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ABSTRACT 

 

PERFORMANCE EVALUATION OF SALIENCY MAP METHODS ON 

REMOTELY SENSED RGB IMAGES 

 

 

Sönmez, Selen 

M.S., Department of Geodetic and Geographic Information Technologies 

Supervisor : Prof. Dr. Uğur Halıcı 

May 2016, 88 pages 

 

Predictive applications of human eye visualization so called saliency map 

computational models become more attractive in image processing studies. Saliency 

map highlights regions that are distinctive from their surrounding in the images in 

interest. In this study, various computational models for salient region detection are 

investigated on remotely sensed images. The computational methods considered are 

Itti-Koch, Graph-Based Visual Saliency, Saliency Detection by Combining Simple 

Priors, Frequency-tuned Salient Region Detection, Image Signature and Region 

Covariance based Saliency. For evaluation of the computational methods, a dataset 

containing 226 remotely sensed RGB images has been prepared. The dataset forestry 

and water surface images captured in three different levels. The saliency maps 

produced by the computational methods on the dataset are compared with the 

saliency maps extracted from data collected in experiment conducted on human 

subjects. In these experiments 20 subjects are participated and the data is collected 

by using Tobii T120 Eye Tracker device while the images in the dataset are 

presented to subjects on computer screen. 

 

In the performance evaluation, the saliency maps obtained from human subjects are 

used as ground truth. The performances of the computational methods are 
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determined by computing similarity of their results to ground truth. As similarity 

measure, Cosine correlation, Pearson correlation and Structural Similarity index are 

used. Our experimental evaluation demonstrated that Region Covariance based 

Saliency and Graph-Based Visual Saliency are the best saliency methods among 

those that we considered for saliency map generation of remotely sensed RGB 

images. 

 

Keywords: Saliency Map, Eye Tracker, Image Processing, Correlation, Similarity 

Measurements 
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ÖZ 

 

UZAKTAN ALGILANMIŞ RGB GÖRÜNTÜLERİNDE DİKKAT ÇEKERLİK 
HARİTASI METOTLARININ PERFORMANS DEĞERLENDİRMESİ 

 

 

Sönmez, Selen 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü 

Tez Yöneticisi : Prof. Dr. Uğur Halıcı 

Mayıs 2016, 88 sayfa 

 

İnsan gözünün algılama sistemini tahmin edebilir çalışmalar, diğer bir deyimle 

dikkat çekerlik haritaları, imaj işleme alanında çok daha yaygın hale gelmiştir. 

Dikkat çekerlik haritaları, bir görüntü içerisinde yer alan farklı alanları veya objeleri 

ön plana çıkartmaktadır. Bu tezde dikkat çekerlik haritası oluşturan çeşitli 

uygulamalar uzaktan algılanmış görüntüler üzerinde incelenmiştir. Bu uygulamalar; 

Itti-Koch, Graph-Based Visual Saliency, Frequency-tuned Saliency Region 

Detection,   ImageSignature, Saliency Detection by Combining Simple Priors ve 

Covariace based Saliency modelleridir. Dikkat çekerlik haritası uygulamalarının 

performans değerlendirmeleri için uzaktan algılama sistemleriyle elde edilen 226 

tane RGB görüntüsü içeren veri seti hazırlanmıştır. Veri setinde yer alan imajlar 

orman ve su yüzeyi kategorilerine ayrılarak üç farklı seviyede elde edilmiştir. Veri 

seti kullanılarak, bu tezde incelenen uygulamalar ile oluşturulan dikkat çekerlik 

haritaları insan deneklerin katılımıyla gerçekleştirilen deney sonucunda oluşturulan 

dikkat çekerlik haritaları ile karşılaştırılmıştır.Deney, Tobii T120 göz izleme cihazı 

ve 20 deneğin katılımıyla tamamlanmıştır. Her deneğe veri setinde bulunan imajlar 

göz izleme cihazında yer alan ekranda gösterilmiştir. 
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Performans değerlendirme aşamasında, deneklerden elde edilen dikkat çekerlik 

haritaları referans doğrulaması için kullanılmıştır.Dikkat çekerlik haritası 

uygulamalarının performansları, elde edilen referans doğrulamaları baz alınarak, bu 

uygulamaların sonuçlarının benzerlik ölçümleri ile belirlenmiştir.Cosine 

korelasyonu, Pearson korelasyonu ve Structural Similarity indeks metotları benzerlik 

ölçümlerinde kullanılmıştır. Deney sonuçlarında Region Covariance  basedSaliency 

ve Graph-Based Visual Saliency modellerinin uzaktan algılanmış RGB görüntüleri 

ile dikkat çekerlik haritası oluşturan ve incelenen diğer modellere göre en iyi metot 

oldukları saptanmıştır. 

 

Anahtar Kelimeler: Dikkat Çekerlik Haritası, Göz İzleme Cihazı, Görüntü İşleme, 

Korelasyon, Benzerlik Ölçümü 
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    CHAPTER 1 

 

INTRODUCTION 

 

 

1.1. Saliency Map and GIS Applications 

 

Human eye is capable of recognizing the differences in an image of interest 

according to the distinctive features such as color, orientation, location and texture. 

In recent years, computational models which approach human eye behaviors have 

been developed. They identify the most significant areas of the given image for data 

extraction. Saliency map indicates how a certain location in an image is distinctive 

from its surround by using the features sensitive to differences (Koch & Ullman 

1987). Methods in saliency map computation diversify. For example, warm colors 

such as red and yellow are more pronounced to human visual system than cold colors 

such as green and blue. The color channels representing green-red and blue-yellow 

information are performed to extract salient region. Band-pass filtering is another 

method to represent human visual system (Zhang, et al., 2013). Computation of 

saliency map such a system that simulates human eye behaviors with respect to eye 

movement in area of interest which can be called as important parts of the interested 

area. Considering the certain areas that include different patterns, unique parts which 

do not repeat and colors provides higher contrast from background and repetitive 

items, salient region detection become more efficient and saliency map outputs can 

vary as in Frequency-tuned Salient Region Detection (Achanta, et al., 2009) or 

GBVS and Itti-Koch (Biskupska, 2013). 

 

Saliency map is generated based on low-level and high-level features. While low-

level saliency features include visual features as color, edge and texture, high-level 

saliency features contain also priors as location, semantic and color. Therefore, 
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detection probability of the salient regions becomes higher. Numerical results show 

that parts contain defined priors such as color, edge and location become vivid. It is 

also obvious that results of saliency map are expected to be observed with a 

deviation that is as small as possible in order to obtain accurate and precise 

information extraction. Experiments were executed and results of comparisons 

between different models with same image dataset confirm that high-level features 

provide more accurate and precise salient region detection (Shen, et al., 2012). On 

the other hand, it is a fact that human neuronal structure is implausibly fast and its 

ability to perceive is high. In case of generating saliency map, this is why 

computational models only approximate but cannot mirror the reality. In order to 

analysis performance of low-level or high-level computations, real-life experiments 

can be performed. Correlation between computational models and real-life 

measurements is a measure for determining the closeness of saliency map 

computations to human eye detection in reality. 

 

Saliency maps can be used to supply a reliable pre-warning system solution for 

geographical information system based applications aiming to detect differences in 

specified areas that are periodically controlled with remotely sensed imaginary. 

Visual saliency detection proposes to reduce search space so that the areas of interest 

in images can be processed much more rapidly (Cui, et al., 2014). Additionally, 

saliency based segmentation is a better solution for whole image interpretation. If the 

most attractive objects or areas in remotely sensed images can be highlighted closer 

to human vision, the targets in the input image will have a higher probability to be 

identified or the image can be interpreted better even though no target is identified 

(Sharma & Ghosh, 2015). Vegetation health is one of the most common studies in 

agricultural work field. Pre-warning applications constitute importance in order to 

detect vegetation anomalies which response to environmental factors and human 

interventions (Asoka & Mishra, 2015). Color and texture changes in fields or forestry 

may emerge due to concrete construction, desertification, lack of nitrogen and 

potassium in soil. Another area related to saliency detection is coast security which 
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contains marine facility. In case of illegal boat or ship accommodation in forbidden 

water zones, objects that are differed from background in remotely sensed image can 

be highlighted and tracked. Water level changes also provide desertification 

awareness according to size and distance differences between current and previous 

statuses. In order to recognize differences in such geographical images, saliency 

maps can be can be applied on set of images that are acquired in same location but 

different time. 

 

1.2 Literature Survey 

 

Saliency map generation is mainly conducted by top-down and bottom-up saliency. 

Feature maps are generated separately by decomposing input image according to 

features such as intensity, color, location and orientation of the input image. Bottom-

up saliency uses low-level feature maps without any prediction like knowledge, 

expectations and goals. However, top-down saliency uses high-level feature maps 

which emphasis priors of the features in the image with prediction. Therefore, 

performance of saliency algorithms become vary according to the feature maps that 

are used (Shen, et al., 2012). Various techniques are available in producing multi 

resolution representation of images such as Gaussian and Laplacian pyramids (Burt 

& Adelson, 1983; Olkkonen & Pesola, 1996). A sequence of low-pass filtered 

images so-called Gaussian pyramids are obtained by convolution of weighting 

function iteratively within the input image. Therefore, image samples are reduced 

with a decreasing density in each iteration (Burt & Adelson, 1983). 

 

In remote sensing, saliency methods have been employed some target recognition 

studies. For example; saliency features are used in Hu & Tao, 2007 for automatic 

road extraction, saliency map is used in order to extract candidate regions for ship 

detection from optical satellite images. Multiple saliency map models are also 

computed together for ship detection in Li, et al., 2015. Salient region detection also 

provides robust and effective computational result for precise airplane detection (Li, 



 

4 
 

 

et al., 2011). Another area that uses saliency map is automatic cloud detection in 

satellite images (Hu, et al., 2015; Qi, et al., 2015). 

 

A huge volume of high-resolution images can be acquired by satellite sensors, 

however; processing them can lead time consumption. In Zhang, et al., 2015, 

saliency detection is used in order to extract data patches for robust and more 

efficient feature learning in high-resolution satellite imaginary. Besides satellite 

imaginary, aerial photography images are also inputs for saliency detection algorithm 

for detection of outstanding objects (Rigas, et al., 2013). , Salient region detection is 

also used for small target detection in infrared images (Qi, et al., 2013). 

 

In literature, a diversity of saliency map computations based on low-level or high-

level features and combination of them has been proposed. Frequency-tuned Saliency 

Detection model proposed in Achanta, et al., 2009, is a frequency based method with 

low-level features providing well-defined boundaries of salient objects and regions. 

While Itti-Koch and GBVS models separate low-level features as maps, process 

them and combine to generate saliency map (Cui, et al., 2014), Salient Detection by 

Combining Simple Priors uses high-level feature maps as priors (Zhang, et al., 2013). 

Additional to complete bottom-up saliency process, GBVS uses graph based 

computations as normalizing the feature maps. Normalized feature maps express the 

salient region much more glaring way (Harel, et al., 2006).Considering their 

diversity, all these methods are examined and compared in this thesis study. 

Depending on bottom-up and top-down visual saliency models or combination of 

them, another model was included to our study. Region Covariance based Saliency 

computational model proposed in Erdem & Erdem, 2013, uses nonlinear integration 

of different features by using covariances to produce saliency map. It is indicated in 

Erdem & Erdem, 2013thatCovSal model is suitable for natural images. Image 

Signature is another computational saliency detection model proposed in Hou, et al., 

2012. It is based on figure-ground separation in human visual system which has 

ability to detect separated features in images rapidly. Because of the fact that 
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remotely sensed images are used in experimental studies of this thesis containing 

distinctive features, this model was included. 

 

At first sight, unique features are observable variables by human eye. Therefore, 

decomposing the image in distinctive feature maps such pattern and color is a 

method to extract non-unique information or the regions close to background. Salient 

regions become highlighted by combination of these feature maps (Zhao, et al., 

 2015). Figure-ground is another factor to obtain distinctness for saliency region 

detection. As it is indicated in Koch & Ullman 1987, human visualization system 

perceives the rapid differences better and faster than smooth changes in images 

(Treisman & Gelade, 1980). Therefore, more separated figure-ground provides 

higher discreteness observation between the background and the objects or regions 

such as edges, corners, contrast color changes in image (Romantan, et al., 

2002).Since the improvements in saliency computational models become fact, 

performance comparisons between them are also occurred in order to find such a 

model that approximates the reality best (Zhao, et al., 2015; Biskupska, 2013). 

 

Heat map refers to color representation conducted by quantitative data. Colors in a 

heat map shows the distribution of the quantitative data that is stated in the image 

(Few, 2010; Krakov & Feitelson 2013). Eye tracker based saliency maps were 

exported according to distribution of eye movements collected on each input image 

in the given dataset in gray scale. To evaluate the similarity degree of computational 

and eye tracker based saliency maps, correlation between them can be performed. 

However, it is also needed that elimination of outliers which can be caused by 

reasons such as lighting and exposure should be computed so that each pixel value of 

the image is identified in the same range (Rao, et al., 2014). 

 

Since different approaches such as frequency-based model or covariance-based 

model are used in salient region detection, saliency map computational models are 
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compared with reality in consideration of performance to find such a model that 

approximates the reality best (Zhao, et al., 2015; Biskupska, 2013). 

 

In many saliency map studies, quantitative comparisons were obtained by using 

different similarity metrics. For value-based metrics normalized scan path saliency 

metric is performed to quantify the saliency map values at the eye fixation locations. 

Another metric type is distribution-based metrics includes Pearson correlation to find 

similarity between two distributions. Area Under Curve (AUC) is a metric includes 

location-based category.AUC selects saliency map values from random points to 

form the negative set. A binary mask is then created to separate the positive samples 

from the negatives (Riche, et al., 2013) , (Radha, et al., 2014; Le Meur, et al., 2013; 

Borji, et al., 2013). Cosine similarity method is also used for comparison of 

similarity measurements of images (Zuva & Zuva, 2012; Liu, et al., 2008). It is 

indicated in Wang, et al., 2004 that natural images signals are highly structured. 

Structural Similarity (SSIM) index provides a more direct way to compare images 

containing distortions caused by acquisition and processing. 

 

1.3 Overview of the Thesis 

 

Remote sensing applications are beneficial in many fields such as military, 

agriculture, health sector, geodesy and advertisement. The working fields like these 

require measurements or observations in order to obtain data. This can lead time 

consumption and cost. In order to decrease or eliminate field work as much as 

possible, image processing methods have been developed. Saliency maps are used as 

pre-warning applications to predict land degradation, deforestation and vegetation 

anomalies as well as to identify targets such as ship, cloud, airplane in remotely 

sensed images. 
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The performance of computational saliency methods are mostly evaluated on images 

containing distinctive features such as edges, different orientation, textured 

backgrounds and the objects differ from image background. 

 

As the saliency methods are used in many recent studies in analysis of remotely 

sensed images, it also became necessary to compare the performances of these 

methods on remotely sensed images. According to figure-background structure and 

location of objects or areas in images, different saliency map methods can provide a 

higher detection performance on salient regions of the image. This is the motivation 

behind this thesis study. 

 

The aim of this thesis is to assess the performance of computational saliency models 

on remotely sensed images by comparing their results with the results obtained from 

human subjects by conducting eye-tracking experiments. 

 

In this thesis, Itti-Koch, GBVS, Achanta, ImageSignature, SDSP and CovSal 

methods are selected in order to generate saliency maps on remotely sensed images. 

Itti-Koch and GBVS methods use intensity, color and orientation based features 

which are related to structure of remotely sensed images. Achanta method produces 

saliency map with highlighted details and low computational cost. ImageSignature 

method collects data in important parts of the images. By the motivation of human 

brain visual system, SDSP method generates three different saliency maps and 

combines them for the final saliency map. In CovSal method non-overlapping 

regions are extracted and dissimilarity between these regions is measured in order to 

produce final saliency map. 

 

A dataset, containing remotely sensed images was prepared for comparison of the 

performances of the selected saliency methods. The images are captured from 

Google Map Maker service using GMapCatcher toolbox. Forestry and Water Surface 
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are the categories that we considered and each of them includes three zoom levels as 

-2, -1 and 0. Since higher zoom levels more than 0 contains additional details which 

are noninformative for saliency. Forestry category contains 126 images as 42 images 

in each zoom level while Water surface category contains 120 images as 40 images 

in each zoom level. 

 

According to high accuracy and precision in recognition of salient regions remotely 

sensed images were exported from the locations on earth surface providing high 

figure-background. Forestry and Water Surface categories are selected since the 

variation at the background is low and salient objects can be detected more precisely 

by human subjects without using semantic information (Zhao, et al., 2015). 

Therefore, visual separation is obtained with high-contrast between geographical 

objects and background of the image in interested location. Forestry and Water 

Surface categories are selected since the variation at the background is low and 

salient objects can be detected more precisely by human subjects without using 

semantic information. 

 

The saliency maps produced by the computational methods on the dataset are 

compared with the saliency maps extracted from data collected in experiment 

conducted on human subjects. In these experiments 20 subjects participated and the 

data is collected by using Tobii T120 Eye Tracker device while the images in the 

dataset are presented to subjects on computer screen. 

 

In the performance evaluation, the saliency maps obtained from human subjects are 

used as ground truth. The performances of the computational methods are 

determined by computing similarity of their results to ground truth. As similarity 

measure, Pearson correlation, Cosine correlation and SSIM index methods are used 

for comparisons. Besides Cosine correlation and Pearson correlation methods require 

low computational cost, they are also mostly used methods for saliency map 

comparisons. Remotely sensed images contain distortions and irregular features. 
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SSIM index is a suitable method to compare remotely sensed imagery based saliency 

maps. Saliency maps produced by the investigated computational models were 

compared with saliency maps extracted from Tobii T120 Eye Tracker device by each 

selected similarity measure. Resulting coefficient values were interpreted by mean, 

standard deviation and coefficient of variation calculations. 

 

Additionally, accuracy measurements were performed to compare computational 

applications with human based experiment with the dataset containing 226 remotely  

sensed RGB images and appropriate experimental design.  
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1.4 Outline of the Thesis 

 

The structure of the thesis is explained below. 

 

Chapter 2 explains Itti-Koch, GBVS, Achanta, ImageSignature, SDSP and CovSal 

methods. This chapter contains detailed information of these methods and results are 

shown. 

 

Chapter 3 includes experimental part of the thesis. Experimental design, data 

collection, outcomes and image processing methods are included in this chapter. 

 

Chapter 4 comprises the result of experiment with the comparison of saliency map 

implementations in terms of performance measurements by mean, standard deviation 

and coefficient of variation calculations.  

 

Chapter 5 concludes this study with an interpretation of the findings of the study and 

theoretical support for those findings.  
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CHAPTER 2 

 

SALIENCY MAP COMPUTATIONS 

 

 

Computational visual attention models become more important to understand human 

vision system by the inspiration of psychological and neurobiological studies. These 

models are also significant solutions in order to recognize objects, patterns, colors, 

localizations that are different from background information. Therefore, salient 

region recognition becomes more interested in computational study fields. 

 

According to needs and requirements many saliency models have been developed. 

The main goal of the saliency computational models is to extract feature maps by 

several features and then combine them into a single map to generate a map which is 

mostly called as saliency map. The extracted features are indicated according to the 

basics of human visual system as orientation, color, intensity (Carrasco, 2011). Main 

steps of computational models of salient region detection are feature extraction, 

generating saliency map by combining feature maps and determining the focus of the 

attention in saliency map. Moreover, saliency map models based on predictions of 

human visual system are also defined so that results have better approximate 

solutions which are able to estimate human visualization patterns. 

 

2.1 Itti-Koch Saliency Map Model 

 

The Itti-Koch model is a biologically-inspired model based on human visual search 

strategies.It uses feature integration theory explains human visual search strategies 

(Treisman & Gelade, 1980). The general architecture of Itti-Koch Model is given in 

Figure 2.1. 
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Figure 2.1:General architecture of Itti-Koch model 

 

First step in this model is to decompose the input image into feature maps which are 

generated based on color, intensity and orientation with different scales. According 

to neurobiological studies, it is purposed that these are the basic features perceived 

by human visualization system (Wolfe, 1994; Treisman & Gormican, 1988). For 

each feature map, Gaussian pyramids are obtained by applying Gaussian filters 

iteratively in different scales (between zero and eight scale in eight octaves) and the 

subsamples of the feature maps are generated (Itti, et al., 1998; Itti& Koch, 2001). 

 

According to neurobiological studies, only locations that differ from their surround 

achieve attention persistently in comparison with neighboring locations.This 

mechanism is also called as center and surrounds (Cavanaugh, et al., 2002). Each 

feature map is computed by a center-surround operation to determine contrast.  

 

In order to eliminate amplitude differences in feature maps and to emphasize a small 

number of regions with strong peaks, normalization is applied so that values of the 
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maps are fixed to a range. In normalization process, maximum activity is compared 

with overall image. This step measures the difference of the most active locationfrom 

the average. As the second step of this model, saliency map is computed by 

combining of all feature maps (Itti, et al., 1998). 

 

2.1.1 Feature Maps 

 

Center-surround implementation is the difference between fine (center) scale and 

coarse (surround) scale for a given feature.The center is the pixel in scales � ∈
{2,3,4} and the surround is the correspondingpixel at scale� = � + � , � ∈ {3,4}. The 

across-scale difference, denoted as “⊖” below, is obtained by the interpolation to the 

finer scale and point-by-point subtraction between two feature maps. Itti-Koch model 

generates nine different spatial scales of feature maps which are Gaussian pyramids 

in scales� � [0 … 8] denoted as � (�). 

 

In order to construct Gaussian pyramids, firstly an intensity image (�) is created by 

averaging the R,G,B color channels of the input image as given in Equation 2.1. 

 

I =  (r +  g +  b)/3                              (2.1) 

 

Mammals' visual system is much more sensitive to the changes in contrast between 

dark and bright. For example dark center is surrounded by bright or bright center is 

surrounded by dark. This is the reason for the creation of intensity feature maps.  

 

Additionally, four color channels Red, Green, Blue, Yellow (Equation 2.2) and their 

corresponding Gaussian pyramids R(σ), G(σ), B(σ) and Y(σ) are constructed. 

 

R(σ) =  r −  (g +  b)/2 (red)   
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G(σ)  =  g −  (r +  b)/2  (green) 

 

B(σ)  =  b −  (r +  g)/2  (blue) 

 

Y(σ) =  (r +  g)/2 −  |r −  g|/2 −  b (yellow)                          (2.2) 

 

The intensity feature map is constructed by using Equation 2.3for center scales as � ∈  {2,3,4} and surround scales� = � + � , � ∈ {3,4} , where ⊖ is the operator 

calculating center-surround differences. 

 

I(c, s)  =  |I(c)  ⊖  I(s)|                  (2.3) 

 

Second set of feature maps are concerned withcolor sensitivity, which, in mammals, 

neurons in cortex are excited by one color and inhibited another. This is so-called 

double-color opponent system. For example, if red color is excited then green is 

inhibited and on the contrary if green is excited then red is inhibited. Such spatial and 

chromatic opponency exists for the red/green, green/red, blue/yellow, and 

yellow/blue color pairs in human primary visual cortex (Itti, et al., 1998). Therefore 

color based feature maps are created as in Equation 2.4 and Equation 2.5. 

 

RG(c, s)  =  |(R(c)  −  G(c))  ⊖  (G(s)  −  R(s))|                                    (2.4) 

 

BY(c, s)  =  |(B(c)  −  Y(c))  ⊖  (Y(s)  −  B(s))|                          (2.5) 

 

The third set of feature maps are related to orientation. Since Gabor filters are the 

approximately model the receptive field sensitivity of mammals to orientation, Gabor 

pyramids, �(� , � ) in scale of � ∈ [0 … 8] and the orientation of 
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� ∈  {0,45 ,90 ,135} are used in order to obtain local orientation information (Itti, et 

al., 1998). As it is shown in Equation 2.6, orientation based feature maps are created. 

 

O(c, s, θ)  =  |O(c, θ)  ⊝  O(s, θ)|                            (2.6) 

 

As a result of these steps, 6 feature maps for intensity, 12 for color and 24 for 

orientation, totally 42 feature mapsare generated. 

 

2.1.2 Combination of Feature Maps 

 

The combination of feature maps constitutes the saliency map. Before the summation 

of feature maps, they are performed with a normalization operator to compare 

responses associated with meaningfulactivation spots in the map and to ignore 

homogenous areas. Difference between global maximum activity and average 

activation defines the promotion level of the location. Higher difference indicates the 

corresponding location stands out and the map is strongly promoted.  

 

Three “conspicuity maps” are created with the scale � = 4. They are obtained by 

across-scale addition, denoted by "⊕", as shown in Equations 2.7, 2.8 and 2.9, 

where � is the normalization operator consist of the following; 

 

1. Normalizing the values in the map to a fixed range [0. .�], in order to 

eliminate modality-dependent amplitude differences; 

2. finding global maximum � of each map and computing the average ��of all 

its other local maxima; and 

3. globally multiplying the map by ( � −��)2. 
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� =  
4⊕� = 2

� = 4⊕� = � + 3

   � (�(�, �))                            (2.7) 

 

� =  
4⊕� = 2

� + 4⊕� = � + 3

�� ���(�, �)� +  � ���(�, �)��                         (2.8) 

 

� =  ∑ �� 4⊕� = 2

� + 4⊕� = � + 3

 ���(�, �,�)���∈�0°,45°,90°,135°�              (2.9) 

 

Motivation of separated conspicuity maps is that similar features represent stronger 

saliency while discrete or unrelated features contribute independently to the saliency 

map. After normalization stepof conspicuity maps, Saliency Map is generated by the 

summation of them into single map as given in Equation 2.10. 

 � =  
1

3
� ���� +  ����  + �����                                    (2.10) 

 

2.1.3 Winner-Take-All Computation (WTA) 

 

Even if the computed Saliency Map already highlights the most attended region in 

input image, Itti-Koch model finds locations of salient regions by a winner-take-

all(WTA) network. Motivation of WTA is biological and related to visualization 

mechanism in human brain. Neurons compete with each other for activation. While a 

neuron is with highest activation, another neuron’s activation reduces but does not 

vanish. Therefore, as it is introduced in Lee, et al., 1999, WTA is applied to saliency 

map of the input image in order to find the location of focus of attention.  
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2.1.4 MATLAB Code for Itti-Koch Saliency Map Model 

 

The MATLAB code for Itti-Koch model is implemented by Caltech and available at 

http://www.vision.caltech.edu/~harel/share/GBVS.php.This implementation 

regarding the Itti-Koch saliency map model outputs saliency map and heat map as a 

layer on the input image. The sample output is given in Figure 2.2. In order to speed 

up computation, Saliency Map Toolbox creates totally 14 feature maps, 2 of them 

being for intensity, 4 for color and 8 for orientation while standard Itti-Koch model 

execution. Additionally, final blur is applied to master saliency map to improve eye 

movement predictions. 

 

 
     (a)                (b)        (c) 

Figure 2.2: (a) Original remotely sensed image(b) Itti-Koch saliency map (c) Itti-
Koch saliency map output as a heat map layer on the original remotely sensed image 

 

2.2 Graph-Based Visual Saliency (GBVS) 

 

GBVS presents a method based on topological structure to find saliency map. The 

process is divided into three stages; extraction of features to feature vectors, forming 

activation maps from feature vectors and normalization and combination of 

activation maps into a single saliency map. Markov chain approach is interpreted in 

both forming activation maps and normalization of them (Biskupska, 2013). 

 

For a given feature map, each pixel is considered as a node. By connecting every 

node in the given feature map, fully-connected directed graph is created. The 
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directed edges between the nodes are assigned to a weight. Dissimilarity is 

proportional with the weight of the edge between the nodes. The weights are then 

normalized to 1. The result is the activation map.  

 

In normalization phase, the activation map is performed with Markov chain 

algorithm. Directed edges between the nodes in activation map are assigned to 

weights. Again, the weights are normalized to 1. The goal of normalizing the 

activation map is concentrating mass on activation maps. Normalized activation 

maps are combined into saliency map (Harel, et al., 2006). 

 

2.2.1 Activation Maps 

 

Dissimilarity measurement between pixel �(�, �) and pixel �(�, �) as defined in 

Equation 2.11. 

 ��(�, �) ∥ (�, �)�  ≜  �log
� (� ,� )� (� ,�)

�               (2.11) 

 

where  ≜ refers to difference equality (delta equal to) between the pixels denoted as �(�, �) and �(�, �) while (�, �) and (�, �) are the locations of the pixels in the given 

feature map � respectively. 

 

A fully-connected graph ��  is obtained by connecting every pixel of the given 

feature map �which is same in Itti-Koch model. In �� , the directed edge from 

pixel �(�, �)to pixel �(�, �)is assigned to a weight defined in Equation 2.12 below. 

 � �(�, �), (�, �)�  ≜   ��(�, �) ∥ (�, �)� .�(� − �, � − �)             (2.12) 
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where � (�, �)  ≜ exp(−  
�2+�2

2�2
 ) and � is a free parameter used in GBVS algorithm. 

 

By normalizing the weights to 1 with and used in Markov Chain.Equilibrium 

distribution of Markov chain forms the activation map �. The resulting activation 

map � shows that the mass flows to the nodeshave high dissimilarity with their 

surrounding nodes. 

 

2.2.2 Normalization of Activation Map 

 

After activation map A is generated,anotherfully-connected graph, �� is constructed 

for normalization of activation map. The weights of the directed edges between 

pixel �(�, �)and pixel �(�, �)in ��are calculated by the Equation 2.13. 

 � �(�, �), (�, �)�  ≜   �(�, �) .�(� − �, � − �)                        (2.13) 

 

where �(�, �) is the pixel value at position (�, �) in activation map � 

 

Again, weights are normalized to 1 and resulting graph is a Markov Chain that 

allows computing equilibrium distribution as a basis to create output saliency map 

(Harel, et al., 2006; Biskupska, 2013). 

 

2.2.3 GBVS Saliency Map 

 

The processes explained in section 2.2.1 are applied to each given feature map. After 

activation maps are generated, they are performed with the processes given in section 

2.2.2 seperately. Each normalized activation map is combined into saliency map. 
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The GBVS saliency map contains values between zero and one. The value closer to 

one, indicates more importance in GBVS saliency map while the closer pixel value 

to zero is less important. 

 

2.2.4 MATLAB Code for GBVS 

 

GBVS model implementation for MATLAB is also available 

atwww.vision.caltech.edu/~harel/share/GBVS.php.Sample input image, output 

GBVS saliency map and layered GBVS saliency map on input image as heat map 

can be seen in Figure 2.3below. GBVS saliency map is in gray scale includes pixel 

values between zero and one. Gaussian blur kernel applied to final saliency map so 

that accuracy of GBVS saliency algorithm is improved. Related process is given with 

details in Greco & La Cascia, 2013. 

 

 
(a)    (b)    (c) 

Figure 2.3: (a) Sample remotely sensed input image (b) GBVS saliency map (c) 
GBVS saliency map as a heat map layer on the original remotely sensed image 

 

2.3 Frequency-tuned Salient Region Detection (Achanta) 

 

In Achanta model, a method is used to find salient regions with high resolution, well-

defined edges and efficient computation. This algorithm estimates center-surround 

contrast by using color and luminance featuresbased on a frequency-tuned approach. 

Spatial frequencies are investigated by using an approach motivated by different 

saliency detection models and Difference of Gaussian (DoG) on color and luminance 
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features to generate saliency map. Table 2.1 indicates the requirements for a saliency 

detector. 

 

Table 2.1: Requirements for saliency map generation in Achanta 

 

Target Requirement 

Emphasize the largest salient 

objects. 

Depending on very low frequencies from input 

image 

Uniformly highlight whole 

salient regions 

Depending on very low frequencies from input 

image 

Establish well-defined 

boundaries of salient objects 

Retaining high-frequencies from input image 

Disregard high frequencies 

arising from texture, noise 

and blocking artifacts. 

Difference between arithmetic mean pixel value of 

input image and Gaussian blurred version of input 

image. 

Efficiently output full 

resolution saliency maps 

Operating without down sampling 

 

In order to obtain first four requirements in Table 2.1, a wide range of frequenciesare 

investigated in this saliency model. Low frequencies (denoted by ��� ) and high 

frequencies (denoted by �ℎ�) are used. Hence pass bands are determined 

as[��� ,�ℎ�]. Additionally, any down-sampling is not operated with the input image. 

Hence, the last requirement in Table 2.1 is also obtained (Achanta, et al., 2009). 

 

2.3.1 Binomial Filter 

 

Instead of applying a set of continuous DoG filters, Bionomial filters are applied to 

the given image (Achanta, et al., 2009; Hatipoglu, et al., 2014). 

 

Binomial filter simulates low pass filter (Li & Gao, 2014). It can be used to eliminate 

noise and texture caused by high frequencies and to obtain computational simplicity 

the 5 � 5 Separable Binomial filter (�ℎ� = π/2.75) given in Equation 2.14 is used in 
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Achanta, et al., 2009; Li & Gao, 2014; Preim & Botha, 2013. 

 

1

16
[1,4,6,4,1] →  ⎣⎢⎢⎢

⎡1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1⎦⎥⎥
⎥⎤
                         (2.14) 

 

2.3.2 Computing Saliency Map 

 

To compute saliency map of Achanta model, firstly, the input image is blurred with a 

[3 x 3] Gaussian filter. Then, it is converted to ��� color space and decomposed into 

the bands which are � (lightness), � (green-red information) and � (blue-yellow 

information). Each band is filtered by the binomial filter given in Equation 2.14 in 

section 2.3.1.  

 

Difference between the binomial filtered bands and the mean of the bands ofthe 

Gaussian blurred input image is the basis to compute saliency map. For the input 

image �, resulting saliency map �(�) is computed by using Equation 2.15. �(�)=  ���ℎ� − ���2
+  ���ℎ� − �� �2

+ ���ℎ� − ���2
            (2.15) 

 

where ��ℎ�  , ��ℎ�  and ��ℎ�  are the binomial filtered bands and �� , ��  and ��are the 

means of the bands in ��� color space. 

 

2.3.3 MATLAB Code for Achanta Saliency Map Method 

 

The MATLAB code of Achanta saliency map method is available at 

http://ivrlwww.epfl.ch/supplementary_material/RK_CVPR09/index.html. It is 

implemented by IVRG - Images and Visual Representation Group. In the MATLAB  
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implementation, binomial filter is not applied to bands of the Gaussian blurred input 

image in ��� color space. The bands are only converted to gray scale. Then, mean of 

each band is calculated. Sample outputs obtained by the Achanta method are 

provided in Figure 2.4. 

 

 
         (a)   (b)    (c) 

Figure 2.4: (a) Original input image (b) Gaussian blurred input image in Lab color 
space (c) Final saliency map of Achanta model 

 

2.4 Saliency Map by Image Signature 

 

Sign function of the Discrete Cosine Transform (DCT) of an image is defined as a 

simple image descriptor which contains information about the foreground of an 

image. In Image Signature model, this approach is used for the solution of Figure-

ground separation problem. By using Inverse Discrete Cosine Transform (IDCT) of 

the image signature, it is proven that the image energy at the locations of a spatially 

sparse foreground, relative to a spectrally sparse background is concentrated (Hou, et 

al., 2012). 

 

2.4.1 Discrete Cosine Transform (DCT) Approach 

 

In this model firstly, input image is decomposed into the bands in RGB and ��� 

color spaces. Then, each band is transformed by DCT. By taking account the sign of 

the input image bands in transformed domain, positive DCT coefficient points are 

selected (Hou, et al., 2012; Hatipoglu, et al., 2014). 
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Signum function, denoted by ����(�), is 1 if the corresponding element of � is 

greater than zero, 0 if the corresponding element of � equals zero, -1 if the 

corresponding element of � is less than zero.  

 

In Image Signature model, an image is represented as the combination of foreground 

information, denoted by �, and background information, denoted by �. It is assumed 

that �sparsely supported in the standard spatial basis and �sparsely supported in the 

basisof the Discrete Cosine Transform. Let �� , ��  and ��  be the red, green and blue 

channels of the input image where � =  �� , �� , �� . By taking into account separating �and �, Image Signature of an input image �� is formed by given Equation 2.16. 

 �������������� (��)  =  ����(���(��))                         (2.16) 

 

where,DCT(��) is Discrete Cosine Transform of the RGB color channels of the input 

image ��  while ����(���(��)) corresponds to Signum function of Discrete Cosine 

Transform applied input image �� . 
 

The foreground information is then calculated by Inverse Discrete Cosine Transform 

is performed with ��������������(��) (Equation 2.16) to calculate foreground of 

the input image ��  by Equation 2.17. 

 ��� = ���� ���������(��)��               (2.17) 

where, ���  is the reconstructed image containing foreground of the input image ��  in 

spatial domain, ����denotes Inverse Discrete Transform. 
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2.4.2 Saliency Map 

 

For the final saliency map, the processes explained in section 2.4.1 are applied to 

each band. The reconstructed images of the separated bands are squared and 

combined. This process is denoted by (��� �������Ο ���������)for RGB color space 

and ���� ������Ο ��� ������� for ��� color space. The Gaussian blur is applied to the combined 

image to produce final saliency map by using Equations 2.18 and 2.19. 

 ����(�) = � ∗ (���������Ο ���������)                           (2.18) 

 ����(�) = � ∗ ���������Ο ���������                           (2.19) 

 

where ��� �������and �������� represent the combination of reconstructed band images in 

spatial domain of RGB and Lab color spaces respectively. ����(�) is saliency map 

for RGB color space while���� (�)is saliency map for Lab color space. � indicates 

Gaussian filter, ∗ is the convolution operator and � is the Hadamard (entry wise) 

product operator. 

 

2.4.3 MATLAB Code for Image Signature Saliency Map Model 

 

The MATLAB implementation of Image Signature saliency method is developed by 

MIT Saliency Benchmark and the MATLAB source code of this model is available 

athttp://saliency.mit.edu/results_old.html. It produces two final saliency maps as in 

Figure 2.5 below. 
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(a)   (b)                        (c) 

Figure 2.5: (a) Sample remotely sensed input image (b) Saliency map output for 
RGB color space (b) Saliency map output for ��� color space 

 

2.5 Saliency Detection by Combining Simple Priors (SDSP) 

 

SDSP algorithm is consist of three simple priors which are frequency, color and 

location. By combination of these priors' separate saliency maps, the final SDSP 

saliency map is generated (Zhang, et al., 2013). 

 

2.5.1 Frequency Prior 

 

As it is explained in Achanta, et al., 2009, to highlight salient regions and emphasize 

salient objects a band-pass filtering method is used similar to detection of salient 

region in human visual system. Therefore, log-Gabor filter, denoted as �(�), is used. 

This filter isexpressed approximately in frequency domain as �(�) as given in 

Equation 2.20, where  � = (�,�) refers to the location on the input image and � = (�, �) refers to the location in frequency domain. 

 

�(�) = exp�− �log
‖�‖2�0

�2

2��2 �                           (2.20) 

 

where �0 is the center frequency of the filter and ��  is the filter’s bandwidth. 
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The input image � is given in RGB. Firstly, RGB image is converted to ��� space 

and three channels are defined ��(�),��(�)and ��(�). The frequency prior saliency 

map, denoted by��(�), is calculated by using Equation 2.21. 

 ��(�) = ((�� ∗ � )2 +  (��  ∗ � )2 + (�� ∗ � )2 )1/2            (2.21) 

 

where ∗ is convolution operator and � is the log-Gabor filter. 

 

2.5.2 Color Prior 

 

It is proposed in Zhang, et al., 2013 that people pay more attention in warm colors 

rather than cold colors. As it is explained in Section 2.3.1, the given input image is 

converted to ��� space. Where �-channelrefers to green-red information while �-

channel represents blue-yellow information. If a pixel has a higher value in � or �, it 

would provide warmer color information. For example, higher value in �-channel, it 

would seem greenish or higher value in �-channel, it would seem bluish. �-channel is 

for lightness. 

 

Color saliency map is calculated pixelwise by using Equation 2.22. 

 ��� (�) =
�� (�)− �������� −����   ,  ��� (�) =

�� (�)− �������� −����                                               (2.22) 

 

where � is the given input image, ��(�) and ��(�) is in [0,1] range. ���� and ���� 

refer to maximum values of input image while ���� and ���� refer to minimum 

values. 
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Color saliency map of a point for a given image is defined as given in Equation 

2.23where ��  is a parameter for bias correction (Li, et al., 2011). Since the warm 

colors have a bias towards attention (Zhang, et al., 2013). 

 ��(�) = 1 − ��� �− ���2 (�)+ ���2  (�)��2 �                                    (2.23) 

 

2.5.3 Location Prior 

 

Another prior for SDSP algorithm is location which implies that people pay more 

attention on the center of an image. Location saliency is expressed as a Gaussian map 

as given in Equation 2.24. Since the central areas will have a bias, for the accuray 

bias is corrected by �� parameter (Li, et al., 2011; Zhang, et al., 2013). 

 ��(�) = ��� �−  
‖�−�‖2

2��2 �                (2.24) 

 

where ��is a parameter for bias correction 

 

2.5.4 SDSP Saliency Map 

 

SDSP saliency map is generated by combining prior saliency maps that are ��(�),  ��(�) and ��(�) using Equation 2.25 below. 

 ���� (�) =  ��(�). ��(�) . ��(�)                          (2.25) 
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2.5.5 MATLAB Code for SDSP Saliency Map 

 

The MATLAB code for SDSP model is implemented by Tongji University available 

athttp://sse.tongji.edu.cn/linzhang/va/SDSP/SDSP.htm. It provides each prior based 

saliency maps and the combination of them as the final saliency map. Sample outputs 

of SDSP model are given in Figures 2.6 and 2.7. 

 

 
(a)      (b) 

Figure 2.6: (a) Sample original remotely sensed input image (b) Sample output of 
final SDSP saliency map 

 

 
    (a)    (b)    (c) 

Figure 2.7: (a) Sample frequency prior saliency map (b) Sample location prior 
saliency map (c) Sample color prior saliency map 
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2.6 The CovSal Saliency Model 

 

This model firstly decomposes given input image based on color, orientation and 

spatial feature points. Then, non-overlapping regions are extracted from the feature 

points. The covariances of these non-overlapping regions are calculated by 

examining the surrounding regions. The non-overlapping regions with similar 

characteristics have similar covariances while the non-overlapping regions with 

dissimilar characteristics have dissimilar descriptors. Therefore, dissimilar regions to 

their neighboring regions represent salient areas or object in the given input image 

(Erdem & Erdem, 2013). 

 

2.6.1 Region Covariances 

 

CovSal computational saliency model uses seven-dimensional feature vector 

calculated considering color, orientation and location. Formal definition for the 

feature vector � (�, �)is given in Equation 2.26. 

 � (�,�) =  ��(�,�)  �(�, �)  �(�,�) ��  �(� ,�)�� � ��  �(� ,�)�� �  � ���            (2.26) 

 

where � and � are the values of the pixel (�,�)in Lab color space. ��  ��� � , ��  ��� �are the 

edge orientation information of the given input image � while (�, �) denotes the pixel 

location. 

 

A region � in the feature image extracted from the input image (�) can be 

represented by a� � � covariance matrixas given in Equation 2.27.  

 �� =
1�−1
∑ (�� −  �)��=1 (�� −  �)�                           (2.27) 
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where {��}�=1…�  denotes �-dimensional feature points in region R and � is mean of 

these points. In CovSal � = 7 due to feature vector size. 

 

CovSal model uses Equation 2.28 in order to calculate distance between two 

covariance matrix (Erdem & Erdem, 2013). 

 � (�1 ,�2) =  �∑ ��2��(�1 ,�2)��=1                           (2.28) 

 

where {��(�1 ,�2)}�=1…�   represents generalized eigenvalues and {��}�=1…�  are 

eigenvectors of the covariance matrixes �1 and �2. � = 7 due to the CovSal model 

uses 7-dimensional feature vector. 

 

It is indicated in Erdem & Erdem, 2013, the first-order statics corresponding to the 

mean vector of the features is included to distinguishing between two different 

distributions of features.  

 

Let � be a ��� covariance matrix, related Sigma Points � = {��} which can be 

computed considering Cholesky decomposition by using the Equation 2.29. 

 

�� =  �    ����� �� 1 ≤ � ≤ �− �����          �� � + 1 ≤ � ≤ 2�                                   (2.29) 

 

where��  is the �th column of the lower triangular matrix � obtained with Cholesky 

decomposition ( � = ���  ). � = 7due to the feature vector size used in the CovSal 

model and � is a parameter. The CovSal model takes � =  √2. 
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By the motivation of Sigma Points (Julier & Uhlmann, 1996), mean vector of the 

features are concatenated to the previous 7-dimensional feature vector. This enriched 

feature vector is denoted as �(�) given in Equation 2.30. 

 �(�) = (�, �1 , … ��  , , ��+1 , … , �2�  )
�               (2.30) 

 

where ��  represents sigma points and � is the mean vector of the features.   

 

2.6.2 Model 1: Saliency Using Covariance Features (CovSal-C) 

 

For the first saliency map output of the CovSal, the feature covariances of the non-

overlapping regions are used only. In Model 1, firstly, the given input image � is 

reshaped to square form. It is then decomposed to square non-overlapping regions 

which are size of � � � pixels.The saliency of a square non-overlapping region is 

calculated by comparing it with its neighboring the non-overlapping regions. If it 

displays distinctive characteristics locally, it is defined as salient.  

 

Let ��  be the region under consideration and {�� } be the regions in the given radius 

of �. The dissimilarity measurement ���� ,�� �between the region ��  and the regions 

{�� } is defined by given Equation 2.31. 

 ���� ,�� � =  
�  (�1  ,�2)

1+ ���− ���                (2.31) 

where �1 and �2 are the covariance matrices, ��  and ��  denoting the image 

coordinates of the center of the regions ��  and �� , respectively. 

 

More formally, the saliency of the region ��  is given by Equation 2.32. 
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� (��) =
1� ∑ � (�� ,�� )��=1                                                                                  (2.32) 

 

where � refers to most similar regions around of ��  is found considering to the 

dissimilarity measure ���� ,�� �. 
 

It is noted that in Erdem & Erdem, 2013the region size � determines the resolution of 

the saliency map. Therefore, the computed saliency maps of the non-overlapping 

regions are resized to obtain the final saliency map at the resolution of the original 

given input image �. 
 

2.6.3 Model 2: Saliency Using Covariance and Mean Features (CovSal-CM) 

 

For the second saliency map output of the CovSal model, mean information of the 

features are incorporated into covariance-based model explained in section 2.6.2. The 

dissimilarity measurement �′��� ,�� � between the region ��  and the neighboring 

regions {�� } is defined by given Equation 2.33. 

 �′��� ,�� � =  
‖�(�1)−�( �2)‖

1+ ���− ���                                                                                   (2.33) 

 

where� (�1) and � (�2) are the enriched feature vectors of the covariance matrixes �1 and �2with the incorporated the mean vector of the features while ��  and ��  
denoting the image coordinates of the center of the regions ��  and �� , respectively. 

 

Saliency map of the region ��  based on covariance and mean calculations is given by 

Equation 2.34. 

 � (��) =
1� ∑ �′ ( �� ,�� )��=1                                      (2.30) 
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where � denotes the most similar regions around of ��  is found considering to the 

dissimilarity measure �′��� ,�� �. 
 

Again, at scale �, the computed saliency maps of the non-overlapping regions are 

resized. 

 

2.6.4 MATLAB Code for CovSal Saliency Map 

 

The MATLAB code for the CovSal model is implemented by Hacettepe University 

Department of Computer Engineering and is available at 

http://web.cs.hacettepe.edu.tr/~erkut/projects/CovSal/, last visited on May 2016. It 

produces two saliency map. The first saliency map is the output for the first model 

based on region covariances only while the second saliency map is the output of the 

second model performed according to region covariances and means. The sample 

outputs of the CovSal model are given in Figure 2.8. 

 

        (a)                                 (b)        (c) 

Figure 2.8: (a) Sample original input image (a) Sample saliency map of Model 1: 
Saliency using covariance features only (b) Sample saliency map of Model 2: 
Saliency using covariance and mean features 

 

2.7 Similarity Measurements 

 

In the following sub-sections, details of image comparison methods used in this 

thesis are explained. These methods are used to calculate similarities between the 
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saliency map of Tobii T120 Eye Tracker and the saliency maps of computational 

models executed in MATLAB. 

 

2.7.1 Normalization and Vector Form of Saliency Maps 

 

For similarity measurements, the images should be coverted to vector forms. The 

saliency maps are grey level images repsented in two dimensional matrixes while 

vector forms of saliency maps are one dimensional arrays. A pixel (�, �) in an image 

of size ��  ×  ��  is repsented by index � in the vector form as given in Equation 2.31. 

 � = ( � − 1)�� +  �                                                                                               (2.31) 

 

where � = 1 …� and � =  ����  

 

In order to reduce noise caused by outliers and to improve interpretability of 

information in saliency maps, a normalization method is applied to each saliency 

map as described in Equation 2.32. 

 �� = ��  /∑ ���=1…�                                                                                                  (2.32) 

 

where��  is the pixel value at location � and �(�, �)denotes the normalized input 

image.  

 

The input images are saliency maps, which are grey level images, each pixel having 

value between 0 and 1. By computing each saliency map with Equation 2.32, sum of 

all pixel values of Tobii T120, GBVS, Itti-Koch, Achanta, ImageSignature, SDSP 

and  CovSal saliency maps are equal to 1 individually.   
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2.7.2 The Structural SIMilarity (SSIM) Index 

 

Digital images are subject to a wide range of distortions during acquisition, 

transmission, reproduction and processing. In consideration with error sensitivity of 

image signals, Structural Similarity Index method is developed based on luminance, 

contrast and structural terms (Wang, et al., 2004). 

 

The comparisons between input images � and � for luminance (�), contrast (�) and 

structural terms (�) are defined as in Equations 2.33, 2.34 and 2.35 below. 

 � (�,�) =  
2 ����  + �1��2 + ��2 + �1

                                      (2.33) 

 

Luminance comparison function, with constant �1 

 � (�,�) =  
2 ����+ �2��2 + ��2+ �2

                                      (2.34) 

 

Contrast comparison function, with constant �2 

 � (�,�) =  
��� + �3����+ �3

                 (2.35) 

 

Structural comparison function, with constant �3 

 

where ��  and �� are means, ��  and �� refer to standard deviations of the input 

images � and �respectively while ���  denotes cross-covariance for input images � 

and �. 
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By the combination of these three comparisons, structural similarity index between 

images �and � forms as in Equation 2.36; 

 ���� (�,�) = [� (�,�)]� [� (�,�)]� [� (�,�)]�              (2.36) 

 

Parameters > 0 , � > 0 and � > 0 are used to adjust relative importance for three 

components. 

 

In order to simplify expression of structural similarity index of two input images, 

following values are used as � = � = � = 1 and �3 =  
�2

2
. Simplified structural 

similarity index, denoted as ���� (�,�), between two input images � and � is given 

by Equation 2.37. 

 ���� (�,�) =
(2 ����  + �1) ( 2��� + �2) 

( ��2 + ��2 + �1) ���2 + ��2+ �2�              (2.37) 

 

where��and ��  are means, ��  and ��  refer to standard deviations and ���  denotes 

cross-covariance for input images� and �. �1and�2 are constant values. 

 

SSIM map, denoted by �_����, obtained by given Equation 2.38. 

 �_���� =
(2 �(�)�(�)+�1)�2 ��(��)−�(�)�(�)�+�2�

(�(�)2+ �(�)2+ �1)�(�(�2)−�(�)2)+(�(�2)− �(�)2)+�2�                                 (2.38) 

 

where � is the Gaussian filter with size 11 ×  11 and sigma=1.5. �(�) and �(�) are 

the filtered input images � and � respectively. �1and �2 are constant values. 
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Each raw saliency map of the computational saliency models as GBVS, Itti-Koch, 

Achanta, ImageSignature, SDSP, CovSal is compared with the raw saliency map of 

Tobii T120 by computing Equations 2.37 and 2.38. In MATLAB, the corresponding 

SSIM function has two outputs as SSIM index value and SSIM map. SSIM value is 

in the range between 0 and 1. 0 value means that compared images are completely 

different from each other, while value 1means they are exactly same. Sample SSIM 

map showing the SSIM coefficients is given by Figure 2.9. 

 

 

       (a)                  (b)                     (c) 

Figure 2.9: (a) Raw saliency map of Tobii T120 (b) Raw saliency map of GBVS (c) 
SSIM map displaying visual difference between (a) and (b) 

 

2.7.3 Cosine Similarity 

 

Cosine similarity method is used to quantify the similarity between two input images 

which are normalized saliency maps obtained from the computational saliency 

models and Tobii T120 Eye Tracker device. 

 

Cosine similarity coefficients between input images � and �, denoted as � (�,�), 

were obtained according to the vector form of input images � and � by given 

Equation 2.39 (Manning, et al., 2009); 

 � (�,�) =  
∑ ������=1�∑ ��2��=1 �∑ ��2��=1

                           (2.39) 
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where ��  and ��  are the pixel values of input images � and �. 

 

The closer value to 1 for cosine of the angle between compared saliency maps means 

higher similarity while value 0 indicates complete dissimilarity (Manning, et al., 

2009). 

 

The pixel value at location � of Cosine similarity map, denoted as �_���� , is 

calculated by given Equation 2.40. 

 �_���� =  
�����∑ ��2��=1 �∑ ��2��=1

                (2.40) 

 

where ��  and ��  are the pixel values at location � of input images � and �. 

 

As for SSIM measurement described in previous section, corresponding Cosine 

similarity function produces both Cosine similarity coefficient and Cosine similarity 

map of the compared saliency maps in MATLAB. Sample visual output of Cosine 

similarity measurement is given by Figure 2.10. 

 

        (a)          (b)              (c) 

Figure 2.10: (a) Normalized Tobii T120 saliency map (b) Normalized GBVS 
saliency map (c) Cosine similarity map displaying visual difference between (a) and 
(b) 
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2.7.4 Pearson Correlation Similarity 

 

Pearson correlation similarity is another method to measure the similarity between 

raw saliency maps of computational models and Tobii T120. Pearson correlation 

coefficient, denoted by �(�,�), is obtained by given Equation 2.41; 

 � (�,�) =  
1� ∑ �(��− �� )�� � �(��− �� )  �� ���=1               (2.41) 

 

where � and � are the input images while ��  and ��  are the pixel values at 

location � and � denotes the total number of the pixels. �� , �� ,��  and �� are the 

mean and standard deviations of the input images � and � respectively. 

 

Pearson similarity map, denoted as �_�� , is calculated by given Equation 2.42. 

 �_�� =  �(��− �� )�� � �(��− �� )  �� �                                                                               (2.42)  

 

where ��and ��  are the means values and ��  and �� are the standard deviations of 

the input images � and � respectively while ��  and ��  are the pixel values at location �. 
 

By computing Equations 2.41 and 2.42 in MATLAB, Pearson correlation 

coefficients and Pearson similarity maps for the compared saliency maps are 

obtained. Sample visual output of Pearson similarity measurement is given by Figure 

2.11. 
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 (a)     (b)                       (c) 

Figure 2.11: (a) Normalized Tobii T120 saliency map (b) Normalized GBVS 
saliency map (c) Pearson similarity map displaying visual difference between (a) and 
(b) 
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CHAPTER 3 

 

EYE TRACKING EXPERIMENTS 

 

 

In this study, to obtain ground truth information for comparing the computational 

saliency map models, an eye tracking experiment is conducted. In the following sub-

sections, detailed information about the dataset and the experiment processes are 

explained. 

 

3.1 The Dataset 

 

The regions on earth surface provide higher figure-background separation are 

selected for the data set. Two remotely sensed image categories, which are forestry 

and water surface, are considered. Total dataset contains 226 remotely sensed RGB 

images with size of 1024 x 768 pixels. 

 

Input images are collected by GMapCatcher toolbox which is a map viewer program 

available at code.google.com/p/gmapcatcher/. GMapCather has a feature to export 

remotely sensed RGB images which are provided by Google Map Maker service. 

This feature is provided by a custom GUI called as Export Map. Screenshot of 

Export Map feature is given in Figure 3.1. Export Map also allows user to adjust the 

size and the zoom level of the remotely sensed RGB image. 
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Table 3.1:  Number of images 

 

Level Forestry Water Surface 

0 42 40 
-1 42 40 
-2 42 40 
Total 126 120 
 

 

 

Figure 3.1: GUI of GMapCatcher Export Map feature displaying map tiles in 
specified coordinates 

 

 

Three different zoom levels as 0, -1 and -2, where level -2 provides the most closer 

view, are used in exporting the remotely sensed images. In order to obtain better 

visual separation between the background and the objects or the areas in the images, 

minimum zoom level is chosen as -2 and maximum zoom level is chosen as 0. 

Further zoom levels cause more objects to be included in the input image while 
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lower zoom levels captures more details both may be lead to wrong interpretation of 

comparison results between the saliency maps of the computational models and Tobii 

T120 eye tracker device.  

 

For the same coordinates, remotely sensed images in dataset are exported at 0,-1 and 

-2 zoom levels. 0.18 km, 0.09 km and 0.045 km are the height information of zoom 

levels 0, -1 and -2 respectively. Three different zoom levels that are 0, -1 and -2 have 

spatial resolution as 1.2 m x 1.2 m, 0.6 m x 0.6 m and 0.3 m x 0.3 m respectively. 

Spatial resolution � � �  is calculated by given Equation 3.1; 

 � =  
�ℎ   (� ,�)

1204
 , � =   

��  (� ,�)

768
                  (3.1)

  

where � is horizontal spatial resolution and � is vertical spatial resolution. �ℎ  and ��  are real horizontal and vertical distances respectively. 

 

By using the coordinates of upper-left and lower-right corners of the exported image 

provided by exporting feature of GMapCatcher,�ℎ  and ��  calculations are completed 

by an offline application which is called as FizzyCalc. It is implemented by 

FizzyMagic and available at www.fizzymagic.net/Geocaching/FizzyCalc/. Real 

distances and spatial resolutions of the zoom levels are given in Table 3.2. 

 

Table 3.2:Input image attributes according to the zoom levels 

 

Zoom Level 0 -1 -2 

Height  0.18 km 0.09 km 0.045 km 

Horizontal Distance  1.222674 km 0.611336 km 0.305668 km 

Vertical Distance 0.910868 km 0.455434 km 0.227717 km  

Spatial Resolution ~1.2 m x 1.2 m ~0.6 m x 0.6 m ~0.3 m x 0.3 m 
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Exported image extension is .png and it contains three color channels as Red, Green 

and Blue. Sample exported images in zoom levels 0, -1 and -2 are given in Figures 

3.2 and 3.3. The input images in the dataset for forestry and water surface categories 

are shown in Appendix A and Appendix B respectively. 

 

 
(a)    (b)    (c) 

Figure 3.2: Sample exported images for forestry category (a) Level 0 (b) Level -1 

(c) Level -2 

 

 

 

(a)    (b)    (c) 

Figure 3.3: Sample exported images for water surface category (a) Level 0 (b) Level 
-1 (c) Level -2 
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3.2 Eye Tracker Hardware 

 

Tobii T120 Eye Tracker device is located in Human Computer Interaction (HCI) 

Research and Application Laboratory at METU Computer Center. Tobi T120 shown 

in Figure 3.4consists of the eye tracker hardware and test computer. It collects the 

user's eye movement data such as how long and how many times he/she looks at a 

certain point on the screen. The data export tool includes heat maps and gaze plots as 

both layer on input image and a single image itself. Figure 3.5 shows sample heat 

map outputs of Tobii T120 Eye Tracker device while Figure 3.6 shows sample gaze 

plot outputs. 

 

 

 
                  Figure 3.4:Tobii T120 Eye Tracker on test computer in HCI lab 

 

 

 
(a)       (b) 

Figure 3.5: (a) Tobii T120 heat map output as a single image (b) Tobii T120 heat 
map output as a layer on input image 
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(a)       (b) 

Figure 3.6: (a) Tobii T120 gaze plot output as a single image (b) Tobii T120 gaze 
plot output as a layer on input image 

 

3.3 Calibration 

 

Before the experiment, human participants are asked to follow specific points on the 

screen. Firstly, sitting position is set for calibration procedure. Eyes are displayed as 

two white dots which must be located between green ranges as it is shown in Figure 

3.7. In vertical axis, distance between the subject's eyes and the screen is expected to 

be 60 cm ± 3cm. In horizontal axis, the location of the subject’s eyes is expected to 

be centered. Otherwise, the eye tracker hardware is unable to detect eyes or it detects 

the subject's eye inaccurately. 

 

 

                           Figure 3.7: Calibration tool of Tobii T120 Eye Tracker 
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After eye position is fixed, the subject is informed about standing firm and not to 

blink during whole calibration process for preventing incorrect data collection of 

his/her eye movements on the screen. By clicking start button in calibration tool 

given by Figure 3.7, the red points start to appear and to move on the screen 

continuously as shown in Figure 3.8. 

 

 

       Figure 3.8: Specified points while calibrating eyes before the experiment 

 

The red points contain black dots in the middle of them. It is also important to 

indicate to the participant that following black dots while red points move not only 

stop. If the black dots are not tracked in whole duration of eye calibration, Tobii 

T120 can not capture the correct location of eye movement even though the 

participant looks at correct location on the screen. 

 

After calibration procedure is completed, two separate panels for each eye are 

displayed on the screen to check the result of the calibration as given in Figure 3.9. 

The green parts in Figure 3.9 show how well calibration is completed. If any eye 

movement is not captured during calibration process, there is not green part inside of 

the corresponding circle. In this case, it is expected that calibration should be 

repeated for the corresponding circle. Furthermore, if green parts are scattered too 

much to outwards of the circle, calibration for the corresponding circle should be 

repeated. 
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(a)      (b) 

Figure 3.9: (a) Eye calibration could not capture eye movement (b) Acceptable eye 
calibration to start experiment 

 

Tobii T120 also contains another calibration check tool as given in Figure 3.10. The 

subject is expected to look at the center of the red points on screen. If the red point 

thatis located inside of the circle moves with the eye, calibration process is 

completed successfully. Otherwise, calibration procedure should be repeated for the 

corresponding circle. In Figure 3.10, difference between successful calibration and 

inadequate calibration can also be seen. 

 

 

 (a)      (b) 

Figure 3.10: (a) Correct data capture of eye movement (b) Incorrect data capture of 
eye movement due to insufficient calibration 
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3.4 Eye Tracking Experiments 

 

In experiments, separate test projects are created with the dataset containing 226 

remotely sensed RGB images. Two test projects are executed separately for forestry 

and water surface categories.20 people participated in both test projects to obtain 

ground truth information.They are selected based on their eye structure. They have 

big eyes and do not use contact lenses and glasses. Additionally, they do not have 

any visual impairment. For forestry category, images are presented to 7 females and 

13 males while in water surface category 8 females and 12 males. In order to fix 

subjects' eye movements to Tobii T120 screen, their eyes are calibrated using the 

software provided by Tobii T120 system. Calibration should be performed according 

to the targets given by Tobii T120 software on the screen. Otherwise, it collects data 

in wrong locations even though the subject looks at the exact location. Therefore, it 

is required that the subjects to stay firm during the calibration process and whole 

experiment duration. 

 

Since subject’s attention and concentration are very important in order to collect data 

with high accuracy and precision, an instructor image given by Figure 3.11 is also 

located between two input images in test projects. Fix cross sign is located according 

to next input image. For example, if expected salient region or object are located in 

right-hand side of the input image, fix cross sign is located in left-hand side. 

Therefore, additional and missing looking are prevented. Hence, visualization 

outcomes of Tobii T120 and interpretation of them are expected to be more reliable. 
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                (a)                         (b) 

 

                                      (c)              (d) 

Figure 3.11:(a) Next info is located in top side of the screen, fix cross is located in 
bottom side (b) Next info is located in bottom side of the screen, fix cross is located 
in top side (c) Next info is located in right side of the screen, fix cross is located in 
left side (d) Next info is located in left side of the screen, fix cross is located in right 
side 

 

Before the eye tracking experiments are performed, two separate test projects are 

created for forestry and water surface categories. Then, the input images are aligned 

randomly and the fix-cross signs are located between the input images. After the 

image sequences of both test projectsare completed, calibration process is performed. 

Firstly, 126 input images of forestry category and the fix-cross signs located between 

the input images are represented to the subjects. The input images in forestry 

category are displayed for 6 seconds while the fix-cross signs are displayed for 2 
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seconds separately. Total time duration for forestry category is 30 minutes. After 

forestry category is completed, the subject has a break until he/she is ready for the 

second part of the experiment which is water surface category. For the second part of 

the experiment, the calibration process is performed again. 120 input images of water 

surface category are displayed for 6 seconds while the fix-cross signs, which are 

located between the input images are displayed for 2 seconds separately. Total time 

duration for water surface category is 28 minutes. Sample sequences of both 

categories are given in Figures 3.12 and 3.13. 

 

 

 
                   Figure 3.12: Sample image sequence for forestry category 

 

 

 
                       Figure 3.13: Sample image sequence for water category 
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3.5 Eye Tracking Outputs 

 

In this experiment, grey scale heat maps are obtained by using gaze plot export  

feature of Tobii T120 as given by Figure 3.14. This feature is capable of an 

adjustment such as zero saliency regions are assigned to 0 value and the regions with 

higher salient regions are assigned to the values that are closer to 1. 

 

 

Figure 3.14: Gaze plots of sample input images as gray scale heat map layer 

 

Moreover, Tobii T120 includes weighted gaze samples feature, which is the 

percentage calculated by dividing the number of eye tracking samples that were 

correctly identified, by the number of eye movements, indicates how useful the 

recording of both eyes for analysis by measuring the percentage of captured eye 

movements during a recording. For forestry category, weighted gaze sample contains 

%92 usable gaze plots while %93 for water surface category. Furthermore, individual 

gaze samples are also obtained. They provides the percentage of captured eye 

movements of each subject individually; minimum usable percentage for individual 

gaze plots is %74 while the maximum percentage is %99 in the experiment. 

 

Sample outcomes of weighted and individual gaze plots as image layers are given in 

Figure 3.15. 
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(a)      (b) 

Figure 3.15 : (a) Individual gaze plot layers (b) Weighted gaze plot layers 
considering all subjects together 

 

Additionally, each weighted gaze plot is also exported within specified time intervals 

as given in Table 3.3. For accuracy measurement, each time interval is compared 

with others.  
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Table 3.3: Time intervals for forestry and water surface categories 

 

Start Time Finish Time Category Total Exported 
Image Count 

0.0 2.0 Forestry 126 
2.0 4.0 Forestry 126 
4.0 6.0 Forestry 126 
1.0 6.0 Forestry 126 
1.0 3.5 Forestry 126 
3.5 6.0 Forestry 126 
0.0 2.0 Water Surface 120 
2.0 4.0 Water Surface 120 
4.0 6.0 Water Surface 120 
1.0 6.0 Water Surface 120 
1.0 3.5 Water Surface 120 
3.5 6.0 Water Surface 120 

 

Since subjects lose concentration on single image for time intervals longer than 

6seconds, input images are presented to them for 6 seconds. Besides locating 

instructor images between the input images, weighted gaze plots are exported in 

between 1.0 sec and 6.0 sec. Therefore, resulting gaze plots contain more accurate 

and precise eye movement data.  

 

The Tobii T120 outcomes are computed in MATLAB to obtain saliency map. Tobii 

T120 saliency map is a single channel image in grey scale. Hence, the comparison 

with the computational saliency models can be performed with the same data type in 

MATLAB. Sample for Tobii T120 saliency map is given by Figure 3.16. 
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                           Figure 3.16:Tobii T120 saliency map in MATLAB 
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     CHAPTER 4 

 

RESULTS 

 

 

In this thesis, we proposed a study of how well saliency map computational models 

approximate the eye tracking experiment performed with the eye tracker device Tobii 

T120. Results were obtained by measuring the similarities of saliency maps obtained 

by eye tracking experiments and saliency map outputs of computational methods 

which are GBVS, Itti-Koch, Achanta, ImageSignature, SDSP and CovSal. 

 

4.1  Analysis of Similarity Between Tobii T120 Saliency Maps Obtained for 

Different Time Intervals 

 

For each image, weighted and individual gaze plots are collected for 6 seconds using 

Tobii T120 eye tracker device. 

 

In order to analyze the similarity of Tobii T120 saliency maps extracted for different 

time intervals, weighted gaze plots of each input image were exported in [0.0- 2.0] 

sec, [2.0- 4.0] sec and [4.0- 6.0] sec intervals. Also, Tobii T120 saliency maps for 

[1.0 - 3.5] sec and [3.5 - 6.0] sec intervals are collected for further analysis. SSIM 

requires raw input images. Therefore, image adjustment such as normalization is not 

performed. Hence, data loss is prevented. Similarities between the time durations 

were measured by computing SSIM according to the categories. Mean value, 

standard deviation (STD) value and coefficient of variation (CV) percentage 

corresponding to the SSIM results of forestry and water surface categories are given 

in Table 4.1 and Table 4.2 respectively. CV percentage is calculated by given 

Equation 4.1. 
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�� = %100 ×  �  /  �                  (4.1) 

 

where� is the standard deviation and � is the mean value. 

 

 

       Table 4.1:SSIM comparisons of forestry images in specified time intervals 

 

SSIM Mean / STD / CV 

Time Intervals [2.0 - 4.0] sec [4.0 - 6.0] sec [3.5 - 6.0] sec 
[0.0 - 2.0] sec 0.665 / 0.056 / %8 0.664 / 0.056 / %8  
[2.0 - 4.0] sec  0.999 / 0.014 / %1  
[1.0 - 3.5] sec   0.999 / 0.016 / %2 

 

     Table 4.2:SSIM comparisons of water surface images in specified time intervals 

 

SSIM Mean / STD / CV 

Time Intervals [2.0 - 4.0] sec [4.0 - 6.0] sec [3.5 - 6.0] sec 
[0.0 - 2.0] sec 1 / 0 / %0 0.999 / 0.007 / %1  
[2.0 - 4.0] sec  0.999 / 0.007 / %1  
[1.0 - 3.5] sec   0.998 / 0.006 / %1 

 

 

According to Table 4.1,the subjects focus more in salient regions between the time 

range in [0.2 - 6.0] sec in forestry category. For water surface category, images 

contain less textured background than forestry images. He/she does not focus on 

additional details. Therefore, the deviations are more stable in comparison with 

forestry category as indicated in Table 4.2. According to Tables 4.1 and 4.2 it is 

decided to use [1.0 - 6.0] sec time intervals for Tobii T120 saliency map extraction 

because it eliminates inconsistency in the [0.0 - 1.0] sec interval and also provides 

more sampling points compared to [2.0-6.0] sec time interval. 
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4.2 Analysis of Similarity Between Tobii T120 Saliency Maps Obtained for 

Different Participants 

 

In order to measure similarity between the subjects, 12 individual gaze plots for time 

interval [1.0 - 6.0] sec were exported randomly from whole dataset. Each individual 

gaze plot was executed with the others. As for time duration comparisons, the 

individual gaze plots are compared within SSIM calculation without image 

adjustment. Table 4.3 contains mean value, standard deviation (STD) value and 

coefficient of variation (CV) percentage of each participant. 

 

Table 4.3:Sample individual gaze plot comparison results 

 

Subject 

No 

Mean / STD / CV 

 

Subject 

No 

Mean / STD / CV 

1 0.9456 / 0.0239 / %3 11 0.9516 / 0.0241 / %3 
2 0.9546 / 0.0247 / %3 12 0.9512 / 0.0212 / %2 
3 0.9449 / 0.0233 / %2 13 0.9463 / 0.0204 / %2 
4 0.9372 / 0.0185 / %2 14 0.9455 / 0.0189 / %2 
5 0.9491 / 0.0216 / %2 15 0.9397 / 0.0241 / %3 
6 0.9545 / 0.0228 / %2 16 0.9411 / 0.0206 / %2 
7 0.9535 / 0.0255 / %3 17 0.9519 / 0.0234 / %2 
8 0.9375 / 0.0227 / %2 18 0.9408 / 0.0219 / %2 
9 0.9556 / 0.0226 / %2 19 0.9375 / 0.0022 / %2 
10 0.9516 / 0.0232 / %2 20 0.9540 / 0.0114 / %2 

 

According to Table 4.3,each individual Tobii T120 saliency map provides a high 

similarity with other individual maps since the mean values are close to 1 and 

coefficient of variation percentage is close to %0.  
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4.3  Analysis of Similarity Between Tobii T120 Saliency Maps and 

Computational Saliency Maps 

 

Figures 4.1 - 4.3 show histogram graphs of the computational saliency map models 

individually in forestry category while Figures 4.4 - 4.6 show histogram graphs in 

water surface category. The histogram graphs indicate the similarity values of each 

saliency map between minimum and maximum similarity in the range [0. .1]. 

Additionally, on the Figures 4.1 - 4.6 also the mean values (m), standard deviations 

(STD) and coefficient of variation (CV) percentage are given for each model.  

 

A similarity value with mean=1, STD=0 and %CV=0 corresponds to exact similarity 

between the saliency maps of computational models and Tobii T120. 

In Figure 4.1 and Figure 4.3, it is shown that CovSal-C has more similarity values 

closer to 1 while in Figure 4.2, GBVS has more correlation values collected closer to 

1 for forestry category. 

 

For water surface category, Figure 4.4 indicates CovSal-C contains more similarity 

values closer to 1. In Figures 4.5 and 4.6, GBVS has more similarity values closer to 

1.  
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        (a)              (b)           (c)   

 
           (d)             (e)                                       (f) 

 
                    (g)                                           (h) 

 
Figure  4.1:SSIM coefficient histogram of forest category saliency maps (a) Tobii 
and GBVS (b) Tobii and Itti-Koch (c) Tobii and Achanta, (d) Tobii and 
ImageSignature - Lab (e) Tobii and ImageSignature - RGB (f) Tobii and SDSP (g) 
Tobii and CovSal-C (h) Tobii and CovSal-CM 
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     (a)              (b)           (c)   

 
           (d)             (e)                                       (f) 

 
                    (g)                                           (h) 

 
Figure 4.2: Cosine correlation coefficient histogram of forestry category saliency 
maps (a) Tobii and GBVS (b) Tobii and Itti-Koch (c) Tobii and Achanta (d) Tobii 
and ImageSignature - Lab (e) Tobii and ImageSignature - RGB (f) Tobii and SDSP 
(g) Tobii and CovSal-C (h) Tobii and CovSal-CM 
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  (a)              (b)           (c)   

 
           (d)             (e)                                       (f) 

 
                    (g)                                           (h) 

 
 

Figure 4.3: Pearson correlation coefficient histogram of forestry category saliency 
maps (a) Tobii and GBVS (b) Tobii and Itti-Koch (c) Tobii and Achanta (d) Tobii 
and ImageSignature - Lab (e) Tobii and ImageSignature - RGB (f) Tobii and 
SDSP(g) Tobii and CovSal-C (h) Tobii and CovSal-CM 
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  (a)              (b)           (c)   

 
           (d)             (e)                                       (f) 

 
                    (g)                                            (h) 

 
 

Figure 4.4: SSIM coefficient histogram of water surface category saliency maps (a) 
Tobii and GBVS (b) Tobii and Itti-Koch (c) Tobii and Achanta (d) Tobii and 
ImageSignature - Lab (e) Tobii and ImageSignature - RGB (f) Tobii and SDSP (g) 
Tobii and CovSal-C(h) Tobii and CovSal-CM 
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  (a)              (b)           (c)   

 
           (d)             (e)                                       (f) 

 
                    (g)                                           (h) 

 
Figure 4.5: Cosine correlation coefficient histogram of water surface category 
saliency maps (a) Tobii and GBVS (b) Tobii and Itti-Koch (c) Tobii and Achanta (d) 
Tobii and ImageSignature - Lab (e) Tobii and ImageSignature - RGB (f) Tobii and 
SDSP (g) Tobii and CovSal-C (h) Tobii and CovSal-CM 
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  (a)              (b)           (c)   

 
           (d)             (e)                                       (f) 

 
                    (g)                                           (h) 

 
 

Figure 4.6: Pearson correlation coefficient histogram of water surface category 
saliency maps (a) Tobii and GBVS (b) Tobii and Itti-Koch (c) Tobii and Achanta(d) 
Tobii and ImageSignature - Lab (e) Tobii and ImageSignature - RGB (f) Tobii and 
SDSP (g) Tobii and CovSal-C (h) Tobii and CovSal-CM 
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Table 4.4 and Table 4.5summarize mean, standard deviation (STD) values and 

coefficient of variation (CV) percentage for the SSIM, Cosine and Pearson 

correlation similarities of the saliency maps produced by computational models and 

Tobii T120 saliency maps in both categories (126 images for forestry, 120 images for 

water surface).Computational saliency maps of both categories were also compared 

with the saliency map of Tobii T120 according to the levels 0, -1 and -2. Tables4.6- 

4.8 contain forestry category results while Table 4.9- 4.11containwater surface 

category results. 

 

In order to obtain highest similarity to identify the best fit saliency map model, the 

correlation coefficients of the model are expected to be close to 1. For SSIM index 

and Pearson correlation methods CovSal-C model provides more coefficient close to 

1 in forestry category among other saliency map models. It is also important that 

standard deviation value of correlation values is expected to be close to 0 and 

coefficient of variation percentage is expected to be close to %0 to obtain highest 

precision. GBVS provides smaller standard deviation and mean value higher than 0.5 

according to Cosine correlation. 

 

For water surface category, GBVS model is the best fit saliency map model among 

others according to Cosine correlation and Pearson correlation methods. It provides 

highest mean value in comparison with the others. According to SSIM index 

correlation method, CovSal-C method has highest mean value. However, GBVS 

model has a smaller standard deviation value and a smaller coefficient of variation 

percentage according to Cosine correlation and Pearson correlation results in 

comparison with CovSal-C model. 

 

Additionally, non-salient regions which are textured backgrounds are eliminated by 

CovSal model more effectively than GBVS model. Forestry images have more low 

and intermediate informative regions caused by textured background while water 

surface images provides more unique background. 
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Table 4.4: Mean, STD and CV values of similarity measurement coefficients in 
Forestry category for 126 images 

 

Model Name SSIM 

Index 

Mean / STD / 
CV 

Cosine 
Similarity 

Mean / STD / 
CV 

Pearson Correlation 
Similarity 

Mean / STD / 

CV 

GBVS 0.201 / 0.09 / 

%44.8 

0.531 / 0.102 / 

%19.2 

0.477 / 0.142 / 

%29.8 

Itti-Koch 0.101 / 0.056 / 

%55.4 

0.379 / 0.139 / 

%36.7 

0.237 / 0.248 / 

%104.6 

Achanta 0.361 / 0.178 / 

%49.3 

0.452 / 0.104 / 

%23.0 

0.362 / 0.151 / 

%41.7 

ImageSignature -Lab 0.093 / 0.033 / 

%35.5 

0.286 / 0.133 / 

%46.5 

0.172 / 0.173 / 

%100.6 

ImageSignature -RGB 0.099 / 0.045 / 

%45.5 

0.442 / 0.103 / 

%23.3 

0.379 / 0.192 / 

%50.7 

SDSP 0.138 / 0.051 / 

%36.9 

0.423 / 0.12 / 

%28.4 

0.332 / 0.222 / 

%66.9 

CovSal-C 0.659 / 0.121 / 

%18.4 

0.568 / 0.148 / 

%26.1 

0.517 / 0.177 / 

%34.2 

CovSal-CM 0.414 / 0.024 / 

%5.8 

0.349 / 0.128 / 

%36.7 

0.247 / 0.156 / 

%63.2 
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Table 4.5: Mean, STD and CV values of similarity measurement coefficients in 
Water Surface category for 120 images 

 

Model Name SSIM 

Index 

Mean / STD / 
CV 

Cosine 
Similarity 

Mean / STD / 
CV 

Pearson Correlation 
Similarity 

Mean / STD / 

CV 

GBVS 0.458 / 0.208 / 

%45.4 

0.688 / 0.112 / 

%16.3 

0.678 / 0.13 / 

%19.2 

Itti-Koch 0.233 / 0.187 / 

%80.3 

0.587 / 0.159 / 

%27.1 

0.59 / 0.194 / 

%32.9 

Achanta 0.703 / 0.224 / 

%31.9 

0.530 / 0.159 / 

%30.0 

0.499 / 0.197 / 

%39.5 

ImageSignature -Lab 0.193 / 0.113 / 

%58.5 

0.408 / 0.16  / 

%39.2 

0.367 / 0.187 / 

%50.9 

ImageSignature -RGB 0.295 / 0.207 / 

%70.2 

0.605 / 0.092 / 

%15.2 

0.601 / 0.108 / 

%17.9 

SDSP 0.289 / 0.181 / 

%62.6 

0.606 / 0.106 / 

%17.5 

0.596 / 0.14 / 

%23.5 

CovSal-C 0.801 / 0.127 / 

%15.9 

0.665 / 0.155 / 

%23.3 

0.643 / 0.173 / 

%26.9 

CovSal-CM 0.411 / 0.03 / 

%7.3 

0.303 / 0.163 / 

%53.8 

0.229 / 0.189 / 

%82.5 

 

Input images of forestry category provide better seperation between the actual salient 

region and backgroundat level 0. For level -2, the actual salient regions become more 

remarkable since the details such as color, edges and orientation become more 

apparent. However, at level -1 the details are not apparent as much as level -2 and 

figure-ground seperation is lesser than level 0. Therefore, subjects focusmore on 

details until they find the actual salient region at level -1. Hence,for level -1, standard 

deviation values of CovSal-C and GBVS model is higher than level 0 and level -2. 

GBVS model provides a smaller coefficient of variation percentage according to 

Cosine similarity rather than CovSal-C model. However, mean value ofCovSal-C 

model is higher than GBVS model according to each comparison method as given in 
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Tables 4.6-4.8. Therefore, CovSal-C model is the best fit model for 0, -1 and -2 

levels of forestry category. 

 

                 Table 4.6: Forestry category. Level: 0, Total input image: 42 

 

Model Name SSIM 

Index 

Mean / STD / 

CV 

Cosine 

Similarity 

Mean / STD / 

CV 

Pearson Correlation 

Similarity 

Mean / STD / 

CV 

GBVS 0.198 / 0.078 / 

%39.4 

0.523 / 0.089 / 

%17.0 

0.467 / 0.123 / 

%26.3 

Itti-Koch 0.112 / 0.059 / 

%52.7 

0.415 / 0.12 / 

%28.9 

0.3 / 0.196 / 

%65.3 

Achanta 0.358 / 0.192 / 

%53.6 

0.421 / 0.081 / 

%19.2 

0.316 / 0.122 / 

%38.6 

ImageSignature -Lab 0.104 / 0.037 / 

%35.6 

0.248 / 0.087 / 

%35.1 

0.124 / 0.123 / 

%99.2 

ImageSignature -RGB 0.111 / 0.044 / 

%39.6 

0.458 / 0.087 / 

%18.9 

0.395 / 0.131 / 

%33.2 

SDSP 0.136 / 0.054 / 

%39.7 

0.441 / 0.091 / 

%20.6 

0.365 / 0.149 / 

%40.8 

CovSal-C 0.665 / 0.123 / 

%18.5 

0.57 / 0.138 / 

%24.2 

0.519 / 0.171 / 

%32.9 

CovSal-CM 0.411 / 0.026 / 

%6.3 

0.339 / 0.126 / 

%37.2 

0.232 / 0.155 / 

%66.8 
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             Table 4.7:Forestry category. Level: -1, Total input image: 42 

 

Model Name SSIM 

Index 

Mean / STD / 
CV 

Cosine 
Similarity 

Mean / STD / 
CV 

Pearson Correlation 
Similarity 

Mean / STD / 

CV 

GBVS 0.205 / 0.098 / 

%47.8 

0.539 / 0.11 / 

%20.4 

0.498 / 0.146 / 

%29.3 

Itti-Koch 0.091 / 0.051 / 

%56.0 

0.374 / 0.15 / 

%40.1 

0.243 / 0.271 / 

%111.5 

Achanta 0.349 / 0.186 / 

%53.3 

0.461 / 0.107 / 

%23.2 

0.388 / 0.152 / 

%39.2 

ImageSignature -Lab 0.088 / 0.032 / 

%36.4 

0.287 / 0.132 / 

%45.9 

0.179 / 0.172 / 

%96.1 

ImageSignature -RGB 0.098 / 0.05 / 

%51.0 

0.452 / 0.114 / 

%25.2 

0.415 / 0.211 / 

%50.8 

SDSP 0.142 / 0.056 / 

%39.4 

0.435 / 0.129 / 

%29.7 

0.367 / 0.227 / 

%61.9 

CovSal-C 0.68 / 0.127 / 

%18.7 

0.592 / 0.161 / 

%27.2 

0.548 / 0.189 / 

%34.5 

CovSal-CM 0.411 / 0.021 / 

%5.1 

0.345 / 0.114 / 

%33.0 

0.249 / 0.144 / 

%57.8 
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                 Table 4.8: Forestry category. Level: -2, Total input image: 42 

 

Model Name SSIM 

Index 

Mean / STD / 
CV 

Cosine 
Similarity 

Mean / STD / 
CV 

Pearson Correlation 
Similarity 

Mean / STD / 

CV 

GBVS 0.198 / 0.093 / 

%46.9 

0.542 / 0.098 / 

%18.1 

0.484 / 0.142 / 

%29.3 

Itti-Koch 0.101 / 0.056 / 

%55.4 

0.36 / 0.144 / 

%40.0 

0.187 / 0.264 / 

%141.2 

Achanta 0.378 / 0.161 / 

%42.6 

0.484 / 0.105 / 

%21.7 

0.398 / 0.146 / 

%36.7 

ImageSignature -Lab 0.088 / 0.026 / 

%29.5 

0.334 / 0.154 / 

%46.1 

0.222 / 0.201 / 

%91.3 

ImageSignature -RGB 0.09 / 0.037 / 

%41.1 

0.433 / 0.097 / 

%22.4 

0.349 / 0.204 / 

%58.5 

SDSP 0.136 / 0.045 / 

%33.1 

0.406 / 0.127 / 

%31.3 

0.282 / 0.26 / 

%92.2 

CovSal-C 0.636 / 0.113 / 

%17.8 

0.556 / 0.129 / 

%23.2 

0.501 / 0.157 / 

%31.3 

CovSal-CM 0.422 / 0.022 / 

%5.2 

0.365 / 0.146 / 

%40.0 

0.262 / 0.172 / 

%65.6 

 

 

Since, the subjects deal with less details in water surface images, their eye movement 

data is collected much more on actual informative salient regions rather than forestry 

images. Therefore, smaller filter is sufficient to eliminate additional detected pixels 

in order to provide more approximative solution to reality. CovSal uses larger filter 

than GBVS, it also reduce the pixels in actual salient regions. 

 

Tables 4.9 - 4.11 also show that GBVS is the best fit model for water surface images 

at zoom levels 0,-1 and -2 individually. Even though CovSal-C model has a mean 

value higher than 0.5 for each comparision method, it is also clear that GBVS model 
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provides a higher mean value with a smaller coefficient of variation percentage than 

CovSal-C model. 

          Table 4.9: Water Surface category. Level: 0, Total input image: 40 

 

Model Name SSIM 

Index 

Mean / STD / 

CV 

Cosine Similarity 

Mean / STD / 

CV 

Pearson Correlation 
Similarity 

Mean / STD / 

CV 

GBVS 0.437 / 0.211 / 

%48.3 

0.661 / 0.123 / 

%18.6 

0.638 / 0.153 / 

%23.9 

Itti-Koch 0.243 / 0.18 / 

%74.1 

0.594 / 0.139 / 

%23.4 

0.592 / 0.161 / 

%27.2 

Achanta 0.698 / 0.231 / 

%33.1 

0.446 / 0.147 / 

%32.9 

0.382 / 0.199 / 

%52.1 

ImageSignature 

(Lab) 

0.207 / 0.101 / 

%48.8 

0.333 / 0.154 / 

%46.2 

0.278 / 0.193 / 

%69.4 

ImageSignature 

(RGB) 

0.297 / 0.203 / 

%68.0 

0.591 / 0.104 / 

%18.0 

0.568 / 0.127 / 

%22.0 

SDSP 0.267 / 0.154 / 

%57.7 

0.601 / 0.097 / 

%16.1 

0.583 / 0.116 / 

%19.9 

CovSal-C 0.77 / 0.145 / 

%18.8 

0.637 / 0.148 / 

%23.2 

0.612 / 0.172 / 

%28.1 

CovSal-CM 0.406 / 0.037 / 

%9.1 

0.261 / 0.136 / 

%52.1 

0.17 / 0.159 / 

%93.5 
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            Table 4.10: Water Surface category. Level: -1, Total input image: 40 

 

Model Name SSIM 

Index 

Mean / STD / 
CV 

Cosine 
Similarity 

Mean / STD / 
CV 

Pearson Correlation 
Similarity 

Mean / STD / 

CV 

GBVS 

 

0.478 / 0.207 / 

%43.3 

0.696 / 0.102 / 

%14.7 

0.692 / 0.107 / 

%15.5 

Itti-Koch 0.228 / 0.202 / 

%88.6 

0.591 / 0.158 / 

%26.7 

0.597 / 0.193 / 

%32.3 

Achanta 0.712 / 0.219 / 

%30.8 

0.542 / 0.152 / 

%28.0 

0.524 / 0.174 / 

%33.2 

ImageSignature -Lab 0.205 / 0.127 / 

%61.9 

0.403 / 0.144 / 

%35.7 

0.369 / 0.16 / 

%43.4 

ImageSignature -RGB 0.317 / 0.217 / 

%68.4 

0.609 / 0.082 / 

%13.5 

0.611 / 0.093 / 

%15.2 

SDSP 0.33 / 0.211 / 

%63.9 

0.606 / 0.098 / 

%16.8 

0.597 / 0.118 / 

%19.8 

CovSal-C 0.828 / 0.096 / 

%11.6 

0.686 / 0.145 / 

%21.1 

0.67 / 0.156 / 

%23.3 

CovSal-CM 0.415 / 0.03 / 

%7.2 

0.334 / 0.161 / 

%48.2 

0.271 / 0.185 / 

%68.3 
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           Table 4.11: Water Surface category. Level: -2, Total input image: 40 

 

Model Name SSIM 

Index 

Mean / STD / 
CV 

Cosine 
Similarity 

Mean / STD / 
CV 

Pearson Correlation 
Similarity 

Mean / STD / 

CV 

GBVS 0.458 / 0.209 / 

%45.6 

0.708 / 0.106 / 

%14.9 

0.705 / 0.118 / 

%16.7 

Itti-Koch 0.228 / 0.183 / 

%80.3 

0.579 / 0.181 / 

%31.3 

0.581 / 0.227 / 

%39.1 

Achanta 0.698 / 0.226 / 

%32.3 

0.602 / 0.141 / 

%23.4 

0.593 / 0.156 / 

%26.3 

ImageSignature -Lab 0.168 / 0.107 / 

%63.7 

0.488 / 0.146 / 

%29.9 

0.455 / 0.167 / 

%36.7 

ImageSignature -RGB 0.271 / 0.204 / 

%75.3 

0.618 / 0.087 / 

%14.1 

0.627 / 0.095 / 

%15.2 

SDSP 0.271 / 0.173 / 

%63.8 

0.614 / 0.122 / 

%19.9 

0.609 / 0.179 / 

%29.4 

CovSal-C 0.805 / 0.128 / 

%15.9 

0.672 / 0.168 / 

%25.0 

0.649 / 0.186 / 

%28.7 

CovSal-CM 0.411 / 0.024 / 

%5.8 

0.315 / 0.184 / 

%58.4 

0.246 / 0.209 / 

%84.9 
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CHAPTER 5 

 

CONCLUSION & FUTURE WORK 

 

 

In this thesis, we evaluated the saliency map performances by calculating between 

the computational saliency models and Tobii T120 eye tracker device. 

 

We firstly constituted a dataset containing remotely sensed RGB images in forestry 

and water surface categories. The experiment then was conducted for forestry and 

water surface categories separately. 20 human subjects participatedto the experiment. 

Each image in the dataset was presented to the subjectsparticipated in the 

experiments employing Tobii T120 eye tracker device. Individual andweighted gaze 

plots form the output saliency map of Tobii T120 for each image in the dataset. 

 

Secondly, each saliency map methods that we investigated in this thesis were 

executed in MATLAB and their saliency maps were gathered for the images in the 

dataset. 

 

After completing the experiment and obtaining all saliency maps, we have measured 

the similarities between each saliency maps produced by computational methodsand 

the Tobii T120 saliency map for both forestry and water surface categories by three 

different similaritymeasurementswhich are Cosine correlation, Pearson correlation 

and Structural SIMilarity index. 

 

Finally, results were analyzed and best fit computational models are determined for 

forestry and water surface categories. 
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In forestry category, textured background contains more details than water surface 

category. Therefore, the subjects focus on non-informative regions until they find the 

actual salient region. Since CovSal-C model measures the similarity between the 

regions extracted from the input image, it eliminates non-salient regions better than 

Graph-based Visual Saliency method. However, for water surface category, the 

subjects do not focus on additional details as much as the images in the forestry 

category. Hence, gaze plot data is collected on the actual salient region much more 

than forestry category. Graph-based Visual Saliency method applies a smaller 

Gaussian Kernel filter to the saliency maps than CovSal-C method. In order to 

eliminate additional pixels which are detected as salient for the saliency maps 

produced by the computational models in water surface category, smaller Gaussian 

filter is sufficient. If the filter size become larger, main gaze plots collected on the 

actual salient regions are also eliminated. By considering the image category 

structres and the algorithms of the computational saliency methods, CovSal-C is the 

best model for forestry category while Graph-based Visual Saliency method is the 

best fit model for water surface category. 

 

Salient region detection is used in GIS to detect objects such as airplane, ship, cloud, 

road and to predict vegatation anomalies, deforestration and land degradation. 

According to the results in this thesis, Graph-based Visual Saliency method can 

approximate the reality in object detection based GIS applications. For the GIS 

applications of vegetation, CovSal-C model can provide a better result corresponding 

to the reality. The dataset used in this thesis can be extented by adding desert and 

highland based remotely sensed RGB images. Desert based images can provide less 

detailed figure-background compared to highland based images. Therefore, object 

recognition based GIS applications such as airplane, man made structures or road 

detection can be developped by using Graph-based Visual Saliency method for desert 

images while using CovSal-C model for highland images. 
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APPENDIX A 

 

                                   FORESTRY CATEGORY IMAGES 

 

 

 
     Figure A.1: The input images of forestry category at zoom levels 0, -1 and -2 
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APPENDIX B 

 

                           WATER SURFACE CATEGORY IMAGES 

 

 

 
        Figure B.1: The input images of forestry category at zoom levels 0, -1 and -2 
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