ASSESSMENT OF 17BETA-ESTRADIOL-ESTROGEN RECEPTOR ALPHA COMPLEX-MEDIATED CHANGES IN GENOME-WIDE METHYLATION AND GENE EXPRESSION PROFILES

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

 $\mathbf{B}\mathbf{Y}$

SIRMA DAMLA USER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGY

MAY 2016

Approval of the Thesis:

ASSESSMENT OF 17β-ESTRADIOL-ESTROGEN RECEPTOR ALPHA COMPLEX-MEDIATED CHANGES IN GENOME-WIDE METHYLATION AND GENE EXPRESSION PROFILES

submitted by **SIRMA DAMLA USER** in partial fulfillment of the requirements for the degree of **Master of Science in Biology Department, Middle East Technical University** by,

Prof. Dr. M. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Orhan Adalı Head of Department, Biology	
Prof. Dr. Mesut Muyan Supervisor, Biology Dept., METU	
Examining Committee Members:	
Assoc. Prof. Dr. A. Elif Erson-Bensan Biology Dept., METU	
Prof. Dr. Mesut Muyan Biology Dept., METU -	
Assoc. Prof. Dr. Tolga Can Computer Engineering Dept., METU -	
Assoc. Prof. Dr. Çağdaş Devrim Son Biology Dept., METU -	
Assist. Prof. Dr. Bala Gür Dedeoğlu Biotechnology Institute, Ankara University -	

Date: 30.05.2016

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Sırma Damla User

Signature :

ABSTRACT

ASSESSMENT OF 17BETA-ESTRADIOL-ESTROGEN RECEPTOR ALPHA COMPLEX-MEDIATED CHANGES IN GENOME-WIDE METHYLATION AND GENE EXPRESSION PROFILES

User, Sırma Damla M.S., Biology Department Supervisor: Prof. Dr. Mesut Muyan May 2016, 142 pages

17β-estradiol (E2), the most potent estrogen hormone, induces cellular responses primarily through Estrogen Receptor-alpha (ER α), which is a transcription factor. Interfering E2 signaling indicates that E2 is mitogenic for cells, exemplified by MCF7 cells derived from breast adenocarcinoma, synthesizing ER α endogenously.

Studies used exogenous expression of ER α in ER α -negative cell lines to examine structural/functional properties of the receptor. What was unexpected from these studies is the observation that E2 treatment represses cellular proliferation. However, mechanism(s) of this paradoxical phenomenon remains unknown.

Methylation is an important epigenetic DNA modification. Changes in methylation alter gene expressions critical for cellular proliferation/differentiation, embryonic development, genomic imprinting and cancer. We therefore hypothesize that distinct methylation statuses of responsive genes' regulatory regions underlie differential gene expressions, and hence, proliferative and anti-proliferative effects of E2 in cell models.

To test this prediction, we generated a cell model stably expressing ER α in MDAMB231 breast cancer cell line. Of the monoclones synthesizing ER α , the MDA-ER α 5, based on expected ER α functions, was selected as the cell model to

comparatively assess the E2 effects on changes in methylome and transcriptome profiles to those observed in MCF7 cells.

Our studies suggest that cell models have cell-specific methylation patterns for the same genomic region at which E2 induces distinct alterations and differentially modulates gene expressions. However, due to the existence of variations among experimental replicates, establishing a correlation between the methylation statuses to gene expression profile of cell lines appears to be immature. An increase in sample size could circumvent this issue.

Keywords: estrogen, estrogen receptor, methylation, gene expression

ÖΖ

17BETA-ÖSTRADİOL-ÖSTROJEN RESEPTÖR ALFA KOMPLEKSİ ARACILIĞI İLE GENOM ÇAPINDA OLUŞAN METİLASYON VE GEN İFADESİ DEĞİŞİKLERİNİN BELİRLENMESİ

User, Sırma Damla Yüksek Lisans, Biyoloji Bölümü Tez Yönetcisi: Prof. Dr. Mesut Muyan Mayıs 2016, 142 sayfa

17β-östradiol (E2), en güçlü östrojen hormonudur ve transkripsiyon faktörü olan Östrojen Reseptörü-alfa (ERα) aracılığıyla hücrede birçok yanıtın oluşmasına neden olur. E2 sinyal yolağına müdahale ile yapılan çalışmalarda, MCF7 gibi ERα'yı endojen olarak sentezleyen hücrelerde E2'nin hücresel çoğalma için gerekli olduğu gösterilmiştir.

ERα-negatif hücre hatlarında, ERα'nın harici olarak sentezlenmesiyle reseptörün yapısal/fonksiyonel özellikleri çalışılmıştır. Beklenmedik olan ise E2'nin hücresel çoğalmayı bu hücre hatlarında baskılamasıdır. Bu çelişkili gözlemlerin sebebi ise belirsizliğini korumaktadır.

Metilasyona önemli bir epigenetik modifikasyondur. Metilasyon sonucu oluşan gen ifadelerindeki değişiklikler, embryonik gelişim, genomik imprinting, kök hücre başkalaşımı ve kanser gibi birçok moleküler işlemde gereklidir. Bu nedenle, genlerin düzenleyici bölgelerindeki farklı metilasyon durumlarının, farklı gen ifadelerinin, bu nedenle de E2'nin endojen ya da harici olarak ERα sentezleyen hücrelerde, sırasıyla, hücre çoğalmasını destekleyen ya da engelleyen etkisinin sebebi olabileceğini varsayımında bulunuyoruz. Farklı metilasyon durumlarını çalışabilmek adına MDAMB231 meme kanseri hücre hattında stabil olarak ERα sentezleyen bir model hücre hattı geliştirdik. Harici olarak hücreye verilen reseptörün işlevliğini kontrol etmek için birçok fonksiyonel tarama yaptıktan sonra MDA-ERα5 monoklon hücre hattının, genom çapında metilasyon farklılıklarını çalışmak için uygun olduğuna karar verdik. Ayrıca, metilasyonun gen ifadesi ile arasında bir bağıntı kurmak adına tüm transkriptomik profil analizi gerçekleştirdik.

Genom çapında yapılan metilasyon profillemesi, aynı bölgeler için, her hücre hattının kendine özgü metilasyon desenleri olduğunu gösterdi. Ek olarak, E2 muamelesi ile bu değişiklikler daha da artmıştır. Fakat, transkriptomik analizlerdeki varyasyonlar nedeniyle, sonuçlarımız metilasyon ve gen ifadesi arasında bir bağıntı kurmak için yetersiz kalmıştır.

Anahtar kelimeler: östrojen, östrojen reseptörü, metilasyon, gen ifadesi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Dr. Mesut Muyan for, first of all, teaching me how to think critically and to question every single result. Also, for teaching me to mentally plan subsequent steps and anticipate the possible results. I have learned the beauty of scientific world thanks to him. There is no way to express my gratitude for all the guidance he has provided and the patience he has shown.

I am grateful to Assoc. Prof. Dr. A. Elif Erson-Bensan for her support and valuable inputs in this thesis work. I would like to thank Assoc. Prof. Dr. Tolga Can for his guidance and enormous input in analyzing the data.

I would like to thank all my thesis committee members; Prof. Dr. Mesut Muyan, Assoc. Prof. Dr. A. Elif Erson-Bensan, Assoc. Prof. Dr. Tolga Can, Assoc. Prof. Dr. Çağdaş Devrim Son, and Assist. Prof. Dr. Bala Gür Dedeoğlu once again for being here to provide critical feedbacks to my work.

I want to express my sincere thanks to my lab members Gamze Ayaz, Pelin Yaşar, Çağla Ece Olgun, Burcu Karakaya, and Gizem Kars as well as the former lab member Gizem Güpür for their endless help and comforting when I needed the most. Also, I would like to thank Bilge Aşkın for her help in numerous experiments. In addition, I want to thank all the members of Erson-Bensan Lab for their support and help. I would like to thank Bilgi Güngör and Ersin Gül for their invaluable help in Flow Cytometry. I also would like to thank Prof. Dr. Rengül Çetin Atalay and her lab members for their help in fluorescent microscope use.

My special thanks go to Berfin Karakeçili, Ece Öztürk, Ege Tuna, Gülce Çakman, Nazlı Ünal, and Pınar Boz for being the source of joy in my life. I would like to thank Ece Zıraman, Nermin Uğur, Onur Demir, and Tilbe Mutluay for their wonderful friendship. I want to thank Aylin Kömez, Beliz Bediz, and Neşe Erdem for their support and friendship. There are no words to express how much I owe to my dearest friend Armağan Hergüner for his endless support.

I cannot express my heartfelt thanks to my sweetheart sisters Berna User and Rana User-Smits together with Kerem Göçen and Kenny Smits. They were, are, and will always be there to support me. I also would like to thank my beloved parents, who loved and supported me unconditionally throughout my life. I owe them everything I have.

Finally, I would like to thank TUBITAK for supporting this study through 212T031 and 114Z243 projects. I also express my gratitude to METU BAP for supporting this work through BAP-08-11-2015-019.

TABLE OF CONTENTS

ABSTRACTv
ÖZvii
ACKNOWLEDGEMENTS ix
TABLE OF CONTENTS xi
LIST OF TABLES xiv
LIST OF FIGURES xvi
CHAPTERS
1. INTRODUCTION1
1.1. Breast Cancer
1.1.1. Breast Cancer Cell Lines2
1.1.2. Estrogen Signaling in Breast Cancer
1.1.2.1. Features of Estrogen Receptors
1.1.2.2. Features of 17β-Estradiol4
1.1.2.3. E2-ERα Signaling5
1.2. Methylation and Its Relation to Breast Cancer
1.2.1. Methylation in Breast Cancer
1.3. Aim of the Study10
2. MATERIALS AND METHODS
2.1. Cell Lines and Treatments
2.1.1. Treatments
2.2. Transfection12

2.2	.1.	Transient Transfection		
2.2	.2.	Generation of Stable Cell Lines12		
2.3.	We	stern Blot13		
2.3	.1.	Total Protein Isolation		
2.3	.2.	Western Blot		
2.4.	Gro	wth Assay14		
2.5.	5. Immunocytochemistry14			
2.6.	Dua	al Luciferase Reporter Assay15		
2.7.	Exp	pression Analysis16		
2.7	.1.	Primer Design16		
2.7	.2.	Total RNA Isolation16		
2	2.7.2.	1. Genomic DNA Contamination Control17		
2.7	.3.	cDNA Synthesis17		
2.7	.4.	Real Time-Quantitative Polymerase Chain Reaction (RT-qPCR) 18		
2.8.	Cel	l Cycle Distribution		
2.8	.1.	Preparation of Samples		
2.8	.2.	Analysis of Samples		
2.9.	Me	thylation and Transcriptomic Analysis20		
3. RE	SUL	TS AND DISCUSSION		
3.1.	Ger	heration of an ER-Negative Cell Model That Synthesizes Human ER α		
Introc	luced	Exogenously		
3.1	.1.	Expression of ERα in Stably Transfected MDAMB231 Cells21		
3.1	.2.	The Effects of E2 on Cellular Proliferation of Candidate Monoclones		
3.2.	Fun	ctional Screening of MDA-ER α 5 Stable Monoclone as the Cell		
wode	91			

3.2.1. Western Blot Analysis of MDA-ERα5 Stable Monoclone	24
3.2.2. Immunocytochemistry of MDA-ERα5 Stable Monoclone	25
3.2.3. Dual-Luciferase Reporter Assay	28
3.2.4. Expression Analyses of Endogenous Estrogen Responsive Genes	29
3.2.5. Cell Cycle Distribution in Response to E2	35
3.3. Repression of Cellular Proliferation in the MDA-ERα5 Stable Monoc	lone in
Response to E2	37
3.4. Genome-Wide Methylation Profile Analysis	39
3.5. Whole-Genome Transcriptomic Profile Analysis	55
4. CONCLUSION AND FUTURE DIRECTIONS	59
BIBLIOGRAPHY	61
APPENDICES	
A. DEXTRAN COATED CHARCOAL STRIPPED FETAL BOVINE S	ERUM
	67
B. BUFFERS	69
C. MIQE GUIDELINES	71
D. PRIMERS	75
E. GENOMIC DNA CONTAMINATION CONTROL	77
F. PERFORMANCE OF RT-qPCR REACTIONS	79
G. KINETIC ANALYSIS OF CELL CYCLE HISTOGRAMS	81
H. TOP 100 SIGNIFICANT GENOMIC REGIONS IN METY	LOME
ANALYSES	85
I. LINKS FOR METHYLATION TRACKS	131
J. GENES SHOWING SIGNIFICANT CHANGES IN TRANSCRIPT	OMIC
ANALYSES	133

LIST OF TABLES

Table 1. Reaction Conditions and Product Size Information
Table 2. Whole Transcriptomic Profile Analyses for Subset of Genes in MDA-ER α 5
ethanol vs E2 treatment
Table 3. Whole Transcriptomic Profile Analyses for Subset of Genes in MCF7
ethanol vs E2 treatment

Table C 1. MIQE Checklist
Table D 1. Primer List
Table H 1. Top 100 Hypermethylated Genomic Regions in MDA-ERα5 Cells After
6h E2 Treatment
Table H 2. Top 100 Hypomethylated Genomic Regions in MDA-ERα5 Cells After
6h E2 Treatment
Table H 3. Top 100 Hypermethylated Genomic Regions in MCF7 Cells After 6h E2
Treatment
Table H 4. Top 100 Hypomethylated Genomic Regions in MCF7 Cells After 6h E2
Treatment
Table H 5. Top 100 Hypermethylated Genomic Regions in MDA-ERα5 and MCF7
Cells After 6h OH Treatment 105
Table H 6. Top 100 Hypomethylated Genomic Regions in MDA-ERα5 and MCF7
Cells After 6h OH Treatment 110
Table H 7. Top 100 Hypermethylated Genomic Regions in MDA-ERα5 and MCF7
Cells After 6h E2 Treatment

Table H 8. Top 100 Hypomethylated Genomic Regions in MDA-ER α 5 and MCF7
Cells After 6h E2 Treatment 124
Table J 1. Genes Showing Significant Changes in Transcriptomic Analysis of MDA-
ERα5 Monoclone After 6h E2 Treatment Compared to Ethanol Group 133
Table J 2. Genes Showing Significant Changes in Transcriptomic Analysis of MCF7
Cells After 6h E2 Treatment Compared to Ethanol Group 135

LIST OF FIGURES

Figure 17. A representative image for genomic DNA integrity
Figure 16. Growth of monoclone MDA-ERα5 (A), MCF7 (B), and MDA-EV2 (C)
Figure 15. Cell cycle phase distributions upon E2 treatment
Figure 14. <i>TFF1/pS2</i> (A) and <i>CCNA1</i> (B) mRNA Expression Analyses
Figure 13. CTGF mRNA Expression Analysis
Figure 12. YPEL3 mRNA Expression Analysis
Figure 11. YPEL2 mRNA Expression Analysis
Figure 10. Dual-Luciferase reporter assay of the candidate monoclone
Figure 9. Immunocytochemistry for nuclear localization of ERα protein with Flag M2 antibody
Figure 8. Immunocytochemistry for nuclear localization of ERα protein with ERαHC-20x antibody
Figure 7. Western Blot analysis of MDA-ERα5 Stable Monoclone
Figure 6. E2 effects on cellular growth of stable monoclones
Figure 5. Western Blot analysis of stable monoclone cell lines (A and B) 22
Figure 4. Bisulfite-induced oxidative deamination of methylated cytosine residues
Figure 3. Schematic representation of cytosine methylation and demethylation7
genomic E2-ERα signaling
Figure 2. Schematic representation of ERE-dependent (A) and ERE-independent (B)
distribution
Figure 1 Schematic representation of domains of ER α and ER β proteins and their

Figure 18. Differential methylation status of MDA-ERα5 monoclone
Figure 19. Differential methylation status of MCF7 cells
Figure 20. Differential methylation statuses of MDA-ERα5 monoclone and MCF7 cells
Figure 21. Differential methylation status of <i>YPEL2</i> in ethanol <i>vs</i> E2 treated MDA- ERα5 cells
Figure 22. Differential methylation status of YPEL2 in ethanol vs E2 treated MCF7 cells
Figure 23. Differential methylation status of <i>YPEL3</i> in ethanol <i>vs</i> E2 treated MDA-ERα5 cells
Figure 24. Differential methylation status of YPEL3 in ethanol vs E2 treated MCF7 cells
Figure 25. Differential methylation status of <i>CTGF</i> in ethanol <i>vs</i> E2 treated MDA-ERα5 cells
Figure 26. Differential methylation status of <i>CTGF</i> in ethanol <i>vs</i> E2 treated MCF7 cells
Figure 27. Differential methylation status of $TFF1/pS2$ in ethanol vs E2 treated MDA-ER α 5 cells
Figure 28. Differential methylation status of <i>TFF1/pS2</i> in ethanol <i>vs</i> E2 treated MCF7 cells
Figure 29. Differential methylation status of <i>CCNA1</i> in ethanol <i>vs</i> E2 treated MDA-ERα5 cells
Figure 30. Differential methylation status of CCNA1 in ethanol vs E2 treated MCF7 cells
Figure 31. Differential methylation status of <i>YPEL2</i> in ethanol treated MDA-ERα5 <i>vs</i> MCF7 cells
Figure 32. Differential methylation status of <i>YPEL3</i> in ethanol treated MDA-ERα5 <i>vs</i> MCF7 cells

Figure 33. Differential methylation status of $CTGF$ in ethanol treated MDA-ER α 5
vs MCF7 cells
Figure 34. Differential methylation status of TFF1/pS2 in ethanol treated MDA-
ERα5 <i>vs</i> MCF7 cells
Figure 35. Differential methylation status of CCNA1 in ethanol treated MDA-ERα5vs MCF7 cells
Figure 36. Differential methylation status of YPEL2 in E2 treated MDA-ERa5 vs
MCF7 cells
Figure 37. Differential methylation status of YPEL3 in E2 treated MDA-ERa5 vs
MCF7 cells
Figure 38. Differential methylation status of CTGF in E2 treated MDA-ERα5 vs MCF7 cells 53
Figure 39. Differential methylation status of <i>TFF1/pS2</i> in E2 treated MDA-ERα5 vs
MCF7 cells 54
Figure 40. Differential methylation status of CCNA1 in E2 treated MDA-ERa5 vs
MCF7 cells
Figure 41. Biological function clustering of genes showing significant changes in ethanol <i>vs</i> E2 treated MCF7 cells with RNA-seq

Figure E 1. Genomic DNA control PCR	77
Figure G 1. Cell cycle kinetics of MDA-ERα5 monoclone	81
Figure G 2. Cell cycle kinetics of MCF7 cells	82
Figure G 3. Cell cycle kinetics of MDA-EV2 monoclone	83

CHAPTER 1

INTRODUCTION

1.1. Breast Cancer

Breast cancer is the most common cancer among women worldwide and incidences in men are also present. By the end of 2016, 246,600 women are expected to be diagnosed with breast cancer and estimated death is 40,000 in the United States of America [1]. Breast cancer is also the leading cancer type among women of Turkey, with an average incidence rate of 40.7/100,000 in 2013 and is the eighth most common death cause among women, with a ratio of 2.1% [2].

Breast cancer is a formidable disease due to its heterogeneity in terms of molecular and clinical subtypes. As of 2013, breast cancer classification consists of histopathological and molecular traits [3]. The histopathological classification is based on morphological (i.e. tumor size, location, grade and whether there is axillary lymph node metastasis or not) and immunohistochemical analyses of tissue samples in terms of estrogen receptor (ER), progesterone receptor (PR) and human epithelial growth factor receptor 2 (HER2) synthesis. On the other hand, molecular classification is based on differential gene expression pattern of subtypes, which provides more detailed picture about the heterogeneity of the carcinoma [3]. A better understanding of underlying mechanism involved in the initiation and progression of breast cancer and the advent of technologies are enabling the development of various platforms for subtype classifications with the potential of patient-targeted therapies.

1.1.1. Breast Cancer Cell Lines

In order to study various fundamental characteristics of breast cancer subtypes, immortalized cell lines or cell lines derived from primary tumors have been used for decades. Two breast cancer models used in this study are MCF7 and MDAMB231 cell lines. MCF7 cell line was derived from a pleural effusion surgically removed from a 69-year-old patient with metastatic breast cancer [4]. MCF7 cells endogenously express ER α and PR but not HER2; a combination which allows MCF7 cells to be used as a model for hormone-sensitive breast cancer [5]. MDAMB231 cell line was derived from a pleural effusion surgically removed from a 51-year-old patient having an inner quadrant tumor [6]. Unlike MCF7 cells, MDAMB231 cells are classified as triple negative in terms of ER, PR and HER2 expression. This cell line has been used as a model for triple-negative breast cancer, which displays an aggressive profile both in diagnosis, treatment and reoccurrence [7].

1.1.2. Estrogen Signaling in Breast Cancer

Estrogen signaling in breast cancer is important for both disease initiation and progression. To better understand the molecular mechanism, features of estrogen receptors and 17β -estradiol is explained in the following sections.

1.1.2.1. Features of Estrogen Receptors

In mammals, 17β -estradiol (E2) transmits the signal through its receptors; estrogen receptor α (ER α) and ER β , which are transcription factors [8], [9]. ER α is synthesized from *ESR1* found on the 6q25.1 locus; whereas ER β is the product of *ESR2* gene found on 14q23-24.1 genomic locus [9]. Estrogen receptors are type I nuclear receptors [10] and they are expressed at different levels in various tissues [11]. Upon translation, they form the ER α or ER β homodimer as well as the ER α/β heterodimer when co-synthesized [8]. ER dimers translocate primarily to nucleus independently from E2 binding [8]. In breast tissue, ER α is the primary ER subtype to convey E2 signaling that regulates cellular proliferation, motility, and death [11].

ER α and ER β have common structural properties with six structural domains contributing to their similar functions [11]. The A/B region of ERs having 17% acid identity between ERs is the N-terminal ligand-independent amino transactivation domain and it involves in protein-protein interactions responsible for activation of target gene transcriptions [8], [9], [12]. C region comprises the DNAbinding domain (DBD), and it is important for DNA binding ability of ERs as well as for their dimerization (albeit weakly). This domain is highly conserved between ERs and share 97% amino-acid identity [9]. D domain which is also known as the hinge region shows high divergence between ER α and ER β with a shared 30% amino acid identity [9]. The hinge region contains nuclear localization signal (NLS) and also numbers of motifs for post-translational modifications including acetylation and sumovlation [9]. In addition, the D domain connects the C and E/F domains [8]. The highly conserved (56% amino acid identity) E/F region is located at the C-terminus of the receptors and it possesses ligand-binding domain (LBD), dimerization domain and ligand-dependent transactivation function (AF-2) (Figure 1) [9]. The binding of E2 induces conformational changes in the carboxyl terminus of ERa that results in a more stable receptor homodimer and a binding surface for cofactors. This conformational change allows the formation of a transcriptionally active E2-ERa complex to regulate the expression of E2-responsive genes [8].

Figure 1. Schematic representation of domains of ERα and ERβ proteins and their distribution. Numbers at the end of dashed lines show amino acid length of regions. Percent values show amino acid identity between corresponding domains of ER proteins. Figure depicts proteins from N-terminus to C-terminus.

1.1.2.2. Features of 17β-Estradiol

Estrogens are steroid hormones acting on estrogen receptors to induce signaling cascade. Estrogens are synthesized from cholesterol primarily in the ovaries. Although minor amounts of estrone (E1) and estriol (E2) are present, the most potent estrogen hormone in the circulation is 17β -estradiol (E2) [11]. E2 is involved in various physiological functions including development and maintenance of reproductive organs, regulation of cardiovascular, muscoskeletal, immune, and central nervous system homeostasis [13], [14]. In addition, E2 also contributes to the initiation and development of target tissue malignancies [13], [14].

E2 is considered as a proliferative agent. Studies with E2 withdrawals or E2 antagonists clearly show that E2 is required for proliferation of ERa-positive cell lines, including MCF7 cells [15]. To study the structural and functional features of ER α in breast cancer, many groups attempted to exogenously express ER α by transfections [15]–[19] or viral infection [20] in an effort to generate a model that emulates endogenously $ER\alpha$ expressing breast cancer cells. However, the paradoxical observation was that in ERa synthesizing cells introduced exogenously, the cellular proliferation is repressed in response to E2 in contrast to cells that synthesize ERa endogenously. Jiang and Jordan (1991), Garcia et al. (1992), and Lazennec and Katzenellenbogen (1993) attempted to enable hormonal responsiveness of ERa-negative MDAMB231 breast cancer cells by using stable transfection of ER α [17], [21] or viral infection [20], and they independently observed that E2 represses proliferation. This was also the case in which E2 effectively repressed the proliferation of MDAMB468 cells stably transfected with ERa cDNA [22]. Zajchowski et al. (1993) studied different E2 response pathways in between normal human mammary epithelial cells and 21T breast cancer cells by using stable transfection and obtained similar results [15]. In addition, observations indicate that gene expressions involved in cellular proliferation in response to E2-ER α are differentially altered in cell lines expressing ER α endogenously vs exogenously [23]. Although these pioneering studies provided a model system to study structural/functional features of ER α , the mechanism by which ER α in response to E2 differentially regulate cellular proliferation remains unknown.

1.1.2.3. E2-ERα Signaling

Newly synthesized ER α dimerizes and the dimer translocates to the nucleus independently from E2 binding while a small portion (nearly 5%) of ER remains outside of nucleus and locates to membrane, cytoplasm and mitochondria [12], [24]. Different intracellular localizations of ER allow E2 signaling to occur from various locations. Although extranuclear ER contributes, the long-lasting phenotypic effects of E2 on cells rely on the nuclear ER [11].

The E2-ER α complex regulates gene expression through either Estrogen Responsive Element (ERE)-dependent or ERE-independent genomic signaling pathway (Figure 2). EREs are palindromic sequences (GGTCAnnnTGACC, 'n' denotes for any nucleotide) found on the regulatory regions of E2-responsive genes [9], [25]. It was shown that the E2-ER α complex can bind to the consensus ERE sequences having only one nucleotide change in the core sequence but can tolerate up to three nucleotide changes when surrounding sequences of the core contains a cytosine and/or adenosine residue [25]. Unliganded ER α is also capable of binding to ERE with oscillation; however this interaction is inefficient and binding of E2 to ER α increases the stability of ER α dimer and affinity for co-regulatory proteins as well as ERE interaction period [26].

Figure 2. Schematic representation of ERE-dependent (A) and ERE-independent (B) genomic E2-ERa signaling.

When E2-ER α directly binds to ERE sequences on regulatory elements on the genome, it is called the ERE-dependent E2-ER α signaling pathway. However, the E2-ER α complex has also ability to interact with other transcription factors such as AP1, Sp1 which are already in contact with their respective response elements on the genome in regulating downstream gene expressions [12]. In this situation, there is not a direct interaction between responsive element and the E2-ER α complex, the signaling pathway is hence called as the ERE-independent E2-ER α signaling pathway. Both nuclear pathways are critical for the transcriptional regulation of estrogen responsive genes involved in the cellular proliferation, differentiation, migration and death.

1.2. Methylation and Its Relation to Breast Cancer

Methylation of DNA at cytosine (C) nucleotides is an important epigenetic alteration that results in differential gene expressions [27], [28]. Different methylation statutes of the same regions on the genome in different tissues act as a mark for tissue-specific gene expression profiles. Accordingly, it is suggested that differences in gene expressions caused by DNA methylation are necessary for embryonic development, genomic imprinting and X-chromosome inactivation, silencing of transposable elements, stem cell differentiation, and inflammation [27]–[30].

In eukaryotes, C residues of specific regions, namely CpG dinucleotides with 'p' denoting the phosphate group between cytosine and guanine (G) nucleotides, are methylated, and these methylated regions could define transcriptionally active, inactive, or unaffected regions [30], [31]. In addition, it was reported that CHG residues (also shown as CpHpG) with 'H' denoting any of the adenine (A), thymine (T) and C nucleotides are also methylated [31]. DNA methylation is mediated by DNA methyltransferases (DNMT) having conserved catalytic domains. DNMTs enable the transfer of a methyl group from *S*-adenosyl-methionine (SAM) to the 5-position of the cytosine ring (Figure 3), resulting in methylated CpG dinucleotides, and the methylation status is maintained by DNMT1, DNMT3A, and DNMT3B proteins [28], [29].

Figure 3. Schematic representation of cytosine methylation and demethylation. Figure was adapted from the article [28].

Continuous improvements in molecular biology techniques are enabling the exploration of whole genome methylation pattern of a given system in a single-basepair resolution [31]. Most commonly used technique in methylation studies is the conversion of cytosine to uracil residue after bisulfite-induced oxidative deamination on the genome. In this approach, methylated cytosines are protected from the conversion to uracil, which allows the use of direct sequencing to determine the locations of unmethylated cytosines (Figure 4) [28].

Determination of Cytosine Methylation by Bisulfite Conversion Genomic Sequencing

Figure 4. Bisulfite-induced oxidative deamination of methylated cytosine residues. Image was taken from the article [28].

DNA methylation and demethylation processes are highly dynamic processes and balanced events. The physical accessibility of methylation-prone regions to methylation machinery on the chromatin during these dynamic events is an important factor in gene regulations. Accordingly, there are different mechanisms for transcriptional regulation caused by methylation. It was suggested that the methylation of DNA facilitates recruitment of methylated DNA binding proteins such as methyl-CpG-binding protein 1 and 2 (MeCP1 and MeCP2, respectively) which further recruit co-repressors and histone deacetylases (HDAC) together with histone methyltransferases resulting in a less accessible chromatin conformation for transcription machinery [28]–[30]. Another suggested mechanism for methylation of cytosine to repress downstream gene expression is the prevention of binding of transcription factors by occupying their corresponding binding region(s) on the regulatory regions of genome [28], [30]. In addition, emphasizing the importance of dynamic harmony between methylation of chromatin and chromatin structure, due to

chemical structure and charge of the methyl groups added, chromatin becomes inaccessible to transcription machinery [27]–[29]. However, although methylation events close to promoter and/or regulatory regions of genes are considered to reflect the repressed state of transcription, it was also suggested that methylation in the gene body regions facilitates a prolonged transcription rather than transcription prevention [30].

1.2.1. Methylation in Breast Cancer

Various studies suggested that local hypermethylation of tumor-suppressor genes and general hypomethylation of proliferation-related genes play critical roles in carcinogenesis [27]–[29]. According to Szyf *et al.* (2004), stage-specific DNA methylation could be used as signatures for staging primary breast cancer and also for breast cancer subtypes [29].

The absence of ER α expression in some breast cancers is shown to be due to the hypermethylation of the ER α gene locus [29], [30]. Studies including DNA methyltransferase inhibitors (e.g. nucleoside analogue 5-aza-deoxy-cytidine, 5-aza-CdR) and antisense oligonucleotides against *DNMT1* transcript showed that methylated genes in cancer cells can be reactivated [29]. In MDAMB231 cells, the expression of ER α was activated upon 5-aza-CdR treatment [32].

DNA methylation profiles of primary breast cancer and metastatic breast cancer show distinct gene expression patterns [29]. Together with improvements on experimental approaches, there are number of studies focusing on the relationship between breast cancer and genome-wide DNA methylation. Corroborating findings from tumor samples with ER α -positive or ER α -negative statuses, experimental studies using hierarchical clustering analyses showed that methylation patterns differ among endogenously ER α expressing cells and ER α -negative cells [33]–[35]. In order to identify localization-specific methylation patterns, immunoprecipitation against methylated DNA approach was used by Ruike *et al.* and samples were sequenced [36]. Similarly, Ung *et al.* (2014) studied the relationship between ER α binding sites and the methylation pattern *in silico* [30]. In their study, they suggested that ER α binding to ERE sites dramatically altered by methylation patterns in genome level.

They also uncovered that methylated CpGs, highly correlated with gene expressions, are enriched in regions 1kb or more downstream of transcription start sites, suggesting significant regulatory roles for CpGs distal to gene transcription start sites [30].

1.3. Aim of the Study

E2 is considered as a proliferative agent. However, pioneering studies assessing the action of mechanism of ER α revealed a paradoxical phenomenon: E2 represses cellular proliferation of breast cancer cells expressing ER α introduced exogenously [15]–[19] as a result of repression of genes involved in proliferation [23].

Since distinct DNA methylation patterns contribute to altered gene expression signatures that result in the manifestation of breast cancer subtypes [28]–[30], [32], we suggest that differences in genome-wide methylation statuses of cell lines expressing ER α endogenously *vs* exogenously could underlie differential gene expressions, and hence the polarity in the direction of cellular proliferation as well.

CHAPTER 2

MATERIALS AND METHODS

2.1. Cell Lines and Treatments

MDAMB231 and MCF7 cells were kind gifts of Dr. A. Elif Erson Bensan from Middle East Technical University, Ankara, Turkey. Both cell lines were maintained in high glucose Dulbecco's modified eagle medium (DMEM) without phenol red (Lonza, Belgium, BE-12-917F) supplemented by 8% fetal bovine serum (FBS, Biochrom AG, Germany, S0115), 1% penicillin streptomycin (P/S, Lonza, Belgium, DE17-602E) and 0.5% L-Glutamine (Lonza, Belgium, BE17-605E) (DMEM/FBS).

MDAMB231-Flag-ERα (MDA-ERα5) and MDAMB231-EV (MDA-EV) stable cell lines were maintained in DMEM without phenol red supplemented with 8% dextran coated charcoal (Sigma Aldrich, Germany, C6241) stripped fetal bovine serum (CD-FBS), 1% P/S, 0.5% L-Glutamine and 0.750 mg/mL G-418 solution (Roche, Germany, 04727894001) (CD-FBS/DMEM, Appendix A).

All cells were grown as monolayers in 95% humidified incubator at 37°C with 5% CO₂, and maintained for six-week maximum.

2.1.1. Treatments

For treatments, cells were seeded in phenol red-free DMEM supplemented with 8% CD-FBS, 1% P/S and 0.5% L-Glutamine and grown for 48 hours for hormone depletion. Whenever it was appropriate, various treatment groups for different durations were used. These treatment groups included 1) physiological concentrations (10^{-9} M) of the steroid hormone 17β -estradiol (E2, Sigma Aldrich, Germany, E2257), 2) 10^{-7} M of complete ER α antagonist Imperial Chemical

Industries 182,780 (ICI, Tocris Biosciences, MN, USA), 3) a combination of E2 (10^{-9} M) and ICI (10^{-7} M) and 4) 0.01% of molecular grade ethanol as vehicle control.

2.2. Transfection

Transfection of mammalian cells with suitable vectors is a useful approach in molecular biology. In our study, we performed two types of transfections as explained in the following sections.

2.2.1. Transient Transfection

The transfection complex for transient transfections for one well of a six-well plate was prepared as follows; two μ g DNA was added into 200 μ L of phenol red-free DMEM. Four μ L of TurboFect Transfection Reagent (Life Technologies, USA, R0531) (2 μ L/ μ g DNA) was added and after a brief vortex, mixture was incubated at room temperature for 30 minutes for transfection complex formation. Medium in the wells was refreshed and the transfection complex was added into wells dropwise. Four hours after transfection, medium in the wells was refreshed. Appropriate experiments were done subsequently.

2.2.2. Generation of Stable Cell Lines

MDAMB231 cells were seeded into a six-well plate as 75×10^3 cells/well in 8% CD-FBS/DMEM. 48 hours later, cells were transfected with one µg of 1) pcDNA3.1(-)-Flag-ER α or 2) pcDNA3.1 (-) as empty vector (EV) control plasmid. Transfection was performed as described in 2.2.1. Three days after transfection, medium was changed to CD-FBS/DMEM medium containing 1.5 mg/mL of G-418 solution for selection of positive colonies. Medium was changed in every three days until colony formation was observed in pcDNA3.1(-)-Flag-ER α and -EV wells. Individual colonies (named as MDA-ER α # with '#' denoting the colony number or MDA-EV for –EV control) were selected with one mL pipette tip and transferred into separate wells of a 48-well plate. G-418 concentration was kept as 1.5 mg/mL until colonies were frozen as stocks. For maintenance of the cells, G-418 concentration in the media was used at 0.750 mg/mL.

Clones were screened with Western Blot analysis for Flag-ERa protein synthesis.

2.3. Western Blot

Western Blot analysis is used to detect proteins in gels by appropriate antibodies. In the following sections, steps of Western Blot are explained in detail.

2.3.1. Total Protein Isolation

Cells were seeded into six-well plates as 15×10^4 /well in CD-FBS/DMEM. 48 hours later, cells were collected by trypsinization (Lonza, Belgium, BE17-161E) and centrifuged at 600 g for six minutes. Cell pellets were washed twice with 1X Phosphate Buffered Saline (PBS, Lonza, Belgium, 17-516). Cell pellets were lysed with 250 µL/well M-PER Mammalian Protein Extraction Reagent (Thermo Scientific, USA, 78501) containing 1X cOmplete, EDTA-free protease inhibitor (Roche, Germany, 11873580001) for 20 minutes at room temperature with intermittent vortex agitation. Cell lysates were centrifuged at 14,000 g for 20 minutes at 4°C. Supernatants were collected without disturbing the pellets and protein concentrations were determined by Quick Start Bradford Protein Assay (Bio-Rad, USA, 5000201). Proteins were stored at -80°C.

2.3.2. Western Blot

Proteins as 50 µg/sample were loaded into wells of a 8% SDS-PAGE with 5% stacking gel as follows; volumes of samples containing 50 µg of total protein were equalized by adding distilled water and samples were denatured in 6X Laemmli Buffer (Appendix B) at 95°C for six minutes. Equal volumes of samples were loaded into wells. Gel was subjected to electrophoresis for approximately two hours at 100 V. Gel was then transferred onto a PVDF membrane (Roche, Germany, 3010040001) using wet transfer system for 60 minutes at 100 V. Membrane was blocked with buffer containing 5% skim milk (Bio-Rad, USA, 170-6404) in 0.05% Tris Buffered Saline-Tween (TBS-T) for ER α (HC-20) antibody (Santa Cruz Biotechnology Inc., USA, sc-543) for one hour at room temperature. The ER α HC-20 antibody was diluted to 1:500 in the blocking buffer and the membrane was incubated for one hour

at room temperature. After incubation, membrane was washed three times with 0.05% TBS-T. An HRP-conjugated secondary antibody (Santa Cruz Biotechnology, USA, sc-2004) was prepared as 1:2500 dilution in the blocking buffer and the membrane was incubated for one hour at room temperature. After three times washing with 0.05% TBS-T, the membrane was incubated for five minutes with enhanced chemiluminescence (ECL, Bio-Rad, USA, 1705061) in 1:3 luminol-enhancer reagent:peroxide reagent ratio. Visualization was done with ChemiDoc[™] MP system (Bio-Rad, USA, 1708280) and images were analyzed with Image Lab[™] software (Bio-Rad, USA). PageRuler[™] Plus Prestained Protein Ladder (Life Technologies, USA, 26619) was used as molecular weight marker.

2.4. Growth Assay

Cells were seeded as 1250 cells/well to each well of a 48-well plate in 8% CD-FBS/DMEM. 48 hours later, cells were treated either with 10^{-9} M of E2 or ethanol (0.01%) as vehicle control. Treatment was renewed after three days and cells were counted with hemocytometer on the third and sixth days of treatment. Assay was done for three independent times performed in duplicate. Results are shown as percent change of three biological replicate \pm SEM. Unpaired, two-tailed t-test with 95% confidence interval was used for statistical analysis.

2.5. Immunocytochemistry

For immunocytochemistry (ICC), MDA-ER α 5 and MDA-EV stable cell lines were used. As a positive control of the ER α HC-20x (Santa Cruz Biotechnology Inc., USA, sc-543x) antibody, wild type MCF7 cells, and MDAMB231 cells which were transiently transfected with pcDNA3.1(-)-Flag-ER α were used. For a positive control of Flag M2 (Sigma Aldrich, Germany, F1804) antibody, transiently pcDNA3.1(-)-Flag-ER α transfected MDAMB231 cells were used. Sterile cover slips in ethanol bath were put into each well of a 12-well plate and incubated in laminar flow hood until ethanol evaporated completely. Then, plates were subjected to UV sterilization for at least 30 minutes. Cells were seeded as 12500/well in 8% CD-FBS/DMEM.

After 48 hours, MDAMB231 cells were transfected as described in 2.2.1. and medium was also changed for other wells. 48 hours after transfection, cells were washed three times with PBS. Fixation was done by incubating with freshly prepared 2% cold paraformaldehyde in PBS for one hour at room temperature. Cells were washed with PBS for three times, permeabilized with 0.4% Triton-X 100 prepared in PBS for 10 minutes at room temperature and washed with PBS three times again. Fixed cells were blocked for one hour at room temperature with 10% Normal Goat Serum (NGS, Sigma Aldrich, Germany, G9023) for ERa HC-20x antibody or with 10% Bovine Serum Albumin (BSA, Roche, Germany, 10735078001) for Flag M2 antibody prepared in PBS. ERa HC-20x antibody was used at 1:500 dilution prepared in 2% NGS and Flag M2 antibody was used at 1:250 dilution prepared in 3% BSA. For primary antibodies, cells were incubated for two hours at room temperature. Then, cells were washed three times with PBS and incubated with secondary antibodies for 30 minutes at room temperature in the dark. For ERa HC-20x antibody, an Alexa Fluor® 488 conjugated goat anti-rabbit (Abcam, USA, ab150077) antibody was diluted at 1:1000 in 2% NGS, or for Flag M2 antibody, an Alexa Fluor® 488 conjugated goat anti-mouse (Abcam, USA, ab150113) antibody diluted at 1:1000 in 3% BSA was used. After three subsequent washes with PBS, coverslips were placed onto glass slides with a drop of Fluoroshield Mounting Medium with DAPI (Abcam, USA, ab104139) and edges of coverslips were sealed with nail polish, and were kept in +4°C until visualization. Slides were visualized under fluorescent microscope (Nikon Eclipse 50i) having Nikon camera (DS-Fi1) in the laboratory of Dr. Rengül Çetin Atalay (METU, Ankara, Turkey). Blue filter (X340-380, DM400) is used and for DAPI, and green filter (X465-495, DM50) was used for ERa signal.

2.6. Dual Luciferase Reporter Assay

For dual luciferase reporter assays, two vectors were used; 1) a pGL3 vector containing *Firefly Luciferase* (pGL3-2ERE) gene driven by TATA promoter bearing two consensus ERE sequences upstream of the TATA box, and 2) a pGL3 vector containing *Renilla Luciferase* (pRL) gene driven by SV40 promoter. pGL3-2ERE and pRL were used as 125 ng/well and 0.250 ng/well, respectively. 4x10⁴ cells were

seeded into 48-well plate in CD-FBS/DMEM. 48 hours after seeding, cells were cotransfected with expression vectors. Four hours after transfection, media were replaced with without or with ligands as described in Section 2.1.1. 24 hours after treatment, cells were gently washed with PBS for three times and lysed with 50 μ L/well of 1X Passive Lysis Buffer from Dual-Luciferase[®] Reporter Assay kit (Promega, USA, 017319) at room temperature on medium-speed rocker for 15-20 minutes. After observing white, clump-like cell lysates, plates were wrapped with parafilm and stored at -80°C until analysis.

For luciferase analysis, Dual-Luciferase[®] Reporter Assays (Promega, USA, 017319) was used according to manufacturer's instructions. Samples were analyzed with Modulus Microplate Luminometer (Turner Biosystems, USA) in the Dr. A. Elif Erson Bensan's laboratory at METU, Ankara, Turkey. The luminescence signal from *Firefly Luciferase* (pGL3-2ERE) was normalized to luminescence signal from *Renilla Luciferase* (pRL). Assay was done as three independent experiments performed in triplicate. Results are shown as relative luciferase activity of three biological replicate \pm SEM. Unpaired, two-tailed t-test with 95% confidence interval was used for statistical analysis.

2.7. Expression Analysis

In expression analysis, MIQE Guidelines [37] were followed in terms of RNA isolation, cDNA synthesis, and quantification of the data. MIQE Guidelines check list is available in Appendix C.

2.7.1. Primer Design

Primers were designed specific to each gene; specificity was ensured by NCBI Primer Blast. Complete list of all primers used in this study is given in Appendix D.

2.7.2. Total RNA Isolation

Cells were seeded as $2x10^5$ cells/well into each well of a six-well plate in CD-FBS/DMEM. 48 hours later, cells were treated either with 10^{-9} M of E2 or (0.01%) ethanol as vehicle control. Six hours after treatment, cells were collected with

trypsinization and washed twice with PBS. Cell pellets were kept at -80°C until isolation. Quick-RNA[™] MiniPrep kit (Zymo Research, USA, R1055) including oncolumn DNaseI digestion was used for total RNA isolation according to instructions of manufacturer. Concentration of RNA samples were measured with NanoDrop 2000 (Thermo Scientific, USA).

2.7.2.1. Genomic DNA Contamination Control

In order to control efficiency of on-column genomic DNA digestion, 600 ng of total RNA isolates were subjected to PCR with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) primers. Final reaction mixture consisted of 1U of Taq polymerase (Thermo Scientific, USA, EP0402), 1X Taq Buffer with KCl, two mM of MgCl₂, 200 μ M of dNTP mix, 0.5 μ M of forward and reverse primer each, and molecular grade water to 20 μ L reaction volume. Reaction conditions were as follows; initial denaturation at 95°C for three minutes, denaturation at 95°C for 30 seconds, annealing at 65°C for 30 seconds, extension at 72°C for 30 seconds. Denaturation, annealing and extension steps were repeated for 40 cycles with a final extension at 72°C for 10 minutes, infinite hold at 4°C. As positive control, 100 ng of genomic DNA was used in the same set of experimental PCR. In case of genomic DNA contamination, RNA isolation protocol was repeated until samples were free from contamination. Figure E.1. in Appendix E shows a representative PCR result.

2.7.3. cDNA Synthesis

cDNA library was carried out with 300 ng total RNA isolates using RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, USA, K1621) according to manufacturer's instructions. Briefly, initial mixture was prepared by following contents; 300 ng RNA template, one μ L of 100 μ M Oligo(dT)₁₈ primer, and molecular grade water to complete reaction volume to 12 μ L. Reaction mixture was incubated at 65°C for five minutes in T100TM Thermal Cycler (Bio-Rad, USA) with the heated lid function off, and samples were chilled on ice subsequently. Remaining components of cDNA synthesis were prepared as master mix as follows: 1X Reaction Buffer, one mM final concentration of dNTP mix, one U/ μ L final concentration of RiboLockTM RNase Inhibitor, and 10 U/ μ L final concentration of RevertAidTM M-MuLV Reverse Transcriptase. Master mix was allocated as eight μ L/RNA sample

and total 20 μ L of reaction mixture was incubated at 42°C for one hour and reaction was stopped at 70°C for five minutes. cDNA samples were stored at -80°C.

2.7.4. Real Time-Quantitative Polymerase Chain Reaction (RT-qPCR)

For expression analysis, SsoAdvancedTM Universal SYBR® Green Supermix (Bio-Rad, USA, 172-5272) was used together with 0.3 μ M final concentration of each primer and 1:10 cDNA dilutions. Total reaction volume was 20 μ L and CFX ConnectTM Real-Time PCR Detection System (Bio-Rad, USA) was used. MIQE Checklist is available in Appendix C.

Fold changes of target genes were normalized to the Pumilio Homolog 1 (*PUM1*) gene and as a positive control of the treatments, trefoil factor 1 (TFF1/pS2) gene was used. Reaction conditions for all gene primers used in this study is given in Table 1.

	Steps / Gene							
Cycles	Names	PUM1	TFF1/pS2	YPEL2	YPEL3	CCNA1	CTGF	
	Polymerase							
	Activation and							
	DNA Denaturation	95°C for 10 minutes						
	Denaturation	94°C for 30 sec						
	Annealing	60°C	55°C	65°C	65°C	55°C	55°C	
	Extension + Plate	<u> </u>						
	Read	72°C for 30 sec						
	Rapid Heating	95°C for 10 sec						
	Melt Curve							
	Generation	55°C to 99°C, increment 1.0°C, 5.0 sec						
	Product Size (bp)	111	209	138	115	146	139	

Table 1. Reaction conditions and product size information.

All gene expression experiments consist of three technical repeats of three biological replicates. E2, ICI, and ICI+E2 treatments were compared to ethanol treatment, which was set to one for each gene expression profile. For the statistical analysis,
one-tailed paired t-test with 95% confidence interval was performed by using GraphPad Prism v.5 for Windows (San Diego California, USA).

2.8. Cell Cycle Distribution

Since previous studies suggested that E2 is an anti-proliferative agent for ER α negative cells synthesizing ER α introduced exogenously, cell cycle distribution is also assessed to examine the effects of E2 on these model cells.

2.8.1. Preparation of Samples

Cells were seeded onto six-well plates as 5×10^4 /well in CD-FBS/DMEM. 48 hours later, cells were treated with 10^{-9} M of E2 or ethanol (0.01%) as vehicle control. Cells were collected with trypsinization and washed once with PBS at room temperature 48 hours after treatment. Cells were gently re-suspended in 100 µL of PBS and immediately fixed with ice-cold 70% ethanol diluted in distilled water. For fixation, falcon tubes were placed onto a vortex with the minimum speed and four ml of ethanol was added dropwise to prevent clumping of cells. Fixed cells were stored at -20°C until analysis.

2.8.2. Analysis of Samples

Samples were centrifuged at 600 g for six minutes at room temperature and supernatants were discarded. Pellets were re-suspended with PBS and samples were transferred into Eppendorf tubes. Samples were centrifuged at same conditions and pellets were re-suspended with 200 μ L of staining buffer prepared in PBS containing propidium iodide (PI, Sigma Aldrich, Germany, P4710) with 0.02 mg/mL final concentration, RNase A (Thermo Scientific, USA, EN0531) with 200 μ g/mL final concentration, and Triton[®] X-100 (AppliChem, Germany, A4975) with 0.1% (v/v) final concentration. Cell cycle analysis was done with BD AccuriTM C6 Cytometer (BD Biosciences). Assay was done as three independent experiments, and cell percentages in cell cycle phases were used in statistical analyses. Results are shown as percent change of three biological replicate ± SEM. Unpaired, two-tailed t-test with 95% confidence interval was used for statistical analysis.

2.9. Methylation and Transcriptomic Analysis

MDA-ER α 5 and MCF7 cells were seeded as 2.5x10⁶ into each T75 cm² tissue culture flasks in CD-FBS/DMEM. 48 hours later, cells were treated with 10⁻⁹ M of E2 or ethanol (0.01%) as vehicle control. Six hours after treatment, cells were trypsinized and washed with PBS twice. Pellets were divided into three tubes and stored at -80°C to be used in genome-wide methylation and transcriptomic analyses. All experiments were repeated three independent times with three technical replicates.

One of the pellets were used for genomic DNA isolation. Quick-gDNA[™] MiniPrep kit (Zymo Research, USA, D3024) was used according to manufacturer's instructions. Samples were shipped at -80°C conditions as genomic DNA to Zymo Research Corporation, Epigenetic Services (USA) for Methylation Mini-Seq full service sequencing.

One of the pellets from each sample was shipped at -80°C conditions to University of Rochester, Genomics Research Center (USA) for whole-genome transcriptomic analysis.

CHAPTER 3

RESULTS AND DISCUSSION

3.1. Generation of an ER-Negative Cell Model That Synthesizes Human ERα Introduced Exogenously

Previous studies showed that E2 enhances cellular proliferations in cell models that synthesize ER α endogenously while it represses cellular growth in ER-negative cells that synthesize ER α introduced exogenously as a result of polar directions in gene expressions playing critical roles in cellular proliferations. Since methylation is a critical component of transcription, we hypothesized that differences in genome-wide methylation statuses of cell models underlie the polar direction of model cell proliferations. To test this prediction, we aimed to generate a cell line that synthesizes ER α introduced exogenously using ER α -negative MDAMB231 cells derived from a mammary adenocarcinoma. In order to assess the functionality of model cell line, various approaches were used to show that ER α protein is capable of regulating gene expressions and cellular proliferation through changes in cell cycle phases.

3.1.1. Expression of ERa in Stably Transfected MDAMB231 Cells

To generate MDAMB231 cells synthesizing ER α stably, cells were transfected with the pcDNA3.1(-)-Flag-ER α mammalian expression vector or with an empty vector (EV control) as described in 2.2.2. During stable monoclone generation, 24 candidate monoclones were selected initially. In the course of maintenance, one candidate monoclone (MDA-ER α 24) did not survive. In order to show that stably transfected ER α protein is expressed in selected monoclones, protein isolation and Western Blot analysis were carried out as described in 2.3. For initial analyses, candidate monoclones were selected based on the level of ER α synthesis compared to endogenously ER α expressing MCF7 cells. Western Blot assay accomplished by using an ER α -specific antibody (Figure 5) revealed that monoclones synthesized ER α at varying levels.

Figure 5. Western Blot analysis of stable monoclone cell lines (A and B). MDAMB231 cells were stably transfected as described in 2.2.2. with pcDNA3.1(-) bearing ER α cDNA or no insert as the empty vector (EV). 50 µg total protein was loaded into 8% SDS-PAGE. Total protein isolated from MCF7 cells was used as positive control for the HC-20 ER α antibody (Santa Cruz Biotechnology Inc., USA, sc-543). A non-specific band at 95 kDa detected by the antibody was used as the loading control. Two independent Western Blot experiments resulted in similar findings. Images were taken after 90 seconds of exposure.

Based on these results, MDA-ER α 5, 11, 17, and 23 monoclones synthesizing ER α at levels comparable to those observed in MCF7 cells were selected (indicated by asterisks). In addition, MDA-EV2 and MDA-EV3 monoclones, stably transfected with a pcDNA3.1(-) empty vector (EV), were selected as control cell lines based on

their similar morphological features to those of untransfected MDAMB231 cells for further functional analyses.

3.1.2. The Effects of E2 on Cellular Proliferation of Candidate Monoclones

E2 represses cellular proliferation in breast cancer cell models that synthesize ER α introduced exogenously [15]–[19]. To assess the effects of E2 and consequently the functionality of ER α on proliferation of monoclones, cell counting was performed initially. Monoclones MDA-ER α 5, 11, 17, and 23 as well as MDA-EV2 and MDA-EV3 were subjected to growth assay in the absence or presence of 10⁻⁹ M E2. Cells grown in 48-well plates were collected and counted on the sixth day with hemocytometer. Counting showed that of the monoclones, E2 treatment repressed the proliferation of only MDA-ER α 5 cells while the E2 treatment had no significant effect on the growth of the untransfected MDAMB231 cells, which were used as negative control (Figure 6). In contrast, and expectedly, E2 significantly enhanced the growth of MCF7 cells. Based on these initial observations, MDA-ER α 5 monoclone was selected as the cell model, which would allow us to comparatively assess the directional ability of E2 to modulate cellular proliferation in comparison with MCF7 cells. MDA-EV2 was also selected as negative control.

Figure 6. E2 effects on cellular growth of stable monoclones. Cells were seeded as 1250 cells/well to each well of a 48-well plate in 8% CD-FBS/DMEM. 48 hours later, cells were treated either with 10^{-9} M E2 or ethanol (0.01%; OH) as vehicle control. Treatment was renewed after three days and cells were counted with hemocytometer on the sixth day of treatment. Results are shown as percent change of E2 treatment compared to the ethanol vehicle replicated three independent times with duplicate well/treatment ± SEM. Unpaired, two-tailed t-test with 95% confidence interval was used for statistical analysis (*; significant p<0.05, **; very significant p<0.01, ***; extremely significant p<0.05).

3.2. Functional Screening of MDA-ERα5 Stable Monoclone as the Cell Model

In the initial the screening of MDAMB231 monoclones stably transfected with ER α cDNA, only MDA-ER α 5 showed responsiveness to E2 in terms of modulation of cellular proliferation. To ensure that this E2 responsiveness of MDA-ER α cells is due to a functional ER α synthesis, MDA-ER α 5 cells in comparison with MDA-EV2 and MCF7 cells were subjected Western blot (WB), immunocytochemistry (ICC), Luciferase reporter assay as well as cell cycle distribution and proliferation assays.

3.2.1. Western Blot Analysis of MDA-ERa5 Stable Monoclone

To assess the ER α protein expression and its levels compared to endogenously expressing MCF7 cells, Western Blot assay was used for MDA-ER α 5 stable monoclones.

Figure 7. Western Blot analysis of MDA-ERa5 stable monoclone. 50 μ g total protein was loaded into 8% SDS-PAGE. Total protein isolated from MCF7 cells was used as positive control for the ER α HC-20 antibody. Non-specific bands at 95 kDa were used as loading control. Two independent Western Blot experiments gave similar results. Images were taken after 120 seconds of exposure.

Western Blot analysis (Figure 7) showed that the MDA-ER α 5, but not MDA-EV2, monoclone synthesizes ER α protein approximately 2.5 fold more, estimated with Bio-Rad ImageLab Software (USA), than that observed in MCF7 cells.

3.2.2. Immunocytochemistry of MDA-ERa5 Stable Monoclone

ER α protein localizes to nucleus independent from E2 binding in ER-positive cell lines [38]. To show that ER α synthesized in MDA-ER α 5 is located in the nucleus as in endogenously ER α synthesizing MCF7 cells, immunocytochemistry (ICC) was performed. To confirm that the Flag tag present in the amino-terminus of ER α did not affect ER α localization, both the ER α HC-20x antibody (Figure 8) and Flag M2 antibody (Figure 9) were used in ICC experiments. Images were acquired with the same exposure time with 40x objective. Experiments were repeated for three independent times with similar results. Results showed that ER α is localized in the nucleus of MDA-ER α 5, whereas, as expected, there was no synthesis of the receptor in MDA-EV2.

Figure 8. Immunocytochemistry for nuclear localization of ER α protein with the ER α HC-20x antibody. Cells were seeded as 12500 cells/well to each well of a 12-well plate containing coverslips in 8% CD-FBS/DMEM. For positive control of the ER α HC-20x antibody, MCF7 cells were used. Cells were fixed by 2% paraformaldehyde, and permeabilized with 0.4% Triton-X 100. Fixed cells were blocked with 10% Normal Goat Serum. The ER α HC-20x antibody was used at 1:500 dilution followed by an Alexa Fluor® 488 conjugated goat anti-rabbit (1:1000). DAPI was used to stain nuclei. Similar results were obtained in two independent experiments.

Figure 9. Immunocytochemistry for nuclear localization of ERa protein with Flag M2 antibody. Cells were seeded as 12500 cells/well to each well of a 12-well plate containing coverslips in 8% CD-FBS/DMEM. For positive control of the Flag M2 antibody, MDAMB231 cells were transfected with two μg of pcDNA3.1(-)-Flag-ERa vector. Cells were fixed by 2% paraformaldehyde, and permeabilized with 0.4% Triton-X 100. Fixed cells were blocked with 10% Bovine Serum Albumin. The Flag M2 antibody was used at 1:250 dilution followed by an Alexa Fluor® 488 conjugated goat anti-mouse (1:1000). DAPI was used to stain nuclei. Similar results were obtained in two independent experiments.

3.2.3. Dual-Luciferase Reporter Assay

To initially assess that ER α synthesized in MDA-ER α 5 is capable of regulating the expression of an estrogen responsive gene in response to E2 as a reflection of functionality of the receptor, Dual-Luciferase Reporter Assay was used as described in 2.6. The same assay was also performed in MCF7 cells as a positive control (Figure 10B). pGL3-2ERE was used as the reporter vector driving the expression of *Firefly Luciferase* cDNA. The reporter vector promoter is consisted of a TATA box promoter with two ERE sites in tandem (2xERE-Luc), placed upstream of the promoter to provide responsiveness to E2-ER α complex. Together with pGL3-2ERE, cells were co-transfected with pRL, a reporter vector expressing the *Renilla Luciferase* cDNA for transfection efficiency. After transient transfections, cells were treated without or with 10⁻⁹ M of E2 for 24h. To show that changes in the *Firefly Luciferase* activity is the result of E2 binding to ER α , in the absence (%0.01, ethanol, OH) or the presence of 10⁻⁹ M E2.

In MDA-ER α 5, E2 enhanced the *Firefly Luciferase* enzyme activity compared to ethanol control. ICI treatment, on the other hand, repressed both basal and E2 induced *Firefly Luciferase* activity (Figure 10A). The results suggest that transcriptional responses are ER α -specific. Although the extent of enzyme activity was higher in comparison with those observed in MDA-ER α 5 cells, E2 treatment also enhanced, whereas ICI repressed, the reporter enzyme activity in MCF7 cells, as expected (Figure 10B). On the other hand, ER ligands had no effect on enzyme activity in MDA-EV2 cells (Figure 10C).

Thus, these results indicate that ER α localized in the nucleus of MDA-ER α 5 cells is capable of inducing transcription in response to E2.

Figure 10. Dual-Luciferase reporter assay of the candidate monoclone. Cells were seeded as $4x10^4$ cells/well into each well of a 48-well plate in 8% CD-FBS/DMEM. 48 hours after seeding, cells were co-transfected with two vectors; 1) a pGL3 vector containing Firefly Luciferase (pGL3-2ERE) gene (125 ng/well), and 2) a pGL3 vector containing Renilla Luciferase (pRL) gene (0.250 ng/well). Four hours after transfection, media were replaced with fresh medium without (0.01% ethanol, OH) or with 10^{-9} M of E2, and/or 10^{-7} M of ICI. 24 hours after treatment, cells were lysed and subjected to Dual-Luciferase® Reporter Assay. Results are shown as the mean ± SEM of three independent experiments with three technical repeats/experiment. For the statistical analysis, one-tailed paired t-test with 95% confidence interval was performed (*; significant p<0.05, **; very significant p<0.01, ***; extremely significant p<0.001, ns; non-significant p>0.05).

3.2.4. Expression Analyses of Endogenous Estrogen Responsive Genes

To ensure that ER α synthesized MDA-ER α 5 cells is also capable of regulating endogenous estrogen responsive genes in response to E2, the expression profiles of *YPEL2, YPEL3, CTGF, TFF1/pS2,* and *CCNA1* genes as estrogen responsive gene models [12], [23] were assessed.

Yippee-like 2 (*YPEL2*) and *YPEL3* are two of the five, highly conserved *YPEL* gene family members (*YPEL1* through *YPEL5*). Ypel proteins are highly conserved gene products which share remarkably high amino acid identity (55-85%) [39]. Although Ypel3 was suggested to be a DNA damage response related protein [40], a function is yet to be assigned to Ypel2. However, the aberrations at the chromosomal loci of *YPEL2* (17q23) is found to be frequently associated with breast cancer [41], an indication that *YPEL2* could be a critical gene in the initiation and progression of the disease. In a microarray study conducted in Muyan's laboratory, *YPEL2* and *YPEL3* genes were found to be E2 responsive [12].

Connective tissue growth factor (*CTGF*) is a member of Connective Tissue Growth Factor (CTGF), Cystein rich protein (Cyr61), and Nephroblastoma overexpressed gene (*CCN*) gene family and it is expressed in high levels in the early development of the embryo as well as in scar tissue [42]. It is shown that CTGF is regulated with E2 [43] and in the microarray study conducted in Muyan's laboratory, *CTGF* was shown to be downregulated after E2 treatment [12].

The trefoil factor 1, (*TFF1*; or *pS2*) gene is a well-studied estrogen responsive gene. Although function is unclear, TFF1 protein is thought to play a role in healing of the epithelium [44].

Cyclin A1 (*CCNA1*) is a member of mammalian A-type cyclin family [45]. Cyclin A1 is expressed in testis and brain, as well as in cell lines, and is suggested to be important for entry into metaphase of meiosis [46]. In addition, *CCNA1* is necessary for proceeding from S phase to G2 phase in cell cycle [47]. *CCNA1* is a known E2-regulated gene [47].

For mRNA expression analyses, cells grown in six-well tissue culture plates in the absence of E2 for 48h were treated with 10⁻⁹ M E2 for 6h, a duration anticipated to induce changes in the transcription of immediate/early estrogen-responsive genes [12], [48]. The isolated total RNA was processed for and subjected to real time quantitative PCR (RT-qPCR) for gene expression analyses as described in 2.7. In RT-qPCR, MIQE Guidelines (Appendix C) were followed [37]. For each reaction,

melt curve was generated (Appendix F). Fold changes of target genes were normalized to Pumilio Homolog 1 (*PUM1*) gene.

Figure 11. *YPEL2* **mRNA Expression Analysis.** Cells were seeded as $2x10^5$ cells/well into each well of a six-well plate in 8% CD-FBS/DMEM. 48 hours later, cells were treated without (0.01% ethanol, OH) or with 10^{-9} M of E2, and/or 10^{-7} M of ICI. Six hours after treatment, cells were collected and subjected to total RNA isolation and RT-qPCR. mRNA expression levels were normalized to *PUM1* expression. E2, ICI, and ICI+E2 treatments were compared to ethanol treatment, which was set to one for each gene expression profile. Results are shown as the mean \pm SEM of three independent experiments with three technical repeats. For the statistical analysis, one-tailed paired t-test with 95% confidence interval was performed by using GraphPad Prism v.5 for Windows (San Diego California, USA) (*; significant p<0.05, **; very significant p<0.01, ***; extremely significant p<0.001, ns; non-significant p>0.05).

Figure 12. *YPEL3* **mRNA Expression Analysis.** Cells were seeded as $2x10^5$ cells/well into each well of a six-well plate in 8% CD-FBS/DMEM. 48 hours later, cells were treated without (0.01% ethanol, OH) or with 10^{-9} M of E2, and/or 10^{-7} M of ICI. Six hours after treatment, cells were collected and subjected to total RNA isolation and RT-qPCR. mRNA expression levels were normalized to *PUM1* expression. E2, ICI, and ICI+E2 treatments were compared to ethanol treatment, which was set to one for each gene expression profile. Results are shown as the mean \pm SEM of three independent experiments with three technical repeats. For the statistical analysis, one-tailed paired t-test with 95% confidence interval was performed by using GraphPad Prism v.5 for Windows (San Diego California, USA) (*; significant p<0.05, **; very significant p<0.01, ***; extremely significant p<0.001, ns; non-significant p>0.05).

Figure 13. *CTGF* mRNA Expression Analysis. Cells were seeded as $2x10^5$ cells/well into each well of a six-well plate in 8% CD-FBS/DMEM. 48 hours later, cells were treated without (0.01% ethanol, OH) or with 10^{-9} M of E2, and/or 10^{-7} M of ICI. Six hours after treatment, cells were collected and subjected to total RNA isolation and RT-qPCR. mRNA expression levels were normalized to *PUM1* expression. E2, ICI, and ICI+E2 treatments were compared to ethanol treatment, which was set to one for each gene expression profile. MDA-EV2 cells did not gave significant results, hence data are not shown for simplicity. Results are shown as the mean \pm SEM of three independent experiments with three technical repeats. For the statistical analysis, one-tailed paired t-test with 95% confidence interval was performed by using GraphPad Prism v.5 for Windows (San Diego California, USA) (*; significant p<0.05, **; very significant p<0.01, ***; extremely significant p<0.001, ns; non-significant p>0.05).

Figure 14. *TFF1/pS2* (A) and *CCNA1* (B) mRNA Expression Analyses. Cells were seeded as 2×10^5 cells/well into each well of a six-well plate in 8% CD-FBS/DMEM. 48 hours later, cells were treated without (0.01% ethanol, OH) or with 10^{-9} M of E2, and/or 10^{-7} M of ICI. Six hours after treatment, cells were collected and subjected to total RNA isolation and RT-qPCR. mRNA expression levels were normalized to *PUM1* expression. E2, ICI, and ICI+E2 treatments were compared to ethanol treatment, which was set to one for each gene expression profile. MDA-EV2 cells did not gave significant results, hence data are not shown for simplicity. Results are shown as the mean \pm SEM of three independent experiments with three technical repeats. For the statistical analysis, one-tailed paired t-test with 95% confidence interval was performed by using GraphPad Prism v.5 for Windows (San Diego California, USA) (*; significant p<0.05, **; very significant p<0.01, ***; extremely significant p<0.001, ns; non-significant p>0.05).

Observations showed that ligands had no effect on the expression of any gene tested in the MDA-EV2 monoclone. On the other hand, E2 enhanced *YPEL2* gene expression in the MDA-ER α 5 monoclone in an ER α -specific manner as ICI alone had no effect on the expression of the gene, but it prevented E2 mediated transcriptional augmentation. E2, however, effectively repressed the expression of *YPEL2* in endogenously ER α expressing MCF7 cells. In contrast, E2 treatment had no effect on *YPEL3* gene expression in MDA-ER α 5 cells while E2 increased the *YPEL3* gene expression in MCF7 cells. In both cell models, E2 effectively increased *TFF1/pS2* gene expression. Recapitulating previous observations derived from this and other laboratories, these results indicate that E2 can modulate endogenous gene expressions with patterns that are in 1) polar directions (*YPEL2*; Figure 11), 2) the same directions (*TFF1/pS2* and *CCNA1*; Figure 14A-B) or 3) cell-type specific manner (*YPEL3* and *CTGF*; Figure 12-13) in cells that synthesize ER α endogenously or introduced exogenously.

3.2.5. Cell Cycle Distribution in Response to E2

In the initial cellular proliferation assays, it was found that the treatment of MDA-ER α 5 cells with 10⁻⁹ M E2 repressed cellular proliferation on the sixth day of the treatment compared to ethanol (OH, 0.01%) control whereas E2 enhanced the growth of MCF7 cells at the same time-point. On the other hand, E2 had no effect on the proliferation of MDA-EV2 cells as expected. To assess whether E2-mediated cellular proliferation in polar direction is also reflected in differential distribution of cell populations in cell cycle phases, cell cycle analysis was carried out. MDA-ER α 5 and MCF7 cells were grown in the absence of E2 for 48h, and were treated without or with 10⁻⁹ M E2 and maintained for 48h. Cells were then collected and subjected to flow cytometer BD AccuriTM C6 Cytometer (BD Biosciences) as described in 2.8. Changes in cell populations upon E2 treatment were normalized to the ethanol treatment (0.01%) group for each cell cycle phase.

Kinetic analysis of cell cycle histograms, for which gating strategy was shown in Appendix G, revealed that E2 increased the cell population in G1 phase with a decrease in S phase in MDA-ER α 5 cells. In contrast, in MCF7 cells, G1 phase population decreased and S phase population increased significantly upon E2 treatment (Figure 15). For MDA-EV2 cells, no significant change was observed.

Thus, E2-mediated directional polarity of the proliferation of MDA-ER α and MCF7 cells is a reflection in alterations in cell cycle phases.

These functional assays suggest that the MDA-ER α 5 monoclone can be used as a model cell line in comparison with MCF7 cells to test the initial hypothesis that polar directions in cellular proliferation in response to E2 are due to distinct methylation profiles of cell lines.

Figure 15. Cell cycle phase distributions upon E2 treatment. Cells were seeded onto six-well plates as $5x10^4$ /well in 8% CD-FBS/DMEM. 48 hours later, cells were treated either with 10^{-9} M of E2 or ethanol (0.01%) as vehicle control. Samples were collected 48 hours after treatment, and immediately fixed with ice-cold 70% ethanol. For analysis, samples were stained with a staining buffer containing 0.02 mg/mL propidium iodide. Cell population changes normalized to cell population in each cell cycle phase in ethanol treatment group. Dashed line represents the 100% border. Results are shown as percent change of three biological replicate \pm SEM. Unpaired, two-tailed t-test with 95% confidence interval was used for statistical analysis (*; significant p<0.05, **; very significant p<0.01, ***; extremely significant p<0.001, ns; non-significant p>0.05).

3.3. Repression of Cellular Proliferation in the MDA-ERα5 Stable Monoclone in Response to E2

Functional examination of the MDA-ER α 5 stable monoclone showed that ER α introduced exogenously is functional. ER α localized in the nucleus, regulated estrogen responsive gene expressions, and altered cell cycle distribution in response to E2. This enabled us to assess changes in cellular proliferation of the MDA-ER α 5

monoclone in response to E2 treatment. MCF7 cells were used as the positive control of the E2 treatment since E2 is a proliferative agent in these cells.

In Figure 16, proliferation results were shown as percent change in the cell number after three and six days of E2 treatment. There is a significant increase in cellular proliferation of MCF7 cells while E2 repressed the proliferation of the MDA-ER α 5 monoclone. MDA-EV2 monoclones were not responsive to E2, as expected.

Thus, our results showed that E2 exerts an anti-proliferative effect on MDA-ER α 5 cells synthesizing ER α introduced exogenously.

Figure 16. Growth of monoclone MDA-ERa5 (A), MCF7 (B), and MDA-EV2 (C). Cells were seeded as 1250 cells/well to each well of a 48-well plate in 8% CD-FBS/DMEM. 48 hours later, cells were treated either with 10^{-9} M E2 or ethanol (0.01%; OH) as vehicle control. Treatment was renewed after three days and cells were counted with hemocytometer on the third and sixth days of treatment. Results shown as percent change compared to ethanol control are the mean ± SEM of three biological replicate with duplicate wells/treatment. Unpaired, two-tailed t-test with 95% confidence interval was used for statistical analysis (*; significant p<0.05, **; very significant p<0.01, ***; extremely significant p<0.001, ns; non-significant p>0.05).

3.4. Genome-Wide Methylation Profile Analysis

Our results collectively indicate that we have established a cell model that recapitulates the previous observations that E2 is an anti-mitotic agent in ER-negative cells synthesizing ER α introduced exogenously in contrast to ER-positive cells wherein E2 acts as an effective proliferative hormone.

The establishment of the MDA-ER α 5 cell model allowed us to test our hypothesis that directional effect of E2 on cellular proliferation is due to differences in the transcriptomic profiles of the cell models as results of differences in genome-wide methylation status.

To examine this prediction, we employed genome-wide methylome and transcriptome analyses. For both analyses, the samples were generated from the same experiments. Cells grown in 8% CD-FBS/DMEM, and treated with 10^{-9} M of E2 or ethanol (0.01%) as vehicle control for 48 hours. Six hours after treatment, cells were collected, washed and divided into three aliquots.

For methylome analysis, genomic DNA isolation was carried out using one of the pellets (detailed in 2.9) and integrity of genomic DNA was assessed by running samples in agarose gel electrophoresis (Figure 17). Samples were stored in -80°C and shipped in same conditions to Zymo Research Corporation, Epigenetic Services (USA).

Figure 17. A representative image for genomic DNA integrity. Genomic DNA isolation was done by using Quick-gDNATM MiniPrep kit (Zymo Research, USA, D3024). Genomic DNA quality was examined by running 500 ng of each samples in 0.7% agarose gel for 30 minutes at 100 V. 250 ng of pcDNA3.1(-) plasmid linearized with BamHI restriction enzyme (5428 bp) was used for positive control. GeneRuler DNA Ladder Mix (Thermo Scientific, USA, SM0331) was used as marker (M). Same results were obtained for all technical replicates. Lane 1: Linearized pcDNA3.1(-) plasmid. Lane 2: MDA-ER α 5 6h ethanol treatment. Lane 3: MDA-ER α 5 6h E2 treatment. Lane 4: MCF7 6h ethanol treatment. Lane 5: MCF7 6h E2 treatment.

Methylation Mini-Seq full service sequencing results were provided by Zymo Research Corporation (USA). For each cell line (MDA-ERα5 monoclones and MCF7

cells), 6h E2 treated samples were compared to 6h OH treated samples (Figure 18-19). In addition, 6h E2 treated MDA-ER α 5 vs 6h E2 treated MCF7 comparisons were made (Figure 20). List of genomic regions in each heat map is provided in Appendix H. Heat maps show differentially methylated regions in terms of their p-value order. Yellow color represents highly methylated DNA regions while red color represents poorly methylated DNA regions, and orange color represents intermediate of methylation regions.

Figure 18. Differential methylation status of the MDA-ERa5 monoclone. Shown is the comparative analysis of methylation status of highly divergent 100 gene loci in the absence or presence of E2. Cells were seeded as 2.5x10⁶ into each T75 cm2 tissue culture flasks in 8% CD-FBS/DMEM. 48 hours later, cells were treated either with 10⁻⁹ M of E2 or ethanol (0.01%) as vehicle control. Six hours after treatment, cells were trypsinized and washed with PBS twice. All experiments were repeated three independent times with three technical replicates. Quick-gDNATM MiniPrep kit (Zymo Research, USA, D3024) was used according to manufacturer's instructions for genomic DNA isolation. Samples were shipped at -80°C conditions as genomic DNA to Zymo Research Corporation, Epigenetic Services (USA) for Methylation Mini-Seq full service sequencing.

Figure 19. Differential methylation status of MCF7 cells. Shown is the comparative analysis of methylation status of highly divergent 100 gene loci in the absence or presence of E2. Cells were seeded as 2.5×10^6 into each T75 cm2 tissue culture flasks in 8% CD-FBS/DMEM. 48 hours later, cells were treated either with 10^{-9} M of E2 or ethanol (0.01%) as vehicle control. Six hours after treatment, cells were trypsinized and washed with PBS twice. All experiments were repeated three independent times with three technical replicates. Quick-gDNATM MiniPrep kit (Zymo Research, USA, D3024) was used according to manufacturer's instructions for genomic DNA isolation. Samples were shipped at -80°C conditions as genomic DNA to Zymo Research Corporation, Epigenetic Services (USA) for Methylation Mini-Seq full service sequencing.

Figure 20. Differential methylation status of MDA-ERα5 monoclone and MCF7 cells. Shown is the comparative analysis of methylation status of highly divergent 100 gene loci in the absence or presence of E2. Cells were seeded as 2.5x10⁶ into each T75 cm2 tissue culture flasks in 8% CD-FBS/DMEM. 48 hours later, cells were treated either with 10⁻⁹ M of E2 or ethanol (0.01%) as vehicle control. Six hours after treatment, cells were trypsinized and washed with PBS twice. All experiments were repeated three independent times with three technical replicates. Quick-gDNATM MiniPrep kit (Zymo Research, USA, D3024) was used according to manufacturer's instructions for genomic DNA isolation. Samples were shipped at -80°C conditions as genomic DNA to Zymo Research Corporation, Epigenetic Services (USA) for Methylation Mini-Seq full service sequencing.

Although analyses of methylation and transcriptomic results in depth are in progress, initial observations suggested that E2 treatment changes methylation statuses of the genome of both MDA-ER α 5 monoclones and MCF7 cells. Additionally, in comparison of 6h E2 treatment samples of MDA-ER α 5 and MCF7 cells, it was found that there is a dramatic difference in methylation statutes of same genomic regions. These observations support the initial hypothesis that differences in genome-wide methylation statuses of cell lines expressing ER α endogenously vs exogenously could underlie differential gene expressions, and hence polarity in cellular proliferation.

To ensure that RT-qPCR results of selected genes (Section 3.2.4) showing expression changes correlate with directions in methylation profiles of their gene locus, methylation tracks were uploaded to USCS Genome Browser [49] and chromosomal location of genes and methylation statuses were visualized. URLs of methylation tracks were provided in APPENDIX I.

Methylation patterns of *YPEL2*, *YPEL3*, *CTGF*, *TFF1/pS2*, and *CCNA1* genes, which were responsive to E2, were assessed in three different groups: 1) ethanol vs E2 comparison of each cell line, 2) methylation pattern of same genomic regions of ethanol treated samples of MDA-ER α 5 and MCF7 were compared to each other, and 3) methylation pattern of same genomic region of E2 treated samples of MDA-ER α 5 and MCF7 were compared to each other.

In group one, we observed that E2 changes methylation pattern of same region compared to ethanol treatment group of both MDA-ER α 5 and MCF7 cells (Figure 21-30). In figures, each gene (*YPEL2, YPEL3, CTGF, TFF1/pS2*, and *CCNA1*) was shown for ethanol vs E2 treated MDA-ER α 5 cells first, and then for ethanol vs E2 treated MCF7 cells. For each of these genes, a distinct methylation pattern was discernable for both MDA-ER α 5 and MCF7 cells. This suggests that E2 treatment induces changes in the methylation profiles of these E2 responsive genes in MDA-ER α 5 or MCF7 cells. Expectedly, comparisons of only ethanol treatments of MDA-ER α 5 and MCF7 cells to each other (group two) showed that these two cell lines have unique methylation patterns for these genes (Figure 31-35). For the third group, methylation profiles of the same genomic region of the both cell lines in the presence of E2 were compared to each other (Figure 32-40). Results suggest that E2 mediated changes in methylation profiles also differ in cell lines.

Figure 21. Differential methylation status of YPEL2 in ethanol vs E2 treated MDA-ERu5 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 22. Differential methylation status of YPEL2 in ethanol vs E2 treated MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 23. Differential methylation status of YPEL3 in ethanol vs E2 treated MDA-ERa5 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 24. Differential methylation status of YPEL3 in ethanol vs E2 treated MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 25. Differential methylation status of CTGF in ethanol vs E2 treated MDA-ERa5 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows. Figure 26. Differential methylation status of CTGF in ethanol vs E2 treated MCF7 cells. Figure on the top shows the methylation pattern of the gene

Figure 27. Differential methylation status of *TFF1/pS2* in ethanol vs E2 treated MDA-ERa5 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 28. Differential methylation status of *TFF1/pS2* in ethanol vs E2 treated MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 29. Differential methylation status of CCNAI in ethanol vs E2 treated MDA-ERa5 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows. Figure 30. Differential methylation status of CCNAI in ethanol vs E2 treated MCF7 cells. Figure on the top shows the methylation pattern of the gene

Figure 31. Differential methylation status of YPEL2 in ethanol treated MDA-ERa5 w MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 32. Differential methylation status of *YPEL3* in ethanol treated MDA-ERa5 *vs* MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 33. Differential methylation status of CTGF in ethanol treated MDA-ERa5 vs MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 34. Differential methylation status of *TFF1/pS2* in ethanol treated MDA-ER05 vs MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 35. Differential methylation statutes of CCNA1 in ethanol treated MDA-ERa5 vs MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 36. Differential methylation statutes of YPEL2 in E2 treated MDA-ERa5 vs MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 37. Differential methylation status of YPEL3 in E2 treated MDA-ERa5 vs MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 38. Differential methylation status of CTGF in E2 treated MDA-ERa5 vs MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 39. Differential methylation status of *TFF1/pS2* in E2 treated MDA-ERa5 vs MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.

Figure 40. Differential methylation status of CCNAI in E2 treated MDA-ERa5 w MCF7 cells. Figure on the top shows the methylation pattern of the gene locus while figure at the bottom shows methylation pattern of upstream of the gene. Yellow lines represent higher level of methylation and red lines represent lower levels of methylation. Some of the differentially methylated regions were indicated with black arrows.
3.5. Whole-Genome Transcriptomic Profile Analysis

One of the cell pellets prepared from the same biological samples for methylation analysis was subjected to whole-genome transcriptomic profiling to assess whether methylation status of cell lines correlate with gene expression pattern. Genome-wide transcriptome analysis revealed remarkably small number of genes responded to E2 in contrast to previous findings of this and other laboratories, which report hundreds of transcripts. We observed that E2 treatment of MDA-ER α 5 cells for six hours resulted in significant changes in the expression of only 23 transcripts (Appendix J). E2, on the other hand, regulated the expression of 140 transcripts in MCF7 cells (Appendix J).

Gene ID	Gene Symbol	Locus	p-Value
ENSG00000175155.8	YPEL2	chr17:59331688-59403303	0,443547
ENSG0000090238.11	YPEL3	chr16:30092313-30104116	0,718572
ENSG00000118523.5	CTGF	chr6:131948175-132077393	0,267299
ENSG00000160182.2	TFF1	chr21:42362281-42366594	0,000341
ENSG00000133101.9	CCNA1	chr13:36431519-36442882	0,054373

Table 2. Whole Transcriptomic Profile Analyses for Subset of Genes in MDA-ERα5 ethanol *vs* E2 treatment.

Gene ID	Gene Symbol	Locus	p-Value
ENSG00000175155.8	YPEL2	chr17:59331688- 59403303	0,143355
ENSG00000090238.11	YPEL3	chr16:30092313- 30104116	0,0260659
ENSG00000118523.5	CTGF	chr6:131948175- 132077393	6,67E-05
ENSG00000160182.2	TFF1	chr21:42362281- 42366594	1,11E-05
ENSG00000133101.9	CCNA1	chr13:36431519- 36442882	0,00746204

Table 3. Whole Transcriptomic Profile Analyses for Subset of Genes in MCF7 ethanol vs E2 treatment.

Bioinformatics analyses of both genome-wide methylation and whole transcriptomic profile results are currently being studied. Although we have a small list for genes that are differentially modulated by E2 in transcriptome profiling, we still used DAVID Bioinformatics Database [50] to functionally cluster genes from the initial RNA-seq analysis. In ethanol vs E2 treated MCF7 cells, 140 significant genes with the clustering of biological functions are shown in Figure 41. Enrichment scores, indicated on the left side of the figure, define abundancy of biological processes as clusters in the gene list, which show, as expected, that E2 is involved in various biological processes. On the other hand, the DAVID Bioinformatics Database was not able to cluster these genes into biologically relevant groups due to small samples size (23 genes) of MDA-ER α 5 cells.

	GOTERM Biological Process -	Log (p value)
	Cellular ketone metabolic process	
4	Organic acid metabolic process	
<u> </u>	Carboxylic acid metabolic process	
	Oxoacid metabolic process	
	Cecond-messenger-mediated signaling	
	cAMP-mediated signaling	
	Negative regulation of catalytic activity	
	G-protein signaling, coupled to cAMP nucleotide second messenger	
	Cyclic-nucleotide-mediated signaling	
	Regulation of nucleotide metabolic process	
	G-protein signaling, coupled to cyclic nucleotide second messenger	
	Regulation of cyclic nucleotide metabolic process	
	Regulation of cyclic nucleotide biosynthetic process	
4	Regulation of nucleotide biosynthetic process	
-	Regulation of cAMP metabolic process	
	Regulation of lyase activity	
	Regulation of cAMP biosynthetic process	
	Inhibition of adenvlate cyclase activity by G-protein signaling	
	Regulation of cyclase activity	
	Regulation of adenviate cyclase activity	
	Negative regulation of lyase activity	
	Negative regulation of adenviate cyclase activity	
	Negative regulation of cyclase activity	
	Reproduction	
	Reproductive process	
	Gamete generation	
8	Sexual reproduction	
-	Reproductive process in a multicellular organism	
	Multicellular organism reproduction	
	Parreductive developmental process	
	Reproductive developmental process	
3	Diological regulation	
1	Regulation of biological process	
	Regulation of centuar process	
	Locomotion	
8	Cell motility	
1	Localization of cell	
	Cell migration	
	Anatomical structure formation involved in morphogenesis	
	Tube development	
3	Vasculature development	
2,9	Blood vessel development	
	Blood vessel morphogenesis	
2	Multicellular organismal process	
4	Developmental process	
e.,	Multicellular organismal development	
		0 1 2 3 4
		0 1 2 5 4

Figure 41. Biological function clustering of genes showing significant changes in ethanol vs E2 treated MCF7 cells with RNA-seq. Genes are clustered according to their biological function and numbers on the left side indicate the enrichment score. Numbers at the bottom indicate log (p-value).

Although for every set of experiment, the expression of the TFF1/pS2 gene was used as the positive control to E2 treatment before an experiment was deemed to be a biological replicate for whole-genome methylome and transcriptome analyses, this unexpectedly small number of genes regulated differentially in response to E2 suggests that there are significant variations among biological replicates adversely affecting the p-value. Indeed, glancing into the results of biological replicates including our selected genes implies this may be the case. This rendered the correlation of methylation status to transcriptome profiling difficult to perform. For example, in RT-qPCR assays, we observed that E2 effectively induces changes in the expression of *YPEL2*, *YPEL3* or *CTGF* in a cell-type dependent manner; however, transcriptome analysis showed no significant change in *YPEL2*, *YPEL3* or *CTGF* in MDA-ER α 5 cells (Table 2). E2 exerted no effect on *YPEL2* or *YPEL3* in MCF7 cells, while significantly altering the expression of *CTGF* (Table 3).

These results suggest that our results may yet be unreliable to generate a correlation between methylation status and gene expressions. A possible solution could involve the inclusion of more samples in analyses.

CHAPTER 4

CONCLUSION AND FUTURE DIRECTIONS

For testing our initial hypothesis that differential methylation pattern of regulatory regions of genes could underlie the proliferative vs anti-proliferative effect, hence, the differential expression of genes, of E2 in cells synthesizing ER α endogenously or introduced exogenously, we have generated a cell model. In our functional assays, we were able to show that ER α synthesized in the MDA-ER α 5 monoclone functions expectedly in terms of intracellular localization, E2 binding, regulating estrogen responsive gene expressions as well as modulating cell cycle distribution. Based on these findings, we have tested the responses of MDA-ER α 5 in comparison to MCF7 cells synthesizing ER α endogenously to E2. In keeping with previous observations from this and other laboratories, our results showed that E2 is an anti-proliferative in MDA-ER α 5 in contrast to MCF7 cells wherein E2 is proliferative hormone.

In summary;

- 1. The MDA-ER α 5 monoclone synthesizes ER α (Section 3.2.1.) that localizes in the nucleus as in MCF7 cells (Section 3.2.2.).
- 2. ERα in MDA-ERα5 cells is capable of regulating responsive gene expressions (Section 3.2.3. & Section 3.2.4.).
- ERα in response to E2 alters cell cycle phases: E2-ERα represses G1-S phase transition in MDA-ERα5 cells in contrast to MCF7 cells wherein E2 augments cell population entering to S phase (Section 3.2.5.).
- 4. E2 effects on cellular proliferation show polar directions: E2 effectively decreased the proliferation of MDA-ER α 5 cells in clear contrast to the increased proliferation of MCF7 cells by E2 (Section 3.3.).

- 5. Genome-wide methylation profiling clearly indicate that these model cell lines have distinct methylation patterns, as assessed by ethanol treated group, for the same genomic region (Section 3.4.).
- E2 also affected genome-wide methylation status and transcription profiles of both MDA-ERα5 and MCF7 cells (Section 3.4. & Section 3.5.).
- These observations indicate that the MDA-ERα5 monoclone generated by stable transfection of an expression vector containing ERα cDNA could be used for the understanding of underlying mechanism of the paradoxical bipotential effect of E2 on cellular proliferation in cells that synthesize the ERα receptor endogenously or introduced exogenously.

However, discrepancies in between the expression of some of endogenous genes assessed by RT-qPCR and RNA-Seq analyses also suggest that the results of transcriptomic profiling, of at least for MDA-ER α 5 cells, are yet unreliable. Although the underlying reason(s) is unclear, apparent variations among biological replicates of RNA-Seq results necessitate the re-evaluation of sample sizes that we have used in analysis. Since samples for genome-wide methylome and transcriptome analyses derived from the same set of experimental groups, our results also suggest a cautious approach to methylome results as well. Consequently, at the moment, this prevents us to propose a correlation between methylation and transcriptomic profiles of cell models in response to E2. One likely solution to this apparent problem could involve an increase in sample size for both analyses.

In addition, results of both methylome and transcriptome analyses are to be verified by various approaches including targeted methylation specific polymerase chain reaction (MSP) [51] and RT-qPCR to ensure that these exploratory approaches indeed produce biologically meaningful findings.

BIBLIOGRAPHY

- [1] American Cancer Society, "Cancer facts & figures 2016," 2016.
- T. C. S. Bakanlığı, "Türkiye'de Kanser Kayıtçılığı," *Daire Faaliyetleri*, 2013.
 [Online]. Available: http://kanser.gov.tr/daire-faaliyetleri/kanser-kayitciligi/108-Türkiyede-kanserkayitcigi. [Accessed: 01-Jan-2016].
- [3] S. J. Dawson, O. M. Rueda, S. Aparicio, and C. Caldas, "A new genomedriven integrated classification of breast cancer and its implications," *EMBO J.*, vol. 32, no. 5, pp. 617–628, 2013.
- [4] H. D. Soule, J. Vazquez, A. Long, S. Albert, and M. Brennan, "A Human Cell Line From a Pleural Effusion Derived From a Breast Carcinoma," J Natl Cancer Inst, vol. 51, no. 5, pp. 1409–1416, 1973.
- [5] A. Zheng, A. Kallio, and P. Härkönen, "Tamoxifen-Induced Rapid Death of MCF-7 Breast Cancer Cells Is Mediated via Extracellularly Signal-Regulated Kinase Signaling and Can Be Abrogated by Estrogen," *Endocrinology*, vol. 148, no. 6, pp. 2764–2777, 2007.
- [6] B. R. Brinkley, P. T. Beall, L. J. Wible, M. L. Mace, D. S. Turner, and R. M. Cailleau, "Variations in Cell Form and Cytoskeleton in Human Breast Carcinoma Cells in Vitro," *Cancer Res.*, vol. 40, no. 9, pp. 3118–3129, 1980.
- [7] A. Prat and C. M. Perou, "Deconstructing the molecular portraits of breast cancer.," *Mol. Oncol.*, vol. 5, no. 1, pp. 5–23, Mar. 2011.
- [8] J. Huang, X. Li, T. Qiao, R. A. Bambara, R. Hilf, and M. Muyan, "A tale of two estrogen receptors (ERs): how differential ER-estrogen responsive element interactions contribute to subtype-specific transcriptional responses," *Nucl. Recept. Signal.*, vol. 4, pp. 1–4, 2006.
- [9] P. Ascenzi, A. Bocedi, and M. Marino, "Structure-function relationship of estrogen receptor alpha and beta: Impact on human health," *Mol. Aspects Med.*, vol. 27, no. 4, pp. 299–402, Aug. 2006.
- [10] M. J. Linja, K. P. Porkka, Z. Kang, K. J. Savinainen, and O. A. Ja, "Expression of Androgen Receptor Coregulators in Prostate Cancer Expression of Androgen Receptor Coregulators in Prostate Cancer," vol. 10, pp. 1032–1040, 2004.

- [11] Y. Huang, X. Li, and M. Muyan, "Estrogen receptors similarly mediate the effects of 17β-estradiol on cellular responses but differ in their potencies," *Endocrine*, vol. 39, no. 1, pp. 48–61, Feb. 2011.
- [12] S. L. Nott, Y. Huang, X. Li, B. R. Fluharty, X. Qiu, W. V. Welshons, S. Y. Yeh, and M. Muyan, "Genomic Responses from the Estrogen-responsive Element-dependent Signaling Pathway Mediated by Estrogen Receptor α Are Required to Elicit Cellular Alterations," *J. Biol. Chem.*, vol. 284, no. 22, pp. 15277–15288, 2009.
- [13] L. R. Nelson and S. E. Bulun, "Estrogen production and action," J. Am. Acad. Dermatol., vol. 45, no. 3, pp. 116–124, 2001.
- [14] C. J. Gruber, W. Tschugguel, C. Schneeberger, and J. Huber, "Production and Actions of Estrogens," *N. Engl. J. Med.*, vol. 346, no. 5, pp. 340–352, 2002.
- [15] D. A. Zajchowski, R. Sager, and L. Webster, "Estrogen Inhibits the Growth of Estrogen Receptor-negative, but not Estrogen Receptor-positive, Human Mammary Epithelial Cells Expressing a Recombinant Estrogen Receptor," *CANCER Res.*, vol. 53, pp. 5004–5011, 1993.
- [16] J. C. Reese and B. S. Katzenellenbogen, "Differential DNA-binding abilities of estrogen receptor occupied with two classes of antiestrogens: studies using human estrogen receptor overexpressed in mammalian cells," *Nucleic Acids Res*, vol. 19, no. 23, pp. 6595–6602, 1991.
- [17] M. Garcia, D. Derocq, G. Freiss, and H. Rochefort, "Activation of estrogen receptor transfected into a receptor-negative breast cancer cell line decreases the metastatic and invasive potential of the cells," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 89, no. 23, pp. 11538–11542, 1992.
- [18] F. Pakdel, P. Le Goff, and B. S. Katzenellenbogen, "An Assessment of the Role of Domain F and Pest Wequences in Estrogen Receptor Half-Life and Bioactivity," *J. Steroid Biochem. Mol. Biol.*, vol. 46, no. 6, pp. 663–672, 1993.
- [19] A. S. Levenson, B. D. Gehm, S. T. Pearce, J. Horiguchi, L. A. Simons, J. E. Ward, J. L. Jameson, and V. C. Jordan, "Resveratrol Acts as an Rstrogen Receptor (ER) Agonist in Breast Cancer Cells Stably Transfected with ERα," *Int. J. Cancer*, vol. 104, no. 5, pp. 587–596, 2003.
- [20] G. Lazennec and B. S. Katzenellenbogen, "Expression of human estrogen receptor using an efficient adenoviral gene delivery system is able to restore hormone-dependent features to estrogen receptor-negative breast carcinoma cells," *Mol. Cell. Endocrinol.*, vol. 149, no. 1–2, pp. 93–105, 1999.
- [21] S. Jiang and V. C. Jordan, "Growth Regulation of Estrogen Receptor-Negative Breast Cancer Cells Transfected With Complementary DNAs for Estrogen Receptor," J. Natl. Cancer Inst., vol. 84, no. 8, pp. 580–591, 1991.

- [22] W. Wang, R. Smith, R. Burghardt, and S. H. Safe, "17 beta-Estradiol-mediated growth inhibition of MDA-MB-468 cells stably transfected with the estrogen receptor: cell cycle effects," *Mol. Cell. Endocrinol.*, vol. 133, no. 1, pp. 49– 62, 1997.
- [23] B. K. Lundholt, P. Briand, and A. E. Lykkesfeldt, "Growth inhibition and growth stimulation by estradiol of estrogen receptor transfected human breast epithelial cell lines involve different pathways," *Breast Cancer Res. Treat.*, vol. 67, no. 3, pp. 199–214, 2001.
- [24] S. R. Hammes and E. R. Levin, "Extranuclear steroid receptors: nature and actions.," *Endocr. Rev.*, vol. 28, no. 7, pp. 726–41, Dec. 2007.
- [25] P. Yi, S. Bhagat, R. Hilf, R. A. Bambara, and M. Muyan, "Differences in the Abilities of Estrogen Receptors to Integrate Activation Functions Are Critical for Subtype-Specific Transcriptional Responses," *Mol. Endocrinol.*, vol. 16, no. 8, pp. 1810–27, 2002.
- [26] M. Muyan, L. M. Callahan, Y. Huang, and A. J. Lee, "The ligand-mediated nuclear mobility and interaction with estrogen-responsive elements of estrogen receptors are subtype specific," *J. Mol. Endocrinol.*, vol. 49, no. 3, pp. 249–266, 2012.
- [27] M. Weber, J. J. Davies, D. Wittig, E. J. Oakeley, M. Haase, W. L. Lam, and D. Schübeler, "Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells," *Nat. Genet.*, vol. 37, no. 8, pp. 853–862, 2005.
- [28] R. Singal and G. D. Ginder, "DNA Methylation," *Blood*, vol. 93, no. 12, pp. 4059–4070, 1999.
- [29] M. Szyf, P. Pakneshan, and S. A. Rabbani, "DNA methylation and breast cancer," *Biochem. Pharmacol.*, vol. 68, no. 6, pp. 1187–1197, 2004.
- [30] M. Ung, X. Ma, K. C. Johnson, B. C. Christensen, and C. Cheng, "Effect of estrogen receptor α binding on functional DNA methylation in breast cancer," *Epigenetics*, vol. 9, no. 4, pp. 523–532, 2014.
- [31] P. W. Laird, "Principles and challenges of genome-wide DNA methylation analysis," *Nat. Rev. Genet.*, vol. 11, no. 3, pp. 191–203, 2010.
- [32] Q. Yang, L. Shan, G. Yoshimura, M. Nakamura, Y. Nakamura, T. Suzuma, T. Umemura, I. Mori, T. Sakurai, and K. Kakudo, "5-Aza-2'-Deoxycytidine Induces Retinoic Acid Receptor Beta 2 Demethylation, Cell Cycle Arrest and Growth Inhibition in Breast Carcinoma Cells," vol. 22, no. 5, pp. 2753–6., 2002.
- [33] M. J. Fackler, C. Umbricht, D. Williams, P. Argani, L. A. Cruz, V. F. Merino, W. W. Teo, Z. Zhang, P. Huang, K. Visvananthan, J. Marks, S. Ethier, J. W.

Gray, A. C. Wolff, L. M. Cope, and S. Sukumar, "Genome-wide Methylation Analysis Identifies Genes Specific to Breast Cancer Hormone Receptor Status and Risk of Recurrence," vol. 71, no. 19, pp. 6195–6207, 2012.

- [34] L. Li, K. M. Lee, W. Han, J. Y. Choi, J. Y. Lee, G. H. Kang, S. K. Park, D. Y. Noh, K. Y. Yoo, and D. Kang, "Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer," *Hum. Mol. Genet.*, vol. 19, no. 21, pp. 4273–4277, 2010.
- [35] M. Widschwendter, K. D. Siegmund, H. M. Müller, H. M. Mu, H. Fiegl, C. Marth, E. Mu, P. A. Jones, and P. W. Laird, "Association of Breast Cancer DNA Methylation Profiles with Hormone Receptor Status and Response to Tamoxifen Association of Breast Cancer DNA Methylation Profiles with Hormone Receptor Status and Response to Tamoxifen," no. 16, pp. 3807–3813, 2004.
- [36] Y. Ruike, Y. Imanaka, F. Sato, K. Shimizu, and G. Tsujimoto, "Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing," *BMC Genomics*, vol. 11, p. 137, 2010.
- [37] S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele, and C. T. Wittwer, "The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.," *Clin. Chem.*, vol. 55, no. 4, pp. 611–22, Apr. 2009.
- [38] J. Huang, X. Li, R. Hilf, R. A. Bambara, and M. Muyan, "Molecular basis of therapeutic strategies for breast cancer.," *Curr. Drug Targets. Immune. Endocr. Metabol. Disord.*, vol. 5, no. 4, pp. 379–396, 2005.
- [39] K. Hosono, T. Sasaki, S. Minoshima, and N. Shimizu, "Identification and characterization of a novel gene family YPEL in a wide spectrum of eukaryotic species.," *Gene*, vol. 340, no. 1, pp. 31–43, Sep. 2004.
- [40] K. D. Kelley, K. R. Miller, A. Todd, A. R. Kelley, R. Tuttle, and S. J. Berberich, "YPEL3, a p53-regulated gene that induces cellular senescence.," *Cancer Res.*, vol. 70, no. 9, pp. 3566–75, May 2010.
- [41] J. Pärssinen, T. Kuukasjärvi, R. Karhu, and a Kallioniemi, "High-level amplification at 17q23 leads to coordinated overexpression of multiple adjacent genes in breast cancer.," *Br. J. Cancer*, vol. 96, no. 8, pp. 1258–64, Apr. 2007.
- [42] R. Lu and G. Serrero, "Mediation of estrogen mitogenic effect in human breast cancer MCF-7 cells by PC-cell-derived growth factor (PCDGF/granulin precursor).," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 98, no. 1, pp. 142–147, 2001.
- [43] Z. Wang, B. C. Liu, G. T. Lin, C. S. Lin, T. F. Lue, E. Willingham, and L. S.

Baskin, "Up-Regulation of Estrogen Responsive Genes in Hypospadias: Microarray Analysis," J. Urol., vol. 177, no. 5, pp. 1939–1946, 2007.

- [44] M. D. Corte, F. Tamargo, A. Alvarez, J. C. Rodriguez, J. Vazquez, R. Sanchez, M. L. Lamelas, L. O. Gonzalez, M. T. Allende, J. L. Garcia-Muniz, A. Fueyo, and F. Vizoso, "Cytosolic levels of TFF1/pS2 in breast cancer: Their relationship with clinical-pathological parameters and their prognostic significance," *Breast Cancer Res. Treat.*, vol. 96, no. 1, pp. 63–72, 2006.
- [45] D. Liu, M. M. Matzuk, W. K. Sung, Q. Guo, P. Wang, and D. J. Wolgemuth, "Cyclin A1 is required for meiosis in the male mouse.," *Nat. Genet.*, vol. 20, no. 4, pp. 377–80, 1998.
- [46] C. Sweeney, M. Murphy, M. Kubelka, S. E. Ravnik, C. F. Hawkins, D. J. Wolgemuth, and M. Carrington, "A distinct cyclin A is expressed in germ cells in the mouse.," *Development*, vol. 122, pp. 53–64, 1996.
- [47] Y. F. Wong, T. H. Cheung, K. W. K. Lo, S. F. Yim, N. S. S. Siu, S. C. S. Chan, T. W. F. Ho, K. W. Y. Wong, M. Y. Yu, V. W. Wang, C. Li, G. J. Gardner, T. Bonome, W. B. Johnson, D. I. Smith, T. K. H. Chung, and M. J. Birrer, "Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling.," *Oncogene*, vol. 26, no. 13, pp. 1971–82, 2007.
- [48] J. Frasor, J. M. Danes, B. Komm, K. C. N. Chang, C. Richard Lyttle, and B. S. Katzenellenbogen, "Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: Insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype," *Endocrinology*, vol. 144, no. 10, pp. 4562–4574, 2003.
- [49] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and A. D. Haussler, "The Human Genome Browser at UCSC," *Genome Res.*, vol. 12, no. 6, pp. 996–1006, 2002.
- [50] D. W. Huang, R. A. Lempicki, and B. T. Sherman, "Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.," *Nat. Protoc.*, vol. 4, no. 1, pp. 44–57, 2009.
- [51] J. G. Herman, J. R. Graff, S. Myohanen, B. D. Nelkin, and S. B. Baylin, "Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands.," *Proc. Natl. Acad. Sci.*, vol. 93, no. 18, pp. 9821–9826, 1996.

APPENDIX A

DEXTRAN COATED CHARCOAL STRIPPED FETAL BOVINE SERUM

10 g dextran coated charcoal (Sigma Aldrich, Germany, C6241) was added into 500 ml fetal bovine serum (FBS, Biochrom AG, Germany, S0115) in its own bottle. An autoclaved magnetic fish was used for stirring of the FBS at a medium speed to ensure that the charcoal is not broken into fine particles and incubation was performed at +4°C for overnight. After the incubation, the mixed FBS with charcoal was divided as equally weighted into two sterile Nalgene bottles and centrifuged at 10800 g (8000 rpm for Sorvall SLA-3000 rotor) for 30 minutes at +4°C. Both of the supernatants were transferred into a 0.45 μ M sterile filter unit (Sarstedt, Germany, 83.1823) and filtered. For the second round of the treatment, again 10 g dextran coated charcoal was added and stirred with a sterile magnetic fish for 4-6 hours at +4°C. After the incubation, the mixture was divided into two equally weighted sterile Nalgene bottles and centrifuged at 10800 g for 30 minutes at +4°C. The supernatants were transferred into a 0.45 μ M sterile filter unit and filtered in the biological safety cabinet. Finally, charcoal dextran treated fetal bovine serum (CD-FBS) was aliquoted as 40 mL aliqoutes into 50 mL sterile falcon tubes and stored at -20°C.

APPENDIX B

BUFFERS

6X Laemmli Buffer (10 mL)

 Tris-base
 3,75 mL (1M Tris, pH 6.8)

 SDS
 1.2 g

 Glycerol
 6 mL (100%)

Bromophenol Blue 1.2 mg

* β-mercaptoethanol is added freshly (Final concentration is 30%)

APPENDIX C

MIQE GUIDELINES

Table C 1. MIQE checklist.

ITEM TO CHECK	IMPORTANCE	CHECKLIST
EXPERIMENTAL DESIGN		
Definition of experimental and control groups	E	YES
Number within each group	Е	YES
Assay carried out by core lab or investigator's lab?	D	YES
Acknowledgement of authors' contributions	D	N/A
SAMPLE		
Description	Е	N/A
Volume/mass of sample processed	D	N/A
Microdissection or macrodissection	E	N/A
Processing procedure	Ε	N/A
If frozen - how and how quickly?	Е	N/A
If fixed - with what, how quickly?	Е	N/A
Sample storage conditions and duration (especially for FFPE samples)	Е	N/A
NUCLEIC ACID EXTRACTION		
Procedure and/or instrumentation	Ε	YES
Name of kit and details of any modifications	Ε	YES
Source of additional reagents used	D	N/A
Details of DNase or RNAse treatment	Ε	YES
Contamination assessment (DNA or RNA)	Ε	YES
Nucleic acid quantification	Ε	YES
Instrument and method	E	YES
Purity (A260/A280)	D	NO

Table C 1. (continued)

Yield	D	NO
REVERSE TRANSCRIPTION		
Complete reaction conditions	Ε	YES
Amount of RNA and reaction volume	Ε	YES
Priming oligonucleotide and concentration	Ε	YES
Reverse transcriptase and concentration	Ε	YES
Temperature and time	Ε	YES
Manufacturer of reagents and catalogue numbers	D	YES
Cqs with and without RT	D	NO
Storage conditions of cDNA	D	YES
qPCR TARGET INFORMATION		
If multiplex, efficiency and LOD of each assay.	Ε	N/A
Sequence accession number	Ε	YES
Location of amplicon	D	YES
Amplicon length	Ε	NO
In silico specificity screen (BLAST, etc)	Ε	NO
Pseudogenes, retropseudogenes or other homologs?	D	YES
Sequence alignment	D	YES
Secondary structure analysis of amplicon	D	NO
Location of each primer by exon or intron (if applicable)	Ε	YES
What splice variants are targeted?	Ε	YES
qPCR OLIGONUCLEOTIDES		
Primer sequences	Ε	YES
RTPrimerDB Identification Number	D	N/A
Probe sequences	D	N/A
Location and identity of any modifications	Ε	N/A
Manufacturer of oligonucleotides	D	NO
Purification method	D	NO
qPCR PROTOCOL		
Complete reaction conditions	E	YES
Reaction volume and amount of cDNA/DNA	E	YES
Primer, (probe), Mg++ and dNTP concentrations	E	N/A

Table C 1. (continued)

Polymerase identity and concentration	E	N/A
Buffer/kit identity and manufacturer	E	YES
Exact chemical constitution of the buffer	D	N/A
Additives (SYBR Green I, DMSO, etc.)	E	YES
Manufacturer of plates/tubes and catalog number	D	NO
Complete thermocycling parameters	E	YES
Reaction setup (manual/robotic)	D	YES
Manufacturer of qPCR instrument	E	YES
qPCR VALIDATION		
Evidence of optimization (from gradients)	D	NO
Specificity (gel, sequence, melt, or digest)	E	YES
For SYBR Green I, Cq of the NTC	E	YES
Standard curves with slope and y-intercept	E	YES
PCR efficiency calculated from slope	E	YES
Confidence interval for PCR efficiency or standard error	D	NO
r2 of standard curve	E	YES
Linear dynamic range	E	YES
Cq variation at lower limit	E	YES
Confidence intervals throughout range	D	N/A
Evidence for limit of detection	E	NO
If multiplex, efficiency and LOD of each assay.	E	N/A
DATA ANALYSIS		
qPCR analysis program (source, version)	E	YES
Cq method determination	E	YES
Outlier identification and disposition	E	N/A
Results of NTCs	E	YES
Justification of number and choice of reference genes	Е	YES

E: essential information, D: desirable information, N/A: not applicable

APPENDIX D

PRIMERS

Table D 1. Primer list.

Primer Name	Sequence (5' to 3')
PUM1_FP	AGTGGGGGACTAGGCGTTAG
PUM1_REP	GTTTTCATCACTGTCTGCATCC
TFF1/pS2_FP	TTGTGGTTTTCCTGGTGTCA
TFF1/pS2_REP	CCGAGCTCTGGGACTAATCA
CCNA1_FP	GTGTATGAAGTAGACACCGG
CCNA1_REP	GTCACATTTATCACATCTGTGC
CTGF_FP	GGTTACCAATGACAACGCCTC
CTGF_REP	GATAGGCTTGGAGATTTTGGG
YPEL2_FP	CAGCATCTACCCAACCCAGTGTCC
YPEL2_REP	GATGGCGTCAGGGTGGGAGG
YPEL3_FP	GCATGCACTGTGACCTTGGG
YPEL3_REP	CTATAGGGCAGGTGGGGGCAGG
GAPDH_FP	GGGAGCCAAAAGGGTCATCA
GAPDH_REP	TTTCTAGACGGCAGGTCAGGT

APPENDIX E

GENOMIC DNA CONTAMINATION CONTROL

Figure E 2. Genomic DNA control PCR. 600 ng of total RNA isolates were subjected to PCR with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) primers. Reaction conditions were as follows; initial denaturation at 95°C for three minutes, denaturation at 95°C for 30 seconds, annealing at 65°C for 30 seconds, extension at 72°C for 30 seconds. Denaturation, annealing and extension steps were repeated for 40 cycles with a final extension at 72°C for 10 minutes, infinite hold at 4°C. As positive control, 100 ng of genomic DNA was used in the same set of experimental PCR. Similar results were obtained for each RNA isolated. Lane 1:GeneRuler DNA Ladder Mix 100 bp-10000 bp, Thermo Scientific, USA). Lane 2: MDA-ER α 5, 6h OH treatment. Lane 3: MDA-ER α 5, 6h E2 treatment. Lane 4: MDA-ER α 11, 6h OH treatment. Lane 5: MDA-ER α 11, 6h E2 treatment. Lane 6: MDA-ER α 13, 6h OH treatment. Lane 8: MDA-EV2, 6h E2 treatment. Lane 9: MDA-EV2, 6h E2 treatment. Lane 10: MCF7, 6h E2 treatment. Lane 11: No template control. Lane 12: 100 ng genomic DNA as template.

APPENDIX F

PERFORMANCE OF RT-qPCR REACTIONS

A representative example of the RT-qPCR reactions generated in this study. Results were shown as standard curve for *PUM1* expression in six-hour ethanol treated MCF7 cells . Similar results were obtained for *YPEL2*, *YPEL3*, *CTGF*, *TFF1/pS2*, and *CCNA1*.

Well	Fluor	Content	Sample	Cq	SQ
A01	SYBR	Std	1:5	26,08	40000,00000
B01	SYBR	Std	1:10	27,08	20000,00000
C01	SYBR	Std	1:20	28,14	10000,00000
D01	SYBR	Std	1:40	29,12	5000,00000
E01	SYBR	Std	1:80	30,34	2500,00000
C06	SYBR	NTC			
B12	SYBR	NTC			

APPENDIX G

KINETIC ANALYSIS OF CELL CYCLE HISTOGRAMS

Figure G 1. Cell cycle kinetics of MDA-ERa5 monoclone. Cells were seeded onto six-well plates as $5x10^4$ /well in CD-FBS/DMEM. 48 hours later, cells were treated with 10^{-9} M of E2 or ethanol (0.01%) as vehicle control. Cells were collected with trypsinization and washed once with PBS at room temperature 48 hours after treatment. Cells were gently re-suspended in 100 µL of PBS and immediately fixed with ice-cold 70% ethanol diluted in distilled water. Samples were re-suspended with 200 µL of staining buffer prepared in PBS containing propidium ioidide (PI, Sigma Aldrich, Germany, P4710) with 0.02 mg/mL final concentration, RNase A (Thermo Scientific, USA, EN0531) with 200 µg/mL final concentration, and Triton[®] X-100 (AppliChem, Germany, A4975) with 0.1% (v/v) final concentration. Cell cycle analysis was done with BD AccuriTM C6 Cytometer (BD Biosciences). Assays were carried out as three independent experiments and similar results were obtained.

Figure G 2. Cell cycle kinetics of MCF7 cells. Cells were seeded onto six-well plates as $5x10^4$ /well in CD-FBS/DMEM. 48 hours later, cells were treated with 10^{-9} M of E2 or ethanol (0.01%) as vehicle control. Cells were collected with trypsinization and washed once with PBS at room temperature 48 hours after treatment. Cells were gently re-suspended in 100 µL of PBS and immediately fixed with ice-cold 70% ethanol diluted in distilled water. Samples were re-suspended with 200 µL of staining buffer prepared in PBS containing propidium ioidide (PI, Sigma Aldrich, Germany, P4710) with 0.02 mg/mL final concentration, RNase A (Thermo Scientific, USA, EN0531) with 200 µg/mL final concentration. Cell cycle analysis was done with BD AccuriTM C6 Cytometer (BD Biosciences). Assays were carried out as three independent experiments and similar results were obtained.

Figure G 3. Cell cycle kinetics of MDA-EV2 monoclone. Cells were seeded onto six-well plates as $5x10^4$ /well in CD-FBS/DMEM. 48 hours later, cells were treated with 10^{-9} M of E2 or ethanol (0.01%) as vehicle control. Cells were collected with trypsinization and washed once with PBS at room temperature 48 hours after treatment. Cells were gently re-suspended in 100 µL of PBS and immediately fixed with ice-cold 70% ethanol diluted in distilled water. Samples were re-suspended with 200 µL of staining buffer prepared in PBS containing propidium ioidide (PI, Sigma Aldrich, Germany, P4710) with 0.02 mg/mL final concentration, RNase A (Thermo Scientific, USA, EN0531) with 200 µg/mL final concentration, and Triton[®] X-100 (AppliChem, Germany, A4975) with 0.1% (v/v) final concentration. Cell cycle analysis was done with BD AccuriTM C6 Cytometer (BD Biosciences). Assays were carried out as three independent experiments and similar results were obtained.

APPENDIX H

TOP 100 SIGNIFICANT GENOMIC REGIONS IN METYLOME ANALYSES

							CpG	p-	
CHOR	STAR		ST	PROM	EX	INTRO	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	ON	Ν	ND	UE	CATION
	13537	13537						1,58	stronglyHype
chr10	9656	9657	-	SYCE1		SYCE1	Y	E-07	rmeth
	17716	17716						5,09	stronglyHype
chr11	394	395	+					E-07	rmeth
	15708	15708						6,4E-	stronglyHype
chr1	1740	1741	-					07	rmeth
	19606	19606						1,05	stronglyHype
chr2	149	150	+					E-06	rmeth
	71838	71838						1,58	stronglyHype
chr9	423	424	+			TJP2		E-06	rmeth
	11918	11918						1,61	stronglyHype
chr11	7935	7936	+	MCAM				E-06	rmeth
	17815	17815						3,13	stronglyHype
chr1	342	343	-					E-06	rmeth
	17995	17995				CNOT		3,83	stronglyHype
chr5	8765	8766	+			6		E-06	rmeth
	14593	14593						4,33	stronglyHype
chr8	8455	8456	-					E-06	rmeth
	80323	80323						4,34	stronglyHype
chr1	194	195	-					E-06	rmeth
	18908	18908						4,34	stronglyHype
chr4	4674	4675	+					E-06	rmeth
	48005	48005				KCNB		5,23	stronglyHype
chr20	949	950	+			1		E-06	rmeth
	58199	58199				SLC35		7,05	stronglyHype
chr14	937	938	-			F4		E-06	rmeth
	89626	89626				LOC44		7,94	stronglyHype
chr9	710	711	+			0173	Y	E-06	rmeth
	42879	42879		TMPRS		TMPR		7,94	stronglyHype
chr21	213	214	-	S2		SS2	Y	E-06	rmeth

Table H 1. Top 100 hype	ermethylated genomi	c regions in MDA-ERø	15 cells after 6h E2 treatment.

Table H 1. (continued)

							CpG	p-	
CHOR	STAR		ST	PROM	EXO	INTR	ISL	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	Ν	ON	AND	UE	CATION
	43846	43846						9 53	stronglyHype
chr10	967	968	+					E-06	rmeth
•	46924	46924				PTH1		9 53	stronglyHype
chr3	060	061	_	PTH1R		R	Y	E-06	rmeth
•	98859	98859					-	1 27	stronglyHype
chr5	823	824	+					E-05	rmeth
	22822	22822				WNT3		1 32	stronglyHype
chr1	5886	5887	-			A		E-05	rmeth
	26513	26513				LOC44		1 45	stronglyHype
chr7	20313	20313	+			1204		E-05	rmeth
	15454	15454		CHRN	CHR	1201		1 45	stronglyHype
chr1	0313	0314	-	B2	NB2		Y	E-05	rmeth
	86736	86736		52	11,02		1	1.6E-	stronglyHype
chr14	291	292	_					05	rmeth
•	89807	89807						1 61	stronglyHype
chr13	423	424	_					E-05	rmeth
•	74242	74242						1 66	stronglyHype
chr17	061	062	-					E-05	rmeth
	44594	44594						1.91	stronglyHype
chr10	329	330	-					E-05	rmeth
	18594	18594						2.02	stronglyHype
chr4	9555	9556	+					E-05	rmeth
	14985	14985						2.02	stronglyHype
chr5	1663	1664	+					E-05	rmeth
	79607	79607						2.3E-	stronglyHype
chr5	554	555	+					05	rmeth
	19192	19192		SLC24				2.58	stronglyHype
chr20	839	840	+	A3			Y	E-05	rmeth
	10074	10074		_	RNF2			2.58	stronglyHype
chr1	63	64	-		23			E-05	rmeth
	25592	25592						2,58	stronglyHype
chr13	594	595	-				Y	E-05	rmeth
	14306	14306						2,63	stronglyHype
chr7	6585	6586	-					E-05	rmeth
	85197	85197						2,88	stronglyHype
chr4	75	76	-					E-05	rmeth
	50207	50207						2,88	stronglyHype
chr18	6	7	-					E-05	rmeth
	44936	44936				CDH2		2,91	stronglyHype
chr20	622	623	+	CDH22		2	Y	E-05	rmeth
	19464	19464						3,09	stronglyHype
chr9	207	208	+					E-05	rmeth
	25710	25710	1	AMDH	AMD			3,33	stronglyHype
chr16	67	68	-	D2	HD2		Y	E-05	rmeth
	12464	12464						3,33	stronglyHype
chr5	22	23	+				Y	E-05	rmeth
	19649	19649						3,39	stronglyHype
chr19	300	301	+	CILP2		CILP2	Y	E-05	rmeth

Table H 1. (continued)

							CpG	p-	
CHOR	STAR		ST	PROM	EX	INTR	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	ON	ON	ND	UE	CATION
	11934	11934						3,4E-	stronglyHype
chr18	724	725	+					05	rmeth
	98947	98947						4,11	stronglyHype
chr4	1	2	-			IDUA		E-05	rmeth
	12634	12634						4,11	stronglyHype
chr12	6095	6096	-				Y	E-05	rmeth
	13521	13521						4,21	stronglyHype
chr9	8521	8522	+			SETX		E-05	rmeth
	49626	49626				PPFI		4,72	stronglyHype
chr19	783	784	-			A3		E-05	rmeth
	35586	35586						4,72	stronglyHype
chr1	978	979	+					E-05	rmeth
	18502	18502		TMEM		TME		4,72	stronglyHype
chr1	33	34	-	52		M52	Y	E-05	rmeth
	75149	75149						4,72	stronglyHype
chr13	973	974	+					E-05	rmeth
	62874	62874						5,14	stronglyHype
chr10	560	561	+					E-05	rmeth
	69063	69063						5,36	stronglyHype
chr7	535	536	-	AUTS2			Y	E-05	rmeth
	50354	50354				ATP9		5,39	stronglyHype
chr20	818	819	+			А		E-05	rmeth
	84419	84419		SNAP9				5,39	stronglyHype
chr6	465	466	-	1				E-05	rmeth
	10206	10206						5,39	stronglyHype
chr14	8801	8802	-					E-05	rmeth
	10206	10206						5,39	stronglyHype
chr14	8809	8810	-					E-05	rmeth
	12250	12250						5,39	stronglyHype
chr2	9962	9963	+					E-05	rmeth
	24152	24152			RG			5,66	stronglyHype
chr1	0357	0358	-	RGS7	S 7		Y	E-05	rmeth
	24152	24152			RG			5,66	stronglyHype
chr1	0370	0371	-	RGS7	S 7		Y	E-05	rmeth
	24152	24152			RG			5,66	stronglyHype
chr1	0375	0376	-	RGS7	S 7		Y	E-05	rmeth
	15969	15969						5,89	stronglyHype
chr2	3872	3873	-					E-05	rmeth
	96675	96675						6,11	stronglyHype
chr9	446	447	+					E-05	rmeth
	51830	51830				IGLO		6,12	stronglyHype
chr19	633	634	+			N5	Y	E-05	rmeth
	95213	95213				SEM		6,12	stronglyHype
chr5	42	43	-			A5A		E-05	rmeth
	11052	11052			GP			6,12	stronglyHype
chr19	35	36	-	GPX4	X4		Y	E-05	rmeth
	99656	99656						6,12	stronglyHype
chr9	047	048	+					E-05	rmeth

Table H 1. (continued)

							CpG	p-	
CHOR	STA		ST	PROMO	EXO	INTR	ISLA	VAL	CLASSICIFI
OM	RT	END	R	TER	N	ON	ND	UE	CATION
0101.	1760	1760	1.	TER	11	011	112	<u>UL</u>	ermon
	1652	1652						6 12E	strongly Uyna
-15	4052	4032					v	0,12E	subligiynype
cnr5	3	4	-	1			Y	-05	rmeth
	1005	1005							
	5336	5336						6,12E	stronglyHype
chr13	8	9	-					-05	rmeth
	4109	4109						6.73E	stronglyHype
chr14	9053	9054	_					-05	rmeth
	1369	1369						0.5	moun
	0886	0886						6 73	stronglyHyper
ahud	7	0000						0,75 E 05	suongrynryper
chr4	/	8	-					E-03	meth
	2921	2921						6,73E	stronglyHype
chr16	4997	4998	-					-05	rmeth
						UGT			
						1A10			
						.UGT			
						148			
						LICT			
						140			
						1A9,			
						UGT			
						1A4,			
						UGT			
						1A5,			
						UGT			
						1A6			
						UGT			
	2346	2346		LOC10		147			
	2340 6426	2340 6426		028602		1A7,		6 725	staan alvil Ivma
1.0	0450	0450		028092		142		0,73E	subligiynype
cnr2	8	9	-	2		1A3		-05	rmeth
	6103	6103						6,73E	stronglyHype
chr8	4667	4668	+					-05	rmeth
	3039	3039						7 14E	stronglyHype
chr19	7680	7681	+					-05	rmeth
	2269	2269						0.000	
1	2268	2268						8,08E	stronglyHype
chr15	3218	3219	-					-05	rmeth
	1568	1568							
	1395	1395						8,65E	stronglyHype
chr7	5	6	-				Y	-05	rmeth
	9013	9013						9,18E	stronglyHype
chr2	35	36	+					-05	rmeth
	5278	5278		PTGER				9.38F	stronglyHyne
chr14	0823	0824	+	2			v		rmeth
CIII 1+	2270	2270	Г				1	0.000	atronalyUyna
1.00	2319	23/9						0,000	strongryHype
cnr22	3836	585/	+	0.000				104	rmetn
	2248	2248		ST8SI				0,000	stronglyHype
chr12	7824	7825	-	A1			Y	104	rmeth
	4463	4463						0,000	stronglyHype
chr11	3075	3076	-			CD82		107	rmeth

Table H 1. (continued)

			S						
			Т				CpG	p-	
CHOR	STAR		R	PROM	EX	INTR	ISLA	VAL	CLASSICIFIC
OM.	Т	END		OTER	ON	ON	ND	UE	ATION
	24220	24220				HDL		0,000	stronglyHyper
chr2	3701	3702	-			BP		108	meth
	18467	18467				RTN4		0,000	stronglyHyper
chr17	44	45	+			RL1		119	meth
	48599	48599						0,000	stronglyHyper
chrX	058	059	+					125	meth
	58858	58858			A1			0,000	stronglyHyper
chr19	891	892	+		BG		Y	125	meth
	74528	74528		SFMB		SFM		0,000	stronglyHyper
chr10	33	34	+	T2		BT2	Y	125	meth
	74528	74528		SFMB		SFM		0,000	stronglyHyper
chr10	44	45	+	T2		BT2	Y	125	meth
	13198	13198						0,000	stronglyHyper
chr10	8689	8690	+				Y	125	meth
	16815	16815						0,000	stronglyHyper
chr17	008	009	+					125	meth
	25289	25289						0,000	stronglyHyper
chr17	836	837	-				Y	125	meth
	66165	66165						0,000	stronglyHyper
chr11	538	539	+					125	meth
	51109	51109						0,000	stronglyHyper
chr18	766	767	-					125	meth
	53317	53317						0,000	stronglyHyper
chr12	957	958	+			KRT8		125	meth
	10558	10558						0,000	stronglyHyper
chr14	0297	0298	-					125	meth
	92943	92943						0,000	stronglyHyper
chr13	416	417	+			GPC5		125	meth
	13783	13783				THS		0,000	stronglyHyper
chr2	4245	4246	-			D7B		125	meth
	14061	14061						0,000	stronglyHyper
chr2	9846	9847	-					125	meth
	12113	12113						0,000	stronglyHyper
chr1	7848	7849	+				Y	126	meth
	24152	24152			RG			0,000	stronglyHyper
chr1	0381	0382	-	RGS7	S 7		Y	126	meth
	24152	24152			RG			0,000	stronglyHyper
chr1	0385	0386	-	RGS7	S 7		Y	126	meth
	21486	21486						0,000	stronglyHyper
chr20	846	847	-				Y	131	meth
	17199	17199						0,000	stronglyHyper
chr1	402	403	+				Y	141	meth
	10226	10226						0,000	stronglyHyper
chrX	5019	5020	-					141	meth

							CpG	p-	
CHOR	STAR		ST	PROM	EX	INTR	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	ON	ON	ND	UE	CATION
	16274	16274				WDR		1,75	stronglyHypo
chr17	24	25	-	WDR81		81		E-09	meth
	39402	39402						7,79	stronglyHypo
chr6	93	94	+					E-08	meth
	61655	61655						1,27	stronglyHypo
chr14	191	192	+					E-07	meth
	57703	57703						5,35	stronglyHypo
chr4	350	351	+					E-07	meth
	89081	89081						5,59	stronglyHypo
chr16	343	344	+					E-07	meth
	86499	86499						6,8E-	stronglyHypo
chr10	074	075	-					07	meth
	38300	38300						8,42	stronglyHypo
chr11	150	151	+					E-07	meth
	65613	65613			SCR			1,02	stronglyHypo
chr20	7	8	-	SCRT2	T2		Y	E-06	meth
	14479	14479		CCDC1				1,26	stronglyHypo
chr8	0758	0759	+	66			Y	E-06	meth
	22095	22095						1,45	stronglyHypo
chr15	160	161	-				Y	E-06	meth
	10355	10355						1,55	stronglyHypo
chrX	0540	0541	-					E-06	meth
	12279	12279				MIR5		2,04	stronglyHypo
chr10	1246	1247	-			694		E-06	meth
	12776	12776						2,07	stronglyHypo
chr12	4587	4588	+					E-06	meth
	13210	13210						6,44	stronglyHypo
chr12	2658	2659	+					E-06	meth
	12444	12444						7,69	stronglyHypo
chr3	7321	7322	+					E-06	meth
	12871	12871						7,94	stronglyHypo
chr3	9584	9585	+	EFCC1				E-06	meth
	20588	20588						9,62	stronglyHypo
chr1	2081	2082	-					E-06	meth
	59560	59560						1,22	stronglyHypo
chr3	500	501	+					E-05	meth
	23676	23676		HEATR		HEA		1,29	stronglyHypo
chr1	7602	7603	+	1		TR1	Y	E-05	meth
	56558	56558						1,32	stronglyHypo
chr20	235	236	+					E-05	meth
	12335	12335			FGF			1.34	stronglvHvpo
chr10	7577	7578	+	FGFR2	R2		Y	E-05	meth
	43818	43818				MPP		1.34	stronglvHvpo
chr22	167	168	+			ED1		E-05	meth
	74671	74671			1	CAM	1	1.34	stronglyHypo
chr1	17	18	+			TA1		E-05	meth
	51483	51483		1	ł	1	ł	1.34	stronglvHvpo
chr15	692	693	+					E-05	meth

Table H 2. Top 100 hypomethylated genomic regions in MDA-ERa5 cells after 6h E2 treatment.
Table H 2. (continued)

							CpG	p-	
CHO	STAR		ST	PROM		INTR	ISL	VAL	CLASSICIFI
ROM.	Т	END	R.	OTER	EXON	ON	AND	UE	CATION
	32023	32023						1,45	stronglyHyp
chr1	626	627	+					E-05	ometh
	21983	21983						1,45	stronglyHyp
chr3	240	241	-					E-05	ometh
	28202	28202						1,48	stronglyHyp
chr15	799	800	+		OCA2			E-05	ometh
	13062	13062						1,55	stronglyHyp
chr9	3706	3707	+					E-05	ometh
	82194	82194			ARHG			1,61	stronglyHyp
chr17	10	11	+		EF15			E-05	ometh
	87968	87969						1,84	stronglyHyp
chr16	9	0	+					E-05	ometh
	98182	98182						1,84	stronglyHyp
chr15	142	143	+					E-05	ometh
	27216	27216		GABR				1,91	stronglyHyp
chr15	305	306	-	G3			Y	E-05	ometh
	15792	15792				ZDH		2,01	stronglyHyp
chr6	3941	3942	+			HC14		E-05	ometh
	18927	18927						2,21	stronglyHyp
chr4	8506	8507	-					E-05	ometh
	22337	22337						2,21	stronglyHyp
chr10	364	365	+					E-05	ometh
	32711	32711						2,21	stronglyHyp
chr5	385	386	-	NPR3		NPR3	Y	E-05	ometh
	20160	20160						2,29	stronglyHyp
chr8	814	815	+				Y	E-05	ometh
	26733	26733						2,29	stronglyHyp
chr13	585	586	+					E-05	ometh
	88612	88612				NAA		2,29	stronglyHyp
chr9	954	955	-			35		E-05	ometh
	76282	76282						2,58	stronglyHyp
chr18	702	703	-					E-05	ometh
	38196	38196						2,84	stronglyHyp
chr5	303	304	-					E-05	ometh
	85160	85160						2,88	stronglyHyp
chr16	596	597	-					E-05	ometh
	66172	66172		SLC13				2,88	stronglyHyp
chr17	10	11	+	A5			Y	E-05	ometh
	53483	53483						2,88	stronglyHyp
chr2	462	463	-					E-05	ometh
	74136	74136		RNF15				2,97	stronglyHyp
chr17	266	267	+	7-AS1	FOXJ1		Y	E-05	ometh
	61655	61655						3,09	stronglyHyp
chr14	205	206	+					E-05	ometh
	10250	10250						3,33	stronglyHyp
chr10	5545	5546	+	PAX2	PAX2		Y	E-05	ometh
	38670	38670				AMP		3,33	stronglyHyp
chr7	779	780	+	AMPH		Н	Y	E-05	ometh

Table H 2. (continued)

							CpG	p-	
CHOR	STAR		ST	PROM	EXO	INTR	ISL	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	Ν	ON	AND	UE	CATION
	15716	15716						3,66	stronglyHypo
chr1	4748	4749	-				Y	E-05	meth
	15449	15449						3,98	stronglyHypo
chr5	4493	4494	-					E-05	meth
	44201	44201						4,05	stronglyHypo
chr21	548	549	-					E-05	meth
	14689	14689				BRSK		4,11	stronglyHypo
chr11	89	90	+			2		E-05	meth
	11601	11601						4,16	stronglyHypo
chr8	8565	8566	+					E-05	meth
	54393	54393				PRKC		4,72	stronglyHypo
chr19	960	961	-			G		E-05	meth
	11170	11170						5,39	stronglyHypo
chr4	4819	4820	+					E-05	meth
	85482	85482						5,39	stronglyHypo
chr16	530	531	-					E-05	meth
	40724	40724		ZMPST		ZMPS		5,66	stronglyHypo
chr1	594	595	+	E24		TE24		E-05	meth
	33811	33811						6,12	stronglyHypo
chr9	366	367	-					E-05	meth
	78067	78067				CCDC		6,12	stronglyHypo
chr17	602	603	-			40		E-05	meth
	21331	21331				ERBB		6,12	stronglyHypo
chr2	1911	1912	-			4		E-05	meth
	19584	19584						6,73	stronglyHypo
chr22	403	404	-					E-05	meth
	12795	12795						6,73	stronglyHypo
chr5	6975	6976	+					E-05	meth
	22103	22103						6,73	stronglyHypo
chr2	8012	8013	-					E-05	meth
	11378	11378						6,73	stronglyHypo
chrX	4704	4705	+					E-05	meth
	56964	56964						7,43	stronglyHypo
chr4	997	998	-					E-05	meth
	80136	80136			CTN			8,08	stronglyHypo
chr2	811	812	-		NA2			E-05	meth
	14565	14565						8.46	stronglvHvpo
chr7	7507	7508	+					E-05	meth
	10640	10640		SORCS	SOR			0.000	stronglvHvpo
chr10	1369	1370	+	3	CS3		Y	086	meth
	63637	63637		-		LINC0		8.74	stronglvHvpo
chr1	054	055	+			0466		E-05	meth
	13231	13231				MMP1		9.38	stronglvHvpo
chr12	4863	4864	+			7	Y	E-05	meth
	89827	89827		SRSF1	SRSF		_	9.46	stronglvHvpo
chr6	653	654	-	2	12		Y	E-05	meth
	55371	55371			SOX		_	0,000	stronglyHypo
chr8	910	911	-		17		Y	104	meth

Table H 2. (continued)

							CpG		
			S				ISL	p-	
СНО	STA		Т	PROMOTE	EX	INTR	AN	VAL	CLASSICIF
ROM.	RT	END	R.	R	ON	ON	D	UE	ICATION
	55371	55371			SOX			0,00	stronglyHyp
chr8	920	921	-		17		Y	0104	ometh
	64134	64134			ZNF			0,00	stronglyHyp
chr10	160	161	-	ZNF365	365		Y	0104	ometh
	74273	74273			QRI			0,00	stronglyHyp
chr17	308	309	-		CH2			0104	ometh
	36331	36331						0,00	stronglyHyp
chr1	233	234	+					0104	ometh
	12017	12017				ASTN		0,00	stronglyHyp
chr9	5861	5862	-			2	Y	0104	ometh
	12017	12017				ASTN		0,00	stronglyHyp
chr9	5887	5888	-			2	Y	0104	ometh
	91160	91160						0,00	stronglyHyp
chr12	249	250	+					0106	ometh
	12042	12042						0,00	stronglyHyp
chr12	6291	6292	+					0108	ometh
	47916	47916				MEIS		0,00	stronglyHyp
chr19	481	482	+			3		0112	ometh
	24214	24214						0,00	stronglyHyp
chr2	3870	3871	+			ANO7		0119	ometh
	10781	10781						0,00	stronglyHyp
chr3	0395	0396	-	CD47			Y	0122	ometh
	45983	45983			CLI			0,00	stronglyHyp
chr6	248	249	+	CLIC5	C5	CLIC5	Y	0122	ometh
	95918	95918						0,00	stronglyHyp
chr1	346	347	+					0123	ometh
	13948	13948						0,00	stronglyHyp
chr9	4811	4812	-					0123	ometh
	26189	26189		LOC284801		LOC2		0,00	stronglyHyp
chr20	163	164	-	,MIR663A		84801	Y	0125	ometh
	26189	26189		LOC284801		LOC2		0,00	stronglyHyp
chr20	181	182	-	,MIR663A		84801	Y	0125	ometh
	13740	13740						0,00	stronglyHyp
chr5	6520	6521	-					0125	ometh
	17435	17435				FLJ16		0,00	stronglyHyp
chr5	0083	0084	-			171		0125	ometh
	19463	19463						0,00	stronglyHyp
chr16	804	805	-			TMC5		0125	ometh
•	39910	39910				PLEK		0,00	stronglyHyp
chr19	282	283	+			HG2		0125	ometh
•	84778	84778						0,00	stronglyHyp
chr14	830	831	-					0125	ometh
	15500	15500	l					0,00	stronglyHyp
chr6	0958	0959	+					0125	ometh
	39621	39621	İ –		PDG			0.00	stronglyHyp
chr22	192	193	-		FB			0125	ometh

Table H 2. (continued)

							CpG	p-	
CHOR	STAR		ST	PROM	EX	INTR	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	ON	ON	ND	UE	CATION
					PP				
	16047	16047			M1			0,000	stronglyHypo
chr3	4371	4372	+	PPM1L	L		Y	125	meth
	32007	32007				PRD		0,000	stronglyHypo
chr1	15	16	-			M16		125	meth
	30422	30422						0,000	stronglyHypo
chr4	626	627	-					125	meth
	44426	44426						0,000	stronglyHypo
chr14	571	572	+					131	meth
	11228	11228						0,000	stronglyHypo
chr6	3912	3913	-					131	meth

							CpG	p-	
CHO	STAR		ST	PROMO	EX	INTR	ISL	VAL	CLASSICIFI
ROM.	Т	END	R.	TER	ON	ON	AND	UE	CATION
	50850	50850				GRB1		7,27	stronglyHyp
chr7	611	612	+			0	Y	E-08	ermeth
	50850	50850				GRB1		7,27	stronglyHyp
chr7	613	614	+			0	Y	E-08	ermeth
	80620	80620						1,58	stronglyHyp
chr11	56	57	+			TUB		E-07	ermeth
	91005	91005				BACH		4,03	stronglyHyp
chr6	661	662	-	BACH2		2	Y	E-07	ermeth
	58116	58116				RNF2		5,1E-	stronglyHyp
chr7	29	30	+			16		07	ermeth
	32179	32179						5,67	stronglyHyp
chr15	976	977	+					E-07	ermeth
	13520	13520			PAO			1.29	stronglvHvp
chr10	2521	2522	+		Χ			E-06	ermeth
	20178	20178			DB			1.55	stronglvHvp
chr11	718	719	+		X1		Y	E-06	ermeth
	93393	93393						1.58	stronglyHyp
chr10	050	051	-	PPP1R3C			Y	E-06	ermeth
	10415	10415		C8orf56	BA	C8orf5		196	stronglyHyp
chr8	3099	3100	-	BAALC	ALC	6	Y	E-06	ermeth
•	93393	93393		211120		Ű	-	2 12	stronglyHyp
chr10	030	031	_	PPP1R3C			Y	E-06	ermeth
UIIIIO	52594	52594		1111100			-	2 63	stronglyHyp
chr14	728	729	+					E-06	ermeth
	22549	22549				LINCO		4 33	stronglyHyp
chr20	123	124	+			0261	v	F-06	ermeth
cm20	58524	58524				0201	1	5.98	stronglyHyp
chr1	280	281	_			DAR1		5,90 F-06	ermeth
	128/1	128/1				DINDI		7 9/	stronglyHyp
chr11	9247	9248	_			FTS1	v	F-06	ermeth
	24753	24753				LIDI	1	8.6E-	stronglyHyp
chr1	6436	6437	+					0,0L- 06	ermeth
	18704	18704	1					1.03	stronglyHyp
chr1	1693	1694	_					F-05	ermeth
	76031	76031	_			FII ID		1.05	stronglyHyp
chr6	326	327	_			1		F-05	ermeth
cino	25258	25258						1.08	stronglyHyp
chr1	485	486	_			3	v	F-05	ermeth
	01/60	01/60	-			5	1	1.00	stronglyHyp
chr15	285	286	_					1,09 E_05	ermeth
chi 15	02202	02202	-					1.26	etronglyUyn
chr10	0/8	0/0		DDD1D3C			v	F.05	ermeth
	12011	12011	-	IIIIKSC			1	1 /2	stronglyUyr
ohr4	3610	3610						1,45 E 05	armeth
01114	41062	41042	-			CSDC		1 45	stronglyUyr
ahr??	41902	41902				2		1,43 E 05	armeth
	14264	14264	-					1 15	stron alutter
ahr	14204	14204						1,43 E 05	subligiynyp
CIII Z	4023	4024	+	1	1	D	1	E-05	enneur

Table H 3. Top 100 hypermethylated genomic regions in MCF7 cells after 6h E2 treatment.

Table H 3. (continued)

							CpG		
			S				ISL	p-	
СНО	STA		Т	PROMOTE	EX	INTRO	AN	VA	CLASSICIF
ROM.	RT	END	R.	R	ON	Ν	D	LUE	ICATION
	1391	1391							
	1733	1733						1.55	stronglvHvp
chr6	7	8	+	ECT2L		ECT2L	Y	E-05	ermeth
	9100	9100					_	1.61	stronglyHyp
chr6	5663	5664	_	BACH2		BACH2	Y	E-05	ermeth
	4866	4866					_	1.61	stronglyHyp
chr22	1756	1757	+					E-05	ermeth
	5426	5426		MIR519A2				1 66	stronglyHyp
chr19	4807	4808	_	MIR516A2				E-05	ermeth
	1144	1144						1 00	ermetin
	8246	8246				TMEM2		1 88	stronglyHyp
chr13	3	4	_			55B		E-05	ermeth
	7941	7941			ł – –	550		2 02	stronglyHyp
chr3	4812	4813	+			ROBO1		2,02 E-05	ermeth
CIII 5	1354	1354	1			RODOT		L-05	ermetn
	7620	7620						2 20	stronglyHyp
chr8	1025	2	-				v	E_{-05}	ermeth
CIIIO	1504	1504	Τ.				1	2 20	stronglyHyp
ohr1	1304	1304				V A 7N		2,29 E 05	strongrynyp
	9935	9934	-			NAZIN		E-03	ermetn
	1411	1411				EAM15		2.20	atron alv Uvm
ahrO	1150	1157				TAMIJ 7D	v	2,29 E 05	strongrynyp
CIII9	1020	1020	+			/ D	I	E-03	
ah#10	1232	1232						2,29 E 05	stronglyHyp
cnr19	7087	7088	-		1	CACNIC		E-05	
-1-10	5448 2029	5448 2020					v	2,29 E 05	stronglyHyp
cnr19	5028	5029	+		1	8 CACNIC	Y	E-05	ermeth
1 10	5448	5448					v	2,29 E 05	stronglyHyp
cnr19	5031	5032	+			8	Y	E-05	ermeth
1 10	5448	5448				CACNG	v	2,29	stronglyHyp
cnr19	3033	3034	+			8	Y	E-05	ermeth
	1263	1263				NUID210		2.50	. 1
1.2	8191	8191				NUP210		2,58	stronglyHyp
cnr5	0	/	+	NUP210P1		PI		E-05	ermeth
1.0	5847	5847						2,83	stronglyHyp
chr3	0884	0885	+					E-05	ermeth
1 1	2358	2358						2,92	stronglyHyp
chrl	805	806	-					E-05	ermeth
	1219	1219				TECDAL		2 00	
1.2	9857	9857				TFCP2L		3,09	stronglyHyp
chr2	8	9	-					E-05	ermeth
	4642	4642				LOCIOO		3,14	stronglyHyp
chr4	166	167	+			50/266		E-05	ermeth
	4165	4165						3,15	stronglyHyp
chr16	511	512	+	ADCY9	<u> </u>	ADCY9	Y	E-05	ermeth
	6240	6240						3,66	stronglyHyp
chrX	5618	5619	-					E-05	ermeth
	2733	2733						3,72	stronglyHyp
chr17	1649	1650	-			SEZ6		E-05	ermeth

Table H 3. (continued)

							CpG	p-	
CHOR	STAR		ST	PROM	EX	INTR	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	ON	ON	ND	UE	CATION
	16681	16681						3,8E-	stronglyHype
chr2	3565	3566	+					05	rmeth
	22584	22584						4,05	stronglyHype
chr1	321	322	+					E-05	rmeth
	15734	15734				PTPR		4,05	stronglyHype
chr7	8255	8256	-			N2		E-05	rmeth
	15298	15298						4,05	stronglyHype
chr1	32	33	+					E-05	rmeth
	15082	15082						4,11	stronglyHype
chr1	8731	8732	-			ARNT		E-05	rmeth
	23138	23138						4.22	stronglyHype
chr20	369	370	-					E-05	rmeth
-	23817	23817				KLHL		4.52	stronglyHype
chr2	179	180	+			29		E-05	rmeth
	15732	15732						4 74	stronglyHype
chr5	9667	9668	+					E-05	rmeth
UIIIO	29500	29500				CARD		4 88	stronglyHype
chr7	37	38	-			11		E-05	rmeth
	12523	12523				PKNO		4 88	stronglyHype
chr11	4622	4623	_			\mathbf{X}^2		F-05	rmeth
	83052	83052				HTR A		4 97	stronglyHype
chr4	38	39	+			3		F-05	rmeth
	39855	39855				5		5E-	stronglyHype
chr2	695	696	_					05	rmeth
	14854	14854	_					5 14	stronglyHype
chr2	1369	1370	_					5,14 E-05	rmeth
	07637	07637				CPNE		5 33	stronglyHype
chr3	97	98	_					5,55 E-05	rmeth
CIIIS	1//87	1//87	_			,		5 38	stronglyHype
chr/	14407	1175	_					5,58 E_05	rmeth
CIII+	/3132	/3132	_					5 30	stronglyHype
chr8	43132	43132 218	_				v	5,39 E_05	rmeth
CIIIO	24514	24514	-	IENI D			1	5 30	stronglyHype
chr1	03/	035	-				v	5,57 E_05	rmeth
	24514	24514	1	IENI D			1	5 30	stronglyHype
chr1	040	0/1	-				v	5,39 E_05	rmeth
	11050	11050	т	1			1	5 20	atronglyUyna
chr?	0165	0166					v	5,59 E 05	rmeth
	47184	47184	-			TPC1	1	5 20	atronglyUyna
abr22	4/104	4/104						5,39 E 05	rmoth
CIIIZZ	022	023	+		NDT	DZZA		E-03	atronalulluna
chr7	70240 961	20240 860		NDTV2	X2		\mathbf{v}	5,39 E 05	rmeth
	70520	70520	+	INF I AZ	ΛΔ		1	E-03	atronalyII
ohr4	10329 702	10329						0,11 E 05	rmoth
CIII4	10769	10769	-					E-03	atronal-Jure -
obr12	19/08	19/08	,					0,12 E 05	strongryHype
ciii 15	04262	04262	+					E-03	atnon al-JU
ahr5	04303	04303					v	0,02	strongryHype
CHID		3	+	1	1		1	E-03	mem

Table H 3. (continued)

							CpG	p-	
СНО	STAR		ST	PROM	EX		ISL	VAL	CLASSICIFI
ROM.	Т	END	R.	OTER	ON	INTRON	AND	UE	CATION
	15591	15591			RX			6.62	stronglyHyp
chr1	2577	2578	+		FP4			E-05	ermeth
	17706	17706						6.62	stronglyHyp
chr2	0386	0387	_					E-05	ermeth
01112	19768	19768						673	stronglyHyp
chr13	590	591	+					E-05	ermeth
	30942	30942						6 73	stronglyHyp
chr10	010	020	_			ZNE536	v	6,75 E-05	ermeth
	48300	48300	-			2111550	1	6.73	stronglyHyp
chrV	40300	40300						0,75 E 05	armeth
CIIIA	15000	15000	-					672	stronglyUyn
ahre	13222	780						0,75 E 05	strongrynyp
ciiio	119	/ 00	-					E-03	
-12	99338	99338						0,88	stronglyHyp
cnr2	949	950	-					E-05	ermeth
1 10	12986	12986				DTDDE		7,15	stronglyHyp
chr10	1324	1325	+			PTPRE		E-05	ermeth
	86531	86531				FENDR		8,46	stronglyHyp
chr16	849	850	-			R	Y	E-05	ermeth
	57616	57616						8,6E-	stronglyHyp
chr19	167	168	+					05	ermeth
	13935	13935				ABRAC		8,7E-	stronglyHyp
chr6	3352	3353	-			L		05	ermeth
	65087	65087						8,74	stronglyHyp
chr8	536	537	+					E-05	ermeth
	40356	40356						0,00	stronglyHyp
chr20	58	59	+					0104	ermeth
	20638	20638						0,00	stronglyHyp
chr1	74	75	+			PRKCZ	Y	0104	ermeth
	28259	28259						0,00	stronglyHyp
chr17	420	421	-			EFCAB5		0125	ermeth
	27365	27365						0,00	stronglyHyp
chr2	400	401	+					0125	ermeth
	11287	11287						0,00	stronglyHyp
chr13	0346	0347	+					0125	ermeth
	89101	89101						0,00	stronglyHyp
chr9	443	444	+					0125	ermeth
	29132	29132				LOC100		0.00	stronglvHvp
chr18	288	289	_			652770		0125	ermeth
	45327	45327						0.00	stronglyHyp
chr19	486	487	+					0125	ermeth
	37058	37058		SNOR		LOC388		0.00	stronglvHvp
chr20	856	857	_	A71C		796		0135	ermeth
	88607	88607						0.00	stronglyHyp
chr4	614	615	+					0141	ermeth
	25636	25636						0.00	stronglyHyp
chr7	25050	23030	_			I FNG	v	0141	ermeth
	11272	11272	_		50		1	0.00	stronglyUyp
chr13	3/76	3/77	+		X1		v	01/1	ermeth
cm 15	5470	5+11	T	1	111	1	1	0141	uniun

Table H 3. (continued)

							CpG	p-	
CHOR	STAR		ST	PROM	EX	INTR	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	ON	ON	ND	UE	CATION
	43186	43186				RIPK		0,000	stronglyHyper
chr21	311	312	+	RIPK4		4	Y	141	meth
	13130	13130						0,000	stronglyHyper
chr17	69	70	+					141	meth
	25401	25401						0,000	stronglyHyper
chr1	235	236	-					141	meth
	35395	35395						0,000	stronglyHyper
chr1	483	484	-				Y	141	meth
	55862	55862						0,000	stronglyHyper
chr1	36	37	-					153	meth
	28015	28015				JAZF		0,000	stronglyHyper
chr7	856	857	+			1		153	meth
	20057	20057						0,000	stronglyHyper
chr16	38	39	-					153	meth

							CpG	p-	
CHOR	STAR		ST	PROM	EX	INTRO	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	ON	Ν	ND	UE	CATION
	75699	75699						1,47	stronglyHypo
chr12	427	428	-			CAPS2	Y	E-07	meth
	62101	62101						2.6E-	stronglvHvpo
chr11	116	117	+					07	meth
	46462	46462				ZMYN		5.33	stronglyHypo
chr17	37	38	-			D15		E-07	meth
	65506	65506				_		1.55	stronglyHypo
chr4	399	400	+					E-06	meth
	11961	11961						1.55	stronglyHypo
chr2	5116	5117	_				Y	E-06	meth
	68365	68365				RAD5	-	3.24	stronglyHypo
chr14	884	885	_			1B		E-06	meth
•	40209	40209				LOC28		5.03	stronglyHypo
chr18	730	731	_			4260		E-06	meth
	21972	21972				1200		5.03	stronglyHypo
chr5	84	85	+					E-06	meth
	34072	34072						645	stronglyHypo
chr6	797	798	+	GRM4		GRM4		E-06	meth
	83135	83135		Oldin		SEMA		7.03	stronglyHypo
chr7	158	159	_			3E		F-06	meth
	26667	26667	_			51		7.05	stronglyHypo
chr7	576	20007	-					7,05 E-06	meth
	11848	118/18	1			ם וחם		7.42	stronglyHypo
chr11	1646	1647	_			R1	v	7,42 E_06	meth
	10058	1047	-			DI	1	7.43	stronglyHypo
chr/	2618	2610						7, 4 5 E 06	meth
01114	72043	72043	-	NDEED				7.43	stronglyHypo
chr10	/2043	/2043	-	1			v	7,43 E_06	meth
	180/0	180/0	т	1			1	8 05	stronglyHypo
chr11	10940	10940				I SD1		6,05 E 06	meth
	02205	02205	-					1.07	atronglyUypo
chr8	93293	93293						1,07 E 05	meth
CIIIO	56451	56/51	-					1.14	stronglyHypo
chr12	055	056						F 05	meth
	20527	20527	т					1 17	atronglyUyno
chr18	170	180						1,17 E 05	meth
CIII 10	82822	82822	-					1 17	atronalyUyno
chr6	02022 80	02022 81						1,17 E 05	meth
cino	72200	72200	Ŧ					1.24	atronalyUyno
ohr10	12390	12390						1,24 E 05	suoligiyriypo
	22001	22001	+		DV		-	L-05	illeui
ahr10	50991	529						1,52 E 05	suoligiynypo
CIII 19	12029	12029	+		K1			E-03	illeui
ahut	13028	13028						1,43 E 05	stronglyHypo
ciiro	2009/	20004	-					E-03	atronal-Jure -
ohr7	20984	20984						1,33	stronglyHypo
CIII /	303	304	+		ENI			E-03	atron al-JU
-12	11960	11960					v	1,61	stronglyHypo
cnr2	4292	4293	+		1	1	r	E-05	meth

 Table H 4. Top 100 hypomethylated genomic regions in MCF7 cells after 6h E2 treatment.

Table H 4. (continued)

							CpG		
ave					FILO		ISL	p-	
СНО	STAR		ST	PROM	EXO	INTRO	AN	VAL	CLASSICIFI
ROM.	Т	END	R.	OTER	N	N	D	UE	CATION
	33246	33246				D. C. L		1,77	stronglyHyp
chr20	605	606	-			PIGU		E-05	ometh
	97406	97406						2,03	stronglyHyp
chr1	295	296	-					E-05	ometh
	43390	43390						2,03	stronglyHyp
chr11	82	83	+		-			E-05	ometh
	12211	12211						2,08	stronglyHyp
chr5	6452	6453	+			SNX2		E-05	ometh
	18254	18254		NEUR				2,22	stronglyHyp
chr2	5532	5533	+	OD1				E-05	ometh
	11271	11271						2,29	stronglyHyp
chr13	1313	1314	+				Y	E-05	ometh
	68195	68195			RDH1			2,29	stronglyHyp
chr14	945	946	-		2			E-05	ometh
	72528	72528						2,58	stronglyHyp
chr5	289	290	-					E-05	ometh
	37049	37049				CACN		2,58	stronglyHyp
chr22	318	319	+			G2		E-05	ometh
	32909	32909				ARHG		2,69	stronglyHyp
chr15	796	797	+			AP11A		E-05	ometh
	22420	22420						2,88	stronglyHyp
chr1	0918	0919	-					E-05	ometh
	44598	44598			ZKSC			2,97	stronglyHyp
chr3	728	729	-		AN7			E-05	ometh
	49066	49066				FAM19		3,33	stronglyHyp
chr22	482	483	-			A5		E-05	ometh
	34004	34004						3,66	stronglyHyp
chr20	938	939	+					E-05	ometh
	11853	11853				DMXL		4,42	stronglyHyp
chr5	9642	9643	-			1		E-05	ometh
	13319	13319						5,13	stronglyHyp
chr12	2294	2295	+					E-05	ometh
	36805	36805						5,14	stronglyHyp
chr17	06	07	-			ITGAE		E-05	ometh
	10039	10039						5,14	stronglyHyp
chr4	8214	8215	-					E-05	ometh
	17668	17668				PAPPA		5,31	stronglyHyp
chr1	5872	5873	-			2		E-05	ometh
	16218	16218						5,34	stronglyHyp
chr9	356	357	+			C9orf92		E-05	ometh
	27169	27169						5,39	stronglyHyp
chr1	28	29	-				Y	E-05	ometh
	21906	21906						5,39	stronglyHyp
chr8	340	341	-					E-05	ometh
	88733	88733			ABA			5,39	stronglyHyp
chr16	72	73	-		Т			E-05	ometh
	14478	14478						5,94	stronglyHyp
chr7	2789	2790	-					E-05	ometh

Table H 4. (continued)

							CpG	p-	
CHOR	STAR		ST	PROM	EXO	INTR	ISL	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	Ν	ON	AND	UE	CATION
	10147	10147		GABB				6,62	stronglyHypo
chr9	1920	1921	+	R2			Y	E-05	meth
	16990	16990				WDR2		6,62	stronglyHypo
chr6	2153	2154	+			7		E-05	meth
	13795	13795						6,73	stronglyHypo
chr4	5608	5609	+					E-05	meth
	12898	12898				LARP		6,73	stronglyHypo
chr4	8164	8165	-			1B		E-05	meth
	12643	12643						6,73	stronglyHypo
chr5	5375	5376	-					E-05	meth
	12627	12627				NSMC		6,88	stronglyHypo
chr8	2469	2470	-			E2		E-05	meth
	45737	45737		EXOC3		EXOC		7,43	stronglyHypo
chr19	233	234	+	L2		3L2		E-05	meth
	62846	62846						7,43	stronglyHypo
chr1	019	020	+					E-05	meth
	18958	18958						7,43	stronglyHypo
chr1	189	190	+	PAX7		PAX7	Y	E-05	meth
	30590	30590						7,43	stronglyHypo
chr17	613	614	+					E-05	meth
	15939	15939			ADR			7,43	stronglyHypo
chr5	9438	9439	+		A1B		Y	E-05	meth
	89387	89387				EPHA		8,08	stronglyHypo
chr3	897	898	+			3		E-05	meth
	11420	11420						8,08	stronglyHypo
chr12	4434	4435	+					E-05	meth
	88717	88717						8,74	stronglyHypo
chr6	072	073	+					E-05	meth
	22970	22970						0,000	stronglyHypo
chrl	4106	4107	-					103	meth
1.45	29116	29116						0,000	stronglyHypo
chr15	104	105	+					107	meth
1.0	10049	10049						0,000	stronglyHypo
chr9	1942	1943	-			I DIGO		115	meth
1.7	65864	65864				LINCO		0,000	stronglyHypo
cnr/	278	279	-		-	01/4		116	meth
1.7	10094	10094						0,000	stronglyHypo
chr/	0/90	0/91	-					119	meth
1 10	13183	13183						0,000	stronglyHypo
chr12	5367	5368	-		-	G 4 60		119	meth
1 22	29706	29706				GAS2	V	0,000	stronglyHypo
cnr22	559	560	+	DMDT		LI	Y	119	meth
1.0	84194	84194			DMR		N	0,000	stronglyHypo
cnr9	8	9	-	1	11		Y	122	meth
-1-2	14095	14095					v	0,000	stronglyHypo
cnr3	1060	10624	+	ACPL2			Y	122	meth
ah - C	19634	19634						0,000	stronglyHypo
cnr2	3361	3362	+	1	1	1	1	125	metn

Table H 4. (continued)

							CpG	p-	
CHOR	STAR		ST	PROM	EXO	INTR	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	Ν	ON	ND	UE	CATION
	23829	23829			COL	COL6		0,000	stronglyHypo
chr2	6515	6516	-		6A3	A3		125	meth
	21743	21743						0,000	stronglyHypo
chr17	251	252	+					125	meth
	41331	41331						0,000	stronglyHypo
chr22	665	666	-					125	meth
	55921	55921		GPCPD				0,000	stronglyHypo
chr20	18	19	+	1				131	meth
	11384	11384				HTR3		0.000	stronglvHvpo
chr11	6937	6938	-			Α		141	meth
	18367	18367						0.000	stronglyHypo
chr1	8005	8006	+			RGL1		141	meth
	22628	22628				_		0.000	stronglyHypo
chr1	8177	8178	+					141	meth
	39055	39055			RYR			0.000	stronglyHypo
chr19	672	673	+		1		Y	145	meth
•	26794	26794			-		-	0.000	stronglyHypo
chr9	667	668	+					151	meth
	15426	15426						0.000	stronglyHypo
chr19	89	90	+					151	meth
•	93389	93389			CHG			0.000	stronglyHypo
chr14	563	564	+	CHGA	A		Y	153	meth
UIIII	93928	93928					-	0.000	stronglyHypo
chr15	962	963	+					153	meth
01110	74174	74174				CAM		0.000	stronglyHypo
chr1	46	47	_			TA1		155	meth
	44969	44969				SERP		0.000	stronglyHypo
chr13	567	568	_			2		155	meth
	95953	95953				-		0.000	stronglyHypo
chr5	320	321	_					155	meth
	15963	15963						0.000	stronglyHypo
chr6	80	81	+					155	meth
CIIIO	15963	15963						0.000	stronglyHypo
chr6	78	79	+					155	meth
	14002	14002						0.000	stronglyHypo
chr9	0926	0927	+					155	meth
	13047	13047				SAM		0.000	stronglyHypo
chr6	2786	2787	+			D3		155	meth
•	33436	33436				TSSC		0.000	stronglyHypo
chr2	12	13	+			1		155	meth
01112	44724	44724			NME	-		0.000	stronglyHypo
chr16	5	6	+	NME4	4		Y	165	meth
	11957	11957	· ·		-	SRR	-	0.000	stronglyHypo
chr12	9258	9259	-			M4		17	meth
	28736	28736						0.000	stronglyHypo
chr10	688	689	+					178	meth
	13154	13154	· ·			MGM		0.000	stronglyHypo
chr10	1061	1062	+			Т		19	meth

Table H 4. (continued)

							CpG	p-	
CHOR	STAR		ST	PROM	EX	INTR	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	ON	ON	ND	UE	CATION
	26024	26024				ATP8		0,000	stronglyHypo
chr13	794	795	-			A2		2	meth
	59411	59411						0,000	stronglyHypo
chr13	138	139	-					2	meth
	83985	83985						0,000	stronglyHypo
chr6	434	435	+			ME1		2	meth
	84883	84883						0,000	stronglyHypo
chr9	191	192	+					201	meth

CHOR OM.	STAR T	END	ST R.	PROM OTER	EXO N	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
chr17	58217 421	58217 422	+				Y	9,63 E-14	stronglyHype rmeth
chr5	42424 028	42424 029	+	GHR	GHR			1,72 E-13	stronglyHype rmeth
chr16	68269 239	68269 240	-	ESRP2		ESRP 2	Y	1,72 E-13	stronglyHype rmeth
chr5	75379 450	75379 451	-	SV2C		SV2 C	Y	2,03 E-13	stronglyHype rmeth
chr17	70204 582	70204 583	-					2,03 E-13	stronglyHype rmeth
chr15	88261 993	88261 994	-					2,03 E-13	stronglyHype rmeth
chr9	29398 805	29398 806	-					2,03 E-13	stronglyHype rmeth
chr19	11009 845	11009 846	+			CAR M1		2,03 E-13	stronglyHype rmeth
chr16	74701 470	74701 471	-	RFWD3				2,03 E-13	stronglyHype rmeth
chr9	14019 0401	14019 0402	+				Y	2,03 E-13	stronglyHype rmeth
chr12	13231 3551	13231 3552	+	MMP17		MMP 17	Y	2,03 E-13	stronglyHype rmeth
chr12	13231 3555	13231 3556	+	MMP17		MMP 17	Y	2,03 E-13	stronglyHype rmeth
chr13	28534 568	28534 569	-				Y	2,03 E-13	stronglyHype rmeth
chr2	17697 1833	17697 1834	+	HOXD1 1			Y	2,03 E-13	stronglyHype rmeth
chr2	17697 1835	17697 1836	+	HOXD1 1			Y	2,03 E-13	stronglyHype rmeth
chr2	17697 1839	17697 1840	+	HOXD1 1			Y	2,03 E-13	stronglyHype rmeth
chr16	33340 28	33340 29	+	ZNF263	ZNF 263			2,19 E-13	stronglyHype rmeth
chr7	10087 6081	10087 6082	-			CLD N15	Y	2,22 E-13	stronglyHype rmeth
chr16	87739 548	87739 549	-					2,23 E-13	stronglyHype rmeth
chr16	87739 696	87739 697	-					2,23 E-13	stronglyHype rmeth
chr16	87739 703	87739 704	-					2,23 E-13	stronglyHype rmeth

Table H 5. Top 100 hypermethylated genomic regions in MDA-ER α 5 and MCF7 cells after 6h OH treatment.

Table H 5. (continued)

CHO ROM.	STAR T	END	ST R.	PROMOT ER	EXON	INTR ON	CpG ISL AN D	p- VA LUE	CLASSICIF ICATION
chr5	17673 0059	17673 0060	+	PRELID1, RAB24	RAB2 4		Y	2,36 E-13	stronglyHyp ermeth
chr16	81435 009	81435 010	-					2,36 E-13	stronglyHyp ermeth
chr16	81435 016	81435 017	-					2,36 E-13	stronglyHyp ermeth
chr2	99193 496	99193 497	-		INPP4 A			2,36 E-13	stronglyHyp ermeth
chr6	16051 84	16051 85	-				Y	2,41 E-13	stronglyHyp ermeth
chr17	18585 243	18585 244	+	ZNF286B		ZNF 286B	Y	2,47 E-13	stronglyHyp ermeth
chr1	10920 3790	10920 3791	-	HENMT1		HEN MT1	Y	2,47 E-13	stronglyHyp ermeth
chr7	79743 404	79743 405	+					2,48 E-13	stronglyHyp ermeth
chr7	10087 6087	10087 6088	-			CLD N15	Y	2,5E -13	stronglyHyp ermeth
chr17	36666 690	36666 691	-		ARHG AP23		Y	2,65 E-13	stronglyHyp ermeth
chr16	47178 560	47178 561	+	NETO2				2,65 E-13	stronglyHyp ermeth
chr20	47444 429	47444 430	-	PREX1			Y	2,82 E-13	stronglyHyp ermeth
chr20	47444 434	47444 435	_	PREX1			Y	2,82 E-13	stronglyHyp ermeth
chr20	47444 437	47444 438	-	PREX1			Y	2,82 E-13	stronglyHyp ermeth
chr20	47444 441	47444 442	-	PREX1			Y	2,82 E-13	stronglyHyp ermeth
chr20	47444 461	47444 462	-	PREX1			Y	2,82 E-13	stronglyHyp ermeth
chr9	29398 801	29398 802	-					2,99 E-13	stronglyHyp ermeth
chr6	27181 684	27181 685	-					2,99 E-13	stronglyHyp ermeth
chr18	82632 31	82632 32	-			PTP RM		2,99 E-13	stronglyHyp ermeth
chr16	31154 243	31154 244	+		PRSS3 6		Y	2,99 E-13	stronglyHyp ermeth
chr16	31154 245	31154 246	+		PRSS3 6		Y	2,99 E-13	stronglyHyp ermeth

Table H 5. (continued)

CHOR OM.	STAR T	END	ST R.	PROM OTER	EXO N	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
chr8	10746 0168	10746 0169	-	OXR1	OXR1	OXR 1		3,05 E-13	stronglyHype rmeth
chr3	13324 663	13324 664	+				Y	3,05 E-13	stronglyHype rmeth
chr3	13324 666	13324 667	+				Y	3,05 E-13	stronglyHype rmeth
chr3	13324 668	13324 669	+				Y	3,05 E-13	stronglyHype rmeth
chr3	13324 673	13324 674	+				Y	3,05 E-13	stronglyHype rmeth
chr3	13324 676	13324 677	+				Y	3,05 E-13	stronglyHype rmeth
chr15	63335 123	63335 124	-	TPM1	TPM1		Y	3,08 E-13	stronglyHype rmeth
chr12	13317 0636	13317 0637	+					3,08 E-13	stronglyHype rmeth
chr12	13317 0802	13317 0803	+					3,08 E-13	stronglyHype rmeth
chr10	12859 4996	12859 4997	-	DOCK1		DOC K1	Y	3,14 E-13	stronglyHype rmeth
chr10	12859 4998	12859 4999	-	DOCK1		DOC K1	Y	3,14 E-13	stronglyHype rmeth
chr17	73399 51	73399 52	-		TME M102		Y	3,16 E-13	stronglyHype rmeth
chr2	17694 4753	17694 4754	-				Y	3,16 E-13	stronglyHype rmeth
chr1	21833 0183	21833 0184	+					3,17 E-13	stronglyHype rmeth
chr20	47444 432	47444 433	-	PREX1			Y	3,2E -13	stronglyHype rmeth
chr20	82543 0	82543 1	+	FAM11 0A	FAM1 10A		Y	3,55 E-13	stronglyHype rmeth
chr17	35293 366	35293 367	-				Y	3,55 E-13	stronglyHype rmeth
chr10	32805 18	32805 19	+					3,55 E-13	stronglyHype rmeth
chr10	65315 92	65315 93	-			PRK CQ		3,55 E-13	stronglyHype rmeth
chr7	23421 442	23421 443	+			IGF2 BP3		3,55 E-13	stronglyHype rmeth
chr7	29603 999	29604 000	_	PRR15		PRR 15	Y	3,55 E-13	stronglyHype rmeth

Table H 5. (continued)

CHOR OM.	STAR T	END	ST R.	PROMO TER	EXO N	INTR ON	CpG ISL AND	p- VA LUE	CLASSICIFI CATION
	29604	29604				PRR1		3,55	stronglyHype
chr7	014	015	-	PRR15		5	Y	E-13	rmeth
chr6	10417 574	10417 575				TFAP	v	3,55 E-13	stronglyHype rmeth
cino	10/17	10/17				TEAD	1	2 5 5	stronglyUypo
chr6	577	578	-			2A	Y	5,55 E-13	rmeth
chr3	71802 644	71802 645	+	EIF4E3, GPR27		EIF4E 3	Y	3,55 E-13	stronglyHype rmeth
chr20	49241 284	49241 285	-			FAM 65C		3,65 E-13	stronglyHype rmeth
chr20	62103 994	62103 995	-	KCNQ2	KCN Q2		Y	3,65 E-13	stronglyHype rmeth
chr10	11803 2330	11803 2331	-	GFRA1		GFR A1	Y	3,65 E-13	stronglyHype rmeth
chr7	19177 501	19177 502	+					3,65 E-13	stronglyHype rmeth
chr18	62715 32	62715 33	-			L3M BTL4		3,65 E-13	stronglyHype rmeth
chr19	34113 111	34113 112	-	CHST8	CHS T8		Y	3,65 E-13	stronglyHype rmeth
chr8	13145 5621	13145 5622	-	ASAP1		ASAP 1	Y	4,1E -13	stronglyHype rmeth
chr10	10691 949	10691 950	-					4,16 E-13	stronglyHype rmeth
chr19	41732 29	41732 30	+				Y	4,16 E-13	stronglyHype rmeth
chr16	85604 269	85604 270	+					4,16 E-13	stronglyHype rmeth
chr3	18967 8981	18967 8982	-			LEPR EL1		4,44 E-13	stronglyHype rmeth
chrX	17673 725	17673 726	+			NHS	Y	4,44 E-13	stronglyHype rmeth
chr14	24601 654	24601 655	+	FITM1	FITM 1		Y	4,44 E-13	stronglyHype rmeth
chr6	15181 5291	15181 5292	+	CCDC17 0	CCD C170		Y	4,44 E-13	stronglyHype rmeth
chr1	16169 5677	16169 5678	+		FCRL B		Y	4,44 E-13	stronglyHype rmeth
chr12	21471 304	21471 305	+			SLCO 1A2		4,44 E-13	stronglyHype rmeth
chr8	80803 317	80803 318	+					4,63 E-13	stronglyHype rmeth

Table H 5. (continued)

CHOR OM.	STAR T	END	ST R.	PROM OTER	EXO N	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
chr14	61787 880	61787 881	+	PRKCH			Y	4,63 E-13	stronglyHype rmeth
chr3	13324 715	13324 716	-				Y	4,63 E-13	stronglyHype rmeth
chr3	13324 727	13324 728	-				Y	4,63 E-13	stronglyHype rmeth
chr1	10963 2960	10963 2961	+	TMEM 167B				4,79 E-13	stronglyHype rmeth
chr19	43969 883	43969 884	+	LYPD3				4,97 E-13	stronglyHype rmeth
chr9	11833 9018	11833 9019	-					4,97 E-13	stronglyHype rmeth
chr17	77179 279	77179 280	-			RBFO X3	Y	5,65 E-13	stronglyHype rmeth
chr17	77179 285	77179 286	-			RBFO X3	Y	5,65 E-13	stronglyHype rmeth
chr7	40697 29	40697 30	-			SDK1		5,65 E-13	stronglyHype rmeth
chr7	37488 577	37488 578	-	ELMO1	EL MO 1		Y	5,65 E-13	stronglyHype rmeth
chr7	37488 594	37488 595	-	ELMO1	EL MO 1		Y	5,65 E-13	stronglyHype rmeth
chr7	37488 603	37488 604	-	ELMO1	EL MO 1		Y	5,65 E-13	stronglyHype rmeth
chr1	62398 40	62398 41	+	CHD5		CHD5	Y	5,65 E-13	stronglyHype rmeth
chr1	62398 44	62398 45	+	CHD5		CHD5	Y	5,65 E-13	stronglyHype rmeth
chr6	15181 5525	15181 5526	+	CCDC1 70		CCD C170	Y	5,65 E-13	stronglyHype rmeth
chr16	28074 810	28074 811	+	GSG1L	GSG 1L		Y	5,65 E-13	stronglyHype rmeth

CHOR OM.	STAR T	END	ST R.	PROM OTER	EXO N	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
chr6	41604 917	41604 918	-				Y	1,72 3E- 13	stronglyHypo meth
chr6	41604 925	41604 926	-				Y	1,72 3E- 13	stronglyHypo meth
chr14	10555 9638	10555 9639	-				Y	1,93 5E- 13	stronglyHypo meth
chr18	87073 30	87073 31	+				Y	2,03 1E- 13	stronglyHypo meth
chr7	54678 41	54678 42	-				Y	2,03 1E- 13	stronglyHypo meth
chr6	34203 419	34203 420	+				Y	2,03 1E- 13	stronglyHypo meth
chr16	67770 1	67770 2	-		RAB 40C		Y	2,03 1E- 13	stronglyHypo meth
chr11	30424 685	30424 686	+			MPP ED2		2,03 1E- 13	stronglyHypo meth
chr11	30424 687	30424 688	+			MPP ED2		2,03 1E- 13	stronglyHypo meth
chr3	13301 007	13301 008	+					2,03 1E- 13	stronglyHypo meth
chr2	19558 313	19558 314	-	OSR1	OSR 1		Y	2,03 1E- 13	stronglyHypo meth
chr2	19558 322	19558 323	-	OSR1	OSR 1		Y	2,03 1E- 13	stronglyHypo meth
chr16	21532 887	21532 888	+					2,18 9E- 13	stronglyHypo meth
chr11	67887 507	67887 508	-			CHK A		2,18 9E- 13	stronglyHypo meth
chr12	11849 0247	11849 0248	-		WSB 2			2,18 9E- 13	stronglyHypo meth

Table H 6. Top 100 hypomethylated genomic regions in MDA-ERα5 and MCF7 cells after 6h OH treatment.

Table H 6. (continued)

CHO ROM.	STAR T	END	ST R.	PROM OTER	EX ON	INTRON	CpG ISL AN D	p- VA LUE	CLASSICIF ICATION
chr12	11849 0251	11849 0252	-		WS B2			2,18 9E- 13	stronglyHyp ometh
chr17	45357 974	45357 975	-			ITGB3		2,18 9E- 13	stronglyHyp ometh
chr6	41604 931	41604 932	-				Y	2,29 7E- 13	stronglyHyp ometh
chr1	67955 93	67955 94	+					2,29 7E- 13	stronglyHyp ometh
chr15	67413 603	67413 604	-			SMAD3		2,29 7E- 13	stronglyHyp ometh
chr12	66219 959	66219 960	-	RPSAP 52		RPSAP52, HMGA2	Y	2,35 6E- 13	stronglyHyp ometh
chr6	34203 420	34203 421	-				Y	2,40 7E- 13	stronglyHyp ometh
chr2	10673 877	10673 878	+					2,40 7E- 13	stronglyHyp ometh
chr3	99882 48	99882 49	+	PRRT3 -AS1	PR RT 3		Y	2,47 1E- 13	stronglyHyp ometh
chr3	99882 50	99882 51	+	PRRT3 -AS1	PR RT 3		Y	2,47 1E- 13	stronglyHyp ometh
chr20	56273 742	56273 743	-			PMEPA1		2,65 E-13	stronglyHyp ometh
chr10	13147 7100	13147 7101	+			MGMT		2,65 E-13	stronglyHyp ometh
chrX	15265 8485	15265 8486	+					2,65 E-13	stronglyHyp ometh
chr14	74100 945	74100 946	-				Y	2,65 E-13	stronglyHyp ometh
chr7	16078 29	16078 30	-			PSMG3		2,98 7E- 13	stronglyHyp ometh
chr12	12487 0112	12487 0113	_			NCOR2		3,04 5E- 13	stronglyHyp ometh
chr19	82458 50	82458 51	+					3,04 5E- 13	stronglyHyp ometh

Table H 6. (continued)

CHOR OM.	STAR T	END	ST R.	PROM OTER	EX ON	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
								3,08	
	36042	36042			CLI			1E-	stronglyHypo
chr21	601	602	-	CLIC6	C6		Y	13	meth
	10015	10015						3,08	- 4
ohr?	12815	12815					v	1E- 12	stronglyHypo
ciiis	1940	1941	-				1	3.08	meun
	12815	12815						3,08 1F-	stronglyHypo
chr3	1944	1945	_				Y	13	meth
		17.0				ZNF5	-	3.13	
	77103	77103				03-		6E-	stronglyHypo
chr10	109	110	+			AS1		13	meth
								3,15	
	80966	80966						5E-	stronglyHypo
chr16	860	861	-					13	meth
								3,15	
	92292	92292				UNQ		5E-	stronglyHypo
chr9	556	557	-			6494		13	meth
								3,15	
	48619	48619			EP			5E-	stronglyHypo
chr17	617	618	+		N3		Y	13	meth
	40,610	40/10			ED			3,15	4 1 TT
-117	48619	48619			EP N2		v	5E-	stronglyHypo
cnr1/	0/1	072	+		IN 3		ľ	2 15	metn
	66300	66300				ADS		5,15 5E	stronglyHypo
chr17	00309	00309	_			G		13	meth
	007	008	-			U		3 15	meui
	16053	16053						5E-	stronglyHypo
chr2	516	517	+					13	meth
01112	510	517						3.15	meur
	10444	10444				TDR		5E-	stronglyHypo
chr14	3644	3645	-			D9		13	meth
								3,54	
	22989	22989						7E-	stronglyHypo
chr1	3921	3922	+					13	meth
								3,54	
	19401	19401						7E-	stronglyHypo
chr3	4818	4819	+				Y	13	meth
						DGT		3,54	
1 10	56325	56325		DOVA		DGK		7E-	stronglyHypo
chr12	496	497	+	DGKA		А		13	meth
	11621	11621						3,54 7E	atnon also I is -
ahro	11031	11031	, .			DCC2		/E- 12	stronglyHypo
CIIIY	1190	1191	+			ROSS		13	meui
	88587	88587						3,34 7E-	stronglyHypo
chr2	947	948	_					13	meth

Table H 6. (continued)

CHOR OM.	STAR T	END	ST R.	PROM OTER	EXO N	INTRO N	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
chr22	33931 798	33931 799	+			LARG E		3,54 7E- 13	stronglyHypo meth
chr14	89017 810	89017 811	-			PTPN2 1	Y	3,54 7E- 13	stronglyHypo meth
chr6	39161 965	39161 966	+		KCN K5			3,64 8E- 13	stronglyHypo meth
chr16	67802 8	67802 9	-		RAB 40C		Y	3,64 8E- 13	stronglyHypo meth
chr2	12815 8906	12815 8907	-				Y	3,64 8E- 13	stronglyHypo meth
chr3	54373 066	54373 067	-			CACN A2D3		3,64 8E- 13	stronglyHypo meth
chr17	79316 595	79316 596	-				Y	3,74 8E- 13	stronglyHypo meth
chr11	62369 802	62369 803	+	MTA2	EML 3		Y	3,90 5E- 13	stronglyHypo meth
chr6	28579 48	28579 49	_			MGC3 9372		4,10 1E- 13	stronglyHypo meth
chr10	98050 261	98050 262	-					4,10 1E- 13	stronglyHypo meth
chr10	87373 300	87373 301	+		GRI D1			4,10 1E- 13	stronglyHypo meth
chr10	87373 309	87373 310	+		GRI D1			4,10 1E- 13	stronglyHypo meth
chr10	12377 4785	12377 4786	_			TACC2		4,10 1E- 13	stronglyHypo meth
chr15	23661 937	23661 938	+					4,10 1E- 13	stronglyHypo meth
chr9	93601 740	93601 741	-			SYK		4,10 1E- 13	stronglyHypo meth
chr2	29338 137	29338 138	-	CLIP4			Y	4,10 1E- 13	stronglyHypo meth

Table H 6. (continued)

CHOR OM.	STAR T	END	ST R.	PROM OTER	EXO N	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
								4,10	
	10461	10461				KIF2		1E-	stronglyHypo
chr14	3379	3380	+			6A		13	meth
	13905	13905				MYO		4,16	stronglyHypo
chr17	11	12	+			1C	Y	E-13	meth
								4,43	
	13137	13137						5E-	stronglyHypo
chr18	097	098	-				Y	13	meth
								4,43	
	13137	13137						5E-	stronglyHypo
chr18	103	104	-				Y	13	meth
								4,43	
	77245	77245				NFA		5E-	stronglyHypo
chr18	574	575	-			TC1		13	meth
								4,43	
	70516	70516						5E-	stronglyHypo
chr6	62	63	-				Y	13	meth
								4,43	
	70516	70516						5E-	stronglyHypo
chr6	65	66	-				Y	13	meth
								4,43	
	16159	16159						5E-	stronglyHypo
chr1	209	210	-					13	meth
								4,43	
	42798	42798						5E-	stronglyHypo
chr21	586	587	+	MX1	-	MX1	Y	13	meth
								4,43	
1 17	76567	76567			DNA			5E-	stronglyHypo
chr17	759	760	-		HI7			13	meth
	15700	15700				CD2		4,43	. 1
1 4	15/80	15/80		CD20		CD3	V	5E-	stronglyHypo
cnr4	539	540	-	CD38		8	Y	13	meth
	10070	10070		ST COO				4,43	- 4 1T T
ahut	100/0	10070		SLC22	SLC2		v	3E-	stronglyHypo
chro	9428	9429	-	AS	2A3		I	13	metn
	16076	16076		SI COO	ST C2			4,45 5E	strongly Uyno
ohr6	0/22	0/22		SLC22	3LC2		v	JE- 12	suoligiynypo
CIIIO	9432	9433	-	AS	ZAJ		1	13	meui
	16076	16076		SI C22	SI C2			4,40 5E	stronglyUypo
chr6	9/25	9/36			243		v	13	meth
	7455	7430		115	2/13		1	4 1 1	moui
	11184	11184				SH2		-,++ 3E-	stronglyHypo
chr12	7269	7270	+			B3		13	meth
VIII 1 2	,207	,210				55		4 44	moun
	11184	11184				SH2		-, 3E-	stronglvHvno
chr12	7275	7276	+			B3		13	meth

Table H 6. (continued)

CHOR OM.	STAR T	END	ST R.	PROM OTER	EX ON	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
								4,62	
-117	40573	40573				DTDE	v	9E-	stronglyHypo
chr17	821	822	+			PIKF	Y	4 96	meth
	13260	13260				USP2		9E-	stronglyHypo
chr9	1310	1311	+			0		13	meth
								4,96	
	38717	38717						9E-	stronglyHypo
chr17	305	306	+			CCR7		13	meth
	20004	20004				DACC		4,96	-4
chr10	38904	38904				RASG DD4		9E-	stronglyHypo
CIII 1 9	011	012	-			KI 4		5 65	meui
	55088	55088						3E-	stronglyHypo
chr7	018	019	-			EGFR	Y	13	meth
								5,65	
	55088	55088						3E-	stronglyHypo
chr7	022	023	-			EGFR	Y	13	meth
								5,65	
	55088	55088						3E-	stronglyHypo
chr7	024	025	-			EGFR	Y	13	meth
	55000	55000						5,65 2E	- 4 1 - . T T
ohr7	55088 025	55088 026				ECED	v	3E-	stronglyHypo
	055	050	-			EOLK	I	5 65	meun
	55088	55088						3E-	stronglyHypo
chr7	037	038	_			EGFR	Y	13	meth
							_	5.65	
	40635	40635				TNRC		3E-	stronglyHypo
chr22	357	358	-			6B		13	meth
								5,66	
	72218	72218						8E-	stronglyHypo
chr10	292	293	-				Y	13	meth
	10101	10101				MOOD		5,66	1
1 10	12486	12486				NCOR		8E-	stronglyHypo
chr12	4613	4614	+			2		5 67	meth
	67490	67490			BM			3,07 8E-	stronglyHypo
chr20	19	20	_	BMP2	P2		Y	13	meth
011120	17	20		Divil 2	12		1	5.67	incui
	67490	67490			BM			8E-	stronglyHypo
chr20	22	23	-	BMP2	P2		Y	13	meth
								5,67	
	15356	15356						8E-	stronglyHypo
chr5	9241	9242	-					13	meth
		1						5,67	
1 7	15356	15356						8E-	stronglyHypo
chr5	9246	9247	-		1			13	meth

Table H 6. (continued)

CHOR OM.	STAR T	END	ST R.	PROM OTER	EX ON	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
								5,67	
	17102	17102						8E-	stronglyHypo
chr5	3801	3802	+					13	meth
								5,67	
	13925	13925			RB			8E-	stronglyHypo
chr3	8657	8658	+	RBP1	P1		Y	13	meth
								5,67	
	58967	58967			DT			8E-	stronglyHypo
chr11	192	193	-		X4			13	meth
								5,67	
	65478	65478						8E-	stronglyHypo
chr11	316	317	-					13	meth

CHOR	STA	END	ST	PROMO	EXO	INTR	CpG ISLA	p- VAL	CLASSICIFI
OWI.	K1	LIND	К.	ILK	11	UN	ND	0.62	CATION
	558/11	558/1			BMD			7,03 4E	stronglyHype
chr20	259	260	_	BMP7	7		v	4L- 14	rmeth
cm20	237	200	_		/		1	1 93	meth
	34287	34287				КСТ		5F-	stronglyHype
chr19	927	928	+	KCTD15		D15	Y	13	rmeth
	>21	20		nerbie		010	1	1.93	linotii
	69632	69632						5E-	stronglyHype
chr11	333	334	-			FGF3	Y	13	rmeth
							_	2.03	
	41119	41119				LTB		1E-	stronglvHvpe
chr19	496	497	+			P4	Y	13	rmeth
								2,03	
	46932	46932			CEL			1E-	stronglyHype
chr22	330	331	-	CELSR1	SR1		Y	13	rmeth
								2,03	
	69777	69777						1E-	stronglyHype
chr17	628	629	+					13	rmeth
								2,03	
	72919	72919		OTOP2,U				1E-	stronglyHype
chr17	814	815	+	SH1G			Y	13	rmeth
								2,03	
	74701	74701						1E-	stronglyHype
chr16	461	462	-	RFWD3				13	rmeth
								2,03	
	74701	74701						1E-	stronglyHype
chr16	482	483	-	RFWD3				13	rmeth
								2,03	
	74701	74701						1E-	stronglyHype
chr16	487	488	-	RFWD3				13	rmeth
								2,03	
	27840	27840		HIST1H3				1E-	stronglyHype
chr6	104	105	+	I				13	rmeth
								2,03	
1.10	25323	25323						1E-	stronglyHype
chr18	653	654	-					13	rmeth
	0.400	0.400						2,18	
1 7	84826	84826				NXP	NZ	9E-	stronglyHype
chr/	33	34	-			HI	Y	13	rmeth
	24112	24112				CDM		2,23	
-1	54112	54112					v	1E-	stronglyHype
cnr6	513	514	+			4	Y	13	rmeth
	24520	24500				CDD		2,23	atron also I
ahar	34320	34320						1E-	strongryHype
cnrb	/50	/51	+			EF		15	rmeth

Table H 7. Top 100 hypermethylated genomic regions in MDA-ER α 5 and MCF7 cells after 6h E2 treatment.

Table H 7. (continued)

						1	1		1
CHOR OM.	STAR T	END	ST R.	PROM OTER	EX ON	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
ah#19	27419	27419						2,29 7E-	stronglyHyper
cnr18	59933	59933	+			CDH		2,35 6E-	stronglyHyper
chr20	806	807	+			4		13	meth
chr17	35295 063	35295 064	-	LHX1	LH X1		Y	2,35 6E- 13	stronglyHyper meth
chr15	42500 723	42500 724	+	VPS39				2,35 6E- 13	stronglyHyper meth
chr1	24587 8313	24587 8314	-					2,40 7E- 13	stronglyHyper meth
chr16	74701	74701	_	RFWD3				2,48 3E- 13	stronglyHyper meth
	71355	71355		Id (125		MCE		2.65	stronglyHyper
chr2	856	857	-			E		E-13	meth
chr17	68388 034	68388 035	+					2,65 E-13	stronglyHyper meth
chr17	68388 038	68388 039	+					2,65 E-13	stronglyHyper meth
chr10	13399 9539	13399 9540	-	DPYSL 4			Y	2,65 E-13	stronglyHyper meth
chr18	25865 539	25865 540	-					2,65 E-13	stronglyHyper meth
chr7	45613 832	45613 833	-	ADCY1			Y	2,65 E-13	stronglyHyper meth
chr7	45613 858	45613 859	-	ADCY1			Y	2,65 E-13	stronglyHyper meth
chr18	25323 656	25323 657	_					2,98 7E- 13	stronglyHyper meth
chr1	20158 3538	20158 3539	-					3,04 5E- 13	stronglyHyper meth
chr1	21833 0092	21833 0093	+					3,08 1E- 13	stronglyHyper meth
chr1	21833 0104	21833 0105	+					3,08 1E- 13	stronglyHyper meth
chr12	49109 356	49109 357	+			CCN T1		3,08 1E- 13	stronglyHyper meth

Table H 7. (continued)

CHOR	STAR	FND	ST R	PROM	FXON	INTR	CpG ISLA	p- VAL	CLASSICIFI
0101.	1	LIND	K.	OTLK	LAON			3,08	CATION
chr12	49109 359	49109 360	+			CCNT 1		1E- 13	stronglyHype rmeth
	01070	21072						3,08	. 1.11
chr2	4427	4428	+	WNT6			Y	1E- 13	rmeth
							-	3,08	
	21972	21972						1E-	stronglyHype
chr2	4441	4442	+	WNT6			Y	13	rmeth
	87326	87326						3,08 1E-	stronglyHype
chr14	588	589	_					13	rmeth
								3,08	
	10599	10599		TMEM		TME		1E-	stronglyHype
chr14	3511	3512	+	121		M121	Y	13	rmeth
	78450	78450			ΝΡΤΥ			3,08 1E-	stronglyHype
chr17	145	146	_	NPTX1	1		Y	13	rmeth
	110	110					-	3,08	
	33069	33069		ARHG	ARH			1E-	stronglyHype
chr16	5	6	-	DIG	GDIG		Y	13	rmeth
	220.00	220.00		ADUC	ADII			3,08	. 1 11
chr16	33069	33069		DIG	GDIG		v	1E- 13	stronglyHype
CIII IO	7	0	-	DIO	UDIO		1	3.13	Incui
	19228	19228				FGF1		6E-	stronglyHype
chr3	9263	9264	-			2		13	rmeth
						DI DI		3,13	
ahu1	65312	65312				PLEK	v	6E-	stronglyHype
	18	19	+			поз	1	3 13	Illieui
	65312	65312				PLEK		6E-	stronglyHype
chr1	20	21	+			HG5	Y	13	rmeth
								3,13	
1 1	65312	65312				PLEK	X 7	6E-	stronglyHype
chrl	32	33	+			HG5	Y	3 13	rmeth
	95236	95236						6E-	stronglyHype
chr14	197	198	-	GSC	GSC		Y	13	rmeth
								3,13	
	81517	81517				PTPR		6E-	stronglyHype
chr18	88	89	+			M		13	rmeth
	24143	24143						5,15 6E-	stronglyHype
chr7	950	951	-					13	rmeth
								3,15	
	44108	44108						5E-	stronglyHype
chr2	896	897	+					13	rmeth

Table H 7. (continued)

			1			1			
							CpG	p-	
CHOR	STAR		ST	PROM		INTR	ISLA	VAL	CLASSICIFI
OM.	Т	END	R.	OTER	EXON	ON	ND	UE	CATION
	11055	11055						3,15	1
1 10	11257	11257				TRA		5E-	stronglyHype
chr12	4709	4/10	-			FDI		13	rmeth
	15(10	15(10		CVD4E		CVD		3,15	. 1 11
ahri10	15619	15619		CYP4F			v	5E- 12	stronglyHype
chr19	401	402	+	22		4622	I	2 15	rmeun
	15610	15610		CVD/F		CVP		5,15 5E	stronglyHype
chr10	13019	13019	-	22		4E22	v	13	rmeth
	405	404	т	22		41.22	1	3 15	Incui
	15619	15619		CYP4F		CYP		5,15 5E-	stronglyHype
chr19	405	406	+	22		4F22	Y	13	rmeth
	105	100		22		11 22	1	3 15	lineth
	37862	37862				ERB		5E-	stronglyHype
chr17	112	113	+			B2		13	rmeth
								3.16	
	80272	80272						9E-	stronglyHype
chr8	552	553	+					13	rmeth
								3,16	
	10615	10615						9E-	stronglyHype
chr8	4924	4925	-					13	rmeth
								3,54	
	24434	24434						7E-	stronglyHype
chr1	0418	0419	-					13	rmeth
								3,54	
	15067	15067		KCNH	KCNH			7E-	stronglyHype
chr7	5352	5353	-	2	2		Y	13	rmeth
								3,54	
	44494	44494				~~~~		7E-	stronglyHype
chr21	812	813	-			CBS	Y	13	rmeth
	17402	17402						3,54	
1 10	1/492	1/492					37	/E-	stronglyHype
cnr19	//	/8	+				r	15	rmeth
	30776	30776			CADN			3,54 7E	stronglyUyna
chr10	39220 762	762	_		12		v	/E- 13	rmeth
CIII 1 7	702	703	-		12		1	3 54	
	28197	28197						7F-	stronglyHype
chr22	426	427	_	MN1	MN1		v	13	rmeth
	120	121					-	3.54	
	54042	54042		LOC72	LOC72			7E-	stronglvHvpe
chr17	67	68	-	8392	8392		Y	13	rmeth
								3.54	
	74864	74864		MGAT	MGAT			7E-	stronglyHype
chr17	933	934	+	5B	5B		Y	13	rmeth
					T T			3,54	
	74864	74864		MGAT	MGAT			7E-	stronglyHype
chr17	942	943	+	5B	5B		Y	13	rmeth

Table H 7. (continued)

							CpG	p-	
			S				ISL	VA	
CHO	STA		Т	PROMOTE	EXO	INTR	AN	LU	CLASSICIF
ROM.	RT	END	R.	R	N	ON	D	E	ICATION
								3,54	
	74864	74864			MGA			7E-	stronglyHyp
chr17	949	950	+	MGAT5B	T5B		Y	13	ermeth
								3,54	
	33397	33397						7E-	stronglyHyp
chr11	664	665	-				Y	13	ermeth
								3,54	
	33397	33397						7E-	stronglyHyp
chr11	666	667	+				Y	13	ermeth
								3,54	
	33397	33397						7E-	stronglyHyp
chr11	667	668	-				Y	13	ermeth
								3,54	
	14018	14018						7E-	stronglyHyp
chr9	9992	9993	-				Y	13	ermeth
								3,64	
	35295	35295			LHX			8E-	stronglyHyp
chr17	091	092	-	LHX1	1		Y	13	ermeth
								3,64	
	37021	37021		B4GALNT		B4GA		8E-	stronglyHyp
chr11	2	3	+	4		LNT4		13	ermeth
								3,64	
	13724	13724						8E-	stronglyHyp
chr9	8969	8970	+			RXRA		13	ermeth
						HOX		3,64	
	27183	27183			HOX	A-		8E-	stronglyHyp
chr7	054	055	-	HOXA5	A5	AS3	Y	13	ermeth
								3,90	
	12916	12916						5E-	stronglyHyp
chr8	5586	5587	+					13	ermeth
								3,90	
	63335	63335			TPM			5E-	stronglyHyp
chr15	990	991	-		1	TPM1	Y	13	ermeth
								4,00	
	58217	58217						1E-	stronglyHyp
chr17	409	410	+				Y	13	ermeth
								4,00	
	58217	58217						1E-	stronglyHyp
chr17	454	455	+				Y	13	ermeth
								4,08	
	10077	10077				SLC2		4E-	stronglyHyp
chr14	1168	1169	-			5A29		13	ermeth
								4 16	
	90038	90038		CENDRD1	CEN			-,10 E	stronglyUyp
chr16	560	570	+	$\Delta FG31 1D$	PRD1		v	13	ermeth
	509	570	Τ'	MOJLII	ועעדן		1	15	unicul

Table H 7. (continued)

							CpG	p-	
CHO			S				ISL	VA	
ROM	STA		Т	PROMOT	EXO		AN	LU	CLASSICI
•	RT	END	R.	ER	Ν	INTRON	D	E	FICATION
					CEN			4,16	
	9003	9003		CENPBD1	PBD			E-	stronglyHy
chr16	8571	8572	+	,AFG3L1P	1		Y	13	permeth
					CEN			4 16	
	9003	9003		CENPBD1	PBD			E-	stronglvHv
chr16	8582	8583	+	,AFG3L1P	1		Y	13	permeth
					CEN			1 16	-
	9003	9003		CENPBD1	PRD			4,10 F-	stronglyHy
chr16	8586	8587	+	AFG3L1P	1		Y	13	permeth
	0500	0507		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CEN		1	110	permeti
	0002	0002		CENIDDD1	DDD			4,16 E	stasa slyilly
obr16	9003	9003		AEC2L1D			v	E- 12	stronglyHy
chilo	8390	6391	+	,AFG5LIP	1		I	15	permeti
					CEN			4,16	
1.1.6	9003	9003		CENPBDI	PBD			E-	stronglyHy
chr16	8606	8607	+	,AFG3L1P	1		Y	13	permeth
					CEN			4,16	
	9003	9003		CENPBD1	PBD			E-	stronglyHy
chr16	8712	8713	+	,AFG3L1P	1		Y	13	permeth
	0004							4,16	1
1 17	8334	8334				LOC2836	v	E-	stronglyHy
chr15	8891	8892	+			92,AP3B2	Y	13	permeth
	1389	1389						4,43 5E	stron alv Uv
chr1	8043 A	8043 5	_		IFI16	IFI16		13	permeth
	1137	1137			II II O	1110		4 4 3	permeti
	7870	7870						5E-	stronglvHv
chr7	5	6	-			FOXP2		13	permeth
								4,43	1
	3506	3506			DLG			5E-	stronglyHy
chr20	4610	4611	-		AP4		Y	13	permeth
								4,43	
	4870	4870			CEL			5E-	stronglyHy
chr3	0288	0289	+	CELSR3	SR3		Y	13	permeth
								4,43	
1.0	4870	4870			CEL			5E-	stronglyHy
chr3	0291	0292	+	CELSR3	SR3		Y	13	permeth
	5401	5401		DCVE C1	DCV			4,43	atnon alt-II-
chr17	2491 2212	5491 2214		DUKE,CI 7orf67	DGK F		v	3E- 12	stronglyHy
	1201	1201	-	/0110/			1	13 1 / 12	permetii
	7699	7699			AST			-,+5 5F-	stronglyHy
chr9	4	.5	-	ASTN2	N2		Y	13	permeth
								4.43	Ferriour
	2464	2464				LOC4021		5E-	stronglyHv
chr4	090	091	-			60	Y	13	permeth

Table H 7. (continued)

CHOR OM.	STA RT	END	ST R.	PROM OTER	EXO N	INTRON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
		= .						4,43	
	4671	4671				LOC100		5E-	stronglyHype
chr4	072	073	-			507266		13	rmeth
								4,43	
	8582	8582			GPR			5E-	stronglyHype
chr4	469	470	-	GPR78	78	GPR78	Y	13	rmeth
								4,43	
	1511	1511						5E-	stronglyHype
chr7	7797	7798	+					13	rmeth
								4,43	
	2718	2718		HOXA	HO	HOXA-		5E-	stronglyHype
chr7	3057	3058	+	5	XA5	AS3	Y	13	rmeth
								4,44	
	8151	8151						3E-	stronglyHype
chr18	915	916	+			PTPRM		13	rmeth

CHOR OM.	STAR T	END	ST R.	PROM OTER	EXO N	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
chr6	14977 1931	14977 1932	-		ZC3H 12D		Y	1,72 3E- 13	stronglyHypo meth
chr6	14977 1933	14977 1934	-		ZC3H 12D		Y	1,72 3E- 13	stronglyHypo meth
chr7	15262 0136	15262 0137	+					2,03 1E- 13	stronglyHypo meth
chr19	34354 12	34354 13	+			NFIC	Y	2,03 1E- 13	stronglyHypo meth
chr3	18758 0328	18758 0329	-					2,03 1E- 13	stronglyHypo meth
chr3	18758 0340	18758 0341	-					2,03 1E- 13	stronglyHypo meth
chr4	81294 33	81294 34	+			ABLI M2		2,03 1E- 13	stronglyHypo meth
chr5	16783 6834	16783 6835	-			WW C1		2,03 1E- 13	stronglyHypo meth
chr15	89991 120	89991 121	_					2,03 1E- 13	stronglyHypo meth
chr3	99885 90	99885 91	_	PRRT3- AS1	PRRT 3		Y	2,18 9E- 13	stronglyHypo meth
chr3	99882 44	99882 45	+	PRRT3- AS1	PRRT 3		Y	2,18 9E- 13	stronglyHypo meth
chr3	18554 4050	18554 4051	+				Y	2,18 9E- 13	stronglyHypo meth
chr6	13137 16	13137 17	+		FOX Q1		Y	2,18 9E- 13	stronglyHypo meth
chr6	13137	13137	+		FOX 01		Y	2,18 9E- 13	stronglyHypo meth
chr20	42069 445	42069 446	+					2,35 6E- 13	stronglyHypo meth

Table H 8. Top 100 hypomethylated genomic regions in MDA-ERα5 and MCF7 cells after 6h E2 treatment.

Table H 8. (continued)

CHOR STAR ST PROM EX INTR ISLA VAL COM T END R OTER ON ON ND UE COM	CLASSICIFI CATION
35096 35096 6E- s	stronglyHypo
chr19 70 71 + FZR1 13 n	meth
	atura al villera a
0104 10104 0E-8	stroligiyHypo meth
	mem
10164 10164 6E- s	stronglyHypo
chr14 0944 0945 - 13 m	meth
2,40	
74290 74290 7E- s	stronglyHypo
chr6 152 153 + 13 n	meth
10776 10776 DTPD 1E	stron alv Uvno
10770 10770 11770 116-8 1160 116-8 1160 116-8 1160 116-8 1160	meth
	liletii
10015 10015 OLFM 3E- s	stronglyHypo
chr19 452 453 + 2 13 m	meth
13378 13378 FIBCD 2,65 s	stronglyHypo
chr9 8419 8420 + 1 E-13 m	meth
52800 52800 KR 2,65 s	stronglyHypo
chr12 086 087 + KRT82 T82 E-13 n	meth
99687 99687 BCL11 2,65 s	stronglyHypo
chr14 256 257 - B E-13 n	meth
18053 18053 2,65 s	stronglyHypo
chr1 114 115 + E-13 n	meth
12455 12455 FBXO3 FBXO 2,65 s	stronglyHypo
chr8 2733 2734 + 2 32 Y E-13 n	meth
12455 12455 FBXO3 FBXO 2,65 s	stronglyHypo
chr8 2784 2785 + 2 32 Y E-13 n	meth
65708 65708 2,65 s	stronglyHypo
chr4 22 23 - E-13 n	meth
10700 10700 EFNA 2,65 s	stronglyHypo
chr5 5257 5258 - 5 Y E-13 n	meth
17858 17858 ADA 2,65 s	stronglyHypo
chr5 5254 5255 + MTS2 E-13 n	meth
67356 67356 2,65 s	stronglyHypo
chr15 672 673 - E-13 n	meth
LDLR 7E-s	stronglyHypo
CNT18 U98 U99 + AD4 13 m	meth
21270 21270 1 AMA 1 AMA 7E_{-}	stronglyHypo
chr18 092 093 + 3 3 Y 13 m	meth

Table H 8. (continued)

	1	1	1	r	1	1	1		
CHOR	STAR		ST	PROM	FXO	INTR	CpG	p- VAI	CI ASSICIFI
OM	T	END	R	OTER	N	ON	ND	UE	CATION
0111.	1	LITE	1.	OTER	11	011	Tib	2.98	Cillion
	10294	10294				TEC		2,90 7E-	stronglyHypo
chr14	9439	9440	-			PR2		13	meth
	,,	,						2.98	
	11042	11042						7E-	stronglyHypo
chr1	0157	0158	-					13	meth
								2,98	
	12702	12702						7E-	stronglyHypo
chr10	4907	4908	+					13	meth
								3,08	
	27938	27938						1E-	stronglyHypo
chr2	580	581	-					13	meth
								3,08	
	39161	39161			KC			1E-	stronglyHypo
chr6	959	960	+		NK5			13	meth
								3,08	
	39161	39161			KC			1E-	stronglyHypo
chr6	965	966	+		NK5			13	meth
								3,08	
	25019	25019		OSBPL		OSB		1E-	stronglyHypo
chr7	109	110	+	3		PL3	Y	13	meth
	05010	25010		OGDDI		OGD		3,08	. 1
1.7	25019	25019		OSBPL		OSB	37	IE-	stronglyHypo
chr/	115	116	+	3		PL3	Y	13	meth
	04541	04541		DI VNC				3,13	atura al villare a
obr12	94541	94541		PLANC			v	0E- 12	strongryHypo
	919	920	-	1			I	2 1 2	meth
	12012	12012						5,15 6E-	stronglyHypo
chr8	1/30	1440	_					13	meth
CIIIO	1437	1440	_					3 1 5	meth
	98279	98279			PTC			5F-	stronglyHypo
chr9	049	050	-	PTCH1	H1		Y	13	meth
	012	020		110111			-	3.15	
	98279	98279			PTC			5E-	stronglvHvpo
chr9	059	060	-	PTCH1	H1		Y	13	meth
								3,15	
	98279	98279			PTC			5E-	stronglyHypo
chr9	061	062	-	PTCH1	H1		Y	13	meth
								3,15	
	56283	56283				PME		5E-	stronglyHypo
chr20	944	945	-			PA1	Y	13	meth
								3,15	
	10168	10168				CUX		5E-	stronglyHypo
chr7	8721	8722	-			1		13	meth
								3,15	
	76312	76312						5E-	stronglyHypo
chr17	264	265	-					13	meth
							CpG	p-	
-------	-------	-------	----	-------	----	-----------	-----	------	-------------
			S				ISL	VA	
CHO	STA		Т	PROM	EX		AN	LU	CLASSICIF
ROM.	RT	END	R.	OTER	ON	INTRON	D	E	ICATION
								3,15	
	30652	30652						5E-	stronglyHyp
chr22	615	616	+					13	ometh
								3,15	
	11042	11042						5E-	stronglyHyp
chr1	0154	0155	+					13	ometh
								3,15	
	11042	11042						5E-	stronglyHyp
chr1	0189	0190	+					13	ometh
								3,15	
	17994	17994				ARHGEF10		5E-	stronglyHyp
chr1	232	233	+			L		13	ometh
								3,15	
	15545	15545						5E-	stronglyHyp
chr3	4914	4915	+					13	ometh
								3,15	
	12417	12417						5E-	stronglyHyp
chr8	3268	3269	-				Y	13	ometh
								3,15	
	70222	70222						5E-	stronglyHyp
chr16	557	558	+				Y	13	ometh
					MY			3,15	
	69063	69063			EO			5E-	stronglyHyp
chr11	297	298	+		V			13	ometh
								3,15	
	13150	13150						5E-	stronglyHyp
chr10	4532	4533	+			MGMT		13	ometh
								3,54	
	91792	91792						7E-	stronglyHyp
chr9	668	669	-			SHC3	Y	13	ometh
								3,54	
	91792	91792						7E-	stronglyHyp
chr9	673	674	-			SHC3	Y	13	ometh
								3,54	
	91792	91792						7E-	stronglyHyp
chr9	792	793	-	SHC3		SHC3	Y	13	ometh
								3,54	
	91792	91792						7E-	stronglyHyp
chr9	801	802	-	SHC3		SHC3	Y	13	ometh
								3,54	
	21787	21787						7E-	stronglyHyp
chr11	78	79	-			INS-IGF2		13	ometh
								3.54	
	14121	14121				SCOC.LOC		7E-	stronglvHvn
chr4	7788	7789	-			100129858		13	ometh
					1		1	3,54	
	42082	42082		PYY.N	NA			7E-	stronglvHvp
chr17	135	136	-	AGS	GS		Y	13	ometh

Table H 8. (continued)

CHOR	STAR		ST	PROM	EXO	INTR	CpG ISLA	p- VAL	CLASSICIFI
OM.	Т	END	R.	OTER	N	ON	ND	UE	CATION
	40000	40000		DIMIN				3,54	
1 17	42082	42082		PYY,N	NAG			7E-	stronglyHypo
chr1/	137	138	-	AGS	8		Y	13	meth
	77010	77010						3,54	. 1 11
-110	//218	//218				NFA TC1	v	/E-	stronglyHypo
cnr18	649	650	+			ICI	Y	13	metn
	10625	10625				TND		3,54 7E	atura al vII vue a
ahraa	40055	40055				TINK C6P		/E- 12	stronglyHypo
	550	557	+			COD		254	meui
	10161	10161						3,34 7E	stronglyHypo
chr14	7806	7807						13	meth
CIII 14	/ 690	/09/	-					254	meui
	30183	30183						3,34 7E	stronglyHypo
chr1	005	006						/L- 13	meth
	903	900	+					354	mem
	1/037	1/037		WWTD	ww			3,34 7E	stronglyHypo
chr3	14/37	14757		1			v	13	meth
CIII 3	4023	4024	т	1	IKI		1	3 54	Incui
	33625	33625						5,54 7E-	stronglyHypo
chr10	046	047					v	13	meth
	940	947	T				1	354	mem
	33625	33625						5,54 7E-	stronglyHypo
chr10	970	93023	-				v	13	meth
	710	7/1	1				1	3 54	meur
	69953	69954				WDR		7E-	stronglyHypo
chr16	9	0	_	WDR90		90	Y	13	meth
	,	0		WDR90		70	1	3 54	meth
	13123	13123						7E-	stronglyHypo
chr16	34	35	_					13	meth
CIII I O	51	55						3 54	meth
	23497	23497				SNX		7E-	stronglyHypo
chr7	91	92	_			8		13	meth
	/1	/_				0		3.54	
	20359	20359				ATP2		7E-	stronglvHvpo
chr1	8492	8493	+			B4	Y	13	meth
								3.54	
	20359	20359				ATP2		7E-	stronglyHypo
chr1	8494	8495	+			B4	Y	13	meth
								3.54	
	20359	20359				ATP2		7E-	stronglyHypo
chr1	8505	8506	+			B4	Y	13	meth
								3,54	
	20359	20359				ATP2		7E-	stronglyHypo
chr1	8651	8652	-			B4	Y	13	meth
								3,54	
	20359	20359				ATP2		7E-	stronglyHypo
chr1	8674	8675	-			B4	Y	13	meth

Table H 8. (continued)

CHOR	STAR		ST	PROM	EXO	INTR	CpG ISLA	p- VAL	CLASSICIFI
OM.	Т	END	R.	OTER	Ν	ON	ND	UE	CATION
								3,64	
1 10	34394	34394						8E-	stronglyHypo
chr19	603	604	+					13	meth
	74101	74101						3,04 8E-	stronglyHypo
chr14	177	178	-				Y	13	meth
	111	110					-	3,64	
	13136	13136				ASA		8E-	stronglyHypo
chr8	9612	9613	+			P1		13	meth
								3,64	
1.7	17726	17726						8E-	stronglyHypo
chr5	3962	3963	-					13	meth
	12567	12567						3,64	atman alvil Ivma
obr10	12507	12507						8E- 12	stronglyHypo
	2174	2173	+					3 64	meui
	13150	13150				MG		3,04 8E-	stronglyHypo
chr10	4036	4037	_			MT		13	meth
	1000	1007						3,64	
	54692	54692						8E-	stronglyHypo
chr7	31	32	-				Y	13	meth
								4,08	
	17414	17414			ABH			4E-	stronglyHypo
chr19	194	195	+	ABHD8	D8		Y	13	meth
								4,08	
1.2	18/58	18758						4E-	stronglyHypo
chr3	0339	0340	+					13	meth
	20846	20846						4,10 1E	stronglyHypo
chr20	128	120	_					13	meth
CIII 20	120	127	_					4 10	meth
	23247	23247						1,10 1E-	stronglvHvpo
chr2	8863	8864	+				Y	13	meth
								4,10	
	76354	76354			SOC			1E-	stronglyHypo
chr17	946	947	+		S3		Y	13	meth
								4,10	
	76354	76354			SOC			1E-	stronglyHypo
chr17	954	955	+		<u>S</u> 3		Y	13	meth
	76254	76254			500			4,10	4 1 TT
abr17	/6354	/6354			SUC S2		v	1E- 12	stronglyHypo
	904	903	+		33		1	13	meun
	16212	16212						4,10 1E-	stronglyHypo
chr2	378	379	+					13	meth
	2.3	2.7						4.10	
	52294	52294						1E-	stronglyHypo
chr14	996	997	+					13	meth

Table H 8. (continued)

CHOR OM.	STAR T	END	ST R.	PROM OTER	EX ON	INTR ON	CpG ISLA ND	p- VAL UE	CLASSICIFI CATION
								4,10	
	12892	12892						1E-	stronglyHypo
chr8	9888	9889	-			PVT1		13	meth
								4,10	
	17867	17867				ADA		1E-	stronglyHypo
chr5	8600	8601	-			MTS2		13	meth
								4,10	
	75524	75524						1E-	stronglyHypo
chr7	084	085	+					13	meth

APPENDIX I

LINKS FOR METHYLATION TRACKS

MDA-ERa5 6h OH treatment:

track name='zr1134_1 CpG methylation track' bigDataUrl=https://s3.amazonaws.com/epiquest/epiquest_zr1134/VYDFJXA2MT8 GDJLBF7EZRZEXJCY6J7BN/Analysis/browserTracks/zr1134_1_CpG_meth.bb type=bigBed itemRgb=On visibility=3

MDA-ERa5 6h E2 treatment:

track name='zr1134_2 CpG methylation track' bigDataUrl=https://s3.amazonaws.com/epiquest/epiquest_zr1134/VYDFJXA2MT8 GDJLBF7EZRZEXJCY6J7BN/Analysis/browserTracks/zr1134_2_CpG_meth.bb type=bigBed itemRgb=On visibility=3

MCF7 6h OH treatment:

track name='zr1134_3 CpG methylation track' bigDataUrl=https://s3.amazonaws.com/epiquest/epiquest_zr1134/VYDFJXA2MT8 GDJLBF7EZRZEXJCY6J7BN/Analysis/browserTracks/zr1134_3_CpG_meth.bb type=bigBed itemRgb=On visibility=3

MCF7 6h E2 treatment:

track name='zr1134_4 CpG methylation track' bigDataUrl=https://s3.amazonaws.com/epiquest/epiquest_zr1134/VYDFJXA2MT8 GDJLBF7EZRZEXJCY6J7BN/Analysis/browserTracks/zr1134_4_CpG_meth.bb type=bigBed itemRgb=On visibility=3

APPENDIX J

GENES SHOWING SIGNIFICANT CHANGES IN TRANSCRIPTOMIC ANALYSES

GENE_ID	GENE	LOCUS	p-VALUE
ENSG00000138131.3	LOXL4	chr10:98247689- 98268250	0
ENSG00000198406.7	BZW1P2	chr3:115802362- 117139389	0
ENSG00000225178.5	RPSAP58	chr19:23762943- 23874701	0
ENSG00000232024.2	LSM12P1	chr8:35235456- 35796550	0
ENSG00000239899.3	RN7SL674P	chr2:11482340- 11642788	0
ENSG00000241175.3	RN7SL494P	chr15:50241946- 50266026	0
ENSG00000242071.3	RPL7AP6	chr14:69854130- 70032366	1,33227E-15
ENSG00000225573.4	RPL35P5	chr7:66606737- 66607107	2,90434E-13
ENSG00000179542.15	SLITRK4	chrX:143622789- 143635777	2,33584E-11
ENSG00000237330.2	RNF223	chr1:1070965- 1074307	6,21967E-11
ENSG00000198774.4	RASSF9	chr12:85800696- 85836570	1,12152E-10
ENSG00000226085.3	UQCRFS1P1	chr22:39743043- 39893864	4,23036E-09
ENSG00000101230.5	ISM1	chr20:13221770- 13300651	9,47252E-09

Table J 1. Genes showing significant changes in transcriptomic analysis of MDA-ERα5 monoclone after 6h E2 treatment compared to ethanol group.

Table J 1. (continued)

GENE_ID	GENE	LOCUS	p-VALUE
ENSG00000163083.5	INHBB	chr2:120346142- 120351808	8,49427E-08
ENSG00000185090.14	MANEAL	chr1:37793801- 37801137	8,92019E-08
ENSG00000152137.6	HSPB8	chr12:119178641- 119221131	1,49842E-07
ENSG00000188483.7	IER5L	chr9:129175551- 129210548	4,95103E-07
ENSG00000237991.3	RPL35P1	chr1:236981338- 236981708	9,13474E-07
ENSG00000214900.8	LINC01588	chr14:49981711- 50092643	5,03365E-06
ENSG00000230629.2	RPS23P8	chrX:70962963- 70963293	7,9036E-06
ENSG00000116774.11	OLFML3	chr1:113979390- 114035572	9,9005E-06
ENSG00000206625.1	RNU6-1	chr15:67819703- 67873866	4,72998E-05
ENSG00000180720.7	CHRM4	chr11:46385097- 46386608	5,91255E-05

GENE_ID	GENE	LOCUS	p-VALUE
ENSG00000141753.6	IGFBP4	chr17:40443460- 40457731	0
ENSG00000152137.6	HSPB8	chr12:119178641- 119221131	0
ENSG00000162891.10	IL20	chr1:206865353- 206869223	0
ENSG00000189343.7	RPS2P46	chr17:19417803- 19492991	0
ENSG00000214391.3	TUBAP2	chr11:90251231- 90915052	0
ENSG00000232024.2	LSM12P1	chr8:35235456- 35796550	0
ENSG00000241175.3	RN7SL494P	chr15:50241946- 50266026	0
ENSG00000242071.3	RPL7AP6	chr14:69854130- 70032366	0
ENSG00000163485.15	ADORA1	chr1:203090653- 203167405	6,88E-15
ENSG00000213694.3	S1PR3	chr9:88990862- 89005010	1,89E-14
ENSG00000150594.6	ADRA2A	chr10:111077162- 111080907	2,2E-14
ENSG00000109321.10	AREG	chr4:74445133- 74455009	6,95E-14
ENSG00000107562.16	CXCL12	chr10:44370164- 44386493	1,17E-13
ENSG0000205363.5	C15orf59	chr15:73735430- 73770613	3,54E-13
ENSG00000142619.4	PADI3	chr1:17249097- 17284233	8,38E-13
ENSG00000139211.6	AMIGO2	chr12:47075706- 47236662	2,28E-12
ENSG00000180530.9	NRIP1	chr21:14818842- 15065000	2,7E-12
ENSG00000197977.3	ELOVL2	chr6:10980758- 11078226	5,75E-12
ENSG00000153165.18	RGPD3	chr2:106382170- 106468376	6,94E-12

Table J 2. Genes showing significant changes in transcriptomic analysis of MCF7 cells after 6h E2 treatment compared to ethanol group.

CENE ID	CENE	LOCUS	» VALUE
GENE_ID	GENE	LUCUS	p-value
	G1 600 f	chr1:162069773-	1.055.11
ENSG00000239887.4	Clorf226	162386818	1,05E-11
		chrY:10197255-	
ENSG00000225840.2	AC010970.2	10199103	1,6E-11
		chr9:75088542-	
ENSG00000134996.11	OSTF1	75147265	2,1E-11
		chr8:37695750-	
ENSG00000183779.6	ZNF703	37700021	4,46E-11
		chr3·149369021-	
ENSG00000169908.10	TM4SF1	149386583	1,67E-10
		obr0:33104081	,
ENSG0000086062 12	B4GALT1	33179983	1 69E-10
	DIGILLII	-1-17-19(25005	1,072 10
ENSC00000174077 8	AC026271 5	cnr1/:18035005-	2 30E 10
EN300000174977.8	AC020271.3	18082202	2,39E-10
		chr3:156671861-	2.055 10
ENSG00000163659.12	TIPARP	156706770	3,85E-10
		chr22:32512551-	
ENSG00000100234.11	TIMP3	33058372	5,8E-10
		chr6:125578557-	
ENSG00000135547.8	HEY2	125761269	5,92E-10
		chr8:11676958-	
ENSG00000136574.17	GATA4	11760002	8,8E-10
		chr1:1070965-	
ENSG00000237330.2	RNF223	1074307	1,24E-09
		chr11.76782250-	
ENSG00000182704.7	TSKU	76798154	1.67E-09
		chr8:66562174	
ENSG00000185697 16	MYBL1	66614247	1 96E-09
		-12-49270019	1,502.05
ENSG00000277483-1	RN7SI 321P	Chr3:485/2218- 48401259	2 81E-09
LINS00000277405.1	KIN75L5211	40401237	2,011-07
ENSC00000164626 8	VCNV5	chr6:39188972-	9.9E 00
ENSG0000104020.8	KUNKS	39229430	8,8E-09
		chr9:75060572-	
ENSG00000106733.20	NMRK1	75088217	9,5E-09
		chr1:24556110-	
ENSG00000184454.6	NCMAP	24609328	3,14E-08
		chr13:26044596-	
ENSG00000180730.4	SHISA2	26051031	3,31E-08
		chr17:17494436-	
ENSG00000108551.4	RASD1	17496395	6,28E-08

GENE_ID	GENE	LOCUS	p-VALUE
ENSG00000224040.1	HMGN1P4	chr1:182899864- 182953525	8,54E-08
ENSG00000135549.14	PKIB	chr6:122471916- 122726373	8,77E-08
ENSG00000154553.13	PDLIM3	chr4:185500659- 185535612	8,81E-08
ENSG00000119669.4	IRF2BPL	chr14:77024542- 77031572	1,04E-07
ENSG0000099812.8	MISP	chr19:751125- 764318	1,54E-07
ENSG00000137441.7	FGFBP2	chr4:15960242- 16084378	1,57E-07
ENSG00000146242.8	TPBG	chr6:82363205- 82370828	1,7E-07
ENSG00000138764.13	CCNG2	chr4:77157150- 77494286	1,94E-07
ENSG00000176532.3	PRR15	chr7:29563810- 29567295	2,08E-07
ENSG00000181788.3	SIAH2	chr3:150741126- 150763477	2,32E-07
ENSG00000134830.5	C5AR2	chr19:47332146- 47347327	2,33E-07
ENSG0000069188.16	SDK2	chr17:73334383- 73644089	2,34E-07
ENSG00000164761.8	TNFRSF11B	chr8:118923556- 118952200	2,61E-07
ENSG00000177519.3	RPRM	chr2:153420676- 153593288	2,9E-07
ENSG00000221866.9	PLXNA4	chr7:132123331- 132648688	2,94E-07
ENSG00000168306.12	ACOX2	chr3:58505135- 58537319	3,59E-07
ENSG00000165732.12	DDX21	chr10:68956127- 68985073	4,48E-07
ENSG00000117479.12	SLC19A2	chr1:169463908- 169486003	4,75E-07
ENSG0000244211.3	PDZK1P1	chr1:147993861- 148014956	5,01E-07
ENSG00000125968.8	ID1	chr20:31605282- 31606515	5,03E-07

GENE_ID	GENE	LOCUS	p-VALUE
ENSG0000003137.8	CYP26B1	chr2:72129237- 72148038	5,19E-07
ENSG00000237350.1	CDC42P6	chr4:22692913- 22819575	7,98E-07
ENSG00000138829.10	FBN2	chr5:128257908- 129033642	8,15E-07
ENSG00000271254.6	AC240274.1	KI270711.1:4611- 29626	1,05E-06
ENSG00000135625.7	EGR4	chr2:73290928- 73293705	1,48E-06
ENSG00000161031.12	PGLYRP2	chr19:15468644- 15498956	2,01E-06
ENSG00000141384.11	TAF4B	chr18:26225935- 26391685	3,91E-06
ENSG00000111907.20	TPD52L1	chr6:125119048- 125302078	3,99E-06
ENSG00000175906.4	ARL4D	chr17:43398958- 43401137	5,51E-06
ENSG00000106789.12	CORO2A	chr9:98120974- 98192640	5,62E-06
ENSG00000189143.9	CLDN4	chr7:73799541- 73832693	6,72E-06
ENSG00000175264.7	CHST1	chr11:45648876- 45665622	6,76E-06
ENSG0000226887.7	ERVMER34-1	chr4:52722617- 52751640	7,43E-06
ENSG00000109062.9	SLC9A3R1	chr17:74670577- 74769353	7,59E-06
ENSG00000160183.13	TMPRSS3	chr21:42371889- 42396846	7,75E-06
ENSG00000170629.14	DPY19L2P2	chr7:103175132- 103280410	9,59E-06
ENSG00000164128.6	NPY1R	chr4:163323960- 163351934	9,89E-06
ENSG00000144655.14	CSRNP1	chr3:39141854- 39154562	0,0000105
ENSG00000160182.2	TFF1	chr21:42362281- 42366594	0,0000111
ENSG00000140465.13	CYP1A1	chr15:74719541- 74725610	0.0000157

Table J 2. (continued)

GENE_ID	GENE	LOCUS	p-VALUE
		chr22:39743043-	
ENSG00000226085.3	UQCRFS1P1	39893864	0,0000162
		chr13:76880165-	
ENSG00000178695.5	KCTD12	76886400	0,0000163
		chr11.101029623-	
ENSG0000082175.14	PGR	101209591	0.0000175
		chr8.8317735	
FNSG000002753424	SGK223	8386498	0.0000203
	5611225	1 11 17251725	0,0000205
ENIC COOOO 199211 9	NCD2LC1	chr11:17351725-	0.0000207
ENSG0000188211.8	NCK3LGI	1/5//541	0,000207
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	chrX:37349274-	
ENSG00000147041.11	SYTL5	38688920	0,0000225
		chr6:32552712-	
ENSG00000196126.10	HLA-DRB1	32589848	0,0000291
		chr3:46163603-	
ENSG00000163823.3	CCR1	46266706	0,0000295
		chr16:61647241-	
ENSG0000201289.1	RN7SKP76	62037035	0,0000351
		chr1.177171406	
ENSG00000198797 6	BRINP2	177282422	0.0000419
		abr1.45226004	
ENSC00000186603 5	НЪЛІ	/5328533	0.0000426
	III DL	+5526555	0,0000420
ENIC COOOO0117219 9	1D2	chr1:2355/91/-	0.0000420
ENS00000117518.8	IDS	25559794	0,000429
		chr8:81279870-	0.0000.000
ENSG00000164687.10	FABP5	81284777	0,0000444
		chr3:53846579-	
ENSG0000056736.9	IL17RB	53865800	0,0000468
		chr22:43110747-	
ENSG00000100290.2	BIK	43129712	0,0000475
		chr2:172099438-	
ENSG00000115844.10	DLX2	172102900	0,0000487
		chr10·43077026-	
ENSG00000165731.17	RET	43130351	0.0000587
		obr16.21121422	-,
ENSG0000052344 15	PRSS8	31135762	0.0000656
2115000000022577.15	11000	1	0,0000000
ENSC0000119522 5	CTCE	cnro:1319481/5-	0.0000667
EINSGUUUUU118323.3		1320//393	0,000067
	<b></b>	chr9:129738330-	
ENSG00000148344.10	PTGES	129753047	0,0000671

	1		
GENE_ID	GENE	LOCUS	p-VALUE
ENSG00000196136.16	SERPINA3	chr14:94561090- 94624646	0,0000686
ENSG00000121966.6	CXCR4	chr2:136114348- 136118165	0,0000936
ENSG00000146278.10	PNRC1	chr6:89080750- 89085160	0,0000988
ENSG00000148488.15	ST8SIA6	chr10:17318382- 17454330	0,0001043
ENSG00000174453.9	VWC2L	chr2:213284378- 214684246	0,0001096
ENSG00000235123.5	DSCAM-AS1	chr21:40010998- 40847139	0,0001099
ENSG00000120149.8	MSX2	chr5:174724532- 174730893	0,00011
ENSG00000149328.14	GLB1L2	chr11:134331873- 134378341	0,0001107
ENSG00000116774.11	OLFML3	chr1:113979390- 114035572	0,0001107
ENSG00000247626.4	MARS2	chr2:197693105- 197786762	0,0001155
ENSG00000174827.13	PDZK1	chr1:145670851- 145708148	0,0001187
ENSG00000129159.6	KCNC1	chr11:17734811- 17783055	0,0001416
ENSG00000124496.12	TRERF1	chr6:42224930- 42452051	0,0001423
ENSG00000157514.16	TSC22D3	chrX:107713220- 107777342	0,0001521
ENSG00000186212.3	SOWAHB	chr4:76894927- 76898147	0,0001547
ENSG00000124216.3	SNAI1	chr20:49982998- 49988886	0,0001564
ENSG00000151835.13	SACS	chr13:23328822- 23433728	0,0001674
ENSG00000176907.4	C8orf4	chr8:40153454- 40155308	0,0001848
ENSG00000143473.11	KCNH1	chr1:210678314- 211134115	0,0001934
ENSG00000186665.8	C17orf58	chr17:67991100- 67993649	0,000195

GENE_ID	GENE	LOCUS	p-VALUE
ENSG00000149218.4	ENDOD1	chr11:95089809- 95132645	0,0002148
ENSG00000124664.10	SPDEF	chr6:34537801- 34556333	0,0002179
ENSG00000118513.18	МҮВ	chr6:135181314- 135219173	0,0002244
ENSG00000225431.1	AP001626.1	chr21:42599279- 42615058	0,0002248
ENSG00000185090.14	MANEAL	chr1:37793801- 37801137	0,0002255
ENSG00000197308.8	GATA3-AS1	chr10:8050449- 8053484	0,0002255
ENSG00000214389.2	RPS3AP26	chr7:98252378- 98401068	0,0002307
ENSG0000054598.6	FOXC1	chr6:1609971- 1613897	0,0002476
ENSG00000159335.15	PTMS	chr12:6747995- 6770952	0,0002548
ENSG00000111845.4	PAK1IP1	chr6:10671417- 10709782	0,0002584
ENSG00000168209.4	DDIT4	chr10:72273919- 72276036	0,0002718
ENSG00000204386.10	NEU1	chr6:31857658- 31862906	0,000284
ENSG00000198488.10	B3GNT6	chr11:77034397- 77041973	0,000293
ENSG00000134533.6	RERG	chr12:15107782- 15597399	0,0003211
ENSG00000267056.2	AC005336.4	chr19:15910581- 15911824	0,000341
ENSG00000179542.15	SLITRK4	chrX:143622789- 143635777	0,0003417
ENSG00000104998.3	IL27RA	chr19:14031747- 14053216	0,0003595
ENSG00000164120.13	HPGD	chr4:174490176- 174523154	0,0003914
ENSG00000155090.14	KLF10	chr8:102648778- 102655902	0,0004034
ENSG00000239398.3	RN7SL342P	chr18:59972913- 59973207	0,0004068

GENE_ID	GENE	LOCUS	p-VALUE
		chr1:37454878-	
ENSG00000233621.1	LINC01137	37474411	0,0004153