MODEL DEVELOPMENT FOR EVALUATING REMEDIATION OF CONTAMINATED SEDIMENTS: PCBs AND PBDEs AS CASES FOR HALOGENATED HYDROPHOBIC ORGANICS

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

FİLİZ KARAKAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ENVIRONMENTAL ENGINEERING

MAY 2016

Approval of the thesis:

MODEL DEVELOPMENT FOR EVALUATING REMEDIATION OF CONTAMINATED SEDIMENTS: PCBs AND PBDEs AS CASES FOR HALOGENATED HYDROPHOBIC ORGANICS

submitted by FİLİZ KARAKAŞ in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Engineering Department, Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Kahraman Ünlü Head of Department, Environmental Engineering	
Prof. Dr. İpek İmamoğlu Supervisor, Environmental Engineering Dept., METU	
Examining Committee Members:	
Assoc. Prof. Dr. Emre Alp Environmental Engineering Dept., METU	
Prof. Dr. İpek İmamoğlu Environmental Engineering Dept., METU	
Prof. Dr. Kevin R. Sowers Dept. of Marine Biotech. University of Maryland, BC	
Prof. Dr. Ayşegül Aksoy Environmental Engineering Dept., METU	
Assoc. Prof. Dr. Kadir Gedik Environmental Engineering Dept., Akdeniz Univ.	
Date:	

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name : FİLİZ KARAKAŞ

Signature :

ABSTRACT

MODEL DEVELOPMENT FOR EVALUATING REMEDIATION OF CONTAMINATED SEDIMENTS: PCBs AND PBDEs AS CASES FOR HALOGENATED HYDROPHOBIC ORGANICS

Karakaş, Filiz

Ph.D., Department of Environmental Engineering Supervisor: Prof Dr. İpek İmamoğlu

May 2016, 349 pages

Understanding fate and transport (F&T) of halogenated hydrophobic organic compounds (HOCs) in sediments is a major concern and is imperative for their sound environmental management. This study aims to model the F&T of HOCs in sediments as individual compounds, and by taking into account anaerobic dehalogenation (AD). For this purpose, F&T of hydrophobic pollutant (FTHP) model is developed. As distinct from the literature, this model predicts future concentration of HOCs both as individual compounds and as total, by taking into account AD, as well as other relevant F&T mechanisms. AD rate constants (k_m) of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. The range of k_m for PCBs and PBDEs estimated using laboratory studies of Baltimore Harbor contaminated sediments, USA, and of contaminated soil from Guangdong province, China, are between 0.0001 – 0.129 d⁻¹ and 0.001 – 0.024 d⁻¹, respectively. The median of estimated k_m are found to be comparable to the few available rate constants published in the literature.

The FTHP model is applied to sediments of Lake Michigan and San Francisco Bay, USA, contaminated by PCBs and PBDEs, respectively. FTHP model calibration, validation, sensitivity and uncertainty analyses are performed for most of the congeners with satisfactory results. Goodness of fit results of model calibration is found to be comparable or better than those of similar models in the literature. For PCBs, future projection scenarios indicate reduction of toxicity – and the model is able to pinpoint which scenarios would better reduce toxicity, as individual toxic congener concentrations can be modeled. Similarly, for PBDEs, the bioaccumulation potential of sediments is found to be decreased through bioaugmentation. Total contaminant concentrations, however, can only be reduced by dredging. On the other hand, predicting bioremediation with FTHP model enables the user to evaluate toxicity changes through the time course of bioremediation, as toxic congeners are produced/reduced via individual AD reactions. Overall, systematic identification and quantification of AD pathways coupled with congener specific modeling can aid remediation efforts such that congener specific monitoring/enhancement of bioremediation could be possible for sediment-bound HOCs.

Keywords: Hydrophobic organic pollutants, sediment, anaerobic dehalogenation rate constant, bioaugmentation, toxicity, fate and transport processes.

KİRLENMİŞ SEDİMANLARIN TEMİZLENMESİNDE KULLANILMAK ÜZERE BİR MODEL GELİŞTIRİLMESİ: HALOJENLİ HİDROFOBİK KİMYASALLARA ÖRNEK OLARAK PCBLER VE PBDELER

Karakaş, Filiz

Doktora, Çevre Mühendisliği Bölümü Tez Yöneticisi : Prof. Dr. İpek İmamoğlu

Mayıs 2016, 349 sayfa

Hidrofobik organik kirleticilerin (HOKlar) taşınımı ve akıbetini anlamak çevre yönetimi açısından büyük önem taşımaktadır. Bu çalışma, HOKları ayrı ayrı bileşik olarak ve anaerobik dehalojenasyonunu da ele alarak sedimandaki taşınım ve akıbetlerini (F&T) belirleyen mekanizmalarını modellemeyi hedeflemektedir. Bu amaçla, hidrofobik kirletici taşınım ve akıbet (FTHP) modeli geliştirilmiştir. Literaturden farklı olarak bu model, ayrı ayrı bileşiklerin dehalojenasyon reaksiyonlarını, taşınım ve akıbetlerini belirleyen mekanizmalarla birlikte dikkate alarak her bir bileşiğin ve toplamlarının gelecekteki derişimlerini tahmin etmeyi hedeflemektedir. Anaerobik dehalojenasyon hız sabitlerini (k_m) tahmin etmek için daha önce geliştirilen model modifiye edilerek Anaerobik Dehalojenasyon modeli geliştirilmiştir. Hız sabitleri 0.0001 – 0.129 d⁻¹ ve 0.001 – 0.024 d⁻¹ arasında olarak PCBlerle kirlenmiş Baltimore Limanı'ndan alınan laboratuvar sedimanları ve PBDElerle kirlenmiş Çin Guangdong'dan alınan toprak verileri ile tahmin edilmiştir. Bu değerlerin medyanlarının literatürdeki az sayıda çalışmada verilenlerle karşılaştırılabilir olduğu belirlenmiştir.

FTHP modeli PCBlerle kirlenmis Michigan Gölü'ndeki ve PBDElerle kirlenmis San Fransico Körfezi'ndeki sedimanlara uygulanmıştır. Kalibrasyon, validasyon, duyarlılık ve belirsizlik analizleri modelin başarılı bir şekilde uygulandığını göstermiştir. Model kalibrasyonu uyum verileri literatürdeki benzer modellerle karşılaştırılabilir veya daha iyi bulunmuştur. Oluşturulan gelecekle ilgili senaryolarda, biyoaugmentasyon yöntemiyle toksisitenin azaldığı görülmüş - tekil toksik bileşiklerin derişimleri modellenebildiğinden, senaryolardan hangisinin daha iyi toksisite azalmasını sağlayacağı belirlenebilmiştir. Benzer şekilde PBDEler için, sediman biyobirikim potansiyelinin biyoaugmentasyon ile düsürülebileceği bulunmuştur. Ancak, toplam kirletici miktarı sadece sedimanın çıkarılması senaryosuyla gerçekleşebilir. Diğer yandan, biyoremediasyonun FTHP modeli ile toksik bileşşiklerin tekil reaksiyonlarının ele alınarak tahmin edilmesi, iyileştirme sürecinde kullanıcının toksisite değişimlerini zamana bağlı olarak değerlendirebilmesini sağlamaktadır. Genel olarak anaerobik dehalojenasyon reaksiyonlarının sistematik olarak tanımlanması ve kantifiye edilmesi, ve de bu tip taşınım ve akıbet modellerinde kullanılması sedimanların temizlenmesine katkı sağlayabilir. Böylece, hidrofobik kirleticilerle kirlenmiş sedimanlar gözlemleme aşamalarında ve de biyoremediyasyonun iyleştirilmesinde kullanılabilir.

Anahtar Kelimeler: Hidrofobik organik kirleticiler, Sediman, Anaerobik dehalojenasyon hız sabiti, Biyoaugmentasyon, Toksisite, Taşınım ve akıbet mekanizmaları.

To My Family

ACKNOWLEDGEMENTS

I would like to thank firstly to my supervisor Prof. Dr. İpek İmamoglu for her advices, discussions, and positive attitude throughout this research. I would like to thank to my PhD Dissertation Monitoring Committee Members, Prof. Dr. Ayşegül Aksoy and Prof. Dr. Kevin Sowers for their comments and recommendations that greatly improved this research. I also thank to my other dissertation members Assoc. Prof. Dr. Kadir Gedik and Assoc. Prof. Dr. Emre Alp for their valuable recommendations.

I would like to thank to my friend, Hale Demirtepe for her friendship in challenging time. I am really going to miss our break time and discussions on scientific issues, life and how a feeling to be a PhD candidate. I would also like to express my thanks to my friend Ece Kendir and my office mates, Cansu Dönmezoğlu, Hazal Aksu and Debebe Fanta to feel me happy with their friendships. I would like to express my gratitude to Dr. Fadime Kara Murdoch for her help and support in my laboratory studies I worked in the projects in the first years of my PhD.

My deepest thanks go to my family, especially my parents, Döndü and Cafer Demircioğlu for her and his endless loves and warm hearts I always feel, and to my parent in-laws, Mehmet Ali and Yıldız Karakaş. Unfortunately, we did not have much time to spend with my mother in law, but I thank to her for growing such a kind and valuable man, my husband. My parents are always near me during the most challenging times. I specially thank to my older sister, Tevhide Demircioğlu who is the only person loving me like my mother and also to my little sister, Sevda Demircioğlu for her close friendship, enjoyable times we share, and her help throughout this research academically and commonly. They and my mother always helped me, by cooking meals, preparing my study area and cleaning my home for me. Another of my thanks goes to my sister, Figen Bozkurt, my older brother, Ersin Demircioğlu and my brother Sercan Kargı for their loves with their smiling faces and warm hearths.

During this research, my two nephews were born, Jr. Cafer Demircioğlu and Ege Bozkurt. They are the gifts to me and they always put a smile on my face when I see them in these challenging times. I also feel happy by playing and spending time with three lovely kids I called "minikler"; Eren Özkan, Emre Anıl and İrem Özkan. I would like to thank deeply to my older brother Ahmet Anıl for sharing his life experience and giving advice about the life with his calm voice, and to my older sister Duygu Anıl for her friendship, enjoyable times we spent in zumba and guidance in academic life. I also want to thank to my older brother Celalettin Özkan and my older sister İlknur Özkan for their loves. I always think that I am very lucky to have such a big family.

Lastly, I am especially grateful to my husband, Kıvanç Karakaş for his endless love, support and patience. I owe him much more than words can express. He has always believed me and encouraged me to complete this thesis and make it the best one. We have progressed in science and art together. He presents me such a lovely life that is filled with his love. Thanks to God for letting me know him in my life.

TABLE OF CONTENTS

ABSTRACT	V
ÖZ	vii
ACKNOWLEDGEMENTS	X
TABLE OF CONTENTS	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xxi
CHAPTERS	
1. INTRODUCTION	1
2. LITERATURE REVIEW	7
2.1 HALOGENATED HYDROPHOBIC ORGANIC COMPOUNDS (HOCS)	7
2.1.1 Polychlorinated Biphenyls (PCBs)	7
2.1.2 Polybrominated Diphenyl Ethers (PBDEs)	
2.1.2 Torjetermane 2 promy Earth (12225)	. 19
2.2 FATE OF PCBS AND PBDES IN THE ENVIRONMENT	20
2.2.1 Fate Mechanisms in the Environment	20
2.2.2 Fate of PCBs	. 32
2.2.3 Fate of PBDEs	. 33
2.3 MODELING	34
2.3.1 Fate and Transport Models	35
2.3.2 Models for Degradation Pathway Identification of PCBs and PBDEs.	. 50
3. MATERIALS AND METHODS	. 55
3.1 DESCRIPTION OF TERMINOLOGY	. 56
3.2 ANAEROBIC DEHALOGENATION MODEL	. 58
3.2.1 Description of Model	. 58
3.2.2 Computer Program	. 64

	3.2.3	Preparation of Dehalogenation Pathways as Input for ADM	76
	3.3 F	TATE AND TRANSPORT (F&T) MODEL	77
	3.3.1	Conceptual Model	77
	3.3.2	Selection of A Model Equation	79
	3.3.3	Model Assumptions	84
	3.3.4	Description of the FTHP model	84
	3.3.5	FTHP Model Computer Program	86
	3.3.6	Estimation of Model Parameters	103
	3.3.7	Model Stability and Accuracy	106
	3.3.8	Model Calibration, Validation, Sensitivity and Uncertainty Analyses	108
	3.4 P	СВ ДАТА	111
	3.4.1	Microcosm PCB Data: Baltimore Harbor Sediments, USA	112
	3.4.2	FTHP model PCB Data: Lake Michigan Sediments, USA	117
	3.5 P	BDE DATA	139
	3.5.1	Laboratory PBDE Data: Contaminated Soil, China	139
	3.5.2	Environmental PBDE Data: San Francisco Bay, USA	141
4.	VERI	FICATION OF MODELS	157
	<i>A</i> 1 - A	ADTIEICIAL DATA SET	157
	4.1 P	DM Vedication	161
	4.2		161
	4.2.1	THP MODEL CODE VERIEICATION	165
	4.3 1	Example Run	165
	т.3.1		105
5.	ESTIN	MATION OF BIODEGRADATION RATE CONSTANTS OF PCB	
D	ECHLOF	RINATION REACTIONS USING AN ANAEROBIC	
D	EHALOO	GENATION MODEL	171
	5.1 II	NTRODUCTION	171
	5.2 N	IETHODOLOGY	173
	5.2.1	Baltimore Harbor (BH) Microcosm Data Set	173
	5.2.2	Anaerobic Dehalogenation Model (ADM)	174
	5.3 R	Results and Discussion	175

5.3.1 Analysis of ADM Results for All Dechlorination Activities	175
5.3.2 Evaluation of k _m values in DA 18	181
5.4 CONCLUSIONS	184
6. PREDICTION OF BIODEGRADATION RATE CONSTANTS OF PB	DE
CONGENERS USING AN ANAEROBIC DEHALOGENATION MODEL.	187
	107
6.2 METHODS AND MATERIALS	10/
6.2 METHODS AND MATERIALS	109
6.2.2 Apparation Data Set	109
6.2 Results and Discussion	109
6.4 CONCLUSIONS	191
0.4 CONCLUSIONS	194
7. MODELING BIODEGRADATION OF PCBS IN SEDIMENT	
CONSIDERING FATE AND TRANSPORT MECHANISMS	197
7.1 INTRODUCTION	197
7.2 Methodology	199
7.2.1 Fate and Transport of Hydrophobic Pollutant (FTHP) model	201
7.2.2 Lake Michigan (LM) Sediment Data Set	203
7.3 RESULTS AND DISCUSSIONS	206
7.3.1 Testing of the FTHP Model	206
7.3.2 FTHP Model Future Prediction Results	215
7.4 Conclusions	
8 MODELING BIODEGRADATION OF PROFS IN SEDIMENTS USIN	JG A
FATE AND TRANSPORT MODEL	223
8.1 INTRODUCTION	
8.2 Methodology	
8.2.1 Fate and Transport of Hydrophobic Pollutant (FTHP) model	
8.2.2 Environmental PBDE Data: San Francisco Bay, USA	
8.3 RESULTS AND DISCUSSIONS	233
8.3.1 Testing of the FTHP Model	233
8.3.2 FTHP Model Future Prediction Results	241

8	.4 Conclusions	
9.	OVERVIEW	
10.	RECOMMENDATIONS	
11.	REFERENCES	
API	PENDICES	

APPENDIX A	LIST OF CONGENERS	
APPENDIX B	LIST AND NAMES OF MOST COMMONLY STUD	IED PBDE
CONGENERS		
APPENDIX C	MASS BALANCE EQUATIONS AND MECHANISI	MS OF
THE MODELS	REVIEWED IN THE LITERATURE	
APPENDIX D	INPUT AND OUTPUT OF THE PATHWAY FUNCT	ION FOR
PCBs AND PBE	DEs	
APPENDIX E	RESULTS OF ADM FOR BH SEDIMENT MICROCO	OSMS
CONTAMINAT	ED BY PCBs	
APPENDIX F	RESULTS OF FTHP MODEL FOR LAKE MICHIGA	N
SEDIMENTS C	ONTAMINATED BY PCBs	
APPENDIX G	RESULTS OF FTHP MODEL FOR SAN FRANCISC	O BAY
SEDIMENTS C	ONTAMINATED BY PBDEs	
CURRICULUM	VITAE	

LIST OF TABLES

TABLES

Table 3.8 IUPAC numbers of PCB congeners analyzed in microcosm sediments
(Fagervold et al., 2007, 2011)
Table 3.9 History of PCB contamination in Lake Michigan Basin (Rossmann, 2006)
Table 3.10 Sediment samples collected from Segment 49 123
Table 3.11 Concentration of individual PCB congeners in 10 sediment samples (ng/L)
(USEPA, 2015)
Table 3.12 Descriptive statistics of PCB congener concentrations (ng/L) in the water
column at the north region
Table 3.13 Descriptive statistics of PCB congener concentrations (ng/L) in the water
column at the south region
Table 3.14 Descriptive statistics of TSS Data
Table 3.15 Volume and Area of Sediment Layer and Water Column (Rossmann, 2006)
Table 3.16 Water and sediment properties measured in LMMBP (Rossmann, 2006)
Table 3.17 Molecular weight, solubility and Kow of congeners (Mackay et al., 2006)
Table 3.18 Settling, Resuspension and Burial Velocities (Rossmann, 2006)
Table 3.19 Molecular Diffusion Coefficient of Congeners (Schneider, 2005) 137
Table 3.20 Molecular Diffusion used in the FTHP model
Table 3.21 Concentration of individual PBDE congeners in 9 sediment samples (ng/L)
(SFEI, 2015)
Table 3.22 Concentration of congeners in water column and in 9/13/2011
Table 3.23 Descriptive statistics of TSS Data
Table 3.24 Depth and Area of Sediment Layer and Water Column
Table 3.25 Water and Sediment Properties 151
Table 3.26 Solubility and Kow of PBDE congeners (Mackay, 2006)
Table 3.27 Molecular diffusion coefficient of PBDE congeners (Blauenstein, 2007)
Table 3.28 Molecular Diffusion used in the FTHP model

Table 4.1 Abundance of seven congeners in the original Aroclor 1260 and after
dechlorination158
Table 4.2 Doubly Flanked para Removal 158
Table 4.3 Abundance of All Coeluting Congeners After Dechlorination
Table 4.4 Model Input 161
Table 4.5 Initial and final concentration of coeluting congeners by the model and in
the data set
Table 4.6 Calculation of k_m values for Artificial data by excel
Table 4.7 Model km results 164
Table 4.8 Model Input Information for numbers of congeners, paths and time 165
Table 4.9 Model Input Information for biodegradation rate constants 165
Table 4.10 Model Input Information 166
Table 4.11 Model Input Information belonging to water column, sediment layer and
system properties
Table 4.12 Calculation of contaminant partitioning coefficients in the sediment (Kds)
Table 4.13 Calculation of contaminant partitioning coefficients in the water (Kdw)
Table 4.14 Calculation of fractions of contaminant (unitless) 167
Table 4.15 Estimation of diffusion mass-transfer coefficient at the sediment-water
interface
Table 4.16 Estimation of resuspension velocity (vr) 168
Table 4.17 Calculations in biodegradation term 169
Table 5.1 Dechlorination activities and k _m values estimated by ADM
Table 5.2 Goodness of fit results (R^2 and R^2_{reac}) for each sample run for each time
interval
Table 5.3 List of all dechlorination pathways for the best performing dechlorination
activities, DA18, DA23, DA24 and DA25
Table 5.4 Comparison of k_m values with the values in the literature
Table 6.1 DAs and k _m values estimated by ADM192
Table 6.2 Goodness of fit results (R^2 and R^2_{reac}) for each sample run and each time

Table 6.3 Degradation rate constants of eight debromination pathways ac	cording to
the DAs	
Table 7.1 Concentration of individual PCB congeners in 10 sediment samp	oles (ng/L)
(USEPA, 2015)	
Table 7.2 Results of the goodness of fit parameters for calibration and valid	lation.211
Table 7.3 Distribution of parameters assumed for uncertainty analysis	
Table 7.4 RSD of Future Prediction Calculated for1000 times in Uncertaint	y Analysis
Table 7.5 Future scenarios	
Table 8.1 Concentration of individual PBDE congeners in 9 sediment samp	oles (ng/L)
(SFEI, 2015)	
Table 8.2 Maximum and median k_m values of 8 pathways in correspondi	ng Das by
ADM	
Table 8.3 Cases for use of km values during calibration of FTHP model	
Table 8.4 Results of the goodness of fit parameters for calibration and valid	lation.237
Table 8.5 Future scenarios	
Table 8.6 k_m values used for the other pathways which are not available (d ⁻	¹)243
Table A. 1 List of PCB congeners	
Table A. 2 List of most commonly studied PBDE congeners (USEPA, 2010))270
Table B. 1 Technical flame-retardant (Penta- Octa- and Deca-PBDEs) con	npositions
(%, w/w) (La Guardia et al., 2006)	
Table C.1 Recovery Model (Boyer et al., 1994 and Ruiz et al., 2000)	
Table C.2 TOXIWASP Model (Ambrose et al., 1983)	
Table C.3 LM-2 Model	
Table C.4 PMHR Model (Farley et al., 1999)	
Table C.5 WASP4 Model (Ambrose et al., 1988)	
Table C.6 Mass Balance Equations for surface sediment layer	
Table D.1 Input of the Pathway Function for PCBs	
Table D.2 Output of the Pathway Function for PCBs	
Table D.3 Input of the Pathway Function for PBDEs	
Table D.4 Output of the Pathway Function for PBDEs	
Table E.1 Numbers of samples and shuffles in each sample run by ADM	
•	

Table F.1 k_m values estimated by ADM for DA18, DA25, DA19, DA13 and DA20
Table F.2 Trials for calibration of PCB congeners in Lake Michigan sediment 310
Table F.3 Min, Max, Mean and Variance of 7 Parameters for Uncertainty Analysis
Table G.1 Trials for calibration of PBDE congeners in Lake Michigan sediment 328
Table G.2 Min, Max, Mean and Variance of 7 Parameters for Uncertainty Analysis
Table G.3 k_m values for possible pathways used for the last scenario

LIST OF FIGURES

FIGURES

Figure 2.1 General PCB structure	. 8
Figure 2.2 General PBDE structure	14
Figure 2.3 Sediment zones and fate processes of the pollutant in the bed sedime	ent
(Allan & Stegemann, 2007)	22
Figure 3.1 Interrelationship between ADM and FTHP models	56
Figure 3.2 Description of ADM	65
Figure 3.3 An example dechlorination pathway, output of the FindPathways function	on
A. Structural depiction, B. Depiction in the model	66
Figure 3.4 ADM Flowchart	68
Figure 3.5 Input File: Sample and Predicted Profiles	72
Figure 3.6 Input File: Pathways pertaining to each DA	73
Figure 3.7 Output File of ADM	74
Figure 3.8 Conceptual Model (HHOCs: Halogenated HOCs)	78
Figure 3.9 Flowchart of the FTHP Model	89
Figure 3.10 Steps of FTHP model development and application	92
Figure 3.11 Input File-1	96
Figure 3.12 Input File-2	97
Figure 3.13 Input-3 for Calibration and Validation	98
Figure 3.14 Uncertainty File-1 for Values in Input file 1	99
Figure 3.15 Uncertainty File-2 for Values in Input file 2 10	00
Figure 3.16 Output File-Out1	01
Figure 3.17 Outputfile-Out2 for Calibration and Validation	02
Figure 3.18 Solid Mass Balance in Sediment	04
Figure 3.19 Uses of PCB Data Sets	11
Figure 3.20 BH Microcosm Data (Fagervold et al., 2007, 2011) 1	13

Figure 3.21 BH (SF1+DEH10) Microcosm Data (Fagervold et al., 2007, 2011)114
Figure 3.22 BH (017+DF1) Microcosm Data (Fagervold et al., 2007, 2011)
Figure 3.23 BH (SF1+DEH10+o17+DF1) Microcosm Data (Fagervold et al., 2007,
2011)
Figure 3.24 Segmentation of the water column (Left) and surficial sediments (Right)
used in LM2-Toxic Model (Rossmann, 2006)120
Figure 3.25 Distribution of total PCBs (ng/L) in 1994-1995 Lake Michigan water
column (Left) and surficial sediments (Right) (Zhang, 2006, part1ch5)121
Figure 3.26 Surface sediment samples collected in Segment 49 122
Figure 3.27 Water column sampling locations in Segment 37124
Figure 3.28 Samples at South and North used for calibration and validation in segment
49, respectively
Figure 3.29 Time Variation of Total PCBs PCBs in Lake Michigan water column
(ng/L) (a) between 1975 and 1995 (b) between 1986 and 1995 (Rossmann, 2006) 129
Figure 3.30 Distribution of Total Concentration of Congeners Through Time 130
Figure 3.31 TSS Concentration
Figure 3.32 Total PCB concentration versus depth in Lake Michigan - Σ_{39} PCBs
(USEPA, 2006)
Figure 3.33 Molecular Diffusion vs. No of Cl on biphenyl structure
Figure 3.34 Uses of PBDE Data Sets
Figure 3.35 Microcosm PBDE data (Song et al., 2015)140
Figure 3.36 Segmentation (Oram et al., 2008a)
Figure 3.37 Distribution of BDE 47 (Left) and BDE209 (Right) (ng/g) in 2012 in San
Francisco Bay Surficial Sediment (Sutton et. al, 2015)
Figure 3.38 Distribution of Total PBDEs (ng/g) between 2002-2014 in San Francisco
Bay Surficial Sediment (Sutton et. al, 2015)144
Figure 3.39 Sampling Points of PBDEs in Surface Sediment and water column 145
Figure 3.40 TSS Concentration
Figure 3.41 Total PBDE Concentration in sediment from Adviso Wetland Core
(Grenier and Davis, 2011) (Yee et al., 2011)
Figure 3.42 Molecular Diffusion vs. No of Br in diphenyl ether structure
Figure 4.1 Application of artificial anaerobic dechlorination on data set

Figure 4.2 Anaerobic dechlorination pathways depicted with coeluting congeners 160						
Figure 4.3 Measured vs. ADM predicted data plot						
Figure 4.4 Comparison of concentrations estimated by FTHP model in MatLAB ar						
MS Excel						
Figure 5.1 Distribution of k_m values modeled by ADM for DA 18						
Figure 7.1 FTHP model development for and application to Lake Michigan Sediments						
Figure 7.2 PCB Conceptual Model						
Figure 7.3 Samples at South and North used for calibration and validation in segment 49, respectively						
Figure 7.4 FTHP model calibration plots (time vs. sediment PCB concentration) . 209						
Figure 7.5 PCB concentration in Lake Michigan surface sediment from PCB validation of the FTHP model						
Figure 7.6 Future prediction concentrations in surface sediment						
Figure 7.7 TEQ temporal changes in surface sediment						
Figure 8.1 FTHP model development for and application to Lake Michigan Sediments						
Figure 8.2 PBDE Conceptual Model						
Figure 8.3 Surface sediment and water column sampling points for PBDE data used						
Figure 8.4 PBDE concentration in San Francisco sediment from PBDE calibration of						
Eigure 8.5 DBDE concentration in San Erancisco sediment from DBDE validation of						
the FTHP model 239						
Figure 8.6 Possible pathways of debromination in the literature considering congeners						
measured in San Francisco Bay sediments						
Figure 8.7 Future prediction concentrations in surface sediment						
Figure E.1 Comparison of scatter plot of (first row) the PCB profiles of Data set 1.BH						
for days, t0 vs. t100, t100 vs. t200 and t200 vs. t300 and (second row) prediction						
profiles at days 100, 200 and 300 for DA 18 (Activity of DEH10) by ADM						
Figure E.2 Comparison of scatter plot of (first row) the PCB profiles of Data set 2.BH						
for days, t0 vs. t100, t100 vs. t200 and t200 vs. t300, (second row) prediction profiles						

at days 100 and 300 for DA 18 (Activity of DEH10) by ADM and (third row)
prediction profiles at days 100, 200 and 300 for DA 23 (Activity of DEH10+SF1) by
ADM
Figure E.3 Comparison of scatter plot of (first row) the PCB profiles of Data set 3.BH
for days, t0 vs. t100, t100 vs. t200 and t200 vs. t300, (second row) prediction profiles
at days 100, 200 and 300 for DA 18 (Activity of DEH10) by ADM and (third row)
prediction profiles at days 100, 200 and 300 for DA 24 (Activity of o17+DF1) by
ADM
Figure E.4 Comparison of scatter plot of (first row) the PCB profiles of Data set 4.BH
for days, t0 vs. t100, t100 vs. t200 and t200 vs. t300, (second row) prediction profiles
at days 100, 200 and 300 for DA 18 (Activity of DEH10) by ADM and (third row)
prediction profiles at days 100, 200 and 300 for DA 25 (Activity of
Deh10+SF1+o17+DF1) by ADM
Figure E.5 PCB congener profiles of Data Set 1.BH: Graph above is measured day 100
vs. 100, Graph below is day 200 measured vs. predicted by the model for D. Act. 18
Figure E.6 PCB congener profiles of Data Set 3.BH: Graph above is measured day 100
vs. 200, Graph below is day 200 measured vs. predicted by the model for D. Act. 18
Figure E.7 PCB congener profiles of Data Set 4.BH: Graph above is measured day 100
vs. 200, Graph below is day 200 measured vs. predicted by the model for DA 18
Figure E.8 PCB congener profiles of Data Set 2.BH: Graph above is measured day 0
vs. 100, Graph below is day 100 measured vs. predicted by the model for DA 23
Figure E.9 PCB congener profiles of Data Set 2.BH: Graph above is measured day 100
vs. 200, Graph below is day 200 measured vs. predicted by the model for DA 23
Figure E.10 PCB congener profiles of Data Set 3.BH: Graph above is measured day
100 vs. 200, Graph below is day 200 measured vs. predicted by the model for DA 24

Figure E.11 PCB congener profiles of Data Set 4.BH: Graph above is measured day 0
vs. 100, Graph below is day 100 measured vs. predicted by the model for DA 25
Figure E.12 PCB congener profiles of Data Set 4.BH: Graph above is measured day
100 vs. 200, Graph below is day 200 measured vs. predicted by the model for DA 25
Figure F.1 Sensitivity Analysis of PCB congeners in Lake Michigan sediment: TSS
Comparison
Figure F.2 Sensitivity Analysis of PCB congeners in Lake Michigan sediment: vb
Comparison
Figure F.3 Sensitivity Analysis of PCB congeners in Lake Michigan sediment: vs
Comparison
Figure F.4 Sensitivity Analysis of PCB congeners in Lake Michigan sediment: Cs
Comparison
Figure F.5 Sensitivity Analysis of PCB congeners in Lake Michigan sediment: Cw
Comparison
Figure F.6 Sensitivity Analysis of PCB congeners in Lake Michigan sediment: DA18
Comparison
Figure F.7 Sensitivity Analysis of PCB congeners in Lake Michigan sediment:
Diffusion Comparison
Figure F.8 Sensitivity Analysis of PCB congeners in Lake Michigan sediment: focs
Comparison
Figure F.9 Sensitivity Analysis of PCB congeners in Lake Michigan sediment: focw
Comparison
Figure F.10 Sensitivity Analysis of PCB congeners in Lake Michigan sediment: Kow
Comparison
Figure F.11 Probability Graph for Normal Distribution of Uncertainty Analysis of
Lake Michigan at 20.year
Figure F.12 Probability Graph for Lognormal Distribution of Uncertainty Analysis of
Lake Michigan at 20.year
Figure F.13 Mean and Standard Deviation of Output Concentration of Each Congener
for 1000 runs by MC Simulation

Figure G.1 Sensitivity Analysis of PBDE congeners in SF Bay sediment: $C_{\mbox{\scriptsize s}}$
Comparison
Figure G.2 Sensitivity Analysis of PBDE congeners in SF Bay sediment: $C_{\rm w}$
Comparison
Figure G.3 Sensitivity Analysis of PBDE congeners in SF Bay sediment: k_m
Comparison
Figure G.4 Sensitivity Analysis of PBDE congeners in SF Bay sediment: D_m
Comparison
Figure G.5 Sensitivity Analysis of PBDE congeners in SF Bay sediment: $f_{\rm ocs}$
Comparison
Figure G.6 Sensitivity Analysis of PBDE congeners in SF Bay sediment: $f_{\rm ocw}$
Comparison
Figure G.7 Sensitivity Analysis of PBDE congeners in SF Bay sediment: $K_{\rm ow}$
Comparison
Figure G.8 Sensitivity Analysis of PBDE congeners in SF Bay sediment: TSS
Comparison
Figure G.9 Sensitivity Analysis of PBDE congeners in SF Bay sediment: $v_{\text{\scriptsize b}}$
Comparison
Figure G.10 Sensitivity Analysis of PBDE congeners in SF Bay sediment: $v_{\rm s}$
Comparison
Figure G.11 Probability Graph for Normal Distribution of Uncertainty Analysis of
Lake Michigan at 20.year
Figure G.12 Probability Graph for Lognormal Distribution of Uncertainty Analysis of
Lake Michigan at 20.year
Figure G.13 Mean and Standard Deviation of Output Concentration of Each Congener
for 1000 runs by MC Simulation

LIST OF ABBREVIATIONS

- ADM: Anaerobic Dechlorinatin Module
- Avg: Average
- BC: Black Carbon
- BH: Baltimore Harbor
- **BIC: Biotic Carbon**
- Br: Bromine
- CB: Chlorobiphenyl
- Cl: Chlorine
- DA: Dehalogenation Activity, Dechlorination/Debromination Activity
- dw: dry weight
- DOC: Dissolved Organic Carbon
- F&T: Fate and transport
- FTHP: Fate and Transport of Hydrophobic Pollutants
- HOCs: Hydrophobic Organic Chemicals
- PMHR: PCB Model for Hudson River
- LM: Lake Michigan
- LMMBP: Lake Michigan Mass Balance Project
- MCL: Maximum Contaminant Level for drinking water
- OM: Organic Matter

PCBs: Polychlorinated Biphenyls

PBDEs: Polybrominated Diphenyl Ethers

PCE: Tetrachloroethylene

PDC: Particulate detrital carbon

- POC: Particulate Organic Carbon (Biotic Carbon + Particulate detrital carbon)
- RK4: Runge Kutta 4th order
- RSD: Relative standard deviation
- SD: Standard deviation
- SF: San Francisco
- SOM: Sediment Organic Matter
- TCE: Trichloroethylene

TOC: Total Organic Carbon (Particulate Organic Carbon + Dissolved Organic Carbon)

LIST OF NOTATIONS

Items	Unit	Descriptions
Avg	mole ‰	Average of predicted profiles estimated for each shuffle
A and A	m^2	Surface areas of water and surface sediment,
A_w and A_m	111	respectively
C _d (i)	mole ‰	Concentration of daughter congener at initial time, t _i
$C_d(f)$	mole ‰	Concentration of daughter congener at final time, t _f
C _m (i)	mole ‰	Concentration of mother congener at initial time, t _i
C _m (f)	mole ‰	Concentration of mother congener at final time, tf
c_m^{i}	ng/L	Concentration of contaminant i in surface sediment
$c_s^i(0)$	ng/L	i th contaminant concentration at the top of the deep contaminated layer
	/1	Concentration of each congener calculated in each time
Cmtnew	ng/L	step of FTHP model
c_w^i	ng/L	Concentration of contaminant i in water column
	U	Cosine theta ($\cos \theta$), indicator of the similarity between
costheta	-	two data using angular profile of predicted and
		measured data
DA	-	Dechlorination activity
DL	mole ‰	Detection limit
D_{m}	cm ² /sec	Molecular diffusion coefficient
Ds	cm ² /sec	Molecular diffusivity
F		Ratio of contaminant concentration in the sediment pore
F _{dp}	-	water to contaminant concentration in total sediment
F _{dw}	-	Fraction of contaminant in dissolved forms in water
F _{pw}	-	Fraction of contaminant in particulate form in water
f_{oc}	g-orgC/g	Fraction of organic carbon in solid
it	-	Counter to check the number of shuffles (from 0 to 150)
K _d	L/kg	Solid-water distribution coefficient
k1, k2, k3 and k4	-	Calculated terms in RK4.
1 1 1	4 -1	Biodegradation rate constant of a dehalogenation
K _m , Kvai	u	pathway estimated for mixed surficial sediment
K _{ow}	-	Octanol-water partitioning coefficient
		A dehalogenation pathway indicating replacement of
m→d		chlorine from the mother congener, m, with hydrogen, to
		produce the daughter congener
Median	mole ‰	Median of predicted profiles estimated for each shuffle
nathorder	_	Order of each pathway in the shuffles

Items	Unit	Descriptions
D ²		Multiple correlation coefficient of all congeners
K-	-	modeled
D ² DD ²	-	Multiple correlation coefficient of only reactive
R ² reac, KR ²		congeners modeled
S	-	Objective function calculated during each run
		The initial value of the objective function – calculated at
Sinitial	-	initial time before any calculations made on
		mother/daughter congener concentrations
\mathbf{S}_{\min}	-	The smallest S obtained during model run
Sol	mg/L	Solubility of the congeners
Sprevious	-	Objective function calculated during previous run
Sw	g/m ³	Total suspended solid concentration
t	day	Time, day
ti	day	Initial time
t _f	day	Final time
Δt	day	Time step
Vb	m/day	Burial velocity
¥7	m/day	Diffusion mass-transfer coefficient at the sediment,
Vd		water and deep sediment interface
$V_{\rm m}$	m ³	Volume of mixed sediment
Vr	m/day	Resuspension velocity of sediments
Vs	m/day	Settling velocity of particulate matter
x _j	mole ‰	Congener profile of microorganism PCB data measured
		at day e.g. T=100 day
$\hat{\mathcal{Y}}_{j}$	mole ‰	Predicted congener profile (either from Frame et. Al
		(1996) or microcosm PCB data at t=0 d) altered
		according to a dechlorination activity
$\sum_{m=1}^{m}$		
$\sum_{i=1}^{n}$	-	Summation of m number of congeners
,		

CHAPTER 1

INTRODUCTION

Hydrophobic organic compounds (HOCs) are named because of their low water solubility, high octanol-water partitioning coefficient (K_{ow}) with high sorption capacity to organic carbon. After these chemicals are released into the environment intentionally or unintentionally, they can be easily bioaccumulated and persist in fatty tissues of living organisms as a result of these properties (USEPA, 2010). HOCs strongly bind to the solid phase owing to these properties. Therefore, they are accumulated on suspended particulate matter and either transported with them, or settle and become part of the sediments. Contaminated sediments become a legacy from past pollution that can continue to negatively impact the environment even years after pollutant loads have been controlled. Understanding fate and transport of HOCs in sediments are investigated. Two groups of pollutants, namely, polychlorinated biphenyls (PCBs) and polybrominated diethers (PBDEs) are studied as cases.

PCBs are a class of persistent organic pollutants (POPs). These chemicals had a widespread use in many industries such as heat exchange fluids, dielectric fluids in electric transformers and capacitors, and as additives in paint, carbonless copy paper, and plastics (POPs, 2008). Historically, about 1.7 million tons of PCBs was globally produced between 1930 and 1993 (Breivik et al., 2007). Despite prohibition of commercial production of PCBs firstly in 1977 in the USA, and lastly in 1993 in Russia (Breivik et al., 2002), PCBs are still available in old transformers, capacitors, heat exchangers, etc. PCBs are internationally regulated as part of the original twelve POPs

under the Stockholm Convention, which necessitates elimination of the use of equipment containing PCBs by 2025 and management of wastes containing PCBs by 2028. They are released into the environment after being sold/used as formulations composed of about 150 PCB congeners (Frame et al., 1996). Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants. These chemicals have been used widely in building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams and textiles (ATSDR, 2004). The first commercial productions of PBDEs began in the 1970s in Germany (ATSDR, 2004). PBDEs are regulated internationally by the Stockholm Convention, as a part of the new generation POPs. Although production of tetra-, penta-, hexa- and hepta- PBDE congeners are banned by the Convention, production of PBDEs still continues around the globe and pose a threat to the environment due to their bioaccumulative property and persistence (POPs, 2008). PBDE mixtures sold/used typically contain 22 congeners. (La Guardia et al., 2006).

When the compound to be modeled is not a single chemical (e.g. trichloroethylene - TCE) but a family of chemicals (e.g. about 150 PCB congeners in a commercial formulation), this presents an added challenge in modeling. Physicochemical properties of the congeners differ from one another having an impact on the fate mechanisms affecting their distribution in the environment. For example, when one congener can be biodegraded anaerobically, the same rate or extent may not be said for another congener of the same PCB family. In addition, congeners in a family do not possess the same toxicity (Van den Berg et al., 2006) or bioaccumulative effect (Hale et al., 2003) on organisms. This variation among congeners become especially prominent when a biotic fate mechanism, namely, anaerobic dehalogenation of HOCs are considered. Anaerobic dehalogenation of PCBs and PBDEs are shown by laboratory (Brown et al., 1984; Tokarz et al., 2008) and environmental (Siebielska & Sidełko, 2015; Zanaroli et al., 2012) studies to be an important fate mechanism affecting their distribution in contaminated sediments.

Fate and transport (F&T) models are valuable in predicting the remediation outcome and frequently used for better environmental management of sites contaminated with various chemicals. In the literature, numerous studies exist for modeling of PCBs as total-PCBs, homologs or individual congeners (Connolly et al., 2000; Davis, 2004; Farley et al., 1999; Shen et al., 2012; Zhang et al., 2008, 2009) or as total maximum daily load (TMDL) of PCBs (LimnoTech, 2007; Shen, 2011; Shen et al., 2012). There are also, although much less in number, studies about modeling of PBDEs (Davis, 2004; Rowe, 2009). According to our literature review, it is seen that there are a number of F&T models that run on an individual PCB and PBDE congener basis (Davis, 2004; Oram et al., 2008b; Rowe, 2009; Shen, 2011; Shen et al., 2012; Zhang et al., 2008). Following simulation, however, the output is evaluated for total PCBs or PBDEs (Zhang et al., 2008, 2009). Biodegradation is typically either assumed to be negligible or as a first order decay reaction, with a generic reaction rate constant. The study by Davis (2004) runs the model with a general degradation term for each congener, however it neither differentiates between biological/chemical degradation, nor takes products of degradation into account.

Our literature review indicates that there is no model that runs on an individual congener basis, considering biodegradation of these compounds with their relevant products, and other F&T processes together. In other words, such models have not been developed before. The main reason for this can be that degradation pathways of individual congeners have only been studied in the last decade or two. Mechanisms of individual congeners in the environment have gained importance only recently. Up to now, change in amount of total congeners were of concern, even if individual congeners were modeled. Consequently, biodegradation of these compounds with their relevant products was not considered in these models. According to our literature review, physicochemical properties of the congeners differentiate from one another having an impact on the fate mechanisms affecting their distribution in the environment. Additionally, all these compounds are not toxic and bioaccumulative, but they can degrade to toxic or bioaccumulative ones by anaerobic dehalogenation reactions. Therefore, investigation of individual congeners by such models is

important. Hence this study aims to develop a F&T model for contaminated sediments that takes into account anaerobic dehalogenation of congeners. Accordingly, our considerations by the model are (i) to evaluate the reduction of toxic and/or bioaccumulative congeners, and (ii) to decrease amount of higher homolog groups in a contaminated site. The specific aims are;

- 1. To estimate anaerobic dehalogenation reactions and their rate constants to be used as input in the fate and transport model. This aim is carried out by modifying a previously developed model to yield a generic anaerobic dehalogenation model (ADM), which identifies anaerobic dehalogenation pathways, estimates rate constants for dehalogenation reactions, by using laboratory sediment dehalogenation data as input.
- To develop a congener specific F&T model by incorporating biodegradation into an existing model to consider biodegradation reactions of individual contaminants, taking into account reactants and products, as well as all relevant F&T mechanisms,
- To apply the developed model on environmental HOC data (i.e. PCB and PBDE contaminated sediment data) and evaluate the effectiveness of various remediation scenarios.

One advantage of such models is that they can aid in the investigation of effective remediation strategies and better management of the environment. In other words, comprehensive remedial strategies such as monitored natural attenuation, bioaugmentation/biostimulation or dredging can be assessed by this model for better management of contaminated sites. Furthermore, such models using biodegradation of individual congeners and considering their products in contaminated sediment can help decrease the toxicity of sediments for elimination or reducing the risk to aquatic organisms and humans. Additionally, these models can help understand the fate mechanisms especially biodegradation of HOCs such as PBDEs which include a very limited number of studies about their behavior and fate. Remedial strategies then, can be developed. New chemicals are synthesized every day for a multitude of purposes,

therefore the F&T of new compounds can also be evaluated using the developed model.

This dissertation is organized as a collection of manuscripts of which portions have either already been submitted for publication, or will be submitted. Other than these, the dissertation also includes a comprehensive literature review section and methodology section presenting the details of the development of the model and laboratory and environmental HOC data sets used to test the model. Some repetition may appear in the introduction and methodology sections of the relevant topics.
CHAPTER 2

LITERATURE REVIEW

2.1 Halogenated Hydrophobic Organic Compounds (HOCs)

HOCs are called hydrophobic because of their low water solubility, high sorption capacity to organic carbon and high octanol-water partitioning coefficient (Kow). These chemicals can be bioaccumulated in fatty tissues of animals and humans as a result of these properties (USEPA, 2010). HOCs strongly bind to the solid phase owing to these properties. Therefore, they are accumulated on suspended particulate matter and either transported with them, or settle and become part of the sediments.

Petrovic et al. (2007) proposed a criterion for selection of compounds to be monitored in sediments, where he states that $\log K_{ow}$ should be higher than 5 for monitoring in sediments, should be lower than 3 for monitoring in water and values between 3 and 5 depends on the degree of contamination and are optional. In short, the higher $\log K_{ow}$ is, the higher affinity towards sediment and suspended matter. For example, hexachlorobenzene (HCB) and atrazine should be monitored in sediment and water, due to the high sorption capacity and high water solubility, respectively (Petrovic et al., 2007).

Halogenated HOCs such as DDT, PCBs, PBDEs are typically persistent for decades in the environment. Halogenated HOCs were mostly produced due to their chemical and physical stability for agricultural (e.g. DDT) or industrial (e.g. PCBs) use. Because of their exceptional properties, these chemicals had widespread use in these sectors. However, after their abundant use and discharge, their toxic, persistent and bioaccumulative properties were discovered in the environment and in biota. Although they tend to persist for decades, they can be affected by physicochemical and biological degradation mechanisms in the environment. By this way, their partitioning into different media (water, air, soil, sediment, biota) is also affected. Therefore, any site contaminated with these chemicals should be investigated by using fate and transport models in order to develop effective remediation strategies for the region. PCBs and PBDEs are selected in this study to represent Halogenated HOCs.

2.1.1 Polychlorinated Biphenyls (PCBs)

Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants, internationally regulated by the Stockholm Convention (POPs, 2008). They consist of two phenyl rings, 12 carbons and 10 atoms which can be either chlorine or hydrogen (C₁₂ H_{10-n}Cl_n) (Figure 2.1). Positions 2, 2', 6, and 6' are defined as *ortho*, positions 3, 3', 5, and 5' are defined as *meta* and positions 4 and 4' are defined as *para* positions. According to position (*meta, para* and *ortho*) and number of chlorine in the biphenyl structure, theoretically, 209 PCB compounds are available, each of which is called congener. PCB congeners including same number of chlorine are called homologs. In in homologs, PCB congeners having different positions are recognized as isomers. Additionally, PCB congeners are also named according to the configuration of chlorines, such that **singly flanked**: presence of other chlorines in either of the adjacent positions, **doubly flanked**: presence of chlorine in both adjacent positions and **unflanked**: absence of chlorine in any of the adjacent positions.

Figure 2.1 General PCB structure

Ballschmiter and Zell (1980), following the "International Union of Pure and Applied Chemistry" (IUPAC) rules, named 209 congeners by numbering them. They are called as "Ballschmiter", "BZ" or "IUPAC" numbers from 1 to 209. Imamoglu (2001) states that another notation with a hyphen representing separation of rings is commonly used since it makes structure of the congener more explicit when compared to the IUPAC numbering. As an example, 22'55' is referred to as congener 52 in IUPAC numbering, where it is written as 25-25 in the latter way of depicting congeners. The complete list of congeners considering the numbering and structure of PCBs is provided in Appendix A. The congener list used here is taken from Frame et al. (1996). This nomenclature differs from USEPA (2015) for three congeners 107, 108 and 109. The structure of congeners 107, 108 and 109 are : 234-35, 2346-3 and 235-34, respectively, as given in Frame et al. (1996) while they are 235-34, 234-35 and 2346-3, respectively in USEPA (2003).

The congeners including both non-*ortho* and mono-*ortho* substituted PCBs can rotate freely on carbon-carbon central biphenyl bond because of no steric hindrance associated with *ortho* chlorines. Due to free rotation, the congeners are oriented in the same plane, which are called planar or coplanar configuration (dihedral angle= 0°). Other configuration is nonplanar in which two benzene rings are in a perpendicular plane (dihedral angle= 90°) (ATSDR, 2004). For example, congener 77 (34-34) is a non-*ortho* substituted planar congener and congener 153 (245-245) is a di-*ortho* substituted nonplanar congener. The planar and coplanar congeners are also dioxin-like compounds since they are biochemically active and the most toxic (Karcher, 2005) and the toxicity decreases substantially as *ortho* positions increase. The details about toxicity is mentioned in section 2.1.3.

PCBs were sold as mixtures under different trade names in various countries such as Aroclors (A1016, 1260, 1254, 1242, etc.) in USA, Clophen (Clophen A60, A30, etc.) in Germany, Kanechlors in Japan, etc. (UNEP, 1999). In Aroclor, first two digits

explains carbon number and last two digits expresses approximate chlorine content by weight percent. Aroclor mixtures and the contents of congeners are presented in detail by Frame et al. (1996).

PCBs were commercially successful due to their chemical and thermal stability. Therefore, these chemicals had a widespread use in many industries such as heat exchange fluids, dielectric fluids in electric transformers and capacitors, and as additives in paint, carbonless copy paper, and plastics (POPs, 2008). Global production of about 1.7 million tons of PCBs is recorded from 1930 until 1993 (Breivik et al., 2007). Despite prohibition of commercial production of PCBs firstly in 1977 in USA, and lastly in 1993 in Russia (Breivik et al., 2002), PCBs are still available in old transformers, capacitors and heat exchangers. Another important point for PCBs is that after discharge of PCBs into the environment directly or unintentionally, it creates widespread pollution in the environment, and then has the potential to cause adverse effects on human and animals due to bioaccumulative, persistence and toxic properties. PCBs are among the Persistent Organic Pollutants (POPs) list of the Stockholm Convention, which deals with elimination of the use of equipment containing PCBs by 2025 and management of wastes containing PCBs by 2028. The Convention is implemented by the countries ratifying it. Turkey ratified the Convention in 2010.

Physicochemical Properties of PCBs

PCBs were produced as mixtures including various congeners with a variety of number of chlorines, and because of that, they were released into the environment as such. Therefore, physicochemical properties of mixtures are also important to understand the fate and behavior of PCBs in the environment. Table 2.1 shows physicochemical properties of Aroclor mixture as an example. As chlorine content of mixture increase, water solubility, vapor pressure decrease and octanol water partitioning increase. The physiochemical properties of homolog groups and individual congeners are given in Table 2.2 and Table 2.3, respectively. Vapor pressure and Henry's constant indicate tendency of volatilization of a compound/mixture. By this way, the affinity of the chemicals towards the air phase can be estimated. PCBs are categorized as semivolatile organic compounds (ATSDR, 2004).

Water solubility and octanol water partitioning can be indicators for hydrophobicity which is important for bioavailability of the compound (Henry & DeVito, 2003). PCB congeners having high number of chlorines have lower water solubility, hence may not be of interest for monitoring in the water phase. When logK_{ow} increases, sorption to solid phases and bioaccumulation in organisms increase for a compound. As can be seen from Table 2.2 and Table 2.3, highly chlorinated PCBs have high logK_{ow} and high hydrophobicity. Therefore, higher chlorinated congeners are sorbed to particulate matter in aquatic environment and settle down to become part of the sediments (Lick, 2009). Hence, higher chlorinated PCBs with higher K_{ow} values indicate less bioavailability when compared to lower chlorinated congeners with lower K_{ow} values (Henry & DeVito, 2003).

Highly chlorinated and fewer *ortho* substituted PCB congeners have less volatility, less water solubility, more sorption capacity and are more willing to take part in anaerobic dechlorination processes especially in buried sediments (Henry & DeVito, 2003). Therefore these congeners are likely to be much more in soils and sediments, less in water and in the atmosphere, and highly bioaccumulative (Henry & DeVito, 2003).

Mixtures	Molecular	% CI	Avg. No. of	Water Solubility	Vapor pressure	Henry's law constant	logKow
	Weight (g/mole)		Cl/molecule	(g/m^3)	(Pa)	(Pa m3/mol)	I
Aroclor1232	221	31.4-32.5	2.04	1.45	0.54	82-270	4.5-5.2
Aroclor1242	261	42	3.1	0.1-0.75	0.05 - 0.13	45-130	4.5-5.8
Aroclor1248	288	48	3.9	0.1-0.5	0.0085 - 0.11	5-300	5.8-6.3
Aroclor1254	327	54	4.96	0.01-0.30	0.008 - 0.02	20-260	6.1-6.8
Aroclor1260	372	60	6.3	0.003-0.08	0.0002-0.012	20-60	6.3-6.8
Table 2.2 Physi	cochemical proper	ties of PCB]	homologs at 20	-25°C (Mackay et al	., 2006)		
Hon	nologs	Water (Solubility	Vapor pressu	re Henry	's law constant	logKow
)	g) g	/m ³)	(Pa)	L	a m3/mol))
Dicl	nloro-	0.06	50-2.0	0.008-0.60	1	7.0-92.21	4.9-5.30
Tric	bloro-	0.01	5_040	0.003-0.22	ç		5 5 00

_
\circ
$\overline{\mathbf{O}}$
•••
ω
,
e
~
9
<u>~</u>
0
a l
÷,
~
\Box
- \
\cup
õ
Š
\sim i
`."
Ċ
\approx
C M
÷
g
S
e.
Η
2
H
× .
· =
E
_
÷
0
Q
0
1
7
Aı
fAı
of Aı
of Aı
s of Ai
es of AI
ies of AI
rties of AI
erties of AI
perties of AI
pperties of AI
toperties of AI
properties of AI
properties of A1
1 properties of A1
al properties of Aı
cal properties of Aı
ical properties of AI
nical properties of Aı
mical properties of AI
lemical properties of AI
hemical properties of AI
chemical properties of AI
ochemical properties of AI
cochemical properties of AI
icochemical properties of AI
sicochemical properties of Aı
ysicochemical properties of Aı
nysicochemical properties of Au
Physicochemical properties of AI
Physicochemical properties of Au
l Physicochemical properties of Aı
.1 Physicochemical properties of Au
2.1 Physicochemical properties of AI
2.1 Physicochemical properties of Au
e 2.1 Physicochemical properties of Aı
le 2.1 Physicochemical properties of Au

logKow	4.9-5.30	5.5-5.90	5.6-6.50	6.2-6.50	6.7-7.30	6.7-7.0	7.1	7.2-8.16	8.26
Henry's law constant (Pa m3/mol)	17.0-92.21	24.29-92.21	1.72-47.59	24.8-151.4	11.9-818	5.4	38.08	I	20.84
Vapor pressure (Pa)	0.008-0.60	0.003-0.22	0.002	0.0023-0.051	0.0007-0.012	0.00025	0.0006		0.00003
Water Solubility (g/m ³)	0.060 - 2.0	0.015 - 0.40	0.0043 - 0.010	0.004-0.020	0.0004 - 0.0007	0.000045 - 0.0002	0.0002 - 0.0003	0.00018-0.0012	0.000761
Homologs	Dichloro-	Trichloro-	Tetrachloro-	Pentachloro-	Hexachloro-	Heptachloro-	Octachloro-	Nonachloro-	Decachloro-

	Henry's law constant (atm·m3/mol at 25 °C)	0.43×10^{-4} 0.94×10^{-4} 0.83×10^{-4}		$8.25 imes 10^{-4}$	$2.88 imes 10^{-4}$		$1.07 imes 10^{-4}$	$0.21 imes 10^{-4}$	$2.78 imes10^{-4}$	$1.32 imes 10^{-4}$	1.31×10^{-4}	$1.43 imes 10^{-4}$	$0.15 imes 10^{-4}$	$0.15 imes 10^{-4}$	$0.59 imes 10^{-4}$	$1.07 imes 10^{-4}$	$0.32 imes 10^{-4}$
; (WHO, 2003)	Vapour pressure (mmHg at 25 °C)	$4.4 imes 10^{-7}$		6.531×10^{-6}	$8.974 imes 10^{-6}$		$4 imes 10^{-6}$		$3.80 imes10^{-7}$			$1.61 imes 10^{-6}$	$5.81 imes 10^{-7}$	$4.02 imes 10^{-7}$		$9.77 imes 10^{-7}$	
CB congeners	logKow	6.04- 6.63		6.98	7.12		6.50	7.44(calc.)	8.35	6.72		7.6	7.2	7.408		6.70-	7.21(calc.)
s of dioxin-like P(Water solubility (mg/litre at 25 °C)	0.175		0.0034	0.0134(20 °C)		0.0159(calc.)		0.00091	0.00086		0.00533	0.001195	0.000036	0.01230(calc.)	0.00031 -	0.00656(calc.)
nical propertie	Molar Mass (g/mol)	292	326.4	326.4	326.4	326.4	360.9		360.9			360.9	360.9	360.9		395.3	
Table 2.3 Physicochen	Homolog Group	tetrachlorobiphenyls	pentachlorobiphenyls	pentachlorobiphenyls	pentachlorobiphenyls	pentachlorobiphenyls	hexachlorobiphenyls		hexachlorobiphenyls			hexachlorobiphenyls	hexachlorobiphenyls	hexachlorobiphenyls		heptachlorobiphenyls	
	Structure	3,3',4,4'	3,4,4',5	2,3,3',4,4'	2,3',4,4',5	3,3',4,4',5	2,2',3,4,4',5		2,2',4,4',5,5'			2,3,3',4,4',5	2,3,3',4',5,6	3,3',4,4',5,5'		2,2',3,4,4',5,5'	
	IUPAC No	77	81	105	118	126	138		153			156	163	169		180	

2.1.2 Polybrominated Diphenyl Ethers (PBDEs)

Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants. They consist of diphenyl ether, 12 carbons, 1 oxygen and 10 atoms which can be either bromine or hydrogen (PBDE = $C_{12}H_{(10-x)}Br_xO$ and x=m+n) (Figure 2.2). As in PCBs, possible 209 structures, which are called as congeners, are available.

Figure 2.2 General PBDE structure

As in PCBs, PBDEs are also named by the numbering system by Ballschmiter and Zell (1980) and follow IUPAC rules. Therefore, the congener list given for PCBs in Appendix A is also the same for PBDEs (Table A.2). The nonhalogenated substitution in *ortho* position indicates the planar or near planar configuration (dihedral angle=0°) which enables benzene rings to rotate around the bond connecting them. Therefore, it is called coplanar like in PCBs. In contrast, when bromines are substituted in the *ortho* position, a nonplanar configuration (dihedral angle=90°) is formed, since steric hindrance prevents rotation.

The first commercial productions of PBDEs began in the 1970s in Germany (ATSDR, 2004). The production of tetra-, penta-, hexa- and hepta- PBDE congeners are banned by the Stockholm Convention due to their toxicity and persistence (POPs, 2008). According to the study of Hale et al. (2003), 33965 tons of PBDE commercial products (penta, octa and deca PBDE mixtures) were used in North America, which is about 50% of global demand in 1999. The study also shows that 97.5% production of penta mixture was produced in North America according to a 1999 survey.

PBDEs have been used as flame retardants widely in building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams and textiles (ATSDR, 2004). They were produced as mixtures. However, the number of PBDE congeners used commercially in mixtures are much less than those used for PCBs (ATSDR, 2004). The most commonly studied congeners/mixtures are given in Appendix B. Three classes of mixtures were produced according to the average bromine numbers attached to the phenyl rings; penta-, octa-, and deca-BDEs. In the US, DE-60F, DE-61, DE-62, and DE-71 for pentaBDE mixtures; DE-79 for octaBDE mixtures; and DE 83R, Saytex 102E for decaBDE mixtures were produced (La Guardia et al., 2006). The mixtures and the contents of congeners are indicated in Table B.1. Three homolog groups have generally been included in these mixtures; penta-, octa- and decabromodiphenyl ethers. The major congener in decaBDEs is BDE-209. Tokarz et al., (2008) reports that the production of more than 80% of PBDEs by mass was BDE-209.

DecaBDE mixture includes 82% of these bromodiphenyl ethers produced. This mixture is used for electronic enclosures, such as television cabinets. OctaBDE mixture is used in plastics for business equipment. PentaBDE mixture is used in foam for cushioning in upholstery (ATSDR, 2004). These mixtures (especially octa and deca BDE mixtures) were produced by European countries and Japan under various trade names (ATSDR, 2004). The mixtures of pentaBDEs and octaBDEs were banned (POPs, 2008), but there is no law or framework for decaBDEs.

Physicochemical Properties of PBDEs

The information about physicochemical properties regarding water solubility, volatility and partitioning coefficients is presented for mixtures and individual congeners in Table 2.4 and Table 2.5, respectively.

PBDE mixtures contain congeners of various numbers of bromines. For example, pentaBDE mixture includes tetrabromodiphenyl ether (24 - 38%)and ether (50-62%) homologs with pentabromodiphenyl small amounts of hexabromodiphenyl ether (4-8%) and trace amounts of tribromodiphenyl ether (0-1%) homologs. While the octaBDE mixture consists of hexa-, hepta-, octa-, and nonabrominated diphenyl ether homologs with trace amounts of decabromodiphenyl ether (i.e., BDE 209), the decaBDE is a mixture of 97% BDE 209 congener with 3% nona- and octaBDE homolog impurities (ATSDR, 2004).

Physicochemical properties are presented in Table 2.5 for congeners that are abundant in original mixtures and hence probably more available in the environment. PBDEs are semivolatile organic compounds like PCBs. Lower brominated congeners that are associated with higher vapor pressure and Henry's constant (Table 2.5) have more of a tendency towards escaping into the gas phase. As can be seen from Table 2.5, the higher the number of bromine substitutions, the lower the water solubility and higher the logK_{ow}. This indicates high hydrophobicity and higher tendency of sorption of higher brominated congeners to solid phase.

Property	Pentabromodiphenyl ether	Octabromodiphenyl ether	Decabromodiphenyl ether
Molecular weight, g/mole	Mixture	Mixture	959.22
Physical state	Highly viscous liquid 13.3 µg/L (commercial); 2.4	Powder	Powder
Water solubility	μg/L (pentabromodiphenyl ether component); 10.9 μg/L (tetrabromodiphenyl ether	<1 ppb at 25 °C (commercial); 1.98 µg/L(heptabromodiphenyl ether component)	<0.1 µg/L
	component)	-	
Vapor Pressure	2.2x10 ⁻⁷ -5.5x10 ⁻⁷ mm Hg at 25 °C; 3.5x10 ⁻⁷ mm Hg	9.0x10 ⁻¹⁰ –1.7x10 ⁻⁹ mmHg at 25 °Cd; 4.9x10 ⁻⁸ mm Hg at 21 °C	3.2x10 ⁻⁸ mm Hg; 3.47x10 ⁻⁸ mm Hg
Henry's Law constant (atm-m3/mole)	$\frac{1.2 \times 10-5; \ 1.2 \times 10^{-6};}{3.5 \times 10^{-6}}$	7.5×10^{-8} ; 2.6×10^{-7}	$\frac{1.62 \times 10^{-6}}{1.93 \times 10^{-8}};$ 1.2 \colored 1.2 \colored 1.4 \colored 1.2 \colored 1.8
logKow	6.64–6.97 6.57	6.29	6.265

Table 2.4 Physicochemical properties of technical PBDE mixtures (ATSDR, 2004)

Congener	Vapor pressure (mm	Water solubility	Henry's Law constant	logKow
		(hg/h)	(IOIII/CIII IIII)	
BDE-3	1.94×10^{-3}	I	I	I
BDE-15	1.30×10^{-4}	130	2.07254x10-4	Ι
BDE-17	Ι	Ι	Ι	5.74
BDE-28	1.64×10^{-5}	70	5.03331x10-5	5.94
BDE-47	1.40×10^{-6}	15	1.48038x10-5	6.81
BDE-66	$9.15 \mathrm{x} 10^{-7}$	18	4.93461x10-6	Ι
BDE-77	$5.09 \text{x} 10^{-7}$	9	1.18431x10-5	Ι
BDE-85	7.40×10^{-8}	6	1.08562x10-6	Ι
BDE-99	$1.32 \mathrm{x} 10^{-7}$	6	2.26992x10-6	7.32
BDE-100	$2.15 \mathrm{x} 10^{-7}$	40	6.80977x10-7	7.24
BDE-138	1.19×10^{-8}	Ι	Ι	Ι
BDE-153	$1.57 \mathrm{x} 10^{-8}$	1	6.61238x10-7	7.9
BDE-154	$2.85 \mathrm{x} 10^{-8}$	1	2.36862x10-6	7.82
BDE-183	$3.51 \mathrm{x} 10^{-9}$	0	7.30323x10-8	8.27
BDE-190	2.12×10^{-9}	I	I	Ι

Table 2.5 Physicochemical properties of PBDE congeners(ATSDR, 2004)

2.1.3 Toxicity Evaluations

Toxic compounds are persistent and bioaccumulated in fatty tissues of animals and humans because of their hydrophobic property and resistance toward metabolism (USEPA, 2010). In the literature, toxicity information is available for PCB congeners, and but not for PBDEs. Therefore, toxicity evaluations can only be made for PCB congeners.

Concentration of a compound is not used to evaluate the toxicity in a site for site characterization, risk assessment and cleanup level development (USEPA, 2013). Instead, the total toxic equivalent (TEQ) is used, which is calculated by multiplying the concentration of each compound with its toxic equivalency factors (TEFs) (Van den Berg et al., 2006). TEFs for dioxin and dioxin-like compounds are used as a relative toxicity measure (USEPA, 2013). 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), is considered as the most toxic compound. Hence, toxicity of PCB congeners is based on the configuration of this congener. PCB congeners getting closer to the configuration of 2,3,7,8-TCDD are defined as "dioxin-like congeners". Dioxin-like congeners have two *para*, at least two *meta* positions with no more than one *ortho* chlorine substitution (Bedard, 2003).The coplanar congeners which are without *ortho* substituted chlorines, are biochemically active and the most toxic (Karcher, 2005) while toxicity decreases substantially as the number of chlorines in positions *ortho* positions increase.

TEF values for dioxin-like PCB congeners are presented in Table 2.6. In the table, the values prepared in 1994 (third column) and 2005 (forth column) are listed. As can be seen from the table, while TEF values of mono-*ortho* substituted PCBs decrease from 1997 to 2005, the values of di-*ortho* substituted PCBs are absent and there is no increase/decrease rule for non-*ortho* substituted PCBs. In our study, TEF values updated in 2005 will be used. Accordingly, the most toxic congeners are PCB 77, PCB 126, PCB 169 and followed by others. When all Aroclor mixtures in Frame et al (1999) are reviewed, it is seen that the most toxic three congeners are only present in trace

amounts (0-0.52% by weight). For mono *ortho* substituted congeners, all congeners except for 118 and 105 are found in trace amounts in highly chlorinated A1254 and A1260, while they are not detected in lower chlorinated mixtures (e.g. A1242). PCB 118, PCB 105 and di-*ortho* substituted congeners PCB 170 and PCB 180 are found in high proportions in highly chlorinated A1254 and A1260.

Table 2.6 Toxic equiv	alency factors for	coplanar a	nd mono-	and di-ortho-	substituted

Concorrer Structure		TEF	values
Congener Structure	IUPAC #	WHO 1994 ^a	WHO 2005 ^b
	non- <i>ortho</i> subs	stituted PCBs	
3,3',4,4'-TetraCB	PCB 77	0.0005	0.0001
3,4,4',5-TetraCB	PCB 81	-	0.0003
3,3',4,4',5-PentaCB	PCB 126	0.1	0.1
3,3',4,4',5,5'-HexaCB	PCB169	0.01	0.3
	mono- <i>ortho</i> sub	ostituted PCBs	
2,3,3',4,4'-PentaCB	PCB 105	0.0001	0.00003
2,3,4,4',5-PentaCB	PCB 114	0.0005	0.00003
2,3',4,4',5-PentaCB	PCB 118	0.0001	0.00003
2',3,4,4',5-PentaCB	PCB 123	0.0001	0.00003
2,3,3',4,4',5-HexaCB	PCB 156	0.0005	0.00003
2,3,3',4,4',5'-HexaCB	PCB 157	0.0005	0.00003
2,3',4,4',5,5'-HexaCB	PCB 167	0.00001	0.00003
2,3,3',4,4',5,5'- HeptaCB	PCB 189	0.0001	0.00003
	di-ortho subst	tituted PCBs	
2,2',3,3',4,4',5-HpCB	PCB 170	0.0001	-
2,2',3,4,4',5,5'-HpCB	PCB 180	0.00001	-

PCBs

^a:Ahlborg et al., 1994 ^b:Van den Berg et al., 2006

2.2 Fate of PCBs and PBDEs in the Environment

2.2.1 Fate Mechanisms in the Environment

The focus of this study is HOCs (PCBs and PBDEs being used as model compounds), therefore solid phase (i.e. sediment) is the major component during the explanation of the fate mechanisms. Sediments are defined as open and dynamic biogeochemical systems (NRCC, 2002). In Tandlich (2003), soil is classified in three parts: organic, inorganic (mineral) and living components. Minerals include silicates (silicon and oxygen) which are abundant in the Earth's crust. Minerals are categorized according to sizes; coarse minerals are classified as the sand fraction (quartz and feldspars having diameters greater than 0.05 mm) (NRCC, 2002), and finer minerals are classified as silt (having diameter between 0.002 and 0.05mm) and clay (alluminosilicate having diameter smaller than 0.002 mm) fractions. Organic phases are essentially composed of detrital materials of plants and animals or their degradation products, and geologic forms of organic matter (OM) such as kerogen, coal, soot, charcoal, black carbon (BC) (NRCC, 2002), and humic acids. Sediments have the tendency to accumulate carbon over time due to anaerobic conditions (NRCC, 2002). Sorption is controlled by organic carbon content of suspended solids or sediment. Transport and fate of HOCs such as PCBs are strongly influenced by sorption to organic carbon and interactions between the water column and sediments. Humic acids have lower sorption capacity for HOCs than the more dense carbon forms (NRCC, 2002). Additionally, HOCs more strongly sorb to BC than all other forms of OMs in sediment. Greene et al. (2013) state that sorption to BC decreases PCBs partitioning into the water column.

Sediment zones and fate processes of a pollutant in the bed sediment are depicted in Figure 2.3. Most HOCs such as PCBs and PBDEs, when sorbed to particulate matter in aquatic environments end up in sediments (Lick, 2009), which results in contamination of sediments. Although HOCs (PCBs and PBDEs) are mainly bound to sediments, they can also be released into the water column under certain circumstances. When they are released from sediment to water in contact with sediment, two types of release processes are considered (1) physicochemical and (2) biological (NRCC, 2002). The physicochemical processes happen when water saturation of the sediment, water chemistry and sediment surface properties are changed. NRCC (2002) indicates that the rates of release change from minutes to hours or years, depending on the properties of the contaminant, solid phase and water. The diffusion transport and desorption processes are considered for this release. The biological release processes (NRCC, 2002) that include desorption of the contaminant

from sediment or solid by biological processes such as digestive tract, biological transformation of the chemical and bioturbation that changes the physical and chemical properties of the sediment and bioavailability of the contaminant.

Figure 2.3 Sediment zones and fate processes of the pollutant in the bed sediment (Allan & Stegemann, 2007)

Our literature review indicated that environmental mechanisms affecting the fate and behavior of PCBs and PBDEs in bed sediment are partitioning between freely dissolved, dissolved organic carbon (DOC) and particulate organic carbon (POC), degradation (i.e. anaerobic dehalogenation), settling, resuspension at the interfaces between water column and surface sediment, diffusion exchange at the interfaces between water column and surface sediment and pore water as well as burial to deeper sediment. They are briefly described in the next sections.

2.2.1.1 Anaerobic Dehalogenation in Sediment

Anaerobic Dechlorination of PCBs

PCB dechlorination is the replacement of one or more chlorines with a hydrogen in the PCB structure resulting in the production of less chlorinated congeners (Sowers & May, 2013). Various halorespiring bacteria are responsible for performing anaerobic dechlorination (Zanaroli et al., 2010).

Abramowicz (1995) states that the anaerobic microorganisms attack highly chlorinated congeners, resulting in *para* and *meta* chlorine removals. Aanaerobic dechlorination of PCBs by microorganisms was first demonstrated in the 1980s (Bedard et al., 1986; Brown et al., 1987). Brown et al. (1984) firstly discussed microbial degradation of PCBs comparing original Aroclor 1242 profiles with data from upper Hudson River sediments. Then, various PCB dechlorination processes were identified by numerous studies regarding congener selectivity of microorganisms, targeted positions and dechlorination products (Bedard, 2003; Sowers & May, 2013). Bedard and colleagues (2003) defined these pathways based on contaminated sites such as Activity H, H', Q, N, etc. Table 2.7 summarizes the dechlorination activities including *para* and *meta* chlorine removal regarding configuration; flanked, doubly flanked and unflanked. *Ortho* chlorine removal is observed in the laboratory studies, but it was not observed in the environment (May et al., 2006).

Dechlorination Activity	Targeted Chlorine	Homolog Substrate Range	Reactive chloriphenyl groups ^a	Primary chlorophenyl products
Р	Flanked para	4-6	3 <u>4</u> , 23 <u>4</u> , 2 <u>4</u> 5, 23 <u>4</u> 5, 23 <u>4</u> 56	(23), 25, 235, 2356
Н	Flanked parab	4-7	3 <u>4</u> , 23 <u>4</u> , 2 <u>4</u> 5, 23 <u>4</u> 5	3, 24, 25, 235
Н'	Flanked para ^{b,c}	3-5	2 <u>3</u> , 3 <u>4</u> , 2 <u>3</u> 4, 2 <u>4</u> 5, 23 <u>4</u> 5	2, 3, 24, 25, 235
Ν	Flanked meta	5-9	2 <u>3</u> 4, 2 <u>3</u> 6, 24 <u>5,</u> 2 <u>3</u> 4 <u>5</u> , 2 <u>3</u> 46, 2 <u>3</u> 4 <u>5</u> 6	24, 25, 26, 246
М	Flanked and unflanked <i>meta</i>	2-4	<u>3</u> , 2 <u>3</u> , 2 <u>5</u> , <u>3</u> 4, 2 <u>3</u> 4, 2 <u>3</u> 6	2, 4, 24, 26
Q	Flanked and unflanked <i>para</i> ^{b,c}	2-4	<u>4</u> , 2 <u>3</u> , 2 <u>4</u> , 3 <u>4</u> , 2 <u>3</u> 4, 2 <u>4</u> 5, 2 <u>4</u> 6	2, 3, 25, 26
LP	Flanked and unflanked <i>para</i> ^d	3-6	2 <u>4</u> , 2 <u>4</u> 5, 2 <u>4</u> 6	2, 25, 26

Table 2.7 Comparison of microbial dechlorination activities (Bedard, 2003) astabulated by Bzdusek (2005).

^aThe targeted chlorine(s) for each chlorophenyl group is (are) underlined.

^bThe doubly flanked *meta* chlorine of 234-chlorophenyl groups is also targeted.

^cThe *meta* chlorine of 23-chlorophenyl groups is also targeted.

^dThe substrate range of this dechlorination process has not been completely characterized.

Another classification of anaerobic dechlorination of PCBs is based on a microorganism or group of microorganisms. Sowers and May (2013) summarize dechlorination activities and corresponding microorganisms or strains in a table (Table 2.8). The microorganisms or groups are o-17, DF1, SF-1, *Dehalococcoides mccartyi* 195 and *Dehalococcoides spp.*, CBDB1 and DEH-10. Dechlorination activities for each strain is categorized by the positions of the target chlorines. However, they have some constraints. In o-17 culture, for example, dechlorination of 2,3,5,6- PCB is restricted in the presence of A1260 and 2,4,6-PCB can not be dechlorinated by o-17. In the study of May et al. (2006), o-17 culture did not dechlorines are available. Additionally, they can only dechlorinate doubly flanked *meta* chlorines before *ortho*. As a constraint for DF-1, they can only dechlorinate doubly flanked chlorines. (Wu et al., 2002). Chlorine configurations of 3, 4, 23, 24, 25, 34, 35, 235, 236, 246, 2356, and 245–245 are not dechlorinated (Wu et al., 2000). A constraint for DEH-10 is that DEH-

10 can dechlorinate doubly flanked chlorine in 234 substituted congeners and *para* flanked *meta* chlorines in the absence of doubly flanked chlorines (Fagervold et al., 2007). Adrian et al. (2009) point out that CBDB1 can decrease and remove dioxin-like PCBs called as two *meta* and two *para* chlorines and no more than one *ortho* chlorine. However, they can not dechlorinate the following congeners: 2356-245, 2356-34, 2356-25, 236-25, 236-24, 235-236, 236-236-CB.

In the literature, first order kinetic model was commonly used to estimate dechlorination rates of PCB congeners (Cho et al., 2003; Siebielska & Sidełko, 2015). However, there is also a study estimating dechlorination rate considering number of microorganisms. Lombard et al. (2014) stated that dechlorination rate is dependent on number of microorganisms rather than concentration of congeners and dechlorination activity can be observed even at low concentrations (e.g. 1 ng/L). The study of Lombard et al. (2014) investigated rates of congener 61 to congener 23 by DF1 in the pore water considering environmentally relevant concentration (1 to 500 ng/L) of contaminant and concentration of cells (> 10^6 cells/mL). The result of this study indicated that bioaugmenting with densities of 10^5 - 10^6 cells/mL can increase the rates of dechlorination. Additionally, if concentration of congeners in pore water, which is the bioavailable portion of the contaminant is known, dechlorination rates can be estimated. They then, can be used for remediation studies. As a result, two types of studies observed the first order relationship between rate and contaminant concentration, however rates vary. The variation is explained by number and types of microorganisms as well as concentration of congeners in pore water which is not reported by Cho et al. (2003) or Siebielska and Sidelko (2015).

Microorganism	Dechlorination activities	Examples of dechlorination	References
or group		pathways	
		2356- (#65) → 235- (#23) → 35-	
o-17	Flanked ortho/meta	(#14)	(Cutter et al., 2001; May et al., 2006)
		245- (#29) → 24-/25- (#7/9)	
		234- (#21) → 24- (#7)	
UF-1	Doubly manked merapara	345- (#38) → 35-(#14)	(w u et al., 2002)
Dehalococcoides	Doubly flanked meta/para	234-236 (#132) → 236-24- (#91)	
sp. DEH-10	Para flanked meta	→ 24-26- (#51)	(ragervoid et al., 2007)
CE 1	Doubly flanked <i>meta</i>	2345-24 (#137) → 245-24 / 235-24	
1-10	Ortho flanked meta	(06/66#)	(ragervoid et al., 2007)
Dehalococcoides	Doubly and singly flanked para	7 7 7	(Adrian at al. 2000)
sp CBDB1	Doubly flanked meta	-C / -+C	(AULIAL EL AL., 2007)
Dehalococcoides	Doubly flowbod moto/mana	23456- (#116) → 2356- (#65) /	
mccartyi 195	DOUDLY LIAILKED MELA PUTA	2346- (#62)→246-(#30)	(reinen et al., 2004)

č --4 \mathbf{c} E E

Anaerobic Debromination of PBDEs

Anaerobic debromination of PBDEs is the replacement of bromine atoms with hydrogen by the action of anaerobic microorganisms. Products of debromination reactions result in the accumulation of less brominated PBDEs in humans and the environment (Tokarz et al., 2008). Therefore, anaerobic debromination of PBDEs has been investigated and evaluated in the last decade (Ding et al., 2013; Huang et al., 2014; Robrock et al., 2008; Tokarz et al., 2008). These studies examined debromination pathways of PBDEs by different microorganisms and/or microbial groups. Additionally, some of these studies examined debromination pathways in terms of bromine configuration with different products. For example, Tokarz et al. (2008) and Huang et al. (2014) noted that removal of ortho bromine is also possible along with removal of *para* and *meta* bromines while Ding et al. (2013) and Robrock et al. (2008) indicated preferential removal of para and meta bromines. Various products were observed in these studies. For example, Tokarz et al. (2008) observed BDE 17 and BDE 28 as final product of BDE 209 debromination. Similarly, Robrock et al. (2008) indicated BDE 17 as major product in the debromination pathway of seven environmentally relevant PBDE congeners (196, 203, 197, 183, 153, 99 and 47). In contrast, different products were revealed in the studies of Huang et al. (2014): BDEs 71 and 3, and Ding et al. (2013): BDEs 4, 18, 19, 44 52, and 59. An overall summary of these studies including microorganisms, pathways, electron donor, and acceptors are given in Table 2.9 and briefly discussed in this section.

Study	Media	Microorganism	Configuration
	Sediment	Some halorespiring	Removal of para
Tokarz et	microcosms	bacteria	and meta bromines
al.,2008		Example to pathways identif	fied
	209-	→ 207 → 197 → 184 → 154 → 99·	→ 47 → 28
		ANAS195, Dehalobacter	
	Medium	restrictus PER-K23 and	Removal of para
Robrock et	prepared in lab	Desulfitobacterium	and meta bromines.
al., 2008		hafniense PCP-1	
		Example to pathways identif	fied
		203→183→153→99→47→	17
		Acetobacterium sp. Strain	
	Medium	AG aand culture G	para-dominant
Ding et al	nrepared in lab	derived from octa-BDE-	debromination
2013	prepared in lab	debrominating	pattern
2015		microorganisms	
		Example to pathways identif	fied
		183→154→103→53→19)
	Sediment	Anaerobic	Para meta and
Huang et	samples in lab	microorganisms	<i>ortho</i> removal
al 2014	medium	meroorganisms	
an, 2011		Example to pathways identif	fied
	209→207	7→196→183→154→100→47	7→28→15→3

Table 2.9 Overview of PBDE debromination studies

BDE 209 can be degraded under anaerobic conditions, but a long time is needed. Huang et al (2014) demonstrated enhanced debromination of congener BDE 209 to product BDE 3 with various factors such as the addition of rhamnolipid, surfactin, vitamin B12, zero-valent iron, acetate, lactate, and pyruvate. One of the finding was that the addition of electron donors (acetate, lactate, and pyruvate) increases the degradation rate of BDE 209. Tokarz et al. (2008) studied debromination pathways of BDE 209 to final products BDE 17 and BDE 28 in sediment under anaerobic conditions. The removal of *ortho* bromine as well as removal of *para* and *meta* bromines was observed. If two issues become clear about debromination of PBDEs, the efficiency of biodegradation in contaminated sites can be enhanced. Firstly, there is no clarification of a dominant set of pathways for PBDEs in the environment - there is a need to investigate debromination pathways in accordance with different regiospecificity in different environments (Rodenburg et al., 2014). Secondly, anaerobic debromination of PBDEs was investigated under laboratory conditions in the studies and rates of debromination of PBDEs were increased with the addition of halogenated electron acceptors. However, the environmental microorganisms with the ability to debrominate PBDEs are not always present with other contaminants (electron acceptors) in contaminated sites (Huang et al., 2014). Furthermore, these microorganisms have not been identified. Therefore, these microorganisms should be identified to enhance the efficiency of biodegradation in the environment. By this way, remedial strategies can be developed in contaminated sites for natural attenuation, bioaugmentation and/or biostimulation.

2.2.1.2 Settling

Settling is an important process for HOCs. Since these compounds are hydrophobic, they tend to move to sediment by partitioning solid phase in water. Hence, sorption mechanism is important in settling process. Sorption is defined as the partitioning of HOCs among freely dissolved, DOC bound and those attached to solid phase that exists in water column and sediment (Farley et al., 1999). Sorption mechanism is controlled by organic carbon content of suspended solids or sediment. Transport and fate of HOCs are strongly influenced by sorption to organic carbon and interactions between the water column and sediments. Farley et al. (1999) states that sorption of PCBs is defined by fraction of organic carbon (f_{oc}) which is equal to particulate organic carbon over average suspended solid concentration or sediment concentration. Connolly et al. (2000) simulated sediment as two parts: cohesive and non-cohesive according to particle size and textures. PCB concentrations were evaluated separately in both types of sediments due to their different sorption capacities. Parsons et al. (2007) discuss sorption of HOCs to sediment organic matter (SOM) and black carbon

(BC) which is formed in the environment by combustion of biomass and fossil fuel, and includes nearly 1-15% of total organic carbon content. They indicate that HOCs more strongly sorb to BC than all other forms of SOMs. Additionally, Parsons et al. (2007) evaluated some studies in the literature and state that sorption of HOCs to BC shows nonlinear sorption behavior (or conforms to the non-linear sorption model), whereas sorption to SOMs are observed to follow the linear sorption model.

2.2.1.3 Resuspension

Resuspension occurs due to bioturbation and/or current. The resuspension of the sediment is considered when shear stress is greater than the critical shear stress, and deposition is considered when shear stress is smaller than the critical shear stress of deposition (Shen et al., 2012). When PCBs are sorbed or attached to solid phase (suspended solids/POC) in the water column, they can be deposited to sediment and reversibly they will be resuspended to water column from sediment. In the literature, deposition and resuspension of POC bound chemicals are evaluated considering different carbon sources. Farley et al. (1999) studied in Hudson River and sediment, and state that the continuous exchange of PCBs is due to settling of phytoplankton and other suspended solids and resuspension of SOM rather than pore water diffusion of dissolved and DOC bound contaminant. LimnoTech (2007) simulated PCBs sorbed to POC which are divided into two parts: biotic (algal) carbon and particulate detrital carbon. In the model, PCBs sorbed to particulate detrital carbon are settled or were resuspended at the interface, but PCBs sorbed to biotic (algal) carbon are only deposited through sedimentation.

2.2.1.4 Diffusion Exchange

The diffusion exchange is determined for water-sediment interface and sedimentdeeper sediment exchange. In water-sediment interface, pore water column exchange depends on hydrodynamic structure such as current, wave at the water-sediment interface and bioturbation (Farley et al., 1999). When water flow through sediment, bioturbation is out of consideration, molecular diffusion of the compound is dominant (Allan & Stegemann, 2007). Diffusion of PCBs can occur for both the freely dissolved and DOC-bound phases (LimnoTech, 2007).

2.2.1.5 Burial

POC bound HOCs in deep sediment are no longer available for resuspension. A burial rate between the top and bottom sediment layers is defined by the models.

2.2.1.6 Sorption/Desorption

Sorption and desorption are important mechanisms affecting HOCs. In fact, Zhang et. al (2008) argue that the F&T models of PCBs are controlled by sorption to organic carbon in aquatic environment. Similarly, Shen et. al (2012) state that F&T models depend on movement of organic carbon because of the strong sorption capacity of PCBs to organic carbon. The flux of chemicals between sediments and the overlying water is mainly because of sediment erosion/deposition, molecular diffusion, bioturbation and groundwater flow. These processes are affected by sorption (Lick, 2009). Another issue about sorption is whether it is long or short term. Thomann and DiToro (1984) and Chapra (1997) stated that sorption were done in very short term, hours to a few days, but long term studies indicated that sorption kinetics were slower, from days to months (Lick, 2009). Parsons et al. (2007) indicated that the desorption rate from sediment is important for the bioaccumulation of contaminants in terms of bioavailable contaminant and the amount of organic carbon does not have a relation with the desorption rate in the sediment.

2.2.1.7 Bioaccumulation

Bioaccumulation is total accumulation of contaminants in the tissue of an organism through food or from water. Bioaccumulation is considered for the benthic organisms

living in the sediment. Bioavailability of the contaminants in sediments focuses on the factors that affect the fraction of total contaminant levels which are available for human or ecological receptors (NRCC, 2002). The bioavailability of contaminant for partitioning is expressed by biota-sediment accumulation factor (BSAF) which is the concentration in the tissue over concentration in sediment. It is used to determine the distribution of OM and to evaluate the bioavailability of contaminant. BSAF is dependent on properties of organics and solids, and lipid content of the organisms (NRCC, 2002).

2.2.2 Fate of PCBs

Although PCBs are chemically stable in the environment, they can be affected by various partitioning and transformation mechanisms such as physicochemical weathering and biological degradation. While physicochemical weathering has an effect only on the distribution of the congeners in the environment without changing the structure, biological processes change the structure and may even lead to mineralization of the contaminant.

Physicochemical weathering includes processes such as sorption, volatilization, atmospheric transport, wet and dry deposition, etc. PCBs which are semi volatile compounds, tend to move among environmental compartments (air, water, soil, sediment) (Gouin et al., 2000). The fate of PCBs is related to the degree of chlorine. Less chlorinated congeners tend to be more mobile (Johnson et al., 2005). Therefore, lightly chlorinated congeners can be transported in the aqueous or gaseous phase. Those that are *ortho*-rich, on the other hand, can be volatilized more easily when compared to non-*ortho* congeners (Johnson et al., 2005). Upon release into the aquatic environment, PCBs adsorbed strongly to soil, with generally increasing adsorption as the degree of chlorination increases. If released to water and air, the important fate processes are adsorption to suspended matter and sediment and association with particulate matter after presence in the gaseous phase, respectively. Sorption to the

particulate phase will increase as the degree of chlorination of the PCB increases. PCBs are removed from the atmosphere by wet and dry deposition.

Another mechanism undergone by PCBs is anaerobic dechlorination. These substances are more willing to sorp to particle in water column and then settle and accumulate in sediment. In the sediment, these chemicals can be dechlorinated by anaerobic microorganisms (Fagervold et al., 2005). Especially, highly chlorinated congeners are more likely to be available in soils and sediments (Henry & DeVito, 2003).

2.2.3 Fate of PBDEs

PBDEs can be released into the environment during their initial synthesis, incorporation into polymers or related finished products, during use of said products (Hale et al., 2003). Furthermore, their release can result from incineration of municipal waste, deposition to landfills, discharge to municipal sewage-treatment plants, or emission directly to the atmosphere as particulate matter (ATSDR, 2004). They can be adsorbed to particulate matter (dust) in indoor environment where they are produced (Lassen et al., 1999). When released to the environment, PBDEs are associated with soil or sediment due to their comparatively low volatility and aqueous solubility of the PBDEs (Hale et al., 2003). They generally do not undergo long-range transport, but some congeners in pentaBDE commercial mixtures, for example, 2,2',4,4'tetrabromodiphenyl ether (BDE 47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE 99), were observed in the Arctic regions (USEPA, 2010). This is probably due to transportation of these lower brominated congeners with dust particles to remote areas instead of transport in vapor phase (USEPA, 2010). If PBDEs find their way to sewage treatment plants, they can be concentrated in sewage sludges owing to the high organic content of sludge (Hale et al., 2003). Sediments and soils are sinks for PBDEs. These chemicals tend to deposit into sediments because of their persistence, low water solubility and high sorption capacity (De Wit, 2002).

The most important biotic and abiotic processes for the breakdown of PBDEs are biodegradation and photolysis, respectively (USEPA, 2010). Like PCBs, fate of PBDEs is affected by the physicochemical weathering processes such as sorption, volatilization, atmospheric transport, and wet and dry deposition, etc. (ATSDR, 2004). When the fate of PBDEs is investigated in water, for example, PBDEs much like PCBs, can be sorbed strongly to suspended solids and sediment, and bioconcentrated in aquatic organisms. Leaching into groundwater is not likely to occur. In the water column, they are not likely to be dominant due to their low water solubility. Since PBDEs have low volatility, their volatilization from soil or from sediment through the water column into air is not a dominant process (ATSDR, 2004). Photolysis is a probable transformation process for PBDEs. According to ATSDR (2004), information on the transformation and degradation of PBDEs in soil is limited. The extent to which PBDEs undergo direct photolysis in soils and sediment is unknown.

2.3 Modeling

As a general term, models consider a process in a simpler form or representation of small versions of the real thing (Dunnivant & Anders, 2006). During modeling of a pollutant, mathematical models are important to explain its movement in the past and future. For mathematical modeling of pollutants, Schnoor (1996) indicated three scopes "(i) to gain better understanding of the fate and transport of chemicals by quantifying their reactions, speciation, and movement, (ii) to determine chemical exposure concentrations to aquatic organisms and/or humans in the past, present, or future and (iii) to predict future conditions under various loading scenarios or management action alternatives". The movement of the pollutant is predicted by using fate and transport (F&T) processes. General mass balance approach for the fate and transport of the compound is defined by input and output in the equation, which include diffusion, dispersion and/or advection. The reaction term in the equation can be described by any

chemical reaction such as redox, reversible/irreversible reactions, precipitation, dissolution, hydrolysis, and/or biological transformation reactions (Schnoor, 1996).

Accumulation with in Control Volume = Input – Output \pm Reaction 2.1

Models differentiate from each other according to fate mechanisms or contaminated media considered, assumptions, as well as numerical methods used to solve the model equations. Under this scope, various F&T models in the literature are reviewed in Section 2.3.1. After this review, the pathway quantification studies are examined in Section 2.3.2. to identify the pathways between congeners which are then used in the degradation term of the F&T model developed in this study.

2.3.1 Fate and Transport Models

Various fate and transport models were reviewed in the literature and a list of models, as could be found in the literature, are given in Table 2.10. The models in Table 2.10 are compared in terms of (i) contaminant: total PCBs/PBDEs or individual congeners, and other chemicals, (ii) media modeled, (iii) mechanisms considered for transport and fate of contaminant, (iv) how degradation is handled in the model.

Firstly, models are compared for contaminants modeled. In Table 2.10, apart from PCBs and PBDEs, the models including other chlorinated compounds such as PCE and TCE are also reviewed since soil is porous media like sediment and TCE/PCE like PCBs/PBDEs can be biologically degraded to products. In the literature, numerous studies exist for modeling of PCBs in terms of total-PCBs, PCBs as homologs or individual congeners (Connolly et al., 2000; Farley et al., 1999; Shen et al., 2012; Zhang et al., 2008). Additionally, there are however much less number of studies about modeling of PBDEs (Davis, 2004; Rowe, 2009). As distinct from these studies, total maximum daily load (TMDL) of PCBs was also studied by using F&T models

(LimnoTech, 2007; Shen, 2011; Shen et al., 2012). In the literature, it is seen that some F&T models work for individual PCB and PBDE congeners (Davis, 2004; Oram et al., 2008b; Rowe, 2009; Shen, 2011; Shen et al., 2012; Zhang et al., 2008). However, after simulation, the output of the model is evaluated for total PCBs or PBDEs. There are other studies on modeling degradation of PCE, TCE, DCE and their reactions between them. Furthermore, the models for other chemicals indicated in Table 2.10 are also reviewed.

Secondly, models are examined for the media modeled. The literature review indicates that the transport and fate mechanisms of these models differentiate from each other depending on the media modeled. Therefore, media is an important parameter for model development. The reviewed models are built upon soil, sediment, water or combinations of these media with water (Table 2.10). As different from other studies which mention one sediment compartment, Ambrose (1983), Shen et al. (2012) and Boyer et al. (1994) use two sediment layers; surface and deep sediment.

The third one is for fate and transport mechanisms used in the models. Several modeling studies evaluating fate mechanisms are carried out for anaerobic dechlorination, metabolism, photolysis, hydrolysis, dechlorination with zero-valent iron, organic matter mineralisation, acid/base dissociation, redox, sorption, dissolution/precipitation, speciation, complexation, dissolution/precipitation, acid/base dissociation. It is demonstrated in Table 2.10 that the common ones for sediment are microbial degradation, especially for PCBs. Sorption/desorption is another important fate mechanism. It is dealt in the mass balance equation as partitioning coefficient (e.g. Boyer et al. (1994), Zhang et al. (2008)) or as a sorption/desorption term when only dissolved or particulate phase is modeled (e.g. Ambrose et al. (1983, 1988)). Studies investigate the partitioning of the contaminant to suspended solids, dissolved, freely dissolved or biosorped phase. As a different study, Farley et al. (1999) investigate the effect of phytoplankton on PCBs since phytoplankton controls the partitioning of PCBs to suspended solids in the water.

Model	Contaminant	Media	Transport/Fate Mechanisims	References
	t-PCB	Water, surface sediment	Transport:diffusion (w ^a), resuspension (w), volatilization (w), deposition to sediment, advection, dispersion applied to sediment particle and particulate PCBs (s ^b)	Connolly et al. (2000), Russell et al. (2006)
	(2,3,7,8-TCDD) and homolog-PCB groups	Surface sediment, water	Transport: tidal dispersion (w), volatilization (w), tributary/external input(w), settling, resuspension, diffusive exchange between water and pore water, burial(s) Fate: Anaerobic dechlorination	Farley et al. (1999)
	TMDL homolog PCBs or congeners	River water, surface and deep sediments	Transport: Settling, diffusion, volatilization (w)	Shen (2011), Shen et al. (2012)
	PCB/PBDE congeners	Water, sediment	Transport:External loads(w), settling, resuspension, burial(s), diffusion Fate: first order degradation	Rowe (2009)
	PBDE homologs	Air, water, sediment	Transport:Depositon(air), settling, resuspension, burial (s), (bi-directions1) diffusion Fate: aerobic and anaerobic biodegradation, direct photolysis, reaction with OH radicals	Bogdal et al. (2010)
	PCB/PBDE congeners	Water, sediment	Transport: External load(w), volatilization (w), settling, resuspension, diffusion, burial(s) Fate: Degradation including metabolism, photolysis, and hydrolysis.	Oram et al. (2008a) Davis (2004)
	PCB individual congeners	Water	Transport: Evaporation Fate: Biosorption and biodegradation	Dercova et al. (1998;1999);
	PCB individual congeners	Water	Fate: Degradation, Abiotic processes such as adsorption and volatilization	Commandeur et al. (1995)
	>		-	

Table 2.10 Models used in various media contaminated by halogenated compounds (e.g. PCBs, PBDEs, PCE, TCE)

References	Zhang et al. (2008)	Sinkkonen et al. (2000)	Endicott et al. (2006)	Chen-Charpentier & Kojouharov, (2008)	Schafer et al. (2003)	Travis and Rosenberg (1997)	Xu et al. (2012)	Yu and Semprini (2004)	Chamkha (2007)	Boyer et al. (1994)
Transport/Fate Mechanisims	Transport:Diffusion, resuspension, settling, burial(s) Fate: Volatilization(w)	Fate:Biodegradation and photolysis	Transport: Diffusion, resuspension, settling, burial(s) Fate: Volatilization(w)	Transport: Advection, dispersion Fate: microbial degradation	Fate: Dechlorination with zero-valent iron, sorption, desorption	Transport: Advection, dispersion Fate: Microbial degradation, sorption	Transport: Advection, dispersion Fate: Biological/Chemical reactions, adsorption	Fate: Biodegradation	Advective-dispersive transport model with non- linear reaction term	Transport: Diffusion, resuspension, settling, burial(s), volatilization(w), external loads (w) Fate: Photolysis, hydrolysis, microbial degradation
Media	Water, sediment	Water, soil, sediment	Water, sediment	Aquifer, groundwater	Aquifer, groundwater	Subsoil and groundwater	Aquifer, groundwater	Subsoil and groundwater	Soil, groundwater, surface water	Water, surface and deep sediments
Contaminant	Total of 54 PCB congeners	PCDD, PCDF and PCB congeners	с	TCE	TCE, DCE, VC	TCE	PCE, TCE, DCE, Ethylene, Ethane	PCE, TCE, DCE, VC	Any chemicals	q
Model	LM2 Model		MICHTOX							Recovery

Table 2.10 (continued)

Model	Contaminant	Media	Transnort/Fate Mechanisims	References
TOXIWASP	U	Water, surface and deep sediments	Transport:External loads(w), volatilization(w), settling, resuspension, burial, dispersion, diffusion Fate:Degradation(hydrolysis, photolysis, microbial degradation)	Ambrose (1983)
WASP4		Water, sediment	Transport:External loads(w), volatilization(w), settling, resuspension, burial, dispersion, diffusion Fate:Degradation(hydrolysis, photolysis, microbial degradation)	Ambrose et al. (1988)
CANDY		sediment	Transport: Diffusion, burial, bioirrigation Fate: Slow organic matter mineralisation kinetics, equlibrium reactions	Mucci et al. (2003) as cited by Allan by Stegemann (2007)
MEDIA	Metals	sediment	Transport: Advection, diffusion, bioturbation Fate: Organic matter mineralisation, acid/base dissociation, redox, dissolution/precipitation, sorption	Meysman et al. (2003) as cited by Allan by Allan and Stegemann (2007)
HYTEC	Ions, organics, colloids	sediment	Transport: Advection, colloidal movement Fate:Speciation, complexation, dissolution/precipitation, acid/base dissociation	Van der Lee et al. (2003) as cited by Allan by Allan and Stegemann (2007)
TRANSCAP- 1D	Arsenic	sediment	Transport:Diffusion, advection, bioirrigation Fate: Sorption	Locat et al. (2003) as cited by Allan by Allan and Stegemann (2007)
D.S.D 1D	Silica	sediment	Transport: porewater diffusion, sorption, Fate: First order degradation rates	House et al. (2000) as cited by Allan by Allan and Stegemann (2007)
Capping Design	PAHs, PCBs	sediment	Transport: Advection, diffusion, biodiffusion Fate: Degradation, sorption	Palermo et al. (1998) as cited by Allan by Allan and Stegemann (2007)
^a Mechanisms only Aroclors 1242, 1. Chloroform and C	y in water, ^b Mechan 248, 1254 and 126 Compound Not Liste	isms only in sediment 0, Benzene, Chlorobo d. ^e Toxic Chemicals: (, "Toxic Chemicals: Organics (congener or total PCBs) and Metals, ^d : Chlord inzene, Ethyl Benzene, Pentachlorophenol, Phenol, Toluene, Anthracene, F Drganics and Metals, "Toxic Chemicals: ionized and nonionized organics and l	dane, DDT, Dieldrin, Lindane, Benzo(a)pyrene, Naphthalene, Metals

Table 2.10 (continued)

In the literature, modeling studies attempt to evaluate various transport mechanisms such as the diffusion, pore diffusion, bio-diffusion, burial, advection, colloidal movement, bioturbation, bioirrigation, resuspension, and/or settling. These models are simulated in one, two, and/or three dimensional transport modeling. As different from other studies, Farley et al. (1999), Russell et al. (2006) and Connolly et al. (2000) perform hydrodynamic transport (including the physical properties of the river or water such as freshwater flows, tidal motion, salinity and density-driven currents), sediment transport, chemical fate modeling and bioaccumulation in river water, sediment and fish. Additionally, Connolly et al. (2000) dealt with different transportation tendencies of PCBs on cohesive and non-cohesive sediments in upper Hudson River. The studies reviewed identify settling, resuspension, burial and diffusion as the major transport processes for a pollutant bound onto sediment.

The last review item is regarding handling the degradation term. In some studies, details about type of degradation is not given (Table 2.10). In other studies, microbial degradation is defined as the dominant process for sediment among hydrolysis and photolysis. Typically, biodegradation is handled for total concentration, dissolved or particulate phase in degradation term of mass balance equation. A number of studies consider the use of empirical equations for calculation of reaction rates (Commandeur et al., 1995; Dercova et al., 1999; Dercova et al., 1998) in biodegradation term including estimations of half lives of some congeners (Sinkkonen & Paasivirta, 2000), and biosorption rate (Dercova et al., 1999). In the studies considering PCBs/PBDEs as individual congeners (Table 2.10), biodegradation rate is either neglected or is assumed mostly as first order degradation rate. However, rate constant is not assumed or considered together with the effects of degraded products except for studies on PCE and TCE (Chen-Charpentier & Kojouharov, 2008; Travis & Rosenberg, 1997; Xu et al., 2012).

In the studies of PCE and TCE contaminated media, the effects of degraded products are considered during remediation of subsurface and groundwater contamination (Chen-Charpentier & Kojouharov, 2008; Travis & Rosenberg, 1997; Xu et al., 2012). Xu et al. (2012) studied that PCE and daughters can be dechlorinated by a combination of zero-valent iron (ZVI) and anaerobic microbial communities (FeMB) in contaminated groundwater and subsurface soil. Five component transport model (PCE \rightarrow TCE \rightarrow 1,1DCE \rightarrow ethylene \rightarrow ethane) in three dimensions is used to simulate mother-daughter kinetic chain reactions. Additionally, Schafer et al. (2003) decreased TCE to its daughter products by ZVI. Yu and Samprini (2004) dealt with kinetic reaction equations for bioaugmentation with dechlorination cultures to completely transform PCE and TCE to ethylene by reductive dechlorination. There are also other methods regarding TCE dechlorination which includes co-metabolism (Chen-Charpentier & Kojouharov, 2008). All these models for PCE and TCE indicate that transport and fate processes include the effects of degraded products (TCE, DCE, ethylene or ethane) in a model.

Some of the studies discussed above are explained in detail in terms of mass balance equations and use of parameters and their estimation. From models reviewed, five models are selected for this detailed evaluation since such information is readily available in the corresponsing sources; Recovery, WASP4, TOXIWASP, LM2 and PCB Model for Hudson River (PMHR) models). Moreover, two equations discussed in Chapra (1997) and Thomann and DiToro (1984) are also evaluated here with MICHTOX model and mass balance for surface sediment in Qi (2003). In these approaches, either mechanisms different from the mentioned models or model equations and some information on different equations to the same mechanisms are examined. The equation and details about these models are tabulated in Appendix Table C.1, C.2, C.3, C.4, C.5 and C.6. The models and equations reviewed are described and compared below with respect to media, processes, parameter estimations, dimensions, and assumptions made in the models as well as numeric solutions.

2.3.1.1 Media

All models are applied to sediment and water. It is seen that some models can be applied to various water environments such as rivers, harbors, estuaries and lakes (Recovery, WASP4 and TOXIWASP) while others can be applied to lakes and rivers (LM2 and PMHR models). Modeling of both surface and deep sediment are explored in Recovery and TOXIWASP while only surface sediment is evaluated in other models.

2.3.1.2 Transport Processes and Reactions

Transport processes considered in five models for surface sediment are pore water diffusion, burial, settling and resuspension. Also bioturbation effect on mechanisms between overlying water and surface sediment is added by Recovery model. When all mechanisms are reviewed in Recovery Model and equation in Chapra (1997), it is seen that they are the same. When reaction terms are compared for these models, common reactions in all models are biodegradation and sorption. However, other transformation terms such as hydrolysis, oxidation, photolysis and/or volatilization are also considered by TOXIWASP, LM2 and WASP4. Additionally, LM2 and PMHR models include bioaccumulation.

Sorption: Models allow for two phase- or three phase- sorption of the contaminant. Recovery model allows for two phase- sorption (particulate and dissolved). Recovery model assumes weight fraction of organic carbon in the solid matter. However, in TOXIWASP model, partitioning is applied for three phases; sorbed to particulate, biota and dissolved phases. LM2 model simulates three organic carbon states: biotic carbon (BIC), particulate detrital carbon (PDC), and dissolved organic carbon (DOC). Sum of BIC and PDC represents particulate organic carbon (POC = BIC + PDC). When BIC which is in live phytoplankton biomass settles to sediment, it converts to PDC derived from phytoplankton decomposition, zooplankton excretion, and allochthonous sources (Zhang et al., 2008). Therefore, only partitioning of PDC and
DOC of contaminant is evaluated in surficial sediment. While PCB modeling is done for 4 phases (sorbed to PDC, BIC, DOC, and dissolved) in water, three phases (except BIC) are considered in sediment due to conversion of BIC to PDC in sediment. Farley et al. (1999) consider the partitioning of PCBs between three phases: solid bound, DOC bound and freely dissolved phases. WASP4 allows partitioning of the contaminant to 3 types of solids during one simulation. Three solid types are descriptive solids concentration field, descriptive solids concentration field with specified solids transport rates and simulated total solids. Therefore, five phases (DOC bound, freely dissolved and bound to 3 types of solids) are included. Environmental parameters affecting partitioning are sediment concentrations (suspended and benthic sediments), organic carbon fraction (suspended and benthic sediments) and dissolved organic carbon concentration.

Settling/Resuspension/Burial: All reviewed models including total, particulate and/or dissolved phases of the contaminant were evaluated for settling, resuspension and burial processes. For settling process, the contaminant in particulate phase is considered in all models. For resuspension process, while total contaminant in the sediment is modeled by Recovery model and Chapra (1997), particulate phase of the contaminant in the sediment is evaluated by other models. For the burial process, particulate phase of the contaminant in the sediment is considered in PMHR and TOXIWASP while total contaminant in the sediment is used for Recovery, Chapra (1997) and Thomann and DiToro (1984). The partition in burial process in LM2 and WASP4 is not discussed since general mass balance equation applied to water column and benthos is given (Appendix C Table C.5).

Diffusion: Mass balance equations of the models indicated that the models are set for pore water diffusion, diffusion through mixed and/or deep sediment, diffusion/dispersion process. Accordingly, Recovery model investigate the fate of the contaminant by diffusion through mixed and deep sediment while LM2, WASP4, TOXIWASP and PMHR models take into account only diffusion in surficial sediment.

They consider DOC bound and dissolved phases separately for diffusion process while both are taken as one phase in the Recovery model. In TOXIWASP model, pore water diffusion is controlled by vertical concentration gradient and vertical diffusion coefficient contaminant. Pore water diffusion acts on contaminant in dissolved phase between overlying water and surface sediment (Ambrose et al., 1983). Diffusion/Dispersion process in LM2 is the same as in WASP4. As different from in LM2, WASP4 also evaluates pore water diffusion. On the other hand, Qi (2003) specifies mass balance for dissolved form of the contaminant in the pore water while other models consist of mass balance of total contaminant (sum of dissolved plus particulate forms).

Degradation: Degradation is handled in Recovery, TOXIWASP, PMHR, Chapra (1997), Tomann and DiToro (1984), and WASP. They consider photolysis, hydrolysis and biodegradation (Appendix C). They are evaluated as first or second order decay. Total, particulate and/or dissolved phases of the contaminant were considered for the degradation term. Details about this task is not given for all models. Models including details are only explained here. For Recovery model, first-order decay is used and equations are defined for the water phase. During model development for degradation in deep sediments, total concentration (dissolved and particulate) of the contaminant is used in the model. However, estimation of decay coefficients is not explained. In TOXIWASP, second order degradation is considered and the model equation shows that three phases can be utilized and degraded by microorganisms using different rate constants for each phase. In PMHR, model considers only dissolved contaminant (and not DOC or particulate) while calculating degradation. On the other hand, Farley et al. (1999) state that aerobic degradation and anaerobic dechlorination are not significant processes which affect fate of PCBs in the Lower Hudson River. Therefore, degradation rate constants are assumed as negligible in their model. Chapra (1997) handles degradation by a rate constant for total amount of contaminant while Thomann and DiToro (1984) express two different rate constants for two phases: particulate and dissolved (Appendix C Table C.6). WASP model summarizes environmental and chemical properties affecting biodegradation rate constants. Accordingly,

environmental parameters affecting biodegradation are water column temperature and active bacterial populations (in suspended and benthic sediments). In LM2, partitioning of organic carbon is estimated. Fraction of contaminant is then calculated.

2.3.1.3 Carbon Mass Balance

In carbon mass balance, distribution of organic carbon is evaluated in the modeling region depending on time. For example, LM2 model conducts a carbon mass balance. The rates such as settling, resuspension, decay rates affect the organic carbon fraction (Zhang et al 2006, part 4 Ch3). Therefore, organic carbon is also considered as a variable. In contras to LM2 model, the effect of carbon is evaluated by partitioning coefficient in the mass balance equation of contaminant in Recovery, TOXIWASP, and PMHR models In Recovery model, solid mass balance is performed to estimate settling, resuspension or burial velocity under steady state conditions. TOXIWASP has a mass balance for change of solid in water and sediment since partitioning of PCBs to solid impacts their fate.

2.3.1.4 Estimation of Parameters

Since sediment properties are highly variable and are difficult to measure, semi empirical approximations and even parameterizations of some transport processes are used in some circumstances (Lick, 2009). Lick (2009) states that significant processes and parameters should be evaluated independently in order to minimize non uniqueness of solutions. Therefore, each process of deposition/erosion, molecular diffusion, and diffusion is evaluated separately by means of the mass balance approach. Estimations of common processes which are sorption, settling, resuspension, diffusion, burial and degradation parameters of models discussed above, are explained in this section.

Sorption: The partitioning coefficients are important parameters to be estimated in the mass balance equation. The estimation of the partitioning coefficients and number of

phases are discussed here for each model. In Recovery model, as discussed in previous section, corresponding parameters are dissolved and particulate fractions of contaminants in water and pore water to be used in diffusion and settling mechanisms, respectively. These fractions are estimated by the equations in Appendix C Table C.1. In TOXIWASP model, dissolved fraction of contaminant in the water, and sorbed fraction of contaminant on sediment and onto biological phase are the parameters formulized in Appendix C Table C.2. In LM2 model, the equations for both three and two phase partitioning to be used for total PCB are considered (Appendix C Table C.3). In LM2, two phase partitioning is selected. In WASP4 model, the partitioning coefficients for solids and DOC is calculated from linear form of Freundlich isotherms. The empirical equations are given in Appendix C Table C.5. If Koc values are not known, Koc is estimated from the equation correlating with Kow (Appendix C Table C.5). The model states that solid concentration should be used in the estimation of the solid partitioning coefficient which can be seen in Appendix C Table C.5. The DOC bound, solid bound and dissolved fractions are estimated by considering total concentration in phases and from equations in Appendix C Table C.5.

Settling/Resuspension/Burial: Lick (2009) expresses the definition of erosion (resuspension) rate as "total flux of sediment from sediment bed into the overlying water in the absence of deposition". Particles in suspension have movement horizontally due to gravitational and turbulent forces (Lick, 2009). The estimation of settling, burial and resuspension velocities in the models is discussed here. The settling velocity is estimated by measuring directly or predicting from literature as considering textures of sediment, and using solid/carbon mass balance. Resuspension is calculated by solid/carbon mass balance while burial is estimated by solid/carbon mass balance or analysis of the box cores for each sampling location (Zhang et al., 2008).

The settling velocity or one of the aforementioned velocities is calculated by solid mass balance in Recovery model and Chapra (1997) provided that other two velocities are known (Table C.1). This is done for settling velocity in WASP4 that movement of

sediment in the bed is assumed by using one of two options, constant bed and variable bed volume options. The constant bed volume option explains that bed sediment volumes remain constant and sediment concentration of the bed changes according to net flux of sediment. This is expressed by sedimentation velocity and the flux equations for upper and lower beds are given in Table C.5. The variable bed volume option is that the sediment concentration is constant and the bed volume changes according to deposition and scour. Second option is also considered for TOXIWASP model.

In LM2, burial velocity is also estimated from the analysis of the box cores for each sampling location (Zhang et al., 2008). Then, resuspension rate is calculated from the equation done for mass balance of PDC for sediment iteratively by settling velocity (Appendix C Table C.3). However, this equation is used for the water depth greater than 100 m since non-wave-induced resuspension that included bottom current-induced resuspension and resuspension caused by bioturbation only (Zhang et al., 2008). For water depth less than 100m, an empirical wave induced resuspension equation developed by LM2 model project is used due to manipulation in application of first equation. Moreover, burial velocity is estimated by using mass balance equation for solids in the water and the sediment.

$$v_b = \frac{Q}{A} \frac{m_{in} - m}{(1 - \emptyset)\rho}$$
 2.2

where v_b : burial velocity (m/yr), Q: flow rate (m3/yr), m_{in}: inflow suspended soil concentration to water (g/m³), m: suspended soil concentration in water(g/m³), ϕ :porosity, ρ :bulk density (g/m³) and A: Area of water column (m²). When burial velocity is measured, resuspension velocity can be estimated from mass balance for solids in the sediment layer under steady state condition. The equation is:

$$v_r = v_s \frac{m}{(1-\phi)\rho} - v_b \tag{2.3}$$

where v_r : resuspension velocity (m/yr) and v_s : settling velocity (m/yr).

Diffusion/Dispersion:

Diffusion/Dispersion is estimated by using mass transfer coefficient for diffusive sediment-water exchange in the equation for Recovery model (Table C.1), vertical dispersion coefficient and characteristic mixing length for TOXIWASP (Table C.2). On the other hand, LM2 model assumes that only vertical exchanges exist in the sediment layer. Then the bulk dispersion/diffusion coefficient is estimated by using equation in Table C.3. The mixing coefficient is estimated by using a thermal balance model (Table C.3) at the interfaces. While burial and resuspension mechanisms in Chapra's equation are responsible for dissolved and particulate phases, diffusion is relevant only for the dissolved phase.

Degradation:

The estimation of degradation rate constant and its relationship with the contaminant partitioning to particulate and dissolved phases are investigated in the selected models. Recovery and LM2 models do not discuss estimation of biodegradation parameters and use first order degradation. TOXIWASP model using second order degradation estimates the rate constant by Monod equation which is given in Table C.2.

In WASP4 model, the relationship between order of rate constant and rate is expressed for any contaminant. It is given in Table 2.11. For kinetic reactions, Level 1 of kinetic reactions expresses the first order decay. Rate constant is estimated from half-life equations if half-lives are provided. Level 2 also includes first order decay, but it is used when spatial change is considered in environmental conditions. Level 3 additionally evaluates time variation. Degradation rate constant is based on second order and its overall is first order rate constant. Level 4 computes the simulation of transport products by defining appropriate yield coefficient (Table 2.11). Accordingly, Level 3 seems appropriate for the degradation of the individual PCB/PBDE congeners provided that some parameters such as yield coefficient are available.

Complexity	Complexity Explanation*
Levels	
1	$S_{k1} = -\sum K_i C_1$ and $K_i = 0.693/T_{Hi}$
2	$S_{kC} = -K_{TC}(x)C_1$
3	$S_{kC} = K_{Tc}C_1$ and $K_{Tc} = \sum_i \sum_j \sum_k k_{ijkC} [E]_k f_{ijc}$
4	$S_{kC1} = \sum_{c} \sum_{k} K_{kc} C_{c} Y_{kc1} c=2,3$
	$S_{kC2} = \sum_{c} \sum_{k} K_{kc} C_{c} Y_{kc2} c=1,3$
	$S_{kC3} = \sum_{c} \sum_{k} K_{kc} C_{c} Y_{kc3} c=1,2$

Table 2.11 Transformation Rate and Constant Estimations in WASP4 Model

* C₁: chemical concentration, mg/L, Ki: first order decay constants, day⁻¹, including: K_{HN} , K_{HOH} =neutral, acid, and base catalyzed hydrolysis constants, day⁻¹, K_{Bw} , K_{Bs} : water column and benthic biodegradation constants, day⁻¹, K_F : photolysis constant, day-1, K_O :oxidation constant, day⁻¹, K_F : volatilization constant, day⁻¹, K_E :extra constant, day⁻¹, T_{Hi} : half lives, days, T_{HBW} - T_{HBS} : water column and benthic biodegradation half lives, days where, $K_{Tc}(x)$: spatially variable lumped first order decay rate constant for chemical "c", day⁻¹

2.3.1.5 Numerical Solutions

TOXIWASP and LM2 models are developed by adaptation of transport framework of Water Analysis Simulation Program (WASP) (Ambrose et al., 1988; Di Toro et al., 1982). The chemical transformation part of WASP4 and TOXIWASP is based on Exposure Analysis Modeling System (EXAMS) (Burns et al., 1982). In brief, these models are derived from similar models and LM2 Report (Zhang, 2006) states that the same numerical approach of WASP4 framework is also used for LM2 model. Accordingly, the numerical solution of these models is explicit backward finite difference. There is no information about numerical solution or solution of mass balance equations of PMHR model (Farley et al., 1999). The mass balance equations of Recovery for surface sediment are solved by Adaptive-step-size Runge Kutta 4th (Crank Nicholson for deep sediment).

To sum up the evaluation of the models, some models developed for the fate of the pollutant in the bed sediment have the problem of not being applicable to each field due to no selection for dimension number during modeling, no flexibility of parameterization of input/output data, or use of probabilistic approach. Moreover, other models involve missing processes and/or lack of depth depending characteristics during the application of the fate of the pollutant in the bed sediment (Allan & Stegemann, 2007). Therefore, a model which has the ability to be applied to various field conditions and different HOCs (such as PCBs) is needed. Another task is that when individual PCB/PBDE congeners are degraded and dehalogenated in sediment, the mass balance equation should be performed for all degraded and accumulated congeners. This task is not dealt with in the literature.

2.3.2 Models for Degradation Pathway Identification of PCBs and PBDEs

Apart from F&T models, approaches for quantification and identification of pathways of PCBs/PBDEs by statistical tools were also reviewed from the literature to use the sequential degradation of PCBs/PBDE congeners in biodegradation term of F&T models in detail.

The dehalogenation process has been investigated for a long time as a research topic. Degradation mechanisms of PCBs and PBDEs in the environment have been examined by biological and modeling studies. Biological data, although crucial to better understand the degradation mechanisms of the compounds in the environment (Wei et al., 2013), is limited since it requires a long time to test all microorganisms or different methods under laboratory conditions. However, modeling dehalogenation can help find new degradation pathways which may not have been identified previously in the laboratory. One advantage of such models is that they can aid in the investigation of effective remediation strategies and better management of the environment.

There are two types of dehalogenation model studies in the literature, (i) identification of pathways (Hughes et al., 2010, 2015; Karcher et al., 2004, 2007) and (ii) quantification of pathways with biologically confirmed data (Bzdusek et al., 2006a; Bzdusek et al., 2006b; Demirtepe et al., 2015; Imamoglu et al., 2002; Imamoglu et al., 2004; Wei et al., 2013; Zou et al., 2014).

Identification of pathways

In the models for identification of pathways, numerical and statistical methods are used to identify the possible pathways. Studies (Hughes et al., 2010, 2015; Karcher et al., 2004, 2007) aimed to find dechlorination pathways of PCBs. Karcher et al (2004) developed a statistical model to determine the distribution of PCBs in Hudson River sediments by using comparison of relative abundance between original Aroclor mixtures and sediment data without knowledge of the source in the field. In the study, original Aroclor mixtures were used in Frame's (1996) Aroclor Congener Distribution Data (FACDD) consisting of percent weight relative abundances for 209 PCB congeners in multiple lots (totaling 17) of eight different Aroclor mixtures. By using these data, tracker congeners, which are called as correlated congeners, are defined. The correlated congeners have the benefit that these congeners, which have constant relative ratio, do not have pattern matching or bias problems in total PCB measurements (Karcher, 2005). Hence, PCB transformation was identified with shifts in tracker pairs from the relative abundance ratio of congeners in environmental samples to congeners in Aroclor mixtures.

After Karcher et al. (2004), a numerical method is developed to determine alternative dechlorination scenarios of sediment systems through congener pair relationship. The study performed statistical analysis using the natural dechlorination *in situ* (SANDI) method. An actual weathered sediment data collected from Hudson river was evaluated by this method. Two weathering methods were applied to understand the dechlorination pathways of PCB congeners in the environmental data by (i) applying Aroclors mixtures randomly until only monochlorinated congeners remain and (ii)

applying Aroclors mixtures based on the position of chlorine and the chlorine configuration; e.g. flanked and unflanked, *meta* or *para* removal. As a result of Karcher et al. (2007) study, the model indicated the removal of flanked chlorines with following *meta* chlorines is more preferential in the field of Hudson river sediment.

Another model for identification of pathways was by Hughes et al.(2010). In this study, possible dechlorination pathways of PCBs were identified by using the classification tree approach, which is a statistical method to predict pathway sets based on explanatory attributes. These attributes consist of physicochemical properties of the parent congener, target positions on parent congener considering configuration and homologue of the parent congener. The pathway selection was done considering the eight dechlorination processes given in the literature (Bedard, 2003). As a study by the same group (Hughes et al., 2015), a Monte Carlo analysis was applied to understand analytical uncertainties of individual congeners especially coeluting congeners. Hughes et al. (2015) pointed out that this work would help evaluate the extent of dechlorination.

Quantification of pathways

A model for quantification of pathways was developed by Imamoglu (2001) to identify the fate of PCBs in sediments by using biologically confirmed PCB data. The model is called as "anaerobic dechlorination model" and it is based on minimization of objective function by the sum of squares of differences between predicted and sample congener profiles and during simulation (Imamoglu, 2001). The model has two principles: (1) mass balance between dechlorinated (mother) and accumulated (daughter) congeners (2) pathways confirmed from laboratory and field studies are used. The mass balance is provided by subtraction of the abundance of mother to add to the abundance of daughter in a pathway. The pathways were identified according to different PCB dechlorination processes based on contaminated sites such as Activity H, H', Q, N, etc. taken from studies of Bedard & Quensen III (1995) Quensen III & Tiedje (1997), Bedard (2001). Sediment PCB profile, original source profile (either Aroclor or t=0 day for microcosm PCB data) and possible reaction pathways are input data for the model. Model was applied to Ashtabula and Fox River sediments, USA (Imamoglu et al., 2002; Imamoglu et al., 2004). Results indicated that the dechlorination in the sediment was explained by the model successfully.

The model then was modified by Bzdusek (2005). While the model developed by Imamoglu considered all pathway possibilities described to model equally, Bzdusek (2005) added constraints to the model. A preferential reaction order is defined as arrangement of targeted chlorines from highest to lowest: doubly-flanked *meta* > doubly flanked *para* > singly-flanked *para* > singly-flanked *meta* > unflanked *meta* or *para* on di- or tri- substituted ring >isolated *meta* or *para* chlorine. The model was applied to the Lake Hartwell and Sheboygan River sediments (Bzdusek et al., 2006a; Bzdusek, 2006b) and the studies revealed the existence of anaerobic dechlorination and pathways in the sediment.

ADM approach under the name of stochastic least squares debromination pathway model was used by Wei et al. (2013) to identify the photolytic debromination pathways of PBDEs in hexane by sunlight. They revealed preferential pathways and debromination rate constant on the number of bromines in the PBDE molecule by the model.

An analogue Markov Chain Monte Carlo algorithm was developed by Zou et al. (2014) to identify the photolytic debromination pathways of PBDEs in hexane by sunlight. The model can be applied to biotic and abiotic debromination processes (i.e. microbial, photolytic, or both in natural environments).

Demirtepe (2012) also used anaerobic model by Bzdusek (2005) by addition of a goodness of fit parameter, cosine theta and by minimizing objective function for chlorinated congeners. In contrast to Bzdusek (2005), Demirtepe (2012) added another

dechlorination activity, namely T (Bedard et al., 2005). In the study of Demirtepe et al. (2015), dechlorination pathways were defined according to targeted chlorines including numbers and relative positions of chlorines. Accordingly, major pathways of PCBs in sediment microcosms of Baltimore Harbor were quantified successfully and dechlorination rate and toxicity change were evaluated.

CHAPTER 3

MATERIALS AND METHODS

Development of a model for the prediction of congener specific HOC concentrations in sediments that take into account anaerobic degradation is carried out as a two-tier task: (1) prediction of anaerobic dehalogenation rate constants, (2) prediction of congener specific HOC concentrations in sediments. The first task is handled through use of a modified version of a previously developed anaerobic dehalogenation model. This model uses laboratory microcosm HOC data (from the literature) as input to yield anaerobic dehalogenation pathway specific degradation rate constant data as output. The second task is handled through development of a new F&T model for sediment bound HOCs. Here, environmental HOC data (from the literature) is used as input to predict concentrations of sediment bound HOCs. The interrelations of the two tasks are shown in Figure 3.1. This chapter is divided into three parts where the first two subsections describe the anaerobic dehalogenation model and FTHP model, and the third subsection describe in detail the data sets and how they were handled before being used as input into the models.

Figure 3.1 Interrelationship between ADM and FTHP models

3.1 Description of Terminology

Coeluting congener: During analytical determination of PCBs, some congeners can not be determined/quantified individually from the chromatogram. These are named coeluting congeners. IUPAC No of these congeners are used, separated by a slash, e.g. 28/31.

DechlorInput: It is the name of the input file of ADM prepared in Excel. File contains: degradation pathways, measured congener profiles and congener IUPAC No.

Degraded: Degraded is an array used in the program of FTHP model. It is sum of two arrays; Degradedm and Degradedd.

Degradedd: Degradedd is an array used in the program of FTHP model. Mass balance equation in FTHP model is run for each congener in input file. Biodegradation rate is calculated only for the congeners including pathways. Biodegradation rates of the congeners which are accumulated (increased) are filled in an array, Degradedd.

Degradedm: Degradedm is an array used in the program of FTHP model. Mass balance equation in FTHP model is run for each congener in input file. Biodegradation rate is calculated only for the congeners including pathways. Biodegradation rates of the congeners which are degraded (decreased) are filled in an array, Degradedm.

Dehalogenation Activity: A set of anaerobic dehalogenation pathways/reactions identified through laboratory studies in the literature, which describe halogen removal from specified positions on the structure of the compound. E.g. removal of doubly flanked *para* chlorines from chlorobiphenyl structure of PCB congeners. A dehalogenation activity may contain any number of dehalogenation pathways/reactions.

Dehalogenation Pathway/Reaction: The dehalogenation reaction where one congener is transformed into another, due to replacement of one of its chlorine with a hydrogen atom. E.g. $2345-2345 \rightarrow 235-2345$.

Doubly flanked: It is presence of chlorine in both adjacent positions. For example, in the structure 2345-CB, chlorine in position 4 (*para* position) is doubly flanked with chlorines in *meta* positions denoted by 3 and 5.

FindPathway function: It is a function in ADM to list all relevant anaerobic dehalogenation pathways of congeners according to a dechlorination activity. Input data to the function are: (1) list of congener IUPAC numbers, (2) description of dehalogenation activity.

Mother-Daughter congener: During anaerobic dehalogenation reactions, a chlorine from one congener is replaced by a hydrogen atom, resulting in another congener. The reactant of this reaction is called a mother congener (i.e. its concentration is reduced), while the congener that is the product of the reaction is called a daughter congener (it is accumulated as a result of the reaction).

Patterns: Patterns can be substitutions or congeners defined in a dehalogenation activity before simulating FindPathway function.

Predicted congener profile: Congener profile at initial time (i.e., an Aroclor mixture profile from Frame et. al (1996), or t=0 d of microcosm PCB data) is altered by the

anaerobic dehalogenation model according to identified dehalogenation pathways, and the predicted profile is generated.

Reactive Congener: Dehalogenation pathways are identified under dehalogenation activities, by considering the congeners present in the measured data set. Only a limited number of congeners take part in dehalogenation pathways. Those that take part in a dehalogenation pathway (i.e. as either the mother or the daughter in a pathway) are called reactive congeners.

Substitution: It indicates the position of the halogen atom in the HOC structure. E.g. 23456-chlorobiphenyl indicates five Cl atoms present in 2-*ortho*, 3-*meta*, 4-*para*, 5-*meta*, 6-*ortho* substitutions in a PCB congener.

Shuffle: The order by which microorganisms dechlorinate PCBs is not known. Therefore, the full list of pathways is shuffled a 100 times and subsequently a distribution of k_m values is obtained.

Singly flanked: presence of other chlorines in either of the adjacent positions. E.g. In the structure 2345-CB, chlorine in position 5 (*meta* position) is singly flanked with chlorine in *para* position denoted by 4.

Unflanked: absence of chlorine in any of the adjacent positions. E.g. In the structure 24-CB, chlorine in position 4 (*para* position) is unflanked, there are no chlorines in adjacent positions denoted by 3 and 5.

Sumkvalm: Sumkvalm is an array used in the program of FTHP model. It includes k_m values of mother congeners.

3.2 Anaerobic Dehalogenation Model

3.2.1 Description of Model

3.2.1.1 Original: Anaerobic Dechlorination Model

Anaerobic Dehalogenation Model (ADM) is based on a model originally, developed as the "Anaerobic Dechlorination Model" by Imamoglu (2001) and later modified by Bzdusek (2005) and Demirtepe et al. (2015). It was not a generic model for all HOCs, but one developed specifically for sediment bound PCBs. It aimed to identify and quantify dechlorination pathways among congeners in PCB data sets measured at two different times.

The original model is based on minimization of objective function by the sum of squares of differences between predicted and sample congener (Imamoglu, 2001). The governing equation is given in Equation 3.1.

$$S = \sum_{j=1}^{m} (\hat{y}_j - x_j)^2$$
3.1

where \hat{y}_j is predicted congener profile (either from Frame et. al (1996) or microcosm PCB data at t=0 d) altered according to a dechlorination activity (mole ‰), x_j is congener profile of microorganism PCB data measured at day e.g. t=100 day(mole ‰), and m is number of the congeners.

The model is based on two principles: (i) a mass balance exists between dechlorinated (mother) and accumulated (daughter) congeners (ii) only dechlorination pathways confirmed from laboratory and field studies are considered. Details of original model can be found in Imamoglu (2001), while modifications are explained in Bzdusek (2005) and Demirtepe (2012).

3.2.1.2 Improved Version: Anaerobic Dehalogenation Model

The first principle of the original model is kept in ADM, that is, a mass balance between dechlorinated and accumulated congeners. The second principle is also kept, however, pathways are now identified automatically according to observed dehalogenation activity (DA) or group of activities. The same objective function is used to minimize as in the original model. An improved evaluation of model fit is brought about in the new model. The fit of all congeners as well as those that take part in a pathway (as mother or daughter) are separately investigated. This allows for a better evaluation of model results when congener profile changes in the overall are not significant. ADM indicates that correlation fit of these congeners are not satisfactory. If correlation fit of only overall congeners is evaluated, this result can not be understood. Using ADM, now a dehalogenation pathway is not only quantified but also the dehalogenation rate constant associated with it is estimated.

3.2.1.3 Modifications to original model

Modifications to the original model as a part of this study are explained below:

- <u>Pathway Estimation</u>: Each individual dechlorination pathway needs not to be entered as input to the model. Congener no or Cl substitution information can now be entered as input and all relevant dechlorination pathways are listed as output. Sometimes, when pathways are identified by this function, some pathways include congeners that are not measured. These pathways including unmeasured congeners are automatically removed from the pathway list.
- <u>Handling of Coeluting Congeners in ADM</u>: The original model separates coeluting congeners, which creates a problem on how to share concentration values to coeluting congeners. However, this presents a problem and affect the results of the model since the amount of each congener is not known separately. In this version, coeluting congeners are not separated.
- <u>Description of congeners to the model</u>: Another modification is done in an input for the number of congeners in original profile. The model enables the user to simulate for various number of congeners given at t=0, so it does not have to include all 209 congeners.

- 4. <u>Simulation based on substitutions</u>: Dechlorination pathways are identified based on various predetermined dechlorination activities (i.e., removal of doubly flanked *para* chlorines, etc.). Previously in the original model, pathways according to dechlorination activity (DA) definitions of Bedard (2003) were used as input to the model. However, in the modified versions of the model (i.e. Demirtepe et al., 2015) and in this study, DAs are defined by chlorine substitutions (as typically described in the literature by Fagervold et al. (2007), Wu et al. (2002), Fennell et al. (2004), Adrian et al. (2009).
- 5. <u>Description of constraints for each dehalogenation activity</u>: The user can define constraints for each DA. The constraints can be defined for laboratory studies. For example, a DA based on a specific microorganism or microorganism group targets the removal of a substitution such as flanked chlorines in *ortho/para* positions, however, if this group can not degrade a certain substitution included in this target position, it can be defined as constraint of this activity and input to the model.
- 6. <u>Simulation for more than one activity in a run</u>: The original model worked on one activity at a time, however, in this study, the model is modified such that numerous activities can be handled at the same time in one run. By this way, various activities and their combinations can be tested in a short time.
- <u>Calculation of dechlorination pathway specific rate constant, k_m</u>: Rate constant (k_m) is calculated for each dechlorination pathway. For reactive congeners, k_m values are calculated for each activity.
- <u>Evaluation of model performance</u>: New goodness of fit parameter is added to provide better observation of the performance of the model. The multiple correlation coefficient R² is calculated for all measured congeners (R²) and reactive congeners (R²_{reac}).

 <u>Flexibility:</u> The model was generalized because now the model enables the user add any kind of DAs so that it can now be applied to any halogenated HOC group (e.g. PBDEs).

3.2.1.4 Estimation of Biodegradation Rate Constants in ADM

In ADM, biodegradation rate constants for dehalogenation reactions are calculated. A first order decay is assumed for anaerobic dehalogenation (eqn 3.2).

$$\frac{dC}{dt} = -kC^i$$
3.2

where Cⁱ is concentration of compound degraded, k: degradation rate constant, t: time. When the equation is solved analytically, equation 3.3 is obtained.

$$k_{m \to d}^{i} = ln \left(\frac{C_{m}^{o}}{C_{m}^{f}}\right) / \Delta t$$
3.3

where C_m^{o} is concentration of mother congeners before subtracting amount reacted, C_m^{f} is concentration of mother congeners after reaction, and Δt is the time between initial and final concentrations of mother congeners. m, d and i are IUPAC No of mother and daughter congeners and pathway order, respectively. k_m calculation in ADM is explained with an example for congeners a, b, c. In ADM, firstly amount of reaction from mother to daughter is calculated (Table 3.1) considering the path order, a \rightarrow b and b \rightarrow c, respectively.

Table 3.1 Amount of reaction estimated by ADM

Pathway order	Pathway	Mother in the path	Daughter in the path	Amount reacted from ADM
1	a→b	а	b	R_1
2	b→c	b	с	\mathbf{R}_2

Then, ADM calculates the concentration of the congeners at final days by adding or subtracting reaction amount and considering the same path order (Table 3.2). Third column in Table 3.2 is used to predict the $k_{a\rightarrow b}^1$ in path=1 and fourth column is for estimating $k_{b\rightarrow c}^2$ in path=2. These are;

$$k_{a \to b}^{1} = ln \left(\frac{C_{a}^{o}}{C_{a}'}\right) / \Delta t$$
$$k_{b \to c}^{2} = ln \left(\frac{C_{b}'}{C_{b}''}\right) / \Delta t$$

Table 3.2 Concentration of congeners after reaction 1 and 2

Congeners	Initial concentration of the congeners	Concentration of congener after first reaction (path=1)	Concentration of congener after first reaction (path=2)
а	C_a^{o}	$C_a = C_a - R_1$	
b	C_b^{o}	$C_b = C_b + R_1$	C_b ''= C_b ' - R_2
с	Cc ^o		$C_c = C_c + R_2$

During model simulation, k_m values are calculated for each shuffle considering path order. Therefore, 100 k_m values are obtained for 100 shuffles. Then, average of k_m values is taken. Sometimes k_m can not be calculated since amount of mother congeners are lower than zero during simulation. The model will eliminate a shuffle if k value of it can not be calculated. In ADM, same values of biodegradation rate constants are estimated in same pathway order in shuffles.

In this study, first order kinetic model is assumed. Accordingly, number of microorganisms is not taken into consideration for the anaerobic dehalogenation. According to our literature review, first order kinetic model was commonly used to estimate dechlorination rates of PCB congeners (Cho et al., 2003; Siebielska & Sidełko, 2015). However, Lombard et al. (2014) consider number of microorganisms

to estimate dechlorination rate constants. They stated that dechlorination rate is dependent on number of microorganisms rather than concentration of congeners. That study also indicated the first order relationships between initial contaminant concentration and dechlorination rate as in Cho et al. (2003) and Siebielska and Sidelko (2015). Therefore, our assumption can be considered valid.

Although two types of studies observed the first order relationship between rate and contaminant concentration, their dechlorination rates differentiate from each other. Lombard et al. (2014) state the difference by number and types of microorganisms as well as concentration of congeners in pore water which is not reported or considered in Cho et al. (2003) and Siebielska and Sidelko (2015). However, the use of first order assumption during modeling is applicable to various sites and different halogenated HOCs since it is not always available to find number of microorganisms for a site. Therefore, number of microorganism is assumed constant in our model.

3.2.2 Computer Program

The model is rewritten in MatLAB, version 7.10.0. The input and output of the model are depicted in Figure 3.2. The input of the model include: list of congeners, pathways and congener profiles at $t_{initial}$ and t_{final} (‰ moles). The model gives biodegradation rate constant, predicted congener profile with quantification values and goodness of fit parameters as output. The input of the concentration profiles are from microcosm data measured at various time intervals. Goodness of fit parameters are objective functions the cosine theta ($\cos\theta$) similarity, the multiple correlation coefficient for of all measured congeners the multiple correlation coefficient for all (R^2) and reactive congeners R^2_{reac} .

Figure 3.2 Description of ADM

Identifying the pathways, one of the input of ADM, is provided with a separate function, namely **FindPathways**. **FindPathways** was developed to evaluate each DA and find pathways of congeners for each DA. The function was written by using visual basic application of Excel 2010. This function works independently from ADM. The input to the function are substitutions or list of congeners and the DAs obtained from laboratory or field studies in the literature regarding *ortho*, *para* and/or *meta* halogen removal relative to configuration; flanked, doubly flanked and unflanked halogen substitutions. The output of the function is pathways for each DA. In a pathway, mother and daughter congeners are indicated. For example, one of the pathways in "double flanked *para*-any" in DA11 is expressed in Figure 3.3. As an example,

congener 114 is converted to congener 63. For this, Cl in the *para* position (2345-4) is removed to be converted to daughter product, congener 63 (235-4). One of the capability of the function is that the congeners in mother or daughter are removed from the pathway list of the DA by the algorithm if they are not present in the measured data set. If a congeners in either the mother or daughter of a pathway is not measured, this pathway is not evaluated in this DA.

Figure 3.3 An example dechlorination pathway, output of the **FindPathways** function A. Structural depiction, B. Depiction in the model

ADM flowchart is given in Figure 3.4. In ADM, firstly, initial objective function $(S_{initial})$ is calculated for a DA. The model arranges the congeners in the DA as coeluting congeners. Then, path is ordered randomly in the pathways of a DA since the path order is unknown in actual case. Therefore, the objective function is minimized to a randomly selected path order. This random ordering of pathways is

performed 100 times, each of which is called shuffle. Sometimes, the model may not give a result for a shuffle. Then, another run is conducted with a new random path order. Therefore, another number "it" is used to control whether the number of shuffles reach 100. This operation is conducted for each DA.

The cases where the model can not give a result for a shuffle are during calculation of k_m values. The calculation procedure of k_m in the model and these cases are explained below:

- In a path, if concentration of mother congener before reaction is equal to "0", then k value for that path is "0". Then, model moves on to the next congener.
- > In a path, if concentration of mother congener before reaction, $C_m(i)$ is not equal to "0" and concentration of mother congener after subtraction of reaction amount, $C_m(f)$ is lower than "0", the model can not give result for this shuffle.
- In a path, if C_m(i) is not equal to "0" and C_m(f) is equal to "0", amount of detection limit (DL) is added to mother congener. Then, k_m value is calculated accordingly.
- > In a path, if $C_m(i)$ is not equal to "0" and $C_m(f)$ is higher than "0", then k_m value is calculated.

Figure 3.4 ADM Flowchart

(km: biodegradation rate constant, DL: Detection Limit, Cm(f): concentration of mother congener after reaction, Cm(i): concentration of mother congener before reaction, m: mother congener, d: daughter congener, S: objective function)

Items	Unit	Descriptions
ti	day	Initial time
tf	day	Final time
DA	-	Dechlorination Activity Number
it	-	number to check the suffle number
Sinitial	-	Objective function estimated initially before substraction of
		degradation congeners
S	-	Objective function
C _m (i)	mole ‰	Concentration of mother congener at t _i
C _m (f)	mole ‰	Concentration of mother congener at t _f
C _d (i)	mole ‰	Concentration of daughter congener at t _i
$C_d(f)$	mole ‰	Concentration of daughter congener at t _f
k _m	d^{-1}	Biodegradation rate constant
DL	mole ‰	Detection limit
m→d		A pathway findicating mother congener (m) and daughter congener
		(d)
Δt	day	Time step
\mathbb{R}^2	-	The multiple correlation coefficient of all congeners modeled
R ² _{reac}	-	The multiple correlation coefficient of reactive congeners modeled
costheta	-	cosine theta $(\cos \theta)$ indicator between 0-1, the similarity between two
		data using angular profile of predicted and measured data.
SD	mole ‰	Standard deviation predicted profiles estimated for each shuffle
RSD	%	Relative standard deviation predicted profiles estimated for each
		shuffle
Avg	mole ‰	Average of predicted profiles estimated for each shuffle
Median	mole ‰	Median of predicted profiles estimated for each shuffle
pathorder	-	Order of each pathway in the shuffles

Program input and output files are depicted in Figure 3.5, Figure 3.6 and Figure 3.7. All files are Excel documents. The details about them are explained in the following paragraph considering cell names in Excel, such as, cell B1 is in row 1 and column 2.

The input file in Figure 3.5 depicts the information belonging to sample and predicted profiles. The cells of the input file used for ADM are explained individually below:

B1: The number of pathways. The model runs for all DAs and gives results based on them in different Excel sheets with one run. The pathways of each one is selected by the program automatically from DechlorInput sheet.

B2: Detection Limit of Input Data.

C1: Number of congeners in sample.

C2: Time difference (Δt) between two sample data (initial and final days). It is used to calculate first order biodegradation rate constant.

D1: The number of congeners in predicted profile.

E1: Number of coeluting congeners. This is for old version of ADM including separation of coeluting congeners.

F1: The number of shuffles.

I2: Yes/No button to ask whether the number of congeners in predicted and sample profiles is the same or not. It includes the values in C1 and D1. In our study, they are always same. If it is "No", it is run as in old version.

A3:G212: Congeners in sample profile. Up to seven are allowed.

H3:H212: Concentration of congeners in sample profile which is at initial day. Typically, data is in mole % and normalized to 1000 moles.

I3:I212: The concentration of congeners at time t which is at final day. The data in mole is normalized to 1000. If the value in I2 is yes, this will be considered.

J3:J212: Congeners in sample profile (This supports the old version when number of congener at final day is not the same as at initial day).

K3:K212: Concentration of congeners in predicted profile (mole ‰) (This supports the old version when number of congener at final day is not the same as at initial day)

M1:M1000: Mother congener IUPAC No in pathways of a DA. These values are automatically taken from DeChIorInput sheet.

N1:N1000: Daughter congener IUPAC No in pathways of a DA. These values are automatically taken from DeChIorInput sheet.

The input file in Figure 3.6 depicts the information belonging to DAs and their pathways. This input is the output of the **FindPathways** function. Therefore, this sheet is prepared by the function automatically. The names of all input in this sheet are expressed below:

A16:AX16: number of pathways in the corresponding DA.

A17:AX17: description of the DA.

A18:AX1000: pathways in the DA given as mother and daughter IUPAC No.

The output file in Figure 3.7 depicts the output of ADM. As can be seen in the figure, names of all output are expressed in three parts, A, B and C. In Part A, statistical analyses of goodness of fit parameter results such as R^2 , R^2_{reac} and Q are given. Average, standard deviation and relative standard deviation of first ten and all shuffles are calculated in Part A. It is between row cells 1 and 3. In Part B, the results of Q values, R^2 , cos theta, R^2_{reac} , reactive congeners, path order, predicted congener profiles, k_m values, altered amount of reactive congeners are given in each shuffle and ranked according to Q values in ascending order. It is between cells 5 and 105 since it can include maximum 100 shuffles. In part C, statistical results of each parameter in Part B are given. Average, median, standard deviation, relative standard deviation of predicted profile and k_m values of first ten and all shuffles are calculated.

The ADM program also supports the old version. For example, the number of congeners are not always the same as that in sample profile at $t_{initial}$. However, in our study, same number of congeners exist in both profiles. If the user simulates the model as in old version, he/she can use a Yes/No in cell "I2" of input file in Figure 3.5.

Figure 3.5 Input File: Sample and Predicted Profiles

						- i											
			4		0 347		Conc of tit		1.1358	0.5594	0.2591	0.349	1.032068	0.1736147	0.51208448	0.09883331	1.10736318
					1 840		Conc of Dageners t:0		1	0.14	0.14	0.15	.664192.3	0.04531.5	.11415281	.00758415	79001504
					0000								•		•	•	•
					0.493												
	Median of R2 of Reactive Congs for all shuffles	0.99	Median of R2 of Reactive Congs for first 10 shuffles	Ì	8 013												
	SSD R2 of Reactive Congs for all shuffles	0.02	tSD R2 of Reactive Congs for first 10 shuffles	ļ	4 192												
	of F of Reactive Congs for all shuffles	0.00	Stdev R2 F of Reactive Congs for first 10 shuffles	ļ	4 367												
į	Avg R2 of Reactive Congs for all shuffles	0.99	Avg R2 of Reactive Congs for first 10 shuffles	ļ	0 847973					10	6		00				
	Median of Costheta of Markers for all shuffles	0.99	Median of Jostheta of Jarkers for first 10 shuffles		0 72040615		Chgeners		1	4	2	9	0	14	19	11	18
	RSD of Costheta of Markers for all shuffles	0.01	RSD of Costheta C of Markers N or first 10 shuffles		8 3151849		RSD of Altered Reactive Cong for	shuffles	0:0	0.0	4.3	0.0			1.32928	5.041278	75.90429
	Stdev of Costheta f Markers o for all shuffles	0.00	Stdev of Costheta f Markers o or first 10 f shuffles	ļ	0.0950651		Stdev of Altered Reactive Cong for	I shuffles	0.0	0.0	0.0	0.0	C	~	0.109503	0.037660	0.4188192
	Avg Costheta f Markers o for all shuffles	0.99	Avg Costheta (f Markers o or first 10 fi shuffles	Ì	0.0271		verage of Altered Reactive ong for all	snuffies a	0.14	0.05	0.80	0.48	0.03	.09506509	.23775431	0.7470359	55177779
	1edian of R2 of Markers o for all shuffles	0.99	ledian of R2 of Markers o Shuffles	Ì	0 4841		Conc of A Reactive A Cong at time t	~	0.25	0.17	1.43	5.3 2	0.055 5	0.1429763 0	084617078	.1186869 7	9546773 5 0
	SD of R2 N f Markers for all shuffles	0.02	SD of R2 Markers I of finat field for the shuffles for th	Ì	0 7755		F Conc of Reactive ong at t:0		0.14	0.05	0.60	0.48	0.0271	09506509	.23790456 2.	.03510366 1.	01211438 0.
	Stdev of R2 F of Markers o for all shuffles	0.00	Stdev of R2 F of Markers o for first 10 f shuffles	tive Congs	0.0453									•		•	
	Avg R2 of Markers for all shuffles	0.99	Avg R2 of Markers for first 10 shuffles	Altered Read	0 1399		i ↓										
	Median of Q for all shuffles	508.03	Median of Q for first 10 shuffles	RR2	0 9858												
	RSD of Q for all shuffles	2.70	RSD of Q for first 10 shuffles	ostheta	0.995.0							53.00					
	Stdev of Q for all shuffles	13.74	Stdev of Q for first 10 shuffles		0 9853	1.000						33.00			50		
	Avg Q for all shuffles	508.03	Avg Q for first 10 shuffles	land	498 3173				9.00		17.00	21.00	34.0000		31	54	104
	Qinitial	1347.899291			6		active Congeners		~	14	15	20	23	25	28	29	35

Figure 3.7 Output File of ADM

		ļ		Y				Ì		•						
AQ		Ì	29.8094048	31.46936795			median of kval for all shuffles	0	0	0.0005643811	6		•	0.008499106	0.1012148291	0.094039919
AP		ļ	76.77786	78.18085			sdkval of k values for all shuffles			17.74				72.60699	0.787896	0.546861
AO			3.21852531	3.09487195			STDEV of k values for all shuffles	0.0000	0.0000	0.0001	0.0000	0	•	0.006170945	0.000797467	0.000514267
AN			25.68950096	25.68950096			vg of k values for all shuffles	0:0	0.00	0.00	0.00	0	•	0.008499106	0.101214829	0.094039919
AM		l	3.881868	3.92566			RSD of Reac. mounts for all huffles			17.50				5.289852	7.966229	5.134796
AL		ļ	3.81263	12.96125			STD of Reac. mounts A for all huffles s	0.0000	0.0000	0.0349	0.0000	0	0	0.03766	0.122323	0.038438
AK			19.444	19.31338			Avg of Reac. mounts A for all huffles s	0.00	0.00	0.20	0.00	0	0	0.711932	535525	0.748572
A		j	1.365534	1.702039			4 10									
А		ĺ	0.687637	0.717406												
AH		i	1.070035	1.116068 (
AG		į	52.64839	52.97984												
AF		1	0.000	0.000								20			75	8
AE		į	7.968	6.311				6		17		31	34	54	48	49
AD		Ì	41.955	42.837			aughter cong	~	14	15	25	28	23	29	47	43
AC		Î	0.000	0.000												
AB		Į	2.455	2.421												
¥		Į	9.408	10.900						68						Ì
Z		į	0.155	0.155				23		72						
7		ł	1.447	1.442				 	38	71			61	61	148	152
×		Ì	1.089	1.673				21	49	64	91	60	94	<mark>94</mark>	120	86
×		ł	30.683	30.782			mother cong	50	43	41	55	56	74	74	85	97
>		6 1 1	0.013	0.013			Avg Conc of altered congeners for all shuffles	1.71	0.14	0.14	0.15	0.66419223	0.0453115	0.11415281	0.00758475	0.79001504
-	∽ ~ ~	ω 4 n	9	7 8 103	104	2		10	10	105	110	E	112	11	117	115

Figure 3.7 (continued)

3.2.3 Preparation of Dehalogenation Pathways as Input for ADM

3.2.3.1 PCB Dechlorination Pathways

Each Dechlorination Activity is described by a set of pathways formed from information in Karcher (2005) and Demirtepe (2012), and microorganism based pathways defined in Fagervold et al. (2007), Wu et al. (2002), Fennell et al. (2004), Adrian et al. (2009). According to these data, 25 DAs are built as can be seen in Appendix D Table D.1. These patterns are used as input to FindPathways function to obtain a list of pathways that fit each DA description. The first fifteen DAs include theoretically possible Cl-substitutions amenable to dechlorination such as, doubly flanked para, etc. The others are based on dechlorination capabilities of microorganisms or microorganism groups. These DAs include some constraints. For instance, o-17 activity defined as DA 16 in Table D.1, target the removal of flanked chlorines in *ortho/para* positions (e.g. $2356 \rightarrow 235$), however, if 2356 substitution is in congener of 152 (2356-26), o-17 can not degrade congener 152. This congener is then defined as a constraint for FindPathways function. In DAs, the patterns are indicated by congeners (e.g. DAs 18, 19, 21, 22, 23) or both substitution and congeners (e.g. DAs 16, 17, 20, 24). After running the function, pathways of DAs to use for ADM is obtained and presented in Appendix D Table D.2. The number of pathways in a theoretical DA vary between 44 and 393, while those based on microorganism is much less, between 5 and 48.

3.2.3.2 PBDE Dechlorination Pathways

Compared to the case of PCBs, there are considerably less number of studies on PBDE dehalogenation. Nevertheless, using all available literature information, 21 DAs are built (Appendix D Table D.3). Each Dechlorination Activity is described by a set of pathways formed from information in Karcher (2005), and microorganism based pathways defined in Tokarz et al. (2008), Robrock et al. (2008), Ding et al. (2013) and Huang et al. (2014). While DAs based on microorganisms are built, it is seen that they are not based on a targeting position such as removal of doubly flanked *meta* bromine.

Instead, they are based on pathways between congeners. This is perhaps, because PBDE debromination studies are relatively recent and not as extensive as those for PCBs. These patterns are used as input to **FindPathways** function to obtain a list of pathways that fit the DA description.

After running the function, pathways of DAs to use for ADM is obtained (Appendix D Table D.4). The results indicate that the number of pathways in all DAs are small (1 and 5) since the number of congeners in the microcosm data is only 8. Another result is that the function can not find pathways in some DAs such as 5, 11, 17 and 20. For these DAs, ADM is not run.

3.3 Fate and Transport (F&T) Model

3.3.1 Conceptual Model

The system modeled, includes mixed sediment layer, interfaces of mixed sediment layer with water column and deep sediment layer. The model includes the effects of degradation and other fate mechanisms (settling, burial, resuspension and diffusion) affecting the HOC. Upper and lower boundaries of the model are set as the water-sediment interface and deeper sediment, respectively (Figure 3.8). This model can be used for the sediments of a lake, river, ocean or estuary.

Figure 3.8 Conceptual Model (HHOCs: Halogenated HOCs)

There are two- and three-phase partitioning models widely used for diluted systems such as a lake or a river (Zhang, 2006). Two-phase partitioning model includes

- dissolved (freely dissolved and bound to DOC) and
- particulate bound phase (bound to POC)

In three-phase partitioning model, the compounds are in

- Dissolved,
- DOC particulate and
- POC particulate (POC-Particulate Organic Carbon composed of BIC-Biotic Carbon and PDC-Particulate Detrital Carbon) phases.

PCBs and PBDEs are used as model compounds for HOCs in this study. In the literature, two- or three- phase partitioning is applied to the models for such
compounds (Farley et al., 1999; Zhang, 2006). Zhang (2006) indicated that two-phase partitioning is satisfactory to apply the water and sediment systems for PCBs. In this study, two-phase partitioning is used for our system because

- data for dissolved, DOC and POC are not readily available or limited,
- DOC partitioning coefficient is not estimated for three-phase partitioning successfully.
- Three-phase partitioning is not appropriate to use in a natural water system due to heterogeneous organic carbon concentrations, PCB characteristics, and PCB concentrations (Zhang, 2006).

This approach can then be applied for other Halogenated HOCs. Overall, the model considers:

- Partitioning of contaminant between dissolved and particulate phases,
- Settling of contaminant in particulate phase and resuspension of contaminant in both particulate and dissolved phases at the interface between water column and sediment bed,
- Contaminant transport processes: molecular diffusion within sediment pore water and particle mixing,
- Biodegradation of contaminant.

3.3.2 Selection of A Model Equation

A comprehensive evaluation of models with similar aim as the one in this study was performed as was presented in Chapter 2. Equations of the models are summarized in Table 3.4. The approach of the Recovery model was selected among the investigated models. The justification for the selection of Recovery model is presented below under the adopted selection criteria:

• Data requirement: Recovery model includes parameters which are available, easy to access, or frequently measured especially for biodegradation term. For

example, TOXIWASP and WASP4 require parameters such as bacterial population and yield coefficient, the calculation of rate constants depending on microbial population for biodegradation term. These parameters are readily available for any contaminated site. However, this not the case for Recovery model in which the concentration of toxic compounds measured for different time and rate constants are adequate to calculate biodegradation term. Another problem is about partitioning of contaminants. According to our literature review, there are two- and three phases partitioning. Three-phase partitioning causes the data problem since there is no available data for more than two phases or are not measured.

- Availability of equation for surface sediment: The equation for surface sediment is available only in Recovery Model. For all others, sediment is not considered in layers.
- Existence of a numerical solution: The numerical solution of WASP4, LM2, TOXIWASP and Recovery Models were readily presented in the relevant references, which is an advantage.
- Movement in 1D: we prefer a model which should have the movement only in vertical (depth) direction. Accordingly, concentration should only change in the direction of depth. As a result, it was seen that all models had this rule except for TOXIWASP, LM2 and WASP4.
- Complexity of the model: Some models such as LM2 include carbon and thermal mass balances. This increases the complexity of the model due to requirement of separate equations as well as the need for data.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{2}$
---	---------------

Table 3.4 An overview of model equations in the literature

81

ontinued
ŭ
4
\mathcal{C}
Table

Models	Description of Terms
Recovery-mixed sed .(Boyer et al., 1994)	V_{m} : Volume of surface sediment, m^3 , A_{m} : Mixed layer surface area m^2 , A_w : Water surface area m^2 , c_m : Contaminant concentration in the mixed layer, $\mu g/m^3$, $c_s(0)$: Initial contaminant concentration in the deep sediments, $\mu g/m^3$, c_w : Contaminant concentration in the water, $\mu g/m^3$, v_r : Resuspension velocity of the sediments into the water, $m/\text{year.}$, v_s : Settling velocity of the particulate matter from the water to the sediments, $m/\text{year.}$, v_d : Diffusive mass transfer coefficient, m/year , k_m : Fraction of contaminant in the mixed layer, $1/\text{year}$, F_{pw} : Fraction of contaminant in the mixed layer, $1/\text{year}$, F_{pw} : Fraction of contaminant in particulate in water column, F_{dw} : Fraction of contaminant dissolved in water column, F_{dp} : Fraction of contaminant in pore water in surface sediment.
Recovery- deep.(Boyer et al., 1994)	C _s : Contaminant concentration in the deep sediments, $\mu g/m^3$, D _s : Molecular diffusivity, m^2/s , k_s : Decay rate of the contaminant in the mixed layer, $1/year$, v_b : Burial velocity, $m/year$, φ : Porosity, F_{dp} : Fraction of contaminant in pore water in surface sediment, F_{dps} : Ratio of contaminant concentration in the deep sediment pore water to concentration in the total deep sediments.
TOXIWASP (Ambrose, 1983)	V ₄ :Volume of sediment layer, A ₃₋₄ : Area of surface sediment, L _{w,3} : Water column depth, L _{b,4} : Depth of sediment layer, L ₃₋₄ : Vertical distance, w _{4,3} : Deposition velocity of suspended sediment, w _{s,4} : Scour velocity in bed sediment, c _{1,4} : Contaminant concentration in sediment layer, c _{1,3} : Contaminant concentration in water column, c _{2,4} : Sediment concentration in sediment layer, c _{1,3} : Contaminant concentration in water column, c _{2,4} : Sediment concentration in sediment, u _{1,4} : Dissolved fraction in water column, φ_3 : Porosity in water column, φ_4 : Porosity in sediment, $\alpha_{1,4}$: Dissolved fraction in sediment, $\alpha_{1,3}$: Dissolved fraction in water column, φ_3 : Sorbed fraction in water column, φ_4 : porosity in sediment, $\alpha_{1,4}$: Dissolved fraction in sediment in water column, $\alpha_{2,3}$: Sorbed fraction in water column, π_3 : Partitioning coefficient of contaminant in water column, π_4 : Partitioning coefficient of contaminant in sediment.
LM2 (Zhang, 2006)	C _j : Concentration of water quality constituent in segment j (M/L^3), C _i : Concentration of water quality constituent in segment i, S _{sv,j} : Mass change rate due to sediment-water exchange processes between segment j and adjacent sediment segments (M/T), S _{k,j} : Mass change rate due to burial process from surficial mixing layer j to deeper sediment layer (M/T), S _{k,j} : Mass change rate due to sum of kinetic transformation processes within segment j (M/T), positive is source, negative is sink, R _{ij} : (E _{ij} A _{ij} / Δ X _{ij}), Bulk dispersion/diffusion coefficient (L^3/T), E _{ij} : Mixing (dispersion/diffusion) coefficient (L^2/T), A _{ij} : Interfacial area between segment i and j (L^2).

	V_{sedi} : Volume of sediment (m ³), Asi: Surface area (m ²), mi: Solids concentration in segment i (mg L ⁻¹), m _{sedi} : Solids
PMHR (Farley et	concentration in segment i, Γ_{sedi} : Solid phase chemical concentration in surface (active) sediment layer (:g g ⁻¹ (dry
(1999) (all., 1999)	weight)); w _{ui} : Solids resuspension velocity in segment i (m day ⁻¹); ws: Solids settling velocity (m day ⁻¹); w _{bi} : Burial rate for solids in segment i (cm yr ⁻¹).
	Look at LM2 and TOXIWASP models for others. Q _{ij} : Advective flow between segments i and j, defined as positive
WASP4 (Amhrose	when leaving segment j, and negative when entering, m ³ /day Q _{io} : Boundary inflows segment j, ,m ³ /day, Q _{pij} : Pore
et al 1988)	water flow between segments i and j, defined as positive when leaving segment j, and negative when entering j, m^{3} /day,
VI 411., 1700)	F _{di} and F _{di} : Dissolved fraction of chemical in segment I and j: , f _{si} : fraction of chemical sorbed to solid type "s" in
	segment j, CB _j : Boundary concentrations for segment j, g/m ³ , n _i : Average porosity of segments i and j, m ³ water/m ³
	Look at Recovery model for units. V ₂ : Volume of surface sediment A: Surface area C ₂ : Contaminant concentration in
Chanra (1007)	surface sediment, C1: Contaminant concentration in sediment, vs: Settling velocity, vr: Resuspension velocity, vb:
(ICCT) pilapio	Burial velocity, v _d : Diffusion coefficient F _{d1} : Fraction of contaminant dissolved in water column, F _{d2} : Fraction of
	contaminant in pore water in sediment
	V _s : Sediment volume, km ³ , A: Surface area, km ² , C _{Ts} : Contaminant concentration in sediment, µg/L, C _T :
Thomann and Di	Contaminant concentration in water column, µg/L, wa: Settling velocity, m/year, wrs: Resuspension velocity, m/year,
Toro (1084)	ws: Net effective sedimentation velocity, m/year, fp: Fraction of contaminant particulate in water column, fus: Fraction
	of contaminant dissolved form in sediment, KL: Sediment water diffusive transfer coefficient m/d, φ : porosity φ s:
	porosity of sediment.
	V _{s,H} : Volume of hypolimnion, A: Surface area [L ²] A _d : Sediment deposition area [L2], v _{s,H} : Settling velocity[L/T], v _{r,s} :
AUTHTIN	Particle resuspension velocity from segment S [L/T], v _b : Sediment burial (or sedimentation) velocity [L/T], C _H :
(Endicott et al	Chemical concentration in hypolimnion, Cs: Chemical concentration in surficial sediment, fsH: fdH: Dissolved,
7005)	sorbed (to particles), and bound (to non-settling organic matter) chemical fractions in hypolimnion, respectively, ns:
(0007	Surficial sediment porosity, Kr Diffusive exchange coefficient [L/T], fs, fds and fbs: Dissolved, sorbed (to particles),
	and bound (to non-settling organic matter) chemical fractions in segment sediment, respectively.
	Cs: Concentration of PCBs in the water phase of the inter-particle pores in sediments, Cs*: Solution phase concentration
	corresponding to the solid phase external concentration at radius R_p . The external-film mass transfer coefficient, e:
Qi (2003)	Porosity of the sediments vz: The fluid phase inter-particle pore velocity, Ds: The hydrodynamic dispersion coefficient,
	kf: external- film mass transfer coefficient in the sediments, ps: Density of the solid sediment phase Rp: Radius of
	sediment particle.

3.3.3 Model Assumptions

Assumptions for Recovery (Ballschmiter & Zell, 1980) model is given below:

- > The model is applicable for organic contaminants.
- ➤ Water is well mixed.
- Surface sediment layer is well mixed.
- The concentration of contaminant varies only in vertical direction in deep sediment.
- > Initial concentration of contaminant in deep sediment is zero.
- Sediments are the only source of contamination.
- Initial concentrations of contaminant in water column and sediment are uniform throughout that region.
- Linear equilibrium sorption mechanism is valid.
- Degradation follows first-order kinetics.
- > There is no compaction in sediment.

As different from these assumptions, in our study, two more assumptions were adopted:

- > The concentration of contaminant in water column does not change with time.
- Degradation is due to only anaerobic biodegradation of contaminant in sediment. This is assumed for PCBs and PBDEs, however, it can be changed for other halogenated HOCs in the future.

3.3.4 Description of the FTHP model

The general mass balance equation used in this study is given in eqn. 3.4. The mass balance equation and numerical approach of Recovery model which was developed by Boyer et al. (1994) and Chapra and Reckhow (1983) were used.

Accumulation=-Decay + Settling - Resuspension - Burial $\frac{dc_m^i}{dt} = -k_m c_m^i + \frac{v_s A_w F_{pw} c_w^i(0)}{V_m} - \frac{v_r A_m c_m^i}{V_m} - \frac{v_b A_m c_m^i}{V_m} - \frac{v_d A_m (F_{dw} c_w^i(0) - F_{dp} c_m^i)}{V_m} + \frac{v_d A_m (F_{dp} c_s^i(0) - F_{dp} c_m^i)}{V_m} + \frac{3.4$

\mathbf{V}_{m}	volume of sediment, m ³
$A_{\boldsymbol{w}} \text{ and } A_{\boldsymbol{m}}$	surface areas of water and surface sediment, respectively, m ²
k _m	decay rate constant of the contaminant in the surface layer, day^{-1}
Vb	burial velocity, m/day
Vs	settling velocity of particulate matter, m/day
Vr	resuspension velocity of sediments, m/day
Vd	diffusion mass-transfer coefficient at the sediment, water and deep
	sediment interface, m/day
$c_s^i(0)$	$i^{\mbox{th}}$ contaminant concentration at the top of the deep contaminated
	layer, ng/L
$c_w{}^i$ and $c_m{}^i$	concentrations of contaminant i in water and surface sediment,
	respectively, ng/L
t	Time, day
F _{pw} , F _{dw}	fraction of contaminant in particulate and dissolved forms in the
	water, respectively
F_{dp}	ratio of contaminant concentration in the sediment pore water to
	contaminant concentration in total sediment

As the major transport processes, settling, resuspension, burial and diffusion are considered. For transformation mechanisms, anaerobic dehalogenation (biodegradation) is considered as the only dominant process in sediment. In the mechanisms of burial, resuspension and biodegradation, the contaminant is considered in both dissolved and particulate phases while the mechanisms of settling and diffusion happen only in particulate and dissolved phases, respectively. As different from the Recovery model, in our model contaminant concentration in water column is accepted as constant.

3.3.5 FTHP Model Computer Program

The model is developed in MatLAB, version 7.10.0 and run for individual congeners. The flowchart of the model is given in Figure 3.9 and indicates the solution of Runge Kutta fourth order (RK4). As with the Recovery Model for mixed sediment, RK4 is derived. RK4 is used for numerical solution of ordinary differential equations. Firstly, the general model equation in Recovery model is divided by V_m on both sides to simplify the equation:

$$\frac{dc_m^i}{dt} = -k_m c_m^i + \frac{v_s A_w F_{pw} c_w^i(0)}{V_m} - \frac{v_r A_m c_m^i}{V_m} - \frac{v_b A_m c_m^i}{V_m} - \frac{v_b A_m c_m^i}{V_m} - \frac{v_d A_m (F_{dw} c_w^i(0)) - F_{dp} c_m^i)}{V_m} + \frac{v_d A_m (F_{dp} c_s(0) - F_{dp} c_m^i)}{V_m} - \frac{v_d A_m (F_{dp} c_s(0) - F_{dp} c_m^i)}{V_$$

In RK4, the following equation is obtained by k₁, k₂, k₃ and k₄:

$$c_m^{i,t+1} = c_m^{i,t} + \frac{\Delta t}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$
3.6

where;

$$k_1 = f(t^n, c_m^{i,t})$$

$$k_2 = f(t^n + \frac{\Delta t}{2}, c_m^{i,t} + \frac{\Delta t}{2}k_1)$$

$$k_3 = f(t^n + \frac{\Delta t}{2}, c_m^{i,t} + \frac{\Delta t}{2}k_2)$$

$$k_4 = f(t^n + \Delta t, c_m^{i,t} + \Delta tk_3)$$

By using expressions above, the k_1 , k_2 , k_3 and k_4 values are derived as below to use in the RK4 approach:

$$k_{1} = -k_{m}c_{m}^{i,t} + \frac{v_{s}A_{w}F_{pw}c_{w}^{i}(0)}{V_{m}} - \frac{v_{r}A_{m}c_{m}^{i,t}}{V_{m}} - \frac{v_{b}A_{m}c_{m}^{i,t}}{V_{m}} - \frac{v_{b}A_{m}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dw}c_{w}^{i}(0) - F_{dp}c_{m}^{i,t})}{V_{m}} + \frac{v_{d}A_{m}(F_{dp}c_{s}^{i}(0) - F_{dp}c_{m}^{i,t})}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i}(0) - F_{dp}c_{m}^{i,t})}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i}(0) - F_{dp}c_{m}^{i,t})}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}}}{V_{m}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_{m}}} - \frac{v_{d}A_{m}(F_{dp}c_{s}^{i,t}) - F_{dp}c_{m}^{i,t}}{V_$$

$$k_{2} = -k_{m}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{1}) + \frac{v_{s}A_{w}F_{pw}c_{w}^{i}(0)}{V_{m}} - \frac{v_{r}A_{m}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{1})}{V_{m}} - \frac{\frac{v_{b}A_{m}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{1})}{V_{m}}}{-\frac{v_{d}A_{m}\left(F_{dw}c_{w}^{i}(0) - F_{dp}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{1})\right)}{V_{m}}}{+\frac{v_{d}A_{m}\left(F_{dp}c_{s}^{i}(0) - F_{dp}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{1})\right)}{V_{m}}}$$

$$(3.8)$$

$$k_{3} = -k_{m}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{2}) + \frac{v_{s}A_{w}F_{pw}c_{w}^{i}(0)}{V_{m}} - \frac{v_{r}A_{m}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{2})}{V_{m}} - \frac{\frac{v_{b}A_{m}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{2})}{V_{m}}}{-\frac{v_{d}A_{m}\left(F_{dw}c_{w}^{i}(0) - F_{dp}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{2})\right)}{V_{m}}}{+\frac{v_{d}A_{m}\left(F_{dp}c_{s}^{i}(0) - F_{dp}(c_{m}^{i,t} + \frac{\Delta t}{2}k_{2})\right)}{V_{m}}}$$

$$(3.9)$$

$$k_{4} = -k_{m}(c_{m}^{i,t} + \Delta tk_{3}) + \frac{v_{s}A_{w}F_{pw}c_{w}^{i}(0)}{V_{m}} - \frac{v_{r}A_{m}(c_{m}^{i,t} + \Delta tk_{3})}{V_{m}} - \frac{v_{b}A_{m}(c_{m}^{i,t} + \Delta tk_{3})}{V_{m}} - \frac{v_{d}A_{m}(F_{dw}c_{w}^{i}(0) - F_{dp}(c_{m}^{i,t} + \Delta tk_{3}))}{V_{m}} + \frac{v_{d}A_{m}(F_{dp}c_{s}^{i}(0) - F_{dp}(c_{m}^{i,t} + \Delta tk_{3}))}{V_{m}}$$

$$(3.10)$$

Figure 3.9 Flowchart of the FTHP Model

Items	Unit	Descriptions
c _m ⁱ , Cm	ng/L	Concentration of contaminant i in surface sediment
Cmtnew	ng/L	Concentration of each congener calculated in each time step of
		FTHP model
Degraded	-	An array including sum of two arrays; Degradedm and Degradedd.
Degradedd	-	Array to which biodegradation rates of the congeners which are
		accumulated (increased) are filled.
Degradedm	-	Array to which biodegradation rates of the congeners which are
		degredaded (decreased) are filled
F_{dp}	-	Ratio of contaminant concentration in the sediment pore water to
		contaminant concentration in total sediment
F_{dw}	-	Fraction of contaminant in dissolved forms in water
F_{pw}	-	Fraction of contaminant in particulate form in water
k1, k2, k3 and		Calculated terms in RK4.
k4		
k _m , kval	d^{-1}	Biodegradation rate constant of a dehalogenation pathway
		estimated for mixed surficial sediment
Sol	mg/L	Solubility of the congeners
sumkvalm	d^{-1}	An array including k _m values of mother congeners
ti	day	Initial time
t _f	day	Final time
Δt	day	Time step

Table 3.5 Descriptions of items used in FTHP flow chart

In the program, firstly partitioning coefficients (F_{pw}, Fd_w aand F_{ds}) are estimated. The concentration of each congener in surface sediment is estimated for each time step defined in the model. Degradedd and Degradedm are the arrays considering biodegradation rate of each congener for daughter and mother congeners, respectively. In the calculation of **Degradedd** and **Degradedm**, concentration is compared with solubility limit of corresponding congener, then it is multiplied by the km value (Figure 3.9). The flowchart above indicates the code of RK4 solution of FT Model equations given by equations 3.5 to 3.10. This code is used during calibration, validation, sensitivity analysis and uncertainty analysis. The relationships between these analyses and use of the code of RK4 solution are demonstrated in Figure 3.10. In calibration procedure, the code of RK4 solution is called to test parameters by considering 50% and 150% of values and/or ranges given in the literature or data set. Calibration is conducted until no further improvement can be achieved in model predictions. Then, the code of RK4 solution is called again to test the calibrated model with a different data set (C_m values) for validation. Then, the most sensitive parameters and input that affect the predicted concentration the most are determined by considering 50% and 150% of values and/or ranges of parameters/input. Finally, uncertainty analysis is conducted. For this purpose, distributions of the most sensitive parameters/input are assumed and the code of RK4 solution is run for 1000 times using Monte Carlo Simulation. Hence, model is developed. These steps and all input are explained in detail in section 3.3.8. Lastly, the developed FTHP model is used to predict sediment PCB and PBDE concentrations according to selected scenarios for the next 20 years.

Figure 3.10 Steps of FTHP model development and application

Program input and output files are depicted in Figure 3.11-Figure 3.13, Figure 3.16 and Figure 3.17. Input and output files are in Excel documents. The details about them are explained in the following paragraph considering cell names in Excel.

In Figure 3.11, Figure 3.12 and Figure 3.13, input files of FTHP model are depicted. The names of all input in this sheet are expressed below:

A1: number of congeners

B1: number of pathways

C1: initial time modeling is started (day)

D1: final time modeling ends

E1: Δt selected for numeric solution (day)

F1: the number of data measured at different times. This value is important and used during calibration/validation process.

A4:G42: IUPAC no of congeners measured in sample. Up to seven congeners can be written.

H4:H42: Initial concentration of congeners in surficial sediment, ng/L

I4:I42: Initial concentration of congeners in water column, ng/L

J4:J42: Initial concentration of congeners in deep sediment, ng/L

K4:K42: molecular diffusion coefficients of congeners, cm²/s

L4:L42: Octanol water partitioning coefficients of congeners

M4:M42: Solubilities of congeners, mg/L

N2: Yes/No button to ask whether simulation is done for calibration/validation or not. If it is yes, goodness of fit parameters are performed between predicted and measured data. O1:U43: Mother Congeners in pathways.

V1:AB43: Daughter Congeners in pathways.

AC1:AC43: Biodegradation rate constants, day⁻¹.

AI1: Depth of water column, m.

AI2: Area of water column, m².

AI3: Depth of surficial sediment, m.

AI4: Area of surficial sediment, m².

AI5: TSS concentration, g/m^3 .

AI6: Sediment porosity.

AI7: Sediment density, g/m^3 .

AI9: Organic carbon fraction in water column.

AI10: Organic carbon fraction in surficial sediment.

AI11: Characteristic length, m.

AI13-AI15: settling, resuspension and burial velocities, m/day.

AL2:AR29: IUPAC no of congeners measured in sample.

AS1:AX1: Day of sampling.

AS2:AX29: Concentration of congeners measured in surficial sediment, ng/L.

The uncertainty analyses of parameters in Inputfile-1 and Inputfile-2 are conducted by using files in Figure 3.14 and Figure 3.15, respectively. In these figures, the distributions of parameters assumed are written to shaded cells.

There are two output files, Out 1 and Out 2 which are demonstrated in Figure 3.16 and Figure 3.17, respectively. In Out 1 file, the predicted concentration of each congener

in surficial sediment is given for each delta t interval. In Out2 file, goodness of fit parameter, R2 and RMSE of each congener is calculated during calibration/validation process. Additionally, predicted concentration at times when measured concentration for each congener is given, is calculated by the model.

(day), final time (day), Δt (day) and number of pathways, initial time number of measured data

96

Figure 3.13 Input-3 for Calibration and Validation

AA	-	ance	٨	0.21	0.01	0.11	0.03	0.20	0.06	0.29	0.22	0.04	0.04	0.09	0.05	0.17	0.06	0.11	0.16	0.42	0.11	0.08	0.32	0.09	0.11	0.03	0.07	0.03	0.21	0.03								1
_	ognorm	vari	Kov	5.06	5.68	5.72	5.75	5.84	6.03	5.79	6.05	6.10	6.09	6.34	6.30	6.24	6.44	6.29	6.64	6.40	6.70	6.60	6.81	6.62	6.92	7.12	7.10	7.06	7.89	6.85								
Z		avg	Kow	36	76	33	86	67	38	26	87	31	39	67	64	97	63	85	21	64	42	28	35	35	90	46	40	40	05	12								-
>	MO	тах	Kow	5.	2 5.	3 6.	5.	9	3 6.	1 6.	3 7.	.9	2 6.	0.6	6.	.9	3 6.	6.	5 7.	2 7.	1 7.	1 7.	7 8.	2 7.	.7	3 7.	5 7.	5 7.	9.	7 7.								
×	×	min	Kow	4.15	5.52	4.38	5.48	4.79	5.73	3.91	5.30	5.80	5.72	6.10	5.96	5.60	6.18	5.45	6.26	4.13	6.2	6.1	4.97	6.3	6.3	6.8	6.56	6.76	7.35	6.57								
×		ariance	E																																			-
>		2	D																																			•
D		av	Du																																			-
	Dm	max	Dm																																			-
-		a min	Dm																								_											-
s		variano	Cs																																			
۲		avg	Cs																																			
ø		тах	Cs																																			
٩	ő	. <u>e</u>	2																																			-
0	al	riance m	Ŭ	0.0000	0.0000	0.00002	0.0000	0.00001	00000.0	0.00001	0.00001	0.00003	0.00001	0.0000	0.0000	0.00024	0.0000	0.0000	0.00003	0.00001	0.00002	0.0000	0.00003	00000.0	0.00002	00000.0	0.0000	0.0000	0.0000	00000.0								-
z	Lognorm	vai	CM	00119	00167 (01260 (00685 (00651 (00348 (01075 (00452 (00930	00603 (00250 (00061 (02840 (00228 (00395 (01021 (00642 (00698	00375 () 66200	00074 (01142 (00105 (00222 (00261 (00047 (00146 (-
_		avg	CW	0.0	0.0	1795 0.0	1013 0.0	1261 0.0	0.0	1888 0.0	0.0	1.0 0.01	0.0 7860	0.0	0.0 7010	5324 0.0	0.0	0.0 0.0	2472 0.1	1363 0.0	1667 0.0	0.1	1.0 0.01	0.0	1717 0.0	0.134 0.1	0.0	0.0	0.112 0.0	0.0								-
2	CM	max	CW	000 0.00	000 0.00	36 0.0	121 0.0	86 0.0	148 0.00	0.0 0.0	22 0.0	000 0.03	11 0.0	85 0.0	000 0.00	52 0.0	0.0	86 0.0	95 0.0	12 0.0	53 0.0	45 0.0	0.0	000 0.00	23 0.0	0.0	000 0.00	0.0	000 0.00	0.00								-
-		ä	CW	0.00	0.00	0.06	0.002	0.00	0.00	0.005	0.00	0.00	0.001	0.00	0.00	0.011	0.00	0.00	0.002	0.00	0.001	0.001	0.002	0.00	0.00	0.00	0.00	0.00	0.000	0.00								
¥		variance	Cm																																			
-		BVB	m																																			
-		ax	u u																																			-
н	g	5	Ū																																			-
U		Ē	Cm																																		_	-
ш																																						
ш																																						+
٥			ers																																			Out2
U			Congen																				153															Out1
						31					60		76			92						149	132		163	190		187	208									tainty
8	27	#		16	26	28	33	44	49	52	56	66	70	74	81	84	85	87	<u>66</u>	01	18	23	05	51	38	70	80	82	<u>95</u>	46								Uncei
A		ongener,						,	,			-				-				Ŧ	÷	1	1	÷	Ŧ	1	Ŧ	Ŧ	H	7								4
-	-	2 C	m	4	s	9	7	00	σ	10	Ħ	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	5	32	33	34	35	36	37	

Figure 3.14 Uncertainty File-1 for Values in Input file 1

99

BG					Uniform										Uniform	Distributions	
H					0.162										_	ariance I	
끮					0.942											vg V	
8					2.41										1.5	ax a	
g					0.2										0.5	in m	
8														000994	1.5	E	
		00	0.031	0000	2.41	0.953	0000		0.09	0.05	0.01			0.0			
BA	48.1	44250000		442500			254						Inknown	nown	nown		
									t solids	t solids				×	X		
ΡZ	ε	m2						S	gC/gdry w	gC/gdry w		ities:	λ	٨	λ		
			ε	m2	E/m3		€/m3	ry wt solid	ater g-or	nent g-or	ε	hree veloc	m/dâ	m/dâ	m/da		
AY	Depth, m	Surface Area, m2	oth, m	face Area, m2	pended solids concentration in water,SS	liment porosity	liment particle density,	Fraction organic carbon, g-orgC/gd	×	Sedir	rracteristic Length	Two of the following t	uspension velocity, vr	ial velocity, vb	tling velocity, vs		
¥	uur	colt	er er	Sur Sur	Sus	Sec	, Sec	səit	ьe	ьго	. ස	15 Å	s Re	Bur	Set		
V AW	at er	-771	ib	əs													
T AU	ро	E-05	0015	E-05	7E-06	1251	0273										
S S	varia	5047 2.22	8988 0.0	5307 1.91	3163 4.47	8355 0.00	6781 0.00										
Ä	avg	593 0.00	0.00	466 0.00	106 0.00	422 0.01	956 0.00										
AF	тах	0 0.026	-04 0.053	507 0.021	024 0.01	813 0.123	0 0.128										
AAN AG	min		Ħ	0.00	0.001	0.001											
AA AA	Lognormal	33	49	99	66	101	99										
AAIAI																	
AE					153												
P	k			163	132												
AC		99	101	138	105	146	151										
4																	

Input file 2	-
s in	
Value	
for	
e-2	
ΕÏ	
Uncertainty	•
15	
Э	
Figure	2

 B
 C
 D
 E
 G
 H
 L
 M
 N
 O
 P
 G
 F
 G
 M
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 126.1819 128.2056 127.6965 127.1895 126.6847 124.6861 123.6992 122.2343 119.833 121.75 117.4812 116.5542 116.0935 115.6348 115.178 114.723 TC 111 125.6812 125.1826 124.1916 123.2089 122.7206 121.2678 120.7875 120.3093 119.3587 118.8864 118.4161 117.9477 117.0167
 83
 53.98184
 1

 759
 53.95794
 1

 335
 53.93406
 1

 i66
 53.8625
 1

 (A3
 53.83867
 1

 (A1
 53.83867
 1

 (A1
 53.83867
 1

 (A1
 53.83867
 1

 (A1
 53.83867
 1

 (A1
 53.83867
 1

 (A1
 53.7573
 1

 (A1
 53.74574
 1

 (A1
 53.74354
 1

 (A2
 53.713797
 1
 712 53.91019 1 .88 53.88633 1
 1422.237
 744,966
 331.0694
 30.86936
 616.5721
 280.8979
 262.7402
 483.5093
 776.329
 273.6608
 912.596
 70.11667
 1016.726
 197.6867
 399.4923
 139.2975
 53.64865

 1418.32
 744.5072
 330.8653
 30.85205
 616.2817
 280.7432
 247.316
 477.326
 177.539
 910.4225
 69.86748
 197.5487
 399.2758
 139.2455
 55.62497
 140.1858 54.05363 140.1333 54.02969 1 AD 0908 54.00576 139.3495 53.67235 139.1936 53.6013 139.1417 53.57765 139.0899 53.55401 139.0381 53.53039 138.9863 53.50678 138.9345 53.48319 138.8828 53.45962 138.8311 53.43606 138.7795 53.41251 138.7279 53.38898 115 53.69606 surficial sedimentby the model 2 525.646 783.376 275.8641 948.1148 74.23052 1087.858 199.4292 402.9756 523.308 782.927 777 77 704 5657 779 56677 709 767 709 767 707 7750 for each congener and each 908.2544 69.61921 1008.181 197.4387 399.0595 1159,801 322,666 305,1634 471-261 743,5051 1410,519 743,5094 330,4575 30,81745 615,7013 280,4339 262,3038 447,948 483,0271 775,0159 273,2503 906,0917 69,37185 1003,936 197,3288 398,8432 398.6272 280.125 262.0133 458.3294 478.7555 774.1419 272.977 901.7823 68.87983 995.5033 197.1092 398.4112 747.6343 1398.896 742.2174 329.8468 30.76563 614.8321 279.9708 261.8683 463.4554 476.6345 773.7053 272.8405 899.6355 68.63518 991.3144 196.9995 398.1954 747.1613 1395.043 741.7604 329.6435 30.74839 614.5428 279.8166 261.7233 468.6185 474.5233 773.269 272.7041 897.4941 68.39142 987.1439 196.8899 397.978 261.5784 473.7287 472.4218 772.833 272.5678 895.3581 68.14855 982.9918 196.7804 397.7643 261.4336 478.8161 470.3301 772.3973 272.4316 893.2272 67.90657 978.8578 196.6709 397.5489 527.9949 783.8189 276.0025 950.3819 74.49574 1092.472 199.5405 403.1945 397.3337 397.1186 **Predicted concentration in** 399.709 1021.027 197.7688 197.219 466.1755 771.5266 272.1594 888.9815 67.42527 970.6441 196.4522 771.9618 272.2954 891.1017 67.66548 974.7419 196.5615 time step, ng/L 999.7105 70.36677 1159.07 325.6923 394.7187 307.2754 471.6511 748.5812 1406.634 743.1324 330.2538 30.80017 615.4114 280.2794 262.1585 453.1502 480.8864 774.5787 273.1136 903.9343 65.12539 914.7749
 7514294
 1430.103
 745.8846
 331478
 30.90403
 617.1537
 281.2078
 263.0316
 421.5859
 493.8811
 777

 750.9539
 1426.165
 745.4252
 331.2736
 30.88669
 616.8628
 281.0528
 265.3054
 491.6901
 777
 273.7979
 749.5294 1414.414 744.0486 330.6613 30.83474 615.9914 280.5885 262.4492 442.7224 485.1779 775.4533 273.387
 750.0331
 333.323
 310.431
 321.6645
 322

 750.0331
 333.323
 31.06059
 619.779
 282.6072
 264.3477
 372.6307
 514.6895
 783

 750.0331
 333.3178
 31.04315
 619.4794
 282.4513
 264.3011
 317.6307
 514.0895
 783
 783

 143.362
 748.6476
 32.707
 31.0083
 618.9028
 282.1398
 263.9081
 3063.1671
 507.242
 773

 733.8114
 1449.958
 748.1863
 32.5018
 30.99089
 618.6108
 281.9642
 263.766
 500.4867
 720
 723

 733.8114
 1449.956
 747.724
 332.5018
 30.99089
 618.6108
 281.9642
 263.756
 30.46069
 502.473
 778

 733.813
 1430.4565
 747.2647
 320.9918
 618.019
 281.6733
 263.4695
 502.433
 778

 752.8313
 1434.193
 747.6647
 332.1871
 203.39374
 617.756
 283.4365
 505.1337
 778

 752.8313
 1434.103
 746.647
 331.8871
 33.18871
 203.3334
 617.746
 783
 778

 75.3313
 746.6444
 31.8871
 30.33138
 617.746
 283.3244
 410.8756
 496.0823
 778

 77.952.52
 743.4464
 817.4447
 283.3424
 263.6126
 496.0823
 777

</tabu/ 619.195 282.2955 264.0546 383.6794 509.5057 780 468.248 261.2888 483.8808 1490.492 752.8123 334.5596 31 15547 621.5393 283.5447 265.2294 338.8903 261.1442 488.9229 757,6388 1482. Congeners (first congeners of 746.6886 1391.201 741.3036 329.4403 30.73115 614.2536 279.6625 746.2162 1387.369 740.8472 329.2373 30.71392 613.9646 279.5085 745.7442 1383.547 740.391 329.0344 30.69671 613.6758 279.3547 613.3873 279.2009 1402.76 742.6748 330.0502 30.7829 615.1216 749.1091 332.9123 31.02572 321.739 469.7314 745.2724 1379.736 739.9351 328.8316 30.6795 750.4788 1422.237 1462.002 1466.038 1457.976 1470.0 1474.1 757.1592 1478.2 758.1186 1486.3 758.5987 756 60 750.0039 748.1076
 1174.512
 259.891
 399.8106
 260.4078
 477.4631

 1173.772
 263.1371
 399.5665
 262.763
 477.1845

 1173.772
 263.1371
 399.5665
 262.763
 477.1845

 1173.032
 266.3717
 399.3226
 265.1054
 476.9061
 1161.995 313.5361 395.6832 298.7573 472.752 1172.293 269.5949 399.0789 267.4353 476.6279 283.3948 474.6856 285.6255 474.4088 298.094 396.8924 287.8441 474.1322 290.0507 473.8558 292.2452 473.5796 1163.461 307.3923 396.1664 294.4278 473.3036 1162.728 310.4697 395.9247 296.5985 473.0277 1161.263 316.5915 395.4418 300.9044 472.4765 1160.532 319.636 395.2006 303.0397 472.2012 1158.34 328.7042 394.4779 309.3759 471.3763 1157.611 331.7053 394.2374 311.4649 471.1017 1156.881 334.6956 393.9969 313.5424 470.8273 393.7567 315.6085 470.5531 470.279 393.2766 319.7068 470.0051 75 0107 1171 555 777 0067 300 0353 760 7575 A76 3400 Time steps, days 317.6633 1167.133 291.8395 397.3772 1166.397 294.9723 397.1347 1164.928 301.2045 396.6503 1164.194 304.3039 396.4083 340.6441 393.5165 1153.97 346.5498 393.0368 1156.153 337.6752 343.6023 1165.662 1155.425 1154.697 60.0291 75.08217 59.99056 75.03643 54 75487 7A 76758 60.88327 76.09614 60.84418 76.04973 60.80511 76.00336 60.76607 75.95701 60.49349 75.63344 75.58734 60.41584 75.54127 60.37705 75.49522 60.33829 75.44921 60.29955 75.40322 60.26084 75.35727 60.22216 75.31135 60.18349 75.26545 60.14486 75.21959 60.10625 75.17375 60.06766 75.12795 59.95205 74.99071 59.91357 74.94503 59.8751 74.89937 59.83667 74.85374 59.79826 74.80815 60.45465 60.72705 14 50.649 15 60.6101 60.5323U 60.6880 60.5712 30 19 20 11 2 13 16 17 18 21 22 23 23 23 25 25 25 25 27 28 29 22 33 35 1

Figure 3.16 Output File-Out1

0 m	2		-	ian + TSS=2	.41 mg/l					•					-
	\$	ongeners		R2 F	RMSE	0	73	74	408	664	0	73	74	408	664
	16			0.17	34.30	17.30558	16.54043	16.5302	13.46014	11.51988	17.30558	90.35518	35.18394	20.23083	17.78276
4	26			0.41	36.25	53.91463	51.63452	51.60404	42.45538	36.67353	53.91463	129.5073	53.08223	27.737	19.77304
5	28	31		0.44	538.15	852.5267	814.6845	814.1785	662.341	566.3813	852.5267	1968.051	859.8123	465.5156	288.9548
5	33			0.42	74.87	165.397	158.6979	158.6083	131.7288	114.7412	165.397	320.7583	152.6179	104.4827	83.37482
1	44			0.24	114.18	269.1866	257.8435	257.6918	212.1788	183.4151	269.1866	504.1719	273.1087	272.3039	209.041
~	49			0.40	114.76	166.36	159.4837	159.3917	131.8012	114.3643	166.36	409.2362	200.8726	115.5119	75.74162
0	52			0.38	231.79	331.9271	318.8148	318.6394	266.0278	232.7778	331.9271	821.8611	427.0393	263.9211	170.9295
0	56	60		0.45	245.45	504.8392	482.3739	482.0735	391.9343	334.9673	504.8392	1006.474	612.9463	456.4564	262.3764
-	99			0.43	706.34	1032.3	1022.094	1021.933	945.6131	870.0055	1032.3	2514.4	1432.985	887.8898	561.283
2	70	76		0.39	342.27	516.317	494.2047	493.909	405.1858	349.1136	516.317	1226.985	697.3024	453.0006	277.6252
m	74			0.44	141.83	241.4166	231.0209	230.8819	189.1707	162.8096	241.4166	535.135	242.6517	139.3179	88.8424
4	81			0.14	55.95	24.10007	56.18919	56.54362	106.9015	108.7133	24.10007	51.81855	38.25938	32.00147	10.27278
5	84	92		0.29	170.37	296.4708	290.613	290.5347	267.031	252.177	296.4708	621.442	424.5818	391.3021	204.5706
9	85			0.01	120.74	188.0232	222.0371	222.3998	262.1179	250.1751	188.0232	447.0083	327.8783	247.6559	145.5579
7	87			0.06	107.51	192.0836	217.9913	218.2631	243.8187	229.9557	192.0836	399.9	233.9738	171.0673	91.53108
00	66			0.09	145.58	188.9478	237.1655	237.6937	308.7758	306.8436	188.9478	483.5548	333.9801	239.617	130.2025
6	101			0.32	283.91	365.67	352.1282	351.9471	297.6122	263.273	365.67	923.4435	592.9503	432.5766	245.6198
0	118			0.26	450.21	411.8202	371.6113	371.0921	236.4315	171.9714	411.8202	1113.787	954.57	528.0926	364.566
-	123	149		0.21	184.86	146.4172	133.3117	133.1425	89.25188	68.24209	146.4172	456.258	350.2629	204.1615	147.1612
5	105	132	153	0.24	498.13	509.2828	491.8003	491.5665	421.4201	377.0882	509.2828	1300.147	1181.18	730.8751	503.1783
8	151			0.25	48.18	45.20572	43.64933	43.62852	37.38371	33.43705	45.20572	137.7337	92.77077	53.60849	42.19744
4	138	163		0.13	811.72	575.0352	408.4388	406.5652	108.3732	59.40762	575.0352	1601.452	1497.694	846.8974	427.0847
5	170	190		0.21	126.67	100.2054	91.07731	90.95909	59.94083	44.74856	100.2054	307.724	240.0988	152.4597	94.5915
9	180			0.17	236.04	196.6083	178.1982	177.9604	116.3044	86.79055	196.6083	572.154	452.5162	295.2612	213.1272
2	182	187		0.18	91.21	75.30396	74.56948	74.55966	71.61265	69.75017	75.30396	236.7468	187.6995	118.0677	88.17962
	195	208		0.10	42.68	25.57248	25.18671	25.18156	23.63369	22.65546	25.57248	99.26309	75.23594	53.72529	37.20424
6	146			0.17	71.60	66.54396	77.55945	77.69832	109.6835	120.4452	66.54396	197.1723	168.6628	102.7089	65.6275
0			FOTAL	0.366	5515.81	7558.781	7278.92	7275.177	6152.189	5442.443	7558.781	18476.54	12139.92	7806.446	4866.397

Figure 3.17 Outputfile-Out2 for Calibration and Validation

3.3.6 **Estimation of Model Parameters**

A general list of input parameters needed for the model is listed in Table 3.6. While some parameters (e.g., bulk density, porosity) are used in model equations directly, others (e.g., Kow, molecular diffusivity) are used to calculate certain parameters which are then used in the model equations. All equations used to estimate parameters are explained in this section, grouped according to the F&T processes in the general model equation.

Table 3.6 Input Parameters needed for the model

Biodegradation Term: The biodegradation rate constants are obtained as the output of ADM, and used as input in the FTHP model. Since the model is developed for

• Degradation Rate constants

• Organic carbon fraction in water and sediment (foc)

individual congeners, k_m values should be given in terms of the accumulated (daughter) and dehalogenated (mother) congeners.

$$\frac{dc_m}{dt} = -k_m c_m \tag{3.11}$$

<u>Settling/Resuspension/Burial Terms:</u> The velocities of settling, resuspension and burial, and particulate fraction of the contaminant should be estimated. The velocities are predicted by conducting a solid mass balance.

$$\frac{dc_m}{dt} = \frac{v_s A_w F_{pw} c_w(0)}{V_m} - \frac{v_r A_m c_m}{V_m} - \frac{v_b A_m c_m}{V_m}$$
3.12

As in Recovery model (Boyer et al., 1994; Ruiz et al., 2001), the equation below is used to predict one of the three velocities under steady state conditions (Figure 3.18). The same equation is also available in Chapra (1997). To use this equation, two of these velocities should be known.

Figure 3.18 Solid Mass Balance in Sediment

Linear sorption is assumed for the contaminant in solid and dissolved phases. The settling of the contaminant in particulate phase occurs. Then, particulate fraction of contaminant in the water is calculated using the equation below (Boyer et al., 1994; Ruiz et al., 2001).

$$F_{pw} = \frac{K_{dw}S_w}{1 + K_{dw}S_w}$$

=
$$\frac{Mass of A (Particulate form)}{Mass of A (Dissolved form) + Mass of A (Particulate form)}$$
 3.14

Where K_{dw} is equilibrium partitioning coefficient in water column (L/kg). Sw is suspended solid concentration in water column (g/m³). To estimate the equilibrium partitioning coefficient in both water and sediment, the equation selected by the Recovery model (Boyer et al., 1994; Ruiz et al., 2001) is used.

$$K_d = 0.617 f_{oc} K_{ow}$$
 3.15

Where K_{ow} is octanol-water partitioning coefficient (mg/m³- octanol/ mg/m³-water). The term f_{oc} is fraction of organic carbon in solid (g-orgC/g). By using different f_{oc} values for water and sediment, partitioning coefficients are obtained for the water column and sediment.

<u>*Diffusion Term*</u>: As can be seen in diffusion term, volume of surface sediment, mass transfer coefficient for diffusive sediment-water exchange and fractions (F_{dw} and F_{dp}) should be calculated.

$$\frac{dc_m}{dt} = -\frac{v_d A_m (F_{dw} c_w(0) - F_{dp} c_m)}{V_m} + \frac{v_d A_m (F_{dp} c_s(0) - F_{dp} c_m)}{V_m}$$
 3.16

The mass transfer coefficient is calculated by the equation below (Boyer et al., 1994; Ruiz et al., 2001).

$$v_d = \frac{\varphi D_s}{z'} \tag{3.17}$$

where Ds is molecular diffusivity (cm^2/s)

In the calculation of v_d , molecular diffusivity is unknown. It is calculated by the below equation (Boyer et al., 1994; Ruiz et al., 2001).

$$D_s = D_m \varphi^2 \tag{3.18}$$

where D_m is the molecular diffusion (cm²/s) and φ is the porosity.

In the diffusion of the contaminant in water and pore water, dissolved fraction of contaminant is calculated by the equations below (Boyer et al., 1994; Ruiz et al., 2001).

$$F_{dw} = 1 - F_{pw} = \frac{1}{1 + K_{dw}S_w}$$

=
$$\frac{Mass of A (Dissolved form)}{Mass of A (Dissolved form) + Mass of A (Particulate form)}$$
 3.19

$$F_{dp} = \frac{1}{\varphi + (1 - \varphi)\rho K_{ds}}$$

=
$$\frac{Mass of A (Dissolved form)}{Mass of A (Dissolved form) + Mass of A (Particulate form)}$$
 3.20

3.3.7 Model Stability and Accuracy

The selected equation in Recovery Model is a first-order ordinary differential equation (ODE). When numerical solution is applied to ODEs, accuracy of results is dependent on magnitude of time intervals (Ramaswami et al., 2005). In other words, the numerical solution is computed by combining linear relationship between two points (t and Δ t+t). However, true solution has nonlinearity and derivatives. Therefore, selected time interval is important to estimate the true solution. Two types of errors occur while defining the accuracy of numerical integration (Ramaswami et al., 2005).

One of them is truncation error which means the difference between actual value and numerically estimated value in each time step. To decrease the truncation error, Δt is reduced (Ramaswami et al., 2005). This causes the second type of errors, round-off error. The round-off error occurs by the elimination of values during computing due to a limited number of significant digits in the computer. This is solved by increasing time step. There is an inverse relationship between two errors. To arrange the time step, Ramaswami et al. (2005) explain that the stability and accuracy of numerical integration can be checked by two ways; (i) analytical solution if it can be applied, and (ii) varying time steps by reducing it until no further change between model predictions is evident.

In this study, the second way is considered for the stability and accuracy of the model since solution of analytical solution is not available due to nonlinear ODE. Ramaswami et al. (2005) state that 4th order Runge Kutta method has more accuracy and stability than Euler, predictor-corrector methods as Δt is made smaller.

One of the operations in the FTHP model is to control Cmin and Cmax of individual congener in each time step. Cmax is the stability criteria for the system i.e., maximum allowable segment concentration for each system for the first order assumption. Cmin is the Accuracy Criteria.

Biodegradation is assumed to be first order in the FTHP model. This assumption is acceptable and true for most chemicals at environmental concentrations (Ambrose et al., 1983); however, it is not acceptable for concentrations near the solubility limit (Ambrose et al., 1983). EXAMs model is stopped if predicted concentration is higher than one half of the solubility limit, whereas in TOXIWASP, the model is stopped if the predicted concentration is equal or higher than one half of the solubility limit. Cmin is not used by TOXIWASP due to numerical difficulties. Taking into account these issues, in our study, Cmax is compared with the solubility limit of the contaminants as

was done in TOXIWASP in each time step. A control is performed on Cmin, such that Cmin concentrations are not allowed to have negative values.

3.3.8 Model Calibration, Validation, Sensitivity and Uncertainty Analyses

Model calibration is defined by Zheng and Bennett (2002) as "the process in which model input parameters are adjusted, either manually or through formal mathematical procedures, until the model output matches the field-observed conditions satisfactorily". After model is calibrated, it should be validated with a different data set to confirm the model before using it for future prediction confidently (Chapra, 1997). The aim of the validation is expressed by Suk and Fikslin (2011) that calibrated model represents properly working of the model under all conditions. Schnoor (1996) states that while validation is conducted, coefficients and rate constants are the same as that in calibration. In this manner, it is proven that the model works properly.

The model calibration and validation are assessed by using statistical goodness of fit criteria between observed and predicted contaminant concentrations. Under the scope of this study, cosine theta ($\cos \theta$), pearson correlation coefficient (r), the root mean of squared errors (RMSE) (Zheng and Bennett 2002) and the multiple correlation coefficient (R^2) are used for the evaluation of the model performance. The better the fit, the closer R^2 approaches to "1". In this study, when R^2 is higher than 0.5, the fit is considered to be acceptable and satisfactory. The equations of the measures are listed below:

$$r = \frac{\sum_{i=1}^{N} (cal_i - \overline{cal})(obs_i - \overline{obs})}{\sqrt{\sum_{i=1}^{N} (cal_i - \overline{cal})^2 (obs_i - \overline{obs})^2}}$$
3.21

$$RMSE = \left[\frac{1}{N}\sum_{i=1}^{N} (cal_i - obs_i)^2\right]^{1/2}$$
3.22

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (obs_{i} - cal_{i})}{\sum_{i=1}^{N} (obs_{i} - \overline{obs})}$$

$$3.23$$

where N is the total number of observations, cal and obs are the calculated and observed values in the model, respectively, and \overline{cal} and \overline{obs} are the means of the calculated and observed values, respectively. A perfect fit is indicated by a zero for RMSE, and 1 for R² (changes between 0 and 1). Schnoor (1996) states that "model results should be within one order of magnitude of the field concentrations at all times" or "RMSE should be a minimum prescribed or optimal value". r changes between -1 and 1. For +1, the correlation is a perfect increasing linear relationship while the correlation is a poor linear relation for -1. cos θ indicator is the similarity between two data using angular profile of predicted and measured data.

Sensitivity analysis is carried out to identify parameter(s) in the model that affect the predicted concentration the most (Allan and Stegemann 2007). Sensitivity analysis is performed considering the following steps: (i) reasonable changes are conducted on parameters and input of e.g. Lake Michigan considering 20-year model simulation based on calibrated data and (ii) each simulation reviews the change of each parameter or input (Weston solutions, 2004). After these steps, predicted concentration is drawn for all changes in a graph together with the calibration result for comparison. Finally, the most sensitive parameters or input which create the most significant effect on model results are determined. They are then ranked.

The reasons of uncertainties in parameters and input are explained by Ramaswami et al. (2005). These are measurement errors, errors in estimated parameters which are not measured and approximation errors straying the model from reality. The uncertainty

analysis is evaluated considering following steps: (i) determining the most sensitive parameters and input from sensitivity analysis, (ii) running the model with the proper and adjusted distributions for parameters and input, (iii) analyzing the model output to define the confidence intervals on the output (Weston solutions, 2004). In uncertainty analysis, the distribution of parameters is assumed uniform, lognormal and/or normal distributions. In uncertainty analysis, the model is analyzed for each congener concentration at the end of 20-year and runs for 1000 times by using Monte Carlo (MC) simulations to develop confidence intervals on the model output produced by the changes in the input and parameters.

For the most sensitive parameters, the distributions given in Table 3.7 are assumed such as lognormal, normal, uniform. Assumptions were made with two considerations; (i) statistical analysis of measured values and (ii) if not available, literature review for distribution use. Changes in the parameters are made according to assumption on their distribution.

Distribution	Equation
Uniform ^a	X=(b-a)*U+a
Normal ^b	$X=Z*\sigma+\mu$
Lognormal ^{b,c}	$\mu = \log(\frac{m^2}{\sqrt{\nu + m^2}})$
	$\sigma = \log(\frac{\nu}{m^2} + 1)$
Description of Terms	X: Parameter values produced by MC, a and b: lower and upper limits of parameters, respectively, U: Uniform random number, Z: Normal distributed random number, σ: standard deviation, μ: Mean, m and v: The mean m and variance v of a lognormal random
	variable, respectively.

Table 3.7 Equation of Distribution Used for MC in uncertainty analysis

^a: Ramaswami et al. (2005) ^b: Martinez et al. (2002) ^c: MC is applied by lognrnd function in MatLAB.

3.4 PCB Data

Two different data sets were needed to be used by the ADM and FTHP model. Their use is explained in Figure 3.19. The first, microcosm PCB data set from Baltimore Harbor (Fagervold et al., 2007, 2011), USA was used for ADM in order to estimate biodegradation rate constants of congeners (Figure 3.19). These constants are then used in the FTHP model as input. The second, field data taken from Lake Michigan sediment layer and water column, is used to run the FTHP model. The data were obtained from the U.S. EPA Office of Research and Development; Mid-Continent Ecology Division; Large Lakes and Rivers Forecasting Research Branch by personal communication (USEPA, 2015). Handling of both data sets are explained in the following sections.

Figure 3.19 Uses of PCB Data Sets

3.4.1 Microcosm PCB Data: Baltimore Harbor Sediments, USA

Laboratory PCB sediment data used in this study was obtained from microcosm experiments using Baltimore Harbor (BH) sediments (Fagervold et al., 2007, 2011), courtesy of Dr. Kevin Sowers from Department of Marine Biotechnology, University of Maryland Baltimore County. These data sets were specifically set up to observe microbial reductive dechlorination of PCBs, without major effect of physicochemical and other biotic/abiotic transformations. Four data sets from BH were prepared by addition of (i) no microorganism (no bioaugmentation), (ii) SF-1 and DEH-10, (iii) o-17 and DF-1 and (iv) SF-1, DF-1, DEH-10 and o-17 microorganisms.

The microcosm studies were prepared by Baltimore Harbor sediments spiked with Aroclor 1260 and incubated for 300 days with samples taken at day 0, 100, 200 and 300. 91 group of congeners (177 individual congeners with coelution) were analyzed (Table 3.8). Details about the preparation of microcosms and analysis are given elsewhere by Fagervold et al. (2007, 2011).

Changes in the concentration of PCBs (as average of triplicate microcosms) in mole percent with respect to time are depicted in Figure 3.20, Figure 3.21, Figure 3.22 and Figure 3.23. As can be seen from these figures, the greatest shift in PCB congener patterns occur between 100 and 200 days. Dramatical changes are observed in higher chlorinated homolog groups, such that, especially hexa and hepta including congeners 153/127, 141, 138/163/164, 187/159/182, 174/181, 177, 180, 170/190 and 196/203 are reduced after 100 days. There are other congeners belonging to lower homolog groups such as, congeners 20/21/33/53, 22/51, 52/73, 43/49/38 and 47/48/75 which are observed to be accumulated.

1	35/104	81/87/117/111/115/116/145	151	187/159/182
4/10	37/42/59	84	153/127	189
5/8	41/64/71/72/68	85/120/148	154	191
6	43/49/38	90/101	156/171/202	193
7/9	44	92	158/186	194
11	46	97/86/152	161/146	195/208
14	47/48/75	106/118/139/149	167	196/203
15/17	52/73	107/109/147	165	197
16/32	55/91	110/77	170/190	199
18	56/60	114/122/131/133/142	172/192	200
19	57/103/40	119/150/112	173	201/157
20/21/33/53	62/65	124/135/144	174/181	205
22/51	63	126/129/178	175	206
23/34	66/80/93/95/102/88	128	176/13	207
24/27	67/100	132/105	177	209
25	70	134/143	179	
26	74/94/61	136	180	
28/31/50	78/83/108	138/163/164	183	
29/54	79/99/113	141	185	

Table 3.8 IUPAC numbers of PCB congeners analyzed in microcosm sediments(Fagervold et al., 2007, 2011)

3.4.2 FTHP model PCB Data: Lake Michigan Sediments, USA

3.4.2.1 Lake Michigan Mass Balance Project

The Lake Michigan Mass Balance Project (LMMBP) was conducted to develop an integrated mass balance model for the simulation of the transport, fate, and bioaccumulation of toxic chemicals in Lake Michigan. LMMBP was started and managed by USEPA Great Lakes National Program Office in 1994 for the toxic chemicals; PCBs, atrazine, transnonachlor, and mercury (Rossmann, 2006). The sampling for PCBs and other water and sediment constituents was conducted between 1994 and 1995 in various media such as air, water, sediment and biota. In our study,

PCB and property data concerning the Lake Michigan system were taken from LMMBP.

History of PCB contamination in Lake Michigan is given in Table 3.9 (Rossmann, 2006). Accordingly, despite the end of the production, toxic effects of PCBs on Lake Michigan ecosystem have still continued. Therefore, this contaminant is registered under the bioaccumulative chemicals of concern (BCCs) in the Great Lakes listed in the Water Quality Guidance for the Great Lakes System in 40 CFR 132 (Zhang et al., 2009). The first remediation process was started in 1980s for Sheboygan Harbor and finished in 1991. Now, remediation is going on for other rivers and harbors around lake.

Date	Event
1865	First PCB-like chemical discovered
1881	First PCBs synthesized
1914	Measurable amounts of PCBs found in bird feathers
1927	PCBs first manufactured at Anniston, Alabama
1935	PCBs manufactured at Anniston, Alabama and Sauget, Illinois
1948-1971	Outboard Marine Corporation at Waukegan, Illinois purchased eight million gallons of hydraulic fluid with PCBs
Mid-1950s to Mid-1960s	PCBs loaded to Kalamazoo River from deinking
1950s to 1980s	PCBs discharged to Manistique River and Harbor
1954	Appleton Paper Company began using PCBs as PCB-coated carbonless copy paper
1959-1971	PCBs used by Tecumseh Products Company as a hydraulic fluid was loaded to Sheboygan River
1959-1972	Outboard Marine Corporation at Waukegan, Illinois used hydraulic fluid with PCBs for die-casting
1969-1970	Paper company discharges of PCBs to Fox River peaked
1970	PCB production peaked at 85 million pounds and huge contamination noted at Sauget. Illinois plant
1971-1972	Appleton Paper Company and NCR Corporation phased out PCB use. Recycling of carbonless paper had occurred for several decades
1973	U.S. Food and Drug Administration (USFDA) establish 5 ppm PCB tolerance level in fish
1975	124,000 cans of salmon from Lake Michigan seized because of PCBs
1977	PCB production ends
1984	USFDA lowered PCB tolerance level in fish to 2 ppm
1985	Commercial fishing for carp and other valuable species outlawed on Green Bay
1991	End Sheboygan River PCB remediation of upper river
1991	U.S. Department of Health and Human Services label PCBs as possible carcinogen
1992	End Waukegan Harbor PCB remediation
1998	The eight Great Lakes states agreed on a "Great Lakes Protocol for Fish Consumption Advisories" that lowered the regional standard from the USFDA commercial standard of 2 ppm down to 0.05 ppm
1997 -1 998	Milwaukee River PCB remediation
2001	Manistique Harbor PCB remediation completed
2002	Possibly begin Grand Calumet River PCB remediation

Table 3.9 History of PCB contamination in Lake Michigan Basin (Rossmann, 2006)

As part of the LMMBP, the mass balance of PCBs was conducted by a contaminant and transport model called LM2-Toxic. The model includes contaminant transport, partitioning, and biogeochemical transformations in both the water column and sediments. Furthermore, MICHTOX model is used to compare the results of contaminant transport and transformation to LM2 results. LM2-Toxic was calibrated and validated for selected individual congeners and the sum of PCBs. However, total PCBs are considered to predict and identify transport, sources of contamination, and loss pathways (Rossmann, 2006). Various model resolutions for water column and sediment are defined for state variables and scale of predictions (Figure 3.24). The lake is divided into 10 spatial segments. Five layers in depth are for water column, hence the segments between numbers 1 and 41 are for water column. One layer is for surficial sediment. The segments between numbers 42 and 94 are divided into 5x5 km² grid cells for surficial sediment considering non-depositional areas, transitional areas, and depositional areas (Figure 3.24). Within the scope of LMMBP, PCB concentration was measured for 42 and 40 groups of congeners in sediment and water column, respectively.

Figure 3.24 Segmentation of the water column (Left) and surficial sediments (Right) used in LM2-Toxic Model (Rossmann, 2006)

3.4.2.2 Description of LMMBP data

All lake is not considered in the FTHP model developed in this study. A limited region of the lake is used. This region is selected considering high PCB distribution in surficial segment between numbers 42 and 94. According to distribution of total PCB concentration in Lake Michigan surface sediment, the data set for the southeastern part of the lake is selected since sediments contain the highest concentration of PCBs. Furthermore, the highest PCB concentration in water column is also in the southeastern part of the lake. Accordingly, segment number 49 is selected for sediment, which is a transitional zone (Figure 3.25). Segment 37 is selected for water column, because it is located above segment 49.

Figure 3.25 Distribution of total PCBs (ng/L) in 1994-1995 Lake Michigan water column (Left) and surficial sediments (Right) (Zhang, 2006, part1ch5)

133 sediment samples were collected from all around the lake between May 1994 and May 1996. In Segment 49, 21 sediment samples were collected between July 25, 1994 and May 21 1996 (Figure 3.26). Some of these samples are taken on the same day, but from different locations (Table 3.10). These sediment samples were used in our study.

Figure 3.26 Surface sediment samples collected in Segment 49

Sample	Latituda	Longitudo	Station	Station	Sampling
No	Lanuue	Longitude	Name	depth, m	Date
1	42.818	-86.486	LM94-36	80	7/25/1994
2	43.016	-86.328	LM94-47	47	7/25/1994
3	42.293	-86.652	LM94-16	60	7/26/1994
4	41.984	-87.014	LM94-8	65	7/26/1994
5	42.175	-86.734	LM94-13	79	7/26/1994
6	42.142	-86.662	LM94-H22	52	7/26/1994
7	42.175	-86.733	LM94-13S		10/5/1994
8	42.385	-86.592	LM94-22		10/6/1994
9	42.285	-86.633	LM94-15		10/6/1994
10	42.496	-86.829	LM94-25		10/8/1994
11	42.587	-86.856	LM94-27		10/8/1994
12	42.819	-86.474	LM94-36S	78	10/10/1994
13	42.643	-86.532	LM94-29		10/10/1994
14	42.834	-86.999	LM94-39		10/10/1994
15	42.733	-86.999	LM94-33		10/10/1994
16	42.834	-86.999	LM94-39		10/12/1994
17	43.016	-86.407	LM94-46	73	10/12/1994
18	42.122	-87.053	LM94-11	87	9/6/1995
19	42.773	-87.081	LM94-34	157	9/6/1995
20	42.354	-86.957	LM94-18		5/20/1996
21	42.122	-87.053	LM94-11		5/21/1996

Table 3.10 Sediment samples collected from Segment 49

PCB concentrations in the water column were measured as particulate and dissolved phases. Water samples were collected from three locations in Segment 37, these are shown in Figure 3.27. From these three locations, a total of 17 water samples were collected between May 7 1994 and October 10 1995.

Figure 3.27 Water column sampling locations in Segment 37

In LMMBP (USEPA, 2015), PCBs were measured as 40 groups of congeners for water samples and 42 groups of congeners for sediments. However, 10 groups of congeners (namely, 5/8, 12, 13, 15/17, 18, 77, 89, 197, 196/203, 201) could not be detected in the sediments. When both PCB data sets were compared, 27 groups of congeners were

found to be present in both. These are: 16, 26, 28/31, 33, 44, 49, 52, 56/60, 66, 70/76, 74, 81, 84/92, 85, 87, 99, 101, 118, 123/149, 105/132/153, 151, 138/163, 170/190, 180, 182/187, 195/208 and 146. Hence, these congener groups could be used as input in the FTHP model.

3.4.2.3 Data Handling

The 21 sediment samples were taken on 10 different dates, as can be seen from Table 3.10. The arithmetic average of concentrations in the same dates are taken. Accordingly, a total of 10 measurements in different dates are used for the model and data is given in **Hata! Başvuru kaynağı bulunamadı.** in ng/L. To convert ng/g dry weight to ng/L, the equation below (Rossmann, 2006) is used. In the FTHP model, unit ng/L is used for the concentration of PCBs in the sediments as in LM2 model.

$$C_s^a = C_s^b * \rho * (1 - \varphi) * 10^3$$
3.24

where C_s^a : PCB concentrations in surface sediment per sediment volume a, ng/L, C_s^b : PCB concentration in surface sediment per sediment mass b, ng/g dry weight, ρ : bulk density of surficial sediments, (gdw/cm³), φ : porosity (dimensionless). PCB congener concentrations in the sediments range from 5.64 to 1444.63 ng/L.

Time (day)0"172South/NorthNS8South/NorthNS816 31.4 15.9 44.5 26 31.4 15.9 44.5 28/31 645.1 817.5 $997.$ $28/31$ 645.1 817.5 $997.$ 33 126.1 157.8 $188.$ 44 216.8 241.0 291.1 49 131.6 154.4 $192.$ $56/60$ 408.2 462.6 $529.$ $56/60$ 408.2 462.6 $529.$ $56/60$ 408.2 462.6 $529.$ $56/60$ 408.2 462.6 $529.$ $56/60$ 818.2 931.2 1156 74 182.7 223.9 248 81 17.4 20.0 211.6 $84/92$ 322.69 250.6 322.8 $84/92$ 322.69 250.6 322.8 87 144.4 167.4 178 99 157.0 159.0 205.0 200 157.0 159.0 205.0	2 73 5 37.0 .5 37.0 .6 59.1 .6 59.1 .14 839.8 .30 187.5 .31 187.5 .33 152.5 .33 152.5 .33 294.8	75 N 33.9											
South/North ^b N S S 16 31.4 15.9 44.4 26 42.1 52.2 63.4 26 42.1 52.2 63.4 33 126.1 155.8 188. 33 126.1 155.8 188. 44 216.8 241.0 291. 49 131.6 154.4 192. 52 262.0 293.1 376. 52 262.0 293.1 376. 516 408.2 462.6 529.1 56/60 408.2 463.4 546. 70/76 403.7 463.4 546. 71 182.7 223.9 24.8 81 17.4 20.0 21.4 84/92 326.9 250.6 322.8 87 144.4 167.4 178 99 157.0 159.0 205.0	S S .5 37.0 .6 59.1 .6 59.1 .6 59.1 .14 839.8 .0 187.5 .19 248.5 .2 152.7 .3 152.5 .3 152.4	N 33.9	77	79	408	665	666	Min	Max	Med.	Avg	SD	RSD
16 31.4 15.9 44.3 26 42.1 52.2 63.4 28/31 645.1 817.5 997. 33 126.1 155.8 188. 33 126.1 155.8 188. 49 131.6 154.4 192. 52 262.0 293.1 376. 52 265.0 293.1 376. 53 131.6 154.4 192. 54 131.6 154.4 192. 52 265.0 293.1 376. 546 408.2 463.4 546. 70/76 408.2 463.4 546. 71 182.7 223.9 248 81 17.4 20.0 21.4 81 17.4 20.0 21.4 87 144.4 167.4 178 99 157.0 159.0 20.0 91 157.0 159.0 205.0	.5 37.0 .6 59.1 .6 59.35.8 7.4 839.8 8.0 187.5 8.0 187.5 1.9 248.5 5.3 152.7 5.3 294.8	33.9	Ν	N	N	S	S						
26 42.1 52.2 63.4 28/31 645.1 817.5 997. 33 126.1 155.8 188.7 49 131.6 154.4 192. 52 2660 408.2 462.6 529. 56/60 408.2 463.4 192. 57 265.0 293.1 376.5 56 408.2 462.6 529. 66 818.2 931.2 1156 70/76 403.7 463.4 546.6 71 182.7 223.9 248 74 182.7 223.9 248 81 17.4 20.0 21.4 84/92 326.9 250.6 322.8 87 144.4 167.4 178 99 157.0 159.0 205.0 105.7 206.9 250.6 322.40	.6 59.1 7.4 839.8 8.0 187.5 1.9 248.9 5.3 152.7 5.3 294.8		18.7	47.0	32.8	17.2	5.6	5.6	47.0	32.1	28.4	13.5	47.4
28/31 645.1 817.5 997. 33 126.1 155.8 188. 44 216.8 241.0 291. 49 131.6 154.4 192. 52 266.0 408.2 462.6 529.1 56/60 408.2 462.6 529.1 1156 70/76 403.7 463.4 546. 546. 71 182.7 223.9 211.5 546. 74 182.7 223.9 248.4 546. 81 17.4 20.0 211.5 546.5 81 17.4 20.0 211.5 546.5 81 17.4 20.0 211.5 546.5 81 17.4 20.0 211.5 546.5 87 144.4 167.4 178 99 157.0 159.0 205.0 205.0 105.1 265.0 250.6 322.1 322.1 99 157.0 159.0 205.0 205.0	7.4 839.8 8.0 187.5 1.9 248.9 2.3 152.7 5.3 294.8	51.2	52.7	6.69	43.1	19.1	13.4	13.4	6.69	51.7	46.6	18.2	39.0
33 126.1 155.8 188. 44 216.8 241.0 291. 49 131.6 154.4 192. 52 262.0 293.1 376. 56/60 408.2 462.6 529. 56/60 408.2 462.6 529.1 56/60 408.2 462.6 529.1 57 66 818.2 931.2 1156 74 182.7 223.9 248. 81 17.4 20.0 21.4 81 17.4 20.0 21.4 84/92 326.9 250.6 322 87 144.4 167.4 178 99 157.0 159.0 205.0	8.0 187.5 1.9 248.5 2.3 152.7 5.3 294.8	829.4	810.5	1007.2	685.0	278.7	206.6	206.6	1007.2	814.0	711.7	272.4	38.3
44 216.8 241.0 291. 49 131.6 154.4 192. 52 262.0 293.1 376. 56/60 408.2 462.6 529. 56/60 408.2 462.6 529. 56/60 408.2 462.6 529. 70776 403.7 463.4 546. 74 182.7 223.9 248. 81 17.4 20.0 21.4 84/92 326.9 250.6 322. 85 151.3 160.2 195. 87 144.4 167.4 178 99 157.0 159.0 205.0	1.9 248.9 2.3 152.7 5.3 294.8	147.2	147.1	210.0	173.4	80.4	40.5	40.5	210.0	151.5	145.6	51.9	35.6
49 131.6 154.4 192 52 262.0 293.1 376. 56/60 408.2 462.6 529. 66 818.2 931.2 1156 70/76 403.7 463.4 546. 70/76 403.7 463.4 546. 74 182.7 223.9 248. 81 17.4 20.0 21.4 84/92 326.9 250.6 322. 87 144.4 167.4 178. 99 157.0 159.0 205.0	2.3 152.7 5.3 294.8	263.4	291.8	333.9	449.3	201.6	113.3	113.3	449.3	256.1	265.2	88.4	33.3
52 262.0 293.1 376. 56/60 408.2 462.6 529. 66 818.2 931.2 1156 70/76 403.7 463.4 546. 70/76 403.7 463.4 546. 74 182.7 223.9 248. 81 17.4 20.0 21.4 84/92 326.9 250.6 322. 85 151.3 160.2 195. 99 157.0 159.0 205.	5.3 294.8	193.8	181.0	213.9	177.5	73.1	56.0	56.0	213.9	165.9	152.6	52.2	34.2
56/60 408.2 462.6 529. 66 818.2 931.2 1156 546. 529. 70/76 403.7 463.4 546. 529. 546. 529. 70/76 403.7 463.4 546.3 248.3 546.3 248.3 546.3 248.3 250.6 322.2 932.2 935.3 195.3 <th< th=""><td></td><td>411.9</td><td>379.1</td><td>424.8</td><td>412.1</td><td>164.9</td><td>139.7</td><td>139.7</td><td>424.8</td><td>335.5</td><td>315.9</td><td>103.1</td><td>32.6</td></th<>		411.9	379.1	424.8	412.1	164.9	139.7	139.7	424.8	335.5	315.9	103.1	32.6
66 818.2 931.2 1156 70/76 403.7 463.4 546. 74 182.7 223.9 248. 81 17.4 20.0 21. 84/92 326.9 250.6 322. 85 151.3 160.2 195. 99 157.0 159.0 205.	9.4 442.4	591.2	564.2	636.6	666.1	253.1	164.4	164.4	666.1	496.0	471.8	162.8	34.5
70/76 403.7 463.4 546. 74 182.7 223.9 248. 81 17.4 20.0 21.4 84/92 326.9 250.6 322. 85 151.3 160.2 195. 87 144.4 167.4 178 99 157.0 159.0 205	6.0 926.3	1382.2	1259.6	1363.8	1305.9	541.4	397.9	397.9	1382.2	1043.6	1008.2	346.3	34.3
74 182.7 223.9 248. 81 17.4 20.0 21.4 84/92 326.9 250.6 322. 85 151.3 160.2 195. 87 144.4 167.4 178 99 157.0 159.0 205	5.4 455.7	672.6	619.6	655.3	683.6	267.8	199.4	199.4	683.6	504.9	496.7	170.2	34.3
81 17.4 20.0 21.4 84/92 326.9 250.6 322. 85 151.3 160.2 195. 87 144.4 167.4 178 99 157.0 159.0 205.	3.6 206.2	234.1	246.1	271.8	209.2	85.7	66.2	66.2	271.8	216.6	197.4	68.9	34.9
84/92 326.9 250.6 322. 85 151.3 160.2 195. 87 144.4 167.4 178. 99 157.0 159.0 205. 100 157.0 159.0 205.	.6 14.3	36.9	29.0	25.9	51.8	9.6	7.9	7.9	51.8	20.8	23.5	13.3	56.5
85 151.3 160.2 195. 87 144.4 167.4 178. 99 157.0 159.0 205. 101 206.7 206.6 273.	2.9 234.1	409.5	380.2	405.5	601.0	197.3	123.5	123.5	601.0	324.9	325.1	134.8	41.5
87 144.4 167.4 178. 99 157.0 159.0 205. 100 205.7 200.0 273.7	5.6 130.5	316.3	264.1	262.0	371.2	140.4	105.9	105.9	371.2	177.9	209.7	88.8	42.4
99 157.0 159.0 205.	8.9 134.4	225.7	205.1	225.4	259.2	88.3	76.9	76.9	259.2	173.1	170.6	60.3	35.3
	5.9 139.2	322.2	273.1	276.3	375.9	125.6	99.8	8.66	375.9	182.4	213.4	93.2	43.7
7/C 0.00C /.C47 INI	2.5 268.7	571.9	494.3	496.8	685.3	236.9	190.5	190.5	685.3	340.6	392.1	162.0	41.3
118 415.7 359.4 510.	.9 394.9	920.8	746.3	718.4	773.2	351.7	290.2	290.2	920.8	463.3	548.2	221.3	40.4
123/149 147.8 124.3 183.	3.1 124.5	337.9	266.4	253.1	320.7	142.0	102.0	102.0	337.9	165.5	200.2	87.1	43.5
105/132/153 512.0 433.1 589.	9.0 435.4	1139.3	924.8	840.0	1117.1	485.4	347.3	347.3	1139.3	550.5	682.3	296.9	43.5
151 41.4 38.2 51.0	.6 35.6	89.5	72.5	70.4	81.0	40.7	30.5	30.5	89.5	46.5	55.1	21.2	38.5
138/163 600.0 484.0 673.	3.6 420.3	1444.6	1064.3	952.6	1281.6	412.0	296.0	296.0	1444.6	636.8	762.9	398.8	52.3
170/190 105.3 84.8 112.	2.9 80.8	231.6	194.7	168.3	231.1	91.2	63.0	63.0	231.6	109.1	136.4	64.3	47.1
180 212.3 168.6 211.	1.1 157.3	436.5	378.9	309.4	456.3	205.6	131.2	131.2	456.3	211.7	266.7	119.7	44.9
182/187 74.1 63.1 87.	.3 59.1	181.1	140.4	123.9	188.4	85.1	55.3	55.3	188.4	86.2	105.8	49.8	47.1
195/208 28.4 21.3 34.0	.6 22.7	72.6	58.5	45.7	87.6	35.9	22.4	21.3	87.6	35.2	43.0	23.0	53.5
146 70.0 56.7 91.0	.0 56.9	162.7	126.7	118.9	161.6	63.3	43.0	43.0	162.7	80.5	95.1	44.5	46.9

Part of the sediment data is used for calibration and the other is used for model validation. Segment 49 is a wide region (120 km from north to south), so the region is divided as South and North (60 km - 60 km) and the samples belonging to the south are used for calibration, while the ones belonging to the north are used for validation (Figure 3.28 and Table 3.12). Such a split allows for both spatial and temporal variation of the sediment data to be used in calibration and validation.

(Zhang, 2006, part1ch5)

Figure 3.28 Samples at South and North used for calibration and validation in segment 49, respectively

Before being used in the FTHP model, water column PCB concentrations, which are measured in both particulate and dissolved phase, are added to give one total concentration for each congener in the water phase. A total of 17 water column samples were taken on 12 different dates. The arithmetic average of sediment concentrations

in the same dates are taken as was done for sediment samples. Accordingly, a total of 12 measurements in different dates are evaluated here.

In the FTHP model, we assume that water column PCB congener concentrations do not change with time. To test the validity of this assumption, Figure 3.29 and Figure 3.30 are prepared. Accordingly, water column total PCBs show a decreasing trend from 1977 to the 1990s, however, seems constant after 1993 (Figure 3.29). Figure 3.30 depict changes in the individual congener concentrations within the time frame of the LMMBP sampling. Although some fluctuations exist, no major increasing or decreasing trend is evident for PCB congener concentrations in the water column. Lastly, descriptive statistics of the data presented in Figure 3.30 is given separately in Table 3.12 and Table 3.13 for north and south parts, respectively. This also shows that concentration distributions in water column do not show a major fluctuation. When the sediment and water phase PCB concentrations are compared, it can be stated that sediment concentrations are four to six orders of magnitude higher. The average and median of water column PCB concentrations are very close and mostly identical to each other (Table 3.12 and Table 3.13). In the FTHP model, average water column congener concentrations for the samples collected in the south region (from stations 18M and 380) (Table 3.13) are used during model calibration and the average water column congener concentrations for the samples collected in the north region (from station 6) (Table 3.12) are used during model validation.

Figure 3.29 Time Variation of Total PCBs PCBs in Lake Michigan water column (ng/L) (a) between 1975 and 1995 (b) between 1986 and 1995 (Rossmann, 2006)

Figure 3.30 Distribution of Total Concentration of Congeners Through Time

(Water column concentrations of congeners a. from IUPAC no 16 to 66, b. from IUPAC No 70/76 to 118, c. from IUPAC No 123/149 to 146 with respect to each sample)

		Ì					1				i	2		
Statistics/Congeners	16	26	28/31	33	44	49	52	56/60	6 6	70/76	74	81	84/92	85
Average (ng/L)	0.001	0.002	0.013	0.007	0.006	0.003	0.011	0.005	0.010	0.006	0.002	0.001	0.028	0.002
Standard Deviation	0.001	0.001	0.004	0.002	0.004	0.002	0.004	0.002	0.005	0.002	0.001	0.001	0.016	0.001
Relative Standard	92.01	42.94	31.23	31.87	7 59.85	53.82	33.24	49.88	53.29	40.94	59.20	85.90	56.67	44.98
Median	0.001	0.002	0.012	0.007	0.007	0.003	0.011	0.004	0.008	0.006	0.002	0.001	0.024	0.002
Ctatistics (Cancensus						105/13	32							
Statistics/Congeners	87	66	101	118	$123_{-}149$	/153	1:	51 138	3/163 1	70/190	180	182/187	195/208	146
Average (ng/L)	0.004	0.010	0.007	0.007	0.004	300.0	3 0.0	0.0 0.	011	0.001	0.002	0.003	0.001	0.001
Standard Deviation	0.001	0.006	0.004	0.005	0.002	0.00	0.0	0.1 0.	004	0.001	0.002	0.002	0.0003	0.001
Relative Standard														
Deviation(%)	29.38	56.47	55.06	70.57	44.26	62.43	3 73	.95 40).28	58.70	76.06	73.72	63.86	50.94
Median	0.004	0.009	0.007	0.006	0.004	0.00	0.0	0.1 0.	010	0.001	0.002	0.002	0.0004	0.002

nc
5
~ ~
٠Ĕ
ŝ
2
4
H
g
T
e)
Ч
at
2
H
H
n
-
8
2
Ĕ
g
3
ЭС
tł.
-
н.
<u>َ</u> لَ
<u> </u>
pD
n
\smile
\mathbf{s}
q
0
Ξ.
b
H
Ξ
Ð
õ
n
0
U U
Ч
er
ner
ener
gener
ngener
congener
congener
B congener
B congener
CB congener
PCB congener
of PCB congener
of PCB congener
s of PCB congener
cs of PCB congener
tics of PCB congener
istics of PCB congener
tistics of PCB congener
tatistics of PCB congener
statistics of PCB congener
e statistics of PCB congener
ve statistics of PCB congener
ive statistics of PCB congener
ptive statistics of PCB congener
iptive statistics of PCB congener
criptive statistics of PCB congener
scriptive statistics of PCB congener
escriptive statistics of PCB congener
Descriptive statistics of PCB congener
Descriptive statistics of PCB congener
2 Descriptive statistics of PCB congener
.12 Descriptive statistics of PCB congener
3.12 Descriptive statistics of PCB congener
© 3.12 Descriptive statistics of PCB congener
le 3.12 Descriptive statistics of PCB congener
ble 3.12 Descriptive statistics of PCB congener
able 3.12 Descriptive statistics of PCB congener

Average (ng/L) 0.002 0.002 0.002 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Average (ng/L)0.0020.Standard Deviation0.0000.Relative Standard8.902.	707	28/31	33	44	49	52	56/60	99	70/76	74	81	84/92	85
Standard Deviation 0.000 0.000 0.005 0.001 0.002 0.003 0.001 0.001 0.0001 0.001 0.0001 0.001 0.0001 0.001 0.0001 0.001 0.0001 0.001 0.0001 0.	Standard Deviation0.0000.Relative Standard8.902.	.002 (0.012	0.007	0.009	0.005	0.012	0.004	0.007	0.006	0.003	0.0002	0.030	0.002
Relative Standard 8.90 26.35 44.90 23.59 39.19 25.48 21.39 66.30 141.42 53.86 42.49 51.90 5 Deviation (%) 0.002 0.002 0.002 0.0012 0.007 0.006 0.003 0.0002 0 Median 0.002 0.002 0.012 0.007 0.002 0.003 0.0002 0 Statistics/Congeners 87 99 101 118 123 149 /153 151 138/163 170/190 180 182/187 19 Average (ng/L) 0.004 0.013 0.005 0.007 0.001	Relative Standard 8.90 2 ¹	000	0.005	0.002	0.003	0.001	0.002	0.003	0.010	0.003	0.001	0.0001	0.017	0.001
		6.35 4	44.90	23.59	39.19	25.48	21.39	66.30	141.42	53.86	42.49	51.90	56.62	79.89
Median 0.002 0.002 0.002 0.002 0.003 0.001 <t< th=""><th>Deviation (%)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Deviation (%)													
105/132 Statistics/Congeners 87 99 101 118 123 151 138/163 170/190 180 182/187 19 Average (ng/L) 0.004 0.017 0.001 0.001 0.001 0.001 0.002 0 Average (ng/L) 0.001 0.007 0.007 0.001 0.001 0.001 0.002 0 Standard Deviation 0.001 0.007 0.006 0.001 <th>Median 0.002 0.</th> <th>.002 (</th> <th>0.012</th> <th>0.007</th> <th>0.009</th> <th>0.005</th> <th>0.012</th> <th>0.004</th> <th>0.007</th> <th>0.006</th> <th>0.003</th> <th>0.0002</th> <th>0.030</th> <th>0.002</th>	Median 0.002 0.	.002 (0.012	0.007	0.009	0.005	0.012	0.004	0.007	0.006	0.003	0.0002	0.030	0.002
105/132 105/132 Statistics/Congeners 87 99 101 105/132 151 138/163 170/190 182/187 15 Average (ng/L) 0.004 0.007 0.007 0.007 0.007 0.001 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>														
Statustic/Ongeners 87 99 101 118 123 149 /153 151 138/163 170/190 180 182/187 15 Average (ng/L) 0.004 0.013 0.005 0.007 0.007 0.001 <						105/132								
Average (ng/L) 0.004 0.005 0.007 0.004 0.001 0.001 0.001 0.002 0 Standard Deviation 0.001 0.007 0.005 0.002 0.006 0.001 0.002 0 0.002 0 0.002 0 0.002 0 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0 0.002 0 0.002 0 0.002 0 0.002 0 0 0 0	Stausucs/Congeners 87 9	9 10	1 11	18 123	149	/153	15.	1 138	3/163 1	70/190	180	182/187	195/208	146
Standard Deviation 0.001 0.007 0.000 0.005 0.002 0.006 0.001 0.001 0.001 0.001 0.001 0 <th>Average (ng/L) 0.004 0.0</th> <th>0.00</th> <th>05 0.C</th> <th>07 0.</th> <th>004</th> <th>0.007</th> <th>0.0(</th> <th>0.1</th> <th>017</th> <th>0.001</th> <th>0.001</th> <th>0.002</th> <th>0.0002</th> <th>0.002</th>	Average (ng/L) 0.004 0.0	0.00	05 0.C	07 0.	004	0.007	0.0(0.1	017	0.001	0.001	0.002	0.0002	0.002
Relative Standard 14.71 57.53 6.33 70.44 53.97 97.72 141.42 3.85 123.94 141.42 33.19 1 Deviation (%) Median 0.004 0.013 0.005 0.004 0.002 0 0	Standard Deviation 0.001 0.0	07 0.00	00 0.0	05 0.	002	0.006	0.0(0.1	001	0.001	0.001	0.001	0.0003	0.001
Deviation (%) Median 0.004 0.013 0.005 0.007 0.004 0.007 0.001 0.017 0.001 0.001 0.002 0	Relative Standard 14.71 57.	53 6.3	33 70.	44 53	3.97	97.72	141.	42 3.	.85	123.94	141.42	33.19	141.42	75.79
Median 0.004 0.013 0.005 0.007 0.004 0.017 0.001 0.017 0.001 0.002 0	Deviation (%)													
	Median 0.004 0.0	013 0.00	05 0.C	07 0.	004	0.007	0.0(0.0	017	0.001	0.001	0.002	0.0002	0.002

Table 3.13 Descriptive statistics of PCB congener concentrations (ng/L) in the water column at the south re-	gion
Table 3.13 Descriptive statistics of PCB congener concentrations (ng/L) in the water column at the sou	ith re
Table 3.13 Descriptive statistics of PCB congener concentrations (ng/L) in the water column at the	he sol
Table 3.13 Descriptive statistics of PCB congener concentrations (ng/L) in the water colum	n at tl
Table 3.13 Descriptive statistics of PCB congener concentrations (ng/L) in the water of	colum
Table 3.13 Descriptive statistics of PCB congener concentrations (ng/L) in the w	vater c
Table 3.13 Descriptive statistics of PCB congener concentrations (ng/L) in	the w
Table 3.13 Descriptive statistics of PCB congener concentrations (ng/	L) in
Table 3.13 Descriptive statistics of PCB congener concentration	s (ng/
Table 3.13 Descriptive statistics of PCB congener concentr	ation
Table 3.13 Descriptive statistics of PCB congener col	ncenti
Table 3.13 Descriptive statistics of PCB congene	er coi
Table 3.13 Descriptive statistics of PCB cc	ngene
Table 3.13 Descriptive statistics of PC	CB co
Table 3.13 Descriptive statistics	of P(
Table 3.13 Descriptive stat	istics
Table 3.13 Descriptiv	e stat
Table 3.13 Desc	riptiv
Table 3.13	Desc
Table	3.13
	Table

3.4.2.4 Other Constituents used in the FTHP model

<u>TSS Concentration</u>: In the segment 37 modeled, 48 samples are taken for TSS between May 6 1994 and October 12 1995 (USEPA, 2015). In the FTHP model, TSS concentration is assumed to be independent of time. Therefore, TSS data is evaluated to establish one TSS concentration that can be used as input to the model. Accordingly, TSS data is presented in Figure 3.31 while the descriptive statistics of TSS data is given in Table 3.14. The median of TSS (0.9 mg/L) is used as input in the model.

Figure 3.31 TSS Concentration

Table 3.14 Descriptive statistics of TSS Data

Constituent	Sample no	Average	SD	RSD(%)	Median	Min	Max
TSS, mg/L	48	0.942	0.402	42.68	0.900	0.20	2.41

Sediment and Water Properties: The properties of sediment and water column are given in Table 3.15 and Table 3.16 (Rossmann, 2006). The average values are selected from the

ranges given in Table 3.16 for organic carbon fraction (f_{oc}) in water column and sediment layer. For water column and sediment layer, f_{oc} values are taken as 0.0645 an 0.0375, respectively.

Table 3.15 Volume and A	Area of Sediment Layer and V	Water Column (Rossmann, 2006)
	~	

Sediment Layer	
#of grids Pertained by segment 49	177
1 of grid Area, km ²	25
Area Segment 49, km (A _m)	4425
Sediment depth, m (d _m)=Mixing Layer	0.013
Sed. Volume, $m^3 (V_m)$	57525000
Water Column	
Average Segment Thickness (of segment 37), m	48.1
Area Segment 37, km (A _w)	4425
Water Volume, m^3 (V _w)	$2.13 \ 10^{11}$

Table 3.16 Water and sediment properties measured in LMMBP (Rossmann, 2006)

Constituent	Unit	LM2 Model	MichTOX Model
Porosity	-	0.953	0.943-0.966
Monthly water temperatures	°C		1.7-19.2
Pore water diffusion coefficient	m²/day	1.80×10^{-5}	
Diffusion Coefficient	m²/day	1.73x10 ⁻⁴	
Bulk density of surficial sediments	gdw/cm ³	2.45	
Monthly fraction organic carbon (foc):			
for stratified water surface segments 1-7	-		0.127-0.290
for completely mixed water segments 8-10	-		0.039-0.090
for sediment segments 11-17	-		0.023-0.052

<u>Contaminant Properties</u>: The properties for congeners are given in Table 3.17. These are taken from Mackay et al. (2006). When there is more than one value for K_{ow} and solubility, the median value is taken to be used as input in the FTHP model.

Conconor	Median	Min	Max	Median
IUPAC No	logKow	logKow	logKow	solubility, mg/L at 25 °C
16	5.215	4.15	5.36	0.505
26	5.68	5.52	5.76	0.205
28/31	5.725	4.38	6.33	0.1495
33	5.71	5.48	5.98	0.161
44	5.79	4.79	6.67	0.06315
49	5.925	5.73	6.38	0.0202
52	5.89	3.91	6.26	0.035
56/60	5.95	5.33	7.8733	0.04155
66	6.105	5.8	6.31	0.02695
70/76	6.05	5.72	6.39	0.0432
74	6.16	6.1	6.67	0.0306
81	6.24	5.96	6.64	0.00313
84/92	6.11	5.6	6.97	0.03335
85	6.61	6.18	6.63	0.013
87	6.285	5.45	6.85	0.007415
99	6.41	6.26	7.21	0.0103
101	6.375	4.12	7.64	0.0103
118	6.615	6.24	7.42	0.0153
123/149	6.57	6.14	7.28	0.003275
105/132/153	6.8	4.97	8.35	0.004734
151	6.49	6.32	7.35	0.00454
138/163	6.82	6.39	7.9	0.00392
170/190	7.08	6.83	7.46	0.000432
180	7.18	6.56	7.4	0.00063
182/187	7.0964	6.76	7.4	0.021073
195/208	7.78	7.35	9.05	0.000136
146	6.85	6.57	7.12	0.00228

Table 3.17 Molecular weight, solubility and Kow of congeners (Mackay et al., 2006)

Deep Sediment Contaminant Concentration: In our model, deep sediment concentration is assumed to stay constant with time. No measurement or data is presented in the LMMBP regarding this concentration. Therefore, studies for Lake Michigan in the literature are investigated. In our model, surface sediment depth is given as 3.1 cm for sediment layer

49 which is our modelling region (Rossmann, 2006). Li et al. (2006) studied in Lake Michigan and took core samples in May 2002. Their sampling point LM18 is close to our study region (Figure 3.32). Therefore, concentration of total PCBs through the core is investigated. As can be seen from Figure 3.32, concentration of total PCBs approaches to zero after 4 cm depth. Therefore, in our model, deep sediment PCB concentration is initially assumed as zero for all congeners.

Figure 3.32 Total PCB concentration versus depth in Lake Michigan - Σ_{39} PCBs (USEPA, 2006)

<u>Settling, Resuspension and Burial Velocities:</u> Settling velocity is the value used in MichTOX model (Endicott et al., 2006) and burial velocity is taken from LM2-Toxic model. The values are given in Table 3.18. Resuspension velocity is calculated by using solid mass balance equation which is explained in section 3.2.6.

Segment	BIC Settling Velocity	PDC Settling Velocity
37	0.06	0.75
Parameter	Value	Unit
Particle settling velocity	1.5	m/day
Segment	Burial velocity (m/d)	depth (m)
49	9.94E-06	0.031

Table 3.18 Settling, Resuspension and Burial Velocities (Rossmann, 2006)

Diffusion Coefficient: Molecular diffusion of congeners is given in Table 3.19. As can be seen, molecular diffusion of congeners changes according to number of chlorine. Therefore, in our model, molecular diffusion of some of congeners not listed in Table 3.19 is estimated and used according to this rule. The equation for Cl # higher than 5 in Figure 3.33 will be used by using molecular diffusion of number of chlorines 2, 3, 4 and 5 in Schneider (2005). Accordingly, molecular diffusion of the PCB congeners is tabulated in Table 3.20.

Congener IUPAC No	Cl#	$D_m (cm^2/s)$	log(K _{ow})	log(K _p)	$D_m \left(m^2 / day \right)$
PCB 4, 10	2	5.97E-06	4.65	3.52	5.16E-05
PCB 8, 5	2	5.97E-06	5.07	4.36	5.16E-05
PCB 19	3	5.70E-06	5.02	4.31	4.92E-05
PCB 17	3	5.70E-06	5.24	4.53	4.92E-05
PCB 18	3	5.70E-06	5.25	4.54	4.92E-05
PCB 33, 21, 53	3	5.70E-06	5.6	4.89	4.92E-05
PCB 52	4	5.46E-06	5.84	5.13	4.72E-05
PCB 49	4	5.46E-06	4.85	5.14	4.72E-05
PCB 66, 95	4	5.46E-06	6.2	5.49	4.72E-05
PCB 110	5	5.24E-06	6.48	5.77	4.53E-05

Table 3.19 Molecular Diffusion Coefficient of Congeners (Schneider, 2005)

Figure 3.33 Molecular Diffusion vs. No of Cl on biphenyl structure

IUPAC	Molecular Diffusion,	IUPAC	Molecular
Congener No	cm ² /sec	Congener No	Diffusion, cm ² /sec
16	0.00000571	87	0.00000523
26	0.00000571	99	0.00000523
28/31	0.00000571	101	0.00000523
33	0.00000571	118	0.00000523
44	0.00000547	123/149	0.00000511
49	0.00000547	105/132/153	0.00000507
52	0.00000547	151	0.00000499
56/60	0.00000547	138/163	0.00000499
66	0.00000547	170/190	0.00000474
70/76	0.00000547	180	0.00000474
74	0.00000547	182/187	0.00000474
81	0.00000547	195/208	0.00000438
84/92	0.00000523	146	0.00000499
85	0.00000523		

Table 3.20 Molecular Diffusion used in the FTHP model

3.5 PBDE Data

Two different PBDE data sets were used in this study (Figure 3.34). Microcosm PBDE data was used for ADM in order to obtain biodegradation rate constants of congeners undergoing debromination pathways (Figure 3.34). These constants, are then used in the FTHP model as input. Environmental PBDE data were obtained from the Regional Monitoring Program for Water Quality in the San Francisco Bay (RMP) (SFEI, 2015). The details about them are explained in the following sections.

Figure 3.34 Uses of PBDE Data Sets

3.5.1 Laboratory PBDE Data: Contaminated Soil, China

The data set used in the study was obtained from soils in the e-waste recycling town of Qingyuan, Guangdong province, South China (23.57° N, 113.0° E) (Song et al., 2015). The samples were taken between 0 and 15 cm depth. The microcosm samples were

prepared in 15 ml glass and triplicates. Eight PBDE congeners (28, 47, 99, 100, 153, 154, 183 and 209) were analyzed at 0, 24, 40, 60, and 90 days. These sets contain microbial reductive debromination of PBDEs, without major effect of physicochemical and other biotic/abiotic transformations. Lactate is added as electron donor. Details about the preparation of microcosms and analysis are given in Song et al. (2015). Changes in the concentration of PBDEs in ng/g dry weight (dw) with respect to time are depicted in Figure 3.35. As can be seen from the figure, while amount of BDE 209 decreases in 90 days, amount of BDEs 99, 100, 153, 154 and 183 increase. Especially the changes in these six congeners are observed sharply between 0 and 24 days. Song et al. (2015) discuss that while BDE 47 and BDE 209 are gradually degraded, significant degradation is not observed in other congeners. They state that increase in 99, 100, 153, 154 and 183 is explained by degradation of higher brominated congeners. In the literature, increase of these *ortho* substituted congeners in time due to octa-BDE mixture (Robrock et al., 2008) and BDE 209 (He et al., 2006; Tokarz et al., 2008) are observed.

Figure 3.35 Microcosm PBDE data (Song et al., 2015)

3.5.2 Environmental PBDE Data: San Francisco Bay, USA

3.5.2.1 San Francisco Regional Monitoring Program (RMP) and Box Model

The Regional Monitoring Program (RMP) for Water Quality in the San Francisco Bay, referred to as shortly, RMP was founded by the San Francisco Estuary Institute (SFEI) in 1993. The duty of RMP is to investigate and monitor the impacts of the chemicals such as dioxins, PCBs, emerging pollutants (e.i., PBDEs) (SFEI, 2015; Sutton et al., 2014) on the San Francisco environment. Sampling for PBDEs in the water column, sediment layer and TSS was conducted yearly between 2002-2013, 2002-2014 and 1993-2001, respectively. In our study, the use of the newly developed FTHP model was applied on PBDEs using this RMP data (SFEI, 2015).

According to USEPA's Toxic Release Inventory, two facilities which manufacture PBDE containing product in the Peninsula region were sources of PBDE contamination (Sutton et al, 2014). Volatilization from these manufactured products are also sources. The less probable source of entering the bay is predicted to be from e-waste recycling facilities, autoshredders, carpet and foam recycling facilities, sewage sludge application to rural lands, and sewage sludge incinerators. According to a study of the California EPA, the PBDE contamination was found in highest level in biota in 2002 around USA so the region is called as a hot spot region. Therefore, in the federal level, penta- and octa- BDE mixtures were prohibited in 2006 in the USA. Deca-PBDE for which the phased-out started in 2013, is available in the region and it is still produced (Sutton et al., 2014).

RMP also used mass budget models in addition to monitoring study. These models are to predict the fate and transport of contaminants in San Francisco Bay and output concentration, and to develop remediation plan in the region (Davis, 2004). The model is for investigation of PCB fate in Lake Ontorio, Canada. The model assumes that the whole bay is completely mixed volume with two compartments; sediment and water. Therefore,

it is called as one-box model. This model was then used for the fate and transport of PBDEs in the bay (Oram et al., 2008b) after development and use of PCBs by Davis (2004). For the resolution of the salinity study in the model, the bay is divided into 50 segments for either water column and sediment layer (Figure 3.36). Hence, a total of 100 boxes is obtained. Considering the resolution in Figure 3.36, the boundary of the region is selected to use in our FTHP model. Figure 3.36 also indicates the depth of the segments. Accordingly, Lower South Bay which is considered in our study includes depth between 2 m and 7 m.

Figure 3.36 Segmentation (Oram et al., 2008a)

3.5.2.2 Description of RMP data to be used in the FTHP model

Distribution of total PBDEs between 2002-2014 in San Francisco Bay surficial sediment is shown by Sutton et. al (2015) and given in Figure 3.37. The highest concentration of BDE 47 and 209 is observed in the Lower South Bay region and can be seen in 2012 data, presented in Figure 3.38 (Sutton et. al, 2015). These congeners are the major components of mixture penta-BDE and deca-BDE, and also contribute most to the total PBDE concentration in San Francisco Bay surficial sediment. All bay is not considered in the FTHP model. A limited region is selected considering high PBDE concentration in surface sediment. Accordingly, station BA10 from the Lower South Bay is selected since the highest concentration of BDE 47 and 209 is observed in that region. Furthermore, BA10 has the higher number of samples to use for calibration and validation than others. Location of station BA10 is shown in Figure 3.39. At this station, nine samples are collected at 9 different times between 2002-2014 (Hata! Başvuru kaynağı bulunamadı.) from a depth of 5 cm at latitude 37.469 and longitude -122.063. PBDE data was taken yearly between 2002 and 2014. In water column, the station LSB054W which is above the station BA10 is considered for the FTHP model (Figure 3.39). One sample is taken from the station LSB054W in 09/13/2011.

Figure 3.37 Distribution of BDE 47 (Left) and BDE209 (Right) (ng/g) in 2012 in San Francisco Bay Surficial Sediment (Sutton et. al, 2015)

Figure 3.38 Distribution of Total PBDEs (ng/g) between 2002-2014 in San Francisco Bay Surficial Sediment (Sutton et. al, 2015)

Figure 3.39 Sampling Points of PBDEs in Surface Sediment and water column

While selecting the congeners for our FTHP model,

- (i) the same congeners measured in both compartments (sediment and water) and same dates in the study of RPM (SFEI, 2015),
- (ii) the most commonly studied congeners in the environment (USEPA, 2010), and
- (iii) the congeners discussed in a one-box mass budget model for PBDE by Oram et al. (2008b) were taken into consideration.

A total of 52 and 50 groups of congeners were measured by RPM in the water column and surficial sediment, respectively. According to the selection criteria, 21 groups of

congeners were selected to be used in the FTHP model (7, 8, 15, 17/25, 28/33, 32, 35, 47, 49, 66, 85, 99, 100, 153, 154, 183, 197, 206, 207, 208 and 209).

In our model, 9 samples from the same location collected periodically (approximately each year) are used in the FTHP model. The data set is given in **Hata! Başvuru kaynağı bulunamadı.** in ng/L. To convert ng/g dry weight to ng/L, the equation (Rossmann, 2006) given in section 3.4.2.3 is used. In the FTHP model, unit ng/L is used for the concentration of PBDEs in sediment layer. Individual PBDE concentrations range from 0 to 6858 ng/L in the sediment.

Sumpletion Days Date of Collection 7 8 17.25 28/33 32 35 47 49 66 1 0 85/2002 39.74 30.56 30.62 189.54 68.04 5.67 7.40 68.58 238.42 39.31 2 385 82/2003 17.87 11.77 91.3 67.50 29.70 3.42 3.59 64.26 88.93 3 1842 82/2003 16.42 14.82 133.92 35.07 11.5 0.11 426.06 94.50 38.53 4 2180 7/42.008 16.42 14.82 15.39 15.39 13.16 64.56 13.85 5 238 9/15/2009 16.42 14.82 15.39 16.47 14.53 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 14.56 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Congener IU</th><th>PAC No</th><th></th><th></th><th></th><th></th></t<>								Congener IU	PAC No				
1 0 85/2002 39.74 30.56 30.62 189.54 68.04 5.67 7.40 685.80 228.42 39.31 2 385 825/2003 17.87 11.77 913 67.50 29.70 3.42 3.35 167.94 64.26 8.80 3 1842 821/2007 23.65 21.44 14.82 133.92 35.07 1.15 0.11 426.06 94.50 13.85 4 2180 7/24/2008 16.42 13.392 35.07 1.15 0.11 426.06 94.50 14.8 5 1892 9/15/2009 41.26 36.61 24.95 16.47 3.45 3.45 14.53 14.9 5 3304 8/22/2011 24.25 20.52 24.93 14.83 14.83 17.71 6 3334 16.52 25.58 16.47 3.45 3.45 14.69 2.19 17.71 7 3304 8/18.22/2011 24.54 </th <th>Sample no</th> <th>Days</th> <th>Date of Collection</th> <th>7</th> <th>8</th> <th>15</th> <th>17/25</th> <th>28/33</th> <th>32</th> <th>35</th> <th>47</th> <th>49</th> <th>99</th>	Sample no	Days	Date of Collection	7	8	15	17/25	28/33	32	35	47	49	99
2 385 825/2003 17.87 11.77 9.13 67.50 27.70 56.794 64.26 8.80 3 1842 827/2007 23.65 11.47 14.82 13.392 55.07 1.15 0.11 45.06 94.30 13.85 4 2180 7/24/2008 16.42 13.92 55.16 15.39 1.15 0.11 45.06 94.30 13.85 5 22598 915/2009 41.26 3.61 24.93 16.47 3.45 1.83 246.34 14.52 14.90 7 3304 875/2010 6.64 4.87 3.97 16.57 4.98 18.37 14.53 14.95 14.95 7 3304 872/2011 24.25 20.35 82.65 13.85 0.00 0.00 0.00 14.65 21.36 24.34 14.55 24.34 14.55 24.34 14.55 24.35 8 3544 41.82012 0.10 0.00 0.00	1	0	8/5/2002	39.74	30.56	30.62	189.54	68.04	5.67	7.40	685.80	228.42	39.31
3 1842 8/21/2007 23.65 21.44 14.82 133.92 35.07 115 0.11 426.06 94.50 13.85 13.8 4 2180 7/24/2008 16.42 12.74 10.15 56.16 15.39 13.0 21.90 13.1.6 51.35 6.75 5 2598 9/15/2009 41.26 36.61 24.95 16.4.70 45.47 3.45 51.30 246.24 14.50 6.75 6 2738 2/2/2010 6.64 4.87 3.97 16.52 4.98 18.3 0.49 14.55 14.48 17.11 7 3304 8/2/2011 24.52 22.53 4.98 18.3 0.99 41.63 14.49 17.11 7 3304 8/2/2014 34.61 31.48 35.48 16.90 0.90 14.69 2.19 17.16 7 3304 14.82 31.48 35.48 69.66 26.41 0.90 19.710 85.	7	385	8/25/2003	17.87	11.77	9.13	67.50	29.70	3.42	3.35	167.94	64.26	8.80
4 180 724/2008 16.42 12.74 10.15 56.16 15.30 1.30 2.19 131.76 51.35 6.75 5 2398 9/15/2009 41.26 3.661 24.95 164.70 454.7 3.45 5.13 246.24 145.26 14.90 6 2738 22/2010 6.64 4.87 3.97 16.52 4.98 1.83 246.24 145.26 14.90 7 3304 8/22011 24.25 20.52 22.95 82.62 25.38 0.00 8.91 146.9 17.10 8 3544 4/182012 6.05 0.00 0.00 0.00 0.00 14.48 17.11 9 4333 8/5/2014 34.61 37.48 35.48 0.00 0.00 0.00 0.00 0.00 14.69 21.95 245.41 14.69 21.95 9 4333 8/5/2014 34.8 56.66 26.41 0.00 0.00 0.00	3	1842	8/21/2007	23.65	21.44	14.82	133.92	35.07	1.15	0.11	426.06	94.50	13.85
5 2598 915/2009 41.26 3.61 24.95 164.70 45.47 3.45 5.13 246.24 145.26 14.90 7 3304 2/2/2010 6.64 4.87 3.97 16.52 4.98 1.83 0.95 41.63 14.90 2.19 7 3304 8/2/2010 6.64 4.87 3.97 16.52 2.538 0.00 8.91 24.63 14.90 8 3544 4/18/2012 6.05 0.00 0.00 2.11 0.00 8.91 282.99 14.43 17.11 8 3544 4/18/2012 6.05 0.00 0.00 0.00 8.91 28.92 28.93 28.94 <t< td=""><td>4</td><td>2180</td><td>7/24/2008</td><td>16.42</td><td>12.74</td><td>10.15</td><td>56.16</td><td>15.39</td><td>1.30</td><td>2.19</td><td>131.76</td><td>51.35</td><td>6.75</td></t<>	4	2180	7/24/2008	16.42	12.74	10.15	56.16	15.39	1.30	2.19	131.76	51.35	6.75
6 2738 2/2/2010 6.64 4.87 3.97 16.52 4.98 1.83 0.95 41.63 14.69 2.19 7 3304 8/22/2011 24.25 20.52 22.95 82.62 25.38 0.00 8.91 282.96 114.48 17.11 8 3544 4/18/2012 6.05 0.00 0.00 0.00 60.48 28.95 13.48 14.71 9 4383 8/5/2014 34.61 31.48 35.48 69.66 26.41 0.00 60.48 20.95 2.85 9 4383 8/5/2014 31.48 35.48 69.66 26.41 0.00 60.48 20.95 2.85 Max 41.26 36.61 35.48 189.54 68.94 5.67 8.91 68.76 2.169 2.169 2.169 2.169 2.169 2.169 2.169 2.169 2.169 2.169 2.169 2.169 2.169 2.169 2.169 2.169 <t< td=""><td>w</td><td>2598</td><td>9/15/2009</td><td>41.26</td><td>36.61</td><td>24.95</td><td>164.70</td><td>45.47</td><td>3.45</td><td>5.13</td><td>246.24</td><td>145.26</td><td>14.90</td></t<>	w	2598	9/15/2009	41.26	36.61	24.95	164.70	45.47	3.45	5.13	246.24	145.26	14.90
7 3304 8/22/2011 24.25 20.52 25.38 0.00 8.91 282.96 114.48 17.71 8 3544 4/18/2012 6.05 0.00 0.00 0.00 60.48 20.95 2.85 9 4383 8/5/2014 34.61 31.48 35.48 69.66 26.41 0.00 60.76 2.052 2.85 9 4383 8/5/2014 34.61 31.48 35.48 69.66 26.41 0.00 107.10 85.86 14.53 Max 6.05 0.00 0.00 16.52 0.00 0.00 16.97 87.86 14.59 Max 41.26 36.61 35.48 189.54 68.04 5.67 8.91 685.80 2.84.62 3.931 Median 23.65 14.82 69.66 26.41 5.67 8.91 685.80 2.84.62 3.931 Metian 23.65 14.82 69.66 26.41 1.30 2.19 <td< td=""><td>9</td><td>2738</td><td>2/2/2010</td><td>6.64</td><td>4.87</td><td>3.97</td><td>16.52</td><td>4.98</td><td>1.83</td><td>0.95</td><td>41.63</td><td>14.69</td><td>2.19</td></td<>	9	2738	2/2/2010	6.64	4.87	3.97	16.52	4.98	1.83	0.95	41.63	14.69	2.19
8 3544 $4/18/2012$ 6.05 0.00 0.00 0.00 60.48 2.095 2.85 9 4383 $8/5/2014$ 34.61 31.48 35.46 35.48 69.66 26.41 0.00 197.10 85.86 14.53 Nm 6.05 0.00 0.00 0.00 0.00 197.10 85.86 13.61 Nm 41.26 36.61 35.48 189.54 68.04 5.67 8.91 685.80 2.19 Nmedian 23.65 20.52 14.82 69.66 26.41 1.30 21.69 23.93 Netage 23.35 20.52 14.82 69.66 26.41 1.30 21.89 21.89 23.93 Netage 23.35 18.89 18.89 189.54 680.7 89.16 57.78 197.10 85.86 13.43 Netage 23.39 18.89 16.90 89.16	٢	3304	8/22/2011	24.25	20.52	22.95	82.62	25.38	0.00	8.91	282.96	114.48	17.71
9 4383 8/5/2014 34.61 31.48 35.48 69.66 26.41 0.00 197.10 85.86 14.53 Min 6.05 0.00 0.00 16.52 0.00 0.00 41.63 14.69 2.19 Max 41.26 36.61 35.48 189.54 68.04 5.67 8.91 685.80 28.42 39.31 Median 23.65 20.52 14.82 69.66 26.41 1.30 2.19 197.10 85.86 13.85 Median 23.65 20.52 14.82 69.66 26.41 1.30 2.19 197.10 85.86 13.85 Average 23.39 18.89 16.90 89.15 27.83 1.87 3.11 248.99 91.09 13.45 SD ^a 13.10 12.55 12.24 60.82 1.87 3.11 248.99 91.09 13.45 RSD ^a 56.03 66.44 72.41 68.22 14.55 104.78	æ	3544	4/18/2012	6.05	0.00	0.00	21.71	0.00	0.00	0.00	60.48	20.95	2.85
Min 6.05 0.00 16.52 0.00 0.00 41.63 14.69 2.19 Max 41.26 36.61 35.48 18.954 68.04 5.67 8.91 685.80 228.42 39.31 Median 23.65 20.52 14.82 69.66 26.41 1.30 219 197.10 85.86 13.85 Average 23.39 18.89 16.90 89.15 27.83 1.87 3.11 248.89 91.09 13.43 SD ^a 13.10 12.55 12.24 60.82 20.75 1.96 3.35 201.51 66.55 11.16 RSD ^b 56.03 66.44 72.41 68.22 74.55 107.70 80.97 73.07 83.07	6	4383	8/5/2014	34.61	31.48	35.48	69.66	26.41	0.00	0.00	197.10	85.86	14.53
Max41.2636.6135.48189.5468.045.678.91685.80228.4239.31Median23.6520.5214.8269.6626.411.302.19197.1085.8613.85Average23.3918.8916.9089.1527.831.873.11248.8991.0913.43SD*13.1012.5512.2460.8220.751.963.35201.5166.5511.16RSD*56.0366.4472.4168.2274.55104.78107.7080.9773.0783.07			Min	6.05	0.00	0.00	16.52	0.00	0.00	0.00	41.63	14.69	2.19
Median 23.65 20.52 14.82 69.66 26.41 1.30 2.19 197.10 85.86 13.85 Average 23.39 18.89 16.90 89.15 27.83 1.87 3.11 248.89 91.09 13.43 SD ^a 13.10 12.55 12.24 60.82 20.75 1.96 3.35 201.51 66.55 11.16 RSD ^b 56.03 66.44 72.41 68.22 74.55 104.78 107.70 80.97 73.07 83.07			Max	41.26	36.61	35.48	189.54	68.04	5.67	8.91	685.80	228.42	39.31
Average23.3918.8916.9089.1527.831.873.11248.8991.0913.43SD*13.1012.5512.24 60.82 20.75 1.96 3.35 201.51 66.55 11.16RSD*56.03 66.44 72.41 68.22 74.55 104.78 107.70 80.97 73.07 83.07			Median	23.65	20.52	14.82	69.66	26.41	1.30	2.19	197.10	85.86	13.85
SD ^a 13.10 12.55 12.24 60.82 20.75 1.96 3.35 201.51 66.55 11.16 RSD ^b 56.03 66.44 72.41 68.22 74.55 104.78 107.70 80.97 73.07 83.07			Average	23.39	18.89	16.90	89.15	27.83	1.87	3.11	248.89	91.09	13.43
RSD ^b 56.03 66.44 72.41 68.22 74.55 104.78 107.70 80.97 73.07 83.07			SD^{a}	13.10	12.55	12.24	60.82	20.75	1.96	3.35	201.51	66.55	11.16
			$\mathrm{RSD}^{\mathrm{b}}$	56.03	66.44	72.41	68.22	74.55	104.78	107.70	80.97	73.07	83.07

Table 3.21 Concentration of individual PBDE congeners in 9 sediment samples (ng/L) (SFEI, 2015)

147

							Cong	gener IUPAC	No				
Sample no	Days	Date of Collection	66	100	153	154	206	207	208	209	183	197	85
1	0	8/5/2002	476.82	118.26	54.54	63.72	239.22	184.68	124.74	6858.00	22.41	35.15	25.06
2	385	8/25/2003	93.42	24.14	21.82	11.88	41.74	37.48	39.15	993.60	7.18	30.67	12.91
б	1842	8/21/2007	225.18	49.38	24.06	20.63	74.25	58.59	38.42	2940.30	0.00	0.00	0.00
4	2180	7/24/2008	70.74	18.52	8.37	8.96	31.43	20.52	14.47	1015.20	4.57	4.28	5.40
5	2598	9/15/2009	100.44	27.70	14.15	15.93	81.54	53.95	31.21	2305.80	0.00	0.00	4.77
9	2738	2/2/2010	31.10	6.26	2.82	3.07	17.98	21.87	12.91	702.00	4.27	2.61	1.38
7	3304	8/22/2011	194.94	57.24	47.63	30.94	95.04	88.56	48.38	3153.60	107.46	44.82	0.00
8	3544	4/18/2012	34.40	10.37	0.00	4.47	20.63	0.00	00.00	556.20	0.00	0.00	0.00
6	4383	8/5/2014	86.94	22.46	13.99	11.29	165.24	165.24	112.86	4914.00	8.10	43.25	0.00
		Min	31.10	0.00	6.26	0.00	3.07	0.00	0.00	17.98	0.00	0.00	556.20
		Max	476.82	25.06	118.26	54.54	63.72	107.46	44.82	239.22	184.68	124.74	6858.00
		Median	93.42	1.38	24.14	14.15	11.88	4.57	4.28	74.25	53.95	38.42	2305.80
		Average	146.00	5.50	37.15	20.82	18.99	17.11	17.87	85.23	70.10	46.91	2604.30
		${ m SD}^{a}$	140.43	8.48	34.69	18.94	18.81	34.59	20.03	74.02	64.88	43.58	2146.67
		$\mathrm{RSD}^{\mathrm{b}}$	96.18	154.21	93.37	66.06	70.99	202.16	112.10	86.84	92.56	92.92	82.43
^a Standard de	viation, ^b F	Relative standard dev	iation										

Hata! Başvuru kaynağı bulunamadı.Continued

In the FTHP model, a constant BDE concentration in the water column is assumed. In RMP monitoring study, the samples are measured only for a sample collected from one date (9/13/2011). It is given in Table 3.22. The concentration values of congeners in this date is used as initial and constant concentration in the water column. When water and sediment PBDE concentrations are compared, sediment concentrations are five to seven orders of magnitude higher.

Congeners	Concentration, ng/L	Congeners	Concentration, ng/L
7	0.00601	100	0.00941
8	0.00371	153	0.00404
15	0.00294	154	0.00401
17/25	0.0187	206	0.0157
28/33	0.00499	207	0.0246
32	0	208	0
35	0	209	0.302
47	0.0561	183	0.00153
49	0.0136	197	0.00243
66	0.00242	85	0.00128
99	0.0367		

Table 3.22 Concentration of congeners in water column and in 9/13/2011

3.5.2.3 Other Constituents used in the FTHP model

<u>TSS Concentration</u>: In station BA10, 9 samples are taken between dates June 19 1997 and May 11 2001 (SFEI, 2015). In the FTHP model, TSS concentration is assumed to be independent of time. Therefore, TSS data is evaluated to establish one TSS concentration that can be used as input to the model. Accordingly, TSS data is presented in Figure 3.40 while the descriptive statistics of TSS data is given in Table 3.23. The median of TSS (35.07 mg/L) is used as input in the model.

Figure 3.40 TSS Concentration

	Table 3.23	Descrip	otive	statistics	of	TSS	Data
--	------------	---------	-------	------------	----	-----	------

Constituent	Sample Station	Average	SD	RSD(%)	Median	Min	Max
TSS, mg/L	BA10	37.67	18.73	49.74	35.07	12.60	69.46

<u>Sediment and Water Properties</u>: The properties of sediment and water column are given in Table 3.24 and Table 3.25. In Choe et. al (2004), average depth of bay is given as 6 m. It is accepted as the water depth in our model. Sutton et. al (2015) state that the samples are collected with a surface area of 0.1 m^2 for RMP. Thus, the region can be accepted as homogeneous in this area. The maximum values are selected from the ranges given in Table 3.25 for sediment porosity. For this value, it is taken as 0.082.
Sediment Layer	Value	Reference
Depth (m)	6	SFEI, (2015)
Surface Area(m ²)	0.1	Sutton et al. (2015)
Water Column		Reference
Depth(m)	0.05	Choe et al. (2004)
Surface Area (m ²)	0.1	Sutton et al. (2015)

Table 3.24 Depth and Area of Sediment Layer and Water Column

Table 3.25 Water and Sediment Properties

Reference	Constituent	Unit	Range/Value
Caffrey (1995)	Sediment porosity	-	0.72-0.82
Davis (2004)	Sediment particle density,	g/m ³	2700000
	Monthly fraction organic can	rbon (f _{oc}):	
	For water column	-	0.01
	For sediment layer	-	0.03

Contaminant Properties: The properties for congeners are given in Table 3.26. Contaminant properties were taken from Mackay et al. (2006) and calculated by EPA SUITE version 4.1 1. In Mackay et al. (2006), K_{ow} and solubility of some congeners are not available. Therefore, these values are taken from another study, Eva et al. (2005) estimating their homolog groups. When combination of these two studies is listed (Table 3.26), the values differentiate each other. Therefore, for our FTHP model, K_{ow} and solubility values calculated by EPI SUITE were used since the values vary significantly through congeners.

Congener	MW	Median	Avg	Min	Max	EPI SUITE	EPI SUITE	Median
IUPAC No	(g/mole)	logKow	logKow	logKow	logKow	logKow	Solubility, mg/L at 25 °C	Solubility, mg/L at 25 °C
7	327.999	5.03	5.03	5.03	5.03	4.99	0.46	0.654^{a}
×	327.999	5.03	5.03	5.03	5.03	4.99	0.46	0.654^{a}
15	327.999	5.03	5.224	5.03	5.55	5.83	0.08826	0.654^{a}
17/25	406.895	c	5.525	5.47	5.58	5.88	0.02642	0.00038
28/33	406.895	5.58	5.672	5.47	5.98	5.88	0.02642	0.03519
32	406.895	c	5.53	5.47	5.59	5.88	0.02642	0.00038
35	406.895	c	5.525	5.47	5.58	6.72	0.00507	0.00038
47	485.791	6.14	6.135	6.135	6.135	6.77	0.001461	0.007535
49	485.791	6.2^{b}	$6.2^{\rm b}$	$6.2^{\rm b}$	$6.2^{\rm b}$	6.77	0.001461	0.096928^{a}
99	485.791	6.16	6.158	5.87	6.73	6.77	0.001461	0.009035
66	564.687	6.81	6.805	6.805	6.805	7.66	0.000394	0.0094
100	564.687	6.64	6.64	6.64	6.64	7.66	7.861 E-05	0.04705
153	643.583	7.39	7.39	7.39	7.39	8.55	4.148E-06	2.48E-06
154	643.583	7.39	7.39	7.39	7.39	8.55	4.148E-06	2.48E-06
206	880.2717	$8.50^{\rm b}$	$8.50^{\rm b}$	$8.50^{\rm b}$	$8.50^{\rm b}$	11.22	5.63E-10	0.000555^{a}
207	880.2717	$8.50^{\rm b}$	$8.50^{\rm b}$	$8.50^{\rm b}$	$8.50^{\rm b}$	11.22	5.63E-10	0.000555^{a}
208	880.2717	$8.50^{\rm b}$	$8.50^{\rm b}$	$8.50^{\rm b}$	$8.50^{\rm b}$	11.22	5.63E-10	0.000555^{a}
209	959.167	9.97	9.97	9.97	9.97	12.11	2.841E-11	$4.17 imes 10^{-9}$
^a : From solubility	of homolog gr	oups in Eva et. a	1. ^b : From logk	ζ _{ow} of homolo	g groups in Ev	a et al. (2005).	: No value since only rang	te defined for logKow.

Table 3.26 Solubility and $K_{\rm ow}$ of PBDE congeners (Mackay, 2006)

Deep Sediment PBDE Concentration: In our model, deep sediment concentration does not change with time as is also the case in Recovery model. Any measurement is not provided in deep sediment PBDE data set of RPM. Therefore, the studies for San Francisco Bay in the literature are investigated. In our model, surface sediment depth is given as 5 cm for station BA10 which is our modelling region (SFEI, 2015). Yee et. al (2011) studied San Francisco Bay deep sediment. They took a core sample in 2006 from Alviso Slough wetland site in Lower South Bay (Figure 3.41). Alviso Slough wetland site is near our study region. Additionally, a mining site, called as the New Almaden Quicksilver Mine (Yee et al., 2011), is located close to our study region. Therefore, concentration of total PBDEs through core is investigated in this station. However, Yee et. al (2011) state that the wetland is likely to include less sediment of the bay. Therefore, this data (Figure 3.41) could not represent the deep sediment samples perfectly. In view of this discussion and as seen in Figure 3.41, concentration of total PBDEs decreases with depth. Therefore, in our model, initial deep sediment PCB concentration is taken as zero for all congeners.

Figure 3.41 Total PBDE Concentration in sediment from Adviso Wetland Core (Grenier and Davis, 2011) (Yee et al., 2011)

<u>Settling, Resuspension and Burial Velocities:</u> Settling and burial velocities (1 and 0 m/day, respectively) are taken from the box model (Davis, 2004) prepared for the study of PCBs. These values are used for the box model assuming homogeneous over all San Francisco Bay sediment. Resuspension velocity is calculated as 0.00011 m/day by using solid mass balance equation which is explained in section 3.4.2.4.

Diffusion Coefficient: Molecular diffusion of some congeners in our model is given in Table 3.27, which were studied by Blauenstein (2007). Diffusion velocity of congeners is estimated by the diffusion equations in the FTHP model (equations 3.17 and 3.18). As can be seen from Table 3.27, molecular diffusion of congeners changes according to number of bromine. Therefore, in our model, molecular diffusion of some of congeners not listed in Table 3.27 is estimated and used according to this rule (Figure 3.42). Accordingly, molecular diffusion of the BDE congeners is tabulated in Table 3.28.

Congener IUPAC No	Cl -	Diffusion velocity sediment-water (v _d) (m/hr)	Molecular Diffusion* D _m (cm ² 10 ⁻⁴ /s)
15	2	0.00458	1.745
28	3	0.00433	1.650
47	4	0.00411	1.566
99	5	0.00392	1.494
100	5	0.00392	1.494
153	6	0.00375	1.429
183	7	0.0036	1.372
209	10	0.00323	1.231

Table 3.27 Molecular diffusion coefficient of PBDE congeners (Blauenstein, 2007)

*: Estimated by using equations: $v_d = \frac{\varphi D_s}{z'}$ and $D_s = D_m \varphi^2$

Figure 3.42 Molecular Diffusion vs. No of Br in diphenyl ether structure

Congener	Molecular	Congener	Molecular
IUPAC No	Diffusion, cm ² /sec	IUPAC No	Diffusion, cm ² /sec
7	0.00017	100	0.000151
8	0.00017	153	0.000145
15	0.00017	154	0.000145
17/25	0.000167	206	0.000126
28/33	0.000164	207	0.000126
32	0.000164	208	0.000126
35	0.000164	209	0.000119
47	0.000158	183	0.000139
49	0.000158	197	0.000132
66	0.000158	85	0.000151
99	0.000151		

Table 3.28 Molecular Diffusion used in the FTHP model

CHAPTER 4

VERIFICATION OF MODELS

In the scope of this study, FTHP model was developed for the prediction of congener specific HOC concentrations in sediments. This model predicts congener specific HOC concentrations taking into account biodegradation rate constants estimated by ADM. For this purpose, previously developed anaerobic dechlorination models were improved and modified as a part of this study. Hence, the codes of two models were verified. This chapter is divided into three parts where a small artificial data set is generated for the verification of ADM. FTHP model is then verified with a small data set a part of Lake Michigan data.

4.1 Artificial Data Set

A small artificial data set is created to be used for testing the ADM. Congeners are selected by considering abundance of the congeners in original mixtures, pathways in accordance with relevant dechlorination activity and presence of coelution. Concentrations of congeners are taken from Frame et al. (1996). Seven congeners are assumed as measured congeners for model input. Aroclor 1260 in weight percentage is firstly converted to mole %. Of these 7 congeners, congener 132 is present in high amount, congeners 84, 105, 131 and 133 are in low amounts and congener amounts of 55 and 56 are zero in Aroclor 1260. Table 4.1 shows the abundance of seven congeners to be used as input for the ADM.

The congeners assumed are seven congeners as 55, 56, 84, 105, 131, 132 and 133 as considering relation between dechlorination activity and congeners which is discussed

following sentences. The doubly flanked *para* removal is chosen as dechlorination activity. The positions of chlorine substitutions removed are displayed in Table 4.2. When reactive congeners are investigated for doubly flanked *para* removal, mother and daughter congeners given in Table 4.2 and Figure 4.1 are obtained. In this scenario, congeners 55 and 56 can not be degraded since they do not have chlorine in a doubly flanked position. For path order, ascending order for mother congener is selected as $132 \rightarrow 84$, $131 \rightarrow 84$, $105 \rightarrow 55$ and $105 \rightarrow 56$ (Figure 4.1).

Solosted Congener	Original Drafila	Normalized to 1000b	Artificially
Selected Congener		Normalized to 1000°	Dechlorinated Profile
IUPAC No	(mole $\%^a$)	mole ‰	(mole ‰)
55	0.00	0.00	30.00
56	0.00	0.00	1.50
84	0.11	32.66	242.66
105	0.26	75.12	43.62
131	0.05	14.77	4.77
132	3.02	859.72	659.72
133	0.06	17.73	17.73
Sum	3.51	1000	1000

 Table 4.1 Abundance of seven congeners in the original Aroclor 1260 and after dechlorination

^a: Frame et al. (1996) reports concentrations as weight percentage. Here, these are converted into **mole**

‰. ^b: Abundance of congeners are normalized to 1000 and prepared as input to ADM as mole ‰.

Chlorine substutition in mother	Chlorine substutition in daughter
345	35
2345	235
23456	2356

Figure 4.1 describe how anaerobic dechlorination is applied on the artificial data set. The reaction amounts are selected randomly. Table 4.1 shows the initial and dechlorinated PCB congener concentration (in mole ‰). The Δt which will be needed for k_m calculation is assumed as 100 days. For example, as can be seen in Figure 4.1, in the first pathway, 200 ‰ is subtracted from mother congener (132) to add 200 ‰ to daughter congener (84). Then, new values of congeners 132 and 84 are calculated as 659.72 ‰ and 232.66 ‰, respectively. In the second pathway, 10 ‰ is subtracted from mother congener (131) to add 10 ‰ to daughter congener (84) new value (232.66 ‰) of which is used for this calculation. Then, new values of congeners 131 and 84 are calculated as 4.77 ‰ and 242.66 ‰, respectively. The preparation of the dechlorinated profile goes on in this fashion. Eventually, the final abundance of the congeners in mole ‰ are shown in the last column of Table 4.1. As can be seen, abundance of 133 does not change since it does not take part in a reaction.

Figure 4.1 Application of artificial anaerobic dechlorination on data set

(Arrows indicate dechlorination pathway, **bold** numbers on arrows indicate reaction amounts (in mole ‰), **bold italic** numbers indicate mole ‰ after reaction and the numbers in circle display the reaction orders) Since PCB congeners can coelute during analytical determination, the congeners selected for verification of ADM were also rearranged in accordance with literature. Congeners 131 and 132 typically coelute with congeners 133 and 105, respectively, so, abundance of these congeners are summed. Then, they are normalized to 1000 mole ‰ (Table 4.3). The calculation for coeluting congeners can also be seen in Figure 4.2. During model verifications, Table 4.1 and Table 4.3 will be used.

Congener IUPAC No	Abundance, mole ‰
55	30.00
56	1.50
84	242.66
131/133	22.50
132/105	703.34
Sum:	1000

Table 4.3 Abundance of All Coeluting Congeners After Dechlorination

Figure 4.2 Anaerobic dechlorination pathways depicted with coeluting congeners

4.2 ADM Verification

4.2.1 Example Run

The model is verified with a small data set artificially created as explained in the previous section. The verification is done in MS excel to compare with the model results in MatLAB. Only one shuffle is performed since in each shuffle, same operations are done. In each shuffle, reaction amount subtracting from mother congener to add daughter congener, k_m values in each pathway and amount of congeners in mother and daughter arrays are calculated. After the end of all shuffles which is not performed here, average and median of these values in all shuffles is taken. Input file is shown in Table 4.4.

Table 4.4 Model Input

DL	Pathways #	Total congeners # at to	markers #	Δt	iteration no	lambda					mother	daughter
0.065609521	Δ	5	5	100	100	no	6	10			132	84
0.005005521	·	5	5	100	100	110	Conc	Conc		Conc	152	01
		Conge	eners				t0	tf	mark	mark	131	84
55							0	30	55	30	105	55
56							0	1.5	56	1.5	105	56
84							32.66	242.7	84	242.7		
131	133						32.5	22.5	131	22.5		
132	105						934.8	703.3	105	703.3		

In Table 4.5 and Figure 4.3, final concentration of coeluting congeners are indicated and abundances calculated in the excel and by the model are compared. As can be seen from the figure, the model predicts the data satisfactorily.

Table 4.5 Initial and final concentration of coeluting congeners by the model and in the data set

aroreacong	Measured t=0 day (mole ‰)	Measured t=100 day (mole ‰)	ADM output t=100 day , (mole ‰)
55	0	30.00	21.31
56	0	1.50	0.00
84	32.66	242.66	257.02
105/132	934.84	703.34	689.16
131/133	32.50	22.50	32.50

Figure 4.3 Measured vs. ADM predicted data plot

Distribution of Biodegradation Rate Constants:

In this part, biodegradation rate constants are calculated for artificial data set exposed to dechlorination activity "doubly flanked *para*" in Section 4.1. Artificial data includes two files including all seven congeners. First one is aro array obtained from original A1260 mixture. It is assumed that this is at initial time. Second one is sam array obtained after applying dechlorination activity "doubly flanked *para*". To generate sam array, path order is in order of 1, 2, 3 and 4. Accordingly, k_m values in each path are compared with model results including same path order with in generated data (Table 4.6). In Table 4.7, biodegradation rate constants are calculated by excel and estimated by the model. Accordingly, the table indicates that the model works correctly.

Diodocuodotion	Data constants	I, .***	K m,d	0.00274	0	0.00030	0
Concentration of	Daughter	Congeners, Cd,f	(=Cd,i+Reaction)	21.15	21.45	0.20	1.50
Concentration of	Mother	Congeners, Cm,f	(=Cm,i-Reaction)	12.84	0.84	12.64	11.14
	Doction	Neaction		20	0.30	0.20	1.50
Concentuction	Collectiu auon of Domebran	UI Dauginei	Congeners, Cu,I	1.15	21.15	0	0
Concentration	of Mother	Congeners,	Cm,i	32.84	1.14	12.84	12.64
	Daughter	congeners		84	84	55	56
	Mother	congeners		105*	131**	105	105
	Path	orders		1	2	3	4

Table 4.6 Calculation of k_m values for Artificial data by excel

 $\label{eq:constraint} \mbox{*means amounts of 131+133 due to coelution, **means amounts of 131+133 due to coelution, ***: $k_{m,d}=ln(C_{m,i}/C_{m,f})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,f})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_{m,d})/\Delta t$ and $M_{m,d}=ln(C_{m,i}/C_$

Table 4.7 Model k_m results

Path	Mother	Daughter	Reaction	k _m values
orders	congeners	congeners	Amount	
1	105/132	84	224.36	0.00274
2	131/133	84	0	0
3	105	55	2.31	0.00030
4	105	56	0	0

4.3 FTHP Model Code Verification

4.3.1 Example Run

The code of the model is verified with a part of Lake Michigan data set given in Zhang (2006), Mackay (2006) and Schneider (2005). In this part, calculations conducted for FTHP model are expressed only for one time step.

Input files are shown in Table 4.8 to Table 4.11 which are in format of Input files in the program. In Table 4.8, number of congeners, paths, and final, initial time and time steps are entered by the user. Biodegradation rate constants are entered by the user for corresponding congeners in Table 4.9. Table 4.10 presents initial concentration in surface and deep sediment, and water column, molecular diffusivity, octanol-water partitioning constant and solubility of congeners. The properties belonging to water column, sediment layer and system are given in Table 4.11.

Table 4.8 Model Input Information for numbers of congeners, paths and time

Congener, #	Path, #	to	t _f	Δt
5	3	0	100	5

Table 4.9 Model Input Information for biodegradation rate constants

Mother	Daughter	k _m (day ⁻¹)
101	49	0.0001
138/163	99	0.000607
105/132/153	99	0.001024

Congeners	C _m (o), ng/L	C _w (o), ng/L	C _s (o), ng/L	Molecular Diffusivity, cm²/sec	log(K _{ow})	Solubility, mg/L at 25 °C
49	241.10	0.00373	0.00	0.000173	5.93	0.0202
99	292.49	0.00934	0.00	0.000173	6.41	0.0103
101	547.18	0.00625	0.00	0.000173	6.38	0.0103
138/163	1130.12	0.01167	0.00	0.000173	6.82	0.0039
105/132/153	968.72	0.00587	0.00	0.000173	6.72	0.0047

Table 4.10 Model Input Information

 Table 4.11 Model Input Information belonging to water column, sediment layer and system properties

uter Imn	Depth (Depthw)	m	48.1	
Wa colu	Surface Area (A _w)	m2	4425	
ent er				
dim	Depth (Depths)	m	0.03	1
Se	Surface Area (A _m)	m2	442	5
	Suspended solids			
	concentration in water (S _w) g/m3	0.94166666	7
	Sediment porosity (Pos)	-	0.95	3
	Sediment particle density			
ties	(Rou)	g/m3	254000	0
per	Fraction organic carbon,	g-orgC/g dw solids		
Pro	Water	g-orgC/g dw solids	0.0	9
[m	Sediment	g-orgC/g dw solids	0.0	5
yste	Characteristic Length	m	0.0	1
Ś	Two of the fo	ollowing three velociti	es:	
	Resuspension velocity, v _r	m/day	Unknown	-
	Burial velocity, v _b	m/day	Known	0.00001
	Settling velocity, vs	m/day	Known	1.5

The calculations conducted in MS Excel are given in the following paragraphs and tables. Firstly, contaminant partitioning coefficients in the sediment (K_{ds}) and in water column (K_{dw}) are calculated (Table 4.12 and Table 4.13). As can be seen in the last columns of Table 4.12 and Table 4.13, unit conversion is done for K_d values.

Congonors	$K_{ow}=10^{logKow}$	K_{ds} =0.617* f_{ocs} * K_{ow}	Kds=Kds*0.000001
Congeners	unitless	L/kg	m ³ / g
49	841395.14	25957.04	0.03
99	2570395.78	79296.71	0.08
101	2371373.71	73156.88	0.07
138/163	6569011.16	202653.99	0.20
105/132/153	5268253.53	162525.62	0.16

Table 4.12 Calculation of contaminant partitioning coefficients in the sediment (Kds)

Table 4.13 Calculation of contaminant partitioning coefficients in the water (Kdw)

Congonorg	Kow=10 ^{logKow}	Kdw=0.617*focw*Kow	Kdw=Kdw*0.000001
Congeners	unitless	L/kg	m ³ /g
49	841395.14	46722.67	0.05
99	2570395.78	142734.08	0.14
101	2371373.71	131682.38	0.13
138/163	6569011.16	364777.19	0.36
105/132/153	5268253.53	292546.12	0.29

The partitioning coefficients are calculated to find the fractions of contaminant mass in dissolved form in pore water of sediment (F_{dp}), in particulate form in the water column (F_{pw}) and in dissolved form in water column (F_{dw}). Their calculations are depicted in Table 4.14.

Congeners	Fdp(i)=1/(1+Kds(i) *(1-Pos)*Rou)	Fpw(i)=(K _{dw} (i)*Sw)/ (1+K _{dw} (i)*Sw)	Fdw(i)=1/(1+K _{dw} (i)*Sw)
49	0.00032	0.04214	0.95786
99	0.00011	0.11848	0.88152
101	0.00011	0.11032	0.88968
138/163	0.00004	0.25567	0.74433
105/132/153	0.00005	0.21598	0.78402

Table 4.14 Calculation of fractions of contaminant (unitless)

Diffusion mass-transfer coefficient at the sediment-water interface (v_d) is calculated to use in diffusion term of mass balance equation. In the model, v_d is converted from $cm^2/(m.sec)$ to m/day (Table 4.15).

Congonous	v _d =Pos*D _s /Z	v _d =v _d *0.0001*3600*24
Congeners	cm ² /(m.sec)	m/day
49	0.0165	0.1424
99	0.0165	0.1424
101	0.0165	0.1424
138/163	0.0165	0.1424
105/132/153	0.0165	0.1424

Table 4.15 Estimation of diffusion mass-transfer coefficient at the sediment-water

interface

In the model, the resuspension velocity (v_r) among three velocities is unknown. Therefore, v_r is calculated from solid mass balance equation (Table 4.16).

Table 4.16 Estimation of resuspension velocity (v_r)

Item	v _r =v _s *S _w /((1-Pos)*Rou)-v _b m/day
Vr	0.000002

Volume of surface sediment needed in the numerical solution of the model is calculated as

Volume=A_m*Depths=4425X0.031=137.18 m³

and k1, k2, k3 and k4 values are calculated as discussed in RK4 numerical solution. "Degraded", "Degradedm" and "Degradedd" arrays are used in biodegradation term to make easy calculations of k1, k2, k3 and k4 (Table 4.17Table 4.17). In Table 4.17, concentration and k1, k2, k3 and k4 are calculated for only one step Δt . Concentration of five congeners in surface sediment is calculated by MS Excel and estimated by the model for 50 days with 5 day Δt intervals. They are compared in Figure 4.4. Accordingly, the figure indicates that the model works correctly, hence model verification is successful.

		ng/L	ng/(day L)	ng/(day L)	ng/(day L)	day ⁻¹
Congener IUPAC No	Biodegradation Rate Eqn	$C_m=C_m(0)$	$Degradedm=-k_m^*C_m(0);$	$Degradedd=\!k_m^*C_m(0)$	Degraded=Degradedd+ Degradedm	sumkvalm
49	$=k_{101} \rightarrow 49^{*} C_{m}(0)_{101}$	241.101		0.055	0.055	0
66	$=k(138/163 \rightarrow 99)*C_m(0)138/163+k(105/132/153 \rightarrow 99)$ $*C_m(0)105/132/153$	292.486		1.678	1.678	0
101	$=-k(_{101} \rightarrow _{49})* C_m(0)_{101}$	547.184	-0.055		-0.055	0.0001
138/163	$=-k(138/163 \rightarrow 99)* C_m(0)138/163$	1130.122	-0.686		-0.686	0.001
105/132/153	$=-k(105/132/153 \rightarrow 99)* C_m(0)_{105/132/153}$	968.722	-0.992		-0.992	0.001

Table 4.17 Calculations in biodegradation term

CHAPTER 5

ESTIMATION OF BIODEGRADATION RATE CONSTANTS OF PCB DECHLORINATION REACTIONS USING AN ANAEROBIC DEHALOGENATION MODEL

5.1 Introduction

Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants (POPs). They were specifically produced for their chemical and thermal stability. Therefore, these chemicals had a widespread use in many industries such as heat exchange fluids, dielectric fluids in electric transformers and capacitors, and as additives in paint, carbonless copy paper, and plastics (POPs, 2008). Historically, about 1.7 million tons of PCBs was globally produced between 1930 and 1993 (Breivik et al., 2007). Despite prohibition of commercial production of PCBs firstly in 1977 in USA, and lastly in 1993 in Russia (Breivik et al., 2002), PCBs are still widely available in many equipments. Upon entry into the environment, PCBs cause adverse effects on human and animals due to their persistence, bioaccumulative and toxic properties. PCBs are internationally regulated as part of the original twelve POPs under the Stockholm Convention, which necessitates elimination of the use of equipment containing PCBs by 2025 and management of wastes containing PCBs by 2028.

PCBs are chemically persistent in the environment, however they can undergo transport and transformation mechanisms such as physicochemical weathering (volatilization, atmospheric transport, and wet/dry deposition, sorption/desorption) (Gouin & Harner, 2003) and biodegradation (anaerobic and aerobic) (Bedard, 2003). PCB dechlorination is attributed to various dehalorespiring bacteria (Zanaroli et al., 2010) in the sediment. Dehalogenation takes place by replacing one or more chlorines with a hydrogen in the PCB structure and production of less chlorinated congeners

(Abramowicz, 1995). Over the years, many studies identified pathways a number of dechlorination pathways (Adrian et al., 2009; Cutter et al., 2001; Fennell et al., 2004; May et al., 2006; Wu et al., 2002) according to congener selectivity of microorganisms, targeted Cl positions and dechlorination products (Bedard, 2003; Sowers & May, 2013). The targeted positions for dechlorination are defined as *para*, *meta* or *ortho* positions in terms of configuration; flanked, doubly flanked and unflanked in terms of the presence/absence of chlorines in adjacent position(s). The *ortho* site Cl removal was confirmed only in laboratory studies (May et al., 2006).

Dechlorination of PCBs has been a research topic of interest for a long time. In addition to the many laboratory studies, it has also been the topic of modelling studies. In the literature, a number of studies identified pathways (Hughes et al., 2010, 2015; Karcher et al., 2004, 2007) while others evaluated quantification of pathways with biologically confirmed data (Bzdusek et al., 2006a; Bzdusek et al., 2006b; Demirtepe et al., 2015; Imamoglu et al., 2002; Imamoglu et al., 2004). Imamoglu et al. (2002) developed an anaerobic dechlorination model concerned with quantification of pathways, which provides abundance of dechlorination reactions (mole ‰) as an output. This model was later modified by Bzdusek et al. (Bzdusek, Lu, et al., 2006) and Demirtepe et. al (2015). These studies can help develop an approach for effective remediation strategies to contaminated sites with PCBs by enabling monitoring and predicting change in concentration and toxicity. Furthermore, a more detailed systematic evaluation of congener pattern changes may also lead to identification of new degradation pathways in addition to those identified in laboratory studies.

Congener specific degradation information can be very useful, such that they can now be incorporated into numeric fate and transport (F&T) models for modeling contaminant concentration in sediments. Biodegradation term is typically handled simply as first order and one rate constant is assumed to apply for all PCB congeners (Connolly et al., 2000; Russell et al., 2006). However, if pathway specific degradation rate constants can be obtained, then congener specific modeling of PCBs in aquatic sediments can also be accomplished.

In this respect, this study aims to estimate biodegradation rate constants of dechlorination reactions of individual PCB congeners using the ADM. Baltimore Harbor sediment microcosm data is used for this purpose. As different from previous versions, ADM is modified in this study by adding new features such as calculation of biodegradation rate constants and can now be applied to sediments contaminated with any halogenated hydrophobic organic compound (HOC). By this way, biodegradation rate constants obtained from ADM can be used as input to FTHP models for a better and more detailed investigation of the fate of individual HOCs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of the rate constants estimated in this study.

5.2 Methodology

5.2.1 Baltimore Harbor (BH) Microcosm Data Set

Microcosms enable microbial reductive dechlorination of PCBs, without a major effect of physicochemical or other biotic/abiotic transformations. Details about the preparation of microcosms and analysis for the BH data set are given in Fagervold et al. (2007, 2011). Four microcosm data sets from BH were spiked with Aroclor 1260 and prepared by addition of (i) no microorganism (no bioaugmentation) (denoted "BH"), (ii) SF-1 and DEH-10 (denoted "SF-1+DEH-1"), (iii) o-17 and DF-1 (denoted "o-17+DF-1") and (iv) SF-1, DF-1, DEH-10 and o-17 microorganisms (denoted "SF-1+DF-1+DEH-10+o-17") (Fagervold et al., 2007, 2011). Microcosms were sampled at 0, 100, 200 and 300 days. 91 congener groups (177 individual congeners due to coelution) were analyzed. Average PCB profiles of three microcosm replicas for four data sets were presented in Figure 3.20-Figure 3.23, section 3.4.1.

5.2.2 Anaerobic Dehalogenation Model (ADM)

ADM was developed by Imamoglu et. al (2004) and modified by Bzdusek et. al (2006) and Demirtepe et al. (2015). It aims to identify and quantify dechlorination pathways among congeners in PCB data sets measured at two different times. Two modifications are present in this study when compared to the most recent published version of the model: (1) model can now be used for any hydrophobic organic compound (not only PCBs), hence the name is now Anaerobic Dehalogenation Model (2) model now additionally gives dechlorination rate constants as output.

The model is rewritten in MatLAB, version 7.10.0. ADM is based on mass balance between dechlorinated and accumulated congeners. The model works according to two principles: (i) mass balance between mother and daughter congeners is maintained (ii) only pathways confirmed with laboratory or field studies are used. The same objective function in original model (Bzdusek, Lu, et al., 2006; Demirtepe et al., 2015; Imamoglu et al., 2002) is aimed to be minimized. The governing equation is given below:

$$S = \sum_{j=1}^{m} (\hat{y}_j - x_j)^2$$
 5.1

where \hat{y}_j is predicted congener profile (either from Frame et. al (1996) or microcosm PCB data at t=0 d) altered according to a dechlorination activity (mole ‰), x_j is congener profile of microorganism PCB data measured at day e.g. t=100 day (mole ‰), and m is number of the congeners. As different form old version, the groups of congeners in coelution are not separated. The model input are the list of congeners analyzed in all samples, ‰ moles of original profile at t_{initial}, ‰ moles of predicted profile at t_{final} and a list of anaerobic dechlorination pathways.

Pathways are now identified automatically according to a specified dechlorination activity (DA) or group of activities. The DAs can contain pathways that are theoretically possible and/or confirmed by biological studies. Besides, congeners or substitutions can be defined to the activities as the constraint such as that a specific congener including Cl in a *para* position can be defined as a constraint such that it will not undergo dechlorination in an activity including removal of *para* chlorines.

An improved evaluation of model fit is brought about in the new model. The fit of all congeners as well as those that take part in a pathway (as mother or daughter) are separately investigated by the multiple correlation coefficient R^2 . It is calculated for of all measured congeners (R^2) and reactive congeners (R^2_{reac}) which participate in dechlorination as either mother or daughter congener. R^2 is deemed satisfactory if it is above 0.70.

Using ADM, a dechlorination pathway is now not only quantified but also the dechlorination rate constant (k_m) associated with it is calculated. The order by which microorganisms dechlorinate PCBs is not known. Therefore, the full list of pathways are shuffled a 100 times and subsequently a distribution of k_m values are obtained. Sometimes a k_m value can not be computed for a pathway (e.g. if concentration of mother congener before reaction is equal to "0") in which case no k_m estimation is presented for that shuffle. Please see Section 3.2 for details of the application of ADM.

5.3 Results and Discussion

5.3.1 Analysis of ADM Results for All Dechlorination Activities

ADM was run for BH microcosm sediment data with input as concentration of 91 congeners/coeluting groups and pathways of 25 DAs. They are given in Table 5.1. Biological studies include microorganism based pathways defined in Fagervold et al. (2007), Wu et al. (2002), Fennell et al. (2004) and Adrian et al. (2009). As can be seen

from the last four columns of Table 5.1, ADM provided an estimation of biodegradation rate constants for fourteen of these activities. Ten of these activities, namely DA-16 to 25, are microorganism based ones (Fagervold et al., 2007, 2011). A distribution of k_m values is obtained for each dechlorination pathway in a DA. In Table 5.1, the maximum, median and minimum k_m values calculated by the ADM are shown. When we compare the median of the maximum k_m values (last column of Table 5.1) of each activity, a range of almost three orders of magnitude can be seen.

The goodness of fit results for DAs that k_m values could be estimated are presented in Table 5.2. it can be seen that even when degradation rate constants are estimated by the ADM, a DA may not satisfactorily explain the degradation of congeners as indicated by the R² and R²_{reac} (Table 5.2). Accordingly, goodness of fit parameters, R² and R²_{reac} are evaluated considering two crriteria; (i) Finding the DA explaining degradation of congeners for all samples and in their all or most of their time intervals satisfactorily. (ii) Checking the correlation of each sample with their corresponding DA which includes the same microorganism or microorganism groups (i.e. 2.BH with DA23, 3.BH with DA24 and 4.BH with DA25).

When the performance of all DAs are investigated, DA18 was identified as the one to most successfully explain pattern changes with satisfactory fit results (i.e, $R^2>0.74$ and $R^2_{reac}>0.86$ for all four BH data sets). Moreover, as can be seen from the figures of four data sets in Section 3.4.1, the greatest shift in PCB congener patterns occur between 100 and 200 days in BH data sets. Accordingly, there was no significant correlation between measured and modeled t100- t200 day data profiles in DAs except for DA18 (Table 5.2). In four data set graphs between 100 and 200 days, dramatical changes are observed in higher chlorinated homolog groups, especially penta, hexa and hepta including congeners 92, 110/77, 124/135/144, 165, 179, 161/146, 172/192, 153/127, 126/129/178, 167 and 191 after 100 days. There is corresponding accumulation in lower chlorinated homolog groups such as, congeners 20/21/33/53, 23/34, 24/27, 28/31/50, 52/73, 43/49/38, 57/103/40, 62/65 and 70. Four groups of

congeners among these (20/21/33/53, 43/49/38, 153/127 and 161/146) take part in pathways of DA18 (Table 5.3). These congeners have better correlation in the time interval of 100 and 200 days of 1BH, 3BH and 4BH (Figure E.4, Figure E.5 and Figure E.6) since congeners 20/21/33/53 and 43/49/38 are accumulated congeners, and 161/146 and 153/127 are dechlorinated. Therefore, dechlorination, as seen in Figure E.1, E.3 and E.4, is predicted relatively more successfully by DA18.

As the second criterion, it is expected that three activities successfully should explain the dechlorination in the corresponding data sets. when R^2 values for measured data are compared with those of predicted data of corresponding activities, contrary to expectations, these activities did not predict dechlorination pathways as successfully as DA18. However, it is seen that the greatest shift in PCB congener patterns occur between 100 and 200 days is not predicted well with DA23, DA24 or DA25 (Table 5.2). The main reason for low R^2 is that the congeners having shifted patterns between day 100 and 200, and day 0 and 100 are not predicted well by DA23, DA24 or DA25 (Figure E.2, E.3 and E.4). In prediction of data 2.BH with DA23 (Figure E.7 and Figure E.8), for example the model can not explain the dechlorination since the shifted congeners except 161/146 and 153/127 are not available in the pathway list. On the other hand, while these congeners in DA23 should accumulate according to the DA (Table 5.3), their abundance decrease by time. There may be a number of reasons why the expected DAs did not yield the best fit to measured data:

- Pathways identified for specific microorganism in the literature may not be an exhaustive list. That is, perhaps microorganisms are capable of conducting the pathways of DA18, but could not be noticed in microcosm studies in the previous studies. ADM can systematically check presence of many dechlorination pathways which can be much more advantageous when compared to a manual evaluation of dechlorinated profiles.
- Microorganisms, when brought together on a consortium, such as the case for 2.BH, 3.BH and 4.BH, may be capable of dechlorinating PCBs in pathways that are different from the case when they are individually present in sediments.

Such a phenomenon was discussed by Sowers and May (Sowers & May, 2013) Therefore, for example, when o17 and DF1 are introduced in the sediment together, uncharacteristically they may start dechlorinating *para* flanked *meta* chlorines and no longer dechlorinate flanked chlorines in *ortho* positions.

DA		Number	k _m (d-1)	Medi k _m (an ^b of (d ⁻¹)
No	Description of DA	of Pathways	Min ^a	Max	Min ^a	Max
DA1	Flanked any (DA3+DA4+DA5)	371				
DA2	Flanked <i>meta</i> any or flanked <i>para</i> any (DA3+DA5)	281				
DA3	Flanked meta any	170				
DA4	Flanked ortho any	90				
DA5	Flanked para any	111	0.0001	0.1190	0.0001	0.0439
DA6	Meta any	229				
DA7	Ortho any	193				
DA8	Para any	150				
DA9	Flanked or meta (DA1+DA6)	413				
DA10	Flanked or para (DA1+DA8)	393				
DA11	Doubly flanked para-any	44	0.0001	0.3662	0.0001	0.1106
DA12	Doubly flanked meta-any	60	0.0001	0.3672	0.0003	0.1181
DA13	Doubly flanked <i>para</i> any or doubly flanked <i>meta</i> any	104	0.0001	0.3619	0.0001	0.1007
DA14	Singly flanked <i>para</i> any or singly flanked <i>meta</i> any	179				
DA15	Doubly flanked meta and <i>para</i> +singly flanked <i>meta</i> +para	283				
DA16	Microorganism o-17 (Flanked chlorines in ortho and para positions)	48	0.0001	0.1027	0.0001	0.0094
DA17	Microorganism DF-1 (Doubly flanked chlorines in <i>meta</i> and <i>para</i> positions with some congener constraints)	23	0.0001	0.3652	0.0002	0.0926
DA18	Microorganism DEH10 (Doubly flanked chlorines in <i>meta</i> and <i>para</i> positions, <i>para</i> flanked chlorines in <i>meta</i> position)	9	0.0001	0.1330	0.0015	0.0112
DA19	Microorganism SF1 (Doubly flanked chlorines in the <i>meta</i> position, <i>ortho</i> flanked chlorines in the <i>meta</i> position)	10	0.0001	0.3657	0.0002	0.0824
DA20	Microorganism cbdb1 (Singly and doubly flanked chlorines in <i>para</i> position, doubly flanked chlorines in <i>meta</i> position)	120	0.0001	0.3622	0.0000	0.2176
DA21	Microorganism deh. m. 195 (Flanked chlorines in <i>met</i> a and <i>para</i> positions)	42	0.0001	0.3672	0.0002	0.1067
DA22	Microorganism SF-2 (Doubly flanked <i>meta</i> position)	2	0.0001	0.0039	0.0016	0.0021
DA23	DEH10+SF1	5	0.0001	0.0095	0.0003	0.0030
DA24	o17+DF1	29	0.0001	0.1027	0.0002	0.0103
DA25	Deh10+SF1+o17+DF1	32	0.0001	0.0901	0.0001	0.0106

Table 5.1 Dechlorination activities and k_m values estimated by ADM.

 a Minimum values disregarding "0" values, b The median of min and max of k_{m} values are shown.

interval
each time
ole run for
each samj
R ² reac) for
s (R ² and
f fit result
ioodness o
Fable 5.2 C

	1	00	\mathbf{x}^{2*}		66.(.92	66.(66.(.95	.95	00.	66'		66.(00.	.76	.94	0.87	icate
	7+DF	200-t	2 ²]	98) 66	98 () 66) 66	98 () 66	1 66	98 () 66	98 1	98 (98 (<u>98</u>	rs ind
	+ 017	0	*	0.0	0.0	1 0.	0	0	0.0	3 0.	7 0.5	0		0	9 0.	6 0.9	4	7 0.	umbei
	EH10	0-120	\mathbb{R}^2			0.7			0.7	0.5	6.0				0.9	0.8	0.6	0.0	ned m
	[1+D]	t10	\mathbb{R}^2	0.52		0.63			0.59	0.55	0.87				0.52	0.55	0.56	0.57	Iderli
	IS-H	100	\mathbb{R}^{2*}						0.90	0.81	0.94	0.52		0.62	1.00	0.96	0.89	0.90	un pui
	4. B	t0-t	\mathbb{R}^2	0.60					0.57	0.60	0.84	0.63		0.64	0.60	0.59	0.58	0.58	talic a
		0	*			5			4	9	6	9		8	0	7	5	5	DA. I
		0-t30	\mathbb{R}^2			0.0			.0.9	.0.4	0.0	0.5		.0.9	. 1.0	.0.9	0.0	.0.9	st fit
	E	t20	\mathbb{R}^2	0.74		0.82			0.74	0.74	0.76	0.82		0.74	0.74	0.74	0.74	0.74	the be
	17+D	-t200	\mathbb{R}^{2*}						0.88	0.49	0.96	0.77		0.21	0.63	0.94	0.92	0.93	wing
	BH-0	t100	\mathbb{R}^2	0.25					0.25	0.26	0.89	0.38		0.29	0.25	0.25	0.25	0.25	les ha
	њ	00	\mathbb{R}^{2*}		0.96	0.97		0.98		0.95	0.95	0.90			0.99	0.97	0.95	0.95	samp
		t0-t1	\mathbb{R}^2	0.85	0.96	0.95		0.97		0.94	0.92	0.86			0.85	0.86	0.92	0.93	te the
				-	-	-		-		-	-	-			-	-	-	-	indica
		-t300	\mathbb{R}^{2*}			06.0	0.98		0.92	0.92	1.00	0.97		0.99	0.97	0.89	0.00	0.88	ibers i
	H10	t200	\mathbb{R}^2	0.97		0.98	0.98		0.98	0.97	0.99	0.97		0.98	0.97	0.97	0.97	0.97	d nun
	+DEI	t200	${f R}^{2*}$			0.78			0.77	0.64		0.66			1.00	0.97	0.75	0.78	I. Bol
	I-SF1	t100-1	\mathbb{R}^2	0.68		0.77			0.74	0.72		0.71			0.69	0.70	0.72	0.74	ADN
	2.BH	9	\mathbb{R}^{2*}			.84		0.70	.86	<i>LL</i> .(.93	.48		.48	76.0	0.92	.86	.85	on by
		t0-t10	Z ² H	.46		.43 0		.59 C	42 0	45 0	83 0	.49 C		51 0	.46 0	45 0	.43 C	.43 C	nulati
			1	0		0		0	0	0	0	0		0	0	0	0	0	no sir
		t300	\mathbb{R}^{2*}			0.94	0.97		0.96	0.93	1.00	0.98		0.98	0.97	0.99	0.97	0.97	licate
		t200-	\mathbb{R}^2	0.96		0.97	0.97		0.97	0.96	66 .0	0.97		0.96	0.96	0.96	0.96	0.96	lls ind
	H	200	\mathbb{R}^{2*}			0.60			0.74	0.44	0.86	0.21		0.26	0.92	0.89	0.74	0.74	reac CC.
	1.B	100-t	\mathbb{R}^2	.21		1.20			.19	.21	.74	.28		1.25	.21	.21	.20	1.20	nd R ²
		0 t	2*	0	66	0	66	66	0 66	9 0	9 66	9 0	66	97 0	0 66	0 66	9 0	0 66	n R ² a
		0-t10(² R	Lt	0 60		8 0.	.0 60	8 0.	7 0.	8 0.	7 0.	.0 0.	0. 20	7 0.	7 0.	7 0.	0. 20	mks ir
		Ħ	R	e.0 e	0.9		0.0	9.0	6.0 6	0.9	6.0	0.0	0.0	0.0	0.0	0.0	1 0.9	0.0	Ic. Bla
	DA	No		None	DA5	DA11	DA12	DA13	DA16	DA17	DA18	DA19	DA20	DA21	DA22	DA23	DA24	DA25	$*: \mathbb{R}^{2}_{rea}$
																			n -

that microorganisms added to the sample and considered for relevant DA are the same.

Pathways	DA18	DA23	DA24	DA25	
20/ 21 /33/53→ 7 /9	2 3 4- → 24-			\checkmark	\checkmark
29 /54 →7 /9	24 5-→ 24-, 2 4 5- → 25-			\checkmark	\checkmark
66//80/93/ 95 /102/88 → 20/21/33/ 53	2 3 6-25 → 25-26	\checkmark			
66/80/93/95/ 102 /88→22/ 51	24 5 -26 → 24-26	\checkmark			
74/94/ 61→23 /34	2345-→235-			\checkmark	\checkmark
74/94/ 61→29 /54	2 3 45-→245-			\checkmark	\checkmark
79/ 99 /113→ 47 /48/75	245-24→24-24	\checkmark			
90/ 101→ 43/ 49/ 38	24 5 -25 → 24-25	\checkmark			
128→85 /120/148	234-2 3 4 → 234-24			\checkmark	\checkmark
124/ 135 /144→74/ 94 /61	235-2 3 6 → 235-26		\checkmark		\checkmark
132 /105→55/ 91	2 3 4-236 → 236-24	\checkmark			
138 /163/164→ 85 /120/148	234-24 5→ 234-24			\checkmark	\checkmark
$138/163/164 {\rightarrow} 81/87/117/111/115/116/145$	234-2 4 5 → 234-25			\checkmark	\checkmark
138 /163/164→79/ 99 /113	2 3 4-245 → 245-24	\checkmark		\checkmark	\checkmark
106/118/139/ 149 →66/80/93/95/ 102 /88	2 3 6-245 → 245-26		\checkmark		\checkmark
151 →66/80/93/ 95 /102/88	23 5 6-25→236-25	\checkmark			
153 /127→79/ 99 /113	24 5 -245→245-24	\checkmark			
161/ 146→90 /101	235-24 5→ 235-24				
170 /190→176/ 130	23 4 5-234 → 234-235			\checkmark	\checkmark
170 /190→ 138 /163/164	2 3 45-234 → 234-245			\checkmark	\checkmark
156/ 171 /202→106/118/ 139 /149	2346-2 3 4 → 2346-24			\checkmark	\checkmark
174 /181→106/118/139/ 149	2 3 45-236 → 236-245		\checkmark		\checkmark
180→141	2345-2 4 5 → 2345-25			\checkmark	\checkmark
180 →161/ 146	2345-245→235-245		\checkmark	\checkmark	\checkmark
180→153 /127	2 3 45-245 → 245-245		\checkmark	\checkmark	\checkmark
183 →106/118/ 139 /149	2346-24 5→ 2346-24			\checkmark	\checkmark
183 →124/135/ 144	2346-2 4 5 → 2346-25			\checkmark	\checkmark
183→154	2 3 46-245→245-246			\checkmark	\checkmark
194→172 /192	2345-23 4 5 → 2345-235			\checkmark	\checkmark
194→180	2345-2 3 45 → 2345-245			\checkmark	\checkmark
195 /208→174/ 181	23456-2 3 4 → 23456-24			\checkmark	\checkmark
196 /203→ 175	23 4 5-2346 → 2346-235			\checkmark	\checkmark
196 /203→187/159/ 182	2345-2 3 46 → 2345-246			\checkmark	\checkmark
196 /203→ 183	2 3 45-2346 → 2346-245			\checkmark	\checkmark
196/ 203→154	2 3 4 5 6-245→245-246			\checkmark	\checkmark
196/ 203 →174/ 181	23456-24 5→ 23456-24			\checkmark	\checkmark
196/ 203→185	23456-2 4 5 → 23456-25			\checkmark	\checkmark
206 →187/159/ 182	2 3 4 5 6-2345→2345-246			\checkmark	\checkmark
206 →196/ 203	23456-2 3 45 → 23456-245			\checkmark	\checkmark

Table 5.3 List of all dechlorination pathways for the best performing dechlorination activities, DA18, DA23, DA24 and DA25

5.3.2 Evaluation of km values in DA 18

ADM simulates maximum 100 times k_m values for a data of two time intervals using a DA. Therefore, a distribution is obtained for k_m . The box plot of k_m distributions of each pathway in DA 18 is given in Figure 5.1. k_m values show one or two order of magnitude with their median values. As seen in Figure 5.1, the median k_m values of all pathways are below 0.02 d⁻¹. The distribution of k_m values depending on time was compared with each other in different data sets. Generally, k_m values of all congeners are the highest at t100-t200. However, considering all pathways and all data sets, there is no pattern between them. When the toxicity-related pathways are examined in DA18, only 132/105 \rightarrow 55/91 is available and it is seen that toxicity of congener 105 decreases with time.

Figure 5.1 Distribution of k_m values modeled by ADM for DA 18

The k_m values were compared with relevant environmental and laboratory studies in the literature (Table 5.4). Median and maximum k_m results in this study were found comparable with those in laboratory and environmental studies, respectively. As can be seen in Table 5.4. k_m values for nine pathways are in the range of 0 and 0.129 d⁻¹ (Table 5.4). Cho et al. (2003) estimated k_m values for 23 coeluting PCB congeners using sediment microorganisms from the St. Lawrence River (NY). As different from our study, products of dechlorination were not considered in these studies. There are eight common congeners (66, 95, 99, 92/84/90, 101, 66, 95, 105) between dechlorinated congeners in Cho et al. (2003) and our study. These congeners have the same order of magnitude of k_m values (as average and median) with those run by ADM, that is around 10⁻³ day⁻¹. Siebielska and Sidelko (2015) studied degree of PCB degradation in composting and anaerobic digestion processes without considering

products of dechlorination. Common congeners are 101, 138 and 153. Similarly, k_m values associated with these congeners are at the same order of magnitude as maximum k_m values run by ADM. Differences between rate constants can be attributed to sediment PCB concentration, numbers of PCB dechlorinators and desorption rates from sediment into the aqueous phase. As a result, the ranges of our results are consistent with those in the literature, especially with that of the microcosm study (Cho et al., 2003). As distinct from these studies, k_m values in this study are also compared with the values of Lombard et al. (2014) which considers the number of microorganisms in estimation of k_m values. The study investigated rates of congener 61 to congener 23 by DF1 in the pore water considering environmentally relevant concentrations (1 to 500 ng/L) of contaminant and concentration of cells (>10⁶ cells/mL) in sediment free medium. Since dechlorination of congener 61 to congener 23 is not available in DA 18, the values in the study are compared with the values in all pathways. Accordingly, the maximum values of most of the pathways estimated in this study have the same order of magnitude with the findings $(0.339-0.541 \text{ d}^{-1})$ of Lombard et al. (2014) for aqueous phase dechlorination. This discussion indicates that if sufficient number of microorganisms is provided during remediation e.g. via bioaugmentation, maximum k_m values in our study can be used for systematic identification and quantification of anaerobic dechlorination pathways coupled with congener specific modeling.

Dechlorination	AD	M k _m ((day ⁻¹)	* Resul	ts in DA	Cho e (200	et al. 13)	Siebielska and Sidelko (2015)			
pathway (Mother >Daughter)	Avg	Median	SD	RSD	Min	Max	#	k (d ⁻¹)*	#	k1 (d ⁻¹)*	k2(d ⁻¹)*
66/80/93/95/102/88 →20/21/33/53	0.005	0.003	0.005	93.295	0	0.027	66 95	0.006 0.009			
79/99/113→47/48/75	0.013	0.011	0.009	70.238	0.002	0.041	99	0.009			
90/101 →43/49/38	0.009	0.007	0.012	136.159	0.0001	0.053	92/84/90 101	0.006 0.008	101	0.012	0.085
66/80/93/95/102/88 →22/51	0.020	0.008	0.035	171.138	0.0005	0.133	66 95	0.006 0.009			
132/105 →55/91	0.002	0.002	0.002	122.745	0	0.008	105	0.008			
138/163/164 →79/99/113	0.005	0.006	0.004	82.317	0.001	0.021			138	0.015	0.059
161/146→90/101	0.018	0.005	0.035	192.695	0.002	0.123					
151→66/80/93/95/102/88	0.007	0.005	0.017	243.867	0.000	0.129					
153/127→79/99/113	0.003	0.003	0.002	66.857	0.001	0.011			153	0.014	0.12

Table 5.4 Comparison of k_m values with the values in the literature

*: First order model, #: Congener no, k1: for Composting, k2: for anaerobic digestion

5.4 Conclusions

This study set out to estimate biodegradation rate constants of PCB congeners undergoing anaerobic dehalogenation using a model, ADM. Overall:

- Microcosm data provides a valuable source for eliminating any major effect of
 physicochemical or other biotic/abiotic transformations. In that respect, for BH
 sediments, possible dechlorination pathways are identified and tested by the
 ADM. Accordingly, dechlorination rates are estimated for the activity that
 enabled the best fit to dechlorinated microcosm PCB profiles. Also, coeluting
 congeners could be handled by ADM without the need to separate congeners.
 This enables a simpler evaluation of anaerobic dechlorination in sediments.
- k_m values estimated in this study are comparable to values in the literature. As Cho et al (2003) points out, the estimated dechlorination rates may not be

applicable for all contaminated sites because of the possible dependency on physical, chemical and/or biological factors. In that respect, sediment composition, age of contamination as well as the type and cell mass of microbial consortia is expected to have an effect on biodegradation rates. Nevertheless, a k_m estimate that is based on actual dechlorination data via a detailed systematic evaluation of congener pattern changes and individual degradation pathways would be useful for fate studies.

- Systematic and relatively simple estimation of k_m leads the way to better understanding fate and transport of individual congeners in the environment. For example, toxic congeners being the mother or daughter of dechlorination reactions can be predicted, toxicity reduction could be made possible by this way.
- Numeric fate and transport models can incorporate real k_m values rather than simplistic first-order degradation rates for total-PCBs. Systematic identification and quantification of anaerobic dechlorination pathways coupled with congener specific modeling can aid remediation efforts such that congener specific monitoring/enhancement of bioremediation could be possible for sediment-bound PCBs.
CHAPTER 6

PREDICTION OF BIODEGRADATION RATE CONSTANTS OF PBDE CONGENERS USING AN ANAEROBIC DEHALOGENATION MODEL

6.1 Introduction

Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants. These chemicals have been widely used in building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams and textiles (ATSDR, 2004). Their first commercial productions began in the 1970s in Germany (ATSDR, 2004). The production of tetra-, penta-, hexa- and hepta- PBDE congeners are banned by the Stockholm Convention due to their bioaccumulative property and persistence (POPs, 2008). PBDEs are released into the environment during their manufacture, incineration of municipal waste, deposition to landfills, discharge to municipal sewage-treatment plants, or emission directly to the atmosphere as particulate matter (ATSDR, 2004).

Fate of PBDEs is affected by physicochemical weathering processes such as sorption, volatilization, atmospheric transport, and wet/dry deposition, etc. (ATSDR, 2004). One of the most important processes for the breakdown of PBDEs is biodegradation (USEPA, 2010). Anaerobic debromination of PBDEs is the replacement of bromine atoms with hydrogen by the action of anaerobic microorganisms. Products of debromination reactions result in the accumulation of less brominated PBDEs, which can bioaccumulate on humans or biota (Tokarz et al., 2008). Anaerobic debromination of PBDEs were investigated and evaluated in the last decade (Ding et al., 2013; Huang et al., 2014; Robrock et al., 2008; Tokarz et al., 2008). These recent studies examined debromination pathways of PBDEs by a number of microorganisms and/or microbial groups. Additionally, some of these studies observed debromination pathways in terms of bromine configuration with various products. For example, Tokarz et al. (2008) and

Huang et al. (2014) noted that removal of *ortho* bromine is also possible along with removal of *para* and *meta* bromines, while Ding et al. (2013) and Robrock et al. (2008) indicated preferential removal of *para* and *meta* bromines from the diphenyl ether structure. Further studies are needed to understand the pathways of the congeners in the environment.

Environmental degradation mechanisms of halogenated compounds, especially for family of compounds such as PCBs, PBDEs can be examined by modeling studies with ease. Biologically confirmed data can be limited to further understand degradation mechanisms of such compounds in the environment (Wei et al., 2013). Therefore, modeling dehalogenation can help identify new degradation pathways which were not previously identified in laboratory studies. For PBDEs, two studies (Wei et al., 2013; Zou et al., 2014) are available to investigate the dehalogenation mechanisms in the literature, but these are on photolytic debromination pathways.

In this respect, this study aims to estimate rate constants of these reactions for individual PBDE congeners using the ADM. The data set used for this purpose was obtained from a contaminated soil in South China (Song et al., 2015). As different from previous versions, ADM is modified in this study by adding new features such as calculation of biodegradation rate constants and can now be applied to sediments contaminated with any halogenated hydrophobic organic compound (HOC). By this way, biodegradation rate constants obtained from ADM can be used as input to fate and transport models for a better and more detailed investigation of the fate of individual HOCs in a contaminated sediment. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be tested in a more quantitative manner with the help of this study.

6.2 Methods and Materials

6.2.1 Soil Data Set

The data set used in the study is from soils in the e-waste recycling town of Qingyuan, Guangdong province, South China (23.57° N, 113.0° E) (Song et al., 2015). The samples were taken between 0 and 15 cm depth. The microcosm samples were prepared in 15 ml glass and triplicates. Eight PBDE congeners (28, 47, 99, 100, 153, 154, 183 and 209) were analyzed after 0, 24, 40, 60, and 90 d. These sets contain microbial reductive debromination of PBDEs, without major effect of physicochemical and other biotic/abiotic transformations. Lactate added to the sample is used as electron donor. Details about the preparation of microcosms and analysis are given in Song et. al (2015). Three parallel microcosms were analyzed. The average concentration of PBDEs in ng/g dry weight (dw) with respect to time are depicted in Figure 3.35. One of three parallel data is used in the model.

6.2.2 Anaerobic Dehalogenation Model (ADM)

ADM was developed by Imamoglu et. al (2004) and modified by Bzdusek et. al (2006) and Demirtepe et al. (2015). It aims to identify and quantify dechlorination pathways among congeners in PCB data sets measured at two different times. Two modifications are present in this study when compared to the most recent published version of the model: (1) model can now be used for any hydrophobic organic compound (not only PCBs), hence the name is now Anaerobic Dehalogenation Model (2) model now additionally gives debromination rate constants as output.

The model is rewritten in MatLAB, version 7.10.0. ADM is based on mass balance between dechlorinated and accumulated congeners. The model works according to two principles: (i) mass balance between mother and daughter congeners is maintained (ii) only pathways confirmed with laboratory or field studies are used. The same objective function in original model (Bzdusek, Lu, et al., 2006; Demirtepe et al., 2015; Imamoglu et al., 2002) is aimed to be minimized. The governing equation is given below:

$$S = \sum_{j=1}^{m} (\hat{y}_j - x_j)^2$$
6.1

where \hat{y}_j is predicted congener profile (either from Frame et. al (1996) or microcosm PCB data at t=0 d) altered according to a debromination activity (mole ‰), x_j is congener profile of microorganism PBDE data measured at day e.g. t=100 day(mole ‰), and m is number of the congeners. As different form old version, the groups of congeners in coelution are not separated. The model input are the list of congeners analyzed in all samples, ‰ moles of original profile at t_{initial}, ‰ moles of predicted profile at t_{final} and a list of anaerobic debromination pathways.

Pathways are now identified automatically according to a specified debromination activity (DA) or group of activities. The DAs can contain pathways that are theoretically possible and/or confirmed by biological studies. Besides, congeners or substitutions can be defined to the activities as the constraint such as that a specific congener including Cl in a *para* position can be defined as a constraint such that it will not undergo debromination in an activity including removal of *para* chlorines.

An improved evaluation of model fit is brought about in the new model. The fit of all congeners as well as those that take part in a pathway (as mother or daughter) are separately investigated by the multiple correlation coefficient R^2 . It is calculated for of all measured congeners (R^2) and reactive congeners (R^2_{reac}) which participate in debromination as either mother or daughter congener. R^2 is deemed satisfactory if it is above 0.70.

Using ADM, a debromination pathway is now not only quantified but also the debromination rate constant (k_m) associated with it is calculated. The order by which microorganisms dechlorinate PCBs is not known. Therefore, the full list of pathways are shuffled a 100 times and subsequently a distribution of k_m values are obtained. Sometimes a k_m value can not be computed for a pathway (e.g. if concentration of mother congener before reaction is equal to "0") in which case no k_m estimation is presented for that shuffle. Please see Section 3.2 for details of the application of ADM.

6.3 **Results and Discussion**

DAs contain pathways that are theoretically possible and/or confirmed by biological studies (Table 6.1). ADM was run for microcosm soil data with input as concentration of 8 congeners and pathways of 21 DAs. Biological studies include microorganism based pathways defined in Ding et al. (Ding et al., 2013), Huang et al. (2014), Robrock et al. (2008), Tokarz et al. (2008). As can be seen in Table 6.1, there are no pathways for five of these activities with the PBDE congener data used in this study. Therefore, ADM provided an estimation of biodegradation rate constants for sixteen of the activities.

A distribution of k_m values is obtained for each pathway of each DA by ADM. In Table 6.1, the maximum, median and minimum k_m values calculated for all pathways in an activity are shown. The k_m values vary in a range of 0.0003 to 0.02 d⁻¹. The difference is due to comparison of min and max values, existence of various pathways and different DAs.

The goodness of fit results are presented in Table 6.2. While R^2 values vary between 0.57 and 1.00, R^2_{reac} values change between 0.03 and 1.00. When no major congener shift is observable in a time interval, then application of a DA may not result in any improvement, as is the case for DA7 and DA21 for the first and last time intervals.

There is no correlation of reactive congeners for a few of the cases as shown in bold in Table 6.2.

DA	Description of DA	Number	k _m (d ⁻¹)	Median ^b of k _m (-1)		
No		Pathways	Min ^a	Max	Min ^a	Max	
1	Flanked any(3+4+5)	5	0.0003	0.0241	0.0002	0.0031	
2	Flanked meta any or flanked para any(3+5)	1	0.0031	0.0173	0.0015	0.0015	
3	Flanked meta any	4	0.0003	0.0241	0.0002	0.0031	
4	Flanked ortho any	1	0.0026	0.0026			
5	Flanked para any ^c	0					
6	Meta any	1	0.0031	0.0173	0.0015	0.0015	
7	Ortho any	3	0.0010	0.0180	0.0021	0.0021	
8	Para any ^c	0					
9	Flanked or meta(1+6)	1	0.0031	0.0173	0.0015	0.0015	
10	Flanked or para(1+8)	1	0.0031	0.0173	0.0015	0.0015	
11	Doubly flanked para-any ^c	0					
12	Doubly flanked meta-any	1	0.0031	0.0173	0.0015	0.0015	
13	Doubly flanked para any or doubly flanked meta any	1	0.0031	0.0173	0.0015	0.0015	
14	Singly flanked para any or singly flanked meta	3	0.0003	0.0241	0.0002	0.0029	
15	Doubly flanked meta and para+singly flanked meta+para	4	0.0003	0.0241	0.0002	0.0031	
16	The study of Tokarz et. al (2008)	4	0.0003	0.0241	0.0002	0.0024	
17	The study of Tokarz et. al (2008) without biometrics ^c	0					
18	The study of Huang et. al (2014)	5	0.0006	0.0180	0.0021	0.0022	
19	The study of Robrock et. al (2008)	5	0.0003	0.0241	0.0002	0.0021	
20	The study of Ding et. al (2013) for penta mixture ^c	0					
21	The study of Ding et. al (2013) for octa mixture	2	0.0015	0.0173	0.0010	0.0010	

Table 6.1 DAs and k_m values estimated by ADM.

^a: Minimum values disregarding "0" values, ^b: The median of min and max of k_m values are shown. ^c: A pathway could not be identified for this description of DA because relevant congeners are not measured in the data set.

	Soil Data Parallel 1								
DA no	t0-	t24	t24	-t40	t40	-t60	t60	-t90	
	R2	R ² reac	R2	R ² reac	R2	R ² reac	R2	R ² reac	
DA1	0.75	0.93	0.81	0.89	0.86	0.87	0.70	0.79	
DA2	0.72	1.00	0.61	1.00	0.88	1.00	0.57	1.00	
DA3	0.75	0.93	0.81	0.89	0.88	0.89	0.70	0.79	
DA4	0.70	1.00	0.61	1.00	0.86	1.00	0.57	1.00	
DA6	0.72	1.00	0.61	1.00	0.88	1.00	0.57	1.00	
DA7	0.70	0.44	0.75	0.99	0.92	0.85	0.57	0.33	
DA9	0.72	1.00	0.61	1.00	0.88	1.00	0.57	1.00	
DA10	0.72	1.00	0.61	1.00	0.88	1.00	0.57	1.00	
DA12	0.72	1.00	0.61	1.00	0.88	1.00	0.57	1.00	
DA13	0.72	1.00	0.61	1.00	0.88	1.00	0.57	1.00	
DA14	0.73	0.88	0.81	0.97	0.88	0.89	0.69	0.80	
DA15	0.75	0.93	0.81	0.89	0.88	0.89	0.70	0.79	
DA16	0.73	0.56	0.84	0.99	0.90	0.98	0.60	0.98	
DA18	0.72	0.57	0.75	0.92	0.92	0.85	0.66	0.61	
DA19	0.75	0.65	0.79	0.87	0.89	0.97	0.60	0.93	
DA21	0.72	0.28	0.61	0.03	0.86	1.00	0.57	0.99	

Table 6.2 Goodness of fit results (R^2 and R^2_{reac}) for each sample run and each time interval

Bold: lower than average values in the table. Standard deviation of each R^2 and R^2_{reac} in the table was examined, they are lower than 10^{-16} .

In this study, k_m value for BDE 209 can not be estimated by ADM. The reason for this is that octa and nona homolog groups are not analyzed in the data set of Song et. al (2015). As can be seen from the figure of data set in Section 3.5.1, while amount of BDE 209 decreases in 90 days, amount of BDEs 99, 100, 153, 154 and 183 increase. Song et al. (2015) state that increase in 99, 100, 153, 154 and 183 is explained by degradation of higher brominated congeners.

The median and maximum k_m values are presented in Table 6.3. When k_m values of 8 pathways are compared, the median k_m values take 0, 0.001, 0.002 or 0.003 d⁻¹. The maximum values are close to 0.001 to 0.0024 d⁻¹. There are very limited number of environmental and laboratory studies in the literature investigating biodegradation rate

constants of individual PBDE congeners. Gerecke et al. (2005) investigating anaerobic debromination of BDE 209 to BDE 208 in sewage sludge in a mesophilic digester. They found a pseudo-first-order degradation rate constant as 0.001 d⁻¹. Our median and maximum k_m results are comparable with this value (Table 6.3).

DA			Ι	Debrominatio	n pathways			
no	47→28	99 → 47	100→47	153 → 99	154→99	154→100	183→153	183→154
1		0.003/0.001		0.024/0		0.008/0.003	0.003/0	0.017/0.002
2								0.017/0.002
3		0.003/0.001		0.024/0		0.008/0.003		0.017/0.002
4							0.003/0	
6								0.017/0.002
7	0.007/0.002		0.001/0		0.018/0			
9								0.017/0.002
10								0.017/0.002
12								0.017/0.002
13								0.017/0.002
14		0.003/0.001		0.024/0		0.008/0.003		
15		0.003/0.001		0.024/0		0.008/0.003		0.017/0.002
16	0.007/0.002	0.003/0.002		0.024/0	0.018/0			
18	0.007/0.002		0.001/0		0.018/0	0.008/0		0.017/0.002
19	0.007/0.002	0.003/0.001		0.024/0			0.003/0	0.017/0.001
21							0.003/0	0.017/0.001

Table 6.3 Degradation rate constants of eight debromination pathways according to the DAs

The number before slash is the maximum k_m value, The number after slash is the median k_m value.

Overall, for favorable debromination pathways, such as that of $183 \rightarrow 154$, a min k_m of 0.001 day⁻¹ and a max of 0.017 day⁻¹ could be used. In general, a min of 0.001 day⁻¹ and a max of 0.024 day⁻¹ could be advisable.

6.4 Conclusions

In this study, k_m values and possible pathways of debromination that can take place in contaminated soil were investigated by ADM. The model evaluated only limited number of pathways since only 8 congeners were measured. However, these congeners

tend to bioaccumulate (Hale et al., 2003) and their abundance, and fate would be of concern. The estimated k_m values in this study are comparable to those from the literature. This result indicates that such models can help a more detailed systematic evaluation of congener pattern changes by the identification of new degradation pathways in addition to those identified in laboratory studies. Furthermore, k_m values considering debrominated products can help understand the fate and transport of individual congeners, especially bioaccumulative congeners in the environment by numerical models. By this way, this kind of studies can enhance the bioremediation in contaminated sites with PBDEs.

CHAPTER 7

MODELING BIODEGRADATION OF PCBS IN SEDIMENT CONSIDERING FATE AND TRANSPORT MECHANISMS

7.1 Introduction

Polychlorinated biphenyls (PCBs) are among the persistent organic pollutants regulated by the Stockholm Convention. Although they are chemically persistent in the environment, they are still affected by various transport and transformation mechanisms such as physicochemical weathering (sorption, volatilization, atmospheric transport, and wet/dry deposition) (Gouin & Harner, 2003) and biodegradation (anaerobic and aerobic) (Bedard, 2003). Stockholm Convention aims to eliminate the use of equipment containing PCBs by 2025 as well as management of wastes containing PCBs by 2028. The convention is implemented in more than 152 countries that are signatories (POPs, 2008).

There are several sites that has received attention due to PCB contamination. One of them is Lake Michigan. Lake Michigan was polluted by widespread use and consequent loading of synthetic organic chemicals into the lake since 1940s. As a result of pollution, Enhanced Monitoring Plan (EMP) was founded by federal, state, tribal, and local entities to eliminate or reduce the risks to human health and aquatic organisms in the ecosystem of the lake (Zhang et al., 2008). Under the scope of EMP, the lake was monitored between 1994 and 1995. Then, the Lake Michigan Mass Balance Project (LMMBP) was conducted. One of the scopes of the project was simulation of the transport, fate, and bioaccumulation of toxic chemicals in the lake. Remediation affords firstly started in Sheboygan Harbor in 1980s and completed in 1991. Since 1991, remediation efforts have continued at other locations through the rivers discharging to the lake (Rossmann, 2006).

Fate and transport (F&T) models are valuable in predicting the remediation outcome and better management of sites contaminated with chemicals. In the literature, numerous studies exist for modeling of PCBs in terms of total-PCBs, PCBs as homologs or individual congeners (Connolly et al., 2000; Davis, 2004; Farley et al., 1999; Shen et al., 2012; Zhang et al., 2008, 2009). For example, LM2 and MichTOX models were used in the LMMBP to develop an integrated mass balance model for the simulation of transport, fate, and bioaccumulation of toxic chemicals, including PCBs, in Lake Michigan. Individual PCB congeners were modeled, however, after simulation, all results were evaluated in terms of total PCBs (Zhang et al., 2008, 2009). In LM2, biodegradation was ignored. There is one study in the literature, by Davis (2004) which models the general degradation term of each individual congener, however, without separating biological/chemical degradation or taking into account any products. Consideration of the products in biodegradation is important to evaluate the change in toxicity as well as persistence and total concentration of PCBs. According to our literature review, the common fate mechanism of the studies for sediment is microbial degradation for PCBs. Yet, there is no model that considers anaerobic degradation among individual congeners where reactants and products of the reactions are both taken into account.

Our literature review indicates that there is no model that runs on an individual congener basis, considering biodegradation of these compounds with their relevant products, and other F&T processes together. As distinct from the literature, this study aims to develop a model that evaluates biodegradation pathways of individual congeners together with F&T processes in the sediment. The developed model is versatile in terms of applicability to various chemicals (such as halogenated hydrophobic organic compounds) and different sites. For this purpose, biodegradation of individual PCB congeners in bed sediments of Lake Michigan is selected as the study site for model development. Biodegradation rate constants for congener specific degradation pathways are estimated by a separate model and fed as input to the F&T

model. Overall, this study investigates the biodegradation of PCBs in sediment comprehensively and evaluates a number of remedial strategies for better management of the site such as natural attenuation or bioaugmentation.

7.2 Methodology

In this study, development and application of fate and transport of hydrophobic pollutant (FTHP) model to Lake Michigan sediments for PCBs are explained. A flowchart of the full process of model development and application is presented in Figure 7.1. The main stages of model development are shown in shaded boxes as code verification, calibration, validation, sensitivity and uncertainty analyses. The FTHP was then applied on LM PCB data set. The model code and flowchart of Runge Kutta 4th order (RK4) solution, as referred to in Figure 7.1 are explained in section 3.3.

Figure 7.1 FTHP model development for and application to Lake Michigan Sediments

7.2.1 Fate and Transport of Hydrophobic Pollutant (FTHP) model

The general mass balance equation used in this study is given in Eqn. 7.1. The mass balance equation and numerical approach of Recovery model which was developed by Boyer et al. (1994) and Chapra and Reckhow (1983) were adopted. The model was written in MatLAB and individual PCB congeners were run as state variables.

Accumulation=-D	ecay + Settling-	-Resuspens	ion - Burial	Diffusion between the surface layer and the water column	+	Diffusion between the sur layer and the deep sedim	rface ient
$\frac{dc_m^i}{dt} = -k_m c_m^i + \frac{1}{2}$	$\frac{v_s A_w F_{pw} c_w^i(0)}{V_m}$	$\frac{v_r A_m c_m^i}{V_m}$	$\frac{v_b A_m c_m^i}{V_m}$	$\frac{v_d A_m \left(F_{dw} c_w^i(0) - F_{dp} c_m^i\right)}{V_m} +$	V _d A	$m\left(F_{dp}c_s^i(0) - F_{dp}c_m^i\right)$ V_m	7.1

V _m	volume of sediment, m ³
A_w and A_m	surface areas of water and surface sediment, respectively, m^2
k _m	decay rate constant of the contaminant in the surface layer, day^{-1}
Vb	burial velocity, m/day
Vs	settling velocity of particulate matter, m/day
Vr	resuspension velocity of sediments, m/day
Vd	diffusion mass-transfer coefficient at the sediment, water and deep
	sediment interface, m/day
$c_{s}^{i}(0)$	$i^{th}\xspace$ contaminant concentration at the top of the deep contaminated
	layer, ng/L
$c_w{}^i$ and $c_m{}^i$	concentrations of contaminant i in water and surface sediment,
	respectively, ng/L
t	time, day
F _{pw} , F _{dw}	fraction of contaminant in particulate and dissolved forms in the
	water, respectively
F_{dp}	ratio of contaminant concentration in the sediment pore water to
	contaminant concentration in total sediment

Upper and lower boundaries of the model are set as the water-sediment interface and deeper sediment, respectively (Figure 7.2). As the major transport processes, settling, resuspension, burial and diffusion are considered in simulating the temporal change in the concentration of an individual congener. For transformation mechanisms, anaerobic dehalogenation (biodegradation) is considered as the only dominant process in sediment. PCBs are assumed to partition into particulate and dissolved phases in the system. In the mechanisms of burial, resuspension and biodegradation, the contaminant is considered in both dissolved and particulate phases while the mechanisms of settling and diffusion are carried out in particulate and dissolved phases, respectively. Biodegradation rate constants change from one congener to the other as individual dechlorination pathways between congeners are taken into account. Solubility limit of congeners are also considered during incorporation of biodegradation into the model. The assumptions conducted in this study as in Boyer et al. (1994) are well-mixed water and sediment layer, variability in C_m in depth direction, linear equilibrium sorption mechanisms, first order kinetic, no compaction in sediment. As different from Recovery model, in this model it is assumed that contaminant concentration in water column is accepted as constant.

Figure 7.2 PCB Conceptual Model

7.2.2 Lake Michigan (LM) Sediment Data Set

For the application of the FTHP model, LM data set consisting of 38 congeners (16, 26, 28/31, 33, 44, 49, 52, 56/60, 66, 70/76, 74, 81, 84/92, 85, 87, 99, 101, 118, 123/149, 105/132/153, 151, 138/163, 170/190, 180, 182/187, 195/208 and 146) provided by the USEPA (USEPA, 2015) was used after eliminating non-detected congeners. The data set for the southeastern part of the lake was selected because sediments in this region contains the highest PCB concentration. Congener specific PCB concentrations in surficial sediments were measured at 10 different days between 7/25/1994-5/21/1996 (on days 0, 1, 72, 73, 75, 77, 79, 409, 665 and 666) (Table 7.1). Measured sediment concentrations ranged from 5.85 to 2514.40 ng/L while those in water column ranged from 0.0004 to 0.0237 ng/L. Segment number 49 is selected for simulating the distribution of congeners in surficial sediment. Segment 37 which is above segment 49 is used for water column. The details about segments are indicated in the study of Zhang (2006). Physicochemical parameters used in the model are taken from Zhang et

al. (2006), Mackay (2006) and Schneider (2005). Part of the sediment data is used for calibration and the other is used for model validation. Segment 49 is a wide region (120 km from north to south), so the region is divided as South and North (60km - 60km) and the samples belonging to the south are used for calibration, while the ones belonging to the north are used for model validation (Figure 7.3 and Table 7.1). Such a split allows for both spatial and temporal variation of the sediment data to be used during calibration and validation. Other parameter and inputs are given in section 3.4.2.

Figure 7.3 Samples at South and North used for calibration and validation in segment 49, respectively

Sample No	1	2	3	4	5	9	7	8	6	10						
Time (day)	0^{a}	1	72	73	75	77	79	408	665	666	Min	Max	Med.	Avg	SD	RSD
South/North ^b	N	S	S	S	N	N	N	N	S	S						
16	31.4	15.9	44.5	37.0	33.9	18.7	47.0	32.8	17.2	5.6	5.6	47.0	32.1	28.4	13.5	47.4
26	42.1	52.2	63.6	59.1	51.2	52.7	6.69	43.1	19.1	13.4	13.4	6.69	51.7	46.6	18.2	39.0
28/31	645.1	817.5	997.4	839.8	829.4	810.5	1007.2	685.0	278.7	206.6	206.6	1007.2	814.0	711.7	272.4	38.3
33	126.1	155.8	188.0	187.5	147.2	147.1	210.0	173.4	80.4	40.5	40.5	210.0	151.5	145.6	51.9	35.6
44	216.8	241.0	291.9	248.9	263.4	291.8	333.9	449.3	201.6	113.3	113.3	449.3	256.1	265.2	88.4	33.3
49	131.6	154.4	192.3	152.7	193.8	181.0	213.9	177.5	73.1	56.0	56.0	213.9	165.9	152.6	52.2	34.2
52	262.0	293.1	376.3	294.8	411.9	379.1	424.8	412.1	164.9	139.7	139.7	424.8	335.5	315.9	103.1	32.6
56/60	408.2	462.6	529.4	442.4	591.2	564.2	636.6	666.1	253.1	164.4	164.4	666.1	496.0	471.8	162.8	34.5
99	818.2	931.2	1156.0	926.3	1382.2	1259.6	1363.8	1305.9	541.4	397.9	397.9	1382.2	1043.6	1008.2	346.3	34.3
70/76	403.7	463.4	546.4	455.7	672.6	619.6	655.3	683.6	267.8	199.4	199.4	683.6	504.9	496.7	170.2	34.3
74	182.7	223.9	248.6	206.2	234.1	246.1	271.8	209.2	85.7	66.2	66.2	271.8	216.6	197.4	68.9	34.9
81	17.4	20.0	21.6	14.3	36.9	29.0	25.9	51.8	9.6	7.9	7.9	51.8	20.8	23.5	13.3	56.5
84/92	326.9	250.6	322.9	234.1	409.5	380.2	405.5	601.0	197.3	123.5	123.5	601.0	324.9	325.1	134.8	41.5
85	151.3	160.2	195.6	130.5	316.3	264.1	262.0	371.2	140.4	105.9	105.9	371.2	177.9	209.7	88.8	42.4
87	144.4	167.4	178.9	134.4	225.7	205.1	225.4	259.2	88.3	76.9	76.9	259.2	173.1	170.6	60.3	35.3
66	157.0	159.0	205.9	139.2	322.2	273.1	276.3	375.9	125.6	99.8	8.66	375.9	182.4	213.4	93.2	43.7
101	295.7	308.8	372.5	268.7	571.9	494.3	496.8	685.3	236.9	190.5	190.5	685.3	340.6	392.1	162.0	41.3
118	415.7	359.4	510.9	394.9	920.8	746.3	718.4	773.2	351.7	290.2	290.2	920.8	463.3	548.2	221.3	40.4
123/149	147.8	124.3	183.1	124.5	337.9	266.4	253.1	320.7	142.0	102.0	102.0	337.9	165.5	200.2	87.1	43.5
105/132/153	512.0	433.1	589.0	435.4	1139.3	924.8	840.0	1117.1	485.4	347.3	347.3	1139.3	550.5	682.3	296.9	43.5
151	41.4	38.2	51.6	35.6	89.5	72.5	70.4	81.0	40.7	30.5	30.5	89.5	46.5	55.1	21.2	38.5
138/163	600.0	484.0	673.6	420.3	1444.6	1064.3	952.6	1281.6	412.0	296.0	296.0	1444.6	636.8	762.9	398.8	52.3
170/190	105.3	84.8	112.9	80.8	231.6	194.7	168.3	231.1	91.2	63.0	63.0	231.6	109.1	136.4	64.3	47.1
180	212.3	168.6	211.1	157.3	436.5	378.9	309.4	456.3	205.6	131.2	131.2	456.3	211.7	266.7	119.7	44.9
182/187	74.1	63.1	87.3	59.1	181.1	140.4	123.9	188.4	85.1	55.3	55.3	188.4	86.2	105.8	49.8	47.1
195/208	28.4	21.3	34.6	22.7	72.6	58.5	45.7	87.6	35.9	22.4	21.3	87.6	35.2	43.0	23.0	53.5
146	70.0	56.7	91.0	56.9	162.7	126.7	118.9	161.6	63.3	43.0	43.0	162.7	80.5	95.1	44.5	46.9
^a : Day 0 is 7/2	5/1994,	^b : Segm	ent 49 (12	20 km frc	m north t	to south),	is divided	1 as South	1 and No	rth (60 k	m – 60 k	(m				

Table 7.1 Concentration of individual PCB congeners in 10 sediment samples (ng/L) (USEPA, 2015)

7.3 **Results and Discussions**

7.3.1 Testing of the FTHP Model

In this study, site-specific parameters regarding Lake Michigan were taken directly from the reports of LM2 and MichTOX models (Rossmann, 2006). Aqueous solubility, octanol water partitioning coefficient, molecular diffusion coefficient values were taken from Mackay (2006) and Schneider (2005). All input data to the model were given in section 3.4.2. FTHP model code verification (written in MatLAB version 7.10.0) was performed in Microsoft Excel (version 2016).

During model calibration, v_s, v_b, K_d for both water and sediment are tested by varying their values from 50% to 150% and/or according to ranges given in the literature/data set. Biodegradation rate constants (km) for congener specific anaerobic dechlorination pathways were obtained from the anaerobic dehalogenation model (ADM). Minimum, median and maximum k_m values depending on dechlorination activity (DA18) of DEH10 microorganism are tested in the model, according to the results presented in Chapter 5 (Appendix F Table F.1). ADM uses laboratory microcosm PCB data for determination of biodegradation rate constants. Hence, the rate constants indicate potentially the optimum conditions for anaerobic dehalogenation. During calibration, 10% of k_m values was also tested, considering less than optimum conditions (limited concentration of electron acceptors, unsuitable redox conditions, low concentration of contaminants or dehalogenators, reduced bioavailability, etc.) can prevail in the environment. DA18 dechlorination pathways involve removal of doubly flanked chlorines (Cl) in meta and para positions, para flanked Cl in meta position. Six pathways and congeners involved in pathways were presented in Section 3.4.2. Biodegradation affects only the congeners (33, 49, 66, 99, 101, 138/163, 105/132/153, 146, 151) that take part in these pathways.

Results of all trials (R^2 and RMSE values for individual congeners and $\sum PCBs$) conducted during calibration are presented in Appendix F Table F.2. Results were

compared with the "no dechlorination" case which is the case in LM2 model. Accordingly, values of relevant parameters are then adjusted. The R² results of most of the congeners are improved when $v_s=0.75$ m/d (reduced to 50%) (Table F.2). Other parameters did not indicate improvement in R² except for k_m. When 10% of minimum km was tested, it is observed that RMSE values of 105/132/153, 138/163 and 146 decrease (R^2 values remain the same) when compared to the case of $v_s=0.75$ m/d. As a result, the model is calibrated by adjusting v_s to 0.75 m/d and using 10% of k_m . The calibration results of 27 congeners and Σ PCBs is shown in Figure 7.4. As can be seen from the figure, for a majority of the congeners, and total-PCBs, the model can follow the trend of congener concentration changes. The only case where FTHP model can not predict well is for congener no 99. The congener concentration shows a decreasing trend while the model predicts an increasing concentration with time. This is because congener 99 is accumulated congener and its amount increases due to the degradation of 105/132/153 and 138/163. The calibration result also indicated that most of higher chlorinated congeners such as 146, 195/208, 182/187 are not correlated satisfactorily (Table 7.2). Accordingly, output concentrations of congeners other than these listed ones are likely to be more reliable during the selection/evaluation of the future scenarios.

In the study by Zhang et al. (2008), fate and transport of PCBs in Lake Michigan is simulated with the LM2 model by using 54 PCB congeners in both water and sediment. Only the results for water simulation for 105/132/153, 138/16 and Σ PCBs are given in Zhang et. al (2008). Even though concentrations in water column are modeled in our study, the calibration results are compared. In our study, R² values obtained for these congeners (0.81, 0.51 and 0.73, for 105/132/153, 138/16 and Σ PCBs, respectively) are comparable to the values (0.76, 0.58 and 0.73, for 105/132/153, 138/16 and Σ PCBs, respectively) from the study of Zhang et al. (2008). R² values of other congeners for the LM2 model obtained by the same group are given in Rossmann (2006). Those are different from the values in Zhang et al. (2008) and are lower. The min, max and average R² values of all congeners in LM2 model are 0.0004, 0.62 and 0.36,

respectively. While the same values for our study, as can be seen in Table 7.2, are more satisfactory when compared to those of Rossmann (2006).

After calibration, validation was conducted by using concentration in sediment and water column of north part of the selected region without changing other parameters used during calibration. The validation results of 27 congeners and Σ PCBs is shown in Figure 7.5. R² and RMSE results for validation are given in Table 7.2. In overall, while min and max R^2 values are improved according to the values in calibration, average R² value and RMSE value for individual congener such as 16, 26, 28/31, 118 and Σ PCBs are lower when compared to the those of calibration (Table 7.2). This outcome is expected, as during calibration, all model parameters are adjusted for the best fit possible to the data set. In this case, however, even though from the same region, a different PCB data set is used. One other reason for a relatively less satisfactory fit in validation is the nature of the data set. As can be seen from Figure 7.5, three data points out of the five used for validation are sampled very close in time, that is validation data was sampled at 0, 75, 77, 79 and 408 days. This uneven distribution of samples over time is expected to have an impact on the prediction success. Especially when anaerobic dechlorination is concerned, time is required for major congener changes to be observed in sediments. Overall, model validation is deemed successful.

Figure 7.4 FTHP model calibration plots (time vs. sediment PCB concentration)

Congener IUPAC		Cal	libration			Val	lidation	
No	coso	r	R ²	RMSE	COSO	r	R ²	RMSE
16	0.90	0.67	0.45	13.28	0.96	-0.02	0.001	9.28
26	0.93	0.90	0.81	17.38	0.98	0.29	0.08	14.41
28/31	0.93	0.90	0.81	264.43	0.99	0.26	0.07	206.44
33	0.94	0.86	0.73	50.14	0.98	-0.34	0.12	47.9
44	0.98	0.75	0.57	48.87	0.96	-0.94	0.89	129.88
49	0.95	0.89	0.79	42.96	0.99	-0.16	0.03	57.58
52	0.96	0.86	0.75	70.7	0.99	-0.48	0.23	136.83
56/60	0.96	0.92	0.84	108.87	0.98	-0.68	0.47	199.53
66	0.97	0.87	0.76	219.72	0.98	-0.39	0.16	478.02
70/76	0.97	0.89	0.8	102.02	0.98	-0.56	0.31	238.83
74	0.94	0.93	0.87	60.98	0.99	0.12	0.02	58.55
81	0.96	0.88	0.78	4.55	0.93	-0.92	0.84	19.25
84/92	0.97	0.83	0.68	99.41	0.97	-0.99	0.98	141.31
85	0.99	0.61	0.37	24.2	0.96	-0.80	0.65	145.35
87	0.97	0.91	0.84	33.45	0.98	-0.77	0.59	80.97
99	0.95	-0.73	0.53	58.01	0.98	0.80	0.64	131.43
101	0.98	0.79	0.62	49.83	0.97	-0.82	0.68	253.93
118	0.99	0.65	0.42	60.74	0.97	-0.36	0.13	349.45
123/149	0.99	0.40	0.16	24.52	0.97	-0.57	0.33	137.64
105/132/153	0.99	0.45	0.21	69.14	0.96	-0.62	0.38	472.5
151	0.99	0.42	0.18	5.92	0.97	-0.48	0.23	34.57
138/163	0.97	0.71	0.51	151.16	0.96	-0.52	0.27	565.42
170/190	0.99	0.54	0.29	18.89	0.97	-0.63	0.40	95.38
180	0.99	0.30	0.09	37.87	0.97	-0.68	0.46	174.6
182/187	0.98	0.01	0.0002	12.74	0.96	0.70	0.48	78.23
195/208	0.98	-0.22	0.05	6.06	0.95	0.81	0.66	36.02
146	0.98	0.46	0.21	13.58	0.96	-0.65	0.42	70.08
∑PCBs	0.97	0.86	0.73	1426.54	0.98	-0.62	0.38	4229.98
Min	0.90	-0.73	0.0002		0.93	-0.99	0.001	
Max	0.99	0.93	0.87		0.99	0.81	0.98	
Average	0.97	0.62	0.53		0.97	-0.36	0.39	
Std	0.02	0.39	0.28		0.01	0.52	0.27	

Table 7.2 Results of the goodness of fit parameters for calibration and validation

Sensitivity of 10 parameters is investigated during sensitivity analysis in order to understand which parameters affect output congener concentrations the most. 50% and 150% of values and/or minimum and maximum of ranges in calibration input were tested for 20 years, separately. The sensitivity analysis results are presented in Appendix F Figure F.1 through Figure F.10. The sensitivity analysis revealed that most of the congeners are sensitive to changes in seven parameters; Cw, km, Kow, TSS, vs, focw and D_m. The quality of these input parameters has a great impact on the model outcome. Therefore, low quality of these parameters (i.e. data required for measurements frequently) can create errors on output concentrations. The figures indicated that increase in C_w , f_{ocw} and K_{ow} , and decrease in TSS, D_m and v_s cause decrease of output concentration of most of the congeners in sediment with time. Review of change of each parameter in mass balance equation indicated that while increases of Cw, focw and Kow cause increase of the settling term, decreases of TSS and v_{s} , and D_{m} result in reduction of the resuspension and diffusion terms, respectively. Addition to these discussion, trend of 182/187 changes when its Cw increases as different from other congeners. This is because of accumulation of this congener due to settling is the dominant process. Similarly, when Kow values increases, trend of 84/92, 87, 99, 101, 123/149, 151, 138/163, 182/187 and 195/208 changes due to same reason. On the other hand, the distribution for k_m is different for nine congeners which take part in anaerobic dechlorination pathways. While k_m values increase, concentrations of congeners 33, 49 and 99 initially increase, then decrease, while concentrations of congeners 66, 101, 105/132/153, 151, 138/163 and 146 shows a much sharper decreasing trend with time. The reason for this that congeners 33, 49 and 99 accumulate in the sediment since they are daughter congeners in DA18 and are produced. They are then affected by other F&T processes and start to slowly decrease. Other six congeners degrade since they are mother congeners except for congener 66. Then, their concentration in sediment decrease. The sensitivity analysis also indicated that settling, resuspension and anaerobic degradation are the processes that control PCBs in LM sediments. The settling and resuspension processes are found as main processes for Lake Michigan by Zhang et. al (2009).

As a result of sensitivity analysis, seven parameters which are the most sensitive ones are considered for uncertainty analysis in order to evaluate their change, distribution (Table 7.3) and potential effect on the model output (Appendix F Table F3). For uncertainty analysis, the model was run for 1000 times using Monte Carlo simulation. As can be seen from probability distribution of each congener (Figures F.11 and F.12), lognormal distribution is appropriate for output concentration of all congeners in surface sediment. For other parameters, on the other hand, Table 7.3 shows the distributions assumed. The congener concentration changes as a result of the uncertainty analysis can be seen in Figure F.13. The RSD of results range from 0 to 139.87 (Table 7.4). As was also indicated by the results of the sensitivity analysis, a number of congeners have greater uncertainty when compared to others. For example, congeners 99, 101, 123/149, 182/187 can be counted among these. Since these congeners have higher uncertainty, their output concentrations can be considered to have higher unreliability. When R^2 values of these congeners in calibration are reviewed, congeners 123/149 and 182/187 have a lower fit among other congeners during calibration (R²: 0.16 and 0.0002, respectively). However, congeners 99 and 101 have a better fit (R^2 >0.50). In validation, although R^2 values associated with these congeners increase, their r values indicate an inverse relationship (r values between -0.80 and 0.80). One of the parameters that has a great impact on output is log K_{ow}, because this physicochemical parameter is used in the estimation of K_d, and fractions in water column and sediment which in turn affect F&T processes settling and diffusion. Hence it is an important source of uncertainty, while degradation rate constants have some impact on the relevant congeners and TSS also contributes to the uncertainty. Overall, uncertainty analysis allows for an evaluation of which congeners contribute most to the overall uncertainty and the parameters affecting their simulation. Also, confidence intervals could also be formed to represent uncertainty during final assessment of results, but it was out of scope of this study.

Parameters	Distribution	References
Vs	Uniform	Oram et al. (2008a)
TSS	Lognormal	From distribution of LM data
LogKow	Lognormal	Oram et al. (2008a)
Cw	Lognormal	From distribution of LM data
$\mathbf{D}_{\mathbf{m}}$	Lognormal	Oram et al. (2008a)
focw	Uniform	Oram et al. (2008a)
km	Lognormal	From distribution of LM data

Table 7.3 Distribution of parameters assumed for uncertainty analysis

Table 7.4 RSD of Future Prediction Calculated for 1000 times in Uncertainty

Analysis

Congener IUPAC No	min	max	Congener IUPAC No	min	max
16	0	109.69	87	0	64.66
26	0	79.03	99	0	72.95
28	0	95.78	101	0	88.06
33	0	63.06	118	0	86.75
44	0	101.07	123	0	69.10
49	0	72.15	105	0	139.87
52	0	119.42	151	0	97.67
56	0	95.60	138	0	60.31
66	0	96.50	170	0	97.17
70	0	82.42	180	0	98.34
74	0	71.19	182	0	47.36
81	0	72.96	195	0	137.98
84	0	112.90	146	0	91.51
85	0	76.38			

As a result of testing the model, it is seen that the risk of obtaining unreliable output concentration can be due to low quality of the most sensitive seven input parameters (C_w , k_m , K_{ow} , TSS, v_s , f_{ocw} and D_m) or the congeners (16, 85, 118, 123/149, 105/132/153, 151, 170/190, 180, 182/187, 195/208 and 146) including low fit (R^2 <0.50) during calibration. The reliable inputs of these parameters decrease the

uncertainty in the output and improve the fits in calibration and validation. Furthermore, another result is that the congeners (out of congeners 99, 101, 123/149, 182/187) including low uncertainty should be evaluated for future scenarios.

7.3.2 FTHP Model Future Prediction Results

The calibrated model was used to predict future conditions for the next 20 years after 2016 under 8 alternative management scenarios. These are described in Table 7.5, while their input are given in Table F.2. Accordingly, calibration scenario is to see the effects of current modeling conditions without any change. Scenario of Dredging is to understand effects of removal of sediments on future sediment PCB concentration. Scenario of "No degradation" was prepared to show the effect and extent of biodegradation on modeling results. Other scenarios concern with bioaugmentation and biostimulation. The future concentrations for individual congeners and \sum PCBs are depicted in Figure 7.6. It is expected that concentration of \sum PCBs does not vary with time except for dredging. This is because anaerobic dechlorination can not result in a change in the total mass of PCBs in sediments, although major changes can occur in the concentration of \sum PCBs in 20 years when compared to the calibrated model (Figure 7.6). However, it is seen that trend of increase is observed in some of congeners (84/92, 87, 123/149, 105/132/153, 138/163 and 146).

Table 7.5 Future scenarios

Scenario	Explanation
Calibration	Same input in calibration
Dredging	150% value of Cw and max of TSS
No Degradation	Same input in calibration except km=0 for all congeners
Biostimulation	Median k_m of DA18 (Table F.1) Activity of Microorganism DEH10 (Doubly flanked chlorines in <i>meta</i> and <i>para</i> positions, <i>para</i> flanked chlorines in <i>meta</i> position)
Bioaugmentation with DA13	Addition of median k_m of DA13 to median k_m of DA18 (Table F.1) Possible removal for targeted positions (Doubly flanked <i>para</i> any or doubly flanked <i>meta</i> any)
Bioaugmentation with SF1 (DA18+DA19)	Addition of median k_m of DA19 to median k_m of DA18 (Table F.1) Activity of Microorganism SF1 (Doubly flanked chlorines in the <i>meta</i> position, <i>ortho</i> flanked chlorines in the <i>meta</i> position)
Bioaugmentation with CBDB1 (DA18+DA20)	Addition of median k_m of DA20 to median k_m of DA18 (Table F.1) Activity of Microorganism cbdb1 (Singly and doubly flanked chlorines in <i>para</i> position, doubly flanked chlorines in <i>meta</i> position)
Bioaugmentation with Deh10+SF1+o17+DF1 (DA18+DA25)	Addition of median k_m of DA25 to median k_m of DA18 (Table F.1) Activity of Deh10, SF1, o17 (17 (Flanked chlorines in <i>ortho</i> and <i>para</i> positions)) and DF1(Doubly flanked chlorines in <i>meta</i> and <i>para</i> positions with some congener constraints)

As seen in Figure 7.6, when no change is conducted as in calibration condition, it was seen that concentration of all congeners and \sum PCBs decrease with time except congener 99 which decelerates with time. Major changes in individual congeners are observed depending on the dechlorination activities considered. When the effect of different bioaugmentation/biostimulation scenarios are evaluated, it is seen that typically lower chlorinated congeners increase - sometimes ten fold (e.g.26, 52, 49, 81) whereas higher chlorinated congeners decrease in concentration – sometimes approaching zero (e.g. 101, 182/187, 170/190).

An evaluation of future prediction results can be made on the basis of PCB homologs. With forecasts of dredging and no degradation, hexa- and penta-homologs increase. The forecasts of Biostimulation, DA13, and DA25 increase tri, tetra- and pentahomologs. However, tetra homologs increase with DA19 and tri and tetra homologs increase with DA20. In other words, DA19 and DA20 decrease concentration of higher homologs and increase lower homologs which are less bioaccumulative on humans and aquatic biota. Furthermore, these congeners are more soluble than higher chlorinated congeners and are susceptible to complete aerobic degradation (Sowers & May, 2013).

Change of PCB toxicity in LM sediments was evaluated considering 8 scenarios in concentration of toxic dioxin-like coplanar congeners through the next 20 years. The toxic dioxin-like congeners analyzed are 81, 118, 123/149 and 105/132/153. It is seen that congeners 81 and 105/132/153 have lower uncertainty than congeners 118 and 123/149. However, their R^2 values in validation and calibration change between 0.13 and 0.82. Therefore, congeners 81 and 105/132/153 are considered to find the best scenarios for toxicity reduction. TEQ change with respect to these congeners for the 8 scenarios are plotted in Figure 7.7. From the toxicity perspective, DA25 is the one affecting the congeners the most, by causing significant increase in TEQ of Σ PCBs due to a major increase in congener 81, even though TEQ of 118, 123/149 and 105/132/153 are decreased. Overall, final total toxicity is reduced by bioaugmentation with CBDB1 (DA18+DA20) and DA 18+ DA13. This result demonstrated that bioremediation strategies of DA20 and DA13 are effective to potentially reduce PCBrelated toxicity of sediments. As a result, considering the change of concentration and toxicity, bioaugmentation with CBDB1 would be a more advantageous bioremediation strategy for reduction in concentration of all congeners and $\Sigma PCBs$.

Sowers and May (2013) state the importance of coupling anaerobic PCB dechlorination with aerobic degradation if *in situ* treatment is to be a viable option for PCB contaminated sediments. They emphasize the importance of dechlorination from the *ortho* position as tri-*ortho* and tetra-*ortho* chlorobiphenyls are recalcitrant to aerobic degradation. In this case, DA25 would be a more advantageous activity for bioaugmentation because it includes o-17, an *ortho*-Cl dechlorinator in the consortia of microorganisms. Predicting the course of such a scenario with the FTHP model, which provides predictions on a congener specific level, enables the user to see that

there is a potential for an increase in toxicity – either the final toxicity of the sediment or an increase somewhere in time during bioremediation, before aerobic degradation starts. This shows the usefulness and power of the FTHP model. Sowers and May (2013) argue that "many of the critical components are in place" for optimizing and testing this technology in field. Incorporation of aerobic degradation was beyond the scope of this modeling study. However, if required data could be measured in sediments (esp. concentration of potential products of aerobic PCB degradation) during such field trials, then incorporation of aerobic degradation into FTHP, coupled with anaerobic dechlorination, would provide a promising tool for monitoring and optimizing this challenging *in situ* treatment technology for PCB contaminated sediments.

Figure 7.6 Future prediction concentrations in surface sediment

7.4 Conclusions

In this study, FTHP model was applied to Lake Michigan sediment data to investigate anaerobic dechlorination of PCBs in sediments by considering fate and transport processes. The calibration of the newly developed model yield satisfactory results, which were comparable or better than the water column calibration results of LM2 model for developed as part of the LMMBP. FTHP model results indicated that reliable inputs of the most sensitive parameters can decrease the uncertainty in the output and improve the goodness of fit in calibration and validation. By this way, the risk of obtaining unreliable output concentration can be decreased. FTHP model results also demonstrated that settling, resuspension, and biodegradation are important processes controlling PCB fate and transport in Lake Michigan sediments. Comparative evaluation of model forecasts indicated that toxicity reduction and decrease of amount of higher homolog groups can be realized by the scenario of DA20+DA18 bioaugmentation of LM sediments with *dehalococcoides sp.* CBDB1 and phylotype DEH10. This study also emphasizes the importance of congener specific modeling of PCBs as well as incorporation of anaerobic dechlorination into modeling contaminated sediments.

222

.
CHAPTER 8

MODELING BIODEGRADATION OF PBDES IN SEDIMENTS USING A FATE AND TRANSPORT MODEL

8.1 Introduction

Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants. These chemicals have been widely used in building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams and textiles (ATSDR, 2004). Their first commercial production began in the 1970s in Germany (ATSDR, 2004). The production of tetra-, penta-, hexa- and hepta- PBDE congeners are banned by the Stockholm Convention due to their bioaccumulative and persistent nature (POPs, 2008). PBDEs are released into the environment during their manufacture, incineration of municipal waste, deposition to landfills, discharge to municipal sewage-treatment plants, or emission directly to the atmosphere as particulate matter (ATSDR, 2004).

San Francisco Bay is known to be contaminated by PBDEs (Oram et al., 2008b). According to USEPA's Toxic Release Inventory, two facilities which manufacture PBDE containing product in the Peninsula region were sources of PBDE contamination (Sutton et al., 2014). Volatilization from these manufactured products are also sources. Another, though less probable source of PBDE entering the bay is predicted to be from e-waste recycling facilities, autoshredders, carpet and foam recycling facilities, sewage sludge application to rural lands, and sewage sludge incinerators. According to a study of the California EPA, the PBDE contamination in biota measured in 2002 was found to be the highest in USA, so the region is called as a hot spot region. At the federal level, penta- and octa- BDE mixtures were prohibited in 2006 in the USA. Deca-PBDE for which the phased-out started in 2013, is still produced and available in the region (Sutton et al., 2014). Fate and transport (F&T) models are valuable in predicting the outcome of remediation and typically used for better management of sites contaminated with these chemicals. In the literature, there are much less number of studies about modeling the fate and transport of PBDEs (Oram et al., 2008b; Rowe, 2009) when compared to other hydrophobic organics such as PCBs. Numerous studies exist in the literature that aims to model PCBs as total-PCBs, homologs or individual congeners (Connolly et al., 2000; Davis, 2004; Farley et al., 1999; Shen et al., 2012; Zhang et al., 2008, 2009) and total maximum daily load (TMDL) of PCBs (LimnoTech, 2007; Shen, 2011; Shen et al., 2012). There are F&T models working on individual PCB and PBDE congeners (Davis, 2004; Oram et al., 2008b; Rowe, 2009; Shen, 2011; Shen et al., 2012; Zhang et al., 2008). However, after simulation, the output of the model is evaluated for total PCBs or PBDEs. There is one study in the literature, by Davis (2004) which models the general degradation term of each individual PCB congener, however, considering all possible degradation pathways (i.e., photolytic, biological, and chemical) but not taking into account any products. Consideration of the products in biodegradation is important to evaluate the change in toxicity as well as persistence and total concentration of PCBs.

According to our literature review, there is no model considering both biodegradation of these compounds with their products and F&T processes together. It is seen that not all congeners in a PBDE are bioaccumulative to human health and aquatic organisms. Therefore, investigation of bioaccumulative congeners are important to reduce adverse effects of them to human health and aquatic organisms. Accordingly, this study aims to develop a model that evaluates biodegradation pathways of individual congeners considering F&T processes in the sediment. Biodegradation rate constants for congener specific degradation pathways are estimated by a separate model and fed as input to the F&T model. Overall, this study investigates the biodegradation of PBDEs in sediment comprehensively and evaluates a number of remedial strategies for better management of the contaminated site such as natural attenuation, bioaugmentation and/or biostimulation.

8.2 Methodology

In this study, development and application of fate and transport for hydrophobic pollutant (FTHP) model to San Francisco Bay sediments for PBDEs are explained. A flowchart of the full process of model development and application is presented in Figure 8.1. The main stages of model development are shown in shaded boxes as code verification, calibration, validation, sensitivity and uncertainty analyses. Accordingly, the code of the model is verified firstly. Then, the code of Runge Kutta 4th order (RK4) solution of FTHP model applied to Equation 8.1 is called to test the model (Figure 8.1). The model code and flowchart of RK4 solution are explained in Section 3.3.

Figure 8.1 FTHP model development for and application to Lake Michigan Sediments

8.2.1 Fate and Transport of Hydrophobic Pollutant (FTHP) model

The contaminant mass balance equation used in the FTHP model is given in Equation 8.1. The mass balance equation and numerical approach of Recovery model (Boyer et al. 1994; Chapra and Reckhow, 1983) is adopted in this study. The model was written in MatLAB and individual PCB congeners were run as state variables.

V_{m}	volume of sediment, m ³
$A_{\boldsymbol{w}} \text{ and } A_{\boldsymbol{m}}$	surface areas of water and surface sediment, respectively, m ²
k _m	decay rate constant of the contaminant in the surface layer, day^{-1}
Vb	burial velocity, m/day
Vs	settling velocity of particulate matter, m/day
Vr	resuspension velocity of sediments, m/day
Vd	diffusion mass-transfer coefficient at the sediment, water and deep
	sediment interface, m/day
$c_s^i(0)$	$i^{th}\xspace$ contaminant concentration at the top of the deep contaminated
	layer, ng/L
$c_w{}^i$ and $c_m{}^i$	concentrations of contaminant i in water and surface sediment,
	respectively, ng/L
t	time, day
F _{pw} , F _{dw}	fraction of contaminant in particulate and dissolved forms in the
	water, respectively
F _{dp}	ratio of contaminant concentration in the sediment pore water to
	contaminant concentration in total sediment

Upper and lower boundaries of the model are set as the water-sediment interface and deeper sediment, respectively (Figure 7.2). As the major transport processes, settling,

resuspension, burial and diffusion are considered in simulating the temporal change in the concentration of an individual congener. For transformation mechanisms, anaerobic dehalogenation (biodegradation) is considered as the only dominant process in sediment. PBDEs are assumed to partition into particulate and dissolved phases in the system. In the mechanisms of burial, resuspension and biodegradation, the contaminant is considered in both dissolved and particulate phases while the mechanisms of settling and diffusion are carried out in particulate and dissolved phases, respectively. Biodegradation rate constants change from one congener to the other as individual debromination pathways between congeners are taken into account. Solubility limit of congeners are also considered during incorporation of biodegradation into the model. The assumptions conducted in this study as in Boyer et al. (1994) are well-mixed water and sediment layer, variability in C_m in depth direction, linear equilibrium sorption mechanisms, first order kinetic, no compaction in sediment. As different from Recovery model, in this model it is assumed that contaminant concentration in water column is accepted as constant.

Figure 8.2 PBDE Conceptual Model

8.2.2 Environmental PBDE Data: San Francisco Bay, USA

For the application of the FTHP model, SF Bay data set consisting of 21 groups of congeners (7, 8, 15, 17/25, 28/33, 32, 35, 47, 49, 66, 85, 99, 100, 153, 154, 183, 197, 206, 207, 208 and 209) provided by the San Francisco Estuary Institute (SFEI) (SFEI, 2015) was used after eliminating non-detected congeners. The data set for a limited region in the Lower South Bay was selected because sediments in that region contain the highest concentration of BDE 47 and 209 (Figure 8.3). 9 samples from the same location (station BA10) were collected between 2002-2014 approximately each year, from a depth of 5 cm at latitude 37.469 and longitude -122.063 (Table 8.1). The concentration values in sediment layer range from 0 to 6858 ng/L. When water and sediment PBDE concentrations are compared, sediment concentrations are five to seven orders of magnitude higher. The parameters and inputs are tabulated in Section 3.5.2. Site-specific properties on San Francisco Bay was taken from SFEI (2015), Davis (2004), Caffrey (1995), Choe et al (2004) and Sutton et al. (2015). Physicochemical properties are obtained from Mackay (2006) and Blauenstein (2007) and EPI SUITE. FTHP model code verification (written in MatLAB version 7.10.0) was performed in MS Excel (version 2016). First four sediment data is used for calibration except for initial one, and the rest is used for model validation.

Figure 8.3 Surface sediment and water column sampling points for PBDE data used

							Congener IU	PAC No				
Sample no	Days	Date of Collection	7	8	15	17/25	28/33	32	35	47	49	99
1	0	8/5/2002	39.74	30.56	30.62	189.54	68.04	5.67	7.40	685.80	228.42	39.31
7	385	8/25/2003	17.87	11.77	9.13	67.50	29.70	3.42	3.35	167.94	64.26	8.80
3	1842	8/21/2007	23.65	21.44	14.82	133.92	35.07	1.15	0.11	426.06	94.50	13.85
4	2180	7/24/2008	16.42	12.74	10.15	56.16	15.39	1.30	2.19	131.76	51.35	6.75
ŝ	2598	9/15/2009	41.26	36.61	24.95	164.70	45.47	3.45	5.13	246.24	145.26	14.90
9	2738	2/2/2010	6.64	4.87	3.97	16.52	4.98	1.83	0.95	41.63	14.69	2.19
Г	3304	8/22/2011	24.25	20.52	22.95	82.62	25.38	0.00	8.91	282.96	114.48	17.71
8	3544	4/18/2012	6.05	0.00	0.00	21.71	0.00	0.00	0.00	60.48	20.95	2.85
6	4383	8/5/2014	34.61	31.48	35.48	69.66	26.41	0.00	0.00	197.10	85.86	14.53
		Min	6.05	0.00	0.00	16.52	0.00	0.00	0.00	41.63	14.69	2.19
		Max	41.26	36.61	35.48	189.54	68.04	5.67	8.91	685.80	228.42	39.31
		Median	23.65	20.52	14.82	69.66	26.41	1.30	2.19	197.10	85.86	13.85
		Average	23.39	18.89	16.90	89.15	27.83	1.87	3.11	248.89	91.09	13.43
		SD^{a}	13.10	12.55	12.24	60.82	20.75	1.96	3.35	201.51	66.55	11.16
		RSD^{b}	56.03	66.44	72.41	68.22	74.55	104.78	107.70	80.97	73.07	83.07

Table 8.1 Concentration of individual PBDE congeners in 9 sediment samples (ng/L) (SFEI, 2015)

^aStandard deviation, ^bRelative standard deviation

tinued
Coni
e 8.1
Tabl

							Con	gener IUPAC	No				
Sample no	Days	Date of Collection	66	100	153	154	206	207	208	209	183	197	85
1	0	8/5/2002	476.82	118.26	54.54	63.72	239.22	184.68	124.74	6858.00	22.41	35.15	25.06
5	385	8/25/2003	93.42	24.14	21.82	11.88	41.74	37.48	39.15	993.60	7.18	30.67	12.91
3	1842	8/21/2007	225.18	49.38	24.06	20.63	74.25	58.59	38.42	2940.30	0.00	0.00	0.00
4	2180	7/24/2008	70.74	18.52	8.37	8.96	31.43	20.52	14.47	1015.20	4.57	4.28	5.40
5	2598	9/15/2009	100.44	27.70	14.15	15.93	81.54	53.95	31.21	2305.80	0.00	0.00	4.77
9	2738	2/2/2010	31.10	6.26	2.82	3.07	17.98	21.87	12.91	702.00	4.27	2.61	1.38
7	3304	8/22/2011	194.94	57.24	47.63	30.94	95.04	88.56	48.38	3153.60	107.46	44.82	0.00
8	3544	4/18/2012	34.40	10.37	0.00	4.47	20.63	0.00	0.00	556.20	0.00	0.00	0.00
6	4383	8/5/2014	86.94	22.46	13.99	11.29	165.24	165.24	112.86	4914.00	8.10	43.25	0.00
		Min	31.10	0.00	6.26	0.00	3.07	0.00	0.00	17.98	0.00	0.00	556.20
		Max	476.82	25.06	118.26	54.54	63.72	107.46	44.82	239.22	184.68	124.74	6858.00
		Median	93.42	1.38	24.14	14.15	11.88	4.57	4.28	74.25	53.95	38.42	2305.80
		Average	146.00	5.50	37.15	20.82	18.99	17.11	17.87	85.23	70.10	46.91	2604.30
		SD^{a}	140.43	8.48	34.69	18.94	18.81	34.59	20.03	74.02	64.88	43.58	2146.67
		$\mathrm{RSD}^{\mathrm{b}}$	96.18	154.21	93.37	90.99	99.07	202.16	112.10	86.84	92.56	92.92	82.43
3 U 1 1 1	4												

232

^aStandard deviation, ^bRelative standard deviation

8.3 **Results and Discussions**

8.3.1 Testing of the FTHP Model

The parameters and their input values were given in section 3.5.2. Excluding the initial day, samples no 2, 3, 4 and 5 are used for calibration, while the following four samples (no 6, 7, 8 and 9) were used for model validation (Table 8.1). FTHP model code verification (written in MatLAB version 7.10.0) was performed in MS Excel (version 2006).

During model calibration, v_s, v_b, K_d for both water and sediment are tested by varying their values from 50% to 150% of their values, and/or according to ranges given in the literature/data set. Biodegradation rate constants (k_m) for congener specific anaerobic debromination pathways were obtained from the anaerobic dehalogenation model (ADM). These k_m values are used in the FTHP model during calibration. Median and maximum k_m values (min values are 0) of 8 pathways generated for all dehalogenation activities (DAs) are tested (Table 8.2). Each DA includes pathways based on microbial activity in laboratory microcosms and theoretically possible removal of targeted positions and debromination products. The details are given in Tables D.3 and D.4. Biodegradation affects only 7 BDE congeners (28/33, 47, 99, 100, 153, 154 and 183) that take part in debromination pathways. When k_m is changed during calibration, only the concentrations of these 7 BDE congeners are affected. Preference over selection of one particular debromination activity could not be done for the case of PBDEs. The main reason is the limited number of pathways available in each DA and the limited number of PBDEs in the measured data set. Therefore, each pathway is considered regardless of the DA, by taking into account numeric value of their degradation rate constants. Table 8.2 lists the median and maximum km values for all pathways in each DA. These km values are sorted for each pathway and collected in an ascending order to yield five cases with increasing debromination rate (Table 8.3). Here, five cases are generated; three median and two max k_m pathway cases.

Various cases are tested out by adjusting three parameters (v_s, v_b, K_d) and k_m (Table 8.3) while monitoring for any improvement in \mathbb{R}^2 and RMSE values for both individual congeners and Σ PBDEs. R² and RMSE results of all calibration trials are given in Appendix G Table G.1. All cases were compared with no debromination case to see the effect of anaerobic debromination on the model fit. Accordingly, values of relevant parameters are then adjusted. The model R^2 results of most of the congeners are improved when vs is increased to 150% (Table G.1). Other parameters did not yield any improvement in R^2 except for k_m . When the case of kmax_II is applied, R^2 of 7 congeners is improved especially BDE 47 and 99 (R² change from 0.38 to 0.70 and 0.52 to 0.81, for 47 and 99, respectively). Therefore, the case of combination of 150% of v_s and kmax II is examined. When this case is compared with "No degradation" case, it is seen that correlation of all congeners are improved (R² between 0.43 and 0.96). For di and tri homologs, even though there is improvement in the fit, their correlation is still not satisfactory (where the R^2 change from a range of 0.00 - 0.68 to 0.02 - 0.73). The goodness of fit results of model calibration of 21 congeners and Σ PBDEs is shown in Figure 8.4. As can be seen from the figure and tabulated values in Table 8.4, BDE 28/33 and 207 are overestimated and BDE 7 and BDE 8 are consumed after about 1500 days. However, degradation of higher brominated congeners can result in accumulation of these di homolog groups through time. The model could not account for the accumulation of congeners 7, 8 and decrease of congeners such as 206 and 207. This is because the laboratory data set that could be found in the literature had a very limited data set of PBDE congeners and hence km values could only be calculated for the pathways including the measured congeners. If a larger laboratory debromination data set was available, then a much larger number of debromination pathways could have been used as input in the ADM, resulting the calculation of k_m values that would enable us to account for the changes in higher brominated and lower brominated congeners. The calibration result also indicated that five congeners (7, 8, 15, 17/25 and 49) have lower \mathbb{R}^2 than 0.50 (Table 8.4). Accordingly, output concentrations of other congeners are likely to be more reliable in the selection of the best future scenario.

Oram et al. (2008a) simulated a box model for the fate and transport of BDE 47 and 209 across the bay. They found that R^2 of these two congeners vary between 0.6 and 1.0. As seen in Table 8.4, the R^2 of BDE 47 is in this range (0.72) and that of BDE 209 is close to the range (0.52).

After calibration, validation was conducted using sediment PBDE concentrations from a different region of the bay, without changing any parameters or rate constants used during calibration. The validation of 21 congeners and \sum PBDEs is shown in Figure 8.5. R² and RMSE results for validation are given in Table 8.4. In validation, it was observed that while correlation of mono, di, tri homolog groups is improved, correlation of higher homolog groups such as hexa, hepta and octa reduces.

Table 8.2	Maximum	and	median	k _m	values	of 8	8 pathways	in	corresponding	Das	by
ADM											

ПА			Mother	\rightarrow daughter	for 8 path	ways		
no	47	99	100	153	154	154	183	183
ш	28	47	47	99	99	100	153	154
1		0.003/0.001		0.024/0		0.008/0.003	0.003/0	0.017/0.002
2								0.017/0.002
3		0.003/0.001		0.024/0		0.008/0.003		0.017/0.002
4							0.003/0	
6								0.017/0.002
7	0.007/0.002		0.001/0		0.018/0			
9								0.017/0.002
10								0.017/0.002
12								0.017/0.002
13								0.017/0.002
14		0.003/0.001		0.024/0		0.008/0.003		
15		0.003/0.001		0.024/0		0.008/0.003		0.017/0.002
16	0.007/0.002	0.003/0.002		0.024/0	0.018/0			
18	0.007/0.002		0.001/0		0.018/0	0.008/0		0.017/0.002
19	0.007/0.002	0.003/0.001		0.024/0			0.003/0	0.017/0.001
21							0.003/0	0.017/0.001

The number before slash is the maximum k_m value, The number after slash is the median k_m value.

congener IUP	AC No	Ma	x k _m		Median km	
mother	daughter	k _m _I	k _m _II	k _m _I	k _m _II	k _m _III
47	28	0.007	0.007	0.002	0.002	0.002
99	47	0.004	0.004	0.001	0.002	0.002
100	47	0.001	0.001	0	0.001	0.001
153	99	0.024	0.024	0.000	0.000	0.000
154	99	0.018	0.018	0	0	0
154	100	0.008	0.008	0	0.003	0.003
183	153	0.003	0.003	0	0	0
183	154	0.017	0.017	0.001	0.002	0.002

Table 8.3 Cases for use of km values during calibration of FTHP model

Congener		Cali	bration	l		Vali	dation	
IUPAC No	coso	r	R ²	RMSE	COSO	r	\mathbb{R}^2	RMSE
7	0.65	0.33	0.11	22.51	0.68	0.63	0.39	19.32
8	0.59	0.13	0.02	19.87	0.63	0.50	0.25	16.95
15	0.84	0.47	0.23	10.85	0.73	0.42	0.18	16.17
17/25	0.83	0.37	0.14	74.52	0.96	0.91	0.82	28.55
28/33	0.69	-0.83	0.69	639.21	0.41	-0.90	0.81	655.06
32	0.88	0.86	0.73	1.66	0.95	0.95	0.9	0.79
35	0.83	0.71	0.5	2.44	0.64	0.51	0.26	3.99
47	0.95	0.85	0.72	121.66	0.96	0.92	0.86	92.24
49	0.92	0.65	0.43	66.66	0.88	0.87	0.76	74.79
66	0.90	0.79	0.63	13.99	0.87	0.89	0.79	13.95
85	0.79	0.97	0.94	14.2	0.73	-0.39	0.15	83.84
99	0.96	0.91	0.83	74.13	0.83	1.00	1	141.09
100	0.78	-0.80	0.64	83.53	0.71	-0.90	0.81	90.6
153	0.97	0.90	0.8	7.51	0.85	0.67	0.45	17.34
154	0.93	0.83	0.68	12.55	0.95	0.90	0.81	10.28
183	0.61	-0.94	0.9	19.27	0.58	0.08	0.01	40.4
197	0.61	-0.95	0.9	32.3	0.77	-0.25	0.06	26.38
206	0.75	-0.79	0.63	192.97	0.76	-0.77	0.59	189.57
207	0.61	-0.83	0.68	321.17	0.66	-0.62	0.39	331.97
208	0.93	0.90	0.82	23.5	0.71	0.64	0.4	55.05
209	0.84	0.72	0.52	3492.68	0.84	0.74	0.55	3153.51
∑PBDEs	0.85	0.73	0.54	4783.76	0.84	0.78	0.61	4542.16
Min	0.59	-0.95	0.02		0.41	-0.90	0.01	
Max	0.97	0.97	0.94		0.96	1.00	1.00	
Average	0.81	0.27	0.59		0.77	0.34	0.54	
Std	0.13	0.74	0.26		0.14	0.66	0.30	

Table 8.4 Results of the goodness of fit parameters for calibration and validation

Sensitivity of 10 parameters is investigated during sensitivity analysis in order to understand which parameters affect output congener concentrations the most. 50% and 150% of values and/or minimum and maximum of ranges in calibration input were tested for 20 years, separately. The sensitivity analysis results are presented in Appendix G Figure G.1 through Figure G.10. The sensitivity analysis revealed that most of the congeners are sensitive to changes in five parameters; Cw, km, Kow, TSS and focw. The quality of these input parameters has a great impact on the model outcome. Therefore, low quality of these parameters (i.e. data required for measurements frequently) can create errors on output concentrations. The figures indicated that increase in Cw, focw and Kow, and decrease in TSS cause decrease of output concentration of most of the congeners in sediment with time. Review of change of each parameter in mass balance equation indicated that while increases of C_w, f_{ocw} and Kow cause rising of settling term, decrease of TSS results in reduction of resuspension. For k_m, decrease of km is investigated for 7 congeners. When it's equal to 0, output congeners concentrations of these decreases with time except for BDE 28/33 which is accumulated since it is taken into consideration only as daughter congener. Overall, the sensitivity analysis indicated that settling, resuspension and anaerobic degradation are the processes controlling PBDEs in San Francisco Bay.

As a result of sensitivity analysis, five parameters which are the most sensitive parameters (C_w , TSS, k_m , K_{ow} and f_{ocw}) are considered for uncertainty analysis to evaluate changes and distribution of these parameters on effect of output concentration (Appendix G Table G.3). For uncertainty analysis, the model was run for 1000 times using Monte Carlo Simulation. As can be seen from probability distribution of each congener (Figure G.11 and G.12), lognormal distribution is appropriate for output concentration changes as a result of the uncertainty analysis can be seen in Figure G.13. As seen from the figure, uncertainties of BDE 100, 153, 154, 183, 206 and 209 are the highest among the congener 183 has the lowest fit among other congeners during validation (R^2 <0.50). However, its correlation is better for calibration (R^2 =0.90) with a r value of

-0.94. This inverse relationship in validation and or calibration is also available in congeners 100 and 206 which include higher uncertainty (r values between -0.77 and -0.90). Overall, uncertainty analysis allows for an evaluation of which congeners contribute most to the overall uncertainty and the parameters affecting their simulation. Also, confidence intervals could also be formed to represent uncertainty during final assessment of results, but it was out of scope of this study.

As a result of testing the model, it is seen that the risk of obtaining unreliable output concentration can be due to low quality of the most sensitive five input parameters (C_w , k_m , K_{ow} , TSS and f_{ocw}) or the congeners (7, 8, 15, 17/25 and 49) including low fit (R^2 <0.50) during calibration. The reliable inputs of these parameters decrease the uncertainty in the output and improve the fits in calibration and validation. Furthermore, another result is that the congeners (out of congeners 100, 153, 154, 183, 206 and 209) including low uncertainty should be evaluated for future scenarios.

8.3.2 FTHP Model Future Prediction Results

The calibrated model was used to predict future conditions for the next 20 years after 2016 under four scenarios as alternative management options for San Francisco Bay sediments. Scenarios are explained in Table 8.5. Accordingly, calibration is set as the "no change" scenario by which the rest of the alternatives are compared. It aims to show the effects of current conditions without any change of the current situation. Scenario of Dredging is added in order to understand effects of removal of sediments on total concentration because dredging is the typical remediation action for hot spot contaminated regions. The scenario of "No degradation" was prepared as an indicator for the effect of biodegradation on sediment concentrations. The last one includes bioaugmentation with possible extra debromination pathways that can take place in the environment. To develop last scenario, all relevant debromination pathways in the literature (regarding PBDE congeners measured in San Francisco Bay) are taken from the studies of Tokarz et al. (2008), Robrock et al. (2008), Ding et al. (2013) and Huang et al. (2014), and depicted in Figure 8.6. Congeners measured/modeled for San

Francisco Bay are only considered in these pathways. Since laboratory data (BDE congener concentrations at a number of time intervals) is not present, ADM can not be used to predict biodegradation rate constants as before. Therefore, here, estimation of rate constants are done based on previously estimated k_m values of pathways involving similar PBDE homologs (Table 8.6). As shown in Table 8.6, unknown k_m values in a homolog are specified according to three tiers: (i) same value in this homolog if no range is specified, (ii) average of the values if a range is specified, and (iii) same value in one higher homolog if no value is available for this homolog. The k_m values of all pathways (extra ones in addition to the already existing ones) used in the model for the last scenario are given in Appendix G Table G.2.

Scenario	Explanation
Calibration	Same input in calibration
Dredging	150% value of C_w and max of TSS
No Degradation	Same input in calibration except $k_m {}^{\!$
Bioaugmentation with possible extra pathways	Addition of possible pathways defined in Tokarz et al. (2008), Robrock et al. (2008), Ding et al. (2013) and Huang et al. (2014) (Figure 8.6)

Figure 8.6 Possible pathways of debromination in the literature considering congeners measured in San Francisco Bay sediments

Table 8.6 k_m values used for the other pathways which are not available (d⁻¹)

Pathways between homologs	Range (d ⁻¹)	Reference	k _m values used for the extra pathways (d ⁻¹)	Assumption*
Deca→Nona	0.001	(Gerecke et al., 2005)	0.001	Same as the homolog
Nona→Octa	-	-	0.001	Same as Deca→Nona
Hepta→Hexa	0.003- 0.017	ADM	0.01	Average of min and max k _m 's
Hexa→Penta	0.008- 0.024	ADM	0.016	Average of min and max k _m 's
Penta→Tetra	0.001- 0.004	ADM	0.003	Average of min and max k _m 's
Tetra→Tri	0.007	ADM	0.007	Same as the homolog
Tri→Di	-	-	0.007	Same as Tetra→Tri

*A k_m value is assumed to be used in the FTHP since laboratory data was not available to predict a rate by ADM.

The change in individual congener and Σ PBDE concentrations with changing future scenarios are depicted in Figure 8.7. Hale et. al (2003) stated that penta-mixtures, major components of which are BDE 47, 99, 100, 153, 154 and 85, are especially problematic because they are bioaccumulative. It is seen that congeners 47 and 99, have lower uncertainty than congeners other bioaccumulative congeners. Moreover, these congeners with congeners 153 and 154 are considered to find the best scenario for reduction of bioaccumulative congeners since R² values of them in both validation and calibration include better fit (R²>0.50). As seen in Figure 8.7, all congeners specified in penta-mixture decrease with the bioaugmentation scenario except for BDE 100. This congener is one of the congeners where predictions are done with the highest uncertainty (as can be seen from Figure G.13). There is actually a debromination pathway with 100 as the mother, which means its concentration can reduce with biodegradation. However, model can not satisfactorily predict this congener, as can be seen from Figure 8.4. This also comes up in model predictions. More in-depth laboratory as well as environmental studies on PBDE debromination pathways would enable a better estimation for these pathways in the FTHP model as well. Nevertheless, Figure 8.7 shows that bioaugmentation can be a significant way for reducing or eliminating bioaccumulative congeners. On the other hand, Σ PBDEs can only be reduced by dredging as anaerobic biodegradation only has the potential to reduce bromines from PBDEs. Another finding is that removal of degradation in case of "No degradation" result in an increase in concentration of bioaccumulative congeners (BDE47, 99, 100, 153, 154 and 183). This shows that biodegradation can reduce the risk of bioaccumulative congeners in a contaminated site. As a result, the reduction of bioaccumulative congeners 47, 99, 153 and 154 can be carried out by bioaugmentation scenario.

8.4 Conclusions

In this study, FTHP model was applied to San Francisco bay sediments for modeling biodegradation of PBDEs in sediment comprehensively considering fate and transport processes. Although studies on PBDE debromination is relatively few and recent, a number of debromination reactions could be incorporated into the calibrated model with biodegradation rate constants obtained from the anaerobic dehalogenation model. Model calibration of PBDE congeners resulted in satisfactory fit between predicted and measured sediment concentrations. FTHP model results demonstrated that settling, resuspension, and biodegradation are the important processes controlling PBDE fate and transport in San Francisco bay sediments. During trial of various scenarios, extra debromination pathways for which microcosm data could not be obtained were also incorporated into the model with assumed biodegradation rate constants. This bioaugmentation scenario using extra debromination pathways yield the best outcome in terms of reducing most of the bioaccumulative PBDE congeners from the sediments. A change in toxicity evaluation unfortunately could not be performed as TEF values for PBDE congeners are not yet present in the literature. This study shows the importance of biodegradation in a fate and transport model for family of hydrophobic compounds such as PBDEs when many reactions can take place, changing the congener profiles and persistence. Use of such models can help monitor and plan remediation efforts focused on decreasing the concentration as well as risk associated with toxic compounds from contaminated sediments.

CHAPTER 9

OVERVIEW

The present study aimed to investigate biodegradation of hydrophobic organic pollutants with the products in the sediment considering fate and transport mechanisms. For this purpose, FTHP model was developed. In the model, future concentration of individual congeners and total of them were determined by using dehalogenation pathways of individual congeners as well as transport and other fate mechanisms. The anaerobic dehalogenation rate constants of dehalogenation pathways were estimated by ADM to use as input to FTHP model.

This model can be applied to any halogenated HOCs. By this way, concentration of individual compounds and their total in surface sediment can be estimated in the future via scenarios. The literature review indicated that not all congeners (e.g. congeners of PCBs or PBDEs) are bioaccumulative or toxic. Therefore, future estimation enables to monitor distribution, degradation and accumulation of these toxic/bioaccumulative congeners in the sediment. Hence, strategies can be developed and applied during bioremediation accordingly.

FTHP model user should take into account the congeners which include lower uncertainty while future scenarios are discussed. Another finding is that the risk of obtaining unreliable output concentration can be decreased by using higher quality input (i.e. frequently measured data) of the most sensitive parameters (i.e. during FTHP calibration for PCBs, the most sensitive parameters were C_w , k_m , K_{ow} , TSS, v_s , f_{ocw} and D_m) which can decrease uncertainty in the output and improve the goodness of fit during calibration and validation.

FTHP model was developed such that it can be applied for different sediments such as lake, river or bay sediments contaminated with various other halogenated hydrophobic organic compounds. In that respect, the developed FTHP model was applied to two different sediments (Lake Michigan and San Francisco Bay) contaminated with two different compounds (PCBs and PBDEs). Accordingly, these applications have shown that the developed model is versatile in terms of applicability to various chemicals and different sites. The results and discussions of two applications are explained below.

The application of FTHP model to Lake Michigan sediment data has demonstrated that the calibration of the newly developed model yield satisfactory results, which were comparable or better than the water column calibration results of LM2 model for developed as part of the LMMBP. FTHP model results demonstrated that settling, resuspension, and biodegradation are important processes controlling PCB fate and transport in Lake Michigan sediments. Comparative evaluation of model forecasts indicated that toxicity reduction and decrease of amount of higher homolog groups can be realised by the scenario of DA20+DA18 – bioaugmentation of LM sediments with *dehalococcoides sp.* CBDB1 and phylotype DEH10. This study also emphasizes the importance of congener specific modeling of PCBs as well as incorporation of anaerobic dechlorination into modeling contaminated sediments.

The application of FTHP model to San Francisco bay sediments has indicated that settling, resuspension, and biodegradation are the important processes controlling PBDE fate and transport in San Francisco bay sediments. During trial of various scenarios, extra debromination pathways for which microcosm data could not be obtained were also incorporated into the model with assumed biodegradation rate constants. This bioaugmentation scenario using extra debromination pathways yield the best outcome in terms of reducing most of the bioaccumulative PBDE congeners from the sediments. A change in toxicity evaluation unfortunately could not be performed as TEF values for PBDE congeners are not yet present in the literature.

However, model enabled us to see that bioaccumulative congeners can be reduced via remediation of sediment using bioaugmentation. This study shows the importance of biodegradation in a fate and transport model for family of hydrophobic compounds such as PBDEs when many reactions can take place, changing the congener profiles and their persistence. Use of such models can help monitor and plan remediation efforts focused on decreasing the concentration as well as risk associated with toxic compounds from contaminated sediments.

This study also investigated the estimation of k_m values. This research has identified that systematic and relatively simple estimation of k_m leads the way to better understanding fate and transport of individual congeners in the environment. For example, toxic PCB congeners being the mother or daughter of dechlorination reactions can be predicted, toxicity reduction could be made possible. By this way, mathematical fate and transport models can incorporate real k_m values rather than simplistic first-order degradation rates for total-PCBs. Overall, systematic identification and quantification of anaerobic dehalogenation pathways coupled with congener specific modeling can aid remediation efforts such that congener specific monitoring/enhancement of bioremediation could be possible for sediment-bound HOCs.

CHAPTER 10

RECOMMENDATIONS

As distinct from the literature, the present research explored, for the first time, the effects of biodegradation with products in sediment considering F&T processes. Therefore, further studies are recommended to enhance the power of FTHP model:

- In sediment of shallow water, PBDEs can undergo photolytic degradation. In such a case, ADM model can also be performed by using photolytic debromination pathways of polybrominated diphenyl ethers.
- Preparation of microcosm with relevant field study will provide better estimation for k_m to use in FTHP model. For example, in FTHP model, biodegradation rate constant input to Lake Michigan was from BH microcosm sediment data. If the microcosm sediment taken from Lake Michigan is used for k_m estimation, this will enhance the application and remediation.
- In PBDE application, one of the challenge is the unknown phyisicochemical properties of some congeners such as K_{ow} and solubility. Therefore, EPISUITE was used in this study. Further studies are recommended for PBDE application of FTHP model after these values are studied in the literature.

REFERENCES

- Abramowicz, D. A. (1995). Aerobic and anaerobic PCB biodegradation in the environment. In *Environmental Health Perspectives* (Vol. 103, pp. 97–99).
- Adrian, L., Dudková, V., Demnerová, K., & Bedard, D. L. (2009). "Dehalococcoides" sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. *Applied and Environmental Microbiology*, 75(13), 4516–24.
- Ahlborg, U., Becking, G., Birnbaum, L., Brouwer, A., Derks, H., Feeley, M., ... Yrjänheikki, E. (1994). Toxic equivalency factors for dioxin-like PCBs. *Chemosphere*, 28(6), 1049–1067.
- Allan, I. J., & Stegemann, J. A. (2007). Modelling of pollutant fate and behaviour in bed sediments. In D. Barcelo & M. Petrovic (Eds.), Sustainable Management of Sediment Resources: Sediment Quality and Impact Assessment of Pollutants (pp. 263–294). Amsterdam: Elsevier.
- Ambrose, R. B., Hill, S. I., & Mulkey, L. A. (1983). User's Manual for the Chemical Transport and Fate Model TOXIWASP Version 1.EPA-600/3-837005. Athens, GA. Retrieved from http://nepis.epa.gov/
- Ambrose, R. B., Wool, T. A., Connolly, J. P., & Schanz, R. W. (1988). WASP4, A Hydrodynamic and Water Quality Model- Model Theory, User's Manual, and Programmer's Guide. EPA-600/3-87/039. Athens, GA.
- ATSDR. (2004). Toxicological profile for polybrominated biphenyl and polybrominated diphenyl ethers. Retrieved September 1, 2015, from http://www.atsdr.cdc.gov/toxprofiles/tp68.pdf
- Ballschmiter, K., & Zell, M. (1980). Analysis of Polychlorinated Biphenyls (PCB) by Glass Capillary Gas Chromatography. *Fresenius J Anal Chem*, 31(302), 20– 31.

- Bedard, D. L. (2001). Microbial dechlorination of PCBs in aquatic sediments. In L.
 W. Robertson & L. G. Hansen (Eds.), *PCBs: Recent Advances in Environmental Toxicology and Health Effects* (pp. 27–33). Kentucky: The University Press of Kentucky.
- Bedard, D. L. (2003). Polychlorinated Biphenyls in Aquatic Sediments: Environmental Fate and Outlook for Biological Treatment. In M. M. Haggblom & I. D. Bossert (Eds.), *Dehalogenation: Microbial Processes and Environmental Applications* (pp. 443–465). Kluwer Academic Publishers.
- Bedard, D. L., Pohl, E. A., Bailey, J. J., & Murphy, A. J. A. (2005). Characterization of the PCB substrate range of microbial dechlorination process LP. *Environmental Science & Technology*, 39(17), 6831–6838.
- Bedard, D. L., & Quensen III, J. F. (1995). Microbial reductive dechlorination of polychlorinated biphenyls. In L. Y. Young & C. Cerniglia (Eds.), *Microbial Transformation and Degradation of Toxic Organic Chemicals* (pp. 127–216). New York: Wiley-Liss Inc.
- Bedard, D. L., Unterman, R., Bopp, L. H., Brennan, M. J., Haberl, M. L., & Johnson, C. (1986). Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. *Applied and Environmental Microbiology*, 51(4), 761–8.
- Blauenstein, M. (2007). Modeling the Environmental Fate of Polybrominated Diphenyl Ethers in Lake Thun. MS Thesis, Department of Environmental Science, Swiss Federal Institute of Technology Zurich, ETH Zurich.
- Bogdal, C., Scheringer, M., Schmid, P., Blauenstein, M., Kohler, M., & Hungerbuhler,
 K. (2010). Levels, fluxes and time trends of persistent organic pollutants in Lake
 Thun, Switzerland: Combining trace analysis and multimedia modeling. *Science* of the Total Environment, 408(17), 3654–3663.
- Boyer, J. M., Chapra, S. C., Ruiz, C. E., & Dortch, M. S. (1994). RECOVERY, A Mathematical Model to Predict the Temporal Response of Surface Water to Contaminated Sediments, Technical Report W-94-4. Vicksburg, Mississippi.

Retrieved from http://el.erdc.usace.army.mil/elmodels/pdf/w-94-4.pdf

- Breivik, K., Sweetman, A., Pacyna, J. M., & Jones, K. C. (2002). Towards a global historical emission inventory for selected PCB congeners — a mass balance approach: 1. Global production and consumption. *Science of the Total Environment*, 290(1-3), 181–198.
- Breivik, K., Sweetman, A., Pacyna, J. M., & Jones, K. C. (2007). Towards a global historical emission inventory for selected PCB congeners - A mass balance approach. 3. An update. *Science of the Total Environment*, 377(2-3), 296–307.
- Brown, J. F. J., Bedard, D. L., Brennan, M. J., Carnahan, J. C., Feng, H., & Wagner,
 R. E. (1987). Polychlorinated biphenyl dechlorination in aquatic sediments. *Science*, 236, 709–712.
- Brown, J. F. J., Wagner, R. E., Feng, H., Bedard, D. L., Carnahan, J. C., & May, R. J. (1984). Environmental degradation of PCBs. *Environ. Toxicol. Chem.*, 6, 579– 593.
- Burns, L. ., Cline, D. M., & Lassiter, R. R. (1982). Exposure Analysis Modeling System (EXAMS): Users Manual and System Documentation.EPA 600/3/82/023. Athens, GA.
- Bzdusek, P. A. (2005). PCB or PAH Sources and Degradation in Aquatic Sediments Determined By Positive Matrix Factorization. PhD Dissertation, Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Wisconsin, Milwaukee.
- Bzdusek, P. A., Christensen, E. R., Lee, C. M., Pakdeesusuk, U., & Freedman, D. L. (2006). PCB congeners and dechlorination in sediments of Lake Hartwell, South Carolina, determined from cores collected in 1987 and 1998. *Environmental Science & Technology*, 40(1), 109–119.
- Bzdusek, P. A., Lu, J. H., & Christensen, E. R. (2006). PCB congeners and dechlorination in sediments of Sheboygan River, Wisconsin, determined by matrix factorization. *Environmental Science & Technology*, 40(1), 120–129.

- Caffrey, J. M. (1995). Spatial and Seasonal Patterns in Sediment Nitrogen Remineralization and Ammonium Concentrations in San-Francisco Bay, California. *Estuaries*, 18(1B), 219–233. Retrieved from <Go to ISI>://WOS:A1995RD90000003
- Chamkha, A. J. (2007). Numerical Modeling of Contaminant Transport with Spatially-Dependent Dispersion and Non-Linear Chemical Reaction. *Nonlinear Analysis: Modelling and Control*, 12(3), 329–343.
- Chapra, S. C. (1997). *Surface Water-Quality Modeling*. New York: Waveland Press inc.
- Chapra, S. C., & Reckhow, K. H. (1983). *Approaches for Lake Management, Vol. 2: Mechanistic Modeling*. Butterworth, Woburn, MA: Ann Arbor Science.
- Chen-Charpentier, B. M., & Kojouharov, H. V. (2008). Mathematical modeling of bioremediation of trichloroethylene in aquifers. *Computers and Mathematics with Applications*, 56(3), 645–656.
- Cho, Y. C., Sokol, R. C., Frohnhoefer, R. C., & Rhee, G. Y. (2003). Reductive Dechlorination of polychlorinated biphenyls: threshold concentration and dechlorination kinetics of individual congeners in Aroclor 1248. *Environmental Science and Technology*, 37(24), 5651–5656.
- Choe, K.-Y., Gill, G. a., Lehman, R. D., Han, S., Heim, W. a., & Coale, K. H. (2004). Sediment-water exchange of total mercury and monomethyl mercury in the San Francisco Bay Delta. *Limnology and Oceanography*, 49(5), 1512–1527.
- Commandeur, L. C. M., van Eyseren, H. E., Opmeer, M. R., Govers, H. a. J., & Parsons, J. R. (1995). Biodegradation Kinetics of Highly Chlorinated Biphenyls by Alcaligenes sp. JB1 in an Aerobic Continuous Culture System. *Environmental Science & Technology*, 29(12), 3038–3043.
- Connolly, J. P., Zahakos, H. A., Benaman, J., Ziegler, C. K., Rhea, J. R., & Russell, K. (2000). A model of PCB fate in the Upper Hudson River. *Environmental Science and Technology*, 34(19), 4076–4087.

- Cutter, L. a., Watts, J. E. M., Sowers, K. R., & May, H. D. (2001). Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6chlorobiphenyl. *Environmental Microbiology*, 3(11), 699–709.
- Davis, J. A. (2004). The long-term fate of polychlorinated biphenyls in San Francisco Bay, USA. *Environmental Toxicology*, 23(10), 2396–2409.
- De Wit, C. a. (2002). An overview of brominated flame retardants in the environment. *Chemosphere*, *46*(5), 583–624.
- Demirtepe, H. (2012). Modeling Anaerobic Dechlorination of Polychlorinated Biphenyls. MS Thesis, Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey.
- Demirtepe, H., Kjellerup, B., Sowers, K. R., & Imamoglu, I. (2015). Evaluation of PCB dechlorination pathways in anaerobic sediment microcosms using an anaerobic dechlorination model. *Journal of Hazardous Materials*, 296, 120–127.
- Dercova, K., Vrana, B., & Balaz, S. (1998). Evaporation and elimination of PCBs during degradation by Pseudomonas stutzeri. *Toxicological and Environmental Chemistry*, 66(1-4), 11–16. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0031946142&partnerID=40&md5=1d85b9790491d8a9a8172409e9bd819b
- Dercova, K., Vrana, B., & Balaz, S. (1999). A kinetic distribution model of evaporation, biosorption and biodegradation of polychlorinated biphenyls (PCBs) in the suspension of Pseudomonas stutzeri. *Chemosphere*, *38*(6), 1391–1400.
- Di Toro, D. M., Fitzpatrick, J. J., & Thomann, R. V. (1982). Water Quality Analysis Simulation Program (WASP) and Model Verification Program (MVP) -Documentation. Westwood, N.J.
- Ding, C., Chow, W. L., & He, J. (2013). Isolation of Acetobacterium sp. strain AG, which reductively debrominates octa- and pentabrominated diphenyl ether technical mixtures. *Applied and Environmental Microbiology*, 79(4), 1110–7.

Dunnivant, F. M., & Anders, E. (2006). A Basic Introduction to Pollutant Fate and

Transport: An Integrated Approach with Chemistry, Modeling, Risk Assessment, and Environmental Legislation. New Jersey: A John Wiley and Sons, Inc.

- Endicott, D. D., Richardson, W. L., & Rossmann, R. (2006). Part 1 Introduction Chapter 2 . PCBs Modeling Overview. In R. Rossmann (Ed.), *Results of the Lake Michigan Mass Balance Project: Polychlorinated Biphenyls Modeling Report* (pp. 16–25). Grosse Ile, Michigan.EPA-600/R-04/167: USEPA. Retrieved from http://www.epa.gov/med/grosseile_site/LMMBP/lmmbp-pcb-report/lmmbppcb-report.pdf
- Fagervold, S. K., May, H. D., & Sowers, K. R. (2007). Microbial reductive dechlorination of aroclor 1260 in Baltimore harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. *Applied and Environmental Microbiology*, 73(9), 3009–18. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1892865&tool=pmc entrez&rendertype=abstract
- Fagervold, S. K., Watts, J. E. M., May, H. D., & Sowers, K. R. (2005). Sequential Reductive Dechlorination of meta-Chlorinated Polychlorinated Biphenyl Congeners in Sediment Microcosms by Two Different Chloroflexi Phylotypes. *Applied and Environmental Microbiology*, 71(12), 8085–8090.
- Fagervold, S. K., Watts, J. E. M., May, H. D., & Sowers, K. R. (2011). Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms. *Water Research*, 45, 3899–3907.
- Farley, K. J., Wands, J. R., Damiani, D. R., & Cooney, T. (1999). Transport, fate and bioaccumulation of PCBs in the Lower Hudson River. Retrieved December 19, 2013, from http://rucore.libraries.rutgers.edu/rutgers-lib/35226/
- Fennell, D. E., Nijenhuis, I., Wilson, S. F., Zinder, S. H., & Haggblom, M. M. (2004). Strain 195 Reductively Dechlorinates Diverse Chlorinated Aromatic Pollutants. *Environmental Science & Technology*, 38, 2075–2081.
- Frame, G. M., Cochran, J. W., & Bøwadt, S. S. (1996). Complete PCB congener distributions for 17 aroclor mixtures determined by 3 HRGC systems optimized
for comprehensive, quantitative, congener-specific analysis. *Journal of High Resolution Chromatography*, 19(12), 657–668.

- Gerecke, A. C., Hartmann, P. C., Heeb, N. V, Kohler, H.-P. E., Giger, W., Schmid, P.,
 ... Kohler, M. (2005). Anaerobic degradation of decabromodiphenyl ether. *Environmental Science & Technology*, 39(4), 1078–83.
- Gouin, T., & Harner, T. (2003). Modelling the environmental fate of the polybrominated diphenyl ethers. *Environment International*, 29(6), 717–724.
- Gouin, T., Mackay, D., Webster, E., & Wania, F. (2000). Screening chemicals for persistence in the environment. *Environmental Science & Technology*, 34(5), 881–884.
- Greene, R. W., Di Toro, D. M., Farley, K. J., Phillips, K. L., & Tomey, C. (2013). Modeling water column partitioning of polychlorinated biphenyls to natural organic matter and black carbon. *Environ. Sci. Technol.*, 47, 6408–6414.
- Hale, R. C., Alaee, M., Manchester-Neesvig, J. B., Stapleton, H. M., & Ikonomou, M. G. (2003). Polybrominated diphenyl ether flame retardants in the North American environment. *Environment International*, 29, 771–779.
- He, J., Robrock, K. R., & Alvarez-Cohen, L. (2006). Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). *Environmental Science and Technology*, 40(14), 4429–4434.
- Henry, T. R., & DeVito, M. J. (2003). Non-Dioxin-Like PCBs: Effects and Consideration in Ecological Risk Assessment. Retrieved January 23, 2015, from http://www.epa.gov/oswer/riskassessment/pdf/1340-erasc-003.pdf
- House, W. A., Denison, F. H., Warwick, M. S., & Zhmud, B. V. (2000). Dissolution of silica and the development of concentration profiles in freshwater sediments. *Applied Geochemistry*, 15(4), 425–438.
- Huang, H. W., Chang, B. V., & Lee, C. C. (2014). Reductive debromination of decabromodiphenyl ether by anaerobic microbes from river sediment. *International Biodeterioration and Biodegradation*, 87, 60–65.

- Hughes, A. S., Vanbriesen, J. M., & Small, M. J. (2010). Identification of structural properties associated with polychlorinated biphenyl dechlorination processes. *Environmental Science & Technology*, 44, 2842–2848.
- Hughes, A. S., VanBriesen, J. M., & Small, M. J. (2015). Impacts of PCB analytical interpretation uncertainties on dechlorination assessment and remedial decisions. *Chemosphere*, 133, 61–67. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0045653515002969
- Imamoglu, I. (2001). PCB Sources and Degredation in River Sediments Determined by Receptor Modeling. PhD. Dissertation, Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Wisconsin, Milwaukee.
- Imamoglu, I., Li, K., & Christensen, E. R. (2002). Modeling polychlorinated biphenyl congener patterns and dechlorination in dated sediments from the Ashtabula River, Ohio, USA. *Environmental Toxicology and Chemistry*, 21(11), 2283– 2291.
- Imamoglu, I., Li, K., Christensen, E. R., & McMullin, J. K. (2004). Sources and dechlorination of polychlorinated biphenyl congeners in the sediments of Fox River, Wisconsin. *Environmental Science & Technology*, 38(9), 2574–83. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15180053
- Johnson, G. W., Quensen, J. F., Chiarenzelli, J. R., & Hamilton, C. (2005). Polychlorinated Biphenyls. In R. D. Morrison & B. L. Murphy (Eds.), *Environmental Forensics: Contaminant Specific Guide*.
- Karcher, S. C. (2005). *Statistical Method For Polychlorinated Biphenyl* Dechlorination Modeling and Pathway Analysis. Carnegie Mellon University.
- Karcher, S. C., Small, M. J., & VanBriesen, J. M. (2004). Statistical method to evaluate the occurrence of PCB transformations in river sediments with application to Hudson River data. *Environmental Science & Technology*, 38(24), 6760–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15669337
- Karcher, S. C., Vanbriesen, J. M., & Small, M. J. (2007). Numerical Method to Elucidate Likely Target Positions Polychlorinated Biphenyl Dechlorination, 260

(March), 278–286.

- La Guardia, M. J., Hale, R. C., & Harvey, E. (2006). Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environmental Science and Technology, 40(20), 6247-6254.
- Lassen, C., Soren, L., & Andersen, L. I. (1999). Brominated Flame Retardants -Substance Flow Analysis and As- sessment of Alternatives. Environmental Project Nr. 494 1999. Retrieved from http://www.indymedia.org/media/2009/07/926988.pdf
- Li, A., Rockne, K. J., Sturchio, N. C., Mills, W. J., Song, W., Ford, J. C., & Buckley, D. R. (2006). Chronology of pbde air deposition in the great lakes from sedimentary records. Great Lake Atmospheric Deposition Program Office Air and Radiation Division USEPA Region V. Chicago, IL. Retrieved from http://anli.people.uic.edu/Final2.pdf
- Lick, W. (2009). Sediment and Contaminant Tansport in Surface Waters. London: Taylor & Francis Group.
- LimnoTech. (2007). PCB TMDL Model for the Potomac River Estuary. Final Report on Hydrodynamic/Salinity and PCB Transport and Fate Models (Vol. EPA Contra). Duxbury, MA.
- Locat, J., Therrien, R., & Dueri, S. (2003). Simulation of the migration of dissolved contaminants through a subaqueous capping layer: model development and application for As migration. Journal of Environmental Engineering and Science, 2(3), 213-226.
- Lombard, N. J., Ghosh, U., Kjellerup, B. V., & Sowers, K. R. (2014). Kinetics and threshold level of 2,3,4,5-tetrachlorobiphenyl dechlorination by an organohalide respiring bacterium. Environmental Science and Technology, 48(8), 4353–4360.
- Mackay, D., Shiu, W. Y., Ma, K., & Lee, S. C. (2006). Properties and Environmental Fate Second Edition Introduction and Hydrocarbons. Chemphyschem A European Journal Of Chemical Physics And Physical Chemistry (Vol. III).

Retrieved from http://www.crcnetbase.com/doi/book/10.1201/9781420044393

- Martinez, W. L., Martinez, A. R., & Crc, H. (2002). Computational Statistics Handbook with Matlab. *New York*, 65(1), 616.
- May, H. D., Cutter, L. a, Miller, G. S., Milliken, C. E., Watts, J. E. M., & Sowers, K.
 R. (2006). Stimulatory and inhibitory effects of organohalides on the dehalogenating activities of PCB-dechlorinating bacterium o-17. *Environmental Science* & *Technology*, 40(18), 5704–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17007129
- Meysman, F. J. R., Middelburg, J. J., Herman, P. M. J., & Heip, C. H. R. (2003). Reactive transport in surface sediments. I. Model complexity and software quality. *Computers & Geosciences*, 29(3), 291–300.
- Mucci, A., Boudreau, B., & Guignard, C. (2003). Diagenetic mobility of trace elements in sediments covered by a flash flood deposit: Mn, Fe and As. *Applied Geochemistry*, 18(7), 1011–1026.
- NRCC. (2002). Bioavailability of Contaminants in Soils and Sediments. In Processes, Tools, and Applications by National Research Council Committee. Washington: National Academy Press.
- Oram, J., Davis, J. A., & Leatherbarrow, J. E. (2008). A Model of Long-Term PCB Fate in San Francisco Bay: Model Formulation, Calibration, and Uncertainty Analysis (v2.1). RMP Contribution NN, San Francisco Estuary Institute, Oakland, CA. Retrieved from http://legacy.sfei.org/rmp/contam_fate_meetings/1-15-08/04 - Forecast_Document_010808_v3.pdf
- Oram, J., McKee, L. J., Werme, C. E., Connor, M. S., Oros, D. R., Grace, R., & Rodigari, F. (2008). A mass budget of polybrominated diphenyl ethers in San Francisco Bay, CA. *Environment International*, 34, 1137–1147.
- Palermo, M. R., Maynord, S., Miller, J., & Reible, D. D. (1998). Guidance for in-situ subaqueous capping of contaminated sediments. EPA905-B96-004. Chicago, IL.
- Parsons, J., Segarra, M. J. B., Cornelissen, G., Gustafsson, O., Grotenhuis, T., Harms,

H., Etxeberria, O. S. (2007). Characterisation of contaminants in sedimentseffects of bioavailability on impact. In *Sustainable Management of Sediment Resorces: Sediment Quality and Impact Assessment of Pollutants* (pp. 35–60). Amsterdam: Elsevier.

- Petrovic, M., Eljarrat, E., Diez, S., Kowalewska, G., & Barcelo, D. (2007). Sustainable Management of Sediment Resources: Sediment Quality and Impact Assessment of Pollutants. Amsterdam, The Netherlands: Elsevier.
- POPs. (2008). The 12 POPs under the Stockholm Convention. Retrieved May 24, 2015, from http://www.pops.int/%5C/documents/pops/default.htm
- Qi, Y. (2003). PCB Volatilization from Sediments. University of Cincinnati.
- Quensen III J., F., & Tiedje, J. M. (1997). Evaluation of PCB dechlorination in sediments. In D. Sheehan (Ed.), *Methods in Biotechnology* (pp. 257–273). Totawa, NJ: Humana Press Inc.
- Ramaswami, A., Milford, J. B., & Small, M. J. (2005). Overview of Numerical Methods in Environmental Engineering. In *Integrated Environmental Modeling:Pollutant Transport, Fate, and Risk in the Environment* (pp. 206–238). Hoboken, New Jersey: John Wiley & Sons, Inc.
- Robrock, K. R., Korytár, P., & Alvarez-Cohen, L. (2008). Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers. *Environmental Science & Technology*, 42(8), 2845–2852.
- Rodenburg, L. a., Meng, Q., Yee, D., & Greenfield, B. K. (2014). Evidence for photochemical and microbial debromination of polybrominated diphenyl ether flame retardants in San Francisco Bay sediment. *Chemosphere*, 106, 36–43.
- Rossmann, R. (2006). Results of the Lake Michigan Mass Balance Project: Polychlorinated Biphenyls Modeling Report. Michigan. Retrieved from http://www.epa.gov/med/grosseile_site/LMMBP/lmmbp-pcb-report/lmmbppcb-report.pdf

Rowe, M. D. (2009). Modeling contaminant behavior in lake superior: a comparison

of pcb.

- Ruiz, C. E., Aziz, N. M., & Schroeder, P. R. (2001). RECOVERY: A contaminated sediment-water interaction model. *Environmental Modeling and Assessment*, 6, 151–158.
- Russell, K. T., Rhea, J. R., Ku, W., Glaser, D., & Cepko, R. P. (2006). Use of Mathematical Models to Evaluate Management Options for Reducing PCB Bioaccumulation by Fish in Two Streams at The Neal's Landfill Site, Bloomington. *Water Environment Federation, WEFTEC*, 41(50), 3875–3889.
- Schafer, D., Kober, R., & Dahmke, A. (2003). Competing TCE and cis-DCE degradation kinetics by zero-valent iron - Experimental results and numerical simulation. *Journal of Contaminant Hydrology*, 65, 183–202.
- Schneider, A. R. (2005). *PCB Desorption From Resuspended Hudson River Sediment*. *Maryland, USA*. University of Maryland, College Park.
- Schnoor, J. L. (1996). Environmental Modeling: Fate and Transport of Pollutants in Water, Air and Soil. New York: John Wiley & Sons, Inc.
- SFEI. (2015). The Regional Monitoring Program for Water Quality in the San Francisco Bay (RMP) by the San Francisco Estuary Institute. Retrieved from http://www.sfei.org/rmp
- Shen, J. (2011). James River PCB TMDL Study: Numerical Modeling Approach.RetrievedNovember20,2013,fromwww.deq.state.va.us/Portals/0/DEQ/Water/TMDL/PCB/jmspcbvims427.pdf
- Shen, J., Hong, B., Schugam, L., Zhao, Y., & White, J. (2012). Modeling of polychlorinated biphenyls (PCBs) in the Baltimore Harbor. *Ecological Modelling*, 242, 54–68. Retrieved from http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=G eneralSearch&qid=3&SID=3FQVwWLgunI8MxiDqVJ&page=1&doc=2
- Siebielska, I., & Sidełko, R. (2015). Polychlorinated biphenyl concentration changes in sewage sludge and organic municipal waste mixtures during composting and

anaerobic digestion. *Chemosphere*, *126*, 88–95. Retrieved from http://www.sciencedirect.com/science/article/pii/S0045653514014799

- Sinkkonen, S., & Paasivirta, J. (2000). Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. *Chemosphere*, *40*(9-11), 943–949.
- Song, M., Luo, C., Li, F., Jiang, L., Wang, Y., Zhang, D., & Zhang, G. (2015).
 Anaerobic degradation of Polychlorinated Biphenyls (PCBs) and Polychlorinated
 Biphenyls Ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil. *Science of The Total Environment*, 502, 426–433.
 Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0048969714013679
- Sowers, K. R., & May, H. D. (2013). In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet? *Current Opinion in Biotechnology*, 24, 482–488. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0958166912001590
- Suk, N. S., & Fikslin, T. J. (2011). Water quality model for carbon and PCB (polychlorinated biphenyl) homologs for Zones 2 - 6 of the Delaware River. Delaware River Basin Commission. West Trenton, NJ.
- Sutton, R., Sedlak, M. D., Yee, D., Davis, J. a., Crane, D., Grace, R., & Arsem, N. (2015). Declines in Polybrominated Diphenyl Ether Contamination of San Francisco Bay following Production Phase-Outs and Bans. *Environmental Science & Technology*, 49(2), 777–784.
- Sutton, R., Sedlak, M., & Davis, J. (2014). Polybrominated Diphenyl Ethers (PBDEs) in San Francisco Bay: A Summary of Occurrence and Trends. RMP Contribution No. 713. San Francisco Estuary Institute, Richmond, California. 62pp.
- Tandlich, R. (2003). Microbial PCB Degradation and Binding to soil components. PhD. Dissertation, Agriculture and Applied Science, North Dakota State University, Fargo, North Dakota.
- Thomann, R. V., & Di Toro, D. M. (1984). *Physico-Chemical Model of Toxic* Substances in the Great Lakes. *Project Summary*. EPA-600/S3-84-050.

- Tokarz, J. A., Ahn, M. Y., Leng, J., Filley, T. R., & Nies, L. (2008). Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system. Environmental Science and Technology, 42(4), 1157–1164.
- Travis, B. J., & Rosenberg, N. D. (1997). Modeling in situ bioremediation of TCE at Savannah River: Effects of product toxicity and microbial interactions on TCE degradation. Environmental Science and Technology, 31(11), 3093–3102.
- UNEP. (1999). Guidelines for the Identification of PCBs and Materials Containing PCBs. First Issue. Retrieved from http://chm.pops.int/Implementation/PCBs/DocumentsPublications/tabid/665/De fault.aspx
- USEPA. (2010). An Exposure Assessment of Polybrominated Diphenyl Ethers.National Center for Environmental Assessment, Washington, DC; EPA/600/R-08/086F. Retrieved July 3, 2015, from http://www.epa.gov/ncea
- USEPA. (2013). Use of Dioxin TEFs in Calculating Dioxin TEQs at CERCLA and RCRA Sites. Retrieved September 29, 2015, from http://www.epa.gov/superfund/health/contaminants/dioxin/pdfs/Use_of_Dioxin _TEFs_in_Calculating_Dioxin_TEQs_at_CERCLA_and_RCRA_Sites.pdf
- USEPA. (2015). U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, USA. Personal Communication. Retrieved from http://www3.epa.gov/greatlakes/lmmb/results-pubs.html
- Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223-241.
- van der Lee, J., De Windt, L., Lagneau, V., & Goblet, P. (2003). Module-oriented modeling of reactive transport with HYTEC. Computers and Geosciences, 29(3), 265-275.
- Wei, H., Zou, Y., Li, A., Christensen, E. R., & Rockne, K. J. (2013). Photolytic debromination pathway of polybrominated diphenyl ethers in hexane by sunlight.

Environmental Pollution, 174, 194-200.

- Weston solutions. (2004). Model Calibration : Modeling Study of PCB Contamination in the Housatonic River. Appendix A Watershed Model Calibration. DCN.GE-122304-ACMG. Pittsfield, Massachusetts.
- WHO. (2003). Concise International Chemical Assessment Document 53: Hydrogen sulfide: Human health aspects. Retrieved December 23, 2013, from http://www.who.int/ipcs/publications/cicad/en/cicad55.pdf
- Wu, Q. Z., Sowers, K. R., & May, H. D. (2000). Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines, in a defined, sediment-free medium. *Applied and Environmental Microbiology*, 66(1), 49–53.
- Wu, Q. Z., Watts, J. E. M., Sowers, K. R., & May, H. D. (2002). Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. *Applied and Environmental Microbiology*, 68(2), 807–812. Retrieved from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id= 11823222&retmode=ref&cmd=prlinks
- Xu, Z., Wu, Y., & Yu, F. (2012). A Three-Dimensional Flow and Transport Modeling of an Aquifer Contaminated by Perchloroethylene Subject to Multi-PRB Remediation. *Transport in Porous Media*, 91, 319–337.
- Yee, D., Bemis, B., Hammond, D., Heim, W., Jaffe, B., Rattonetti, A., & van Bergen, S. (2011). Age estimates and pollutant concentrations of sediment cores from San Francisco Bay and Wetlands. A Technical Report of the Regional Monitoring Program: SFEI Contribution 652. San Francisco Estuary Institute, Oakland, CA. 45pp + Appendices A, B and C.
- Yu, S., & Semprini, L. (2004). Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. *Biotechnology and Bioengineering*, 88(4), 451–64. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15384053

Zanaroli, G., Balloi, A., Negroni, A., Borruso, L., Daffonchio, D., & Fava, F. (2012). 267 A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions. *Journal of Hazardous Materials*, 209-210, 449–457.

- Zanaroli, G., Balloi, A., Negroni, A., Daffonchio, D., Young, L. Y., & Fava, F. (2010). Characterization of the microbial community from the marine sediment of the Venice lagoon capable of reductive dechlorination of coplanar polychlorinated biphenyls (PCBs). *Journal of Hazardous Materials*, 178(1-3), 417–426.
- Zhang, X. (2006). Part 4 LM2 Toxic. Chapter 3. Model Description. In R. Rossmann (Ed.), (pp. 223–245). Grosse Ile, Michigan.EPA-600/R-04/167: USEPA. Retrieved from http://www.epa.gov/med/grosseile_site/LMMBP/lmmbp-pcb-report/lmmbp-pcb-report.pdf
- Zhang, X., Rygwelski, K. R., & Rossmann, R. (2009). The Lake Michigan contaminant transport and fate model, LM2-toxic: Development, overview, and application. *Journal of Great Lakes Research*, 35(1), 128–136. Retrieved from http://resolver.scholarsportal.info/resolve/03801330/v35i0001/128_tlmctamldoa a
- Zhang, X., Rygwelski, K. R., Rossmann, R., Pauer, J. J., & Kreis, R. G. (2008). Model construct and calibration of an integrated water quality model (LM2-Toxic) for the Lake Michigan Mass Balance Project. *Ecological Modelling*, 219, 92–106.
- Zou, Y., Christensen, E. R., Zheng, W., Wei, H., & Li, A. (2014). Estimating stepwise debromination pathways of polybrominated diphenyl ethers with an analogue Markov Chain Monte Carlo algorithm. *Chemosphere*, 114, 187–194. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0045653514005827

APPENDIX A

LIST OF CONGENERS

Table A.1 List of PCB congeners

#	Structure	#	Structure	#	Structure	#	Structure	#	Structure
Mor	поСВ	41	234-2	84	236-23	Hex	aCB	He	ptaCB
1	2-	42	23-24	85	234-24	128	234-234	170	2345-234
2	3-	43	235-2	86	2345-2	129	2345-23	171	2346-234
3	4-	44	23-25	87	234-25	130	234-235	172	2345-235
Di	СВ	45	236-2	88	2346-2	131	2346-23	173	23456-23
4	2-2	46	23-26	89	234-26	132	234-236	174	2345-236
5	23-	47	24-24	90	235-24	133	235-235	175	2346-235
6	2-3	48	245-2	91	236-24	134	2356-23	176	2346-236
7	24-	49	24-25	92	235-25	135	235-236	177	2356-234
8	2-4	50	246-2	93	2356-2	136	236-236	178	2356-235
9	25-	51	24-26	94	235-26	137	2345-24	179	2356-236
10	26-	52	25-25	95	236-25	138	234-245	180	2345-245
11	3-3	53	25-26	96	236-26	139	2346-24	181	23456-24
12	34-	54	26-26	97	245-23	140	234-246	182	2345-246
13	3-4	55	234-3	98	246-23	141	2345-25	183	2346-245
14	35-	56	23-34	99	245-24	142	23456-2	184	2346-246
15	4-4	57	235-3	100	246-24	143	2345-26	185	23456-25
Tri	iСВ	58	23-35	101	245-25	144	2346-25	186	23456-26
16	23-2	59	236-3	102	245-26	145	2346-26	187	2356-245
17	24-2	60	234-4	103	246-25	146	235-245	188	2356-246
18	25-2	61	2345-	104	246-26	147	2356-24	189	2345-345
19	26-2	62	2346-	105	234-34	148	235-246	190	23456-34
20	23-3	63	235-4	106	2345-3	149	236-245	191	2346-345
21	234-	64	236-4	107	234-35	150	236-246	192	23456-35
22	23-4	65	2356-	108	2346-3	151	2356-25	193	2356-345
23	235-	66	24-34	109	235-34	152	2356-26	0	ctaCB
24	236-	67	245-3	110	236-34	153	245-245	194	2345-2345
25	24-3	68	24-35	111	235-35	154	245-246	195	23456-234
26	25-3	69	246-3	112	2356-3	155	246-246	196	2345-2346
27	26-3	70	25-34	113	236-35	156	2345-34	197	2346-2346
28	24-4	71	26-34	114	2345-4	157	234-345	198	23456-235
29	245-	72	25-35	115	2346-4	158	2346-34	199	2345-2356
30	246-	73	26-35	116	23456-	159	2345-35	200	23456-236
31	25-4	74	245-4	117	2356-4	160	23456-3	201	2346-2356
32	26-4	75	246-4	118	245-34	161	2346-35	202	2356-2356
33	34-2	76	345-2	119	246-34	162	235-345	203	23456-245
34	35-2	77	34-34	120	245-35	163	2356-34	204	23456-246
35	34-3	78	345-3	121	246-35	164	236-345	205	23456-345
36	35-3	79	34-35	122	345-23	165	2356-35	No	onaCB
37	34-4	80	35-35	123	345-24	166	23456-4	206	23456-2345
38	345-	81	345-4	124	345-25	167	245-345	207	23456-2346
39	35-4	Pen	taCB	125	345-26	168	246-345	208	23456-2356
Tet	raCB	82	234-23	126	345-34	169	345-345	De	ecaCB
40	23-23	83	235-23	127	345-35			209	23456-23456

BDE congener number	Chemical formula	BDE congener number	Chemical formula
I. Mono	BDE	BDE 118	2,3',4,4',5-BDE
BDE 3	4-BDE	BDE 119	2,3',4,4'6-BDE
II. DiBI	DE	BDE 126	3,3',4,4',5-BDE
BDE 7	2,4-BDE	BDE 138	2,2',3,4,4',5'-BDE
BDE 8	2,4'-BDE	BDE 140	2,2',3,4,4',6-BDE
BDE 11	3,3'-BDE	VI. H	lexaBDE
BDE 12	2,6-BDE	BDE 153	2,2',4,4',5,5'-BDE
BDE 13	3,4'-BDE	BDE 154	2,2',4,4',5,6'-BDE
BDE 15	4,4'-BDE	BDE 155	2,2',4,4',6,6'-BDE
III. TriB	DE	BDE 166	2,3,4,4',5,6-BDE
BDE 17	2,2',4-BDE	VII. H	leptaBDE
BDE 25	2,3',4-BDE	BDE 181	2,2',3,4,4',5,6-BDE
BDE 28	2,4,4'-BDE	BDE 183	2,2',3,4,4',5',6-BDE
BDE 30	2,4,6-BDE	BDE 190	2,3,3',4,4',5,6-BDE
BDE 32	2,4',6-BDE	VIII.	OctaBDE
BDE 33	2',3,4-BDE	BDE 196	2,2',3,3',4,4',5',6-BDE
BDE 35	3,3',4-BDE	BDE 197	2,2',3,3',4,4',6,6'-BDE
BDE 37	3,4,4'-BDE	BDE 203	2,2',3,4,4',5,5',6-BDE
IV. Tetra	BDE	IX. N	onaBDE
BDE 47	2,2',4,4'-BDE	BDE 206	2,2',3,3',4,4',5,5',6-BDE
BDE 49	2,2',4,5'-BDE	BDE 207	2,2',3,3',4,4',5,6,6'-BDE
BDE 66	2,3',4,4'-BDE	BDE 208	2,2',3,3',4,5,5',6,6'-BDE
BDE 71	2,3',4',6-BDE	X. D	ecaBDE
BDE 75	2,4,4',6-BDE	BDE 209	2,2',3,3',4,4',5,5',6,6'-BDE
BDE 77	3,3',4,4'-BDE		
V. Penta	BDE		
BDE 85	2,2',3,4,4'-BDE		
BDE 99	2,2',4,4',5-BDE		
BDE 100	2,2',4,4',6-BDE		
BDE 105	2,3,3',4,4'-BDE		
BDE 116	2,3,4,5,6-BDE		

Table A.2 List of most commonly studied PBDE congeners (USEPA, 2010)

APPENDIX B

LIST AND NAMES OF MOST COMMONLY STUDIED PBDE CONGENERS

Table B.1 Technical flame-retardant (Penta- Octa- and Deca-PBDEs) compositions (%, w/w) (La Guardia et al., 2006)

			F	Penta	a-PBD	E	Octa-	PBDE	Deca-PBDE
IUPAC	Compound	DE-	71(1)	Bror 70-5	nkal DE(2)	Bromkal 70-5DE(3)	Bromkal 79- 8DE(3)	Bromkal 79- 8DE(4)	non- specific formulatio n (5,6,7)
BDE-17	2,2',4-tri-BDE		0.04		0.022	t	nd	na	nr
BDE-28	2,4,4'-tri-BDE		0.37		0.11	t	nd	na	nr
BDE-42	2,2',3,4'-tetra-BDE		0.02	na		nd	nd	na	nr
BDE-47	2,2',4,4'-tetra-BDE		33		37	м	nd	na	nr
BDE-48	2,2',4,5-tetra-BDE		0.05	na		nd	nd	na	nr
BDE-49	2,2',4,5'-tetra-BDE		0.77	na		0	nd	na	nr
BDE-51	2,2',4,6'-tetra-BDE		0.02	nd		nd	nd	na	nr
BDE-66	2,3',4,4'-tetra-BDE		1.02		0.22	t	nd	na	nr
BDE-74	2,4,4',4',5-tetra-BDE	na		na		0	nd	na	nr
BDE-85	2,2',3',3',4,4'-penta-BDE		3.18		1.6	m	nd	na	nr
BDE-91	2,2',3,3,4',6–penta-BDE		0.07	na		na	na	na	nr
BDE-97	2,2',3',3',4,5–penta-BDE	na		na		o*	nd	na	nr
BDE-99	2,2',4,4',4,4',5–penta-BDE		42.5		35	м	nd	na	nr
BDE-100	2,2',4,4',4,4',6–penta-BDE		10.9		6.8	m	nd	na	nr
BDE-101	2,2',4,5,5'4,5,5'-penta-BDE	na		na		0	nd	na	nr
BDE-102	2,2',4,5,6'4,5,6'-penta-BDE		0.13	na		nd	nd	na	nr
BDE-118	2,3',4,4',4,4',5–penta-BDE	na		na		o*	nd	na	nr
BDE-119	2,3',4,4',4,4',6–penta-BDE		0.002	nd		nd	nd	na	nr
BDE-138	2,2',3,4,4',3,4,4',5'-hexa-BDE		0.24		0.41	t	nd	na	nr
BDE-139	2,2',3,4,4',3,4,4',6-hexa-BDE		0.16	na		0	nd	na	nr
BDE-140	2,2',3,4,4',3,4,4',6'-hexa-BDE	nd		na		0	nd	na	nr
BDE-153	2,2',4,4',4,4',5,5'-hexa-BDE		3.75		3.9	m	nd	na	nr
BDE-154	2,2',4,4',4,4',5,6'-hexa-BDE		3		2.5	m	nd	na	nr
BDE-155	2,2',4,4',4,4',6,6'-hexa-BDE		0.32	na		0	nd	na	nr
BDE-156	2,3,3',3',4,4',5-hexa-BDE	nd		na		nd	nd	na	nr
BDE-173	2,2',3,3',4,3,3',4,5,6-hepta-BDE	na		na		nd	o*	na	nr
BDE-181	2,2',3,4,4',3,4,4',5,6-hepta-BDE	na		na		nd	0	na	nr
BDE-183	2,2',3,4,4',3,4,4',5',6-hepta-BDE		0.02	nd		t	м	d	nr
BDE-190	2,3,3',4,4',4,4',5,6-hepta-BDE	na		nd		nd	0	na	nr
BDE-191	2,3,3',4,4',4,4',5',6-hepta-BDE	na		na		nd	o*	na	nr
BDE-196	2,2',3,3',3,3',4,4',5,6'-octa-BDE	na		na		na	m	d	nr
BDE-197	2,2',3,3',3,3',4,4',6,6'-octa-BDE	na		na		na	м	d	nr
BDE-203	2,2',3,4,4',3,4,4',5,5',6-octa-BDE	na		na		nd	m	d	nr
BDE-204	2,2',3,4,4',3,4,4',5,6,6'-octa-BDE	na		na		nd	t	d**	nr
BDE-205	2,3,3',4,4',4,4',5,5',6-octa-BDE	na		na		nd	0	na	nr
BDE-206	2,2',3,3',3,3',4,4',5,5',6-nona-BDE	na		na		nd	m	d	
BDE-207	2,2',3,3',3,3',4,4'5,6,6'-nona-BDE	na		na		nd	м	d	≤3***
BDE-208	2,2',3,3',3,3',4,5,5',6,6'-nona-BDE	na		na		nd	m	d	
BDE-209	deca-BDEna	na		na		nd	м	d	≥97

na=not analyzed, nd=not detected, nr=not reported, d=detected, (M=major, m=minor, t=trace and o=other congeners) *=co-elude, **=identified as

BDE-204 in reference Korytár, et al. 2005. ***=includes trace amounts of octa-PBDEs

APPENDIX C

MASS BALANCE EQUATIONS AND MECHANISIMS OF THE MODELS REVIEWED IN THE LITERATURE

Items	Explanation
	Mass Balance Equations for Sediment Layer
Mass Balance for mixed sediment layer	$V_{m}\frac{dc_{m}}{dt} = -k_{m}V_{m}c_{m} + v_{s}A_{w}F_{pw}c_{w} - v_{r}A_{m}c_{m} - v_{b}A_{m}c_{m}$ $-v_{d}A_{m}(F_{dw}c_{w} - F_{dp}c_{m}) + v_{d}A_{m}(F_{dp}c_{s}(0) - F_{dp}c_{m}) \qquad *$
Mass Balance for deep sediment	$\frac{\partial c_s}{\partial t} = \varphi F_{dp} D_s \frac{\partial^2 c_s}{\partial z^2} - v_b \frac{\partial c_s}{\partial z}k_s c_s = F_{dps} D_s \frac{\partial^2 c_s}{\partial z^2} - v_b \frac{\partial c_s}{\partial z}k_s c_s$
	Media, Dimension and Boundaries
Media	Water, mixed, and deep sediments in lakes, embankments, harbors, estuaries, and ocean parcels as long as the assumption is of a completely mixed water body
Dimension	ID
Boundary	IC: at t=0, $C_s=C_{so}$ ($z_m < z < L$) and IC: at t=0, $c_s=0$ (L< $z < \infty$) BC 1: at $z=z_m$ J=J _m and BC 2: at $z=\infty$ $\exists c_s/\exists z=0$
	Numeric Solution
Numeric Solutions	Adaptive-step-size, Runge Kutta 4 th for ODEs, Crank Nicholson for PDEs
	Transport Processes and Reactions
Transport	Burial, porewater diffusion, resuspension, settling and bioturbation
Reaction	Sorption (Kd) (linear reversible sorption), degradation
	Parameter Estimation
Partitioning-linear sorption: Particulate fraction of contaminant in the water	$F_{pw} = \frac{K_{dw}S_W}{1+K_{dw}S_W} = \frac{Mass of A (Particulate form)}{Mass of A (Dissolved form) + Mass of A (Particulate form)}$
Partitioning-linear sorption: Dissolved fraction of contaminant in the water	$F_{dw} = 1 - F_{pw} = \frac{1}{1 + K_{dw}S_w} = \frac{Mass \text{ of } A \text{ (Dissolved form)}}{Mass \text{ of } A \text{ (Dissolved form)} + Mass \text{ of } A \text{ (Particulate form)}}$
Partitioning-linear sorption: Dissolved fraction of contaminant in the pore water	$F_{dp} = \frac{1}{\varphi + \kappa_{ds(1-\varphi)p}} = \frac{\text{Mass of A (Dissolved form)}}{\text{Mass of A (Dissolved form)} + \text{Mass of A (Particulate form)}}$
Partitioning coefficient	$K_d = 0.617 f_{oc} K_{ow}$
Mass transfer coefficient for diffusive sediment-water exchange	$v_{d} = \frac{\varphi D_s}{z'}$
Molecular Diffusivity	$D_s = m \varphi^2$
Solid mass balance to predict one of velocities	$0 = v_s A_w s_w - (v_r + v_b) A_m (1 - \varphi) \rho_p$
Biodegradation	First order decay

*:
$$v_d A_m (F_{dw} c_w - F_{dpm} c_m / \varphi_m) + v_d A_m (F_{dps} c_s(0) / \varphi_s - F_{dpm} c_m / \varphi_m)$$

Table C.2 TOXIWASP Model (Ambrose et al., 1983)

Items	Explanation
	Mass Balance Equations for Sediment Layer
Mass Balance for diffusion/dispersion and pore water transport of dissolved chemical between bed and overlying water column	$\frac{\partial c_p}{\partial t} = \frac{\partial}{\partial y} \left(D^b \frac{\partial c_p}{\partial y} \right) - \frac{\partial (u_p c_p)}{\partial y} - R_s - K$
Mass Balance for sediment bound transport (settling and resuspension) of particulate chemical between bed and overlying water column	$\frac{\partial c_b}{\partial t} = \frac{\partial}{\partial y} \left(D^{bs} \frac{\partial c_b}{\partial y} \right) - \frac{w_s c_b}{L_s} + R_s - K$
Sediment Mass balance	$\frac{\partial c_2}{\partial t} = u \frac{\partial c_2}{\partial x} + \frac{\partial}{\partial x} \left(E \frac{\partial c_2}{\partial x} \right) + \frac{w_2}{V} + S_2$
Deposition-Scour-Pore water diffusion- Direct Sorption Exchange with Bed Sediment-Percolation (+Infiltration)- Degradation	$V_{4} \frac{dc_{1,4}}{dt} = \frac{w_{d,3}c_{2,3}}{L_{W,3}} \frac{c_{1,3}\alpha_{2,3}}{c_{2,3}} - \frac{w_{\xi,4}c_{2,4}}{L_{b,4}} \frac{c_{1,4}\alpha_{2,4}}{c_{2,4}} - D_{3-4}^{b}A_{3-4} \left(\frac{c_{1,4}\alpha_{1,4}-c_{1,3}\alpha_{1,3}}{L_{3-4}}\right) - D_{3-4}^{b}A_{3-4}f_{s,4}\frac{c_{2,4}}{\varphi_{4}} \left(\frac{c_{1,4}\alpha_{2,4}}{c_{2,4}} - \frac{c_{1,3}\alpha_{2,3}}{L_{3-4}}\right) - U_{p,4}\left(\frac{c_{1,4}\alpha_{1,4}}{\varphi_{4}} \text{ or } \frac{c_{1,4}\alpha_{1,4}}{\varphi_{4}}\right) - \left[\sum_{k=1}^{3} k_{bac,k}Cbac_{4}\alpha_{1,4}\right]$
	Media, Dimension and Boundaries
Media	Surface water, surface sediment and bed sediment in streams, lakes, reservoirs, estuaries, and coastal waters.
Dimension	1D, 2D or 3D
Boundary	Ambrose et al. (1983), p.59
	Numeric Solution
Numeric Solutions	Explicit backward difference (completely mixed compartmentalized models with finite difference solutions to the set of time variable, ordinary differential equations)
	Transport Processes and Reactions
Transport	Pore water diffusion, burial, erosion, deposition, dispersion, percolation
Reaction	Kinetic degradation/transformation(hydrolysis, biodegradation, oxidation, photolysis and
	volatilization) sorption
Partitioning- sorption: Dissolved fraction of contaminant in the water	Parameter Estimation $C_T = C(\alpha_1 + \alpha_2 + \alpha_3) C_1 = C \alpha_1, C_W = \frac{C\alpha_1}{\phi} \alpha_1 = \frac{1}{1 + \kappa_{p2}(\frac{S}{\phi}) + \kappa_{p3}(\frac{B}{\phi})}$
Partitioning- sorption: Sorbed fraction of contaminant on sediment	$C_2 = C\alpha_2, C_s = \frac{C\alpha_2}{s} \alpha_2 = \frac{1\kappa_{p2}\left(\frac{s}{\phi}\right)}{1 + \kappa_{p2}\left(\frac{s}{\phi}\right) + \kappa_{p3}\left(\frac{B}{\phi}\right)}$
Partitioning- sorption: Sorbed fraction of contaminant onto biological phase	$C_3 = C \alpha_3 \qquad C_{bio} = \frac{C \alpha_3}{B} \qquad \alpha_1 = \frac{\kappa_{p3} \left(\frac{B}{\phi}\right)}{1 + \kappa_{p2} \left(\frac{S}{\phi}\right) + \kappa_{p3} \left(\frac{B}{\phi}\right)}$
Net rate of chemical transfer bw dissolved and sorbed state	$R_s = S(k_s C'_w - k_d C'_s)$
Sorption desorption rate	$KT = \frac{SCALB * D^{b}A_{s}}{BVOL * L_{c}} \times \frac{1 + KPB * S'}{KPB * S'}$
Net exchange of sediment-Erosion	$S_2 = \frac{w_s S_b}{L_b} - \frac{w_d S_w}{L_w}$
Transformation and Biodegradation term	$\frac{dc}{dt} = \sum_{j=1}^{n} K_j C$
Microbial degradation (2 nd order)	$R_{bac} = k_{bac} C_{bac} C$

Items	Explanation
	Mass Balance Equations for Sediment Layer
Mass Balance for sediment layer	$\frac{dC_j}{dt} = \sum_{i}^{n} R_{ij} (C_i - C_j) + S_{sw,j} + S_{b,j} + S_{k,j}$
	Media, Dimension and Boundaries
Media	Lake water and surficial sediment
Dimension	ID
Boundary	No information was given in the reference
	Numeric Solution
Numeric Solutions	(completely mixed compartmentalized models with finite difference solutions to the set of time variable, ordinary differential equations)
	Transport Processes and Reactions
Transport	Pore water diffusion, burial, settling and resuspension
Reaction	Kinetic degradation/transformation(hydrolysis, biodegradation, oxidation, photolysis and volatilization), sorption
Dimension	ID
Boundary	No information was given in the reference
Bulk Dispersion/Diffusion Coefficient	$R_{ij} = \frac{E_{ij}A}{\Delta x_{ij}}$
Vertical exchange coefficient	$v_t = \frac{v_*\left(\frac{a\tau_i}{dt}\right)}{A_t * (T_u - T_i)} \qquad E_t = v_t * z_t$
Resuspension rate of Carbon :PDC in surficial sediment	for water depth >100m $v_r = \alpha(W - W_{cr})$ for water depth <100m $\bar{v}_r = \frac{v_s C_w - v_b C_s - k_{ds} z C_s}{C_s}$
	Parameter Estimation
Phase portioning coefficients and total PCB concentration	$\begin{split} K_{DOC} &= \frac{C_{DOC}}{[DOC]c_d} & K_{POC}' = \frac{C_{POC}}{[POC]c_d} \\ C_T &= C_d + C_{DOC} + C_{POC} & Ct = C_d (1 + K_{DOC} [DOC] + K_{POC}' [POC] \end{split}$
Three phase PCB Partitioning	$\frac{\lfloor POC \rfloor C_{d,\alpha}}{C_{POC}} = \frac{K_{DOC}}{K'_{POC}} [DOC] + \frac{1}{K'_{POC}}$
Two phase PCB Partitioning (bound to POC and dissolved+ bound to DOC)	$K'_{POC} = \frac{C_{POC}}{[POC]C_{d,\alpha}} \qquad C_s^a = C_s^b \rho (1-\varphi) 10^3$
Decay rates for Carbon : BIC, PDC, and DOC (in water and sediment)	$k_{d,solid} = \left(\frac{\hat{k}_{d,solid}C_{solid}}{k_{1/2,solid} + C_{solid}}\right) \theta^{T-20} \qquad k_{ds,solid} = \tilde{k}_{ds,solid} \theta^{T-20}$

Table C.3 LM-2 Model

Items	Explanation
	Mass Balance Equations for Sediment Layer
Mass Balance for surface sediment layer	$Vsed_{i}\frac{dCsed_{i}}{dt} = w_{s}As_{i}m_{i}\Gamma_{i} - w_{u_{i}}As_{i}m_{sed_{i}}\Gamma_{sed_{i}} - w_{b_{i}}As_{i}m_{sed_{i}}\Gamma_{sed_{i}} - k'_{f}As_{i}\left[C_{dis+DOC_{sed_{i}}} - C_{dis+DOC_{i}}\right] - k_{sed_{i}}V_{sed_{i}}C_{dis_{sed_{i}}}$
	Media, Dimension and Boundaries
Media	River water, surface sediment and biota
Dimension	1D
Boundary	No information was given in the reference
	Numeric Solution
Numeric Solutions	No information was given in the reference
	Transport Processes and Reactions
Transport	Burial, porewater diffusion, resuspension, settling
Reaction	Sorption, degradation, bioaccumulation
	Parameter Estimation
Sorption considering phytoplankton	$K_{d} = \frac{a_{phytofoc}\kappa_{oc}}{1 + (\frac{kg}{ku})a_{phytofoc}\kappa_{oc}} f_{oc} = \frac{POC\ conc}{ss\ or\ Sediment\ conc} \qquad a_{DOC}K_{ow}$
the equilibrium partitioning relationships to solids and DOC, and the total mass conservation equation	$\begin{split} K_{d} &= \Gamma / C_{dis} \\ K_{DOC} &= (C_{DOC} / DOC) / C_{dis} \qquad C = \varphi C_{dis} + \varphi C_{DOC} + \Gamma \mathrm{m} \end{split}$
Biodegradation	First order
Media	River water, surface sediment and biota

Table C.4 PMHR Model (Farley et al., 1999)

Items	Explanation
	Mass Balance Equations for Sediment Layer
Mass Balance for water column and benthos	$\begin{split} \frac{W_{j}C_{j})}{\Delta t} &= \sum_{i} \left(-Q_{ij}C_{ij} \right) + \sum_{i} \left(-Q_{pij}C_{ij}f_{Dj} \right) + \sum_{i} \sum_{s} \left(-w_{sij}A_{ij}C_{j}f_{sj} \right) + \sum_{i} \left(R_{ij}\Delta C_{ij} \right) \\ &+ \sum_{i} \left(R_{pij} \left(\frac{f_{Dj}C_{j}}{n_{j}} - \frac{f_{Di}C_{i}}{n_{i}} \right) \right) + \sum_{L} w_{Lj} + \sum_{N} w_{Nj} + \sum_{B} Q_{j0} C_{Bj} + \sum_{k} \sum_{c} (V_{j}S_{kcj}) \end{split}$
	Media, Dimension and Boundaries
Media	Water and sediments in lakes, , estuaries, and rivers
Dimension	1D, 2D or 3D
Boundary	No information was given in the reference
	Numeric Solution
Numeric Solutions	Finite difference solutions: Explicit backward difference
	Transport Processes and Reactions
Transport	Water column and pore water advection, solids transport, Water column and pore water dispersion, point, nonpoint and boundary loads
Reaction	Kinetic transformations
	Parameter Estimation
Pore Water Advection into/out of the bed, Dispersion Exchange between segments and Pore Water Diffusion	$\frac{\partial M_i}{\partial t} = Q_{ij} f_{Dj} / n_i \qquad \frac{\partial M_i}{\partial t} = \frac{E_{ij}(t) A_{ij}}{L_{cij}} (C_j - C_i) \frac{\partial M_i}{\partial t} = \frac{E_{ij}(t) A_{ij} n_{ij}}{\frac{L_{cij}}{n_{ij}}} (f_{Dj} C_j / n_j - f_{Di} C_i / n_i)$
Partitioning fractions	$\begin{aligned} f_{s} &= \frac{C'_{s}M_{s}}{C} = \frac{K_{ps}M'_{s}}{1+K_{pB}B'+\sum_{s}K_{ps}M'_{s}} f_{B} = \frac{C'_{B}B}{C} = \frac{K_{pB}B'}{1+K_{pB}B'+\sum_{s}K_{ps}M'_{s}} \\ f_{D} &= \frac{C'_{w}n}{C} = \frac{1}{1+K_{pB}B'+\sum_{s}K_{ps}M'_{s}} \end{aligned}$
Koc estimation (a0=log0.6 and a1=log1)	$logK_{oc} = a_o + a_1 logK_{ow}$ $K_{pB} = \frac{C_B/n}{B'C_W'} = \frac{C'_B}{C'_W} = 1.0K_{oc}$
Equiibrium sorption to solid	$K_{ps0} = \frac{c_s/n}{M'_s c''_w} = \frac{c'_s}{c''_w} = f_{ocs} K_{oc} \qquad K_{ps} = \frac{K_{ps0}}{1 + M_s K_{ps0}/\theta_x}$
Equiibrium sorption to DOC	$K_{pB} = \frac{C_B/n}{B' C'_W} = \frac{C'_B}{C'_W} = 1.0K_{oc}$
Maximum Stable step size for Δt	$\Delta t_{max} = Min\left(\frac{V_j}{\sum_i (\Delta Q_{ij}) + \sum_i (R_{ij}) + \sum_k (S_{jk}V_j/C_j)}\right)$
Net Sediment Flux Rate	$w_{BS} = A_{ij} \left(w_R S_i - w_D S_j \right)$
Biodegradation rate estimations	Table 4.9
Biodegradation	First or second order

Table C.5 WASP4 Model (Ambrose et al., 1988)

Explanation	References
$V_2 \frac{dC_2}{dt} = k_2 V_2 C_2 - v_s AF_{p1} C_1 - v_r AC_2 - v_b AC_2 - v_d A[F_{d1} C_1 - F_{d2} C_2]$	Chapra,1997 p.708
$V_{s}\frac{dC_{Ts}}{dt} = w_{a}Af_{p}C_{T} - w_{rs}Af_{ps}C_{Ts} + K_{L}A\left(\frac{f_{p}C_{T}}{\varphi} - \frac{f_{ds}C_{Ts}}{\varphi_{s}}\right) - w_{s}AC_{Ts} - K_{s}V_{s}C_{Ts}$	Thomann and DiToro, 1984
$V_{s,H}\frac{dC_{s}}{dt} = v_{s,H}Af_{sH}C_{H} - v_{r,s}Af_{sS}C_{s} - v_{b}Af_{sS}C_{s} - K_{f}A_{d}\left[(f_{dS} - f_{bS})\frac{C_{s}}{n_{s}} - (f_{dH} - f_{bH})C_{H}\right]$	MICHTOX: Endicott et al., 2005
$\frac{\partial C_s}{\partial t} = -v_z \frac{\partial C_s}{\partial z} + D_s \frac{\partial^2 C_s}{\partial z^2} + r_{sorp} + r_{reac} + S(C)_{source} r_{sorp} = \left(\frac{1-\epsilon}{\epsilon}\right) \rho_s \left(\frac{3}{R_p}\right) k_f (C_s - C_s^*)$	Qi, 2003
rreac:0 and S(C)source:0 and rreac:0 and S(C)source:0	Q1, 200

Table C.6 Mass Balance Equations for surface sediment layer

APPENDIX D

INPUT AND OUTPUT OF THE PATHWAY FUNCTION FOR PCBs AND PBDEs

1.Flank	ed Any(3+4+5)*	2. Flank	ed Meta or Flanked Para(3+5)*	3. Fla	inked Meta*	4.Flan	ked Ortho*	5.Flar	nked Para*
23	2	23	2	23	2	23	3	34	3
34	4	34	4	34	4	234	34	234	23
234	24	234	24	234	24	235	35	345	35
235	25	235	25	235	25	2345	345	245	25
236	26	236	26	236	26	2356	235	2345	235
345	34	345	34	345	34	23456	2345	2346	236
2345	245	2345	245	2345	245			23456	2356
2345	234	2345	234	2345	234				
2346	246	2346	246	2346	246				
2356	236	2356	236	2356	236				
23456	2346	23456	2346	23456	2346				
23	3	34	3						
234	34	234	23						
235	35	345	35						
2345	345	245	25						
2356	235	2345	235						
23456	2345	2346	236						
34	3	23456	2356						
234	23								
345	35								
245	25								
2345	235								
2346	236								
23456	2356								

Table D.1 Input of the Pathway Function for PCBs

6.Met	a Any*	7. Orth	io Any*	8. Pai	a Any*	9. Flanked	or meta(1+6)*	10. Fla para	nked or (1+8)*	11.Double para-a	Flanked any
e		2		4		23	2	23	2	345	35
23	2	23	m	24	2	34	4	34	4	2345	235
25	2	24	4	34	ß	234	24	234	24	23456	2356
34	4	25	2	234	23	235	25	235	25		
35	m	26	2	345	35	236	26	236	26		
234	24	234	34	245	25	345	34	345	34		
235	25	235	35	246	26	2345	245	2345	245		
235	23	236	23	2345	235	2345	234	2345	234		
236	26	245	45	2346	236	2346	246	2346	246		
345	34	246	24	23456	2356	2356	236	2356	236		
2345	245	2345	345			23456	2346	23456	2346		
2345	234	2346	234			23	ñ	23	m		
2346	246	2356	235			234	34	234	34		
2356	236	23456	2345			235	35	235	35		
23456	2346					2345	345	2345	345		
						2356	356	2356	356		
						23456	2345	23456	2345		
						34	3	34	ŝ		
						234	23	234	23		
						345	35	345	35		
						245	25	245	25		
						2345	235	2345	235		
						2346	236	2346	236		
						23456	2356	23456	2356		
						ß		4			
						25	2	24	2		
						35	3	246	26		
						235	23				

12.Doub met	·le Flanked ta-any	13.Doubly or doubly	Flanked para flanked meta	14. Singly Flanked pa me	ra or singly flanked ta	15.doubly flanked meta meta	and para+singly flanked +para	16.Microorg	ganism o-17
234	24	345	35	23	2	234	24	2356	235
2345	245	2345	235	235	25	2345	235	235	35
2346	246	23456	2356	236	26	2345	245	234	24
2356	236	234	24	245	24	2346	246	2345	245
23456	2346	2345	245	2356	236	23456	2356	2346	246
		2346	246	34	4	23456	2346	23456	246
		2356	236	345	34	345	35	245	24
		23456	2346	234	23	23	2	245	25
				245	25	235	25		
				34	ε	236	26	2	
				2346	236	245	24	3	
						2356	236	4	
						34	4	23	
						345	34	24	
						234	23	25	
						245	25	26	
						34	3	34	
						2346	236	35	
								236	
								246	
								345	
								2-2	
								26-2	
								26-26	
								2356-26	
								23456-26	
								2356-2356	

In yellow color: they can not be dechlorinated, in orange color: dechlorination for DEH10/SF1, in red color: to show combination of different activities, in blue color: Specific congeners, as opposed to the previously listed chlorine substitiotion positions (in black color), One star: from Karcher (2005). Two Stars: 25. DEH10+SF1+o17+DF1 (23+24)** 3456-26 356-2356 5-26 35 356 26 34 35 35 236 246 345 235 245 245 246 246 246 224 224 225 224 226 228 235 235 24.017+DF1 23.DEH10+SF1 22. Microorganism SF-2 245-246 235-25 2346-245 2356-25 21.Microorganism Deh. m. 195 2346 2356 246 23456 23456 2346 245,25 226,245 226,245 224,25 224,25 224,25 225,254 226,234 226,236 236,236 226,236 226,256 226,256 226,256 226,256 226,256 226,256 226,256 226,256 226,256 226,256 22 20. Microorganism CBDB1 3 25 35 235 2356 2356 2356 2346 2346 24 24 24 345-236 34-236 34-236 356-234 356-234 355-234 345-234 345-234 345-234 346-25 345-25 34 5-234 5-234 156-245 156-34 156-25 36-25 36-34 35-336 245 345 2345 23456 23456 2345 234 234 19. Microorganism SF-1 234-245 2345-24 245-24 245-24 24-26 24-25 235-24 235-24 24-25 235-24 24-35 24-35 235-25 2345-234 2345-234 2345-234 2345-234 2345-234 235-24 2345-234 2345-246 235-24 18. Microorganism DEH1 24-26 24-25 24-24 24-24 236-25 25-26 245-24 236-24 45-245 35-245 45-26 45-25 45-25 356-25 36-25 34-245 34-245 34-236 sum of 23+24 17.Microorgani DF-1 24 246 35 235 234 2346 345 2345 23 24 25 25 25 33 35 235 235 235 235 2356

					¢N N	of Doth	-C - 01,011												¢ N	of Dotter	00.10100					
					0		ways. o	_											0		Ndys. 20	-				
					1.Fk	anked ∡	hny(3+4+	5)*										2. F	-lanked N	leta or F	lanked F	ara(3+5)				
p	р Е	-	p	μ	۲ م		٤	p	E	5	E	p	e E	_	p E	2	q	<u>د</u>	p u	_	u u	с Р	p	E	q	
S	1 65	23	106	57	129	122	152	94	173	134	189	167	205	190	S	1	83	43	119	75	153	101	176	150	196	183
16	4 65	24	106	67	130	83	153	101	173	142	190	156	205	191	16	4	83	44	120	72	154	103	177	132	197	176
20	66 66	25	105	78	130	90	156	105	174	135	190	163	205	192	20	οr	85	46	122	20	156	105	177	134	199	177
20	1 67	26	107	79	130	107	156	106	174	143	191	158	206	194	21	~	85	47	124	72	156	109	178	135	199	178
21	5 70	26	108	59	130	109	156	109	174	149	191	161	206	195	22	00	86	41	126	77	156	114	178	151	199	187
21	7 70	31	109	57	131	84	156	114	174	164	191	164	206	196	23	6	86	43	126	78	156	118	179	136	200	176
22	8 71	27	109	63	131	88	156	118	175	135	192	159	206	199	24	10	86	48	126	79	157	105	179	152	200	179
23	9 71	32	109	70	131	108	156	126	175	144	192	161	206	203	29	6	87	44	126	81	157	107	180	138	200	186
23 1	4 74	31	109	79	132	84	157	105	175	148	192	165	206	205	33	9	87	49	127	79	157	122	180	141	201	176
24 1	0 77	35	110	59	132	91	157	107	175	161	193	163	207	196	33	°° ;	88	2	127	80	158	108	180	146	201	179
29	9 77 s	37	110	71	132	110	157	122	176	136	193	164	207	197	35	11	90	49	128	0.0	158	110	180	153	202	183
6 6	81	57	111	77	133	111	158	108	176	150	194	170	207	201	ĥ 8	14	16	5	129	86	158	119	181	147	203	185
35	1 83	43	111	80	134	83	158	110	177	130	194	172	208	199	64	16	94	5	129	97	159	107	182	148	203	187
37 1	83	44	112	57	134	84	158	115	177	132	194	180	208	200	41	16	95	53	130	83	159	111	182	154	205	190
38 1	4 83	57	112	59	134	93	158	119	177	134	194	189	208	201	41	17	97	44	130	87	159	120	183	144	205	191
40 1	6 84	46	113	73	134	112	159	107	177	147	195	170	208	202	42	17	97	48	130	90	161	113	183	149	205	192
40 2	0 84	59	114	60	135	94	159	111	177	163	195	171	209	206	43	18	66	49	131	84	163	110	183	154	205	193
41 1	85	42	114	63	135	95	159	120	178	133	195	173	209	207	44	18	101	52	131	88	163	112	185	144	206	195
41 1	7 85	47	114	74	135	113	159	127	178	135	195	177	209	208	46	19	102	53	132	84	163	117	185	151	206	196
41	50 C	99	114	81	138	87	161	113	178	151	195	181			48	18	105	5	132	91	164	110	186	145	206	199
42 1 7 2	200	41	115	54 24	138	16	163	1109	170	125	291 301	171			ς Υ	20	105	ę, G	124	72	165	113	180	140	202	107
42 43		40	116	61	138	118	163	112	179	136	196	7/1			n y	2 0	105	99	13.4	0.0	167	118	187	151	207	200
43	1 87	44	116	5 5	130	10	163	117	170	153	106	177.1			e u	22	105	8 8	t t	70	167	120	180	156	202	201
6 44 1	87	49	116	65	139	100	164	110	180	138	196	182			95 92	33.52	106	57	135	95	167	124	189	157	208	200
44 2	6 87	70	117	63	141	87	164	113	180	141	196	183			57	26	106	67	138	87	170	128	189	159	208	201
46 1	88	50	117	64	141	92	165	111	180	146	196	191			59	27	107	68	138	97	170	129	189	167	208	202
46 2	7 90	49	118	67	141	101	165	113	180	153	197	176			60	22	108	59	138	66	170	130	190	158	209	207
48 1	8	68	118	70	141	124	167	118	180	167	199	172			60	28	109	57	139	91	170	138	190	163	209	208
222	91	21	118	74	142	86	167	120	181	139	199	174			61	21	109	63	139	100	171	131	191	158		
55 1	5 92	52	119	75	142	88	167	124	181	147	199	177			61	23	109	8	141	87	171	132	191	161		
6 4 6	20	43	122	26	142	40	170	129	182	154	199	187			10	24	110	64	141	101	172	130	192	161		
56 2	2 94	5 53	122	78	143	102	170	130	183	144	199	193			63	31	110	71	142	80	172	133	192	165		
56 3	3 94	73	124	70	144	95	170	138	183	149	200	174			64	32	111	72	142	93	172	141	193	163		
56 3	5 95	53	124	72	144	103	170	156	183	154	200	176			65	24	112	59	143	94	172	146	193	164		
57 2	6 97	44	126	77	145	104	170	157	185	141	200	179			99	25	113	73	143	102	173	131	193	165		
59 2	7 97	48	126	78	146	92	171	131	185	144	200	186			99	28	114	60	144	95	173	134	194	170		
60 2	2 97	67	126	79	146	101	171	132	185	151	201	175			67	26	114	63	144	103	173	142	194	172		
60	8	49	126	81	146	120	171	139	186	143	201	176			70	26	114	74	145	104	174	132	194	180		
m 1	7 101	22	127	79	147	06	171	158	186	145	201	179			70	31	115	64	146	92	174	135	195	171		
61	1 102	81	127	8	147	91	172	130	186	152	202	178			17	27	115	75	146	101	174	143	195	173		
61	3 105	55	128	85	148	103	172	133	187	146	202	179			11	32	116	62	147	91	174	149	195	177		
2 [0]	COT 6	000	120	cuI col	149	C7	172	141	107	164 164	202	100 1			77	77	117	0	140	103	17.1	144	105	121		
5 [0]	201 201	00	120 120	00	1 EO	701	172	150	1001	101	502	101			:	6 5	110	\$ C	140	10.0	C/1	140	106	174		
2 29	105	77	129	00	151	40T	173	PC1	189	157	203	187			78	у К	118	202	150	104	176	136	196	175	_	
64	2 106	55	129	106	151	95	173	131	189	159	205	189			81	37	118	74	151	95	176	145	196	182		

Table D.2 Output of the Pathway Function for PCBs

	Í	Vo. of Pati	hways:	170			H	No. of	Pathwa	1ys: 90	H		No. of	[*] Pathways	:: 111		H				No. of Pa	thways:	229			
		3. Flank	ted Metz	*				4.Fla	nked O	rtho*			5.F	lanked Pai	ra*						6.Me	eta Any*				
p	ε	р	E	φ	E	P	E	р	E	P	5	P	E	P	E	p	ε	p	E	р	٤	p	٤	p	u u	
5	1 10	17 68	3 15	8	115	196	171	16	9	152	94	21	5	143	94	200	179	5	1	70	31 11	13 5:	9 156	118	190	158
16	4 10	9 63	3 15	89	119	196	182	20	11	156	126	29	6	144	95	201	179	9	1	70	33 11	13 7.	3 157	105	191	158
20	6 1C	00 7C	11	66	107	196	183	23	14	157	126	33	9 7	146	92 01	203	185	6 .	, ,	71	32 11	14	158	115	192	161
17	11 0	21	161	2 1	110	100	177	41	22	162	100	6 8	11	1E2 3	101	202	107	10	t 4	2/	24 11	11 14	150	106	102	164
23	0 0 11	1 72	16	2 12	117	199	187	41	25	165	111	41	16	154	103	205	193	20	1 10	73	27 11	16	2 159	107	194	170
24	10 11	2 59	3 16	54	110	200	176	43	34	170	156	48	18	156	106	206	199	20	9 9	2 44	37 11	17 6	159	120	194	180
33	8 11	3 73	3 16	35	113	200	186	44	26	170	157	55	20	156 1	601	207	200	21	7	78	35 11	18 7.	161	108	195	171
37	15 11	4 60	16	57	118	201	176	46	27	171	158	56	20	157	107	207	201	22	00	78	38 11	19 7	5 163	110	195	181
40	16 11	4 74	17	70	128	202	179	55	35	172	159	60	22	157 1	122	208	202	23	S	79	35 12	20 6	7 163	117	196	171
41	17 11	:5 75	5 17	70	138	203	183	56	35	173	129	61	23	158	108	209	208	23	6	81	37 12	22 51	5 164	110	196	182
42	17 11	.6 62	2 17	71	139	205	190	60	37	174	164	62	24	158	110			24	10	83	40 12	24 7	165	112	196	183
43	18 11	.7 64	17	72	130	205	191	61	38	175	161	66	25	159	111		_	25	7	83	43 15	26 7	7 165	113	199	174
44	18 11	.8 74	17	72	141	206	195	65	23	177	130	67	26	161	113		_	26	9	. 83	44	26 8	1 167	118	199	177
46	19 11	32 61	11	72	146	206	196	83	57	177	163	70	26	163	112			26	6	84	46 12	27	8 170	128	199	187
55	25 12	22 56	1	<u></u>	131	206	203	84	59	178	133	71	27	164	113	+		27	10	82	47	27	170	138	200	176
56	22 12	7		m :	142	207	197	85	99	178	165	74	31	167	120			31	00 0	98	41	20 00	171	139	200	186
95	33 12	1/ 07	1	4 :	132	208	200	8/	0, 0	1/9	135	2 10	<u>.</u>	16/	124			55	20 1	90	1 2	50 00	1/2	129	107	1/6
10	71 07	12 02	16	4 5	140	208	107	06	40	105	141	22	42	120	671	+		34	ο u	8/	41 10	57 OC	1/2	141	707	103
50	28 17	28 85	1 5	ţĻ	147	607	107	92	43	186	141	87	40	121	131			10	16	00 00	50 13		172	141	202	190
61	21 12	98	1 1	. ñ	148			64	73	187	146	97	4	171	132			41	17	3 06	42 13	31	173	131	205	191
61	29 12	97	17	76	145			97	67	190	156	66	49	172 1	133			42	17		49 13	32 9.	1 173	142	206	195
63	31 13	10 87	7 17	76	150			105	77	192	159	101	52	173 1	134			43	16	91	51 15	33 8	3 174	132	206	196
64	32 13	06 01	71 0	77	132			106	78	194	189	102	53	174	135			43	18	92	43 15	33 9.	2 174	143	206	203
65	24 13	11 85	3 17	77	147			107	79	195	170	105	55	175 1	135			44	16	92	44 15	34 8.	4 174	149	207	197
66	28 13	12 91	1	78	135			109	79	195	190	105	56	176 1	136			44	18	92	52 15	34 9:	3 175	131	208	200
20	31 13	33 92	2 17	78	151			111	80	196	191	106	57	177	134			46	19	94	46 15	35 &	4 175	144	208	201
71	32 13	84 84	10	62	136			112	57	199	172	108	59	180	141	-		49	17	94	53 15	35	4 175	148	209	207
77	37 15	1 95 24	11	62	152	+	+	114	81	199	193	109	57	180	146	+		22	18	95	53	35 35	176	145		
18	30 11	10 10	21 °	2 2	138			110	10	200	1/4	110	20	101	14/	+		2 1	21 5	101	1 F			DCT CC F		
18	5/ L: 42 12		21 00	22	120		+	11/	70	102	170	116	50	102	148	+		2 5	71	IUI	1 I I	10 TO	11	147		
000	44 13	1001	1 21	1 22	154			128	105	202	180	116	5 5	183	149			56	3 6	105	10	41 8	178	13.4		
84	46 14	1 87	7 18	ŝ	154			129	106	205	189	118	67	185	151			56	33	105	56 14	41 10	1 178	135		
85	47 14	11 101	18	35	144			129	122	206	194	118	70	186 1	152			57	20	106	55 14	42 8	8 178	151		
86	41 14	12 85	3 15	36	145			130	107	206	205	120	72	187 1	151			57	23	106	61 14	43 10	2 179	136		
86	48 14	13 102	2 15	37	149			130	109	207	196	124	72	189	159			57	26	106	67 14	44	8 179	152		
87	49 14	14 103	3 15	39	156			131	108	208	199	126	78	190	163		_	59	24	107	55 14	44 10	3 180	138		
88	50 14	15 104	4 15	39	157			132	110	209	206	126	79	191	161		_	59	27	107	68 14	45 10	4 180	153		
06	49 14	101 101	1 15	39	167			133	111			127	80	191	164		_	60	28	108	62 14	46 9.	7 181	139		
91	51 14	17 91	1 15	06	158			134	83			129	83	192	165			61	21	109	56 14	46 10	1 182	154		
92	52 14	18 103	3 15	16	158			134	112			130	83	193	165	-		61	29	109	63 14	47 9.	1 183	154		
94	53 14	102	15	92	161			135	113			131	84	194	172			63	22	109	70 14	48 10	3 185	142		
95	53 15	50 104	15	33	163			138	118			132	84	195	173			63	31	110	64 14	49 10	2 185	144		
97	48 15	51 95	15	93	164	+	+	141	124	+	+	138	87	195	177	+	_	64	32	110	71 15	50	4 186	145		
105	60 15	56 105	15	94	170	_	+	142	86	+	+	138	97	196	174	+	_	65	24	111	57 15	51 9.	3 187	149		
105	66 15	56 114	13	94	180	-	+	146	120	-	+	139	91	196	175	+	-	99	28	111	72 15	51	189	156		
106	55 15	- 115	51 5	95	171		-	147	06	+		141	92	197	176	-	_	67	29	112	11	56 10	189	157		
106	67 15	105	15	35	181			151	92			142	93	199	178			68	25	112	65 15	56 11	4 189	167		

		No. of P	athwa	ys: 193					N	. of Pathv	vays: 15	0	_							Pathw	ays No	0:413						
		7. 0	rtho A	ny*						8. Para	Any*								9. F	lankec	й Го	eta(1+6	5)*					
р ш	E	σ	E	σ		F	p	e E		e e		q v	3	σ	u u	E	σ	٤	ρ	u u	-	p u	E	σ	E	p b	p	
4	F	99	37	122	78	174	129	7	1	101	52	161	113	5	1 55	35	85 6	6 11	0 64	131	108	156 3	114 1	74 14	191 191	161	206	203
σ,	, ,	70	33	128	105	174	164	<mark>1</mark> 00		102	ß	163	112	90	1 56	20	86 4	11	17 1	132	8 2	156	118 1	74 14	191 191	164	206	205
16	- 0	72	34	129	122	175	161	21	1 10	104	54	167	120	16	56	33	86 4	11 8	1 2	132	110	157	105 1	75 13	192	161	207	197
16	9	73	34	130	107	176	131	22	S	105	55	167	124	16 (56	35	87 4	1 11	1 80	133	83	157 1	107 1	75 13	192	165	207	200
17	~	75	28	130	109	176	132	25	9	105	56	170	129	18	4 57	20	87 4	11	2 59	133	92	157	122 1	75 14	193	163	207	201
17	00 <	833	57	131	1108	177	130	28	r 0	106	57	171	130	20	57	23	87 24	11	2 65	133	111	157	126 1	75 14	193	164	208	199
18	t σ	84 94	59	133	111	178	133	29	00	109	57	171	132	20 20	1 59	24	88 5	11	0 00 0 00 0 00 0 00	134	5 G	158	110 1	76 13	194 194	170	208	202
19	4	85	60	134	83	178	165	31	6	110	59	172	133	21	59	27	90 4	2 11	4 60	134	112	158 1	115 1	76 14	194	172	208	202
19	10	85	66	134	112	179	134	32	10	114	61	173	134	21	7 60	22	90 4	11	4 63	135	8	158 1	119 1	76 15	194	180	209	206
20	11	86	61	135	83	100	135	33	9 7	114	63	174	135	22	8 9	28	90 6	8 11	4 74	135	8 9	159	106	77 13	194	170	209	207
24	t u	87	70	136	84	183	138	6	14	115	64	176	136	23 23	8 19	21	16 76	1 1	1 2	135	113	159	111 1	77 14	195	171	507	0,1
26	9	80	41	138	118	185	141	41	16	116	65	177	134	23 1/	61	23	92 4	4	5 75	138	87	159	120 1	77 16	195	173		
27	9	88	62	139	85	185	142	42	16	117	65	180	141	24 10	0 61	29	92 5	2 11	6 61	138	97	159	127 1	78 13	195	177		
28	15	90	63	139	115	186	142	47	17	118	67	180	146	55	7 61	38	92 7	11	6 62	138	66	161	108 1	78 13	195	181		
31	00	06	68	141	86	186	143	48	18	118	70	181	142	26	62	24	94	11	6 65	138	118	161	113	78 15	195	190		
32	00 7	91	42	141	124	187	146	49	18	119	71	181	147	26 27	6 6	22	94	0 0 11	0 64 64	139	6	163	110	70 12	196	171		
404	20	16	43	147	116	191	157	S 5	ст 10	124	77	182	148	2 02	8	1.0		1 -		141	86	163	117 1	51 6/	1961	175		
41	21	92	72	143	86	192	159	55	20	126	78	183	144	1 12	65	24	97 4	11	8 74	141	87	164	110 1	80 13	196	182		
41	33	93	43	144	87	194	189	56	20	126	79	183	149	33	99 99	25	97 4	8 11	9 75	141	92	164	113 1	80 14	11 196	183		
42	22	93	65	144	88	195	170	9	21	127	80	185	151	33	8	28	97 6	12	0 67	141	101	165	112 1	80 14	196 196	191		
42	25	94	43	145	88	195	190	60	22	129	83	186	152	8	67	26	99	9 12	0 72	141	124	165	113	80 15	197	176		
43	23	94 95	73	146	120	196	101	61	23	130	80 50	187	151	33	1 67	29	101	212	2 20	142	88	167	118 1	80 16	199	174		
44	16	26	67	147	117	197	171	63	23	132	84	190	163	4 7 8	9 C	26	102	1 1	4 02	142	8 8	167	124 1	81 14	CET 21	178		
44	26	66	74	148	6	199	172	64	24	138	87	191	161	4 1	202.9	31	103 5	12	4 72	143	8	170	128 1	82 14	199	187		
46	16	100	47	149	97	199	193	99	25	138	97	191	164	40 20	02 0	33	105 5	5 12	6 77	143	102	170	129 1	82 15	199	193		
46	27	100	75	150	91	200	173	99	33	139	88	192	165	44	11	27	105 5	12	9 78	144	88 b	170	130	83 14	14 200	174		
4/	07	101	40 10	151	22	2012	175	68	27	111	12	104	173	41 14	1/ 0	30		1 6	6 13 19	144	02 102	120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 01 10 10		179		
49	17	103	49	152	69	201	177	202	26	142	93	195	173	1 4	72	34	105 7	12	7 78	145	5 <u>5</u>	170	157 1	85 14	11 200	186		
49	31	103	50	152	94	202	178	71	27	143	94	195	177	42 25	5 73	27	106 5	5 12	7 79	146	92	171 1	131 1	85 14	12 201	176		
50	17	104	20	154	96	203	180	74	29	144	95	196	174	43	74	31	106 5	12	2 80	146	97	171	132 1	85 14	14 201	179		
10	37	105	10	157	126	202	194	75	31	140	77 76	197	176	43 E4	1	57	9 901	1 1	8 6 10 10	146	120	171	158 1	86 14	13 203	180		
52	18	106	78	158	105	206	205	2.2	35	148	94	199	178	5 45 0 11	5 78	35	106 7	12	83	147	91	172	129 1	86 14	15 203	183		
53	18	107	79	159	127	207	195	81	38	149	95	200	179	44	8 78	38	107 5	5 12	98 86	148	103	172	130 1	86 15	52 203	185		
53	19	108	55	161	107	207	196	85	41	153	101	201	179	44 26	6 79	35	107 6	8 12	97	149	95	172 1	133 1	87 14	19 203	187		
54	19	109	79	163	109	208	199	85	42	154	102	203	185	46 19	9 81	37	107 7	9 12	9 106	149	102	172	141 1	87 15	61 205	189		
50	35	110	56	164 167	122	209	206	86	43	154	103	203	187	46 2	83	40	108	12	9 122	150	5	172	146 1	89 15	205	190		
0 C	00	112	57	170	156			ò06	44	156	109	202	193	49 10	0 0	44	001	1 6	0 0	151	8 8	173	1 991	89 15	502 65	192		
60	37	114	81	170	157			26	44	157	107	206	199	52	8	57	109 5	13 13	600	153	101	173	131 1	89 16	205 205	193		
61	38	115	60	171	128			66	48	157	122	207	200	53 19	84	46	109 6	13	0 107	154	103	173 1	134 1	90 15	6 206	194		
62	21	116	61	171	158			66	49	158	108	207	201	55 2(0 84	59	109 7	0 13	0 109	156	105	173 1	142 1	90 15	8 206	195		
64	22	117	63	172	159			100	50	158	110	208	202	55 2:	1 85	42	109 7	9	1 84	156	106	174	132 1	90 16	33 206	196	_	
65	23	119	66	173	129			100	51	159	111	209	208	55 25	85	47	110 5	13	1 88	156	109	174	135 1	91 15	8 206	199		

						No. of P	athwa	ys: 393							No.	of Pathways: 44	4	No. of	Pathway	/s: 60	_		No. of I	Pathway	s: 104		
						10. Flanke	ad or p	ara(1+8)*							11. Do	uble Flanked pí any	ara-	12. Double	Flanked	meta-any	13	. Doubly F	Flanked	para or d	oubly fi	anked m	eta
p	E	p	E	P	٤	P	٤	P	E	P	ε	p	ε	p	E	р	٤	p	٤	p	E	p	ε	P	E	p	
5	1 56	33		88	50	115	64	138	97	161	113	180 1	38	196 17	75	38	14	21	7	196	183	21	7	172	133	208	201
2	1 56	35		06	43	115	75	138	66	163	110	180 1.	41	196 15	82	61	23	41	17	199	187	38	14	172	146	208	202
16	4 55	27		06	44 68	116	62	139	88	163	117	180 1	53	196 15 196 15	31	86 106	57	50	28	203	183	41	1/ 25	1/3	134	209	208
16	. 9	21		91	51	116	65	139	91	164	110	180 1(67 1	197 11	26	114	63	61	29	205	191	60	28	174	135	2	2
17	4 60	22		92	52	117	64	139	100	164	113	181 1	39	199 17	74	116	65	85	47	206	196	61	23	174	149		
20	9 60	28		92	72	117	65	141	87	165	113	181 1-	42	199 17	77	124	72	86	48	206	203	61	29	175	148		
20	11 60	37		94	53	118	67	141	92	167	118	181 1/	47	199 17	78	126	79	87	49	207	197	85	47	176	150		
21	5 61	21		94	73	118	70	141	101	167	120	182 1-	43	199 15	87	127	80	88	50	208	201	86	43	177	147		
21	7 61	23		95	53	118	74	141	124	167	124	182 1-	48	199 15	93	129	83	105	66	209	207	86	48	180	146		
22	5 61	29		97	44	119	71	142	86	170	128	182 1.	54	200 17	74	141	92	106	67			87	49	180	153		
22	8 61	38		97	48	119	75	142	88	170	129	183 1-	44	200 17	76	142	93	107	68			88	50	181	139		
23	9 62	24		97	67	120	72	142	93	170	130	183 1-	49	200 15	79	143	94	114	74		_	105	66	181	147		
23	14 65	23		66	48	122	56	143	94	170	138	183 1.	54	200 15	36	156	109	115	75			106	57	182	148		
24	10 65	31		66	49	122	78	143	102	170	156	185 1-	41	201 15	76	157	107	116	62		_	106	67	182	154		
25	64	24	1	00	50	124	70	144	95	170	157	185 1.	44	201 17	79	159	111	128	85			107	68	183	154		
28	7 64	32	-	00	51	124	72	144	103	171	131	185 1.	51	202 17	79	164	113	129	97		_	114	63	185	144		
28	8 65	24	1	:01	52	126	77	145	104	171	132	186 1.	43	203 15	80	167	120	130	90			114	74	185	151		
29	99 66	25	1	:02	53	126	78	146	92	171	139	186 1.	45	203 15	33	170	130	132	91		_	115	75	186	145		
31	9 66	28	1	:03	53	126	79	146	101	171	158	186 1.	52	203 15	85	172	133	138	66			116	62	186	152		
32	10 66	33	1	04	54	126	81	146	120	172	130	187 1.	49	203 15	87	173	134	139	100			116	65	189	159		
33	6) 63	26	-	:05	55	127	79	147	91	172	133	187 1.	51	205 15	89	174	135	141	101			124	72	189	167		
33	8 65	34	1	:05	56	127	80	147	93	172	141	189 1.	56	205 15	06	180	146	142	88			126	79	190	158		
35	11 70	26	-	:05	60	128	85	148	94	172	146	189 1.	57	205 15	91	181	147	143	102			127	80	190	163		
37	15 70	31	1	:05	66	128	105	148	103	172	159	189 1.	59	205 15	92	182	148	144	103			128	85	191	161		
38	14 71	27	F	:05	17	129	83	149	95	173	129	189 1.	67	205 15	93	185	151	145	104			129	83	192	161		
40	16 71	32	-	90	55	129	86	149	102	173	131	190 1.	56	206 15	94	186	152	156	118			129	97	192	165		
40	20 27	29	-	106	57	129	97	150	104	173	134	190 1	28	206 15	95	189	159	158	119			130	6	193	165		
41	16 74	5		106	67	129	106	151	95	173	142	190		206 15	96	190	163	159	120			132	91	194	172		
41	11	32		00	8/ 09	129	221	153	101	174	132	101 101	200	206 15	66	191	161	171	138		_	138	99	105	171		
42	16 77	37		07	79	130	87	154	103	174	143	191 10	64	206 20	35	193	165	172	146			141	92	195	177		
42	17 75	35	1	08	59	130	90	156	105	174	149	192 1:	59	207 15	96	194	172	173	131			141	101	195	181		
42	25 81	37		60;	57	130	107	156	106	174	164	192 10	61 2	207 15	97	195	177	174	149			142	88	196	175		
43	18 81	38	-	60;	63	130	109	156	109	175	135	192 1,	65	207 20	00	196	175	175	148			142	93	196	182		
43	34 85	43	-	60;	70	131	84	156	114	175	144	193 1.	63	207 20	01	199	178	176	150		_	143	94	196	183		
44	18 85	44	1	60;	79	131	88	156	118	175	148	193 1.	64	208 15	66	200	179	177	147			143	102	199	178		
44	26 85	57	-	10	59	131	108	156	126	175	161	193 1.	65	208 20	00	203	187	180	153		_	144	103	199	187		
46	19 84	46	-	10	64	132	84	157	105	176	136	194 1	20	208 20	01	205	192	181	139			145	104	200	176		
46	27 84	29	F	10	71	132	91	157	107	176	145	194 1	72	208 20	02	205	193	182	154			156	109	200	179		
47	17 85	41	1	11	72	132	110	157	122	176	150	194 1.	80	209 20	96	206	199	183	154			156	118	203	183		
48	18 85	42	1	11	80	133	92	157	126	177	132	194 1.	89	209 20	27	207	201	185	144		_	157	107	203	187		
49	18 85	47	-	12	59	133	111	158	108	177	134	195 1	20	209 20	08	208	202	186	145		_	158	119	205	191		
50	19 85	99	1	13	73	134	84	158	110	177	147	195 1	71			209	208	189	167			159	111	205	192		
51	19 86	41	1	14	60	134	93	158	115	177	163	195 1	73					190	158		_	159	120	205	193		
55	20 B£	43	1	14	61	134 :	112	158	119	178	135	195 1	77					192	161			164	113	206	196		
55	25 B£	48	-	14	63	135	94	159	107	178	151	195 1.	81					194	180		_	167	120	206	199		
55	35 8;	44	-	114	74	135	95	159	111	178	165	195 1.	06	_	_		+	195	171	_		170	130	206	203	_	Τ
56	20 8;	49	-	14	81	135	113	159	120	179	136	196 1	71		_		+	195	181	_		170	138	207	197	_	Τ
56	22 85	02	-	.15	62	138	87	159	127	179	152	196 1	74				-	196	182			171	139	207	201		

286

(continued)
0.2
Table I

ays: 48	anism o-		7	14	7	6	29	2.2	J	80	90 90	85 90 107	85 85 90 107 111	85 85 90 111 85	85 85 90 107 111 85 87	85 90 1111 85 87 89	85 90 1111 85 87 99 90	85 90 1111 85 85 87 99 92	85 80 1111 1111 87 87 99 90 92	85 111 111 85 87 87 87 99 90 92 120	85 111 85 87 87 87 87 99 99 92 92 92 92 92 92 92 92 92 92 92	85 85 107 111 111 111 85 85 85 99 92 120 92 120 120 138	85 90 1107 1111 87 87 87 87 87 87 87 87 87 87 87 87 87	85 80 1107 1107 1107 87 87 87 87 87 99 90 99 90 9101 1338 1338 138 138 146	85 1107 1117 1117 85 87 87 90 90 90 120 120 120 120 138 138 138 138 138 138 138 138	85 107 1107 1107 85 87 87 99 99 99 1201 139 1398 1398 1398 146 1398 146	85 107 111 85 87 87 92 92 92 92 101 120 133 138 138 138 138 138 138 148 148 148	85 107 1111 85 85 85 85 85 92 92 92 120 120 139 139 139 148 150 150 150 150 150 150 150 150 150 150	85 107 111 111 85 85 99 99 92 92 92 120 120 133 138 138 138 138 138 138 138 138 146 147 146 148 148 148 148 148 148 148 148 148 148	85 107 111 111 88 88 88 99 99 99 120 120 120 123 120 123 123 123 123 123 123 123 123 123 123	85 107 111 107 107 101 101 120 120 120 120 120 120 120 120	85 107 111 107 87 85 87 99 99 90 92 92 120 120 133 146 133 146 146 146 146 146 146 146 146 146 146	85 107 111 111 87 87 87 99 99 90 101 130 133 133 133 133 133 133 133 13	85 101 101 107 88 87 87 87 90 101 101 130 130 130 130 130 130 130 13	85 107 111 107 88 87 88 99 99 90 92 92 120 133 133 133 146 146 147 146 147 146 147 146 147 146 147 146 147 146 147 146 147 146 147 146 147 146 147 146 147 147 147 147 147 147 147 147 147 147	85 111 111 87 87 87 87 99 99 99 92 101 133 133 133 133 133 133 133 133 133	85 101 101 102 88 85 87 99 99 99 103 103 120 138 138 138 139 138 139 138 139 139 139 139 139 139 139 139 139 139	85 101 101 107 87 87 87 99 99 99 92 101 120 138 138 138 138 146 141 147 153 153 153 153 153 153 153 153 153 153	85 111 111 111 87 87 99 99 90 101 101 138 139 148 133 148 133 148 148 148 148 148 148 148 148 148 148	85 101 101 101 102 103 103 103 103 103 103 103 103 103 103	85 101 101 101 101 120 99 99 92 92 120 138 138 146 146 147 146 147 148 147 148 147 148 148 148 148 148 148 148 148 148 148	85 111 111 111 107 107 107 107 107 107 107	85 101 101 101 101 101 101 101 120 120 120	85 111 111 107 107 108 108 108 1139 1139 1139 1139 1139 1139 1148 1139 1148 1148 1148 1148 1148 1148 1148 114	85 101 111 111 111 101 101 101 101 1139 1139	85 111 107 107 107 101 101 101 120 120 120 120 120 120 120	85 111 111 111 101 102 103 103 103 103 103 103 103 103 103 103	85 101 111 101 102 103 103 103 103 103 103 103 103 103 103	85 101 101 101 101 101 101 101 101 101 10	85 111 111 111 111 101 102 103 103 103 1133 113
o. of Pathw	5. Microorg 17	q	21	23	29	29	61	65	128	130	130	133	138	138	138	146	146	146	153	153	170	171	172	172	175	175	177	177	178	178	180	180	183	183	183	187	187	194	195	196	196	199	199	201	203	203	203	206		2002
z	16	5	174	175	182	183	176	174	178	187	176	179	186	176	179	179	181	183	185	187	190	191	192	193	196	199	203	197	200	201	200	201	202	207	208								_				-	_	+	
		p	9	9	9	9	2	ŋ	6	6	0	0	0	T.	e.	N	m	e	e	e	ŝ	ŝ	ñ	ŝ	9	9	9	2	2	2	8	80	00	Ð	ō													_		
		۲	19	19	19	19	19	19	19	19	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20															
	ŋ	Ē	135	144	148	136	145	150	132	134	147	135	151	136	152	141	146	153	139	147	148	154	139	144	149	154	144	151	145	152	147	149	151	156	159	15.0	163	158	161	164	161	165	163	164	165	172	180	171	1/3	177
	ta+par	σ	175	175	175	176	176	176	177	177	177	178	178	179	179	180	180	180	181	181	182	182	183	183	183	183	185	185	186	186	187	187	187	189	189	001	190	191	191	191	192	192	193	193	193	194	194	195	195	195
	ed me	٤	-	-	m	-	10	N	4	10	0	-	0		0	0	4	00	10	N	2	00	0	10	0	-	0		0	2	N	0	m	m	m c			0	0	-	2	0	m	-	10	-	5	0	0.0	m
	y flank		10	.6	10	9	6	10	10	6	6	10	100	10	106	100	11	118	105	10	122	100	110	115	119	11:	12(113	11(113	117	110	11	11	118	121	125	13(135	13:	13.	139	133	14	146	13.	13	14.	51 1	4
ys: 28:	+singl	D	146	147	148	149	149	149	150	151	153	153	154	154	156	156	156	156	157	157	157	158	158	158	158	159	159	161	163	163	163	164	164	165	167	167	170	170	170	171	171	171	172	172	172	173	173	173	1/4	174
athwa	d para	٤	64	66	67	70	74	75	68	72	56	70	72	77	78	79	81	79	80	85	83	86	97	83	87	90	84	88	84	91	92	84	93	94	95	20	97	66	91	00	92	101	88	93	94	102	95	103	04	06
o. of P	eta an	p	~	~	~	~	~	•	0	0	01	-	-	10	10	10	10	•	•	~	•	•	•	0	0	0	_	_	01	01	~	-	-					~	•	•	_		0	01	~	~	-	-		
z	ked m	_	117	118	118	118	118	115	120	120	122	124	124	126	126	126	126	127	127	128	125	125	125	130	130	130	131	131	132	132	133	134	134	130	130	1 2 2	135	138	139	135	141	141	142	142	143	143	144	144	141	146
	oly flan	Ł	37	35	37	43	44	46	42	47	43	48	44	49	50	49	51	52	53	53	42	44	48	47	49	49	52	51	53	55	56	60	99	57	67	0	57	63	70	59	64	71	72	59	73	63	74	64	5	62
	Doul	σ	77	78	81	83	83	84	85	85	86	86	87	87	88	90	91	92	94	95	97	97	97	66	66	01	01	02	02	05	05	05	05	90	06	80	60	60	60	10	10	10	11	12	13	14	14	15	15	16
	÷,	٤																								H	H	-	Н	1	н	-	-	-		-		н	н	H	Н	H	Н	н	H	H	-		-	H
			г	4	9	'n		œ	o	10	~	o	U	ω	11	15	14	16	16	17	17	18	18	19	17	18	20	25	20	22	33	26	27	52	28	0,00	54	31	32	24	25	28	25	26	26	31	27	8.0	N C	5
		q	ŋ	16	20	21	21	22	23	24	29	29	33	33	35	37	38	40	41	41	42	43	44	46	48	48	55	55	56	56	56	57	59	90	60	5 5	62	63	64	65	99	66	67	67	70	70	71	71	4/	74
		٤	35	51	36	52	41	39	44	49	47	49	51	56	58	64	63	64	73	74	76	74	86	76	79	79	81	85	90	00	8																_		_	
		p	1	1	1	1	1	1	Ч	7	1	1	1	1	H	H	-	н	-	H	1	1	-	Ч	-	F	-	1	1	2	2																			
	neta		178	178	179	179	180	183	183	183	187	187	187	189	191	191	193	193	195	196	197	199	200	201	201	202	203	203	205	207	208																			
	nked r	£	84	93	94	95	85	87	97	91	95	90	92	101	91	103	91	95	102	104	95	66	101	100	103	106	114	105	122	108	110	115	113	110	112	110	113	118	124	129	131	132	141	142	143	135	144	136	145	132
179	gly fla	p	34	34	35	35	38	38	88	39	4	46	46	46	47	18	49	49	49	00	51	53	03	40	54	26	26	57	57	80	58	80	51	ŝ		2 4	55	57	57	70	71	71	72	73	74	75	75	76	26	77
ways:	l or sin	٤	1	Ĥ	1	Ħ	Ħ	1	1	Ξ	1	1	ĥ	1	ĥ	À	i	1	1	Ĥ	11	11	Ħ	1	Ħ	1	11	11	11	11	Ħ	H	ñ	Ä	5 5	17	Ä	1	1	н.	н	1	Ŧ	1	1	H	H		H i	н
of Path	d para		44	49	51	52	53	53	42	44	48	47	49	49	52	51	53	55	56	60	59	57	63	70	59	64	71	72	59	73	64	64	99	67	70	7 7	68	72	56	70	77	78	81	79	86	83	87	84	20 0	84
No.	Flanke	q	87	06	91	92	94	95	97	97	97	66	66	101	101	102	102	105	105	105	108	109	109	109	110	110	110	111	112	113	115	117	118	118	118	119	120	120	122	124	126	126	126	127	129	130	130	131	131	132
	ingly l	٤	1	4	9	ß	80	6	o.	7	6	9	80	1	٥.	9	9	<u>۲</u>	80	00	6	7	80	0	0	N	m	9	7	2	4	ਜ ਸ	N	4	5 0	, i	9	9	1	2	2	00	T.	ŝ	۲ ۲	S	2	m	4	9
	14. S	q							Г					Г	F	F	H	F	H	F	Г	-	H	CN.	(N	r N	(1)	(N	(1)	(1)	CN.	(7)	at l					N	m	ťN	ιn)	CN.	(1)	a)	(1)	at		7	4	4
			S	16	20	21	22	23	24	29	29	33	33	35	37	40	41	42	43	44	46	48	48	55	56	56	56	57	59	60	62	63	64	65	99	8	67	70	70	71	71	74	74	77	77	78	81	80	20 0	84
		٤																																																_

No. of Pathways:	No. of Pathways:	:: No. of	Pathways: 10		z	o. of Pat	hways: 1	20		No. of P	athways:	42 No. c	of Pathwe	ys: No	. of Pathw	ays: N	o. of Pathway	/s: 29 N	o. of Pat	hways: 32
17. Microorganism DF1	18. Microorganism DEH10	19. M	icroorganism SF1		20. 1	Microorg	anism Cl	3DB1		21. Mic Deh	roorganisı ı. m. 195	n Micro	22. vorganisn 2	1 SF. 2	3. DEH10+	SF1	24. o17+DF		2 EH10+SF	5. 1+017+DF L
q	р ш	E	p	٤	p	٤	p	E	5	٤	p	E	q	E	Ρ	E	σ	F		
21	7 95 55	3	0 49		21 7	135	100	195	18:	1 85	3	50	151	92	135	94	21	~	21	
38 1-	4 99 4:	5	0 68		29	141	.6	196	17.	115	10	75	183	154	149	102	29	7	29	ĸ
41 1.	7 101 45	5	1 51		33 6	142	8	196	18.	2 116	10	62	-		174	149	29	6	29	01
61 2.	3 102 5.		92 52		35 35	14.	5	199	17.	116	.0	65			180	146	61	23	61	200
86 4.	3 132 9.		00 10		38 38	14	6	200	17.	135		00			180	153	120	29	120	20
	138	1 1	1001		41 T	141 7 7 5		200	10,	14, 14,		80					120	0 0	128	000
120 00	151 91 91	0 u	130		48 IV	14:	TO TO	202	101	141 142	-	200					128	0 0	130	70
143 0,	152 00	0 q	0.138		20	140	n 0	202	ο 1 α	7 145	+ +	60					138	ò	138	0 0
145 10		1 4	149		50	151	101	202	9 6	15.1		10					170	130	138	őő
157 10:	-				61 23	154	105	205	19.	173		31					170	138	149	102
167 120	0				66 25	156	106	205	19:	3 173		34					171	139	170	130
170 130	0				67 26	156	105	206	19(5 175	÷.	48					180	141	170	135
171 13	6				70 26	157	105	206	19	3 176	5	50					180	146	171	135
180 14	9				71 27	155	105	207	19	7 181	1	39					180	153	174	145
183 15	4				74 31	158	115	207	20	181	1	47					183	139	180	141
189 15	6				77 35	156	115	208	20	185	3	54					183	144	180	146
191 16:	-				85 47	164	1 115	208	20.	185	1	44					183	154	180	153
194 17.	2				86 45	167	120	209	20	7 185	-	51					194	172	183	135
195 18.	-				87 44	167	124	209	20	3 186	ť.	45					194	180	183	144
196 17:	ſ				87 45	170	130			186	5	52					195	181	183	154
196 18.	2				88 50	171	135			190	1	58					196	175	194	172
205 19.	8				97 44	1 172	13:			190	1	63					196	182	194	180
					99 45	175	13:			192	4	61					196	183	195	181
					101 52	17:	13/			192	1	65					203	154	196	175
					102 53	174	1 135			195	-	71					203	181	196	182
					105 55	175	145	~		195	-	77					203	185	196	183
					105 66	176	150			196	4	82					206	182	203	154
					106 57	17.	147			200	1	76					206	203	203	181
					107 65	3 18(142			200	C	79							203	185
					109 57	180	146	10		205	-i	83							206	182
					114 65	181	135			205	-i	87							206	203
				-	115 75	18,	14.			205	10	91								
				-	116 62	182	145	~		205	H	93								
					116 65	18:	14			206	1	96								
				-	118 67	18:	3 15			206		66								
					118 70	181	14			202		97								
					·/ 071	T N				202		5 5								
					124					202	n r	10								
					02 07T	100				002	0 0	20								
					127 80	190	155			202		80								
				ľ	128 85	190	165					2								
				ľ	129 83	191	161													
					130 83	192	161													
					130 90	192	165													
					132 84	195	165											_		
					132 91	194	1 172													
					138 87	195	17:													
					138 95	195	17.					_		_						
m.mother	վ. վայտիքու	Ļ																		
111.111011101,	u. uauguur.	T																		

1.Flanked A	\ny(3+4+5)*	2. Flanked Pa	Meta or Flanked ra(3+5)*	3. Flank	ed Meta*	4.Flanke	d Ortho*	5.Flanked	Para*
23	2	23	2	23	2	23	3	34	3
34	4	34	4	34	4	234	34	234	23
234	24	234	24	234	24	235	35	345	35
235	25	235	25	235	25	2345	345	245	25
236	26	236	26	236	26	2356	235	2345	235
345	34	345	34	345	34	23456	2345	2346	236
2345	245	2345	245	2345	245			23456	2356
2345	234	2345	234	2345	234				
2346	246	2346	246	2346	246				
2356	236	2356	236	2356	236				
23456	2346	23456	2346	23456	2346				
23	3	34	3						
234	34	234	23						
235	35	345	35						
2345	345	245	25						
2356	235	2345	235						
23456	2345	2346	236						
34	3	23456	2356						
234	23								
345	35								
245	25								
2345	235								
2346	236								
23456	2356								

Table D.3 Input of the Pathway Function for PBDEs

continued)	
ં	
D.3	
Table	

	Γ																											
e Flanked -any	35	235	2356																									
11.Double para	345	2345	23456																									
nked or 1+8)*	2	4	24	25	26	34	245	234	246	236	2346	З	34	35	345	356	2345	Э	23	35	25	235	236	2356		2	26	
10. Flar para(23	34	234	235	236	345	2345	2345	2346	2356	23456	23	234	235	2345	2356	23456	34	234	345	245	2345	2346	23456	4	24	246	
r meta(1+6)*	2	4	24	25	26	34	245	234	246	236	2346	3	34	35	345	356	2345	3	23	35	25	235	236	2356		2	3	23
9. Flanked o	23	34	234	235	236	345	2345	2345	2346	2356	23456	23	234	235	2345	2356	23456	34	234	345	245	2345	2346	23456	3	25	35	235
a Any *		2	ñ	23	35	25	26	235	236	2356																		
8. Para	4	24	34	234	345	245	246	2345	2346	23456																		
o Any*		e	4	2	2	34	35	23	45	24	345	234	235	2345														
7. Orthe	2	23	24	25	26	234	235	236	245	246	2345	2346	2356	23456														
Any*		2	2	4	m	24	25	23	26	34	245	234	246	236	2346													
6.Meta	e	23	25	34	35	234	235	235	236	345	2345	2345	2346	2356	23456													

ng et al Locta	245-246	2346-25	236-245	245-245	246-25	246-25	236-25	245-25	236-25	245-25	25-26	25-26	236-3	23-25	25-25	25-25	26-2									
21.Dir 2013	2346-245	2346-245	2346-245	2346-245	245-246	2346-25	2346-25	2346-25	236-245	236-245	246-25	236-25	236-25	236-25	236-25	245-25	25-26									
g et al benta	246-2	26-2	24-2	2-2	24-25	245-2	25-2	25-2	245-25	25-25																
20.Din <u>ę</u> 2013_p	246-24	246-2	24-24	24-2	245-24	245-24	24-25	245-2	245-245	245-25																
). tal_2008	2346-236 2	2346-246 2	2346-245 2	2356-245 2	2346-245 2	2345-245 2	2346-245 2	2345-245 2	2345-246 2	2346-345 2	2346-235	2346-24	236-245	245-245	245-246	2346-25	245-25	245-24	245-34	24-25	24-24	245-2	24-34	24-4	24-2	
15 Robrocke	2346-2346	2346-2346	2346-2346	23456-245	23456-245	23456-245	2345-2346	2345-2346	2345-2346	2345-2346	2345-2346	2346-245	2346-245	2346-245	2346-245	2346-245	245-245	245-245	245-245	245-24	245-24	245-24	245-24	24-24	24-24	
getal_2014	2345-2346	2346-2346	2346-345	2346-245	2346-246	246-34	246-34	234-245	245-246	234-24	246-24	245-24	24-34	24-24	24-25	26-34	24-4	24-4	24-2	4-4	4-	4-	24-			
18. Huang	23456-2346	23456-2346	2345-2346	2345-2346	2346-2346	2346-345	2346-246	2346-245	2346-245	234-245	245-246	245-246	234-24	246-24	245-24	246-34	24-34	24-24	24-25	24-4	4-4	24-	24-2			
ce tal 2008 ome trics	23456-2345	23456-2346	23456-2356	2345-2346	2345-2346	2346-2346	2346-345	2346-246	24-34																	
17. Tokarz without b	23456-23456	23456-23456	23456-23456	23456-2345	23456-2346	23456-2346	2345-2346	2346-2346	245-24																	
al2008 with etrics	23456-2345	23456-2346	23456-2356	2345-2346	2345-2346	2346-2346	2346-345	2346-246	24-34	24-24	24-4	24-2	245-246	246-34	245-24	245-24	24-34	24-25	24-4	24-2						
16. Tokarzet biome	23456-23456	23456-23456	23456-23456	23456-2345	23456-2346	23456-2346	2345-2346	2346-2346	245-24	245-24	24-34	24-24	2346-246	245-246	245-246	245-245	246-34	245-24	24-24	24-25						
flanked and y flanked	24	235	245	246	2356	2346	35	2	25	26	24	236	4	34	23	25		236								
15.doubly meta para+singl	234	2345	2345	2346	23456	23456	345	23	235	236	245	2356	34	345	234	245	34	2346								
/ Flanked · singly 1 meta	2	25	26	24	236	4	34	23	25	e	236															
14. Singly para or flanke	23	235	236	245	2356	34	345	234	245	34	2346															
ly Flanked r doubly d meta	35	235	2356	24	245	246	2346																			
13.Doub para o flanke	345	2345	23456	234	2345	2346	23456																			
le Flanked a-any	24	245	246	2346																						
12.Doub	234	2345	2346	23456																						

										_												
⊬аtnways №:3	7. Ortho Any*	q	28	47	66			vs No:3	Flanked singly meta	q	47	66	100	vs No:2	g et al	2013_octa	q	153	154			
		٤	47	100	154			Pathway	14. Singly para or flanked	ш	66	153	154	Pathwa	21.Din		ш	183	183			
VS NO:1	Any*	q	154					ys No:1	ubly para or flanked ta	q	154			ys No:0	g et al	penta	q					
Ратпwa	6.Meta	٤	183					Pathwa	13.Dc Flanked doubly me	ш	183			Pathwa	20.Din	2013_	m					
VS NO:U	d Para*	σ						ys No:1	uble neta-any	p	154			ys No:5	9. tal_2008	q	28	47	66	153	154	
Ратпwa	5.Flanke	٤						Pathwa	12.Do Flanked n	Е	183			Pathwa	16	Robrocke	ш	47	66	153	183	183
T:ON S	l Ortho*	q	153					/s No:0	uble)ara-any	q				ys No:5	8. al_2014	q	28	47	66	100	154	
Ратпway	4.Flanked	٤	183					Pathway	11.Do Flanked p	ш				Pathway	18	Huanget	ш	47	100	154	154	183
Patnways no:4	3. Flanked Meta*	q	47	66	100	154		ys No:1	ked or L+8)*	q	154			ys No:0	cetal2008 out	etrics	q					
		E	66	153	154	183		Pathway	10. Flar para(ш	183			Pathwa	17. Tokarz with	biom	ш					
T:ON	1eta or a(3+5)*	q	154					No:1	d or 6)*	q	154			No:4	tal 2008 etrics		q	28	47	66	66	
ratnways	2. Flanked N Flanked Par	٤	183					Pathways	9. Flanke meta(1+	E	183			Pathways	16. Tokarze	with biom	ш	47	66	153	154	
Patnways No:5	1.Flanked Any(3+4+5)*	q	47	66	100	153	154	/s No:0	Any*	q				/s No:4	nankeo and ngly	singly	q	47	66	100	154	
		٤	66	153	154	183	183	Pathwa	8. Para	ш				Pathwa	ununun meta	para+s	£	66	153	154	183	
								 		_				 								

Table D.4 Output of the Pathway Function for PBDEs

m:mother, d: daughter

APPENDIX E

RESULTS OF ADM FOR BH SEDIMENT MICROCOSMS CONTAMINATED BY PCBs

	e	-	3	6	4	3	11	12	11	11	1	6	12	-
Total #	± IDUAL #	or Shuffles	4	695	26	2	1100	1200	632	628	2	466	1200	1000
	7+DF1)	t200- t300	1	20	2	1	100	100	100	82	0	38	100	100
4.BH+all	EH10+ 01	t100- t200	0	63	0	0	100	100	11	0	0	0	100	100
	(SF1+D]	t0-t100	0	0	0	0	100	100	50	9L	0	38	100	100
FI)	t200- t300	0	16	0	0	100	100	100	20	0	33	100	100
H+017+D	017+DF1	t100- t200	0	0	0	0	100	100	38	17	0	46	100	100
3.B)	t0-t100	1	100	0	1	0	100	100	100	0	0	100	100
EH10	F1+DEH10)	t200- t300	0	81	4	0	100	100	51	82	0	44	100	100
[+SF1+D]		t100- t200	0	32	0	0	100	100	0	L	0	0	100	100
2.BH	(S)	t0-t100	0	59	0	1	100	100	22	89	0	42	100	100
		t200- t300	0	100	19	0	100	100	53	36	0	100	100	100
1 вн	110.1	t100- t200	0	62	0	0	100	100	7	40	0	25	100	100
		t0-t100	2	0	1	2	100	100	100	100	2	100	100	100
D. Activity No			S	11	12	13	16	17	18	19	20	21	22	

Table E.1 Numbers of samples and shuffles in each sample run by ADM

^a: number of samples run by ADM for corresponding activity

Figure E.1 Comparison of scatter plot of (first row) the PCB profiles of Data set 1.BH for days, t0 vs. t100, t100 vs. t200 and t200 vs. t300 and (second row) prediction profiles at days 100, 200 and 300 for DA 18 (Activity of DEH10) by ADM

Figure E.2 Comparison of scatter plot of (first row) the PCB profiles of Data set
2.BH for days , t0 vs. t100, t100 vs. t200 and t200 vs. t300, (second row) prediction profiles at days 100 and 300 for DA 18 (Activity of DEH10) by ADM and (third row) prediction profiles at days 100, 200 and 300 for DA 23 (Activity of DEH10+SF1) by ADM

Figure E.3 Comparison of scatter plot of (first row) the PCB profiles of Data set 3.BH for days , t0 vs. t100, t100 vs. t200 and t200 vs. t300, (second row) prediction profiles at days 100, 200 and 300 for DA 18 (Activity of DEH10) by ADM and (third row) prediction profiles at days 100, 200 and 300 for DA 24 (Activity of o17+DF1) by ADM

Figure E.4 Comparison of scatter plot of (first row) the PCB profiles of Data set
4.BH for days , t0 vs. t100, t100 vs. t200 and t200 vs. t300, (second row) prediction
profiles at days 100, 200 and 300 for DA 18 (Activity of DEH10) by ADM and (third row) prediction profiles at days 100, 200 and 300 for DA 25 (Activity of Deh10+SF1+o17+DF1) by ADM

303

APPENDIX F

RESULTS OF FTHP MODEL FOR LAKE MICHIGAN SEDIMENTS CONTAMINATED BY PCBs

Table F.1 k_m values estimated by ADM for DA18, DA25, DA19, DA13 and DA20

Congener II	JPAC No	k _m	values of DA1	8 estimated b	by ADM
Mother	Daughter	Min	Med	Max	Avg±SD
66	33	0	0.0034	0.0266	0.005 ± 0.0047
101	49	0.0001	0.0071	0.0531	0.009 ± 0.0122
138/163	99	0.0006	0.0056	0.0215	0.0053 ± 0.0044
105/132/153	99	0.0010	0.0027	0.0111	0.0032 ± 0.0021
146	101	0.0018	0.0053	0.1234	0.0184 ± 0.0354
151	66	0	0.0045	0.1290	0.0068±0.0165

Table F.1 (*Continued*)

Congene	r IUPAC No	km	values of DA2	25 estimated	by ADM
Mother	Daughter	Min	Med	Max	Avg±SD
138/163	85	0	0.0018	0.0031	0.002 ± 32.9808
138/163	81	0	0.0014	0.0029	0.0017±45.4477
138/163	87	0	0.0014	0.0029	0.0017±45.4477
138/163	99	0	0.0022	0.0076	0.0026±22.8106
118	66	0	0.0014	0.0108	0.0014±0
170/190	66	0	0.0014	0.0108	0.0014±0
180	146	0	0.0013	0.0024	0.0013±10.1275
180	105/132/153	0.0004	0.0014	0.0025	0.0015±7.726

Table F.1 (Continued)

Congener	IUPAC No	km	values of DA1	9 estimated b	y ADM
Mother	Daughter	Min	Med	Max	Avg±SD
101	49	0.0006	0.0071	0.3652	0.0155±0.0509
84/92	52	0	0.0062	0.0281	0.0066 ± 0.0073
170/190	138/163	0	0	0	0±0
182/187	118	0	0.0002	0.0013	0.0003 ± 0.0004
182/187	123/149	0	0.0002	0.0013	0.0003 ± 0.0004

Table F.1 (Continued)

Congener I	UPAC No	k _m v	values of DA1	3 estimated b	by ADM
Mother	Daughter	Min	Med	Max	Avg±SD
56/60	28/31	0	0	0	0±0
81	49	0	0.0105	0.1119	0.0466 ± 0.0576
87	49	0	0.0105	0.1119	0.0466 ± 0.0576
66	28/31	0.002	0.0033	0.0137	0.0057 ± 0.0047
105/132/163	66	0	0	0.0001	0±0
105/132/163	66	0	0.0011	0.002	0.0012 ± 0.0007
138/163	99	0.0007	0.0021	0.0057	0.0024 ± 0.002
182/187	81	0.0006	0.0016	0.0019	0.0013 ± 0.0005
182/187	87	0.0006	0.0016	0.0019	0.0013 ± 0.0005
182/187	85	0	0.0004	0.002	0.0007 ± 0.0009
170/190	138/163	0	0	0.0005	0.0002 ± 0.0002
180	146	0.0008	0.0009	0.0016	0.0012 ± 0.0003
180	105/132/153	0	0.0001	0.0015	0.0004±0.0006

Table F.1	(<i>Continued</i>)
-----------	----------------------

Congener IU	JPAC No	k _m values of DA20		20 estimated	nated by ADM		
Mother	Daughter	Min	Med	Max	Avg±SD		
56/60	33	0	0	0	0±0		
56/60	28/31	0	0	0	0±0		
70/76	26	0	0.0076	0.0152	0.0076 ± 0.0107		
74	28/31	0	0	0	0±0		
81	44	0	0	0.0001	0 ± 0.0001		
81	49	0.0042	0.0051	0.006	0.0051 ± 0.0013		
87	44	0	0	0.0001	0±0.0001		
87	49	0.0042	0.0051	0.006	0.0051 ± 0.0013		
66	28/31	0.0005	0.0005	0.0005	0.0005 ± 0		
99	49	0	0.0013	0.0025	0.0013±0.0018		
101	52	0.0008	0.0009	0.0009	0.0009 ± 0.0001		
66	33	0.0021	0.0023	0.0026	0.0023 ± 0.0004		
105/132/153	66	0	0	0	0±0		
118	70	0	0.0001	0.0001	0.0001 ± 0.0001		
123/149	70	0	0.0001	0.0001	0.0001 ± 0.0001		
118	66	0	0	0	0±0		
123/149	66	0	0.0001	0.0001	0.0001 ± 0.0001		
105/132/153	84/92	0	0	0	0±0		
138/163	81	0.0003	0.0005	0.0007	0.0005 ± 0.0003		
138/163	87	0.0003	0.0005	0.0007	0.0005 ± 0.0003		
138/163	99	0.0009	0.001	0.0012	0.001 ± 0.0002		
170/190	138/163	0.0005	0.0006	0.0007	0.0006 ± 0.0001		
180	146	0.0011	0.0011	0.0011	0.0011 ± 0		
182/187	85	0	0	0	0±0		
182/187	81	0.0004	0.0004	0.0005	0.0004 ± 0.0001		
182/187	87	0.0004	0.0004	0.0005	0.0004 ± 0.0001		
146	84/92	0.0016	0.0023	0.003	0.0023±0.001		

Table F.2 Trials for calibration of PCB congeners in Lake Michigan sediment

Congener	No Deg 1	Ferm (S)	v.=0.75 n	1/d(50%)	v.=2.25 m/	(d(150%)	v, m/d	(20%)	Vh.m/d(150%)	K _d with m	uin values	K _d with n	ax values
IIIPAC No -	D		, ,		, ,		2 e				(logK _o	w mun)	(logK _o	w max)
	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbf{R}^2	RMSE	\mathbb{R}^2	RMSE
16	0.45	12.18	0.45	13.28	0.44	11.37	0.45	12.18	0.45	12.18	0.45	12.08	0.45	12.22
26	0.80	16.06	0.81	17.38	0.80	15.12	0.80	16.06	0.80	16.06	0.80	15.98	0.80	16.10
28/31	0.81	242.49	0.81	264.43	0.81	226.93	0.81	242.49	0.81	242.49	0.81	240.66	0.81	248.08
33	0.73	47.17	0.73	50.14	0.72	45.27	0.73	47.17	0.73	47.17	0.73	46.83	0.73	47.90
44	0.56	46.29	0.57	48.87	0.56	46.52	0.56	46.29	0.56	46.29	0.56	46.08	0.56	51.22
49	0.79	38.18	0.79	42.28	0.78	35.38	0.79	38.18	0.79	38.18	0.79	37.75	0.79	40.41
52	0.74	63.72	0.75	70.70	0.74	59.58	0.74	63.72	0.74	63.72	0.74	61.59	0.74	66.91
56/60	0.83	92.43	0.84	108.87	0.83	81.27	0.83	92.43	0.83	92.43	0.83	91.51	0.83	125.23
6 6	0.76	195.68	0.76	219.72	0.75	182.67	0.76	195.68	0.76	195.68	0.76	194.59	0.76	196.96
70/76	0.79	89.48	0.80	102.02	0.79	82.37	0.79	89.48	0.79	89.48	0.79	88.57	0.79	91.51
74	0.87	53.74	0.87	60.98	0.87	48.29	0.87	53.74	0.87	53.74	0.87	53.56	0.87	56.67
81	0.78	3.82	0.78	4.55	0.78	3.27	0.78	3.82	0.78	3.82	0.78	3.74	0.78	4.04
84/92	0.68	91.33	0.68	99.41	0.68	84.39	0.68	91.33	0.68	91.33	0.68	78.87	0.68	187.94
85	0.37	23.28	0.37	24.20	0.36	24.49	0.37	23.28	0.37	23.28	0.37	23.44	0.37	23.27
87	0.83	28.48	0.84	33.45	0.83	24.73	0.83	28.48	0.83	28.48	0.83	25.72	0.83	36.52
66	0.53	32.10	0.54	32.82	0.53	31.48	0.53	32.10	0.53	32.10	0.53	29.04	0.53	85.26
101	0.62	40.95	0.62	47.87	0.62	38.89	0.62	40.95	0.62	40.95	0.62	39.34	0.62	69.10
118	0.41	53.87	0.42	60.74	0.41	52.60	0.41	53.87	0.41	53.87	0.41	52.52	0.41	75.84
123/149	0.16	23.32	0.16	24.52	0.16	23.36	0.16	23.32	0.16	23.32	0.16	23.28	0.16	30.71
105/132/153	0.20	68.53	0.21	74.35	0.20	68.94	0.20	68.53	0.20	68.53	0.20	68.95	0.20	108.38
151	0.17	6.02	0.18	5.92	0.17	6.67	0.17	6.02	0.17	6.02	0.17	6.08	0.17	6.17
138/163	0.51	151.97	0.51	161.30	0.51	144.00	0.51	151.97	0.51	151.97	0.51	129.39	0.51	286.68
170/190	0.29	16.46	0.29	18.89	0.29	15.29	0.29	16.46	0.29	16.46	0.29	16.04	0.29	17.49
180	0.09	34.90	0.09	37.87	0.09	34.56	0.09	34.90	0.09	34.90	0.09	34.50	0.09	35.28
182/187	0.00	12.68	0.00	12.74	0.00	12.66	0.00	12.68	0.00	12.68	0.00	12.99	0.00	13.59
195/208	0.05	6.23	0.05	6.06	0.05	6.42	0.05	6.23	0.05	6.23	0.05	6.51	0.05	6.01
146	0.21	14.58	0.21	15.24	0.21	14.09	0.21	14.58	0.21	14.58	0.21	13.66	0.21	16.45
$\Sigma PCBs$	0.73	1227.19	0.73	1426.542	0.73	1093.428	0.73	1227.192	0.73	1227.192	0.73	1155.692	0.73	1671.731
Min	0.00		0.00		0.00		0.00		0.00		0.00		0.00	
Max	0.87		0.87		0.87		0.87		0.87		0.87		0.87	
Average	0.53		0.53		0.53		0.53		0.53		0.53		0.53	
Std	0.28		0.28		0.28		0.28		0.28		0.28		0.28	

							* <u>-0 75</u> *	n/d and	· 22 U- A	puo p/u	· 22 U- A	hand hand	~ <u>- 0 75</u> ~	n/d and
Congener	DA1	8 _{min}	DA18	Bmedian	DA1	8 _{max}	IAU DA1	8 _{min}	DAmi	*0.1	IAU IAU	8 _{max}	DA18	median
	\mathbb{R}^2	RMSE	\mathbf{R}^2	RMSE	\mathbf{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE
16	0.45	12.18	0.45	12.18	0.45	12.18	0.45	13.28	0.45	13.28	0.45	13.28	0.45	13.28
26	0.80	16.06	0.80	16.06	0.80	16.06	0.81	17.38	0.81	17.38	0.81	17.38	0.81	17.38
28/31	0.81	242.49	0.81	242.49	0.81	242.49	0.81	264.43	0.81	264.43	0.81	264.43	0.81	264.43
33	0.73	47.17	0.57	376.22	0.01	563.59	0.73	50.14	0.73	50.14	0.61	426.93	0.03	610.29
44	0.56	46.29	0.56	46.29	0.56	46.29	0.57	48.87	0.57	48.87	0.57	48.87	0.57	48.87
49	0.79	44.17	0.51	197.96	0.00	270.78	0.79	50.08	0.79	50.08	0.56	222.32	0.03	290.85
52	0.74	63.72	0.74	63.72	0.74	63.72	0.75	70.70	0.75	70.70	0.75	70.70	0.75	70.70
56/60	0.83	92.43	0.83	92.43	0.83	92.43	0.84	108.87	0.84	108.87	0.84	108.87	0.84	108.87
99	0.76	195.68	0.66	340.15	0.12	602.10	0.76	219.72	0.76	219.72	0.67	333.90	0.12	601.46
70/76	0.79	89.48	0.79	89.48	0.79	89.48	0.80	102.02	0.80	102.02	0.80	102.02	0.80	102.02
74	0.87	53.74	0.87	53.74	0.87	53.74	0.87	60.98	0.87	60.98	0.87	60.98	0.87	60.98
81	0.78	3.82	0.78	3.82	0.78	3.82	0.78	4.55	0.78	4.55	0.78	4.55	0.78	4.55
84/92	0.68	91.33	0.68	91.33	0.68	91.33	0.68	99.41	0.68	99.41	0.68	99.41	0.68	99.41
85	0.37	23.28	0.37	23.28	0.37	23.28	0.37	24.20	0.37	24.20	0.37	24.20	0.37	24.20
87	0.83	28.48	0.83	28.48	0.83	28.48	0.84	33.45	0.84	33.45	0.84	33.45	0.84	33.45
66	0.52	242.12	0.43	549.89	0.15	723.65	0.52	263.80	0.52	263.80	0.45	588.78	0.17	757.09
101	0.65	47.29	0.49	143.93	0.10	220.33	0.57	58.00	0.57	58.00	0.50	144.04	0.10	220.53
118	0.41	53.87	0.41	53.87	0.41	53.87	0.42	60.74	0.42	60.74	0.42	60.74	0.42	60.74
123/149	0.16	23.32	0.16	23.32	0.16	23.32	0.16	24.52	0.16	24.52	0.16	24.52	0.16	24.52
105/132/153	0.20	131.52	0.18	213.38	0.08	296.56	0.20	123.82	0.20	123.82	0.18	212.37	0.08	297.17
151	0.17	6.02	0.13	21.80	0.00	32.95	0.18	5.92	0.18	5.92	0.13	21.75	0.00	32.96
138/163	0.50	95.81	0.45	222.81	0.22	326.46	0.51	96.78	0.51	96.78	0.45	227.77	0.22	328.16
170/190	0.29	16.46	0.29	16.46	0.29	16.46	0.29	18.89	0.29	18.89	0.29	18.89	0.29	18.89
180	0.09	34.90	0.09	34.90	0.09	34.90	0.09	37.87	0.09	37.87	0.09	37.87	0.09	37.87
182/187	0.00	12.68	0.00	12.68	0.00	12.68	0.00	12.74	0.00	12.74	0.00	12.74	0.00	12.74
195/208	0.05	6.23	0.05	6.23	0.05	6.23	0.05	6.06	0.05	6.06	0.05	6.06	0.05	6.06
146	0.19	23.03	0.14	34.28	0.00	53.73	0.19	23.34	0.19	23.34	0.14	34.85	0.00	53.79
ΣPCBs	0.73	1227.229	0.73	1227.731	0.73	1228.088	0.73	1426.59	0.73	1426.59	0.73	1427.35	0.74	1429.98
Min	0.00		0.00		0.00		0.00		0.00		0.00		0.00	
Max	0.87		0.87		0.87		0.87		0.87		0.87		0.87	
Average	0.53		0.49		0.39		0.53		0.53		0.50		0.39	
Std	0.28		0.28		0.33		0.28		0.28		0.28		0.33	
Bold and unde	rlined num	nbers : maxin	num incre.	ase according	g to value i	n No degrad:	ation case.	Italic and u	nderlined	numbers dec	crease acco	ording to val	ue in No d	egradation
case.				,)))

Table F.2 (continued)

Parameters	Distribution	Lower Limit	Upper Limit	Mean	Variance
TSS, mg/L	Lognormal	0.2	2.41	0.942	0.162
vs, m/day	Uniform	0.2	1.5		
\mathbf{f}_{ocw}	Uniform	0.039	0.09		

Table F.3 Min, Max, Mean and Variance of 7 Parameters for Uncertainty Analysis

Table F.3 (Continued)

Congener II	JPAC No		k _m =1	Lognormal	
Mother	Daughter	Min	Max	Avg	Variance
66	33			10-20	$8.7 \mathrm{x} 10^{-41}$
101	49			10-5	1.85×10^{-10}
138/163	99			6.1x10 ⁻⁵	2.50×10^{-10}
105/132/153	99			0.00010	4.69x10 ⁻⁹
146	101			0.00018	1.22×10^{-7}
151	66			10-20	5.95x10 ⁻⁴⁰

Table	F.3	(Continued)	
		· · · · · · · · · · · · · · · · · · ·	

Congener	C_{w}	Lognormal	LogK _{ow}	Lognormal	D_{m}	Lognormal
IUPAC No	avg	variance	avg	variance	avg	variance
16	0.00190	0.00000	5.06	0.21	0.5714x10 ⁵	0.00000
26	0.00167	0.00000	5.68	0.01	0.5714×10^{5}	0.00000
28/31	0.01156	0.00003	5.72	0.11	0.5714x10 ⁵	0.00000
33	0.00711	0.00000	5.75	0.03	0.5714×10^{5}	0.00000
44	0.00867	0.00001	5.84	0.20	0.5471x10 ⁵	0.00000
49	0.00469	0.00000	6.03	0.06	0.5471x10 ⁵	0.00000
52	0.01156	0.00001	5.79	0.29	0.5471x10 ⁵	0.00000
56/60	0.00385	0.00001	6.05	0.22	0.5471x10 ⁵	0.00000
66	0.00725	0.00011	6.10	0.04	0.5471x10 ⁵	0.00000
70/76	0.00595	0.00001	6.09	0.04	0.5471x10 ⁵	0.00000
74	0.00268	0.00000	6.34	0.09	0.5471x10 ⁵	0.00000
81	0.00024	0.00000	6.30	0.05	0.5471x10 ⁵	0.00000
84/92	0.03038	0.00030	6.24	0.17	0.5228x10 ⁵	0.00000
85	0.00165	0.00000	6.44	0.06	0.5228x10 ⁵	0.00000
87	0.00447	0.00000	6.29	0.11	0.5228x10 ⁵	0.00000
99	0.01285	0.00005	6.64	0.16	0.5228x10 ⁵	0.00000
101	0.00498	0.00000	6.40	0.42	0.5228x10 ⁵	0.00000
118	0.00711	0.00003	6.70	0.11	0.5228x10 ⁵	0.00000
123/149	0.00371	0.00000	6.60	0.08	0.51065x10 ⁵	0.00000
105/132/153	0.00650	0.00004	6.81	0.32	0.5066×10^5	0.00000
151	0.00055	0.00000	6.62	0.09	0.4985x10 ⁵	0.00000
138/163	0.01663	0.00000	6.92	0.11	0.4985x10 ⁵	0.00000
170/190	0.00067	0.00000	7.12	0.03	0.4742×10^5	0.00000
180	0.00101	0.00000	7.10	0.07	0.4742×10^5	0.00000
182/187	0.00156	0.00000	7.06	0.03	0.4742×10^{5}	0.00000
195/208	0.00020	0.00000	7.89	0.21	0.43775x10 ⁵	0.00000
146	0.00181	0.00000	6.85	0.03	0.4985x10 ⁵	0.00000

APPENDIX G

RESULTS OF FTHP MODEL FOR SAN FRANCISCO BAY SEDIMENTS CONTAMINATED BY PBDEs

																1
Congener No	No Deg	Term (S)	vs=0.5 n	1/d(50%)	v _s =1.5 m	//d(150%)	v _b =0.0000	0097 m/d	$v_b = 0.0$	000291, /d	K _d with n (logK	nin values (ow -1)	K _d with m (logK _o	ax values _w +1)	Dehalg of 8 pa km	enations ths with ax_I
	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE
7	0.07	22.51	0.02	21.47	0.11	22.51	0.07	22.51	0.07	22.51	0.08	22.63	0.06	13.77	0.07	22.51
×	0.00	19.80	0.00	18.35	0.02	19.87	0.00	19.80	0.00	19.80	0.01	20.01	0.00	14.16	0.00	19.80
15	0.16	11.13	0.09	10.61	0.23	10.85	0.16	11.13	0.16	11.13	0.17	14.11	0.16	14.59	0.16	11.13
17/25	0.09	75.15	0.05	69.68	0.14	74.52	0.09	75.15	0.09	75.15	0.10	98.03	0.09	89.81	0.09	75.15
28/33	0.41	19.49	0.33	17.61	0.49	19.66	0.41	19.49	0.41	19.49	0.42	25.80	0.41	24.61	0.69	722.26
32	0.68	1.47	0.59	1.16	0.73	1.66	0.68	1.47	0.68	1.47	0.68	1.47	0.68	1.47	0.68	1.47
35	0.43	2.35	0.33	2.23	0.50	2.44	0.43	2.35	0.43	2.35	0.43	2.35	0.43	2.35	0.43	2.35
47	0.38	310.80	0.32	322.79	0.45	306.25	0.38	310.80	0.38	310.80	0.38	198.26	0.38	564.00	0.69	137.22
49	0.34	72.38	0.24	83.74	0.43	66.66	0.34	72.38	0.34	72.38	0.34	71.38	0.34	124.95	0.34	72.38
99	0.53	14.94	0.43	17.03	0.63	13.99	0.53	14.94	0.53	14.94	0.53	9.63	0.53	25.59	0.53	14.94
85	0.90	14.46	0.84	15.19	0.94	14.20	0.90	14.46	0.90	14.46	0.90	2.94	0.90	14.96	0.90	14.46
66	0.52	253.74	0.45	262.98	09.0	250.38	0.52	253.74	0.52	253.74	0.52	209.92	0.52	435.67	0.81	68.08
100	0.56	101.83	0.48	95.87	0.64	104.21	0.56	101.83	0.56	101.83	0.56	98.95	0.56	113.01	0.45	70.43
153	0.75	45.25	0.69	42.49	0.80	46.29	0.75	45.25	0.75	45.25	0.75	45.25	0.75	45.94	0.79	11.30
154	0.59	49.26	0.50	48.03	0.68	49.76	0.59	49.26	0.59	49.26	0.59	49.32	0.59	49.33	0.68	14.09
183	0.85	20.93	0.78	20.13	0.90	21.23	0.85	20.93	0.85	20.93	0.85	20.96	0.85	20.96	0.85	18.23
197	0.94	31.88	0.96	30.60	0.90	32.30	0.94	31.88	0.94	31.88	0.94	31.88	0.94	31.89	0.94	31.88
206	0.53	190.30	0.43	183.65	0.63	192.97	0.53	190.30	0.53	190.30	0.53	190.30	0.53	190.31	0.53	190.30
207	0.60	305.15	0.50	262.02	0.68	321.17	0.60	305.15	0.60	305.15	0.60	299.75	0.60	305.10	0.60	305.15
208	0.75	23.96	0.66	29.21	0.82	23.50	0.75	23.96	0.75	23.96	0.75	23.96	0.75	23.96	0.75	23.96
209	0.44	3600.03	0.35	3845.29	0.52	3492.68	0.44	3600.03	0.44	3600.03	0.44	2126.37	0.44	3565.27	0.44	3600.03
<i><u>PBDEs</u></i>	0.45	4903.87	0.37	5186.61	0.54	4783.44	0.45	4903.87	0.45	4903.87	0.45	2960.38	0.45	5539.53	0.45	4904.31
Min	0.00		0.00		0.02		0.00		0.00		0.01		0.00		0.00	
Max	0.94		0.96		0.94		0.94		0.94		0.94		0.94		0.94	
Average	0.50		0.43		0.56		0.50		0.50		0.50		0.50		0.54	
Std	0.27		0.27		0.27		0.27		0.27		0.27		0.27		0.28	

Table G.1 Trials for calibration of PBDE congeners in Lake Michigan sediment

										1		1		1		1	
									\mathbf{v}_{s}	1.5	_s∧	1.5	\mathbf{v}_{s}	1.5	S ^S	1.5	$\mathbf{v}_{\mathrm{s}}=1.5$
	Dehalg	enations	Dehalg	enations	Dehalg	enations	Dehalge	nations	m/d(1	50%)	m/d(]	50%)	m/d(1	50%)	m/d([50%)	m/d(150%)
Congener	of 8 par	ths with	of 8 pa	ths with	of 8 pa	ths with	of 8 pat	hs with	Dehalge	enations	Dehalg	enations	Dehalge	enations	Dehalg	enations	Dehalgenations
No	km	IX_II	kmet	lian_1	kmed	ian_11	kmedi	an_III	of 8 pat km	ths with ax_I	of 8 pai kma	ths with x_II	of 8 pat kmed	ths with ian_I	of 8 pa kmed	ths with ian_II	of 8 paths with kmedian_III
	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE	R2	RMSE	
7	0.07	22.51	0.07	22.51	0.07	22.51	0.07	22.51	0.11	22.51	0.11	22.51	0.11	22.51	0.11	22.51	0.11
×	0.00	19.80	0.00	19.80	0.00	19.80	0.00	19.80	0.02	19.87	0.02	19.87	0.02	19.87	0.02	19.87	0.02
15	0.16	11.13	0.16	11.13	0.16	11.13	0.16	11.13	0.23	10.85	0.23	10.85	0.23	10.85	0.23	10.85	0.23
17/25	0.0	75.15	0.09	75.15	0.09	75.15	0.09	75.15	0.14	74.52	0.14	74.52	0.14	74.52	0.14	74.52	0.14
28/33	<u>0.69</u>	734.15	0.63	393.50	0.61	464.33	0.61	464.33	0.69	625.69	0.69	639.21	0.67	316.10	0.65	368.70	0.65
32	0.68	1.47	0.68	1.47	0.68	1.47	0.68	1.47	0.73	1.66	0.73	1.66	0.73	1.66	0.73	1.66	0.73
35	0.43	2.35	0.43	2.35	0.43	2.35	0.43	2.35	0.50	2.44	0.50	2.44	0.50	2.44	0.50	2.44	0.50
47	0.70	142.10	0.53	148.96	0.43	181.44	0.43	181.44	0.71	117.91	0.72	121.66	0.58	155.62	0.49	195.39	0.49
49	0.34	72.38	0.34	72.38	0.34	72.38	0.34	72.38	0.43	66.66	0.43	66.66	0.43	66.66	0.43	66.66	0.43
99	0.53	14.94	0.53	14.94	0.53	14.94	0.53	14.94	0.63	13.99	0.63	13.99	0.63	13.99	0.63	13.99	0.63
85	0.90	14.46	0.90	14.46	0.90	14.46	0.90	14.46	0.94	14.20	0.94	14.20	0.94	14.20	0.94	14.20	0.94
66	0.81	68.08	0.66	114.74	0.77	75.16	0.77	75.16	0.83	74.13	0.83	74.13	0.72	129.65	0.80	80.65	0.80
100	0.45	70.43	0.56	101.83	0.56	52.99	0.56	53.44	0.64	83.53	0.64	83.53	0.64	104.21	0.64	67.69	0.64
153	0.79	11.30	0.75	44.82	0.75	44.82	0.75	44.82	0.80	7.51	0.80	7.51	0.80	45.97	0.80	45.97	0.80
154	0.68	14.09	0.59	49.40	0.59	42.16	0.59	41.68	0.68	12.55	0.68	12.55	0.68	49.85	0.68	44.53	0.68
183	0.85	18.23	0.85	20.79	0.85	20.72	0.85	20.70	0.90	19.27	0.90	19.27	0.90	21.13	0.90	21.07	0.90
197	0.94	31.88	0.94	31.88	0.94	31.88	0.94	31.88	0.90	32.30	0.90	32.30	0.90	32.30	0.90	32.30	0.90
206	0.53	190.30	0.53	190.30	0.53	190.30	0.53	190.30	0.63	192.97	0.63	192.97	0.63	192.97	0.63	192.97	0.63
207	0.60	305.15	0.60	305.15	0.60	305.15	0.60	305.15	0.68	321.17	0.68	321.17	0.68	321.17	0.68	321.17	<u>0.68</u>
208	0.75	23.96	0.75	23.96	0.75	23.96	0.75	23.96	0.82	23.50	0.82	23.50	0.82	23.50	0.82	23.50	0.82
209	0.44	3600.03	0.44	3600.03	0.44	3600.03	0.44	3600.03	0.52	3492.68	0.52	3492.68	0.52	3492.68	0.52	3492.68	0.52
ZPBDEs	0.45	4904.34	0.45	4903.93	0.45	4903.96	0.45	4903.96	0.54	4783.74	0.54	4783.76	0.54	4783.49	0.54	4783.50	0.54
Min	0.00		0.00		0.00		0.00		0.02		0.02		0.02		0.02		0.02
Max	0.94		0.94		0.94		0.94		0.94		0.94		0.94		0.94		0.94
Average	0.54		0.53		0.52		0.52		0.60		0.60		0.58		0.58		0.58
Std	0.28		0.27		0.27		0.27		0.27		0.27		0.27		0.27		0.27
Bold and u	nderlined	l numbers	: maxin	num increa	ise accor	ding to va	lue in Nc	o degradat	tion case	, Italic and	d underl	ined numb	bers decr	ease acco	rding to	value in	No degradation
case.																	

Table G.1 (continued)

Parameters	Distribution	Lower Limit	Upper Limit	Mean	Variance
TSS, mg/L	Lognormal			37.67	350.97
\mathbf{f}_{ocw}	Uniform	0.005	0.015		

Table G.2 Min, Max, Mean and Variance of 7 Parameters for Uncertainty Analysis

Table G.2	(Continued)
-----------	-------------

Congener IUPAC No		k _m =Lognormal			
Mother	Daughter	Min	Max	Avg	Variance
47	28/33			0.007	0.000058
99	47			0.003	0.000012
100	47			0.001	0.000002
153	99			0.024	0.002
154	99			0.018	0.001
154	100			0.008	0.00007
183	153			0.003	0.00002
183	154			0.017	0.001

Table G.2 (Continued)

Congener	Cw	Lognormal	LogKow	Lognormal
IUPAC No	avg	variance	avg	variance
7	0.006	0.9 x10 ⁹	4.99	0.0006
8	0.004	0.3 x10 ⁹	4.99	0.0006
15	0.003	0.2 x10 ⁹	5.83	0.0008
17/25	0.019	8.7 x10 ⁹	5.88	0.0009
28/33	0.005	0.6 x10 ⁹	5.88	0.0009
32	0	0	5.88	0.0009
35	0	0	6.72	0.0011
47	0.056	78.7 x10 ⁹	6.77	0.0011
49	0.014	4.6 x10 ⁹	6.77	0.0011
66	0.002	0.1 x10 ⁹	6.77	0.0011
85	0.001	$41 \text{ x} 10^{12}$	7.66	0.0015
99	0.037	33.7 x10 ⁹	6.84	0.0012
100	0.009	2.2 x10 ⁹	7.66	0.0015
153	0.004	0.4 x10 ⁹	8.55	0.0018
154	0.004	0.4 x10 ⁹	9.55	0.0023
183	0.002	$0.1 \text{ x} 10^9$	9.44	0.0022
197	0.002	0.1 x10 ⁹	10.33	0.0027
206	0.016	6.2 x10 ⁹	11.22	0.0031
207	0.025	15.1 x10 ⁹	11.22	0.0031
208	0	0	11.22	0.0031
209	0.302	2280 x10 ⁹	12.11	0.0037

Congener IUPAC		Congener IUPAC No				
No				congener		
Mother	Daughter	k _m		Mother	Daughter	k _m
47	28/33	0.0072		206	197	0.0010
99	47	0.0035		153	100	0.0160
100	47	0.0010		85	66	0.0020
153	99	0.0241		99	66	0.0020
154	99	0.0180		99	49	0.0020
154	100	0.0080		66	28/33	0.0070
183	153	0.0026		49	28/33	0.0070
183	154	0.0173		49	17/25	0.0070
209	208	0.0010		47	17/25	0.0070
209	207	0.0010		28/33	15	0.0070
209	206	0.0010		28/33	7	0.0070

Table G.3 k_{m} values for possible pathways used for the last scenario

Bold: The pathways assumed for the last scenario

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Karakaş, Filiz Marital Status: Married Email: <u>karakas_filiz@yahoo.com</u> Web: <u>https://tr.linkedin.com/in/filiz-karakas-37b51630</u> Web: <u>https://www.researchgate.net/profile/Filiz_Karakas</u>

EDUCATION

Degree	Institution	Year of Graduation
MSc	Middle East Technical University,	2010
	Environmental Engineering	
BSc	Middle East Technical University,	2007
	Environmental Engineering	

WORK EXPERIENCE

Year	Place	Enrollment
2010- Present	Middle East Technical University, Environmental Engineering	Research Assistant
2013	Türkiye Teknoloji Geliştirme Vakfı (TTGV), Ankara	Expert Consultant
2008-2010	T&T Environment and Technologies, Ankara	Environmental Engineer
2005 Summer	CETSAN Ltd Co. Preparation of EIA Reports, Ankara	Intern Engineering Student
2004 Summer	ASKI – Ankara Water and Sewer Administration, Ankara	Intern Engineering Student
2003-2004	Marmara University Environmental Engineering, İstanbul	Student Assistant in General Chemistry Lab

PUBLICATIONS

Journal Papers

- Karakas, F., Imamoglu, I. (2016). Estimation of biodegradation rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model. *Journal of Hazardous Materials. (Submitted).*
- Karakas F., Gedik K., Imamoglu I. (2016) PMF dynamics in fingerprinting: A comparative study of PMF2 and EPA-PMF3 for source apportionment of sediment PCBs. *Environmental Pollution*. (*Submitted*).
- Kaya D., Karakas F., Sanin F.D., Imamoglu I. (2015). PCBs In Sludge: Development Of A Practical Extraction Procedure and Its Application In An Urban WWTP. *Water Environment Research*, 87(2), 145-151.
- Karakas F., Gedik K., Imamoglu I. (2013) Apportionment of PCB sources near a transformer maintenance and repair facility in Ankara, Turkey. *Bulletin of Environmental Contamination and Toxicology*, 91(2), 141-147.
- Gedik K., Demircioglu F., Imamoglu I. (2010) Spatial distribution and source apportionment of PCBs in sediments around İzmit industrial complexes, Turkey. *Chemosphere*, 81(8), 992-999.
- Imamoglu I., Gedik K., Demircioglu F., Akduman N. (2009) Türkiye'nin poliklorlu bifeniller kaynaklı kirlilik durumuyla ilgili çalısmalar, *Cevre Bilim ve Teknoloji*, 3(2), 15-38.

Conference Papers

 Filiz Karakaş, Kadir Gedik, İpek İmamoğlu. Investigation of Polychlorinated Biphenyl Pollution In Lake Eymir By Using Positive Matrix Factorization Model. Environmental System Modeling Session: Environmental Management, 10th Ulusal Çevre Mühendisliği Kongresi, 12-14 September 2013, Hacettepe University, Ankara, Turkey, 377-381. (*in Turkish*)

- Devrim Kaya, Filiz Karakaş, F.Dilek Sanin, Ipek Imamoglu. PCBs in Biosolids: Monitoring In a Large Urban WWTP Using a Newly Developed Practical Extraction Procedure. Session: Success Stories and Lessons Learned, 27th Annual Residuals and Biosolids Conference Highlights Emerging Opportunities for Sustainable Resource Recovery, 5-8 May 2013, Kentucky, Tennessee, USA.
- 3. Karakas F, Imamoglu I. An exploration of the use of PMF for the investigation of PCB sources and fate in the aquatic environment. Division of Environmental Chemistry, Receptor Modeling for Source Apportionment and Degradation Assessment of Organic Chemicals in the Aquatic Environment, ACS 242nd National Meeting, August 28 - September 1, 2011, Denver, Colorado, USA.
- Demircioglu F, Gedik K, Imamoglu I. Investigation of the Fate of Polichlorinated Biphenyls Vicinity of Lake Eymir, VI. Türkiye'de Çevre Kirlenmesi Öncelikleri Sempozyumu (ÇEVKOS VI), 28-29 Mayıs 2009, Gebze Yüksek Teknoloji Enstitüsü, Kocaeli, Turkey s.76-80. (*in Turkish*)
- Imamoglu I, Gedik K, Demircioglu F. Investigation of anaerobic dechlorination in PCB-contaminated sediments. Tenth International In Situ and On-Site Bioremediation Symposium, 5-8 May 2009, Baltimore, Maryland, USA.