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ABSTRACT

A STUDY ON PARTICLE FILTER BASED AUDIO-VISUAL FACE TRACKING
ON THE AV16.3 DATASET

Yılmaz, Yunus Emre

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Afşar Saranlı

April 2016, 107 pages

People tracking has received considerable attention as a research field recently. Since,

there are a wide range of application areas that requires to track single or multi target

people in different environments with various scenarios using a variety of sensors.

In this kind of tracking scenarios, usage of audio and visual information together is

commonly preferred method, because these cues are mostly exist in the tracking en-

vironment and they contain complementary information about the targets. Our work

focuses on particle filter based Bayesian tracking method that fuses location estimates

obtained from audio and video data separately for indoor and crowded environments.

Surveillance, video-conferencing and security are main examples of application ar-

eas for this kind of tracking scenario. In our work, particle filter based trackers are

implemented with number of different configurations in order to investigate possible

gains from including audio data to the tracking problem instead using only visual

data. In these implementations, comprehensive experiments are conducted using the

AV16.3 dataset. Usage of this dataset makes possible to compare our results with
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other works from the literature. Also, this dataset covers a variety of tracking situ-

ations (e.g. occlusions and rapid movements of persons) which can be encountered

in realistic scenarios, making the results more useful. Our results indicates that no

significant gains are possible when multiple cameras are used except when there are

serious optical occlusions.

Keywords: Face Tracking, Audio-Visual Fusion, Particle Filter
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ÖZ

PARÇACIK FİLTRESİ TABANLI GÖRSEL-İŞİTSEL YÜZ TAKİBİ SİSTEMİNİN
AV16.3 VERİ SETİ KULLANILARAK İNCELENMESİ

Yılmaz, Yunus Emre

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Afşar Saranlı

Nisan 2016 , 107 sayfa

Bir araştırma alanı olarak kişi takibi, son zamanlarda kayda değer miktarda dikkat

çekmektedir. Çünkü; tek ya da fazla sayıda kişinin hedef olarak seçildiği, değişik

senaryolar içerisinde farklı özelliklere sahip sensörlerin de kullanıldığı bir çok uygu-

lama alanında, kişi takibine ihtiyaç duyulmaktadır. Bu tarz takip senaryolarında, ses

ve görüntü verilerinin birlikte kullanılması oldukça tercih edilen bir yöntemdir, zira

bu veriler takip alanında hâlihazırda bulunmakta ve birbirleri ile tamamlayıcı bilgiler

içermektedirler. Çalışmamızda, ses ve görüntü verilerini ayrı ayrı kullanarak kapalı

ve kalabalık mekanlarda konum tahmininde bulunan Bayes teoremine dayalı parçacık

filtresine odaklandık. Gözetleme, video-konferans ve güvenlik, bu tarz takip sistem-

lerinin en temel uygulama alanlarıdır. Çalışmamızda; parçacık filtresine dayalı takip

sistemi, değişik düzenleme biçimleri ile sadece görüntü verisi yerine ses verisinin

de sisteme eklendiği durumlardaki kazancı inceleyebilmek amacı ile gerçeklenmiştir.

Bu gerçeklemeler sırasında, kapsamlı deneyler AV16.3 veri seti kullanılarak yapıl-
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mıştır. Bu veri setinin kullanımı ise yapılan işin sonuçlarını literatürdeki diğer işlerle

karşılaştırma imkanı yaratmaktadır. Ayrıca, bu veri seti değişik gerçekçi senaryoları

da(hedefin veya hedeflerin görsel olarak başka cisim veya cisimler tarafından engel-

lenmesi ve hedef kişilerin ani hareketi gibi durumları) kapsayarak sonuçların daha

faydalı olmasını sağlamıştır. Çalışmamızın sonuçları göstermektedir ki çoklu kame-

ranın kullanıldığı durumlarda, eğer ciddi bir görsel engelleme yoksa, ses verisinin

eklenmesinin ciddi bir katkısı olmamaktadır.

Anahtar Kelimeler: Yüz Takibi, Görsel-İşitsel Data Birleştirme, Parçacık Filtresi
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In an indoor and crowded environment, one or more targets can be needed to be

tracked due to various reasons. Tracking in this context means capturing the face

image of the target person, while listening to her/him. It is obvious that the view and

the sound of the speaker are not always available at the same time. In other words, the

target can be occluded or can be silent for a while. Hence, the tracker could handle

these kind of challenges in the lack of one data type or both. For example, a target

person is required to be tracked during a seminar or meeting in a conference room

due to some security related reasons. Another example is the tracking of basketball

player during the match. By tracking the field location of the player with the ball

would allow the camera to automatically follow the player, hence TV viewers would

have a more vivid watching experience. Apparently, the examples about these kind

of tracking systems can be augmented. The present thesis focuses on particle filter

based tracking methods as a solution to these kind of systems.

The motivation of the thesis lies in a system built in MİKES, later acquired by ASEL-

SAN, and named as "Sound Detection and Analysis System for Far-Field and Near-

Field Sources" [1]. The side view of that acoustic beamforming system can be seen

in Figure 1.1. Final product of this project was an array system consisting of 255

microphones with a sophisticated digital processor card. Briefly, that acoustic system

can create 5 different beams in order to listen desired directions given in azimuth and

elevation angles with respect to red dotted center shown in Figure 1.1, while suppress-
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ing sound and noises from other directions. The initial aim of the system was only

listening the desired directions using beamforming. However, the research about the

localization of speaker/speakers was in progress.

Figure 1.1: Acoustic Beamforming System from Side View. Red dot on the Figure
shows the center of the microphone array.

However, this system is not automated. In other words, it always needed an human

operator to enter the angles of the target speaker. As the source of the speaker, mouth

locations of the speakers are required to be listened. However, it is not easy to them

with respect to the center of the system using angkes of the spherical coordinate

system. In order to automate this system, we proposed to add a visual sub-system

to it. That has constituted the initial focus of the thesis as it is illustrated in Figure

1.2.

That newly envisioned system formed a good motivation for us to implement a tracker

system fusing the audio and the visual data. Unfortunately, that project has been

stopped with the acquisition of MİKES and hence, the equipment became unreachable

for us. The thesis focus was re-adjusted to include the existing AV16.3 dataset[23] as

the basis of our investigations.
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Figure 1.2: Initial Focus of the Thesis.

1.2 Multi-Person Tracking

1.2.1 Audio-Visual Approach as Multimodal Fusion

Multimodal fusion is one of the contemporary research areas, since it’s beneficial

in various multimedia analysis tasks. Any stage in the integration process can be

referred as multimodal fusion, if the different sources of data are combined [25].

By processing the multimodal data in the fusion stage, beneficial insights about the

data, a situation or a higher level of activity can be obtained [2]. Semantic concept

detection, audio-visual speaker detection, event detection or human tracking, as in

our case, are main examples of the multimedia analysis.

Audio-visual fusion is a specific case of multimodal fusion analysis. Audio and visual

data are input sources as its name indicates. Usage of these two input sources are

beneficial since they are correlated and convey complimentary information[2]. For

example, in our case, the mouth of the speaker can be localized using the audio data

or the video data separately and usage of these two increases the overall accuracy of

the tracker.
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The system in this thesis is designed to track faces of the targets in a stochastic dynam-

ical system. By considering the fact that the camera measurement model is nonlinear

and the the motion of the face is also nonlinear, particle filter approach is chosen to

be implemented as a solution to the tracking problem.

1.2.2 Particle Filter Approach

The estimation based techniques are basically variants of the Kalman filter methods

and particle filter methods.

Kalman filtering is an optimal state-space estimation method for measurements of

linear systems. Additionally, Kalman filtering assumes Gaussian noise on the mea-

surements. Also, for nonlinear systems, Extended Kalman filter or Unscented Kalman

filter can be used.

Particle filter is an another approach for modeling stochastic systems. Contrary to

usual Kalman filter, particle filters are more suitable for nonlinear systems and it

assumes non-Gaussian noise on the measurements.

Particle filtering has become an established technique for modeling stochastic dynam-

ical systems. Particle filter methods are based on Monte Carlo techniques. Although

these techniques have existed since the 1950s[16], they are disregarded due to lack of

computational power at the time and problems with degeneracy. However, since the

bootstrap filter [15] and more general resampling schemes are proposed, the research

in this area has rapidly increased[33].

As it is indicated before, in our case, the audio and the video data are fused in the

particle filter framework for face tracking of the target people.

1.2.3 Face Tracking Techniques Based on Particle Filtering Method Using Audio-

Visual Fusion

In this thesis, specifically, face tracking of multiple moving person in a close and

crowded environment such as seminar room or smart room are examined. The envi-
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ronments of the earlier techniques were static. Also, these one person techniques were

designed for controlled environments. Increasing processing power with algorithmic

and theoretical progresses have caused that more advanced methods have developed

for multiple speakers in a dynamic and natural environments. Furthermore, initially,

single modality sensor types were used. Nevertheless, types of sensors are evolved to

multi-modality [18].

Although, in the literature, there are video only and audio only tracking algorithms,

their performance are limited. Video only algorithms suffer from the occlusion case,

while performance of audio only algorithms are limited due to intermittent nature of

audio data, background noise and reverberation of the indoor environment. Hence,

audio and visual information can be fused for a tracking system in a way that overall

performance is better than any single-modality based tracking system.

After conducting a literature survey and considering the tracking system depicted in

Section 1.1 and Figure 1.2, it is decided that particle filter based audio-visual tracking

systems are good candidates to solve the described tracking problem.

1.3 Thesis Contribution

Contribution of the thesis can be concluded in three main parts.

• From starting a simple and standard 2-D particle filtering approach by using

one camera and two microphone arrays for audio-visual fusion, a 3-D tracking

system with the two camera and two microphone arrays are implemented. Also,

all of the tracking results of the intermediate steps are presented.

• Results of the changes between the methods are analyzed and these analyzes

are presented to show improvements or drawbacks of the tracker systems.

• It is shown that with low cost microphones and cameras, 3-D face tracking

system for multiple target can be implemented.
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1.4 Thesis Organization

As it is stated, this works focuses on particle filter based audio-visual face tracker.

Hence, the chapters are organized to present detailed information about literature

survey and implementation details.

Chapter 2 contains the literature survey about the topics of the model of audio sen-

sors, the model of visual sensors, the audio-visual fusion and particle filtering given

through the thesis.

Chapter 3 consists of detailed information about the AV16.3 dataset containing syn-

chronized video and audio data used in this thesis.

Chapter 4 contains the detailed explanation of eight methods implemented in the

thesis.

Chapter 5 presents the results of implementation. Additionally, analyzes and com-

parisons of the results are demonstrated.

Chapter 6 concludes what is implemented and analyzed in this thesis, while that

chapters presents also the future works.
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CHAPTER 2

AUDIO-VISUAL FUSION BASED ON PARTICLE FILTERS

2.1 Introduction

The focus of this thesis is particle filter based audio-visual fusion. In this chapter,

background information about this topic is presented. For that purpose, firstly, used

audio and visual sensors are described. These sensors are implemented to estimate

the location of the target separately. Hence, techniques of localization is explained

for both. After that part, audio-visual fusion is depicted. Lastly, particle filtering

framework where the audio-visual fusion takes place is explained.

2.2 Modeling of Audio Sensor

In this thesis, as it is indicated, microphone arrays are used as audio sensors. Basi-

cally, a microphone can be described as a sensor that converts sound signal to elec-

trical signal. For localization, a set of microphone is needed, since the correlation

between the signals gives information about the location of the audio source. In this

thesis, localization approach of Lathoud[22] is used. Also, AV16.3 Dataset used for

simulation. Related information about this dataset is presented in Chapter 3 in a de-

tailed way.

The approach in [22] is sam-spare-mean(SSM) method and that method includes two

step. The first step is the sector-based detection and localization. Microphone array

with 8 microphones {l1...l8} is placed in a circular manner. These 8 microphones

divides space around them into 18 sectors {S1...S18}. Microphone configuration and
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sectors are illustrated in Figure 2.1. Firstly, an "activeness" measure is evaluated at

each frame for each sector. After that, a binary decision is made by comparing that

activeness measurement with predefined threshold.

Figure 2.1: The microphone array with 8 microphones {l1...l8} divided into 18 sectors
{S1...S18} [21].

In the second step, for the sectors having at least one active source, a parametric point-

based search is operated for localization. Parameters in this search are optimized with

respect to the cost function which is SRP-PHAT in our case. Derivation of the DOA

angle can be found in [21] in a more detailed way. Furthermore, the illustration of

these two steps is given in Figure 2.2.

Figure 2.2: Proposed multisource detection-localization. The eight dots in the center
represent the microphone array. The three dots in the sectors represent point location
estimates [21].
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All the steps implemented in this audio localization technique is summarized in Fig-

ure 2.3.

Figure 2.3: All the steps implemented in this audio localization of [21].

2.3 Modeling of Visual Sensor

2.3.1 Image Formation

In order to explain the camera model in this thesis, firstly, the simplified pinhole

model shown Figure 2.4 should be expressed. In this simplified model, a box with

a small hole in center of one of its sides and a semitransparent plate on the opposite

side is used. If some light rays from an object faces that box from the side with the

small hole, then the inverted image of the object will appear on the semitransparent

plane[11]. For instance, the case with a candle is illustrated in Figure 2.4.

Figure 2.4: The pinhole imaging model [11].

Despite the physical impossibility, if the pinhole is assumed to be a point, then each
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light ray from the scene point must travel to the semitransparent plane, named as

image plane, by passing through the pinhole point. However, in reality, the size of the

pinhole is small but finite. Hence, each point on the inversed image shown in Figure

2.4 is the intersection of light rays coming from related solid angle. Consequently,

that simple and idealized model doesn’t fit the real world scenarios. Furthermore,

instead of small pinholes, real cameras are equipped with lenses. Lenses are more

useful for gathering the light rays, but they complicates the model due to physical

restrictions of the lenses. Moreover, image planes are equipped with CMOS or CCD

sensors to capture light rays for image formation. Despite its idealized assumptions

and simplicity, the pinhole approach is mathematically convenient. Additionally, it

also presents adequate approximation of the imaging process [11].

In the following section, by considering the real case scenario with the lens, the cam-

era calibration procedure is explained.

2.3.2 Camera Calibration

A real camera model in its simplest form is consisted of a pinhole and an image plane.

Location of the pinhole is between the observed 3-D world scene and the image plane.

As it is stated in the previous section, light rays emitted or reflected from a surface of

any object must travel through the pinhole before arriving the image plane. Conse-

quently, it can be stated that each 2-D area or point in the image plane corresponds to

an area in the 3-D world. That projection mechanism is the explanation of the image

formation. In Figure 2.5, a mathematical model of that model is shown. By using

that model, the concept of the projection is simplified to the concept of the magnifica-

tion. There are two important systems that should be understood so that the relation

between the points in the real world and their image plane correspondences can be

described[10]:

1. The external coordinate system. In Figure 2.5, ’world’ is denoted with ’W’.

The placement of that coordinate systems and parameters used to describe it

are independent from the camera.

2. The camera coordinate system. In Figure 2.5, ‘camera’ is denoted with ’C’.
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Figure 2.5: Pin-hole model of the perspective camera. Two separate coordinate sys-
tem W and C illustrates the world and camera coordinate systems respectively[10].

In order to explain the relation between W and C, two matrix should be defined: a

translation matrix T, and rotation by matrix R.

Oc is named as the central or focal point in the camera coordinate system consti-

tuted of Xc, Yc and Zc. Image plane Π is a critical part of the camera model and

as it can been observed in Figure 2.5, it is composed of rectangular pixel elements.

For indexing the each of these pixels, pair of natural numbers are used. The location

of the principal point(ox, oy) is the projection of Oc on the image plane Π in the

direction of Zc. The line between O′c and Oc is named as principal axis. Also, the

distance between the image plane and the principal point is named as focal length.

Additionally, the hx and hy given in the model are physical dimensions of a single

pixel.

Point P in the space can be denoted as:

• Pw = [Xw Yw Zw 1 ]T in the 3-D external world (W) homogeneous coordinate
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system.

• Pc = [ Xc Yc Zc 1 ]T in the 3-D internal camera (C) homogeneous coordinate

system.

• Pp = [ Pp Yp Zp 1 ]T in the 2-D pixel camera (Π) homogeneous coordinate

system.

In order to relate Pw, Pc, and Pp, two types of parameters are needed:

1. Extrinsic Parameters

2. Intrinsic Parameters

For a rotation matrix R, translation matrix T and internal camera calibration matrix

K, relations between coordinate system is shown below:

• Pc = [ R | T ] * Pw

• Pp = K * Pc

• Pp = K * [ R | T ] * Pw

These matrices and their contents will be explain in the following two sections.

1) Extrinsic Parameters

[ R | T ] is a 4x4 matrix in homogeneous coordinate system and it is named as

external calibration matrix. That matrix is combination of 4x3 rotation matrix

R and 4x1 translation matrix T.

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

0 0 0

 T =


T11

T21

T31

1
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2) Intrinsic Parameters

Intrinsic parameters are used to model transformation from 3-D camera coor-

dinates including distortions due to physical constraints of the camera. In the

homogeneous coordinates, internal calibration matrix K is [37]:

K =


α c ox 0

0 β oy 0

0 0 1 0


In K matrix, α and β represent the scale factors of the image in x-axis and

y-axis in the image plane Π. Coordinates of the principal point in x-axis and

y-axis are (ox, oy) respectively. Also, the skewness of the two image axes is

denoted by c[37].

Instead of providing the extrinsic and intrinsic parameters separately, a single

projection matrix Pproj as the product of these two matrices can be provided.

Pproj = K ∗ [R|T]


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

 =


α c ox 0

0 β oy 0

0 0 1 0

 ∗

R11 R12 R13 T11

R21 R22 R23 T21

R31 R32 R33 T31

0 0 0


In AV16.3 dataset [23], the projection matrices for each camera are provided.

Lens distortions are also another error source for the image formation. Brown-

Conrady model suggested by Brown in 1966 [8] is generally known model for

lens distortions. The radial and tangential distortions are shown in Figure 2.6.

Lens distortion can be calculated as below[36]. For the calculations, normal-

ized pixel locations(xn, yn) with respect to principal points in the image pixel

plane Π are used.

Total distortion δ due to the lens is the summation of the radial and tangential

distortion.

δ = εrad + εtang

Radial distortion εrad can be calculated as:
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Figure 2.6: (a) Radial and tangential distortions; (b) Effect of radial distortion; (c)
Effect of tangential distortion. [36].

εrad = (1 +K1 ∗ r2 +K2 ∗ r4 +K3 ∗ r6)

xn
yn

 (2.1)

K1, K2, K3 : Radial distortion coefficients

r2 = x2n + y2n

Also, the tangential distortion εtang can be calculated as:

εtang =

2 ∗K4 ∗ xn ∗ yn +K5 ∗ (r2 + 2 ∗ x2n)

K4 ∗ (r2 + 2 ∗ y2n) + 2 ∗K5 ∗ xn ∗ yn

 (2.2)

K4, K5 : Tangential distortion coefficients

After the explanation of the audio and visual sensor models, next section continues

with the general description and the explanation of the stages and types of the audio-

visual fusion.

2.4 Audio-Visual Fusion

2.4.1 Description

Nature of the human interaction and activity is multimodal. Vision and hearing are

primary senses to discern the complex outside world [30]. Different information
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about the scene can be obtained using audio and video modalities. Video signals

contain the information about appearance such as color, texture, shape and the distri-

bution of the objects in the scene. In addition to video signals, audio signals include

information about the sound such as speech, music and noise [9]. An example of

the video and related audio signal is shown Figure 2.7. People link the visual and

audio cues intiutively. For example, the relationship between a falling object and the

sound of the smash can be easily understood, moving lips to the presence of speech

can intuitively linked, or it is known that what kind of music will be heard when a

guitarist’s arm moving. Consequently, in order to better understand a scene, audio

and video signals should be jointly processed rather than considering each modality

separately [9].

Figure 2.7: Example of a 3D video signal [left] and the corresponding 1D audio signal
[right]. The temporal axis of each modality presents a different resolution [9].

There are a lot of areas that audiovisual fusion can be used [17]: active speaker lo-

calization and tracking, bio-metrics verification, concept detection, emotion recogni-

tion, event detection, human or object tracking, human–computer interaction, meet-

ing segmentation, monologue detection, music content analysis, speaker recognition,

speech recognition, source separation, story segmentation in news video, video re-

trieval, video shot detection, and voice activity detection. From those listed areas, as

it is stated previously, the focus of the thesis is the human tracking.

A basic AV process consists of two main steps [17]. First step is feature extraction

from each modality with respect to the application and the second step is the integra-

tion of the information conveyed by the modalities. Generic representations of these
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two main steps are shown in Figure 2.8 and Figure 2.9.

2.4.2 Feature Extraction

The feature extraction part depends on the application and the modalities. Before the

fusion stage, representing audio and video modalities in a convenient and an effec-

tive feature space is an important step. Fortunately, audio sources have some well

known representative features. Yet, visual features are not well-defined. For the au-

dio part, spectrum-based features, like MFCCs(Mel-frequency cepstral coefficients)

and LPC(linear predictive coding), prosodic features, phoneme posterior features are

well known examples of these features. In general, which informative parts of the

body will be used in the visual tracking are based on the application. For example,

these parts can be mouth or eye regions. In our case, head figures7 of the targets are

informative parts. [17]. The feature extraction step is shown in Figure 2.8.

Figure 2.8: Generic scheme representation of a feature extraction system for an audio-
visual fusion [17].

2.4.3 Integration of Modalities

In the traditional manner, fusion approaches are classified under three main sections,

namely early, late and intermediate integration. The fusion stage can be operated in

any level of the data integration. If modalities are fused before by integrating and

combining modalities of the features, it is named as early integration. Contrary

to the early integration, if the separate model of each modality is obtained before

the integration of the final decisions and all these modalities are fused to generate
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final decision, then it is named as late integration. Addition to these two methods,

if the fusion is performed between early and the late integrations, it is named as

intermediate integration. In some sources, intermediate integration is also called

as early integration. Lastly, by combining the fusion at early and late levels, hybrid

approach can be obtained. [17] Both early and late integration block schemes are

shown in Figure 2.8.

Figure 2.9: (a) Early integration. (b) Late integration [17].

In addition to the traditional manner, in the survey of Shivappa et al. [30], fusion

approaches are classified with respect to their intents. It is stated that "intent" is

important, since the researchers address it in designing a system. In the Figure 2.10,

data fusion at different levels of signal abstraction and the fusion level of our work is

illustrated. The original diagram is modified so that our work can be shown on it with

blue rectangles.

By comparing the traditional manner and this new approach, in diagram shown in Fig-

ure 2.10, signal extraction level and semantic level are defined as new fusion levels.

In the new diagram, the early integration corresponds to feature level fusion, while

the late integration corresponds to the decision level fusion. In addition to these, the

intermediate fusion in the traditional manner can be correlated with classifier level

fusion. With respect to traditional manner the implemented techniques in this work

can listed under early integration techniques. Hence, considering the new approach

they can be listed under feature level fusion.

2.4.4 Fusion Techniques

In the literature, by considering the modelling and the integration properties of the

approaches in the AV processing, the AV fusion techniques are classified under five
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Figure 2.10: Data fusion at different level of signal abstraction and the data fusion
level of the implemented methods in the thesis [30].

main methods [17]:

1. Support Vector Machines

2. Dynamic Bayesian Networks

3. Hidden Markov Models

4. Estimation-Based Methods

5. Task-Dependent Techniques

The first three methods are mostly related with the modeling part. However, the

modeling of AV processes is not in the scope of this thesis. The scope is on the state

estimation and tracking part. Hence, only the descriptions and their relations to the

state estimation and tracking are briefly explained in the following parts for DBNs

and HMMs.
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• Dynamic Bayesian Networks:

In order to illustrate a set of random variables with their conditional depen-

dencies, probabilistic graphical models are used. These graphical models are

called Bayesian networks. In these illustrations, Bayesian networks are con-

structed with acyclic directed graphs. Each variable in this representation is rep-

resented with a vertex, and an edge between the corresponding vertices depicts

the conditional dependency between two variables. DBN is a sub-technique in

Bayesian networks and this technique is used to model sequences of observa-

tions [17]. The example illustration of the DBN is shown in Figure 2.11. In AV

applications, particularly where temporal sequencing is considered, DBNs are

mostly preferred. Speech processing and video analysis are two examples of

the temporal sequencing.

Figure 2.11: An example of Dynamic Bayesian Network [32].

DBNs can be preferred in AV fusion task which needs the dependencies be-

tween their random number to be determined. In addition to that, DBNs provide

an efficient way to manage the time-series data. Hence, they are advantageous

for analysis tasks in multimedia applications.

• Hidden Markov Models:

For the representation of probability distributions over sequences of observa-

tions, HMMs, as the simple form of the DBN, are used. HMMs are also popular

method for multimedia analysis like DBNs. A single HMM can be used to rep-

resent AV features jointly, without discriminating between them in some works

and these works can listed under the early integration techniques. For instance,

in the work of Wang et al. [35], AV features are extracted from each frame
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to execute video shot detection by using HMM. Furthermore, several differ-

ent versions of HMM are presented as the intermediate integration approaches.

In these techniques, separate modalities are tried to be represented while their

interactions are examined at the same time.

In addition to HMMs and DBNs, other graphical models, e.g. CRFs conditional

random fields, and their variations have been utilized for multimodel fusion.

• Estimation-Based Methods:

Estimation-based techniques are extensively used in the fusion of the multi-

ple sources and these techniques comprise Kalman filters, particle filter and

their variants. In the Kalman filtering, the state-space model is constituted by

observing noisy data sequence over time. Due to its ability to retain its pre-

vious states, Kalman filter needs no extra memory for the storage of the past.

For linear systems containing additive Gaussian noise, Kalman filtering is opti-

mal. Furthermore, for estimating the states of the nonlinear systems, Extended

Kalman Filter(EKF) or Unscented Kalman Filter(UKF) can be used.

Particle filters are utilized to estimate the states of the stochastic dynamical sys-

tems by observing the series of data over time. As it is stated, basic Kalman

filter is used for linear systems with additive Gaussian noise, while EKF and

UKF are used with nonlinear systems. However, particle filter is more appro-

priate to use with nonlinear systems with non-Gaussian noise.

These two techniques are popular data fusion, object/people localization and

tracking. With respect to the application area, these two techniques can be ap-

plied at both feature or decision levels of the fusion. For instance, Loh et al.

[24] used three microphones to record the audio data and one camera to collect

the visual data. These two data are fused to estimate the position of the speaker.

After the fusion stage, velocity and acceleration of the speaker are estimated by

a Kalman filter. Gehring et al. [14] implemented a technique that uses recog-

nized faces from different cameras as video feature. Also, TDOA(time delay

of the arrival) between different microphones are calculated as audio feature.

These features are combined in EKF for the localization of the active speaker.

In addition to these, Talantzis et al. [31] presented a hierarchical Kalman fil-

ter structure with multiple microphones and cameras so that implemented filter
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tracks people in 3-D space. Firstly, two separated local Kalman filters are im-

plemented to gather audio and video data. After collecting data, the outputs of

these two local filters are combined in one global Kalman filter.

Kılıç et al. [18] implemented an audio assisted visual tracker with an adaptive

particle filter. In that work, firstly, a visual-only particle filter is implemented.

Second method contains the audio integration to the first tracker. Lastly, the fi-

nal form of the tracker is adaptive version of the second one. In these methods,

one camera collects the visual data, while an array of eight microphones col-

lects the audio data and multiple targets are tracked on 2-D image plane. At the

final tracker, in the propagation step, the Gaussian noise distribution of particles

is reshaped. In the measurement step, the observation model is reweighted by

using the audio information and DOA(direction of arrival angle). In this thesis,

first two methods are implemented as recent methods for comparison. Also, the

details of these two trackers are explained in Section 4.2 and 4.3.

• Task-Dependent Techniques:

In the literature, there are additional techniques for specific applications. How-

ever, these methods have no general applicability. Furthermore, these tech-

niques are mostly listed under intermediate integration techniques.

Due to applicability to nonlinear system with non-Gaussian noise, ability to represent

arbitrary densities, and capability of tracking the maneuvering multiple targets, parti-

cle filter is reasonable choice the tracking system described in Section 1.1. Concepts

of particle filtering and implemented algorithms in this thesis are investigated in the

following section.

2.5 Particle Filters

2.5.1 Introduction

Particle filter is a nonparametric type Bayes filter. Using that filter, state estimates

for the stochastic dynamical systems are obtained based on recursive observations

in time. That filtering approach based on sequential importance resampling and
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Bayesian theory, these concepts are examined in the following sections. It is a pow-

erful method for non-linear systems with additive non-Gaussian noise.

Before going into the details of the particle filter algorithm, it is proper to examine

basic Bayes filtering algorithm.

2.5.2 Basic Algorithm of Bayes Filtering

The belief concept is used to reflect the knowledge about the state of the system,

since the true state can not be measured directly in stochastic dynamical systems. In

the literature, the belief is also named as information state and state of knowledge.

Conditional probabilities represent the belief distribution which allocates a probabil-

ity or density value to each possible hypothesis concerning the true state.

Belief distributions are posterior probabilities over state variables determined on the

existing data. By denoting the state variable as xt at time t the belief bel(xt) is calcu-

lated as:

bel(xt) = p(xt|z1:t, u1:t) (2.3)

This formula shows the relation of the posterior probability distribution bel(xt) cal-

culation using the the state xt at time t which is conditioned on all past measurements

bel(z1:t) and all past controls bel(u1:t).

It is useful to calculate a posterior before incorporating the measurement zt and just

after performing the control ut. This posterior is called as prediction and denoted as:

bel(xt) = p(xt|z1:t−1, u1:t) (2.4)

bel(xt) predicts the state at time t, before considering the measurement at time t. The

belief distribution can be calculated from the prediction and that is called correction

or measurement update.

By using prediction distribution, The pseudo-code of the basic Bayesian algorithm

is given in Table 2.1.

As it shown in the pseudo-code, it is a recursive algorithm. The previous belief
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Table2.1: The general algorithm for Bayes filtering [32]

1: Algorithm Bayes Filter(bel(xt−1), ut, zt)
2: for all xt do

3: bel(xt) =
∫
p(xt|ut, xt−1) bel(xt−1) dxt−1

4: bel(xt) = η p(zt|xt) bel(xt)
5: end for

6: return bel(xt)

bel(xt−1), control ut and measurement zt are inputs of the algorithm. Output of the

algorithm is the belief at the current time bel(xt). Line 3 shows the calculation of the

prediction using previous belief. Also, Line 4 represents the calculation of the current

belief using the prediction and this stage is named as the correction.

Next section describes the particle filters using the explanations about the belief in

this part.

2.5.3 Basic Algorithm of Particle Filtering

The posterior distribution or belief is approximated by a finite number of parameters

in all nonparametric Bayes Filters. However, with respect to the chosen method,

producing of the parameters and the way that they populate the space vary. In the

particle filter, the basis is to represent the belief by a set of random state samples

selected from this belief posterior and Figure 2.12 shows this basis.

In particle filtering, particles are used to represent the samples of posterior distribu-

tion:

χ
t := x

[1]
t , x

[2]
t , . . . , x

[N ]
t (2.5)

Each particle x[n]t (with 1 ≤ n ≤ N ) is used to instantiate the state at time t. N

denotes the number of particles and χt denotes the particle set.

The insight behind the particle filters is that the belief bel(xt) is approximated by the

particle set χt. Ideally, the likelihood of the state hypothesis shall be proportional to

the belief:
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Figure 2.12: In the lower right, a graph is shown in which samples are drawn from
Gaussian random variable, X . These samples are passed through the nonlinear func-
tion shown in the upper right graph. In the upper left, the resulting samples are
distribution according to the random variable Y is shown [32].

bel(x
[n]
t ) v p(xt|z1:t, u1:t) (2.6)

Equation (2.6) results that the denser a sub-region of the state space is populated by

samples, the more likely the true state falls into this region. The property (2.6) holds

only N ↑ ∞ for the standard particle algorithm. Although particles are drawn from a

slightly different distribution for finite N , the effect of it can be neglected, if N is not

too small.

Particle filter is a recursive algorithm. Hence, the current belief bel(xt) is calculated

using the previous belief bel(xt−1). Because the belief is denoted by the set of parti-

cles, it results that the current particle set χt is calculated using the particle set from

previous step χt−1.

Table 2.2 shows the most basic variant of the particle filter. The algorithm has three

inputs: particle set from the previous step χt, the most recent input ut and the most re-

cent measurement zt. The algorithm firstly calculates the prediction function bel(xt)

to construct the particle set χt. It is applied for all the particles x[n]t−1 in the particle set
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Table2.2: The most basic variant of particle filter based on importance sampling [32]

1: Algorithm Particle Filter(χt−1, ut, zt)
2: χ̄

t = χ
t = ∅

3: for n = 1 to N do

4: sample x
[n]
t v p(xt|ut, x[n]t−1)

5: w
[n]
t = p(zt|x[n]t )

6: χ̄
t = χ̄

t + 〈x[n]t , w
[n]
t 〉

7: end for

8: for n = 1 to N do

9: draw i with probability ∝ w
[i]
t

10: add x
[i]
t to χt

11: end for

12: return χt

χ
t. The algorithm is described below in a detailed way:

1. In Line 4, by using the control input ut and the particle x[n]t−1, a new particle rep-

resenting the hypothetical state is generated. This step depends on the sampling

from the state transition distribution p(xt|ut, xt−1). After sampling the distri-

bution, new particles which are the representations of bel(xt) are obtained.

2. In Line 5, importancefactor, denoted aswt for each particle xt, are calculated.

That part of the algorithm actually means incorporating the measurement to the

particle filtering process as weight of the particle. The weight in that step

represents the belief bel(xt).

3. Resampling or importance sampling is an important concept in particle fil-

tering. In the resampling part of the algorithm, new N sized particle set is

generated using the weights of the particles. Using weights means that parti-

cles with higher weight value will be most likely used for the new set χt, while

particles with lower weight value will be removed from the set χt. Before the

resampling part, particles are distributed with respect to bel(xt), while after the

resampling part they will be distributed with respect to the posterior bel(xt) = η

p(zt|x[n]t )bel(xt). Furthermore, the resampling method in our implementation

is explained in Section 2.5.4.3.

As it can be seen, the particle filter algorithm is compliant with the generic Bayes
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algorithm shown in Table 2.1. In the next section, some properties of particle filter

are explained and practical considerations about it are discussed.

2.5.4 Practical Considerations and Properties of Particle Filter

1) Density Extraction

The sample sets or particles employed by particle filters depict discrete approx-

imations of continuous beliefs. However, many applications necessitate the

availability of continuous estimates. In these applications, the estimates are not

only the states represented by particles, but at any point in the state space.

The deriving a continuous density from discrete samples is called density

estimation [32].

There are different ways for the density extraction and Fig. 2.13 depicts these

ways. Figure 2.13(a) shows the particles and the density of the transformed

Gaussian from the standard example given in Figure 2.12. As it is depicted

with dashed lines in Figure 2.13(b), Gaussian approximation is a simple and

highly efficient technique to extract a density from particles. In this approach,

the Gaussian extracted from particles is identical to the Gaussian approximation

of the true density that is shown with solid line in Figure 2.13(b).

It is obvious that with the Gaussian approximation only basic properties of a

density can be captured for unimodal densities. As it is shown in Figure 2.13(b),

the function model is not well extracted from particles. Hence, more complex

techniques, such as k − means clustering, are required. In that clustering

technique, mixtures of Gaussians are used to approximate a density.

An alternative approach to the Gaussian is depicted in Figure 2.13(c). In this

method, histogram approach is used and a discrete histogram is constituted

using bins distributed over the state space. In order to compute probability

of each bin, weights of the particles whose values is located in the range of

the bin is summed. This method has an important disadvantage which is with

increasing number of bins, the space complexity is increasing exponentially.

Nonetheless, that method has three main advantages. Firstly, histograms can

illustrate multi-modal distributions. Secondly, they can be computed efficiently.
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Figure 2.13: Different ways of extracting densities from particles. (a) Density and
sample set approximation, (b) Gaussian approximation(mean and variance), (c) his-
togram approximation, (d) kernel density estimate. The choice of approximation
strongly depends on the specific application and the computational resources [32].

Lastly, the density at any state can be derived from in time and it is independent

of the number of particles.

A particle set can be converted into a continuous density with kernel density

estimation. In this method, each particle in the set is used as the center of a

kernel and the overall density is given by the mixture of the kernel densities.

Figure 2.13(d) illustrates the result of the kernel method. The advantages of

the method lies in the smoothness of the density estimate and the algorithmic

simplicity. Yet, the complexity of computing the density is linearly related with

the number of particles or number of kernels.

Choice of the method depends on the application area. Since, computational
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power and estimation accuracy of the system directly affect the type of the

model that will be implemented.

2) Sampling Variance

The variation which is inherent in random sampling is the main source of the

error in the particle filter. It is inevitable that the representation of the original

density with a finite number of samples differs a little from the original density.

As an illustration, if a Gaussian distribution is modeled with a finite number

of particles or samples, then the mean and the variance of the samples will be

different from the original density. The variability caused by random sampling

is named as the variance of the sampler.

By considering two robots performing identically with the same noise-free ac-

tions. Obviously, it is expected that both robots should have same belief after

performing the action. Simulation results of this situation is shown in Fig-

ure 2.14. Samples are drawn repeatedly from a Gaussian density and passed

through a nonlinear transformation for the simulation. The resulting samples

and their kernel density estimates are shown with the true belief depicted as

gray area. In the graphs shown in the left part, results are prepared with 25

samples from the Gaussian, while the right part shows the results with 250

samples. As it can be concluded from these graphs, with increasing number of

samples, the sampling variance between true belief and estimation is decreased

and the observations made by the robot will be close enough to the true belief.

3) Resampling

Applying repetitive resampling causes amplification of the sampling variance.

By considering an extreme case with a robot whose state does not change,

source of this amplification can be better understood. Also, this situation can

be described as xt = xt−1. By assuming that the robot has no sensors, the state

of the robot can not be estimated. Apparently, that robot can not determine

anything about its location, at any time instance t. Hence, its estimate at time t

will be identical to its initial estimate.

However, if a vanilla particle filter is used, that won’t be the case. After the

initialization, generated particles will be dispersed throughout the state space.
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Figure 2.14: Variance due to sampling. Samples are drawn from a Gaussian and
passed through a nonlinear function. Samples and kernel estimates resulting from
repeated sampling of 25 (left column) and 250 (right column) samples are shown.
Each row shows one random experiment. [32].

Nevertheless, because the state transition is deterministic, the fail of the resam-

pling steps shown between line 8 and line 11 in Table 2.2 for reproducing a

state sample x[n] is inevitable. Hence, no new states will be observed in the

forward sampling state (line 4 of Table 2.2). As the iterations goes on, different

particles will be deleted from the particle set, while no creation of the particles

is observed. Consequently, N identical copies of a single particle will survive

and in other words, the diversity will disappear. It seems to be the robot has

determined its state with respect to an outside observer. However, that situation
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is an obvious contradiction for a robot with no sensors on it.

This example also indicates another disadvantage of the particle filters with

important practical results. Specifically, due to the resampling process the di-

versity in the particle population is decreased. Actually, this loss demonstrates

itself as an approximation error. In the resampling, the sampling variance of

the particle set itself decreases. However, as an estimator of the true belief,

the variance, of the particle set increases. For any practical implementation,

controlling of this variance or error is important.

For variance reduction, there exists two major strategies. First strategy is the

reduction of the resampling frequency. In this technique, no resampling takes

place, if the state is static or xt = xt−1. If the robots stops, then the resampling

suspends. Even if the state changes, reduction of the resampling is a good

idea. Integration of the multiple measurements can be always integrated via

multiplicatively updating the importance factor. That idea can be illustrated as

below:

w
[n]
t =

1 if resampling took place.

p(zt|x[n]t )w
[n]
t−1 if no resampling took place.

(2.7)

The choice of when to resample is complicated and necessitate practical expe-

rience. Because if the resampling is executed too often, then the risk of losing

diversity increases. However, too infrequent resampling causes many samples

to be wasted in regions of low probability. The measurement of the variance

of the importance weights is a standard approach to deciding whether or not

resampling should be performed.

The second strategy for the reduction of the sampling error is low variance

resampling and Table 2.3 illustrates the algorithm of it. In this algorithm,

samples are not selected independently of each other in the resampling process

for the basic filter given in Table 2.2. Instead of that type of selection, sequen-

tial stochastic process is chosen. The algorithm in Table 2.3 computes only one

random number and selects samples according to this number. Yet, that number

is selected with a proportional probability to the sample weight. That number

is generated by drawing a random number r in the interval [0;N−1]. The al-
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Table2.3: Low variance resampling for the particle filter [32]

1: Algorithm Low Variance Sampler(χt,Wt)
2: χ̄

t = ∅
3: r = rand(0;N−1)

4: c = w
[1]
t

5: i = 1

6: for n = 1 to N do

7: U = r + (n− 1) ·N−1
8: while U > c

9: i = i+ 1

10: c = c+ w
[i]
t

11: end while

12: add x
[i]
t to χ̄t

13: end for

14: return χ̄t

gorithm continue to work by adding N−1 to random number r repeatedly and

the particle corresponding to that value is selected. U values in [0;1] indicates

specifically one particle i:

i = argmin
j

j∑
n=1

w
[n]
t ≥ U (2.8)

There are two reasons to use while loop in the algorithm of low variance sam-

pler. Firstly, it computes the sum in the right hand side of this equation. Sec-

ondly, it checks whether i is the index of the first particle such that the cor-

responding sum of weights exceeds U . Line 12 shows the execution of the

selection. Furthermore, Figure 2.15 depicts this process.

Figure 2.15: Working basis of the low variance resampling method. A random num-
ber r is chosen and then those particles corresponds to u = r + (n− 1) ·N−1 where
n = 1, ..., N [32].
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The low-variance sampler has three main advantages. First, it covers the space

of samples in a more systematic way than the independent random sampler.

Since, the dependent sampler cycles through all particles systematically. Sec-

ond, if all the samples have the same weight, then all of the samples are repre-

sented. Third, complexity of low variance sampler is O(N). Although, achiev-

ing this complexity for an independent sampling method is difficult. This de-

pendent sampler method has O(NlogN) complexity.

In the implemented particle filter methods in this thesis, sampling importance

resampling algorithm given in Table 2.3 is implemented in the resampling part

of the particle filter.

4) Sampling Bias

Only finitely many particles are used in the particle filter and that introduces a

systematic bias in the posterior estimate. For the extreme case of N = 1, the

loop in lines 3 through 7 in Table 2.2 will be executed only once. The main

observation is that the resampling step(from Line 8 to Line 11 of Table 2.2)

deterministically accept this sample, regardless of the its weight w[n]
t . Thus,

measurement plays no role in the update. Particles are generated from p(xt|u1:t)
instead of p(xt|u1:t, z1:t). In other words, it ignores all measurements.

The normalization is the reason for the situation. Also, this normalization is

implicit in the resampling step. When sampling in proportion to the importance

weights (Line 9 of Table 2.2) w[n]
t becomes its own normalizer if N = 1:

p(draw x
[n]
t in line 9) =

w
[n]
t

w
[n]
t

= 1 (2.9)

In general, the problem is that although after normalization the non-normalized

values w[n]
t reside in a space of dimension N − 1, they are drawn from an N -

dimensional space. The reason for that is the n-th weight can be recovered from

the N − 1 other weights by subtracting those from 1 after normalization. The

effect of loss of dimensionality or degrees of freedom, becomes less observable

for larger values of N .
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5) Particle Deprivation

The problem that there are no particles in the vicinity of the correct state is

known as the particle deprivation problem. Although the main reason for that

situation is the small number of particles, that deprivation can be observed in

any particle set size.

Another reason for that deprivation is the variation in random sampling. In

some situations, unfortunately, the true states of the particles can be wiped out

and the particles with incorrect states are generated.

A popular approach to solve this problem is to add some random particles to

particle set χt after the resampling process, regardless of the actual sequence

of motion and measurement commands. This approach is preferred due to its

simplicity in the application.

A random particle injection method is presented in Thrun et al. [32] and that

method is also implemented in last method of the implementations in this thesis.

Pseudo-code of the algorithm is given in Table 2.4.

The given random particle injection algorithm is adaptive and tracks the short

term and the long-term average of the likelihood p(zt|z1:t−1, u1:t, n). The first

part of the algorithm contains the motion model and the measurement model.

It is similar to the basic particle filter algorithm given in Table 2.2. New poses

are sampled from old particles in Line 5 and their importance weight is set with

respect to the measurement model given in Line 6. In Line 8, the empirical

measurement likelihood is calculated. It maintains short-term and long-term

averages of this likelihood in lines 10 and 11. The values of αslow and αfast

should be chosen as 0 ≤ αslow � αfast. αslow is the parameter to represent

the decay rate for exponential filter that estimates the long-term average, while

αfast is used for the short-term average. The critical part of the algorithm starts

with Line 13. Probability of max{0.0, 1.0 − wfast/wslow} is used to generate

a random particle during the resampling. If a new particle is generated, the

chosen resampling methods is executed. The divergence between the short-

term and the long-term averages of the measurement likelihood is analyzed

to determine the probability of adding a random sample. The chosen resam-

pling method is applied, if the short-term likelihood is better or equal to the
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Table2.4: Algorithm of the random particle injection [32].

1: 1: Random Particle Injection Algorithm(χt, ut, zt, n)
2: static wslow, wfast
3: χ̄

t = χ
t = ∅

4: wavg = 0;

5: for n = 1 to N do

6: x
[n]
t = sample_motion_model(ut, x

[n]
t−1)

7: w
[n]
t = measurement_model(zt, x

[n]
t , n)

8: χ̄
t = χ̄

t+ < x
[n]
t , w

[n]
t >

9: wavg = wavg + 1
N
w

[n]
t

10: end for

11: wslow = wslow + αslow(wavg − wslow)

12: wfast = wfast + αfast(wavg − wfast)
13: for n = 1 to N do

14: with probability max{0.0, 1.0− wfast/wslow} do
15: add random pose to χt
16: else

17: draw i ∈ {1, . . . , N} with probability ∝ w[i]
t

18: add x
[i]
t to χt

19: end with

20: end for

21: return χt
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long-term likelihood. In other words, no random sample is added. Otherwise,

random samples whose number is related to the quotient of short- and long-

term values are added to particle set. As it is explained, an increased number of

random samples are induced by an abrupt decay in the measurement. The risk

of mistaking momentary sensor noise for a poor localization result is prevented

by the exponential smoothing.

2.5.5 Advantages and Disadvantages of Particle Filtering

Using particle filtering as the tracking approach has several advantages and disadvan-

tages. Main advantages can be listed as[19]:

• It is applicable to nonlinear systems.

• It works with non-Gaussian noise.

• It has an adaptive behavior focusing only on the probable regions of state space.

• It has the ability to represent arbitrary densities.

• Its framework allows for including multiple models for tracking maneuvering

targets.

Using particle filtering also has some disadvantages:

• In particle filtering, it is difficult to determine the optimal number of particles.

• It has high computational complexity. That complexity depends on number of

particles.

• The need for number of particles increases with increasing model dimension.

• It may degenerate and lose the diversity in some cases.

• It is critical to choose importance density.
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Table2.5: Particle filter based audio-visual tracking techniques

Title of the work Audio Video Publication
Features Features and Year

"Sequential Monte Carlo TDOA Gradient Vermaak et al. [34], 2001
fusion of sound and
vision for speaker tracking"
"Audio-visual speaker TDOA Coordinates Perez et al. [12], 2002
tracking with importance
particle filters"
"Audio assisted robust DOA Pixels of video frame Kılıç et al. [18], 2015
visual tracking with
adaptive particle filtering"
"Joint audio-visual TDOA Skin color, Zotkin et al. [38], 2002
tracking using shape matching
particle filters" and color histogram
"A joint particle filter TDOA Haar-like features Nickel et al. [27], 2005
for audio-visual
speaker tracking"
"Audiovisual probabilistic TDOA Shape and spatial Gatica-Perez et al. [13], 2007
tracking of multiple structure of
speakers in meetings" human heads
"Multi-level particle TDOA Color, upper body Bernardin et al. [5], 2008
filter fusion of detection and person
features and cues region cues
for audio-visual
person tracking"

2.5.6 Particle Filter Based Audio-Visual Human/Object Tracking Methods

There are many application areas of particle filter based audio-visual methods as it

is mentioned in Section 2.5.1. The attention of the thesis concentrates on the human

tracking problem. Different approaches for human or object tracking problem by us-

ing particle filter based audio-visual methods are presented in Table 2.5 from surveys

of [17], [30] and [2].

Following Chapter describes the AV16.3 Dataset which is used for the simulations of

the implemented methods.
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CHAPTER 3

AV16.3 DATASET

3.1 Introduction

In this thesis, a multi-person tracking system in a noisy and reverberant indoor en-

vironment is implemented as it is stated previously. For the performance evaluation

of the tracking system, AV16.3 dataset[23] is used. It is a publicly available dataset

and can be downloaded from Idiap Research Institute website by signing a "End User

License Agreement".

"16.3" in the name of the dataset stands for 16 microphones and 3 cameras. This

dataset provides an evaluation database for audio and visual tracking algorithms in

the meeting room context.

In the design of that corpus, two contradicting constraints are considered:

1. By considering both "meeting situations" and "motion situations", the occupied

area by the speakers should be large enough.

2. Occupied area should be completely visible by all cameras.

3.2 Physical Setup

The possible speakers’ locations are selected as gray L-shaped area and shown in

Figure 3.1. In this figure, three cameras are indicated by C1, C2 and C3, while two

microphone arrays are indicated by MA1 and MA2. The field of view of all three
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cameras are shown as gray area in the figure. This L-shaped area is a 3 m-long by 2

m-wide rectangle, minus a 0.6 m-wide potion taken by the tables.

Figure 3.1: Physical setup of AV16.3 Dataset [23].

3.3 Hardware

In order to prepare this corpus, 3 cameras and 2 microphone arrays are used as stated

previously and the instrumented room [26] is used. The resolution of each camera is

288x360 pixels and fps(frame per second) value is 25 Hz. Each microphone array is

composed of 8 elements placed in a circular manner with 10 cm radius. The distance

between center of the microphone arrays is 0.8 m.

3.4 Online Corpus

Each recorded sequence contains:

• 3 video files whose format is DIVX AVI and the resolution 288x360 for each

camera. They are sampled at 25 Hz. Also, each video sequence contains one

audio signal.

38



• 16 audio files whose format is WAV and recorded from two circular 8-microphone

arrays sampled at 16 kHz.

• Additionally, for some sequences, more audio WAV files recorded from lapels

worn by the speakers and sampled at 16 kHz. These audio files are not used in

the thesis.

For localization and tracking purposes, cases listed below are included in sequences:

• Overlapped speech

• Close and far locations, small and large angular separations

• Object initialization

• Variable number of objects

• Partial and total occlusions

• Natural changes of illumination

For any sequence, there are at most three people. In these sequences, motion of the

speaker are static (e.g. seated person) or dynamic (e.g. walking person) or could be

mixed.

3.5 Content

Brief explanations about the annotated sequences with videos given below.

seq01-1p-0000 One speaker is static while speaking. The speaker stands at each of

16 different locations in the shaded area shown in Figure 3.1. During the speech,

the speaker faces the microphone arrays. The aim of this sequence is to evaluate the

audio localization for the single speaker case.

seq11-1p-0100 A single speaker mostly moves during speaking and makes abrupt

moves. However, the speaker faces the microphone arrays. The purpose of this se-

quence is to test audio, video and audio-visual speaker cases specifically for difficult

motion scenarios.
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seq15-1p-0100 In this one moving speaker case, there are alternating speech and long

silences while the speaker is walking. The aim of this sequence is to:

1. Demonstrate that the audio tracking is not capable to recover from unpre-

dictable trajectories during silence,

2. Present an initial test case for AV tracking.

seq18-2p-0101 There are two speakers in the sequence. They talks and faces the

microphone arrays during the sequence. They slowly gets as close as possible to

each other, then slowly parting. Multi-source localization, tracking and separation

are motivation of the sequence.

seq24-2p-0111 In this case with two moving speakers, they cross the field of view

twice each other and also occludes each other twice. Additionally, they talks most of

the time. The purpose of the sequence is to test both audio and video occlusions.

seq40-3p-0111 There are three speakers in this sequence. Two of them are seated

and one standing. During the sequence all of them speaks continuously and faces

the arrays. Also, the standing speaker walks back and forth once behind the seated

speakers. The purpose is both to test multi-source localization, tracking and sep-

aration algorithms. Furthermore, this sequence aims to highlight complementarity

between audio and video modalities.

seq45-3p-1111 In this sequence with three speakers, the motion of them is uncon-

strained. They enters and leaves the scene while they are speaking continuously and

occluding each other many times. In this very difficult case, there are difficult case of

overlapped speech and visual occlusions. The motivation is to highlight the comple-

mentarity between audio and video modalities.

In the simulation part, all of the annotated cases listed above are used. Ground truths

with respect to 2-D pixel planes of each cameras and 3-D real world are provided

by the dataset. In addition to the ground truths of the listed sequences, more ground

truths for other sequences can be prepared using the tools provided by AV16.3. How-

ever, in this thesis, only the ground truths provided by the dataset is used. Table 3.1

summarizes what is explained about these annotated video sequences and presents
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the duration of them. Further information is presented in [23]. Moreover, snapshots

from different sequences are shown in Figure 3.2.

Table3.1: List of annotated video sequences[23] of AV16.3 Dataset. Meaning
of tags: [A]udio, [V]ideo, predominant [(ov)]erlapped speech, at least one visual
[(occ)]lusion, [S]tatic speakers, [D]ynamic speakers, [U]nconstrained motion.

Sequence Duration Modalities Number of Speaker(s)
Name (seconds) of Interest Speakers Behavior

seq01-1p-0000 217 A 1 S
seq11-1p-0100 30 A, V, AV 1 D
seq15-1p-0100 35 AV 1 S, D(U)
seq18-2p-0101 56 A(ov) 2 S, D
seq24-2p-0111 48 A(ov), V(occ) 2 D
seq40-3p-0111 50 A(ov), AV 3 S, D
seq45-3p-1111 43 A(ov), V(occ), AV 3 D(U)

3.6 Camera Calibration

By assuming the middle point of first microphone array(MA1) and second micro-

phone array (MA1 and MA2 as it can be seen in Figure 3.1) as the center, all of the

calibration parameters and projection matrices explained in Section 2.3.2 are provided

by AV16.3 dataset.

Following section explains the details of the eight implemented methods using the

AV16.3 dataset that is described in this section.
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Figure 3.2: Snapshots from AV16.3 Dataset. (a)seq11-1p-0100-cam1, (b)seq18-2p-
0101-cam1, (c)seq40-3p-0111-cam1, (d)seq45-3p-1111-cam1[23].
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CHAPTER 4

IMPLEMENTATION OF THE TRACKING METHODS FOR

MULTIPLE SPEAKER TRACKING

4.1 Introduction

All the implemented methods in this thesis aims to track the speaker or speakers. For

this purpose, except two methods(V-PF and V-PF-2CAM), audio and visual cues are

integrated to locate the speaker’s position. Also, these two methods are implemented

to analyze the contribution of the audio integration to the visual-only tracker.

For the visual part, Bhattacharyya distance is used as the distance measure and im-

plementation details are given Section 4.2. Although the method proposed by Kılıç

et al.[18] is used in this thesis, there are similar and successful implementations

of Bhattacharrya distance in particle filtering framework. Pérez et al.[29] propose

a method for multiple face tracking with manual and automatic initialization using

Bhattacharyya distance and particle filtering. Brassnet et al.[7] suggest a technique

for object tracking in video sequences using particle filtering. Color, edge and texture

cues are used for the tracking. For all of the cues, Bhattacharyya distance used as

distance measure in histograms of the cues. In addition to these techniques, Nummi-

aro et al.[28] implement a robust color-based particle filtering method that also uses

Bhattacharyya distance. In this work, after the implementation of the tracker, results

of mean-shift and Kalman filtering trackers are compared with the particle filtering

approach.

For the audio part, SSM method is implemented for all the methods uses the audio-
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visual fusion. Implementation details are explained in Section 2.2 and Section 4.3.

After conducting a literature survey, firstly, recent V-PF and AV-PF methods in [18]

are implemented for only the comparison. After that implementation, six different

methods are implemented in order to construct a tracking system capable of 3-D

tracking of multi-person with partial occlusion handling using 2 cameras and 2 mi-

crophone arrays. Implemented methods and their abbreviations are listed:

1. Visual particle filter(V-PF) technique from [18]

2. Audio-visual particle filter(AV-PF) technique from [18]

3. Particle filter based audio-visual tracking technique in 2-D(AV-PF-2D)

4. Particle filter based audio-visual tracking technique in 2-D with speech/non-

speech classification(AV-PF-2D-SNS)

5. Particle filter based audio-visual technique in 3-D (AV-PF-1CAM-3D)

6. Particle filter based visual tracking technique in 3-D by using two cameras(V-

PF-2CAM)

7. Particle filter based audio-visual tracking technique using two cameras and two

microphone arrays(AV-PF-3D)

8. Particle filter based audio-visual fusion tracking technique in 3-D by using two

cameras and two microphone arrays with occlusion handling (AV-PF-RAND)

Implementation details of these methods with their pseudo-codes are explained in the

following sections.

4.2 Particle Filtering-Based Visual Tracking Method(V-PF)

In this particle filter-based tracking method, only one camera is used and the speaker

is tracked in the image plane of the camera. This visual-only tracker method, imple-

mented by Kılıç et al. [18], is a recent method and builds a base to compare visual-

only and audio-visual methods in 2-D. That V-PF method works in five steps. It uses
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histogram based particle cue in order to weight particles. In the first step, the particles

are initialized. w(n)
0 = 1

N
for n = 1, ..., N . Here N is the number of particles and

w
(n)
0 are the initial weights of the particles. In this technique, manual start approach

is used and hence the initial particles are manually injected near the faces. In the

particle filter, state vector is defined as x = [ x1 ẋ1 x2 ẋ2 s ]T . In this definition, x1

and x2 are the horizontal and vertical positions of the rectangle centered around the

face which is wished to track. ẋ1 and ẋ2 are horizontal and vertical velocities of the

particle. Additionally, s is the scale of the rectangle centered around (x1, x2).

In the second step, the dynamic model given below is used for the propagation of the

particle.

x(n)
k = Fx(n)

k−1 + q(n)
k (4.1)

where x(n)
k is the state of the n-th particle at the frame k = 1, ..., K and q(n)

k is the

zero-mean Gaussian noise with covariance Q, q(n)
k v N(0, Q) for each particle and

F is the linear motion model.

F =



1 T 0 0 0

0 1 0 0 0

0 0 1 T 0

0 0 0 1 0

0 0 0 0 1


Q =



σ2 0 0 0 0

0 σ2 0 0 0

0 0 σ2 0 0

0 0 0 σ2 0

0 0 0 0 σ2
s


In these matrices, T is the period between two adjacent frames. σ2

s is the variance of

the scale and σ2 is the variance for both the position and the velocity. This motion

model assumes the same variance on both the position and the velocity. Also, the

described linear motion model can be updated so that it fits realistic scenarios more.

However, for V-PF and AV-PF are implemented with model[18] explained above.

Last six methods are implemented using the new proposed motion model whose de-

tails are given in the related sections about the tracking techniques.

In the third step, particles are weighted with respect to observation model

w
(n)
k = e−λ(D

(n))2 (4.2)

In this weighting equation, λ is the design parameter and D(n) is the Bhattacharyya
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Table4.1: Visual particle filter(V-PF) tracking algorithm [18] .

1: Initialize N, σ2, U, T,F, λ, r(u),x
(n)
0 , w

(n)
0 , k

2: while k < K do
3: Propagate particles: x

(n)
k = Fx

(n)
k−1 + q

(n)
k

4: Calculate D(n) using Equation 4.3, for n = 1, . . . , N

5: Weighting: w(n)
k = e−λ(D

(n))2 , for n = 1, ..., N

6: Normalization: Re-weight particles to ensure that
∑N

n=1w
(n)
k = 1

7: Estimate target position x̃k =
∑N

n=1w
(n)
k x

(n)
k

8: Resampling: Generate x
(n)
k from the set {x(n)

k , w
(n)
k }Nn=1

9: k = k + 1

10: end while

distance

D(n) =

√√√√1−
U∑
u=1

√
r(u)q(n)(u) (4.3)

In this equation, U is the number of the histogram bins, r(u) is the Hue histogram

of the reference image. Reference image of the target person is determined from the

frames of the related sequence. Also, q(n)(u) is the Hue histogram extracted from the

rectangle centered on the position of the n-th particle. HSV is preferred in this work,

since it is more robust in variations of the illumination.

Lastly, in the third step, normalization is applied to ensure that
∑N

n=1w
(n)
k = 1.

In the fourth step, position of the speaker is estimated by

x̃k =
N∑
n=1

w
(n)
k x

(n)
k (4.4)

In the last step, the particles x(n)k are resampled. The resampling process of low

variance sampler explained in "Resampling" part of Section 2.5.4.4 is implemented.

After that step, the algorithm continues to run recursively.

The algorithm explained above is shown as pseudo code in Table 4.1.

In addition to the algorithm given Table 4.1, one modification is applied to the al-

gorithm. Horizontal and vertical velocities of the particle ẋ1 and ẋ2 are limited in

terms of magnitude. Otherwise, high velocity of the particles may cause the parti-
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cle deprivation explained in Section 2.5.4.5. Hence, the similar approaches about the

limitation are applied for the remaining methods.

4.3 Particle Filter-Based Audio Constraint Visual Tracking Method(AV-PF)

In this algorithm, audio information is used to enhance the visual tracking described

in Section 4.2. Also, the audio trackig method of Lathoud et al. [22] which is summa-

rized in Section 2.2 is implemented. The DOA(Direction of arrival) measurements of

that algorithm are given in terms of azimuth angle and they are used in this method.

Since the DOA measurements can be still noisy after the applying SSM method, a

third order audio restoration model is applied to estimates in order to improve relia-

bility of the azimuth.

θ̄k =
2∑
i=0

ϕiθk−i + εk (4.5)

In this equation, θk is the azimuth angle estimate in terms of degrees and θ̄k is the

filtered azimuth value. Additionally, ϕi is the parameter of the model to adjust rate of

present value and past value for inclusion to the filter and εk is white noise for k-th

image frame.

The geometric calibration is explained in Section 2.3.2. Geometric camera calibration

parameters and locations of the microphones are provided by AV16.3 dataset [23].

Hence, all 3-D coordinates given in microphone coordinate system can be projected

to image planes of the cameras.

The idea behind this method which aims to intagrate audio measurements into V-PF

is given in [18]. In this method, the distributed particles are relocated around the

DOA line. After that, the AV-PF re-calculate the weights of the relocated particles

according to their distance to the DOA line. That DOA line can be drawn as follows.

Firstly, 3-D position of the speaker’s head (A, Bk, C) is determined based on the

estimated DOA angle and following assumptions:

1. A is the distance from the center of the microphone array to the wall in meters

and it is taken as 1.75 meters in implementations
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2. C is the estimated height of the speaker, typically chosen as 1.80 meters in the

implementation.

And, Bk is calculated using the trigonometric identity:

Bk = tan(θk ×
π

180
) · A (4.6)

After calculating the values of (A, Bk, C), these 3-D points are projected to the image

frame to obtain the 2-D coordinates (ak, bk) using calibration matrix provided in the

dataset. Lastly, the DOA line is drawn from (ak, bk) to the 2-D coordinate of the

center of the first microphone array which shown as MA1 in Figure 3.1.

The main reason to draw the DOA line is to concentrate the particles around that

line. Concentrating on the DOA line is likely to increase the possibility of the speaker

detection, since that line indicates the approximate direction of the sound emanating

from the speaker. Initially, the locations of the particles are distributed in a circular

area. But, after that DOA line implementation, the distribution is elliptical. It is not

exactly on the DOA line, since it is wished to avoid deviation in the detection regard-

ing noisy DOAs measurements. To get the elliptical distribution, particles are moved

toward to the DOA line with respect to the distance to it. In other words, farthest par-

ticle moves more than the closest particle. In order to achieve this movement, firstly

the perpendicular distances to DOA line dk = [d
(1)
k ... d(N)

k ]T is calculated. After the

calculation, they are normalized to obtain distance coefficients as follows:

d̂k =
dk
‖dk‖

� dk (4.7)

In this equation, � is the element-wise product and ‖.‖1 is the l1 norm. Also, the

distance coefficients can be explained as d̂k = [d̂
(1)
k . . . d̂

(N)
k ]T . These d̂k coefficients

are used to calculate how much the particles will be moved towards the DOA line and

it is be shown in the next step.

The noise within the audio measurements corrupts the reliability and accuracy of the

DOAs. In order to prevent this corruption, integration of the audio measurement is

controlled with Bhattacharyya distance calculated using Equation 4.3 for the target

determined using only visual cue. Hence, the dynamic model given in Equation 4.1

is modified as:
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x̂(n)
k = x(n)

k ⊕ d̂
(n)
k hkγk (4.8)

In this equation, ⊕ is the element-wise addition and hk = [cos(θk) 0 sin(θk) 0 0]T .

In this equation, using d̂(n)k , hk and γk, only the position of the particles are updated.

Also, a new method to calculate the importance weights is proposed as by including

the audio measurement to Equation 4.2:

ŵ
(n)
k = (e−λ(D

(n))2)
‖dk‖1
d
(n)
k

(4.9)

After that, weights are normalized to ensure that
∑N

n=1w
(n)
k = 1. After weighting

step, the position of the face is estimated using Equation 4.4 and denoted as x̃avk .

Before the resampling step, to prevent the tracker to be falsified by the noise in the

audio estimation, γk is calculated again with x̃avk and denoted as γavk . If γavk is smaller

than γk, the AV tracker results are used in the next step and iteration. Otherwise,

audio is assumed to be noisy and the audio constrains on the estimation are ignored.

Thus, visual-only tracker is used in the next step and iteration. In the last step, the

resampling process sampling importance resampling is applied.

The algorithm of AV-PF explained above is given as pseudo code in Table 4.2.

With the proposed modifications in Equation 4.8 and Equation 4.9 with respect to

visual-only V-PF tracker, the tracking algorithm preserve the position of the face

even if the visual tracker is lost. Since concentrating particles around the DOA line

increases the efficiency of the particles in terms of speaker detection, all particles

converge the potential location of the speaker.

Figure 4.1: DOA lines in AV-PF method [18].
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Table4.2: Audio-visual particle filter(AV-PF) tracking algorithm [18] .

1: Initialize N, σ2, U, T,F, λ, r(u),x
(n)
0 , w

(n)
0 , k

2: while k < K do
3: Propagate particles: x

(n)
k = Fx

(n)
k−1 + q

(n)
k

4: Calculate D(n) using Equation 4.3
5: Calculate weights: w(n)

k = e−λ(D
(n))2 , for n = 1, ..., N

6: Normalization: Re-weight particles to ensure that
∑N

n=1w
(n)
k = 1

7: Estimate target position x̃k using Equation 4.4
8: Calculate γk using Equation 4.3
9: Get corresponding DOA angle θk
10: Calculate distances dk = [d

(1)
k ... d(N)

k ]T

11: Find movement distances: d̂k = dk�dk

‖dk‖1
12: Re-propagate particles: x̂(n)

k = x(n)
k ⊕ d̂

(n)
k hkγk

13: Re-weighting: ŵ(n)
k = (e−λ(D

(n))2)‖dk‖1
d
(n)
k

14: Normalization: Re-weight particles to ensure that
∑N

n=1 ŵ
(n)
k = 1

15: Re-estimate target position x̃avk using Equation 4.4
16: Calculate γavk using Equation 4.3

17: if γavk < γk then
18: x(n)

k = x̂(n)
k , w(n)

k = ŵ
(n)
k , x̃k = x̃avk

19: end if
20: Resampling: Generate x(n)

k from the set {x(n)
k , w

(n)
k }Nn=1

21: k = k + 1

22: end while
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In the AV16.3 dataset, the speakers are talking continuously most of the time. Hence,

using the DOA line has advantages to improve visual-only tracking. If there is no

audio clue in the system, the DOA is estimated using last position of the DOA is

available. But, if the gap between the two adjacent speaking frame is too large, then

accuracy of the estimation will be limited. As a result of this, the target can be missed

in these situations.

In this thesis, methods containing audio location estimation use annotated DOAs as

a priori to avoid mis-correspondence of person-ID after occlusion. Actually, that

information may not be available in a practical tracking system. Thus, the methods in

[4] and [20] can be used for modeling of the person-IDs.

4.4 Particle Filter Based Audio-Visual Tracking Technique in 2-D(AV-PF-2D)

The motion and the sensor models are two basic parts of the particle filter as stated

previously. Both models differ from previous two methods explained in Section 4.2

and 4.3. For the motion model, a new variance value is defined for the position and

the velocity of the particles. But, a vector G is added to the motion model in order to

reflect different noise on the position and the velocity. Additionally, by considering

the speaker motion in scene, "Nearly Constant Velocity Model" described in Bar-

Shalom et al. [3] and Blair [6] is chosen to be implemented in the tracker systems.

In any dynamical system, equations of the motion are explained as:

x = x0 + v ∗ t+
a ∗ t2

2
(4.10)

v = v0 + a ∗ t (4.11)

In this equations, position, velocity and acceleration are denoted by x, v and a respec-

tively. Thus, by considering these equations, Equation 4.1 is modified as:

x
(n)
k = Fx

(n)
k−1 + Gq

(n)
k (4.12)
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In this equation, F and G used to represent linear motion model:

F =



1 T 0 0 0

0 1 0 0 0

0 0 1 T 0

0 0 0 1 0

0 0 0 0 1


G =



T 2

2

T

T 2

2

T

1


(4.13)

q
(n)
k is the zero-mean Gaussian noise with covariance Q and q(n)

k v N(0, Q) for each

particle as stated in previous methods. But, the content of the Q is redefined as:

Q =



σ2 0 0 0 0

0 σ2 0 0 0

0 0 σ2 0 0

0 0 0 σ2 0

0 0 0 0 σ2
s


(4.14)

In this matrix, σ2 is the variance of the position and velocity. Also, σ2
s is the variance

for the scale.

In the remaining methods, except V-PF-2CAM, location estimates from video and

audio are integrated. In 2-D tracking methods, audio data are collected from two

microphone arrays and video data are collected from one camera. However, in 3-D

tracking methods, two cameras are used with two microphone arrays. From these

data, location of the speaker are estimated separately. In order to integrate these esti-

mates, it is assumed that the measurements are extracted for each person and differ-

ent measurements are conditionally independent for given states of the single person.

These conditional independence explanation is presented in [29] and [13]. Hence, the

measurements Zt in the 3-D tracking techniques can be described at time t as:

Zt = (zaudiot , zvideo,cam1
t , zvideo,cam2

t ) (4.15)
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Also, for a given state, the measurements produce following factorized representation:

p(Zt|xt) = p(zaudiot |xt) ∗ p(zvideo,cam1
t |xt) ∗ p(zvideo,cam2

t |xt) (4.16)

Since the measurements are directly related with the weighting in the particle filtering

context, Equation 4.16 means that the product of different measurements can be used

for the calculation of the weight for a given state.

In the visual part remaining techniques, the method explained in Section 4.2 is used.

For the audio part, contrary to AV-PF method explained in 4.3, two microphone arrays

in AV16.3 dataset are used instead of one. Lathoud et al. [21] indicates that only the

estimates about azimuth angle of the proposed algorithm is reliable for a reverberant

and noisy closed room. Hence, in order to increase the accuracy of the position

estimation, geometrical crossings of the azimuth estimates is used for each frame.

That crossing approach is shown in Figure 4.2. In this figure, azimuth angles with

respect origins(o1 and o2) of two microphone arrays(MA1 and MA2) are shown as θ1

and θ2 respectively.

Figure 4.2: Location estimate of the audio source in x-y plane using two microphone
array.

After estimating the position of the speaker on x-y axis, the position on the z-axis is

generated considering the height of a normal person. For each iteration, a random

number between 1.5 m and 1.8 m is generated and used as the height of the person.

After estimating 3-D coordinates, that estimation is projected to the image plane using

53



the related projection matrix provided by AV16.3 dataset. In order to weight the

particle using only the audio measurement, Euclidean distance between the related

particle position and the projection is calculated as:

D
(n)
audio =

√
(x̌

(n)
particle,pos − x̌audio,est)2 + (y̌

(n)
particle,pos − y̌audio,est)2 (4.17)

The x̌(n)particle,pos and y̌(n)particle,pos are the position of the n-th particle in x and y axes on

the image plane, while x̌audio,est and y̌audio,est are the estimated location of the audio

source in x and y axes on the image plane respectively. The distance in Equation 4.17

is used for audio weighting as:

w
(n)
k = e−λaudio(D

(n)
audio)

2

(4.18)

In this equation, λaudio is the weighting parameter for audio measurements and used

as an input to the algorithm.

In this 2-D tracker method, only one camera is used for the visual tracker. Hence,

Equation 4.16 becomes:

p(Zt|xt) = p(zaudiot |xt) ∗ p(zvideot |xt) (4.19)

In the particle filtering framework, the weight of a particle is calculated using the

measurement value as it is stated in Line 5 of the basic particle filter algorithm shown

in Table 2.2. By combining Equation 4.19 and 4.2, the weight of the particle is calcu-

lated as:

w
(n)
k = e−λ(D

(n))2 ∗ e−λaudio(D
(n)
audio)

2

(4.20)

Contrary to method AV-PF, no audio restoration model is used for the remaining six

methods. In order to handle with the noise on the measurements, a pre-determined

parameter(τ ) is used. If the weight of the audio measurement is lower than this value,

then the audio measurement is ignored. Aim of this method is to discard irrelevant au-
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Table4.3: Algorithm of the particle filter based audio-visual tracking technique in
2-D(AV-PF-2D).

1: Initialize N, σ2, U, T,F, λ, λaudio, τ, r(u),x
(n)
0 , w

(n)
0 , k

2: while k < K do
3: Propagate particles: x

(n)
k = Fx

(n)
k−1 + Gq

(n)
k

4: Calculate D(n) for visual weights using Equation 4.3
5: Calculate visual weights: w(n)

visual,k = e−λ(D
(n))2 , for n = 1, ..., N

6: For audio component, use the crossing point of the azimuth angles
from two microphone arrays as it is described in Figure 4.2 in 3-D.
Estimate the 3-D position of the mouth of the speaker by randomly
generating the height between 1.5 m and 1.8 m and project the 3-D
coordinate to the image plane.

7: Calculate D(n)
audio for audio using Equation 4.17

8: Calculate audio weights: w(n)
audio,k = e−λaudio(D

(n)
audio)

2 , for n = 1, ..., N

9: Average of the audio measurements: wav,audio =

N∑
i=1

w
(n)
audio,k

N

10: if wav,audio > τ then
11: w

(n)
k = w

(n)
audio,k ∗ w

(n)
visual,k

12: else
13: w

(n)
k = w

(n)
visual,k

14: end if
15: Normalization: Re-weight particles to ensure that

∑N
n=1w

(n)
k = 1

16: Estimate target position x̃k =
∑N

n=1w
(n)
k x

(n)
k

17: Resampling: Generate x(n)
k from the set {x(n)

k , w
(n)
k }Nn=1

18: k = k + 1

19: end while

dio measurements. In addition to these, for nonspeaking intervals, location estimation

from last available measurement is used.

AV-PF-2D algorithm explained in this section is given as pseudo code in Table 4.3.

4.5 Particle Filter Based Audio-Visual Tracking Technique in 2-D with Speech/Non-

Speech Classification(AV-PF-2D-SNS)

For this method, AV-PF-2D technique described in Section 4.4 is modified by adding

the speech/non-speech classification for the speaker. With the speech/non-speech

classification, if the target speaker is silent, then the audio component for the weight-
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Table4.4: Algorithm of the particle filter based audio-visual tracking technique in 2-D
with speech/non-speech classification(AV-PF-2D-SNS).

1: Initialize N, σ2, U, T,F, λ, λaudio, τ, r(u),x
(n)
0 , w

(n)
0 , k

2: while k < K do
3: Propagate particles: x

(n)
k = Fx

(n)
k−1 + Gq

(n)
k

4: Calculate D(n) for visual weights using Equation 4.3
5: Calculate visual weights: w(n)

visual,k = e−λ(D
(n))2 , for n = 1, ..., N

6: For audio component, use the crossing point of the azimuth angles
from two microphone arrays as it is described in Figure 4.2 in 3-D.
Estimate the 3-D position of the mouth of the speaker by randomly
generating the height between 1.5 m and 1.8 m and project the 3-D
coordinate to the image plane.

7: Calculate D(n)
audio for audio using Equation 4.17

8: Calculate audio weights: w(n)
audio,k = e−λaudio(D

(n)
audio)

2 , for n = 1, ..., N

9: Average of the audio measurements: wav,audio =

N∑
i=1

w
(n)
audio,k

N

10: if The speaker is not silent then
11: if wav,audio > τ then
12: w

(n)
k = w

(n)
audio,k ∗ w

(n)
visual,k

13: else
14: w

(n)
k = w

(n)
visual,k

15: end if
16: else
17: w

(n)
k = w

(n)
visual,k

18: end if
19: Normalization: Re-weight particles to ensure that

∑N
n=1w

(n)
k = 1

20: Estimate target position x̃k =
∑N

n=1w
(n)
k x

(n)
k

21: Resampling: Generate x(n)
k from the set {x(n)

k , w
(n)
k }Nn=1

22: k = k + 1

23: end while
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ing is ignored. That classification information is provided by the audio source local-

ization algorithm [21]. For this and the remaining four methods, the classification is

used.

The modified algorithm AV-PF-2D-SNS is presented as pseudo code in Table 4.4.

4.6 Particle Filter Based Audio-Visual Fusion Technique in 3-D(AV-PF-1CAM-

3D)

In this method, the 2-D tracking technique AV-PF-2D-SNS described in previous

section is extended to 3-D space. For this extension, the state vector is redefined with

new state elements as:

x = [ x1 ẋ1 x2 ẋ2 x3 ẋ3 s ]T (4.21)

In this equation, the positions on x, y, and z axes are denoted by x1, x2, and x3

respectively. Moreover, the velocities on these axes are ẋ1, ẋ2, and ẋ3 respectively. In

addition to these, s is the scale of the rectangle centered around the projected particle

on the image plane. Matrices of the motion model in Equation 4.12 are modified and

named as F3D−1cam,G3D1cam, andQ3D−1cam. The matrices in 4.13 and 4.14 becomes:

F3D−1cam =



1 T 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 T 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 T 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


G3D−1cam =



T 2

2

T

T 2

2

T

T 2

2

T

1


(4.22)
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Q3D−1cam =



σ2 0 0 0 0 0 0

0 σ2 0 0 0 0 0

0 0 σ2 0 0 0 0

0 0 0 σ2 0 0 0

0 0 0 0 σ2 0 0

0 0 0 0 0 σ2 0

0 0 0 0 0 0 σ2
s


(4.23)

Thus, Equation 4.12 becomes:

x
(n)
k = F3D−1camx

(n)
k−1 + q

(n)
3D−1cam,k (4.24)

In this method, since the state vectors in 3-D are used, the weighting procedure of

the audio components is changed. Firstly, the approach in Figure 4.2 is applied to

determined coordinates on the x-y plane. After that, for each particle, the distance

to the estimated location in the x-y plane is calculated. Consequently, Equation 4.17

becomes:

D
(n)
audio =

√
(x

(n)
particle,pos − xaudio,est)2 + (y

(n)
particle,pos − yaudio,est)2 (4.25)

In this equation, x(n)particle,pos and y(n)particle,pos are n-th particle position in x and y coor-

dinates in 3-D external world. Also, xaudio,est and yaudio,est are estimated locations of

the particle on x and y axes on the coordinate system.

AV-PF-1CAM-3D algorithm explained in this section is shown as pseudo code in

Table 4.7.

4.7 Particle Filter Based Visual Tracking Technique in 3-D by Using Two Cameras(V-

PF-2CAM)

In this method, the audio tracker part is excluded and the tracker is implemented

using only two cameras. The aim of this implementation is to compare the visual-
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Table4.5: Algorithm of the particle filter based audio-visual fusion in 3-D(AV-PF-
1CAM-3D).

1: Initialize N, σ2, U, T,F, λ, λaudio, τ, r(u),x
(n)
0 , w

(n)
0 , k

2: while k < K do
3: Propagate particles: x

(n)
k = F3D−1camx

(n)
k−1 + G3D−1cam,kq

(n)
3D−1cam,k

4: Calculate D(n) for visual weights using Equation 4.3
5: Calculate visual weights: w(n)

visual,k = e−λ(D
(n))2 , for n = 1, ..., N

6: For audio component, use crossing of the azimuth angles from two
microphone arrays as it is described in Figure 4.2 in 3-D.

7: Calculate D(n)
audio for audio using Equation 4.25

8: Calculate audio weights: w(n)
audio,k = e−λaudio(D

(n)
audio)

2 , for n = 1, ..., N

9: Average of the audio measurements: wav,audio =

N∑
i=1

w
(n)
audio,k

N

10: if The speaker is not silent then
11: if wav,audio > τ then
12: w

(n)
k = w

(n)
audio,k ∗ w

(n)
visual,k

13: else
14: w

(n)
k = w

(n)
visual,k

15: end if
16: else
17: w

(n)
k = w

(n)
visual,k

18: end if
19: Normalization: Re-weight particles to ensure that

∑N
n=1w

(n)
k = 1

20: Estimate target position x̃k =
∑N

n=1w
(n)
k x

(n)
k

21: Resampling: Generate x(n)
k from the set {x(n)

k , w
(n)
k }Nn=1

22: k = k + 1

23: end while
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only methods and audio-visual methods.

In order to implement a tracking algorithm with two cameras, the content of the parti-

cle state in 4.21 is redefined as by adding a new scale factor s2 for the second camera.

Thus, the new state vector becomes:

x = [ x1 ẋ1 x2 ẋ2 x3 ẋ3 s1 s2 ]T

Redefinition of the state vector causes to modify matrices used in the state transition

equation. Hence, the matrices in Equation 4.22 and 4.23 are redefined as:

F3D−2cam =



1 T 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 T 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 T 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


G3D−2cam =



T 2

2

T

T 2

2

T

T 2

2

T

1

1


(4.26)

Q3D−2cam =



σ2 0 0 0 0 0 0 0

0 σ2 0 0 0 0 0 0

0 0 σ2 0 0 0 0 0

0 0 0 σ2 0 0 0 0

0 0 0 0 σ2 0 0 0

0 0 0 0 0 σ2 0 0

0 0 0 0 0 0 σ2
s,1 0

0 0 0 0 0 0 0 σ2
s,2


(4.27)

Hence, the motion model becomes:

x
(n)
k = F3D−2camx

(n)
k−1 + G3D−2cam,kq

(n)
3D−2cam,k (4.28)
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Table4.6: Algorithm of the particle filter-based visual tracking technique in 3-D using
two cameras(V-PF-2CAM).

1: Initialize N, σ2, U, T,F, λ, r(u),x
(n)
0 , w

(n)
0 , k

2: while k < K do
3: Propagate particles: x

(n)
k = F3D−2camx

(n)
k−1 + G3D−2cam,kq

(n)
3D−2cam,k

4: Calculate D(n)
1 and D(n)

2 for visual tracker using Equation 4.3
5: Calculate the first visual weight as: w(n)

visual,k,1 = e−λ(D
(n)
1 )2 ,

for n = 1, ..., N

6: Calculate the second visual weight as: w(n)
visual,k,2 = e−λ(D

(n)
2 )2 ,

for n = 1, ..., N

7: Calculate the final weight as: w(n)
k = w

(n)
visual,k,1 ∗ w

(n)
visual,k,2

8: Normalization: Re-weight particles to ensure that
∑N

n=1w
(n)
k = 1

9: Estimate target position x̃k =
∑N

n=1w
(n)
k x

(n)
k

10: Resampling: Generate x(n)
k from the set {x(n)

k , w
(n)
k }Nn=1

11: k = k + 1

12: end if

Equation 4.16 is modified for two camera case and the new formula about weighting

becomes:

w
(n)
k = e−λ(D

(n)
cam1)

2 ∗ e−λ(D
(n)
cam2)

2

(4.29)

The V-PF-2CAM algorithm explained in this section is given as pseudo code in Table

4.6.

4.8 Particle Filter Based Audio-Visual Fusion Technique in 3-D by Using Two

Cameras and Two Microphone Arrays(AV-PF-3D)

For AV-PF-3D, the audio measurements from two microphone arrays are integrated

to V-PF-2CAM method that is explained in Section 4.7.

The new algorithm with two cameras and two microphone arrays is given as pseudo

code in Table 4.7.
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Table4.7: Algorithm of the particle filter based audio-visual fusion in 3-D using two
cameras and two microphone arrays(AV-PF-3D).

1: Initialize N, σ2, U, T,F, λ, λaudio, τ, r(u),x
(n)
0 , w

(n)
0 , k

2: while k < K do
3: Propagate particles: x

(n)
k = F3D−1camx

(n)
k−1 + G3D−1cam,kq

(n)
3D−1cam,k

4: Calculate D(n)
1 and D(n)

2 for visual tracker using Equation 4.3
5: Calculate the first visual weight as: w(n)

visual,k,1 = e−λ(D
(n)
1 )2 ,

for n = 1, ..., N

6: Calculate the second visual weight as: w(n)
visual,k,2 = e−λ(D

(n)
2 )2 ,

for n = 1, ..., N

7: Calculate the weight of the visual part as:
w

(n)
visual,k = w

(n)
visual,k,1 ∗ w

(n)
visual,k,2

8: For audio component, use crossing of the azimuth angles from two
microphone arrays as it is described in Figure 4.2 in 3-D.

9: Calculate D(n)
audio for audio using Equation 4.25

10: Calculate audio weights: w(n)
audio,k = e−λaudio(D

(n)
audio)

2 , for n = 1, ..., N

11: Average of the audio measurements: wav,audio =

N∑
i=1

w
(n)
audio,k

N

12: if The speaker is not silent then
13: if wav,audio > τ then
14: w

(n)
k = w

(n)
audio,k ∗ w

(n)
visual,k

15: else
16: w

(n)
k = w

(n)
visual,k

17: end if
18: else
19: w

(n)
k = w

(n)
visual,k

20: end if
21: Normalization: Re-weight particles to ensure that

∑N
n=1w

(n)
k = 1

22: Estimate target position x̃k =
∑N

n=1w
(n)
k x

(n)
k

23: Resampling: Generate x
(n)
k from the set {x(n)

k , w
(n)
k }Nn=1

24: k = k + 1

25: end while
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4.9 Particle Filter Based Audio-Visual Fusion Tracking Technique in 3-D by

Using Two Cameras and Two Microphone Arrays with Occlusion Handling(AV-

PF-RAND)

In this tracking method, AV-PF-3D technique presented in Section 4.8 is modified so

that it can handle the occlusion situations more efficiently. Also, it is predicted that

these modifications also increase the robustness of the tracking method in terms of

accuracy. These modifications in the method contain two major part:

1. Random particle injection

2. Discarding of the unreliable visual data

In order to prevent particle deprivation problem, the random particle injection tech-

nique is implemented. Details of the particle deprivation problem and Section 2.5.4.5.

Also, the implementation details about random particle injection technique is pre-

sented in Table 2.4 in this section.

Additionally, in order to increase the accuracy of the tracking system, unreliable vi-

sual data is discarded from both cameras. As it is stated previously, the unreliable

audio data or the audio data having low weight is discarded using τ parameter. For

the visual data, κ parameter is used as threshold value. In the case that all the sensor

data is discarded, the states of the particles are updated only using the motion model.

The explained AV-PF-RAND algorithm is shown as pseudo code in Table 4.8.

1: Initialize N, σ2, U, T,F, λ, λaudio, τ, κ, αslow, αfast, r(u),x
(n)
0 , w

(n)
0 , k

2: while k < K do

3: Propagate particles: x
(n)
k = F3D−1camx

(n)
k−1 +G3D−1cam,kq

(n)
3D−1cam,k

4: Calculate D(n)
1 and D(n)

2 for visual tracker using Equation 4.3

5: Calculate the first visual weight as: w(n)
visual,k,1 = e−λ(D

(n)
1 )2 ,

for n = 1, . . . , N

6: Average of the video measurements: wav,visual,1 =

N∑
i=1

w
(n)
visual,k,1

N

7: if wav,visual,1 > κ then

8: w
(n)
visual,k = w

(n)
visual,k,1 for n = 1, . . . , N
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9: else

10: w
(n)
visual,k = w

(n)
0

11: end if

12: Calculate the second visual weight as: w(n)
visual,k,2 = e−λ(D

(n)
2 )2 ,

for n = 1, . . . , N

13: Average of the video measurements: wav,visual,1 =

N∑
i=1

w
(n)
visual,k,2

N

14: if wav,visual,2 > κ then

16: w
(n)
visual,k = w

(n)
visual,k ∗ w

(n)
visual,k,2 for n = 1, . . . , N

16: else

17: w
(n)
visual,k = w

(n)
visual,k for n = 1, . . . , N

18: end if

19: For audio component, use crossing of the azimuth angles from two

microphone arrays as it is described in Figure 4.2 in 3-D.

20: Calculate D(n)
audio for audio using Equation 4.25

21: Calculate audio weights: w(n)
audio,k = e−λaudio(D

(n)
audio)

2 ,

for n = 1, . . . , N

22: Average of the audio measurements: wav,audio =

N∑
i=1

w
(n)
audio,k

N

23: if The speaker is not silent then

24: if wav,audio > τ then

25: w
(n)
k = w

(n)
audio,k ∗ w

(n)
visual,k

26: else

27: w
(n)
k = w

(n)
visual,k

28: end if

29: else

30: w
(n)
k = w

(n)
visual,k

31: end if

32: wavg = wavg + 1
N
w

[n]
t

33: wslow = wslow + αslow(wavg − wslow)

34: wfast = wfast + αfast(wavg − wfast)
35: for n = 1 to N do

36: with probability max{0.0, 1.0− wfast/wslow} do
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37: add random pose to χt

38: else

39: draw i ∈ {1, . . . , N} with probability ∝ w[i]
t

40: add mathbfx
[i]
t to χt

41: end with

42: end for

43: Normalization: Re-weight particles to ensure that
∑N

n=1w
(n)
k = 1

44: Estimate target position x̃k =
∑N

n=1w
(n)
k x

(n)
k

45: Resampling: Generate x(n)
k from the set {x(n)

k , w
(n)
k }Nn=1

46: k = k + 1

47: end

Table4.8: Algorithm of the particle filter based audio-visual

fusion in 3-D using two cameras and two microphone arrays

with occlusion handling(AV-PF-RAND).

In this chapter, all the implemented methods are explained in a detailed way. In the

following chapter, implementation results of these eight algorithms are presented.
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CHAPTER 5

RESULTS OF THE IMPLEMENTATIONS OF TRACKING

METHODS

5.1 Introduction

Eight particle filter based person tracking algorithms are explained in Chapter 4. In

this Chapter, the simulation results of the implementations are presented. Firstly, the

simulation details and choices for parameters are explained. Following to that, the

tracking results of 2-D and 3-D tracking cases in terms of pixel or distance error and

success rate of tracking are demonstrated in the related tables and reasons for these

results are analyzed. Also, the graphical results of these tracking are presented in

Appendix. Lastly, 2-D and 3-D methods are compared.

5.2 Implementation Details and Parameter Settings

During the simulations, MATLAB is used as the implementation tool and all numer-

ical and graphical results are prepared with it. For audio source localization, open-

source MATLAB codes by Lathoud [21] is used. Audio localization results of the

algorithm [21] are used as input in our implementation. For visual parts and fusion

parts in the particle filtering framework, we have prepared the required codes.

First four methods are implementation in 2-D face tracking system, while the remain-

ing four are working in 3-D. Hence, results are presented in two divided categories

as 2-D tracker and 3-D tracker. For 2-D implementations, each camera is used sepa-
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rately, while for 3-D implementations, two of three cameras are used.

Graphical results for both type of trackers are presented in Appendix as it is stated

previously. In these graphs, the tracking error is illustrated for the related sequence for

each frame. Here, the error at frame k is given as the average of the errors from frame

1 to k. This representation is preferred instead of plotting error on corresponding

frame k, which would give oscillating graph since errors may change abruptly in

subsequent frames. In addition to this, plotting average error at each frame k gives

smooth graph which can be interpreted easily and the overall performance of each

tracker can be compared clearly [18]. In Appendix, the results for AV-PF-1CAM-3D

is not presented. It fails to track and hence error values are too big. Thus, the results

for this method are excluded from the graphical results to get a better view.

Numerical results for both type trackers contains two metrics. First metric is MAE(mean

absolute error). In this metric, for 2-D cases, the sum of Euclidean distance in pixels

between the estimated and the ground truth positions are calculated. But, for 3-D

cases, Euclidean distances in terms of meters are summed. Then, the sum is divided

by number of frames [18]. Second metric is the success rate of tracking. For 2-D

cases, if the distance of the estimated target is more than 30 pixel for 5 seconds, then

it is assumed the target is lost. For 3-D cases, the distance limit is 0.4 m.

Parameters in all of the methods are chosen to observe optimum results. After ap-

plying enough number of tries, parameters are selected. Chosen parameters for each

methods are given in Table 5.1. All of the parameters listed in this table are explained

in the related section of Chapter 4.

Furthermore, all simulations are repeated 10 times for each experiment.

Following sections presents the implementation results and analyses of them. Total

seven different sequences are used in implementations. Description of the these se-

quences are presented in Section 3.5. There are single, two and three person cases in

these sequences. For all these cases, MAE and success rate of tracking are presented

side by side for each camera and method. The best results at each camera and at

overall results of tracking methods are indicated with yellow background for all the

tables. Additionally, "NA" terms in these tables stands for "Not Applicable"
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5.3 Results of 2-D Tracking Algorithms

5.3.1 Single Person Case

In Table 5.2, MAE results and the success rate of tracking for single person case are

presented.

Table5.2: Results of 2-D Tracking Methods For Single Person Case. MAE is shown
in terms of pixels and the success rate of tracking is shown as percentage.

For Sequence #1, all the 2-D trackers are failed. Although the speaker is stable while

speaking, he rotates during the sequence. In the implemented methods, a single pre-

determined image of the target head is chosen for tracking. Hence, if the speaker

turns the back of her/his head to the camera in way that is not similar to the prede-

termined image, then particles deprive as it is observed in the results of sequence #1.

Also, if the target stands in a environment in which the head of the speaker can not

be distinguishable from the background, then the tracker fails. An example for this
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situation can be seen in Figure 5.1.

Figure 5.1: An example for the situation that the speaker’s head can not be distin-
guishable from the background in seq01-1p-0000 for camera #2.

For Sequence #11, all the methods are successful at tracking, although the speaker

makes abrupt movements in this sequence. In overall, V-PF performs better. But,

AV-PF-2D and AV-PF-2D-SNS performs nearly same to it.

For Sequence #15, the tracking performance of AV-PF is the best. Long silence peri-

ods of this sequence make performances of AV-PF-2D and AV-PF-2D-SNS worse.

5.3.2 Two Person Case

In Table 5.3, MAE results and the success rate of tracking for single person case are

presented.

For Sequence #18 and #24, V-PF fails. Since, the tracking using only one visual cue

is not a proper approach for multi-person tracking. However, AV-PF and AV-PF-2D

performs well for these two person cases.

These methods are not efficient, if speakers are out of the field of view. This effect

can be seen in Sequence #24 for both person. In this sequence, both speakers are out

of field of the camera view and the trackers fail. These situation can be seen on Figure

A.6 and A.7 for both speakers at camera #1.
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Table5.3: Results of 2-D Tracking Methods For Two Person Case. MAE is shown in
terms of pixels and the success rate of tracking is shown as percentage.
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5.3.3 Three Person Case

In Table 5.4, MAE results and the success rate of tracking for single person case are

presented.

Table5.4: Results of 2-D Tracking Methods For Three Person Case. MAE is shown
in terms of pixels and the success rate of tracking is shown as percentage.

In Sequence #40, two person are sitting and one person, namely person #2, walks

around them. Also, all of them speak in the sequence. Additionally, two standing

person does not make any movement and do not turn their heads. For stable targets,
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V-PF performs well. However, for walking person #2, V-PF fails as it is observed in

the similar scenarios of moving multiple targets. For moving person, AV-PF-2D-SNS

performs the best with speech/non-speech classification.

5.3.4 Conclusion

Although V-PF method performs well for single target sequences, it fails to track

moving targets for multi-target cases. Since, for these cases, the usage of only one

visual cue results that particles are distributed around the faces of the other trackers

also. If the speaker rotates her/his head, weights of these particles around the target

decreases. However, the weights of particles around the other faces can be stood rel-

atively high with respect to these particles. Hence, in the resampling stage, particles

with lower values may disappear. Consequently, the particles will be stuck around

wrong faces and this will cause to losing of the target.

AV-PF performs well except Sequence #1. However, AV-PF-2D and AV-PF-2D-SNS

shows better performances especially for multi-target cases. In AV-PF, two separate

estimates are generated by using only visual cues and audio-visual cues. After this

generation, the tracking estimate with higher Bhattacharyya distance is used. De-

pending the predetermined images of the speakers and the condition of the speaker’s

head rotation, particles may move around the wrong faces. As it is described in the

previous paragraph, for a specific moment, this may cause to losing of the target.

Additionally, it decreases the accuracy of the tracker. However, in AV-PF-2D and

AV-PF-2D-SNS, particles are moved using both audio and visual cues together. The

complementary nature of these two data results that in the case of one these measure-

ment is not reliable enough, the other cue affects the system so that particles can track

the target.

5.4 Results of 3-D Tracking Algorithms

AV-PF-1CAM-3D method fails for all sequences. In other words, tracking rate is 0%

for all sequences. Hence, the tracking results of that method is not presented neither

in this section nor in Appendix part. Usage of only one camera is not enough to
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propagate particles to the true locations of targets.

5.4.1 Single Person Case

In Table 5.5, MAE results and the success rate of tracking for single person case are

presented.

Table5.5: Results of 3-D Tracking Methods For Single Person Case. MAE is shown
in terms of meters and the success rate of tracking is shown as percentage.

3-D trackers fail to follow targets in Sequence #1 as 2-D trackers. Same reasons for

2-D trackers are also valid for 3-D cases. Additionally, if the visual cue on the one of

the camera is distorted, then the overall tracker fails.

For Sequence #11 and #15, although AV-PF-3D shows the best performance. How-

ever, other trackers show similar performances also.

5.4.2 Two Person Case

In Table 5.6, MAE results and the success rate of tracking for single person case are

presented.
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Table5.6: Results of 3-D Tracking Methods For Two Person Case. MAE is shown in
terms of meters and the success rate of tracking is shown as percentage.

76



For Sequence #18, all methods track their targets. Also, the performance of all meth-

ods are similar. However, 3-D trackers fail at Sequence #24. Because, in this se-

quence, speakers moves out the field of views of the cameras and distorted measure-

ment values in one of the camera results to losing of the target.

5.4.3 Three Person Case

In Table 5.7, MAE results and the success rate of tracking for single person case are

presented.

As expected, 3-D trackers perform better than 2-D trackers. Although, in some cases,

AV-PF-RAND loses the target, V-PF-2CAM and AV-PF-RAND shows similar per-

formances for the sequences.

5.4.4 Conclusion

In some cases, AV-PF-RAND improves the performance. Since, it recovers particles

from wrong states by adding random particles. However, for some cases, that may

also results that particles are moved around the wrong states.

By comparing the performance of V-PF-2CAM and AV-PF-3D, it can be concluded

that if there are no strict visual occlusions in the scene, there is no significant gains

using audio-visual fusion instead of two cameras only. Obviously, for our case, it is

related with the noisy audio estimates for the target locations. By improving audio

tracker or estimating the target location in 3-D space, audio-visual fusion probably

will give better results.

5.5 Comparison of 2-D Trackers and 3-D Trackers

Errors of 3-D trackers are projected to 2-D image planes so that that results of 2-D

and 3-D trackers becomes comparable.
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Table5.7: Results of 3-D Tracking Methods For Three Person Case. MAE is shown
in terms of meters and the success rate of tracking is shown as percentage.
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5.5.1 Single Person Case

In Table 5.8, MAE results in terms of pixels and success rate of tracking for single

person case are presented. Results for Sequence #1 are not presented. Since, all

tracker fails for this sequence.

Table5.8: Overall Results for Single Person Tracking. MAE is shown in terms of
meters and the success rate of tracking is shown as percentage.

For Sequence #11, all sequences performs similar. However, with the usage of the

second camera, 3-D trackers perform better for Sequence #15 with long silence dura-

tion.
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5.5.2 Two Person Case

In Table 5.9, MAE results in terms of pixels and success rate of tracking for two

person case are presented. Results for Sequence #24 are not presented. Since, all 3-D

tracker fails for this sequence.

Table5.9: Overall Results for Two Person Tracking. MAE is shown in terms of meters
and the success rate of tracking is shown as percentage.

For Sequence #18, AV-PF-2D shows better results. However, the performance of the

remaining methods, except V-PF, are similar to AV-PF-2D.
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5.5.3 Three Person Case

In Table 5.10, MAE results in terms of pixels and success rate of tracking for three

person case are presented for Sequence #40.

Table5.10: Overall Results for Three Person Tracking for seq40-3p-0111. MAE is
shown in terms of meters and the success rate of tracking is shown as percentage.
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In Table 5.11, MAE results in terms of pixels and success rate of tracking for three

person case are presented for Sequence #45.

Table5.11: Overall Results for Three Person Tracking for seq45-3p-1111. MAE is
shown in terms of meters and the success rate of tracking is shown as percentage.

The speakers #1 and #3 are stable in Sequence #40. Hence, for stable targets, 2-D and
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3-D trackers performances are similar. However, using two camera is beneficial for

tracking of moving multi-targets as it can be concluded from results of the speaker #2

in Sequence #40.

Serious occlusion examples can be seen in Sequence #45. For these type of occlu-

sions, the 3-D tracker fails. Since, the distorted measurements on one camera result

to the failure of the overall tracker.

5.5.4 Conclusion

As it can be concluded from the presented results, by adding one camera to the 2-D

tracker system, a multi-target tracking can be achieved in 3-D real world coordinate

system. It is important, because that 3-D localization information can be used in

different parts of the system for the variety of purposes.

Additionally, it can be concluded that integrating audio localization data to visual-

only tracker which uses two cameras results no significant improvement on the track-

ing performance of the system. Integrating audio is useful, if there are serious visual

occlusions in the scene.
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CHAPTER 6

CONCLUSION

6.1 Conclusion

The main focus this thesis is on audio-visual fusion based on particle filter for multi-

ple target tracking that works in indoor and noisy environments. Firstly, considering

the tracking environment, AV16.3 dataset [23] is chosen to simulate the implemented

methods. Since this dataset covers a variety of situations, e.g. visual occlusions and

abrupt movements of the speakers. After that choice, two recent methods, namely

V-PF and AV-PF, from the literature [18] are implemented for only the comparison.

V-PF method is a particle filter which uses only visual cue to weight particles. In order

to weight particles, the distance between the color histogram of the rectangular area

around each particle is compared with the predefined image histogram of the target

using Bhattacharyya distance measure. Second AV-PF method is a audio-visual parti-

cle filter which integrates the direction of arrival information to the location estimate

of visual data. Both methods track the targets in the image plane of a camera.

In addition to those two methods, six different methods are implemented. For the

visual part of the tracking, they shares the same histogram based approach. However,

more simple and robust approach to integrate the audio and visual data are imple-

mented in these new methods. With respect to that approach, in order to calculate the

weight of a particle, two or more different weights can be used as the product of these

weights for a given state. Although, one microphones array is used in the previous

two methods, in new methods, two microphone arrays are used. Briefly, AV-PF-2D

and AV-PF-2D-SNS are audio-visual particle filters with different audio integration
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approaches and they also work on 2-D image planes. AV-PF-2D uses audio data also

when the speaker is silent. However, AV-PF-2D-SNS discard the audio data for these

periods of silence. Remaining four methods are implemented to track targets in 3-D

real world coordinate system. V-PF-1CAM-3D uses only one camera and two micro-

phone arrays to track target in 3-D world coordinate system. V-PF-2CAM uses only

two cameras to track the targets. The implementation of this method aims to com-

pare visual-only methods and audio-visual methods. AV-PF-3D uses two cameras

and two microphone arrays for tracking in 3-D world coordinate system. Lastly, AV-

PF-RAND adds random particle two 3-D real world coordinate system and ignores

visual cues with low weights in order to prevent particle deprivation.

These eight methods can be classified as either 2-D or 3-D tracking methods with

their tracking spaces. In the results, detailed analyses and the simulation results are

presented for both type of methods. Also, by projecting the errors of 3-D methods to

2-D image plane, additional results are provided to compare 2-D and 3-D methods.

Consequently, it can be concluded that using two cameras is more effective than using

only one camera. But, as expected, it needs more computational power. For 2-D

cases, using only histogram based color cue is not enough for multi-target tracking.

Furthermore, in 3-D cases, integrating audio cue to visual cue doesn’t make a notable

improvement on the accuracy and the robustness of the trackers. The main reason for

that is the audio estimates our too noisy.

6.2 Future Works

The most obvious future work is to simulate implemented methods for different multi-

target audio-visual datasets. With these implementations, the advantages and disad-

vantages of the methods can be analyzed in a more detailed way.

The audio estimates for the target localization in the implemented methods are too

noisy. Only the direction estimates about the azimuth angles are reliable. Hence, by

changing the geometry of the microphone arrays and using a 3-D configuration for

microphones, a better results can be observed for the audio localization. This will

also increase the performance the overall tracking system.
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In the visual part, additional cues can be integrated. For example, texture cues and

edge cues can be used. By integrating these cues to visual tracker part, the robust-

ness of the tracker will probably increase in terms of success rate and the accuracy.

However, this will also increase the need for computational power of the trackers.

Lastly, for a particle filter implementation, in order to optimize the computational

cost, adaptive methods can be implemented. Implementation of the adaptive methods,

especially for 3-D target tracking cases which contains relatively high number of

particles, the computational efficiency of the tracking will probably increase.
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Appendix A

GRAPHICAL RESULTS OF THE TRACKING METHODS

A.1 Graphical Results of 2-D Trackers

In this section, all the graphical results for 2-D trackers are presented. These graphs

show the tracking error in terms of pixels for the related frame.

Figure A.1: Tracking Results of seq01-1p-0000 for 2-D Methods
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Figure A.2: Tracking Results of seq11-1p-0100 for 2-D Methods

Figure A.3: Tracking Results of seq15-1p-0100 for 2-D Methods
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Figure A.4: Tracking Results of seq18-2p-0101 - Person #1 for 2-D Methods

Figure A.5: Tracking Results of seq18-2p-0101 - Person #2 for 2-D Methods

91



Figure A.6: Tracking Results of seq24-2p-0111 - Person #1 for 2-D Methods

Figure A.7: Tracking Results of seq24-2p-0111 - Person #2 for 2-D Methods
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Figure A.8: Tracking Results of seq40-3p-0111 - Person #1 for 2-D Methods

Figure A.9: Tracking Results of seq40-3p-0111 - Person #2 for 2-D Methods

93



Figure A.10: Tracking Results of seq40-3p-0111 - Person #3 for 2-D Methods

Figure A.11: Tracking Results of seq45-3p-1111 - Person #1 for 2-D Methods
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Figure A.12: Tracking Results of seq45-3p-1111 - Person #2 for 2-D Methods

Figure A.13: Tracking Results of seq45-3p-1111 - Person #3 for 2-D Methods
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A.2 Graphical Results of 3-D Trackers

In this section, all the graphical results for 3-D trackers are presented. These graphs

show the tracking error in terms of meters for the related frame.

Figure A.14: Tracking Results of seq01-1p-0000 for 3-D Methods
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Figure A.15: Tracking Results of seq11-1p-0100 for 3-D Methods

Figure A.16: Tracking Results of seq15-1p-0100 for 3-D Methods
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Figure A.17: Tracking Results of seq18-2p-0101 - Person #1 in 3-D

Figure A.18: Tracking Results of seq18-2p-0101 - Person #2 in 3-D
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Figure A.19: Tracking Results of seq24-2p-0111 - Person #1 in 3-D

Figure A.20: Tracking Results of seq24-2p-0111 - Person #2 in 3-D
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Figure A.21: Tracking Results of seq40-3p-0111 - Person #1 in 3-D

Figure A.22: Tracking Results of seq40-3p-0111 - Person #2 in 3-D
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Figure A.23: Tracking Results of seq40-3p-0111 - Person #3 in 3-D

Figure A.24: Tracking Results of seq45-3p-1111 - Person #1 in 3-D
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Figure A.25: Tracking Results of seq45-3p-1111 - Person #2 in 3-D
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Figure A.26: Tracking Results of seq45-3p-1111 - Person #3 in 3-D
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