Direct Method (DR) and First Reaction 

Method (FR) for the time 50 when the system has no impulse. 

 

It can be seen in the Figure 3, 4, 5 there is no significant difference between Gillespie 

and First Reaction Method for short or long runs. Both systems have almost the same 

results. 
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Figure 6: The plots indicate the changes in the number of the Substance 1, Substance 

5 and Substance 14 of the PKC system via Direct Method (DR) and First Reaction 

Method (FR) for the time 5 when the system has no impulse.  

 

 

Figure 7: The plots indicate the changes in hazards of the PKC system via Direct 

Method (DR) and First Reaction Method (FR) for the time 5 when the system has no 

impulse. 
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Figure 8: The plots indicate the changes in the number of the Substance 1, Substance 

5 and Substance 14 of the PKC system via Direct Method (DR) and First Reaction 

Method (FR) for the time 20 when the system has no impulse. 

 

 

Figure 9: The plots indicate the changes in hazards of the PKC system via Direct 

Method (DR) and First Reaction Method (FR) for the time 20 when the system has 

no impulse. 
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Figure 10: The plots indicate the changes in the number of the Substance 1, 

Substance 5 and Substance 14 of the PKC system via Direct Method (DR) and First 

Reaction Method (FR) for the time 50 when the system has no impulse. 

 

 

Figure 11: The plots indicate the changes in hazards of the PKC system via Direct 

Method (DR) and First Reaction Method (FR) for the time 50 when the system has 

no impulse. 
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In Figures 6-11, we present the changes in the number of substances and the changes 

in hazard for the PKC system during short and long time. In these analyses, the 

number of molecules is initialized by 100, as previously implemented, and the 

stochastic reaction rate constants are set to the entries in the study of Schaechter and 

Benowitz (1993).  From the results it is observed that the outputs of both the 

Gillespie and the first reaction methods are almost the same apart from the 

fluctuations due to the stochasticity of the systems.  

 

 

Figure 12: The plots indicate the changes in the number of the substance 1, 15 and 

30 of the JAK-STAT system via Direct Method (DR) and First Reaction Method 

(FR) for the time 5 when the system has no impulses. 
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Figure 13: The plots indicate the changes in hazards of the JAK-STAT system via 

Direct Method (DR) and First Reaction Method (FR) for the time 5 when the system 

has no impulse. 

 

 

Figure 14: The plots indicate the changes in the number of the Substance 1, 15 and 

30 of the JAK-STAT system via Direct Method (DR) and First Reaction Method 

(FR) for the time 20 when the system has no impulse. 
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Figure 15: The plots indicate the changes in hazards of the JAK-STAT system via 

Direct Method (DR) and First Reaction Method (FR) for the time 20 when the 

system has no impulse. 

 

  

Figure 16: The plots indicate the changes in the number of the Substance 1, 15 and 

30 of the JAK-STAT system via Direct Method (DR) and First Reaction Method 

(FR) for the time 50 when the system has no impulse. 
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Figure 17: The plots indicate the changes in the number of the hazard of JAK-STAT 

system via Direct Method (DR) and First Reaction Method (FR) for time 50 when 

the system has no impulse. 

 

In the analyses of the JAK-STAT pathway, as used beforehand, we set the time to 5, 

20 and 50 in order to see the effects of the short, moderate and long time period. 

Moreover, as performed in previous analyses, we equate the initial number of 

molecules of each species to 100 if there is no any biological explanation for this 

system in the literature. On the other hand, the description of the system and 

associated reaction rates are taken from the study of Rawlings (2004) which is one of 

the main biological sources for this pathway. As a result, as seen in Figures 12-17, 

we observe that both algorithms produce very similar findings in most of species in 

the system. Whereas, for certain substrates such as Substrate 15, the changes in the 

number of molecules are more obviously seen. On the other side, if we compare the 

changes in hazards of both algorithms, we find that they have almost similar time 

jumps during whole simulation and it means that the first reaction algorithm cannot 

significantly improve the computational burden of the Gillespie algorithm in realistic 

systems.   
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Figure 18: The plots indicate the changes in the number of the Substance 1, 5 and 10 

of the Lysis – Lysogeny system via Direct Method (DR) and First Reaction Method 

(FR) for the time 5 when the system has no impulse. 

 

 

Figure 19: The plots indicate the changes in the number of the hazard of Lysis – 

Lysogeny system via Direct Method (DR) and First Reaction Method (FR) for time 5 

when the system has no impulse. 
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Figure 20: The plots indicate the changes in the number of the Substance 1, 5 and 10 

of the Lysis – Lysogeny system via Direct Method (DR) and First Reaction Method 

(FR) for the time 20 when the system has no impulse. 

 

 

Figure 21: The plots indicate the changes in the number of the hazard of Lysis – 

Lysogeny system via Direct Method (DR) and First Reaction Method (FR) for time 

20 when the system has no impulse. 
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In the analyses of the Lysis-Lysogency system, initial values of all species are taken 

as 100 and we set the time to 5, 20 and 50, respectively. On the other hand, the 

description of the system and associated reaction rates are obtained from the study of 

Arkin (1998) which is one of the main biological sources for this pathway. Hence, as 

seen in Figures 18-21, we detect almost the same results from the Gillespie and the 

first reaction algorithms in the simulation of the system. But in both algorithms, we 

observe a significantly long simulation-time under all conditions. We consider that 

the reason is dependent on the biological description of the system and the initial 

values, rather than the performance of the algorithms for this pathway.   

 

 

Table 3:  The results for the Lysis-Lysogenic model for Direct Method and First 

Reaction Method. For time 50, we obtain the results by using the ratio of time for 5 

and 20 since the time step under time 50 increases by 0.0002 units which leads to 

computational burden.   

LL 
Without Impulse 

CPU Local Time SD WD 

Direct 

Method 

t=5 16.2 352.26 5.49 2.78 

t=20 6677.65 29867.95 5.68 2.99 

t=50 8806532.3 2935560.26 457.51 231.66 

First 

Reaction 

Method 

t=5 22.88 388.73 5.64 2.78 

t=20 11153.05 45008.64 6.70 2.99 

t=50 9899785.86 6675700.8 546.5 242.8 
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According to Table 3, the time effect on CPU is higher compared to other systems 

like LV or PKC system. The Gillespie and the first reaction methods have little 

difference.  On the other hand, while the time increases, the difference of CPU time 

between two methods gets larger.   

  

 

Figure 22: The plots indicate the changes in the number of molecules 15 and 50 and 

the hazard of the convergence of PKC and JAK-STAT system via Direct Method 

(DR) and First Reaction Method (FR) for time 20 when the system has no impulse. 
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Figure 23: The plots indicate the changes in the number of the molecules 36 and 52 

and the hazard of the convergence of PKC and JAK-STAT system via Direct Method 

(DR) and First Reaction Method (FR) for time 20 when the system has no impulse. 

 

 

Figure 24: The plots indicate the changes in the number of molecules 15 and 50 and 

the hazard of the convergence of PKC and JAK-STAT system via Direct Method 

(DR) and First Reaction Method (FR) for time 50 when the system has no impulse. 
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Figure 25: The plots indicate the changes in the number of molecules 36 and 52 and 

the hazard of the convergence of PKC and JAK-STAT system via Direct Method 

(DR) and First Reaction Method (FR) for time 50 when the system has no impulse. 

 

Finally, we investigate the convergence of the JAK-STAT and the PKC systems to 

observe the behavior of the largest system for the DR and FR methods. Similar to the 

previous findings, we obtain same results in the sense that there is no significant 

difference between two methods as seen in Table 4. On the other hand, we can 

visually detect more obvious stochasticity under the Gillespie methods.  
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Table 4:  The results for the convergence of JAK-STAT and PKC model for Direct 

Method and First Reaction Method.  

The Convergence of JAK-

STAT and PKC 

Without Impulse 

CPU Local Time SD WD 

Direct Method 

t=20 228.3 1300.09 61.14 6.06 

t=50 1703.23 8015.76 62.62 5.87 

First Reaction 

Method 

t=20 486.58 2290.65 61.50 6.07 

t=50 1081.41 5585.89 62.84 5.83 

 

 

3.2.2 Comparison for long and short time with impulses 

In this part, we investigate the impulsive effects on LV, PKC, JAK-STAT, Lysis–

Lysogeny and the convergence of the JAK-STAT and the PKC systems by using the 

Gillespie and the first reaction methods for short and long runs. To see the 

underlying effects, we consider two different scenarios for each system. In the 

initialization of all systems, we set the number of molecules of every species to 100 

if there is no any other biological explanation about the systems. Furthermore, we 

equate the reaction rate constants for the Lotka Voltera (LV) system as given in 

Wilkinson (2006), for the PKC pathway as presented in Schaechter and Benowitz 

(1993), for the complex JAK-STAT  pathway as listed in Rawlings (1994), for the 

Lysis-Lysogeny system as described in Arkin et al (1998), and finally for the 

convergence of the JAK-STAT and the PKC systems as presented in Wang (2005). 

For the LV system, the first scenario is to detect the effect of the changes in the 

number of molecules at a decreasing direction. Hereby, if the number of the prey 

becomes greater than 60 in simulations, we decrease it 20 units. On the other side, in 

Scenario 2, we consider to decrease the number of preditors at 20 units if it exceeds 

60 molecules in the simulations. 
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Figure 26: (Scenario 1) The plots indicate the changes in the number of preys, 

predators and the changes in hazards of the LV Model for Direct Method (DR) and 

First Reaction Method (FR) for the fixed time 5 when the system has an impulsive 

effect. 

  

 

Figure 27: (Scenario 1) The plots indicate the changes in the number of preys, 

predators and the changes in hazards of the LV Model for Direct Method (DR) and 

First Reaction Method (FR) for the fixed time 20 when the system has an impulsive 

effect. 
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Figure 28: (Scenario 1) The plots indicate the changes in the number of preys, 

predators and the changes in hazards of the LV Model for Direct Method (DR) and 

First Reaction Method (FR) for the fixed time 50 when the system has an impulsive 

effect. 

 

  

Figure 29: (Scenario 2) The plots indicate the changes in the number of preys, 

predators and the changes in hazards of the LV Model for Direct Method (DR) and 

First Reaction Method (FR) for the fixed time 5 when the system has an impulsive 

effect. 
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Figure 30: (Scenario 2) The plots indicate the changes in the number of the prey, the 

predator and the changes in for Direct Method (DR) and First Reaction Method (FR) 

for the fixed time 20 when the system has an impulsive effect. 

 

  

Figure 31: (Scenario 2) The plots indicate the changes in the number of the prey, the 

predator and the changes in for Direct Method (DR) and First Reaction Method (FR) 

for the fixed time 50 when the system has an impulsive effect. 
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Figures 26-31 show the impulsive effects of the LV system under different 

simulation periods. In these plots we observe that the system dies when there is the 

extinction in one species. Therefore, we cannot run the simulations until the time 50 

for both scenarios and algorithms. Furthermore, we observe that the changes in 

predators are more visible than the changes in preys under impulses and the die of 

the predators can be more crucial with respect to the die of the preys for the system. 

We explain this situation as follows: As the number of predators is always higher 

than the number of preys in the equilibrium states, a sharp decrease in the predator 

can cause a sharp change in the system and can lead to the underlying extinction. 

On the other hand, from Table 5, we detect that there is no significant difference in 

the computational demand of the direct, i.e. Gillespie, and first reaction methods. In 

general, the impulsive effects cause higher CPU and local time according to Scenario 

1 and 2.  

In the PKC system, we construct our scenarios based on three substances, namely, 

Substances 1, 5 and 14, which are chosen arbitrarily. In this part, the effect of 

impulses for Scenario 1 depends on the sudden increase of the Substance 1. This 

scheme considers that if the number of molecules for Substance 1 becomes greater 

than 60, it decreases 20 units. On the other hand, under the Scenario 2, we think the 

same plan for the Substance 5. 
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      Table 5:  The results for LV for Direct Method and First Reaction Method. 
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Figure 32: (Scenario 1) The plots indicate the changes in the number of Substance 1, 

Substance 5 and hazard of PKC Model for Direct Method and First Reaction Method 

for the fixed time 5, respectively, when the system has impulsive effect. 

 

 

Figure 33: (Scenario 1) The plots indicate the changes in the number of Substance 1, 

Substance 5 and hazard of PKC Model for Direct Method and First Reaction Method 

for the fixed time 20, respectively, when the system has impulsive effect. 
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Figure 34: (Scenario 1) The plots indicate the changes in the number of Substance 1, 

Substance 5 and hazard of PKC Model for Direct Method and First Reaction Method 

for the fixed time 50, respectively, when the system has impulsive effect. 

 

 

Figure 35: (Scenario 2) The plots indicate the changes in the number of Substance 1, 

Substance 5 and hazard of PKC Model for Direct Method and First Reaction Method 

for the fixed time 5, respectively, when the system has impulsive effect. 
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Figure 36: (Scenario 2) The plots indicate the changes in the number of Substance 1, 

Substance 5 and hazard of PKC Model for Direct Method and First Reaction Method 

for the fixed time 20, respectively, when the system has impulsive effect. 

 

 

Figure 37: (Scenario 2) The plots indicate the changes in the number of Substance 1, 

Substance 5 and hazard of PKC Model for Direct Method and First Reaction Method 

for the fixed time 50, respectively, when the system has impulsive effect. 
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Figures 32-37 show the impulsive effects of the PKC system under different 

simulation periods. In these plots we indicate that the number of the Substance 1 

increases while the number of Substance 5 decreases. Like the LV system, we cannot 

detect impulse effect clearly due to the sharp decrease. In addition, the impulse effect 

is more visible for Substance 1, especially, for long run simulations.  

From Table 6, there is no significant difference between two methods. However, 

PKC has higher difference compared to LV system. In addition, the difference 

increases when system has long run. 

Substances 1, 15 and 30 are selected arbitrarily for impulsive effects in the JAK-

STAT system. For this system, the impulsive effect for the first scenario depends on 

the sudden increase of the Substance 15 and the second scenario relies on the 

impulsive effect for the Substance 30, meaning that if its number of molecules 

becomes greater than 60, this  number decreases by 20 units. 

 

 

Figure 38: (Scenario 1) The plots indicate the changes in the number of the 

Substance 1, Substance 15 and Substance 30 of JAK-STAT Model for Direct Method 

and First Reaction Method for the fixed time 5, respectively, when the system has 

impulsive effect. 
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Table 6: The results for PKC for Direct Method and First Reaction Method. 
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Figure 39: (Scenario 1) The plots indicate the changes in the number of the 

Substance 1, Substance 15 and Substance 30 of JAK-STAT Model for Direct Method 

and First Reaction Method for the fixed time 20, respectively, when the system has 

impulsive effect. 

 

 

Figure 40: (Scenario 1) The plots indicate the changes in the number of the 

Substance 1, Substance 15 and Substance 30 of JAK-STAT Model for Direct Method 

and First Reaction Method for the fixed time 50, respectively, when the system has 

impulsive effect. 
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Figure 41: (Scenario 2) The plots indicate the changes in the number of the 

Substance 1, Substance 15 and Substance 30 of JAK-STAT Model for Direct Method 

and First Reaction Method for the fixed time 5, respectively, when the system has 

impulsive effect. 

 

  

Figure 42: (Scenario 2) The plots indicate the changes in the number of the 

Substance 1, Substance 15 and Substance 30 of JAK-STAT Model for Direct Method 

and First Reaction Method for the fixed time 20, respectively, when the system has 

impulsive effect. 
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Figure 43: (Scenario 2) The plots indicate the changes in the number of the 

Substance 1, Substance 15 and Substance 30 of JAK-STAT Model for Direct Method 

and First Reaction Method for the fixed time 50, respectively, when the system has 

impulsive effect. 

 

In Figures 38-43, there are impulsive effects of the JAK-STAT system under 

different simulation periods. We can see this effect for the underlying more obvious 

than others. Furthermore, we find that the Substance 30 is not affected by the 

impulses as seen for the Substance 15. Moreover, the sudden changes in the 

Substance 15 also affect the changes of the Substance 30. Finally, similar to other 

systems, this system also does not indicate any important difference in the outcomes 

of the Gillespie and the first reaction methods.  

On the other side, from Table 7, as expected, CPU and local time increase under 

impulsive effects. Indeed, the JAK-STAT system has higher dimension than the ones 

of PKC and LV. Thus, the difference between the two exact methods is more clearly 

seen in this system, although the underlying difference is not significant, compared 

to the findings of the other systems. 

In order to clearly observe the impulsive effects in particular for large systems, we 

further investigate the model which is composed of the convergence of the JAK-
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STAT and PKC systems. As seen in Figure 44, there is no significant difference 

between the two exact methods for non-impulsive systems. Hereby, similar to other 

systems, the stochasticity is observed easily when the simulation is conducted via the 

Gillespie Method. In addition, to detect the impulsive effects more often in whole 

simulations, we change our impulsive regimes for the lower number of molecules in 

the sense that we increase the number of the AII hormone via 5 units when the 

number of this species becomes greater than 10 units. In the analysis we select this 

hormone since it is the growth factor which affects the complete activation of the 

system and the level of the AII hormone can cause the apoptosis for the system, 

resulting in crucial role in the flow of signals. In Figures 45-46, we show the changes 

in the number of the Substances 15 and 30, as used for the sole description of the 

JAK-STAT pathway, for the comparative purpose.  The plots indicate that the effect 

of impulses under this system and new regime causes continuous fluctuations.  

 

 

Figure 44: The plots indicate the changes in the number of molecules 15 and 30 of 

the convergence of PKC and JAK-STAT system via Direct Method (DR) and First 

Reaction Method (FR) for time 50 when the system has no impulse. 
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Table 7: The results for JAK-STAT model for Direct Method and First Reaction 

Method. 

W
it

h
 I

m
p

u
ls

e 
(s

ce
n

a
ri

o
 2

) W
D

 

7
.1

8
 

7
.2

2
 

7
.2

8
 

7
.1

8
 

7
.1

8
 

7
.2

5
 

S
D

 

2
1
.6

1
 

2
2
.9

5
 

2
2
.7

8
 

2
2
.0

7
 

2
2
.9

2
 

2
2
.5

6
 

L
o
ca

l 

T
im

e 

9
7
6
1
0
.9

4
 

9
8
3
2
8
.7

8
 

9
9
5
2
5
.4

7
 

9
7
7
0
7
.3

5
 

9
8
6
0
6
.3

2
 

1
8
2
2
1
5
.3

 

C
P

U
 

2
2
9
4
.2

9
 

2
3
8
6
.7

9
 

2
6
0
0
.1

9
 

2
3
1
6
.7

8
 

2
4
5
8
.5

4
 

2
7
7
7
.3

1
 

W
it

h
 I

m
p

u
ls

e 
(s

ce
n

a
ri

o
 1

) W
D

 

7
.1

1
 

7
.1

7
 

6
.9

9
 

7
.1

5
 

7
.1

2
 

7
.0

0
 

S
D

 

2
1

.9
3
 

2
2

.4
3
 

2
3

.3
8
 

2
1

.5
0
 

2
2

.4
8
 

2
3

.2
7
 

L
o
ca

l 

T
im

e 

9
5
2
0
8
.1

4
 

9
6
2
1
9
.0

7
 

9
6
9
7
6
.5

8
 

9
5
3
2
7
.5

 

9
6
4
8
2
.6

5
 

9
7
3
6
8
.3

 

C
P

U
 

1
8
6
2
.1

5
 

1
9
5
9
.4

3
 

2
1
3
5
.8

5
 

1
8
8
4
.2

1
 

2
0
2
8
.8

 

2
2
6
2
.2

3
 

W
it

h
o
u

t 
Im

p
u

ls
e 

W
D

 

7
.1

8
 

7
.1

8
 

7
.0

3
 

7
.1

8
 

7
.1

7
 

7
.1

1
 

S
D

 

2
2
.0

6
 

2
3
.2

4
 

2
4
.2

2
 

2
2
.3

4
 

2
3
.0

1
 

2
3
.7

6
 

L
o
ca

l 

T
im

e 

8
2
4
5
.7

4
 

8
8
7
0
.0

4
 

9
9
4
5
.0

6
 

8
3
2
9
.5

 

9
1
0
7
.8

2
 

1
0
5
8
7
.5

6
 

C
P

U
 

1
2
5
9
.2

 

1
3
6
8
.5

6
 

1
6
0
8
.5

2
 

1
2
8
6
.3

9
 

1
4
4
4
.1

 

1
7
7
6
.6

7
 

J
A

K
-S

T
A

T
 

P
A

T
H

W
A

Y
 

t=
5
 

t=
2
0
 

t=
5
0
 

t=
5
 

t=
2
0
 

t=
5
0
 

D
ir

ec
t 

M
et

h
o
d

 

F
ir

st
  

R
ea

ct
io

n
 

M
et

h
o
d

 

 

 

 

  



 

63 

 

 

Figure 45: The plots indicate the changes in the number of molecules 15 and 30 of 

the convergence of PKC and JAK-STAT system via Direct Method (DR) and First 

Reaction Method (FR) for time 20 when the system has impulsive effect. 

   

Figure 46: The plots indicate the changes in the number of molecules 45 of the 

convergence of PKC and JAK-STAT system via Direct Method (DR) and First 

Reaction Method (FR) for time 50 when the system has impulsive effect. 
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According to Table 8, the results for both systems are very close to each other, apart 

from the outcomes under the simulation time 50. The impulses affect, in particular, 

the CPU time of the calculation.   

 

Table 8: The results for the convergence of JAK-STAT and PKC systems for Direct 

Method and First Reaction Method. 

 
Without Impulse With Impulse 

CPU Local 

Time 

S D CPU Local 

Time 

S D 

Direct 

Method 

 

t=20 228.3 1300.09 61.14 6.06 1241.78 140733.7 54.37 5.70 

t=50 1703.23 8015.76 62.62 5.87 3190.51 146804.3 58.28 5.48 

First 

Reaction 

Method 

t=20 486.58 2290.65 61.50 6.07 1484.69 141549.3 54.39 5.74 

t=50 1081.41 5585.89 62.84 5.83 3714.02 148288.5 57.87 5.53 
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 CHAPTER 4 

CONCLUSION 

In this study we have dealt with the stochastic simulation of the biochemical systems 

by performing two major algorithms in this field. These are the Gillespie and the first 

reaction methods. They are exact algorithms in the sense that they are based on the 

chemical master equation. Here, we have evaluated them under different dimensional 

systems and impulsive scenarios. The impulses refer to the sudden changes in the 

system and are typically used to explain the sudden increasing/decreasing effects of a 

particular species in the system and can cause diseases such as cancer or diabetes. 

Thereby, their roles in biological systems are very crucial. In this study, we have 

considered to include them in the two well-known exact stochastic simulation 

algorithms in order to compare their performances in terms of the computational 

demand. For the measure of comparison, we have selected the central processing 

unit, local time, average search depth and the average weighted degree.   

As a result, from the analyses, we have used small and large systems, namely, Lotka 

Volterra, PKC, JAK-STAT, Lysis-Lysogeny and the combination of JAK-STAT and 

PKC pathways. Then we have performed two underlying methods for time t= 5, 20 

and 50 so that the behavior of the systems and algorithms can be evaluated under 

both short and long time periods. From the findings, we have observed that there is 

no significant difference between the Gillespie and the first reaction methods in most 

of the pathways and simulation times.  But a slight difference is seen when the 

system gets complicated. Moreover, we have detected that the effect of impulses can 

be observable for large systems and can be hardly seen under small or moderate 

dimensional systems. Furthermore, if the impulses are put on the initial species 

which can trigger whole activation of the systems such as the growth factor or 

external stimulus, the activations of all remaining species alter too as expected and 

the impulses becomes visible in the outputs of the simulations. On the other hand, if 
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the underlying effects, either in increasing or decreasing direction in the number of 

molecules, are frequently fired, they cannot be observed clearly. Whereas, such 

effects have always caused an increase in CPU and local time as expected and these 

differences become obvious while the systems have complex structures, i.e. higher 

dimensions.   

As a future work, we consider to include other exact stochastic simulation algorithms 

in the analyses under different dimensional systems and distinct impulsive scenarios. 

Furthermore the stochastic bifurcation analysis can be investigated for these systems 

since the impulses can cause unstable position for the systems and the bifurcation is 

detected under such instability. Finally, we think to extend this study for approximate 

stochastic simulation algorithms under various conditions of impulses. 
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APPENDIX 

 

Appendix A 

 

The reaction list of the Lotka Volterra system (Wilkinson, 2006) is presented below. 

In this system, there are 2 substrates and 3 reactions.  

1.   

  
→     

2.      

  
→     

3.    
  
→  ∅ 

 

The differential equations of the system as the mathematical description, is described 

as below: 

1. 
   

  
                      

2. 
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Appendix B 

 

The reaction list of the PKC pathway (Schaechter and Benowitz, 1993) is presented 

below. There are 14 substrates and 10 reactions in this system.   

1.                  
  
→         

2.                   
  
→          

3.            
  
→              

4.             
  
→               

5.           
  
→             

6.               
  
→           

7.         
  
→               

8.             
  
→              

9.                  
  
→          

10.           
   
→             

 

The differential equations of the system as the mathematical description, is described 

as below: 

 

1. 
              

  
                                    

                                   ]                  

2. 
   

  
                                           

                   

3. 
        

  
                       

4. 
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5. 
 

            

  
                  

6. 
    

  
                     

7. 
 

             

  
                                     

8. 
            

  
                                  

9. 
             

  
                

10. 
           

  
                   

11. 
 

              

  
              

12. 
              

  
                  

13. 
                   

  
                       

14. 
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Appendix C 

 

Below, we present the reactions list of the JAK-SAT pathway as applied in the study 

of Maiwald et al. (2010). The system is defined via 38 substrates and 66 reactions. 

The description of each substrate can be found in the same study. 

1. Receptor IFNAR 1 + TYK 
  
→ Receptor TYK Complex 

2. Receptor TYK Complex 
  
→ Receptor IFNAR 1 + TYK 

3. Receptor IFNAR 2 + JAK 
  
→  Receptor JAK Complex 

4. Receptor JAK Complex 
  
→ Receptor IFNAR 2 + JAK 

5. Receptor JAK Complex + Receptor TYK Complex + IFN_free
  
→ IFNAR dimer 

6. IFNAR dimer 
  
→ Receptor JAK Complex + Receptor TYK Complex + IFN_free 

7. IFNAR dimer 
  
→ Active Receptor Complex 

8. STAT2c_IRF9 + Active Receptor Complex 
  
→ Active Receptor Complex_STAT2c 

+ IRF9c 

9. STAT2c + Active Receptor Complex 
  
→ Active Receptor Complex_STAT2c 

10. Active Receptor Complex_STAT2c 
   
→  STAT2c + Active Receptor Complex 

11. STAT1c + Active Receptor Complex_STAT2c 
   
→ Active Receptor 

Complex_STAT2c_STAT1c 

12. Active Receptor Complex_STAT2c_STAT1c
   
→ STAT1c + Active Receptor 

Complex_STAT2c 
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13. Active Receptor Complex_STAT2c_STAT1c 
   
→  Active Receptor Complex + 

STAT1c*_STAT2c* 

14. IRF9c + STAT1c*_STAT2c*
   
→  ISGF-3c 

15. ISGF-3c 
   
→  IRF9c + STAT1c*_STAT2c* 

16. ISGF-3c 
   
→  ISGF-3n 

17. ISGF-3n 
   
→  ISGF-3c 

18. STAT1c*_STAT2c* 
   
→  STAT1n*_STAT2n* 

19. STAT1n*_STAT2n* 
   
→  STAT1c*_STAT2c* 

20. STAT1n*_STAT2n* + IRF9n 
   
→  ISGF-3n 

21. ISGF-3n 
   
→  STAT1n*_STAT2n* + IRF9n 

22. ISGF-3n + Free transcription factor binding site (TFBS) 
   
→  Occupied TFBS 

23. Occupied TFBS 
   
→  ISGF-3n + Free transcription factor binding site (TFBS) 

24. ∅
   
→ mRNAn 

25. mRNAn
   
→  mRNAc 

26. mRNAc
   
→  mRNAn 

27. ∅
   
→  IRF9c 

28. IRF9c 
   
→ ∅ 

29. ∅
   
→  SOCS 

30. SOCS 
   
→ ∅ 
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31. Active Receptor Complex 
   
→  Receptor IFNAR1 +Receptor IFNAR2 + JAK + 

TYK 

32. Active Receptor Complex 
   
→  IFNAR dimer 

33. IRF9n 
   
→ ∅ 

34. STAT2c_IRF9 →
   
→  STAT2c 

35. STAT2n_IRF9 
   
→  STAT2n 

36. ISGF-3c + Cytoplasmic phosphatase (CP) 
   
→  ISGF-3c_CP 

37. ISGF-3c_CP 
   
→  ISGF-3c + Cytoplasmic phosphatase (CP) 

38. ISGF-3c_CP 
   
→  STAT1c +STAT2c + CP + IRF9c 

39. STAT1c*_STAT2c* + CP 
   
→  STAT1c*_STAT2c*_CP 

40. STAT1c*_STAT2c*_CP 
   
→  STAT1c*_STAT2c* + CP 

41. STAT1c*_STAT2c*_CP 
   
→  STAT1c + STAT2c + CP 

42. STAT1n*_STAT2n* + Nuclear phosphatase (NP) 
   
→  STAT1n*_STAT2n*_NP 

43. STAT1n*_STAT2n*_NP 
   
→  STAT1n*_STAT2n* + Nuclear phosphatase (NP) 

44. STAT1n*_STAT2n*_NP 
   
→  STAT1n + STAT2n + NP 

45. ISGF-3n + NP 
   
→  ISGF-3n_NP 

46. ISGF-3n_NP 
   
→  ISGF-3n + NP 

47. ISGF-3n_NP 
   
→  STAT1n + STAT2n + NP + IRF9n 

48. Occupied TFBS + NP 
   
→  Occupied TFBS_NP 
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49. Occupied TFBS_NP 
   
→  Occupied TFBS + NP 

50. Occupied TFBS_NP 
   
→  STAT1n + STAT2n  + Free TFBS +IRF9n 

51. PIAS + ISGF-3n 
   
→  PIAS_ISGF-3n 

52. PIAS_ISGF-3n 
   
→  PIAS + ISGF-3n 

53. mRNAc
   
→ ∅ 

54. STAT1c 
   
→  STAT1n 

55. STAT1n 
   
→  STAT1c 

56. STAT2c 
   
→  STAT2n 

57. STAT2n 
   
→  STAT2c 

58. STAT2c + IRF9c 
   
→  STAT2c_IRF9 

59. STAT2c_IRF9 
   
→  STAT2c + IRF9c 

60. STAT2n + IRF9n 
   
→  STAT2n_IRF9 

61. STAT2n_IRF9 
   
→  STAT2n + IRF9n 

62. STAT2c_IRF9 
   
→  STAT2n_IRF9 

63. STAT2n_IRF9 
   
→  STAT2c_IRF9 

64. IRF9c 
   
→  IRF9n 

65. IRF9n 
   
→  IRF9c 

66. IFN_influx
   
→  IFN_free 

 



 

78 

 

The differential equations of the system as the mathematical description, is described 

as below: 

 

1. 
                  

  
 

                                                  

                              

2. 
     

  
                                                  

                              

3. 
                      

  
 

                                                 

                                                        

                                                        

4. 
                  

  
 

                                                    

                             

5. 
    

  
                                                     

                              

6. 
                     

  
 

                                                    

                                              [       ]  

                                                        

7. 
        

  
 

                                               [       ]  

                                              [       ]  

                 

8. 
            

  
 

                                              [       ]  
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                                              [       ]  

                                           

9. 
            

  
 

                                                            

                  

10. 
                        

  
 

   [                                   
]                                     

                

                                                                               

                                                          

11.                                 

  
 

   [                                   
]  

                                                                            

                                                                                 

12. 
      

  
 

                                        

                                                        

                                                     

                        -            

13.        

  
                                                                        

                                                                       

                                                   

 

14. 
       

  
 

                                           

                                           

                                                   

             

15. 
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   [                                   
]  

                                            

16. 
                

  
 

                        [                                   
]  

                                                        

                                                              

        

17. 
        

  
                                                         

                            

                                                              

18. 
        

  
 

                                                        

                                                

                                                    

                                        

19. 
                

  
                                           

                                                        

                                                         

             

20. 
      

  
 

                                                         

                                                         

                                         

21. 
     

  
 

                                                               

22. 
              

  
                                          

                                               

23. 
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24. 
      

  
                                  

25. 
             

  
 

                                                       

26. 
             

  
 

                                                         

                                   

27. 
        

  
                                                  

                                                       

                                     

28. 
    

  
 

                                                             

                                                           

                            

29. 
            

  
                                             

                               

30. 
                 

  
 

                   

                                                  

31. 
   

  
  

                       

                                                 

                                                        

                                         

                       

32. 
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33. 
       

  
 

                                                            

                         

34. 
          

  
                                              

35. 
                 

  
                                               

                       

36. 
      

  
                                         

37. 
             

  
                                        

38. 
          

  
     [         ] 
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Appendix D 

 

Below, we present the reactions list of the Lysis-Lysogency system as applied in the 

study of Arkin et al. (1998). The system is defined by 12 substrates and 16 reactions. 

The description of each substrate can be found in the same study. 

 

1.    
  
→  ∅    

2.     
  
→          

3.     

  
→        

4.     
  
→  ∅  

5.      
  
→       

6.     

  
→      

7.   
  
→  ∅  

8.        
  
→         

9.       
  
→        

10.        
   
→     

11.        
   
→         

12.        
   
→         

13.         
   
→     

14.         
   
→          

15.        
   
→          

16.         
   
→     

 

The differential equations of the system as the mathematical description, is described 

as below: 

 

1. 
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2. 
     

  
                 

3. 
    

  
                            

  

4. 
     

  
                  

  

5. 
  

  
         

6. 
     

  
                                        

7. 
    

  
                                       

8. 
        

  
                                                    

9. 
    

  
                                                        

                            

10. 
       

  
                                         

11. 
      

  
                              

12. 
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Appendix E 

 

Below, we present the reactions list of the convergence of the JAK-SAT and PKC 

pathway as applied in the study of Wang (2005). The system is defined via 56 

substrates and 87 reactions. The description of each substrate can be found in the 

same study. 

1. Receptor IFNAR 1 + TYK 
  
→ Receptor TYK Complex 

2. Receptor TYK Complex 
  
→ Receptor IFNAR 1 + TYK 

3. Receptor IFNAR 2 + JAK 
  
→  Receptor JAK Complex 

4. Receptor JAK Complex 
  
→ Receptor IFNAR 2 + JAK 

5. Receptor JAK Complex + Receptor TYK Complex + IFN_free
  
→ IFNAR dimer 

6. IFNAR dimer 
  
→ Receptor JAK Complex + Receptor TYK Complex + IFN_free 

7. IFNAR dimer 
  
→ Active Receptor Complex 

8. STAT2c_IRF9 + Active Receptor Complex 
  
→ Active Receptor 

Complex_STAT2c + IRF9c 

9. STAT2c + Active Receptor Complex 
  
→ Active Receptor Complex_STAT2c 

10. Active Receptor Complex_STAT2c 
   
→  STAT2c + Active Receptor Complex 

11. STAT1c + Active Receptor Complex_STAT2c 
   
→ Active Receptor 

Complex_STAT2c_STAT1c 

12. Active Receptor Complex_STAT2c_STAT1c
   
→ STAT1c + Active Receptor 

Complex_STAT2c 

13. Active Receptor Complex_STAT2c_STAT1c 
   
→  Active Receptor Complex + 

STAT1c*_STAT2c* 

14. IRF9c + STAT1c*_STAT2c*
   
→  ISGF-3c 

15. ISGF-3c 
   
→  IRF9c + STAT1c*_STAT2c* 

16. ISGF-3c 
   
→  ISGF-3n 
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17. ISGF-3n 
   
→  ISGF-3c 

18. STAT1c*_STAT2c* 
   
→  STAT1n*_STAT2n* 

19. STAT1n*_STAT2n* 
   
→  STAT1c*_STAT2c* 

20. STAT1n*_STAT2n* + IRF9n 
   
→  ISGF-3n 

21. ISGF-3n 
   
→  STAT1n*_STAT2n* + IRF9n 

22. ISGF-3n + Free transcription factor binding site (TFBS) 
   
→  Occupied TFBS 

23. Occupied TFBS 
   
→  ISGF-3n + Free transcription factor binding site (TFBS) 

24. ∅
   
→ mRNAn 

25. mRNAn
   
→  mRNAc 

26. mRNAc
   
→  mRNAn 

27. ∅
   
→  IRF9c 

28. IRF9c 
   
→ ∅ 

29. ∅
   
→  SOCS 

30. SOCS 
   
→ ∅ 

31. Active Receptor Complex 
   
→  Receptor IFNAR1 +Receptor IFNAR2 + JAK + 

TYK 

32. Active Receptor Complex 
   
→  IFNAR dimer 

33. IRF9n 
   
→ ∅ 

34. STAT2c_IRF9 →
   
→  STAT2c 

35. STAT2n_IRF9 
   
→  STAT2n 

36. ISGF-3c + Cytoplasmic phosphatase (CP) 
   
→  ISGF-3c_CP 

37. ISGF-3c_CP 
   
→  ISGF-3c + Cytoplasmic phosphatase (CP) 

38. ISGF-3c_CP 
   
→  STAT1c +STAT2c + CP + IRF9c 

39. STAT1c*_STAT2c* + CP 
   
→  STAT1c*_STAT2c*_CP 

40. STAT1c*_STAT2c*_CP 
   
→  STAT1c*_STAT2c* + CP 
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41. STAT1c*_STAT2c*_CP 
   
→  STAT1c + STAT2c + CP 

42. STAT1n*_STAT2n* + Nuclear phosphatase (NP) 
   
→  STAT1n*_STAT2n*_NP 

43. STAT1n*_STAT2n*_NP 
   
→  STAT1n*_STAT2n* + Nuclear phosphatase (NP) 

44. STAT1n*_STAT2n*_NP 
   
→  STAT1n + STAT2n + NP 

45. ISGF-3n + NP 
   
→  ISGF-3n_NP 

46. ISGF-3n_NP 
   
→  ISGF-3n + NP 

47. ISGF-3n_NP 
   
→  STAT1n + STAT2n + NP + IRF9n 

48. Occupied TFBS + NP 
   
→  Occupied TFBS_NP 

49. Occupied TFBS_NP 
   
→  Occupied TFBS + NP 

50. Occupied TFBS_NP 
   
→  STAT1n + STAT2n  + Free TFBS +IRF9n 

51. PIAS + ISGF-3n 
   
→  PIAS_ISGF-3n 

52. PIAS_ISGF-3n 
   
→  PIAS + ISGF-3n 

53. mRNAc
   
→ ∅ 

54. STAT1c 
   
→  STAT1n 

55. STAT1n 
   
→  STAT1c 

56. STAT2c 
   
→  STAT2n 

57. STAT2n 
   
→  STAT2c 

58. STAT2c + IRF9c 
   
→  STAT2c_IRF9 

59. STAT2c_IRF9 
   
→  STAT2c + IRF9c 

60. STAT2n + IRF9n 
   
→  STAT2n_IRF9 

61. STAT2n_IRF9 
   
→  STAT2n + IRF9n 

62. STAT2c_IRF9 
   
→  STAT2n_IRF9 

63. STAT2n_IRF9 
   
→  STAT2c_IRF9 

64. IRF9c 
   
→  IRF9n 

65. IRF9n 
   
→  IRF9c 
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66. IFN_influx
   
→  IFN_free 

67. STAT1 + GATA4
   
→  AII 

68. AII + AT1R
   
→  ANF 

69.                  
  
→         

70.                   
  
→          

71.            
  
→              

72.             
  
→               

73.           
  
→             

74.               
  
→           

75.         
  
→               

76.             
  
→              

77.                  
  
→          

78.           
   
→             

 

In the list of the differential equations of this system as the mathematical description, 

we only present the newly added reactions to combine the JAK-STAT and PKC 

pathways. For the remaining differential equations, we use the same expressions 

given in the previous appendices about the associated pathways. 

 

1. 
      

  
                     

2. 
    

  
                    -                 

3. 
     

  
                   

4. 
    

  
                  

 


