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ABSTRACT

DIRECTION FINDING IN THE PRESENCE OF ARRAY IMPERFECTIONS,
MODEL MISMATCHES AND MULTIPATH

Elbir, Ahmet M.
Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. T. Engin Tuncer

June 2016, 117 pages

In direction finding (DF) applications, there are several factors affecting the estima-
tion accuracy of the direction-of-arrivals (DOA) of unknown source locations. The
major distortions in the estimation process are due to the array imperfections, model
mismatches and multipath. The array imperfections usually exist in practical applica-
tions due to the nonidealities in the antenna array such as mutual coupling (MC) and
gain/phase uncertainties. The model mismatches usually occur when the model of the
received signal differs from the signal model used in the processing stage of the DF
system. Another distortion is due to multipath signals. In the multipath scenario, the
antenna array receives the transmitted signal from more than one path with different
directions and the array covariance matrix is rank-deficient. In this thesis, three new
methods are proposed for the problems in DF applications in the presence of array
imperfections, model mismatches and multipath.

In the first problem, calibration of antenna arrays mounted on aeronautical vehicles is
considered. The complete 3-D model of an antenna array and a UH-60 helicopter is
constructed and simulated in a numerical electromagnetic tool, FEKO, and the array
observations are obtained both in time and frequency. When the antenna arrays are
mounted on such platforms, antenna pattern and characteristics change significantly
leading to erroneous DF results. In this thesis, a new calibration technique is proposed
when the vehicle is on the ground. In ground calibration, the major error sources
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are the reflections from the platform and the multipath from the ground. In order
to mitigate these distortions, a time-gating method is proposed. When the received
signals from the antennas are observed in time, the reflections are present with a
time delay after the desired signal component. This part of the signals is gated and
sufficiently clean calibration data is obtained for DF operation. The evaluation of
the calibration data is done using both correlative interferometer and the MUSIC
algorithms. The proposed method is advantageous for its simplicity, accuracy and
cost effectiveness.

In the second problem, a DF scenario is considered where the antenna array receives a
mixture of a far-field signal and its near-field multipaths. Due to the model mismatch
of the received signal components, both far- and near-field signal models should be
used accordingly for accurate parameter estimation. Moreover, the array covariance
matrix is rank-deficient due to multipath so that the subspace methods cannot be
directly used for accurate DOA estimation. A new method is proposed for the es-
timation of DOA angles of far- and near-field signals and the ranges of near-field
multipaths. 2-D DOA angle of the far-field source is estimated by using a calibra-
tion technique. A near-to-far-field transformation is proposed to suppress the far-field
components of the array output so that the near-field source parameters can be esti-
mated. Then spatial smoothing is employed to estimate the near-field source DOA
angles. In order to estimate the near-field source ranges, a compressed sensing ap-
proach is presented where a dictionary with near-field sources with different ranges is
employed. The proposed method is evaluated using close-to-real world data generated
by a numerical electromagnetic tool, Wireless Insite, where the array and transmit-
ter are placed in an irregular terrain and the array data is generated using full 3-D
propagation model. It is shown that unknown source parameters can be estimated
effectively showing the potential of the proposed approach in applications involving
high-frequency direction finding and indoor localization.

In the third problem, 2-D DOA and MC coefficient estimation is considered for arbi-
trary array structures. Previous methods in the literature are usually proposed for cer-
tain array geometries and show limited performance at low SNR or for small number
of snapshots. In this thesis, compressed sensing is used to exploit the joint-sparsity
of the array model to estimate both DOA and MC coefficients with a single snapshot
for an unstructured array where the antennas are placed arbitrarily in space. A joint-
sparse recovery algorithm for a single snapshot (JSR-SS) is presented by embedding
the source DOA angles and MC coefficients into a joint-sparse vector. A dictionary
matrix is defined by considering the symmetricity of the MC matrix for the unstruc-
tured antenna array. The proposed method is extended to the multiple snapshots,
and the joint-sparse recovery algorithm with multiple snapshots (JSR-MS) is devel-
oped. A new joint-sparsity structure, namely, joint-block-sparsity is introduced to
take advantage of the structure in the composite matrix involving both DOA and MC
coefficients. In order to utilize the joint-block-sparsity effectively in the optimization
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problem, new norm structures, namely L-2,2,0- and L-2,2,1-norms are defined. The
same technique is modified in order to solve the gain/phase mismatch problem in
multipath scenario. Several simulations are done in order to show the performance of
the proposed techniques.

Keywords: Direction Finding, Array Signal Processing, Mutual Coupling, Gain/phase
Mismatch, Calibration.
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ÖZ

DİZİLİM KUSURLARI, MODEL UYUŞMAZLIKLARI VE ÇOK-YOLLU
YANSIMALARIN OLDUĞU DURUMDA YÖN BULMA

Elbir, Ahmet M.
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. T. Engin Tuncer

Haziran 2016 , 117 sayfa

Yön bulma (YB) uygulamalarında, bilinmeyen kaynak konumlarının varış-yönünün
(VY) kestirim doğruluğunu etkileyen birçok etmen vardır. Kestirim sürecindeki baş-
lıca bozulmalar dizilim kusurları, model uyuşmazlıkları ve çok-yollu yansımalardır.
Dizilim kusurları genellikle pratik uygulamalarda ortak bağlaşım (OB) ve genlik/faz
uyuşmazlıkları gibi kusurlardan kaynaklanır. Model uyuşmazlıkları genellikle alınan
işaretin modeli, YB sisteminin işleme basamağında kullanılan modelden farklılaştı-
ğında ortaya çıkar. Bir diğer bozulma nedeni çok-yollu yansıyan işaretlerdir. Çok-
yollu yansıma senaryosunda, anten dizilimi yollanan işareti farklı yönlerden birden
fazla yoldan alır, öyle ki, işaretler kolayca ayrıştırılamazlar. Bu tezde, dizilim kusur-
ları, model uyuşmazlıkları ve çok-yollu yansımaların olduğu durumda YB uygulama-
larındaki sorunlar için dört yeni algoritma önerilmiştir.

Birinci problemde, hava araçları üzerine yerleştirilen anten dizilimlerinin kalibras-
yonu incelenmiştir. Anten diziliminin ve UH-60 helikopterin tüm 3-B modeli nume-
rik elektromanyetik programında yaratılmış ve benzetimi yapılıp, anten gözlemleri
zamanda ve frekansta elde edilmiştir. Anten dizilimleri bu gibi platformlara yerleşti-
rildiğinde, anten örüntüsü ve karakteristiği önemli ölçüde değişir ve hatalı YB sonuç-
larına neden olur. Bu tezde, hava aracı yerde iken yapılan yeni ve kalibrasyon tekniği
önerilmiştir. Yerde kalibrasyon işleminde, ana hata unsurları yerden ve platformdan
yansıyan çok-yollu yansımalardır. Bu bozulmaları giderebilmek için zamanda pence-
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releme yöntemi önerilmiştir. İşaretler antenlerden alınıp zamanda gözlemlendiğinde,
yansımalar istenilen işaret bileşeninden bir zaman gecikmesiyle elde edilir. İşaretin
bu bölümü pencerelenmiş ve YB işlemi için yeterince iyi bir kalibrasyon verisi elde
edilmiştir. Elde edilen kalibrasyon verisinin değerlendirmesi MUSIC algoritması ile
yapılmıştır. Önerilen yöntem basitliği, doğruluğu ve düşük maliyetli oluşu ile avan-
tajlıdır.

İkinci problemde, anten diziliminden uzak- ve yakın-alan çok-yollu işaretlerin alın-
dığı bir YB senaryosu incelenmiştir. Alınan işaret bileşenlerindeki model uyuşmaz-
lıklarından dolayı, doğru bir parametre kestirimi için uzak- ve yakın-alan işaret düz-
gün bir şekilde modellenmelidir. Ayrıca, çok-yollu işaretlerden dolayı, dizilim ortak
örtüşme dizeyi eksik kertelidir, öyle ki, bu durumda alt-uzay yöntemleri doğru bir
VY kestirimi için doğrudan kullanılamazlar. Uzak- ve yakın-alan işaretlerin VY’si
ve yakın-alan çok-yollu işaretlerin menzillerinin kestirimi için yeni bir yöntem öne-
rilmiştir. Uzak-alan işaretin 2-B VY açısı bir kalibrasyon tekniği ile kestirilmiştir.
Yakın-alan parametrelerinin kestirilmesi amacıyla, dizilim çıkışındaki uzak-alan bile-
şenleri yakın-uzak alan dönüşümü kullanılarak bastırılmıştır. Daha sonra, yakın-alan
VY’lerini kestirmek amacıyla uzamsal yumuşatma kullanılmıştır. Yakın-alan menzil-
lerin kestirilmesi için farklı menzillere ait yakın-alan kaynakların kullanıldığı bir söz-
lüğün olduğu sıkıştırılmış algılama yaklaşımı sunulmuştur. Önerilen yöntem, 3-B ya-
yılım modelinin kullanıldığı numerik elektromanyetik benzetim aracı Wireless Insite
ile üretilmiş gerçek dünyaya yakın veriler ile değerlendirilmiştir. Önerilen yöntemin
yüksek frekans ön bulma ve bina-içi konumlama gibi uygulamalardaki performansını
gösteren etkin parametre kestirim sonuçları gösterilmiştir.

Üçüncü problemde, 2-B VY ve OB katsayılarının kestirimi rastgele dizilim yapıları
için incelenmiştir. Literatürdeki diğer yöntemler genellikle belirli dizilim yapıları için
önerilmiş ve düşük SNR ve az ölçüm sayısı durumunda sınırlı başarım göstermişler-
dir. Bu tezde, antenlerin uzayda rastgele konumlandığı bir yapısız dizilim için, tek
bir gözlem ile VY ve OB katsayılarının kestirimi için dizilim modelindeki ortak-
seyrekliği sıkıştırılmış algılama ile ortaya çıkaran yeni bir yöntem önerilmiştir. Kay-
nak VY’lerini ve OB katsayılarını ortak-seyrek bir yöneye yerleştiren tek gözlem
için ortak-seyrek geri oluşturma (TGOSGO) yöntemi sunulmuştur. Önerilen yöntem,
çoklu gözlem durumu için genişletilmiş ve çoklu gözlem için ortak-seyrek geri oluş-
turma (ÇGOSGO) algoritması geliştirilmiştir. Kompozit bir dizeydeki VY ve OB kat-
sayılarının oluşturduğu yapıdan faydalanarak yeni bir ortak-blok-seyrekli yapısı tanı-
tılmıştır.

Nihayet son problemde, çok-yollu yayılım ve genlik/faz uyuşmazlıklarının olduğu
durumda, rastgele dizilim yapıları için VY kestirimi problemi incelenmiştir. Evre-
uyumlu kaynak işaretlerinin VY açıları ve uyuşmazlık parametrelerini kestirmek için
bir ortak-seyrek geri oluşturma yöntemi önerilmiştir.
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Özlem T. Demir, Selim Özgen, Yusuf Sevinç and Yılmaz Kalkan. I am also grateful to
many other people for what they have willingly or unwillingly done that encouraged
me to achieve my goals.

Lastly, the sincerest thanks to each of my family members, especially my wife and
my daughter, for supporting and believing in me all the way through my academic
life.

xii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Organization of The Thesis . . . . . . . . . . . . . . . . . . 8

2 THE MAJOR ERROR SOURCES IN DIRECTION FINDING: AR-
RAY IMPERFECTIONS, MODEL MISMATCHES AND MULTI-
PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Mutual Coupling . . . . . . . . . . . . . . . . . . . . . . . . 10

xiii



2.1.1 Uniform Linear Array . . . . . . . . . . . . . . . 10

2.1.2 Uniform Circular Array . . . . . . . . . . . . . . . 11

2.1.3 Uniform Rectangular Array . . . . . . . . . . . . 12

2.1.4 Randomly Placed Array . . . . . . . . . . . . . . 13

2.2 Gain/Phase Mismatches . . . . . . . . . . . . . . . . . . . . 14

2.3 Model Mismatches of Near-field Signals . . . . . . . . . . . 15

2.4 Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 CALIBRATION OF ANTENNA ARRAYS FOR AERONAUTICAL
VEHICLES ON GROUND . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Test Setup and The Problem Description . . . . . . . . . . . 21

3.2.1 Problem Description and The Model . . . . . . . . 23

3.2.2 Mutual Coupling Matrix . . . . . . . . . . . . . . 27

3.2.3 Sampling in Frequency . . . . . . . . . . . . . . . 28

3.3 Time-Gating Method . . . . . . . . . . . . . . . . . . . . . 30

3.4 Calibration Data and DF Test . . . . . . . . . . . . . . . . . 31

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 The advantages of The Proposed Calibration Technique . . . 36

4 FAR-FIELD DOA ESTIMATION AND NEAR-FIELD LOCALIZA-
TION FOR MULTIPATH SIGNALS . . . . . . . . . . . . . . . . . . 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Problem Description and Array Model . . . . . . . . . . . . 41

xiv



4.3 Direction Finding for A Far-Field Source With Multipath
Components . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Near-field Source Localization . . . . . . . . . . . . . . . . 44

4.4.1 Selection of The Virtual Array Spacing . . . . . . 46

4.4.2 DOA Estimation for Near-Field Sources . . . . . . 47

4.4.3 Range Estimation With Compressive Sensing . . . 48

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . 51

4.5.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . 52

4.5.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . 54

4.6 The advantages of The Proposed Method . . . . . . . . . . . 57

5 2-D DOA AND MUTUAL COUPLING COEFFICIENT ESTIMA-
TION FOR ARBITRARY ARRAY STRUCTURES WITH A SIN-
GLE AND MULTIPLE SNAPSHOTS . . . . . . . . . . . . . . . . . 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Signal Model and Problem Formulation . . . . . . . . . . . . 62

5.3 Joint-Sparse Recovery For A Single Snapshot With MC . . . 64

5.3.1 DOA Estimation For A Single Snapshot With JSR-
SS . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Estimation of MC Coefficients From A Single Snap-
shot . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Joint-Sparse Recovery For Multiple Snapshots With MC . . . 68

5.4.1 DOA Estimation For Multiple Snapshots With JSR-
MS . . . . . . . . . . . . . . . . . . . . . . . . . 70

xv



5.4.2 Estimation of MC Coefficients From Multiple Snap-
shots . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Feasibility of the Problem . . . . . . . . . . . . . . . . . . . 74

5.5.1 Uniqueness for DOA Estimation Problem . . . . . 74

5.5.1.1 Sparse Recovery Case . . . . . . . . . 74

5.5.1.2 Joint-sparse Recovery Case . . . . . . 75

5.5.2 Uniqueness for MC Coefficient Estimation for A
Single Snapshot . . . . . . . . . . . . . . . . . . . 76

5.5.3 Uniqueness for MC Coefficient Estimation for Mul-
tiple Snapshots . . . . . . . . . . . . . . . . . . . 76

5.6 Performance of The Joint-Sparse Recovery With MC . . . . 77

5.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 77

5.7.1 Scenario 1: 1-D DOA and MC Coefficient Esti-
mation . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7.2 Scenario 2: 2-D DOA and MC Coefficient Esti-
mation . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7.3 Scenario 3: 1-D DOA and Gain/Phase Mismatch
Estimation in Multipath Environment . . . . . . . 87

5.7.4 Performance of JSR-MS For Correlated Source Sig-
nals . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7.5 Computational Complexity . . . . . . . . . . . . . 90

5.8 The Advantages of The JSR-SS and JSR-MS . . . . . . . . . 91

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xvi



APPENDICES

A RMSE DEFINITION FOR AZIMUTH ANGLE . . . . . . . . . . . . 109

B DOA ESTIMATION IN THE PRESENCE OF GAIN/PHASE MIS-
MATCHES AND MULTIPATH . . . . . . . . . . . . . . . . . . . . 111

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xvii



LIST OF TABLES

TABLES

Table 3.1 Antenna array dimensions. . . . . . . . . . . . . . . . . . . . . . . 22

Table 3.2 Calibration and test setup parameters. . . . . . . . . . . . . . . . . 23

Table 4.1 The setup parameters used in the irregular terrain model. . . . . . . 51

Table 4.2 Amplitude estimation of the near-field sources for the experiment 2
and 3. Note that the near-field amplitude estimates are normalized with
the far-field source amplitude. . . . . . . . . . . . . . . . . . . . . . . . . 54

xviii



LIST OF FIGURES

FIGURES

Figure 2.1 An antenna array with two antennas in receive scenario. . . . . . . 10

Figure 2.2 Placement of an M = 8 antennas in a uniform linear array. . . . . . 11

Figure 2.3 Placement of an uniform circular array in xy-plane. . . . . . . . . . 11

Figure 2.4 Placement of an M ×N uniform rectangular array. . . . . . . . . . 13

Figure 2.5 The placement of M = 16 antennas in a randomly placed array. . . 14

Figure 2.6 Electromagnetic radiation of a source located in the near-field (left)
where the range of the transmitter source d < 2D2

λ
and far-field (right) of

the antenna array (i.e., d > 2D2

λ
). D is the array aperture. . . . . . . . . . . 16

Figure 2.7 Placement of an M = 8 antennas in a uniform linear array. . . . . . 16

Figure 2.8 Difference between near- and far-field array models versus the
range of the transmitter source. . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.9 A multipath scenario where the transmitter signals is received from
different paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.1 The antenna array is composed of four dipoles mounted in front of
a UH-60 helicopter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.2 The open-field test area and platform placement. . . . . . . . . . . 23

Figure 3.3 Direct path and the reflections from the ground and the platform. . 24

Figure 3.4 Path length difference variation for (a) h1 and d are changed (h2 =

24m), (b) h2 and d are changed (h1 = 16m), (c) h1 and h2 are changed
(d = 100m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.5 The signal waveforms in frequency domain before the time-gating
for each antenna for the DOA (0◦, 76.5◦). . . . . . . . . . . . . . . . . . . 31

xix



Figure 3.6 The signal waveforms in time domain before the time-gating for
each antenna for the DOA (0◦, 76.5◦). . . . . . . . . . . . . . . . . . . . . 32

Figure 3.7 The signal waveforms in time domain after the time-gating for each
antenna for the DOA (0◦, 76.5◦). . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.8 The signal waveforms in frequency domain after the time-gating
for each antenna for the DOA (0◦, 76.5◦). . . . . . . . . . . . . . . . . . . 33

Figure 3.9 The calibration procedure. . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.10 The effect of helicopter platform on the azimuth DOA performance
at 150 MHz when the aircraft is positioned on air with no ground reflec-
tions. There is no calibration for the platform effects. Elevation angle is
θ = 103.5◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.11 Proposed calibration technique is applied when the UH-60 is on
the ground. Azimuth DOA performance at 150 MHz (a) and 450MHz (b),
θ = 103.5◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.1 Placement of the real DF array (UCA) and virtually generated ULA
for near-field source localization. . . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.2 RMSE for azimuth angle estimation vs virtual ULA inter-element
distance, l, for the virtual array transformation. . . . . . . . . . . . . . . . 47

Figure 4.3 The algorithm steps for the proposed approach. . . . . . . . . . . . 51

Figure 4.4 Performance of azimuth angle estimation of the proposed method
when the elevation angle is set at θ = 88◦. Vertical lines correspond to the
fixed near-field sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.5 Performance of the fixed elevation angle (θ = 88◦) estimation of
the proposed method. Vertical lines correspond to the fixed near-field
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.6 DF performance of the proposed method for the far-field and near-
field sources on azimuth, elevation and ranges. Dot: True position; Square:
Uncalibrated; Cross: With calibration. . . . . . . . . . . . . . . . . . . . 54

Figure 4.7 The placement of the DF array and transmitter antenna over the
irregular terrain area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.8 The direct and reflecting ray paths arriving the antenna array. . . . 55

Figure 4.9 The placement of the transmitters for the array calibration. . . . . . 56

xx



Figure 4.10 Estimation results of the proposed method for a scenario simulated
in Wireless Insite. Dot: True position; Square: Uncalibrated; Cross: With
calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.1 The placement of the antennas in the array for a single realiza-
tion. Dot: the positions of the fixed antennas, Circle: the positions of the
randomly changing antennas. . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.2 1-D DOA estimation performance for a single snapshot, T = 1. . . 80

Figure 5.3 1-D DOA estimation performance for multiple snapshots, T = 100. 80

Figure 5.4 MC gain and phase estimation performance for 1-D scenario with
a single (a) and multiple snapshots (T = 100) (b). Note that the phase
estimates are given in radians. Gain estimation results are denoted with
solid lines whereas phase estimates are denoted with dashed lines. . . . . . 82

Figure 5.5 1-D DOA estimation performance vs SNR for ULA when T = 200. 83

Figure 5.6 2-D DOA estimation performance for a single snapshot (a) and
multiple snapshots (T = 30) (b) respectively. The DOA angles of the
sources are (32.375◦, 43.251◦), (50.714◦, 52.852◦) and (75.215◦, 62.734◦).
Azimuth estimation results are denoted with solid lines whereas elevation
estimates are denoted with dashed lines. . . . . . . . . . . . . . . . . . . 85

Figure 5.7 MC gain and phase estimation performance of 2-D scenario for a
single snapshot (a) and multiple snapshots (T = 30) (b) respectively. Gain
estimation results are denoted with solid lines whereas phase estimates are
denoted in radians with dashed lines. . . . . . . . . . . . . . . . . . . . . 86

Figure 5.8 DOA estimation performance vs SNR when T = 100, µα = 1,
σα = 0.5 and µβ = 0◦, σβ = 20◦. . . . . . . . . . . . . . . . . . . . . . . 87

Figure 5.9 RMSE for the gain term of the mismatch coefficients when T =

100, µα = 1, σα = 0.5 and µβ = 0◦, σβ = 20◦. . . . . . . . . . . . . . . . 88

Figure 5.10 RMSE for the phase term of the mismatch coefficients when T =

100, µα = 1, σα = 0.5 and µβ = 0◦, σβ = 20◦. . . . . . . . . . . . . . . . 89

Figure 5.11 1-D DOA estimation performance for correlated source signals,
T = 100 and SNR=10dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xxi



xxii



CHAPTER 1

INTRODUCTION

1.1 Motivation and Objectives

Direction-of-arrival (DOA) estimation of the plane waves impinging on antenna ar-

rays is an important problem in a variety of fields including, radar, sonar, acoustics

and communications [1,2]. Several high resolution methods are proposed to estimate

the DOA angles of unknown source locations such as the multiple signal classification

(MUSIC) algorithm [3]. While these methods perform well in ideal scenarios, their

performance degrades significantly in case of array imperfections. There are different

error sources in array processing some of which are bulletined as below:

• Array Imperfections:

1. Mutual coupling (MC): Due to the interaction between the antennas in

the array, the received signal from each antenna is coupled to the other

antennas. Hence, MC causes distortions in the array manifold and reduces

the direction-finding (DF) accuracy [4, 5].

2. Gain and phase uncertainties: The received signal from each antenna in

the array have certain gain and phase mismatches (GPM) due to the effect

of the antenna pattern, temperature changes, instabilities in the electronic

circuitry and cabling mismatches [6–8].

3. Sensor location errors: In certain applications, perfect knowledge of the

antenna positions in the array is not possible, for example, in towed arrays

or in DF systems where the array needs to be dismantled and reassembled

in the field [9, 10].

1



• Model Mismatches: Model mismatches occur when the received signal model

differs from the array signal model used in the DF operation. While most of

the received signals are modeled with the far-field array model [11], near-field

signals are also received by the DF sensors. In this case, there is a certain per-

formance loss for parameter estimation due to the model mismatches between

the near- and far-field array model.

• Multipath: Multipath occurs if the antenna array receives the transmitted sig-

nal by two or more paths [12–14]. In this case, it is not easy to distinguish the

true source directions since the array covariance matrix is rank deficient.

The motivation of this thesis is to examine and mitigate the effect of these errors

in practical DF scenarios so that satisfactory DOA estimation performance can be

obtained. Hence, the main objective is to develop novel algorithms for DF problems

in the presence of these factors.

1.2 Literature Overview

In this section, a literature overview is presented for the problems investigated in this

thesis.

DOA estimation is a problem which is investigated for almost a hundred years. While

several different methods are proposed in this context, most of these methods either

fail or do not meet the expectations in practical scenarios [4–7, 15].

One of the array imperfection is mutual coupling (MC) [4, 5, 15]. MC affects the

array output so that the corrupted array data lead to erroneous DOA estimation results.

The effect of MC eventually decreases as the distance between the antenna pairs in

the array increases [16–18]. Hence, the antennas should be placed far from each

other increasing the array aperture. However, as the array aperture becomes larger,

spatial aliasing occurs if the inter-element distance exceeds the half wavelength [19].

Usually, the array separation is selected as half-wavelength and MC is calibrated

using signal processing techniques [6, 15, 20].

There are several methods in the literature which estimate the DOA angles in antenna
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arrays with MC [6,21–24]. The effect of MC is usually mitigated by using the special

structure of the MC matrix for fixed array geometries such as linear [15], circular [6]

or rectangular [20] arrays. Uniform linear array (ULA) has a banded Toeplitz MC

matrix while uniform circular arrays (UCA) and uniform rectangular arrays (URA)

have circulant [6] and block-Toeplitz [20] MC structures respectively. If the array

structure has arbitrary geometry, the MC matrix for this kind of array does not have

any of these forms except that the MC matrix is symmetric [25]. Since the structure

of the MC matrix is important to deal with MC effect, MC mitigation for arbitrary

arrays is a harder problem in comparison.

In [6], an iterative approach is considered for DOA estimation using ULA and UCA

geometries in the presence of MC. In [21] and [22], rank reduction methods are

proposed for uniform array structures for uncorrelated source signals. Higher or-

der statistics is used in [23] for DOA estimation using UCA. DOA estimation under

multipath propagation and MC is investigated in [14,26,27]. In [14], a maximum like-

lihood estimator is derived for DOA estimation under multipath and MC for ULA. In

[26], a direct data domain approach is proposed with the MUSIC algorithm for DOA

estimation of coherent source signals using ULA. An ESPRIT-like method is pro-

posed in [27] for an antenna array with parallel ULA geometry. Mitigation of MC in

antenna arrays is still an open problem and being investigated by several researchers.

Gain and phase mismatches cause larger DOA estimation errors as compared to MC

since GPM corrupt the gain and phase information of the received signal which are

critical for the DF accuracy [28]. While the structure of the MC matrix depends on the

array structure, the GPM matrix is usually modeled as a diagonal matrix [6]. Several

array calibration methods are proposed in the literature in order to mitigate the effect

of GPM [6,7,28–30]. In order to correct the effect of GPM, array calibration is used in

[7] and [31] using calibration source antennas with known positions. In [7], a sensor

array with an arbitrary geometry is considered where GPM is calibrated. While above

methods consider the effect of only GPM on DOA estimation, joint calibration of MC

and GPM is performed in [6], [28] and [32].

Array calibration techniques can be divided into offline and online techniques. In

offline calibration, sensor array is calibrated using calibration sources with known
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locations [28, 31]. While this operation provides satisfactory results, it may be ex-

tremely complex to build the physical setup in certain cases. Moreover, the collected

calibration data may not represent the whole DF system behavior especially when the

system parameters change in time. In order to overcome these difficulties, online cal-

ibration techniques are proposed [6, 32]. In online scenario, calibration is performed

using the array output of incoming signals from unknown DOA angles. A joint pro-

cess is carried out where both the unknown GPM parameters and the unknown source

DOA angles are estimated at the same time.

Besides the array imperfections, model mismatches due to the near-field signals are

also an important issue for DF operation [33]. In order to obtain accurate DF per-

formance, far-field and near-field signals should be treated accordingly. In [34], the

ESPRIT algorithm is used for the localization of mixed far- and near-field sources.

In [35] and [36], cumulants are used together with the MUSIC algorithm in order to

treat both near- and far-field sources. In [37], the MUSIC algorithm is employed by

assuming well separated and statistically independent source signals. Similarly, [38]

employs the ESPRIT algorithm for the independent source signals in a uniform linear

array. Both [37] and [38] use additional assumptions which limit the practical appli-

cation of these methods. In [39] and [40], near- and far-field sources are assumed to

be uncorrelated while in case of multipaths, near-field sources are coherent with the

far-field sources.

While the effect of array imperfections on DF accuracy is limited, multipath is the

most problematic case within the DF error sources [33]. In multipath scenario, the

antenna array receives the same signal from different directions and the true direc-

tion of the source cannot be estimated unambiguously using conventional techniques

[12, 13]. Although multipath is a dominant factor in DF applications, independent

source signal assumption is usually made in the majority of proposed methods in the

literature [3,6,32,41]. When this assumption is violated, most of the DF methods fail

and cannot provide satisfactory estimation results.

In order to resolve the multipath signals, spatial smoothing is proposed for ULA [42]

and URA [43]. In [44] and [27], ESPRIT-like approaches are proposed to estimate

the DOA’s of coherent source signals in the presence of MC using URA and ULA

4



respectively. In [27], parallel-ULA geometry is used for coherent source localization

in case of MC where spatial smoothing [42] and the ESPRIT methods are utilized.

Maximum likelihood estimation is proposed to estimate the coherent source DOA’s in

[26] using ULA structure. When the array structure is different than ULA and URA,

smoothing algorithms cannot be employed since they require the Vandermonde array

model [11, 45]. For these array structures, array interpolation [46, 47] is proposed

to transform the array data to ULA or URA so that the smoothing methods can be

applied. However, such approaches also have several disadvantages one of which is

te angular sector dependency.

1.3 Thesis Overview

In this thesis, we proposed three new algorithms for the problems in DF applications

in the presence of array imperfections, model mismatches and multipath.

In the first problem, calibration of the antenna arrays mounted on aeronautical vehi-

cles is investigated. A method is proposed for the offline calibration of a DF antenna

array mounted on the vehicle. In this case, the antenna array should be calibrated

before the DF operation. The calibration is done on an open field test area with a flat

ground plane. Ground reflections are the main sources of error corrupting the cali-

bration data. The proposed method eliminates the ground reflections by employing a

time-gating technique. Calibration data is generated by considering the platform ef-

fects. Complete calibration scenario is simulated by using numerical electromagnetic

simulation tools.

In the second problem, a DF scenario is considered where the antenna array is placed

in a mountainous terrain where near and far-field multipaths occur. This scenario is

built using 3-D digital map which is then meshed for a numerical electromagnetic

simulation in order to obtain antenna signals. When the antenna array receives mul-

tipath reflections which are coherent with the far-field line-of-sight signal, estimating

the far- and near-field components becomes a hard-to-solve problem. A new method

is proposed to estimate the 2-D DOA of the far-field source and to localize its near-

field multipaths. Far-field source DOA is estimated using a calibration technique. A
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near-to-far transformation is proposed for the estimation of the near-field source DOA

angles. In order to estimate the near-field range parameters, a compressive sensing

approach is presented where a dictionary with near-field sources with different ranges

is employed. As a result, the proposed method estimates the far-field and near-field

source DOAs as well as the range and the signal amplitudes of the near-field sources.

This method is evaluated using close-to-real world data generated by a numerical

electromagnetic tool, where the array and transmitter are placed in an irregular ter-

rain and array data is generated.

In the third problem, 2-D DOA and MC coefficient estimation is considered for ar-

bitrary array structures. There are limited number of works for arbitrary array struc-

tures [48–50] where the DOA estimation problem under MC is considered with the

assumption that the number of snapshots is large and the signal-to-noise ratio (SNR)

is sufficiently high. When there is a single snapshot, these methods cannot provide

accurate DF results. Hence, a new method is proposed for single snapshot scenario.

The sparsity of the received source signals in the spatial domain is utilized and a

compressed sensing approach [51–54] is presented in order to estimate the unknown

source parameters. In order to mitigate the effect of MC, joint-sparsity of the spatial

source directions and the MC coefficients is used and a joint-sparse recovery algo-

rithm with a single snapshot (JSR-SS) is proposed. Once the DOA angles are found,

the MC coefficients are estimated using the estimated DOA angles. The proposed

method is extended to the multiple snapshots, and the joint-sparse recovery algo-

rithm with multiple snapshots (JSR-MS) is developed. A new joint-sparsity structure,

namely, joint-block-sparsity is introduced to take advantage of the structure in the

composite matrix involving both DOA angles and the MC coefficients. Furthermore,

the proposed method is applied for direction finding in the presence of gain/phase

mismatches and multipath. Then, the DOA angles and the mismatch parameters are

estimated.

Some parts of this thesis are produced from the papers in [28, 33, 55] which are pub-

lished during the thesis work.
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1.4 Contributions

The main contributions of the thesis can be summarized as follows:

• [Ch. 3] An efficient calibration technique is proposed for DOA estimation using

DF arrays mounted on aeronautical vehicles [28]. The proposed method is

advantageous for simplifying the calibration procedure and reducing the cost

as well as decreasing the measurement errors compared to the conventional

approaches [56–58].

• [Ch. 4] Mixed far- and near-field source localization problem is solved for mul-

tipath signals [33]. While this problem is considered in the literature for inde-

pendent source signals [35, 37], this is the first work that treats the problem in

multipath scenario.

• [Ch. 5] 2-D DOA and MC coefficients are estimated for antenna arrays with

arbitrary geometries using a single snapshot. JSR with a single snapshot (JSR-

SS) algorithm is presented for the solution of this problem. The problem is

solved using mixed l2,1-norm in order to take advantage of joint-sparsity inherit

in the unknown vector.

• [Ch. 5] JSR-SS algorithm is extended to multiple snapshots and JSR with mul-

tiple snapshot (JSR-MS) method is developed. Triple mixed norms, l2,2,0-norm

and l2,2,1-norm, are introduced in order to take advantage of joint-sparsity in

case multiple snapshots. While mixed l2,1-norm is used in the literature [59,60],

this is the first time, triple mixed norms are employed.

• [Ch. 5] JSR-SS and JSR-MS methods are applicable for both 1-D and 2-D DOA

estimation in case of single and multiple snapshots respectively. In 2-D DOA

estimation, azimuth and elevation angles are coupled especially for unstruc-

tured arbitrary array geometries. This coupling generates biased estimates and

2-D DOA estimation becomes more problematic. Furthermore "pairing prob-

lem" [61] should be solved. The proposed methods use sparsity in two dimen-

sions in order to present a solution without a "pairing problem" when there

is mutual coupling between the antennas as opposed to the previous methods

[32, 48–50] where a 1-D problem is considered.
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• [Ch. 5] The DOA angles and MC coefficient parameters can be obtained simul-

taneously, and hence JSR-SS and JSR-MS can be used as an online calibration

[32] technique. This is an important advantage, especially for the applications

where mutual coupling coefficients change in time and online calibration is

required for an accurate and stable operation.

1.5 Organization of The Thesis

The remainder of this thesis is organized as follows. In Chapter 2, detailed infor-

mation is provided for the array imperfections, model mismatches and multipath. In

Chapter 3, a ground calibration technique is presented for DF arrays mounted on aero-

nautical vehicles. In Chapter 4, a source localization algorithm is presented for the

estimation of DOA angles of far- and near-field sources and the ranges of the near-

field reflection points. In Chapter 5, JSR-SS and JSR-MS algorithms are presented

for the estimation of 2-D DOA angles and the MC coefficients for arbitrary array

structures. Finally, in Chapter 6, conclusions are presented.
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CHAPTER 2

THE MAJOR ERROR SOURCES IN DIRECTION FINDING:

ARRAY IMPERFECTIONS, MODEL MISMATCHES AND

MULTIPATH

In this chapter, the major error sources in direction finding (DF) applications are

described in detail. In a DF scenario, the received signals from the antennas in the

array are processed in order to estimate the direction-of-arrival (DOA) angle of the

source locations. The output of an M -element antenna array can be given as

y(ti) = CΓA(Θ)s(ti) + e(ti) (2.1)

where y(ti) = [y1(ti), y2(ti), . . . , yM(ti)]
T , i = 1, . . . , T and T is the number of

snapshots. s(ti) = [s1(ti), s2(ti), . . . , sK(ti)]
T and sk(ti) is the baseband signal of

the kth source and e(ti) = [e1(ti), e2(ti), . . . , eM(ti)]
T is zero-mean spatially and

temporarily white Gaussian noise vector. A(Θ) is M × K nominal array steering

matrix and defined as

A = [a(Θ1), a(Θ2), . . . , a(ΘK)] (2.2)

where Θk = (φk, θk) represents the azimuth and elevation angles of the kth source

respectively. The mth element of the array steering vector a(Θk) is given as

am(Θk) = exp
{
j

2π

λ
rTk pm

}
(2.3)

where j =
√
−1, rk = [cos(φk) sin(θk) sin(φk) sin(θk) cos(θk)]

T , λ is the wave-

length and pm = [xm ym zm]T is the mth antenna position. C and Γ are the mutual

coupling and gain/phase mismatch matrices respectively. The structures of C and Γ

are defined in the following parts of this chapter.
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2.1 Mutual Coupling

When transmitted signal is received by an antenna array, each antenna in the array re-

transmits a part of the signal due to impedance mismatch. These retransmitted signals

are received by each antenna proportional with the distance between the retransmit-

ting and receiving antennas. Hence, a coupling between the receiving antennas occurs

which is called as mutual coupling (MC).

In Fig. 2.1, an antenna array with two passively loaded antennas is shown [62]. As it

is seen, the incident wave strikes the left antenna where it is received and re-scattered.

The incident wave and re-scattered waves are vectorially added and received from the

right antenna. The same scenario also occurs for the left antenna leading to a coupling

between the received signals in the array.

Figure 2.1: An antenna array with two antennas in receive scenario.

MC is modeled in accordance with the geometry of antenna array. For mostly used

array geometries in DF applications, the MC matrix in the array signal model can be

structured as Toeplitz, circulant and block-Toeplitz for linear [15], circular [6] and

rectangular [20] arrays respectively. In the following, the MC matrix structures for

different array geometries are explained.

2.1.1 Uniform Linear Array

In a uniform linear array (ULA), the antennas are placed with equal spacing as shown

in Fig. 2.2. The distinct MC coefficients are {cm}Mm=1 for M -element antenna array
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Figure 2.2: Placement of an M = 8 antennas in a uniform linear array.

and the form of the MC matrix for an ULA is given as

CULA =



c1 c2 c3 . . . cM

c2 c1 c2 . . . cM−1

c3 c2
. . . . . . ...

... . . . . . . c1 c2

cM cM−1 . . . c2 c1


. (2.4)

Figure 2.3: Placement of an uniform circular array in xy-plane.

2.1.2 Uniform Circular Array

In a uniform circular array (UCA), antennas are placed in the circumference of the

array center as shown in Fig. 2.3 [63]. The structure of the MC matrix depends on
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whether the number of antennas in the array is even or odd. Then, the form of the MC

matrix for UCA is given as follows [6]

For M is even:

CUCA =



c1 c2 . . . cL cL−1 . . . c2

c2 c1 c2

... c2
. . . . . .

cL
. . .

cL−1

... . . . ...

c2 . . . c1


(2.5)

For M is odd:

CUCA =



c1 c2 . . . cL cL . . . c2

c2 c1 c2

... c2
. . . . . .

cL
. . .

cL
... . . . ...

c2 . . . c1


(2.6)

where L is the number of distinct MC coefficients and it is given as

L =

 M+1
2
, M odd

M+2
2
, M even

. (2.7)

2.1.3 Uniform Rectangular Array

In a uniform rectangular array (URA), antennas in the subarrays are placed in the

array uniform linearly as in the Fig 2.4 where an M × N array is shown [64]. The

URA consists of M subarrays with size N . Due to the uniform linearity of each

subarray, the MC matrix for subarrays is modeled as a Toeplitz matrix. Then, the
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Figure 2.4: Placement of an M ×N uniform rectangular array.

complete MC matrix of URA has a Block-Toeplitz structure, i.e, [20]

CURA =



C1 C2 . . . CM−1 CM

C2 C1 C2 . . . CM−1

... C2
. . . . . . ...

CM−1
. . . . . . C1 C2

CM CM−1 . . . C2 C1


(2.8)

where CURA is an MN × MN matrix for M × N array in 2-D plane. Cm is a

Toeplitz MC matrix corresponding to the mth subarray for m = 1, . . . ,M and Cm is

constructed as

Cm = Toeplitz{[c(m)
1 , c

(m)
2 , . . . , c

(m)
N ]} (2.9)

where c
(m)
n is the MC coefficient in the mth subarray for n = 1, . . . , N and

Toeplitz{·} is the Toeplitz operation.

2.1.4 Randomly Placed Array

In a randomly placed array (RPA), antennas are arbitrarily placed in 2-D plane as

shown in Fig. 2.5. Unlike the above array geometries which have uniform structures,

an RPA has no uniform structure. Therefore the MC matrix does not have a special
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Figure 2.5: The placement of M = 16 antennas in a randomly placed array.

form except symmetry [25]. The form of the MC matrix for an RPA is given as

CRPA =



c1,1 c1,2 c1,3 . . . c1,M

c2,1 c2,2 c2,3 . . . c2,M

c3,1 c3,2
. . . . . . ...

... . . . . . . cM−1,M−1 cM−1,M

cM,1 cM,2 . . . cM,M−1 cM,M


(2.10)

where ci,j = cj,i is the MC coefficient between the (i, j)th antenna pair in the array

for i, j = 1, . . . ,M .

2.2 Gain/Phase Mismatches

Antenna arrays use radio frequency (RF) chains to receive signals and downconvert to

baseband. These RF chains for different antennas have different gain and phase mis-

match contributions for the received signal. Furthermore, each antenna has a different

gain and phase for a given DOA. Another cause of mismatch is the differences in the

electronic circuitry of the antennas and the receiving media such as cables. Cables

with different lengths and materials introduce additional gain and phase mismatches.

A DF processor should equalize these gain/phase mismatches in order to estimate
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DOA angles with a sufficient accuracy.

While the structure of the MC matrix changes for different array geometries, a

gain/phase mismatch matrix is usually represented by a diagonal matrix as follows

[6]

Γ =


γ1 0 . . . 0

0 γ2
. . . ...

... . . . . . . 0

0 . . . 0 γM

 (2.11)

where {γm}Mm=1 are the mismatch parameters for M -element array.

2.3 Model Mismatches of Near-field Signals

In most of the DF applications, it is assumed that the transmitter source is located

in the far-field of the antenna arrays [11, 65]. While this assumption is usually true

for DF applications, reflections in the near vicinity of the array are also received

[33,66,67]. The array model of these reflections differs from the far-field array model

as the distance of these reflections get closer to the array. This scenario is depicted

in Fig. 2.6 where the electromagnetic (EM) field radiation of sources located in the

near- and far-field of the antenna array is given. As it is seen, when the source is in the

near-field, where the transmitter range satisfies d < 2D2

λ
whereD is the array aperture

and λ is the wavelength, the EM fields received by the array are spherical or curved.

As these fields travel out from the source (i.e., d > 2D2

λ
), rounding becomes less and

the shape turns into more planar. Therefore, the antenna array receives planar waves

when the source is in the far-field.

In order to investigate the difference between two array models, a computer simula-

tion is done. For this purpose, an 8-element uniform linear array composed of iden-

tical antennas with half-wavelength spacing is considered as shown in Fig. 2.7. A

transmitter antenna is located with distance r from the array with the azimuth and

elevation angle φ = 50◦ and θ = 90◦ respectively. The operating frequency is

f = 30MHz and the corresponding wavelength is λ = 10m. Note that all the an-

tennas have isotropic antenna pattern. The far-field steering vector is calculated using
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Figure 2.6: Electromagnetic radiation of a source located in the near-field (left) where

the range of the transmitter source d < 2D2

λ
and far-field (right) of the antenna array

(i.e., d > 2D2

λ
). D is the array aperture.

Figure 2.7: Placement of an M = 8 antennas in a uniform linear array.

the far-field array model as

aFAR(Θ) = [aFAR1 (Θ), aFAR2 (Θ), . . . , aFARM (Θ)]T (2.12)

where

aFARm (Θ) = exp
{
j

2π

λ
rT pm

}
(2.13)

where r = [cos(φ) sin(θ) sin(φ) sin(θ) cos(θ)]T and pm = [xm ym zm]T is the mth

antenna position. The near-field steering vector is calculated as [28]

aNEAR(Θ, d) = [aNEAR1 (Θ, d), aNEAR2 (Θ, d), . . . , aNEARM (Θ, d)]T (2.14)

where

aNEARm (Θ, d) = exp

{
−j 2π

λ
d

(√
1− 2

d
rTpm +

pTmpm
d2
− 1

)}
. (2.15)
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Then the norm of the difference of steering vectors (i.e., ||aFAR(Θ)−aNEAR(Θ, d)||2)

is calculated for different d values and the result is presented in Fig. 2.8. The figure

shows the difference between the near- and far-field models as a function of the range

of the transmitter. The dashed line is 2D2

λ
where D is the array aperture. As it is

seen, the difference decreases as the range of the source increases. In this case, the

near-field model converges to the far-field model as expected. For small values of d

where the source is located in the near-field of the array, the difference is large so that

there is a mismatch between two array models.
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Fresnel region ends (2D2/λ)

Figure 2.8: Difference between near- and far-field array models versus the range of

the transmitter source.

The effect of model mismatch increases as the operating frequency decreases since

the range of near-field region is frequency dependent. Therefore model mismatch is

mostly effective for low frequencies such as HF (3-30MHz) band for practical appli-

cations. In an HF DF scenario, there is usually a source together with its reflections

[65]. These reflections are observed in the near-field of the antenna array. In this re-

gion, the angular field distribution of the antenna array depends on the range of these

reflections, whereas in the far-field model, the shape of the antenna array pattern is

independent of the distance between the source and the receive array. Therefore this

distance should be taken into account to model the received signals accurately.
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Figure 2.9: A multipath scenario where the transmitter signals is received from dif-

ferent paths.

2.4 Multipath

In DF applications, a source signal is usually reflected from the surfaces in the trans-

mission path (e.g. hills, buildings, etc.) as shown in Fig. 2.9. In this case, the original

signal and the reflected signal are received by the antenna array with different direc-

tions. In this case, the array covariance matrix becomes singular. As an example,

consider the multipath scenario where the output of an array for narrowband model

[11] is given as

y(ti) = A(Θ)s(ti) + e(ti), i = 1, . . . , T (2.16)

where A(Θ) = [a(Θ1), a(Θ2)] is the array steering matrix for two signal paths from

different directions. s(ti) = [s1(ti), s2(ti)]
T is a 2× 1 vector composed of coherently

received source signals and s2(ti) = αs1(ti) where α = ejϕ represents the delay

between s1(ti) and s2(ti). Then the array covariance matrix becomes

Ry =
1

T

T∑
i=1

y(ti)yH(ti) = A(Θ)RsAH(Θ) + Re (2.17)

where Rs is the signal covariance matrix and rank{Rs} = 1 while there are K source

DOA angles to be estimated. Due to the rank-deficiency of array covariance matrix,

the eigenstructure-based algorithm such as MUSIC [3] and ESPRIT [41] fail to deter-

mine the DOA’s of K sources. Therefore, multipath is one of the major error sources

in DF applications.
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CHAPTER 3

CALIBRATION OF ANTENNA ARRAYS FOR

AERONAUTICAL VEHICLES ON GROUND

Antenna arrays mounted on platforms require calibration in order to function appro-

priately. In this chapter, a new method for the calibration of a DF array mounted in

front of a UH-60 helicopter is presented. The proposed method is advantageous for

its accuracy, simplicity and cost effectiveness.

3.1 Introduction

Calibration of antennas mounted on aircrafts is a challenging task. Antenna arrays

for direction finding (DF) are usually designed and tested in isolated environments

such as the anechoic chambers [68]. When these arrays are placed on platforms

like UAVs (Unmanned Aerial Vehicle), planes or helicopters, scattering, reflection

and diffraction from the platform change the response of the antenna array for the

incoming source signal [69]. Therefore antenna array should be calibrated while it

is mounted on the platform. This task is a nontrivial, time consuming, sensitive and

costly process. The motivation of this study is to propose a method to simplify this

procedure decreasing the cost and time duration as well as increasing the accuracy.

There are two major ways of calibration for the antenna arrays mounted on aeronau-

tical platforms. In the first approach, calibration is performed when the platform is

on the air [56] flying over a predetermined course. The standard approach for on-

the-air calibration is to fly the vehicle in a circle above a transmitting antenna with a

low depression angle and collect the calibration data for every five degrees and for a
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range of frequencies. This process has several limitations since the airplane cannot

keep a steady depression angle and flying course due to several factors such as mete-

orological conditions and dynamics of the flight. This is also a very costly and time

consuming process.

The second approach for calibration is to use an anechoic chamber where the aircraft

is placed together with a transmitting antenna positioned away from the aircraft as far

as possible [68]. This approach has also serious limitations. It is costly and difficult to

build such an anechoic chamber which should have a large volume to take an aircraft

inside. In fact, there are only a few examples of such chambers. Furthermore, these

sites cannot be used for accurate characterization of platform effects on the antenna

array especially for low frequencies. An alternative to anechoic chamber is to use

an open field [70]. In this case, there are strong multipaths from the ground plane.

Electromagnetic absorbers can be used to decrease ground reflections [71]. This also

has limitations since absorbers designed for a large frequency span (i.e. 50MHz-

1GHz) are difficult to construct and they are costly.

An alternative approach to inside the anechoic chamber calibration is to use a scaled

mock-up for the aircraft and install the antenna array on this structure [72]. This ap-

proach has certain limitations as well. The antenna array mounted to the mock-up

should also be scaled appropriately and manufactured with high precision. Other-

wise, the measurements do not completely reflect the practical case. One of the most

convenient and cost effective analysis technique for installed antenna performance

prediction is to use numerical electromagnetic simulation tools [73].

Calibration of antenna arrays for direction finding purpose is investigated for airborne

platforms in the literature. The performance of the DF antennas is investigated in

[57] and [58] without considering the multipath from the ground which causes large

errors. In [57], DF performance is evaluated for antenna array mounted on a UAV. In

[58], calibration is directly performed by using the comparison of the measured data

and the simulation results which include the platform effects and mutual coupling.

Ground reflection is an important source of error in calibration. The effect of ground

plane is investigated in [74] for monopole antenna arrays.

In this part of the thesis, a new method is proposed to calibrate the DF antenna ar-
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rays on ground for the aeronautical vehicles. Ground reflections are removed from

the calibration data using a time-gating approach. While time-gating is a well-known

method for antenna measurements [75], it has not been used for DF array calibration

mounted on aeronautical vehicles before. Calibration process is implemented on a fa-

cility where the vehicle is elevated over the ground plane and the transmitting antenna

is placed on an appropriate distance from the vehicle. The selection of this distance

and vehicle height becomes important factors as it is expressed in the following parts

of this chapter. The main problem of over-the-ground calibration is the ground reflec-

tions. These reflections alter the received signal significantly and the collected data

is usually useless without appropriate corrections. When time-gating method is used,

reflection-free calibration data is obtained for direction finding. The proposed method

is evaluated using a numerical electromagnetic simulation tool, FEKO [76] where a

DF array mounted on a UH-60 helicopter is considered. The platform effects are

considered and a composite calibration matrix is used for direction finding. The re-

sults show that the proposed approach is very effective. It presents several advantages

compared to previous approaches. The cost of the proposed approach is significantly

lower since the method is performed in an open field. The size of the aircraft does

not pose a major problem in general. The time and manual labor involved is lower

than the alternatives especially over-the-air calibration. The method also allows the

correct characterization of platform effects on the DF array since the transmit antenna

can be positioned at a large distance. The method is essentially performed in time and

the calibration data for any frequency can be obtained easily. Overall accuracy of the

method is good which leads to an effective calibration technique in practice.

3.2 Test Setup and The Problem Description

In this chapter, offline calibration of a DF antenna array mounted on an aeronautical

vehicle is considered. More specifically, a UH-60 helicopter is selected as the plat-

form. A four element dipole antenna array is mounted in front of the helicopter as

shown in Fig. 3.1. The array is a UCA with the antenna and array dimensions are

given in Table 3.1. The target is to obtain the calibration data for the antenna array so

that the DF algorithms work with good accuracy.
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Figure 3.1: The antenna array is composed of four dipoles mounted in front of a

UH-60 helicopter.

The open-field test area and the platform placement is shown in Fig. 3.2. Test facility

is considered as a 200m× 200m open-field with a flat ground plane. It is assumed that

there is no obstacle in the near vicinity of the test field which may cause additional

disturbances. The helicopter is elevated above the ground and flipped upside down so

that a similar condition for a source emitting from the ground to the airborne vehicle is

generated. The transmitting antenna is elevated to a height so that sufficient elevation

for the calibration is obtained. The transmit antenna is identical to the array antennas

and the parameters for the test field are given in Table 3.2.

Table 3.1: Antenna array dimensions.

Array diameter d1 0.4242m
Distance from the platform d2 0.1m
Gap for the dipole l1 0.05m
Length of the dipole l2 0.3m
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Figure 3.2: The open-field test area and platform placement.

Table 3.2: Calibration and test setup parameters.

Height of the helicopter over the ground h1 16m
Height of the transmitter h2 24m
Horizontal distance of transmitter d 100m
Elevation angle θ 76.5◦

3.2.1 Problem Description and The Model

The problem is the calibration of the DF system mounted on a UH-60 helicopter

as shown in Fig. 3.1 and Fig. 3.2. The MUSIC algorithm [3] is selected as the DF

algorithm. It is known that the MUSIC algorithm approaches to the optimum solution

asymptotically under ideal conditions [77].

There are two problems that should be solved for a satisfactory DF performance. The

first and the most important problem is the ground reflections. Ground reflections

corrupt the data collected by the DF antennas. The effect of these reflections decreases

as the operating frequency increases. Nevertheless, ground reflections are the major

sources of error especially in the VHF/UHF (30MHz-1000MHz) range. The second

problem is the multipath components due to the platform as shown in Fig. 3.3. The

MUSIC algorithm does not perform well for the antenna arrays mounted on platforms

like the one in Fig. 3.3 due to the reflections from the ground and the platform.

In time domain, the output of the ith antenna yi(t) can be expressed as the convolution

of the antenna impulse response and the source signal, i.e.,

yi(t) = hi,eff (pi, t,Θ) ∗ x(t− τi) + ei(t) (3.1)
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Figure 3.3: Direct path and the reflections from the ground and the platform.

where pi = (xi, yi, zi) is the position of the ith antenna and the DOA of the source

is Θ = (φ, θ) where φ and θ denotes the azimuth and elevation angles respectively.

x(t) = Re{s(t)ejωct} is the source signal, ωc is the center frequency and s(t) is the

complex baseband signal. τi is the time delay with respect to a reference point in the

coordinate system. ei(t) is zero-mean spatially and temporarily white Gaussian noise

in the ith antenna. In this study, a single source is assumed during the calibration

process. For simplicity, the parameters are taken as Ψi = (pi, t,Θ). The ith antenna

impulse response, hi,eff (Ψi), for the system in Fig. 3.3 can be written as

hi,eff (Ψi) = hi,c(Ψi) + hi,gnd(Ψi). (3.2)

Here hi,gnd(Ψi) is the component due to ground reflections and hi,c(Ψi) is the desired

component which includes the platform effects. When (3.1) and (3.2) are combined,

i.e.,

yi(t) = yi,direct(t) + yi,gnd(t) + ei(t) (3.3)

is obtained, where

yi,direct(t) = hi,c(Ψi) ∗ x(t− τi) (3.4)

yi,gnd(t) = hi,gnd(Ψi) ∗ x(t− τi)

If yi,direct(t) and yi,gnd(t) do not overlap in time, they can be effectively separated

in time domain by time-gating. In order to separate the ground reflections from the

desired component, test field parameters in Table 3.2 and Fig. 3.2 should be selected

appropriately. As the distance between the transmit antenna and the platform, d, in-

creases, yi,direct(t) and yi,gnd(t) start to overlap in time. This is due to the fact that
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the path length difference between the ground and direct path decreases. Therefore

ground and direct path waves reach to the antenna array about the same time. Fig.

3.4a shows the path length difference as h1 and d change when h2 = 24m is fixed.

Fig. 3.4b is obtained by changing h2 and d when h1 = 16m. The effect of h1 and h2

on the path length difference is seen in Fig. 3.4c when d = 100m. As it is seen from

these figures, path length difference increases as h1 and h2 increase. d is desired to be

small for a better time separation. On the other hand, multipath effects due to the plat-

form change as the transmitter approaches to the platform. Therefore the transmitter

is desired to be as far away as possible from the platform to obtain calibration data

corresponding to a far-field transmitting source. This trade-off can be solved with

a trial and error approach since an analytical expression cannot be found for such a

complex scenario. The parameters for the calibration setup are shown in Fig. 3.2 and

the parameter vector is q = [h1, h2, d, θ]
T . In order to select suitable values for these

parameters, θ is fixed initially. Then h1 is selected by considering the practical condi-

tions such as the size of the platform. h2 is chosen similarly for the transmit antenna

by considering the possible antenna tower height and elevation angle. A trial and er-

ror approach is considered using numerical electromagnetic simulations and suitable

d value is selected such that the direct path and the multipath signal from ground do

not overlap. Table 3.2 shows the set of suitable test field parameters obtained in this

work using the above procedure.

Once the ground reflections in (3.2) are eliminated, the array output can be written in

Fourier Domain using the narrowband model [11], i.e.,

Y(ω) = M(ω,Θ)a(ω,Θ)S(ω) + E(ω) (3.5)

where Y(ω) = [ Y1(ω) Y2(ω) · · · YM(ω) ]T , S(ω) is the baseband source spec-

trum and M is the number of antennas. a(ω,Θ) = [ a1(ω,Θ) · · · aM(ω,Θ)) ]T is

the nominal steering vector composed of a single source component, i.e.,

ai(ω,Θ) = exp
{
j

2π

λ(ω)
rTpi

}
i = 1, 2, . . . ,M (3.6)

where λ(ω) is the wavelength at frequency ω, r = [cosφsinθ, sinφsinθ, cosθ]T and

pi = [xi, yi, zi]
T is the antenna positions. M(ω,Θ) is a composite matrix defined as

M(ω,Θ) = C(ω)Γ(ω,Θ) (3.7)
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Figure 3.4: Path length difference variation for (a) h1 and d are changed (h2 = 24m),

(b) h2 and d are changed (h1 = 16m), (c) h1 and h2 are changed (d = 100m).

where C(ω) is the direction independent M ×M mutual coupling matrix (MCM).

Γ(ω,Θ) is a diagonal matrix which is both frequency and direction dependent. Note

that Γ(ω,Θ) includes the channel effects [11]. While Γ(ω,Θ) is different for different

Θ directions, it can be assumed to remain approximately the same for small angular
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sectors covering the range of angles between (φ − φε, θ − θε) and (φ + φε, θ + θε)

where (φε θε) defines the sector extension. Once the ground reflections are eliminated

and mutual coupling is removed, the actual steering vector ā(ω,Θ) and the nominal

steering vector a(ω,Θ) are related as

ā(ω,Θ) = Γ(ω,Θ)a(ω,Θ) (3.8)

Γ(ω,Θ) = diag(γ1, γ2, . . . , γM). (3.9)

Then, the ith element of this diagonal matrix is obtained from the ith element of the

steering vectors as

γi =
ai(ω,Θ)

ai(ω,Θ)
(3.10)

The calibration for the MUSIC algorithm requires both C(ω) and Γ(ω,Θ). The

MCM, C(ω), is found for each frequency using the method described in [78] before

the array is mounted on the platform.

3.2.2 Mutual Coupling Matrix

Mutual coupling among the antennas in the array causes a DF error. Moreover this

error is frequency dependent and should be corrected for the operating frequency.

MCM is found for the frequency range of f ∈ [150MHz − 450MHz]. Mutual cou-

pling matrix for a UCA composed of identical antennas is direction independent and

has circulant structure. As it is described in [78], mutual coupling matrix can be found

easily by using a system theoretic approach where the coupled voltages are mapped

to the uncoupled voltages through the inverse of MCM. MCM is found independent

of the platform effects when the array is placed on an idealistic environment such as

an anechoic chamber. In our case, FEKO and numerical electromagnetic simulations

are used to collect the data and compute the MCM. The coupled and the uncoupled

voltages are measured. The coupled voltages are obtained by using a single plane

wave source placed in Θk = (φk, 90◦) where φk changes between 0 and 350 degrees

in 10 degrees resolution while all the antennas in the array do exist. The uncoupled

voltages are obtained by considering the antennas one-by-one separately while all the

other antennas are removed for the same plane wave source. The coupled voltages
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for K = 36 measurement directions {Θk}Kk=1 are stacked in the matrix Vc as

Vc(ω) = [ vc(ω,Θ1) vc(ω,Θ2) . . . vc(ω,ΘK) ] (3.11)

where

vc(ω,Θk) = [ vc1(ω,Θk) vc2(ω,Θk) . . . vcM(ω,Θk) ]T (3.12)

and the uncoupled voltage matrix Vuc(ω) is obtained as

Vuc(ω) = [ vuc(ω,Θ1) vuc(ω,Θ2) . . . vuc(ω,ΘK) ] (3.13)

where

vuc(ω,Θk) = [ vuc1 (ω,Θk) vuc2 (ω,Θk) . . . vucM(ω,Θk) ]T (3.14)

Note that {vucm (ω,Θk)}Mm=1’s are found separately in this process. Then the transfor-

mation between the coupled and the uncoupled matrix is obtained by a transformation

matrix T(ω) as

T(ω)Vc(ω) = Vuc(ω) (3.15)

and the MCM is found as

C(ω) = T−1(ω). (3.16)

3.2.3 Sampling in Frequency

The impulse response of a linear time invariant (LTI) system can be found both in

time and frequency. In this study, the impulse response of the DF antenna system

mounted to a platform is obtained in frequency domain. This is due to the fact that

FEKO can perform electromagnetic simulations in frequency more effectively.

Nyquist Sampling Theorem (in frequency) [79]:

Assume that Y (ω) corresponds to a time-limited signal with

y(t) = 0, for t ≥ Ta and t < 0 (3.17)

Then Y (ω) can be uniquely determined by its samples

Y [k] = Y (k∆ω), k = 0, 1, . . . , N, k ∈ Z+ (3.18)
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if the following condition is satisfied

Ts =
2π

∆ω

≥ Ta (3.19)

A time-limited signal is not bandlimited. Ideally, infinitely many frequency samples

are needed for such signals. However similar to time-domain sampling [80], either

the signal is assumed to be bandlimited or anti-aliasing filters can be used. Note that

any practical antenna impulse response can be assumed to be time-limited [81]. In

this study, frequency domain sampling is used in order to obtain the discrete-time

impulse response of the DF antenna array mounted on the platform as shown in Fig.

3.1. N =2000 uniform samples in frequency are taken. The frequency step is selected

as ∆f = 500kHz where ∆ω = 2π∆f . Note that Ta ≤ 2µs for this case. The samples

are taken in f ∈ [500kHz, 1GHz] range. Limiting the largest frequency of samples

fmax corresponds to windowing in frequency domain. This is a convolution with a

sinc function in time which generates ringing in time waveform. Unfortunately this

ringing cannot be corrected after sampling. The best way to deal with it is to select

fmax sufficiently large. The DC component of the samples at f=0 Hz is not taken for

the simulation process since the sample magnitude at this frequency is zero.

Sampling in frequency is realized using FEKO simulations. Transmitting antenna in

Fig. 3.2 is positioned at a selected azimuth angle φi and at a fixed elevation angle

θi = 76.5◦. In our case, we have considered only a single elevation angle for sim-

plicity. Additional elevation angles can be considered for a more detailed calibration

procedure. A sinusoidal wave is transmitted with a frequency ω. Here ω is changed

uniformly in discrete steps and 2000 samples in 1GHz band are taken. The numer-

ical electromagnetic simulation results for each frequency are recorded for further

processing in MATLAB. The recorded data is composed of the complex values of

currents observed at each DF antenna for the excitation wave. The current values

have contributions due to both ground reflections and multipath components from the

platform as well as the direct path as shown in Fig. 3.3.
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3.3 Time-Gating Method

Time-gating is a well-known approach in different fields including antenna measure-

ments [75]. The idea in time-gating is to multiply a time signal with a window in time

to extract only the intended part of the signal. Time-gating is used to find the antenna

factor [82] and near-field to far-field conversions [83]. In this study, time-gating is

applied to remove the ground reflections from the array signals. Transmitted signal

should be a pulse with a short duration so that the ground reflection does not overlap

with the useful part of the signal in time. Ideally, an impulse will be the best choice.

While it is not possible to generate an impulse in continuous-time, Discrete Fourier

Transform (DFT) property can be used to obtain discrete-time impulse or unit sample

function, i.e.,

DFTN{δ[n]} = 1, ∀ωk, ωk =
2πk

N
k = 1, 2, . . . , N (3.20)

where DFTN stands for the N−point DFT. S(ω) = 1 is assumed for equation (3.5).

Note that when DFTN and inverse DFTN are used to relate the time and frequency

response, ∆f = 500kHz leads to a sampling step of ∆t = 1
2N∆f

= 0.5ns in time

domain.

Numerical electromagnetic simulations are performed in FEKO [76] using the Ge-

ometrical Optics (GO) approach. The model is built using the real dimensions of a

Sikorsky UH-60 helicopter. The ground plane is simulated with a dielectric material

which has the loss tangent of 0.04. The simulations are repeated for f ∈[500kHz,

1GHz]. At each frequency, transmit antenna is used to transmit a sinusoidal plane

wave. The magnitude and the phase of the observed excitation at each element of

the UCA are recorded. Therefore the impulse response of the antenna array in (3.1)

is obtained in the frequency domain. In order to obtain the time domain samples,

2N−point inverse DFT is used. This is done by generating the additional N−point

data in frequency through complex conjugation since DFT of a real signal is conjugate

symmetric.

In Fig. 3.5, the magnitude of the currents are shown for different frequencies at each

antenna in the array. Note that the DFT of a real signal has conjugate symmetry as

shown in Fig. 3.5. Fig. 3.6 shows the time domain waveforms obtained through
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the inverse DFT. As it is seen from Fig. 3.6, ground reflections are separate from

the useful part of the waveform and time-gating can be used to eliminate the ground

reflections. The small amplitude of the ground reflection is due to the attenuation of

the reflected wave.

When time-gating is applied, the time domain response in Fig. 3.7 is obtained. The

frequency domain responses after time-gating process are given in Fig. 3.8. Once

the array output in Fourier domain is obtained as in Fig. 3.8, actual array steering

vector ā(ω,Θ) is constructed by stacking the antenna responses in a vector for a

given frequency ω.
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Figure 3.5: The signal waveforms in frequency domain before the time-gating for

each antenna for the DOA (0◦, 76.5◦).

3.4 Calibration Data and DF Test

The steps for the calibration procedure are given in Fig. 3.9. During the calibration

procedure, calibration data is collected by turning the transmit antenna around the

antenna array and the platform in 360 degrees in the azimuth plane. Usually uniform

discrete angular steps are used. The simulations for a single direction Θi, take about

10 hours for the selected platform. Therefore, non-uniform angular steps are used
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Figure 3.6: The signal waveforms in time domain before the time-gating for each

antenna for the DOA (0◦, 76.5◦).
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Figure 3.7: The signal waveforms in time domain after the time-gating for each an-

tenna for the DOA (0◦, 76.5◦).

to decrease the computational load and obtain a reasonably good overall DF perfor-

mance. There are 36 azimuth angles where the calibration is performed. They are
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Figure 3.8: The signal waveforms in frequency domain after the time-gating for each

antenna for the DOA (0◦, 76.5◦).

listed in degrees as shown below

φ ∈ [0 3 10 20 40 60 80 88 100 108 114 120 128 134 140 144 150 160 170 180 189

210 250 263 273 280 290 297 300 307 323 330 335 340 350 359]T .

The above calibration angles are selected in an ad-hoc manner to decrease the DF

error below 3 degrees. Elevation angle is fixed as θ = 76.5◦ as shown in Fig. 3.2.

The actual steering vector ā(ω,Θ) is used to calibrate the corresponding DOA angle

Θ as well as its neighborhood such that the average RMS (root mean square) error in

the neighborhood of the DOA angle Θ is small. The calibration data is composed of

the mutual coupling matrix C(ω) and Γ(ω,Θ) which are obtained in 3.10 and 3.16.

The test for the evaluation of the calibration process is done as follows. DF array

mounted on UH-60 helicopter is modeled in FEKO when the UH-60 is on the air and

there is no ground plane. A plane wave with a frequency ω is transmitted from the

direction Θi = (φi, 103.5◦), φi ∈ [0◦, 359◦] and the array response Y(ω) is obtained.
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Figure 3.9: The calibration procedure.

The estimate for the composite matrix M(ω,Θ) in (3.7) is obtained as it is described

in Sec. 3.2.2. The covariance matrix estimate R̂ = Y(ω)Y(ω)H = ÛΛÛ
H

and the

eigenvector matrix Ĝ corresponding to the noise subspace eigenvectors is computed

[3]. Then the classical MUSIC pseudo-spectrum P (Θi) is evaluated [8] as

P (Θi) =
1

aH(ω,Θi)MH(ω,Θi)ĜĜ
H

M(ω,Θi)a(ω,Θi)
. (3.21)

The peak in P (Θi) corresponds to the source direction.
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3.5 Simulation Results

In this section, DF performance for the proposed offline calibration method is eval-

uated by using both the MUSIC [3] and correlative interferometer algorithms [84].

Both of the algorithms use the same calibration data. A single source is assumed

while the UH-60 is on air. Noise-free observations are used. There is only a single

snapshot since FEKO results only a single observation for a given frequency. Note

that this is sufficient for a single source scenario. Simulations are performed in MAT-

LAB and both calibrated and uncalibrated DF performances are evaluated.

The test source is placed in Θi = (φi, 103.5◦) where φi is changed between 0 and

359 degrees in one degree resolution. Note that UH-60 is now assumed to be airborne

and DF array does see the transmitter with an elevation angle of θ = 180◦ − 76.5◦ =

103.5◦. The DF performances for different frequency bands are obtained. In Fig.

3.10, the azimuth DOA performance for 150MHz is shown when the helicopter is on

the air and there is no calibration. This figure shows the importance of the platform

effects. The DF performance is poor since the antenna array response changes when

the array is mounted on a platform like the UH-60 helicopter. Therefore, calibration

should take into account the platform effects.

In Fig. 3.11a and Fig 3.11b, the DOA estimation results are presented for 150MHz

and 450MHz respectively when the proposed calibration technique is applied. Note

that while the calibration data is generated when UH-60 is over the ground, test data

is obtained when the helicopter is on the air. The calibration angles are given in Sec.

3.4. CAL-MUSIC and CAL-CI are the calibrated MUSIC and correlative interferom-

eter algorithms respectively. NO CAL-MUSIC corresponds to the direct application

of the MUSIC algorithm without calibration. As it is seen from this figure, the perfor-

mance of the proposed approach at the calibration angles is very good which means

that the ground reflections are eliminated effectively and the platform effects are

calibrated appropriately. Correlative interferometer has slightly worse performance.

Even though there is interpolation between the calibration points, the calibration data

is not sufficient to model the nearby angular characteristics for the interferometer al-

gorithm. The direct application of the MUSIC algorithm without calibration results

very large errors. The estimation errors are not symmetric with respect to zero degrees
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Figure 3.10: The effect of helicopter platform on the azimuth DOA performance at

150 MHz when the aircraft is positioned on air with no ground reflections. There is

no calibration for the platform effects. Elevation angle is θ = 103.5◦.

which corresponds to the bore-sight or nose of the helicopter. This is due to the fact

that UH-60 is not symmetric and its tail blades generate an asymmetry. Therefore,

calibration data should be collected in 360 degrees for a better DF performance.

3.6 The advantages of The Proposed Calibration Technique

The advantages of the proposed calibration technique are as follows:

• The proposed method is implemented when the vehicle is on the ground and

it does not require anechoic chambers or radiation absorbing materials. There-

fore, it is not costly.

• Accurate calibration data can be obtained since the vehicle and the transmitter

antenna are steady during the calibration process.

• Since the calibration data is obtained in time domain, it can be used for a large

range of frequencies. This reduces the labor and time.
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Figure 3.11: Proposed calibration technique is applied when the UH-60 is on the

ground. Azimuth DOA performance at 150 MHz (a) and 450MHz (b), θ = 103.5◦.
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CHAPTER 4

FAR-FIELD DOA ESTIMATION AND NEAR-FIELD

LOCALIZATION FOR MULTIPATH SIGNALS

In practical direction-finding (DF) applications, multipath signals are important

source of error for parameter estimation. When the antenna arrays receive multi-

path reflections which are coherent with the far-field line-of-sight signal, estimating

the far- and near-field components becomes an important problem. In this chapter,

a new method is proposed to estimate the direction-of-arrival (DOA) of the far-field

source and to localize its near-field multipaths.

4.1 Introduction

Multipath distortion is the main source of error in many applications including direc-

tion finding (DF). While error sources like gain/phase mismatch [2], mutual coupling

[78] between antennas also have an impact on the DF accuracy, multipath results in

gross errors. Multipath components of a far-field source are generated by reflection,

diffraction and scattering in the region between the transmitter and receiving antenna

array. Far-field multipath components are observed from the structures close to the

transmitter. When the distance between the transmitter and DF array is large, the con-

tribution of these components to DF error is limited. Hence gross errors are observed

mostly due to the near-field multipath components.

In this study, DOA estimation problem is considered for a single far-field source with

its near-field multipath reflections. In the literature, there are several works on the

localization of the mixed far- and near-field sources. Most of these studies use the
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assumption of independent source signals. However this assumption is not valid in

practical applications [34–38]. Another disadvantages of these methods is that they

use an approximate near-field model [66, 67] which deviates significantly from the

exact near-field model as the range becomes smaller (e.g. < 0.62
√

D3

λ
where D is

the array aperture). In this study, exact near-field model is employed in order to model

the near-field multipaths more accurately and a new method is proposed for direction

finding and localization. The proposed method finds the 2-D DOA angles for the

far-field source and azimuth and range estimates for the near-field sources. Far-field

source DOA estimate is found using calibration and the MUSIC algorithm. In a sce-

nario where the DF array is placed in an arbitrary and irregular terrain, calibration

is essential for parameter estimation where some of the unknowns are direction de-

pendent. The need for calibration for the MUSIC algorithm is observed previously

in [85] where the gain-phase mismatch of antennas is corrected by using a fixed,

direction-independent calibration matrix with an assumption of ideal white noise. In

our case, we treat the problem for multipath case [28] where the calibration is used

to compensate for directional dependency as well. In addition, an optimum diagonal

calibration matrix is used by employing known transmit signals.

In order to estimate the near-field DOA angles, a near-field to far-field transformation

(NFT) is proposed. In [86] and [87], NFT is applied to array data where the correlated

near-field signals are treated. In our case, we consider mixed signals involving both

near- and far-field signals. Furthermore we consider the virtual array concept in or-

der to use circular array to obtain omni-directional DF performance. Hence our NFT

approach has two functions, namely, near-to-far and circular-to-linear array mapping.

The NFT matrix is used to map uniform circular array (UCA) output to a virtual uni-

form linear array (ULA) in order to use forward-backward spatial smoothing (FBSS)

[88]. It is shown that such a synthetic transformation matrix leads to sufficiently good

results even for close-to-real world scenarios. The accuracy of the NFT matrix can

be attributed to the use of exact near-field model as well as the model differences be-

tween near- and far-field sources. In order to estimate the near-field range parameters,

a compressive sensing technique [53,54] is used. A convex optimization problem for

the near-field range parameter estimation is outlined. A dictionary matrix generated

using the far- and near-field DOA angle estimates is used in this convex problem.
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The proposed method is evaluated using two data sets. One set of data is generated

in accordance with the array models where the method is based on. The other data

set is obtained from the electromagnetic simulation tool, Wireless Insite [89] using a

realistic scenario in an irregular terrain.

4.2 Problem Description and Array Model

In HF DF applications, the task is to find the HF transmitter DOA angle when both the

transmitter and receive array are placed in an irregular terrain. In HF, multipaths have

significant effects compared to Very High/Ultra High Frequency (VHF/UHF) bands.

Usually there is a single source [65] in a given frequency band. The array receives

several multipaths from the near-field terrain. Hence the main problem is to find the

DOA of the far-field source under the existence of coherent near-field multipaths. In

addition, the direction of the near-field multipaths as well as their ranges are desired

to be found. While far-field multipath components such as reflections from the iono-

sphere affect the DF accuracy, these are ignored in this work. Note that while such

far-field components decrease the accuracy, near-field multipath components have

much larger impact on the DF accuracy.

In this study, a single far-field source with multiple near-field multipaths is assumed.

The source signal is narrowband. Noise is assumed to be temporally and spatially

white, zero-mean Gaussian. The array consists ofM antennas and there areN sources

where N − 1 of these are near-field multipaths. The signal model can be given as

y(t) = α1a(Θ1)s(t) +
N∑
i=2

αiã(Θi, di)s(t) + e(t), t = 1, . . . , T (4.1)

where T is the number of snapshots, s(t) is the far-field source signal and e(t) is the

noise vector. Θi = (φi, θi) denotes azimuth φi and elevation angles θi respectively.

di is the range of the ith near-field source. αi is a positive scalar and represents the

signal amplitude. a(Θ1) is M × 1 array steering vector for the far-field source and its

mth element is given by

am(Θ1) = exp{j 2π

λ
rT pm} (4.2)
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where λ is the wavelength and r is given as

r = [cos(φi) sin(θi), sin(φi) sin(θi), cos(θi)]
T . (4.3)

pm = [xm ym zm]T is the antenna positions. ã(Θi, di) is the steering vector defined

for the ith near-field source and its mth element ãm(Θi, di) is defined with exact near-

field model as

ãm(Θi, di) = exp

{
−j 2π

λ
di

(√
1− 2

di
rTpm +

pTmpm
d2
i

− 1

)}
. (4.4)

In the literature, approximate array steering vector formulations [66] are given. A

commonly used approximate expression is

ãapm (Θi, di) = exp

{
j

2π

λ
[rTpm −

1

2di
r̃T p̃m]

}
(4.5)

where

r̃ = [1− cos2(φi) sin2(θi), 1− sin2(φi) sin2(θi), 1− cos2(θi)]
T (4.6)

and p̃m = [x2
m, y

2
m, z

2
m ]T . The difference between ãm(Θi, di) and ãapm (Θi, di) be-

comes large especially when di is small. Therefore exact near-field model and steer-

ing vector in (4.4) is used in this study.

4.3 Direction Finding for A Far-Field Source With Multipath Components

In this part, far-field source DOA is estimated by using a calibration operation in order

to model the array imperfections. In DF applications, where multipath distortion is

dominant, calibration is required to generate a priori information without which DF

problem is very hard to solve if it is not impossible [28]. In this study, multipath

signals are modeled in the far-field array model by using a calibration matrix. The

array model in (4.1) can be written for the mth antenna as

ym(t) = α1am(Θ1)s(t) +
N∑
i=2

αiãm(Θi, di)s(t) + em(t) (4.7)

which can always be written as

ym(t) = α1am(Θ1)s(t)(1 + βm2 + βm3 + · · ·+ βmN) + em(t) (4.8)
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where βmi is a complex direction-dependent coefficient. Then the array model for

far-field sources can be given as

y(t) = Γ(Θ)a(Θ)s(t) + e(t), t = 1, . . . , T (4.9)

where Γ(Θ) is a direction-dependent diagonal matrix and it represents the effect of

near-field multipaths on far-field source as well as the mutual coupling [61] between

the antennas and gain/phase mismatch errors. Note that the model in (4.9) has a sin-

gle far-field source and the artifacts from near-field sources are represented by Γ(Θ).

Hence, it is always possible to use the MUSIC algorithm to find Θ as long as Γ(Θ)

is known even if the near-field and far-field sources are coherent. Here, Γ(Θ) is

found by the calibration operation [28]. While a full matrix for better performance

and modeling accuracy may be preferred, the coefficients of this matrix cannot be

found from the calibration since there are more unknowns than the known terms in

our case. Let ā(Θi) be the calibration measurement obtained for the far-field source

in Θi = (φi, θi) angle. A number of calibration measurements should be collected for

a good DF performance. While DF performance improves as the number of measure-

ments increases, the cost, duration and labor involved in the calibration usually limit

these measurements. Let Ā = [ā(Θ1), ā(Θ2), . . . , ā(ΘP )] be the set of measurements

collected during the calibration for different azimuth and elevation angles in a given

operating frequency. The data is collected uniformly in δφ and δθ steps for the azimuth

and elevation angles respectively. Assuming that s(t) is known during calibration, an

estimate of ā(Θ) can be found as [2]

ˆ̄a(Θ) =

∑T
t=1 ȳ(t)s∗(t)∑T
t=1 |s(t)|2

. (4.10)

Then the elements of Γ(Θi) = diag(γ1, . . . , γM) can be found as

γim =
ˆ̄am(Θi)

am(Θi)
(4.11)

where ˆ̄am(Θi) in (4.10) and am(Θi) in (4.9) are the mth elements of the estimated

real steering vector and the nominal steering vector respectively. It is possible to

choose δφ = 5◦ and δθ = 5◦ and the calibration data can be interpolated to obtain

total angular coverage.

Once the calibration matrices Γ(Θi), i = 1, . . . , P are found, DOA angle for the

far-field source can be found using the MUSIC algorithm where pseudo-spectrum is
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given as

P(Θp) =
1

aH(Θp)ΓH(Θp)ĜĜ
H

Γ(Θp)a(Θp)
. (4.12)

Ĝ is a M ×M − 1 matrix corresponding to the noise subspace eigenvectors of the

covariance matrix

R̂ =
1

T

T∑
t=1

ȳ(t)ȳH(t). (4.13)

The MUSIC algorithm with calibration for a fixed elevation angle works as follows

(Cal-MUSIC):

1. Start with p = 0 and φp = 0◦.

2. Find the calibration angle φi, i = 1, . . . , P , which is closest to the search angle

φp, i.e. |φi − φp| is minimum and select the corresponding calibration matrix

Γ(φi) and set Γ(φp) = Γ(φi).

3. Compute the pseudo-spectrum P(φp).

4. Take φp+1 = φp + δφ and if p+ 1 = P , stop; otherwise continue from Step 2.

The above procedure is repeated for different elevation angles. The largest peak in

the P(Θp) spectrum corresponds to the far-field source DOA angle (φ1, θ1).

4.4 Near-field Source Localization

In this part, near-field source DOA’s and ranges are found given the observed array

output which includes both far- and near-field sources.

The idea in the proposed approach is to use near-field to far-field transformation

(NFT) matrix which maps the near-field steering vectors to far-field steering vectors.

Fortunately, such a transformation distributes the power of the far-field component

throughout the MUSIC pseudo-spectrum. Consequently, the far-field component be-

comes interference with a limited power for the transformed near-field observations.

Since the far-field and multipath components are coherent, the FBSS should be used

before the MUSIC algorithm to improve the rank of the covariance matrix.
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Figure 4.1: Placement of the real DF array (UCA) and virtually generated ULA for

near-field source localization.

The NFT matrix T has two functions. It converts the near-field sources to far-field

and maps from a real array to a virtual ULA as shown in Fig. 4.1.

T should be constructed off-line before any DF estimation. The main advantage of

the proposed approach is the generation of T using virtual data in a computer. In

other words, there is no need for actual data collection which may be a prohibitively

hard task. Another advantage is to select the best inter-element spacing of the virtually

generated ULA for the array transformation and near-field DOA angle estimation with

a sufficient accuracy. The selection of the virtual ULA is described in Sec. 4.4.1.

The NFT matrix is constructed by generating two data sets, namely, far-field data set

for ULA and near-field data set for virtual UCA. Far-field data set is generated from

(4.2) and (4.9) using the artificial far-field sources placed at Θkl = (φk, θl) where φk

changes between 0◦ and 360◦ in ∆φ degrees resolution. θl ∈ [θ̂ − ∆θ, θ̂ + ∆θ] and

θ̂ is the estimated elevation angle of the far-field source in (4.12). ∆θ is the range in

elevation angle. Near-field data set uses (4.4) for the same DOA set of Θkl = (φk, θl)

and the range is d̄j = j∆d, j = 1, . . . , J with ∆d grid size. The grid size for angle

and range is problem dependent. As a rule of thumb, 5 degrees for ∆φ and 0.5 meters

for ∆d give satisfactory results in general. The transformation matrix is constructed
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for K azimuth, L elevation angles and J ranges. The near-field steering vectors are

stacked in a M ×KLJ matrix U as follows

U = [U1, . . . ,Uj, . . . ,UJ ] (4.14)

where

Uj = [ã(Θ11, d̄j), . . . , ã(ΘK1, d̄j), ã(Θ12, d̄j), . . . , ã(ΘKL, d̄j)] (4.15)

and ã(Θkl, d̄j) is the steering vector generated for the UCA using the near-field model

in (4.4). M × KLJ far-field data set V is constructed by concatenating J many

M ×KL matrix Vj as V = [V1, . . . ,Vj, . . . ,VJ ] where Vj which is constructed as

Vj = [a(Θ11), . . . , a(ΘK1), a(Θ12), . . . , a(ΘKL)] (4.16)

using the steering vectors as in (4.9) which have no range dependency, hence V1 =

V2 = · · · = Vj = · · · = VJ . Finally, the relation between near-field and far-field data

gives the transformation matrix T as

V = TU. (4.17)

The least-squares solution for T is given as

T = VU† (4.18)

where † denotes the Moore-Penrose pseudo-inverse.

The observed data obtained from UCA consists of far-field and near-field compo-

nents. The near-field components of the observation can be multipaths which are

coherent. In this case, the MUSIC algorithm fails since the signal subspace is not or-

thogonal to noise subspace. In order to overcome this problem, UCA data is mapped

to a virtual ULA by using the NFT and then FBSS is employed. Since elevation angle

cannot be found for one dimensional arrays, elevation angle for multipaths are set as

90◦ for simplicity.

4.4.1 Selection of The Virtual Array Spacing

In order to estimate the near-field parameters accurately, the choice of the virtual array

spacing l becomes an important issue. The output of the circular array with λ/5 radius
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Figure 4.2: RMSE for azimuth angle estimation vs virtual ULA inter-element dis-

tance, l, for the virtual array transformation.

is mapped to a virtual ULA which is shown in Fig. 4.1 with inter-element spacing

l. This value affects the accuracy of the DOA estimation. In Fig. 4.2, RMSE for

azimuth angle estimation is shown for inter-element spacing l from λ/300 to λ/30.

The RMSE definition is given in detail in Appendix A. As it is seen from this figure,

DF accuracy has a "V" shaped characteristics. Therefore a reasonable choice for l

can be obtained from Fig. 4.2. In our case, l = λ/60 seems a good choice for the

near-field localization with the NFT.

4.4.2 DOA Estimation for Near-Field Sources

Once the far-field source DOA is estimated as in (4.12), the next step is to find the

DOA angles for the near-field sources. The transformed array output can be written

as

ỹ(t) = T y(t) = Tα1a(Θ1)s(t) +
N∑
i=2

Tαiã(Θi, di)s(t) + Te(t). (4.19)

In (4.19), the far-field component of y(t) is suppressed. ỹ(t) includes the near-field

source parameters in the far-field model and it can be used in the FBSS algorithm to

47



estimate the near-field source DOAs {Θ̂i}
N

i=2.

Sample covariance matrix of the transformed array output

R̃ =
1

T

T∑
t=1

ỹ(t)ỹH(t) (4.20)

is used and the FBSS is applied to obtain the smoothed M̄ × M̄ covariance matrix

R̄. Here, M̄ is the number of antennas in the subarrays of the virtual ULA and M̃ ≥
b3

2
(N − 1)c where b.c is the rounding operation. Then, the MUSIC algorithm can

be employed to compute the near-field source azimuth angles. The MUSIC pseudo-

spectrum can be computed as

P̃(φ) =
1

aH(φ)ḠḠHa(φ)
(4.21)

where Ḡ is composed of the noise space eigenvectors of R̄. Since 1-D array is used,

elevation angle cannot be found. {θ̂i}Ni=2 = 90◦ is selected for simplicity.

4.4.3 Range Estimation With Compressive Sensing

Compressive sensing (CS) is a very popular technique used in parameter estimation

for the signals having sparsity property [90, 91]. The compressive sensing theory

addresses the following problem

y = Φx + ζ (4.22)

where Φ is M × N̄ sensing matrix with M � N̄ and ζ is the white Gaussian noise

vector. The aim of the CS theory is to recover the signal x from the observation vector

y. According to the CS theory, the signal x can be recovered if it is compressible or

sparse [92]. In other words, x is said to be S-sparse for the sparsity rate S, if the

observations of the sensing matrix Φ obey M ≥ C·S· log(N̄) for some constant C

[53]. Then x can be represented as

x = Ψs (4.23)

where Ψ ∈ CN̄×N̄ is the sparsity basis and s is N̄ × 1 vector with S � N̄ non-zero

entries. The compressed signal can be written as

y = Φx = ΦΨs. (4.24)
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The columns of the sensing matrix Φ should be incoherent where coherence for Φ is

defined based on its column vectors φk, i.e.,

µ(Φ) = max
1≤k 6=l≤N̄

| < φk,φl > |
||φk||2 · ||φl||2

. (4.25)

The lower bound for µ(Φ) is 1/
√
M for M � N̄ [93].

In this study, compressive sensing is used to estimate the ranges of the near-field

sources with the following convex optimization problem

arg min
x∈CN̄

||x||1 subject to ||y−Φx||22 ≤ ε (4.26)

where the power of the residual ζ = y − Φx is bounded by ε [52]. Since the obser-

vation vector is composed of the far- and near-field components, the sensing matrix

is generated with both far- and near-field components. The sensing matrix (or dictio-

nary) is constructed using the DOA angle estimates found in Sec. 4.3 and Sec. 4.4.2.

First, the far-field steering vector a(Θ̂1) is generated. Then the near-field steering

vectors ã(Θ̂i, di) are generated for a set of ranges, namely, d̄j = j∆d, j = 1, . . . , J

is the range set where ∆d is the grid size in meters. Finally, the far- and near-field

steering vectors are stacked into M × J(N − 1) + 1 sensing matrix as follows

Φ = [a(Θ̂1), ã(Θ̂2, d̄1), . . . , ã(Θ̂2, d̄J), . . . , ã(Θ̂N , d̄J)]. (4.27)

In the solution of the CS problem in (4.26), N most significant elements of x̂ corre-

spond to the far- and near-field components of the observation. Here, N � N̄ for

M×N̄ sensing matrix where N̄ = J(N−1)+1 . Since y is composed of a single far-

field and N − 1 near-field source components, sparsity property is satisfied. Another

property to satisfy is the incoherency of the measurement basis in the sensing matrix,

Φ. In our case, Φ is composed of a single far-field and several near-field steering

vectors with different ranges. Hence each of these vectors are linearly independent

and it can be shown to satisfy the incoherency property similar to [94]. The algorithm

steps for the range estimation with compressive sensing are as follows:

1. Construct the far (4.2) and near-field (4.4) steering vectors a(Θ̂1) and ã(Θ̂i, d̄j)

for {Θi}Ni=2 and j = 1, . . . , J . Obtain the sensing matrix Φ by stacking the

steering vectors as in (4.27).
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2. Solve the convex problem in (4.26) for x̂. The N − 1 most significant terms in

the J(N − 1) + 1× 1 vector x̂ excluding the far-field component are the signal

amplitudes which correspond to the near-field source ranges {d̂i}Ni=2.

4.5 Simulation Results

In this section, the performance of the proposed DF method is evaluated. The algo-

rithmic steps for the proposed approach can be outlined in Fig. 4.3. The proposed

method is evaluated in three experiments. In the first experiment, only the far-field

DOA estimation is considered. Array output in (4.1) and calibration data are gener-

ated in MATLAB and DOA estimation performance is evaluated for a far-field source

with near-field multipaths. Only the far-field DOA estimation performance is evalu-

ated in this experiment. In the second experiment, far and near field source DOA’s

as well as near-field source ranges are estimated. DOA angle of the far-field source

is estimated using the calibration technique. The NFT matrix is found in order to es-

timate the near-field azimuth angles for (K,L, J) = (72, 3, 500) with (∆φ,∆θ,∆d) =

(5◦, 5◦, 0.1m). Then the CS algorithm is used to estimate the near-field source ranges

and amplitudes. These two experiments are presented to show the performance of the

proposed method in accordance with the ideal array model given in (4.1) and (4.4).

In the third experiment, the array output and calibration data are obtained using a

numerical electromagnetic simulation tool, Wireless Insite [89]. DF array and the

transmitter are placed in an irregular terrain area and the ray paths are observed after

the simulation. The experiment is performed at 100 MHz since this is the lowest

frequency to obtain a valid response for Wireless Insite. However, we have used the

scaling property of the electromagnetic theory [62] in order to observe the results for

3 MHz HF scenario as well. The setup parameters are given in Table 4.1. Note that

UCA radius is selected as λ/5 in accordance with the radius in 3MHz to conform

to the physical area limits which is usually the case. The DF array is positioned

in an irregular terrain and DOA angles of the far-field emitter source as well as the

near-field multipath reflection locations are estimated. This experiment shows the

performance of the proposed approach for a close-to-real world scenario.
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Figure 4.3: The algorithm steps for the proposed approach.

Table 4.1: The setup parameters used in the irregular terrain model.

Frequency (MHz): 3
Antenna length (m): 9

Antenna height from ground (m): 0.3
Array radius (m): 20

Conductivity of earth (S/m): 0.02

4.5.1 Experiment 1

In this experiment, far-field DOA estimation performance of the proposed method

is evaluated for the whole azimuth range. The DF array is an UCA composed of

M = 8 monopole antennas with λ/5 radius. The test data is generated in four sec-

tors [0◦, 90◦], [90◦, 180◦], [180◦, 270◦] and [270◦, 360◦] respectively. In each sector,

there are two fixed near-field sources while far-field source changes with 1◦ azimuth

angle step and at fixed elevation angle θ = 88◦. Calibration data for the far-field

DOA estimation is collected in 360 degrees with 5◦ azimuth angle step. The data is

collected for the elevation angles 85◦, 90◦ and 95◦ respectively. Calibration data is

interpolated to obtain 1◦ resolution in azimuth.

The performance of the proposed method for estimating the azimuth angle of a far-
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Figure 4.4: Performance of azimuth angle estimation of the proposed method when

the elevation angle is set at θ = 88◦. Vertical lines correspond to the fixed near-field

sources.

field source is given in Fig. 4.4 for SNR=20dB and 500 Monte Carlo trials. Here,

the azimuth angles of fixed near-field sources are shown with vertical lines whose

elevation angles are 90◦. As it is seen, when there is no calibration, DF accuracy is

unacceptable due to the near-field sources. After calibration, maximum DF error is

approximately 4◦ and average value is about 1.5◦. This is quite acceptable in practice

[95] and a significant improvement compared to the uncalibrated performance. The

DF performance on elevation angle is presented in Fig. 4.5. The same observations

can be made for the elevation DF performance as well. Note that the elevation angle

to be estimated is the same in each trial which is 88◦.

4.5.2 Experiment 2

In this experiment, a far-field source with two near-field multipath components is con-

sidered. In order to estimate the far-field DOA angle, calibration data is constructed as

explained in the first experiment. In order to estimate the near-field sources, the NFT

matrix T is computed and the virtual ULA output is obtained for the inter-element

spacing l = λ/60. Then, the DOA angle of the near-field sources are estimated using
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Figure 4.5: Performance of the fixed elevation angle (θ = 88◦) estimation of the

proposed method. Vertical lines correspond to the fixed near-field sources.

the MUSIC algorithm and FBSS method. The simulations are run for 500 Monte

Carlo trials at SNR =20dB and the root-mean-square (RMS) of the estimated param-

eters are obtained. The result for the far-field source DOA is shown in Fig. 4.6a. As

it is seen from this figure, far-field source DOA is found accurately when calibration

is used. The result for direct application of the MUSIC algorithm is not satisfactory.

Three degrees azimuth error and two degrees elevation error are considered to be very

good in practice by [95]. The sensing matrix Φ is constructed for a range set using

the far and near-field DOA angle estimates. Note that the solution of the CS problem

considers only the ranges of the near-field sources with pre-estimated DOA angles

which reduces the computational complexity. Fig. 4.6.b-c and Table 4.2.a show the

DF performance for the near-field sources. As it is seen, the parameters of the near-

field sources are estimated with high accuracy implying that the proposed approach is

very effective to estimate the azimuth angles, range and amplitudes of the near-field

sources.
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Figure 4.6: DF performance of the proposed method for the far-field and near-field

sources on azimuth, elevation and ranges. Dot: True position; Square: Uncalibrated;

Cross: With calibration.

Table 4.2: Amplitude estimation of the near-field sources for the experiment 2 and 3.
Note that the near-field amplitude estimates are normalized with the far-field source
amplitude.

(a) Estimated True Error percentage (%)
Near-field #1: 0.65 0.70 6.78
Near-field #2: 0.62 0.50 25.52

(b) Estimated True Error percentage (%)
Near-field #1 : 0.48 0.72 33.42

4.5.3 Experiment 3

In this experiment, the proposed method is evaluated by using a more realistic data

generated by Wireless Insite employing Full-3D propagation model. The DF array in

Table 4.1 with M = 8 antennas in a circular geometry is placed in an irregular terrain

area as shown in Fig. 4.7. Monopole antennas are used and a single far-field transmit

antenna is placed about 3.6 km (before scaling) away from the DF array as shown in

Fig. 4.7. The direct and reflected ray paths of the transmitted signal can be seen from

the figure. In this scenario, the terrain in the near vicinity of the DF array generate

multipaths. In this case, there is only one near-field multipath component. A detailed
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Figure 4.7: The placement of the DF array and transmitter antenna over the irregular

terrain area.

demonstration of the direct and multipath components is presented in Fig. 4.8.

Figure 4.8: The direct and reflecting ray paths arriving the antenna array.

In order to estimate the far-field source DOA angle, calibration data is collected by

placing the calibration transmitters uniformly on the circumference of a circle with

50m radius as shown in Fig. 4.9 at 100MHz. Note that λ = 3 meters for f = 100MHz

and 50m>10λ satisfies the far-field condition. The calibration data is collected with

5◦ azimuth angle step starting from 2◦ to 357◦ at a fixed elevation angle of 69.1◦

whereas the elevation angle of the far-field source is θ1 = 67.9◦. Calibration data

55



Figure 4.9: The placement of the transmitters for the array calibration.

is then interpolated to obtain 1◦ resolution in azimuth. Fig. 4.10.a shows the far-

field 2-D DOA estimates before and after the calibration. As it is seen, calibration

improves the DF accuracy and mitigates the errors due to near-field multipaths. The

estimated azimuth angle, range and amplitude parameters for the near-field source

are given in Fig. 4.10.b and Table 4.2.b. The error in azimuth angle of the near-field

multipath is about 0.5 degrees which can be seen as a very good result. The range and

the amplitude of the near-field multipath reflection is also estimated with sufficiently

good accuracy.
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4.6 The advantages of The Proposed Method

The advantages of the proposed method are as follows:

• The proposed method works well in multipath scenario since it is not based on

the independence assumption.

• The proposed method can be used in HF DF applications where the near-field

multipaths are major distortions.

• The proposed method can be used for uniform circular arrays whereas most of

the algorithms use linear antenna arrays where 2-D parameter estimation is not

possible.
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CHAPTER 5

2-D DOA AND MUTUAL COUPLING COEFFICIENT

ESTIMATION FOR ARBITRARY ARRAY STRUCTURES

WITH A SINGLE AND MULTIPLE SNAPSHOTS

Direction-of-arrival (DOA) estimation for arbitrary array structures in the presence of

mutual coupling (MC) is an important problem for antenna arrays. Previous methods

in the literature are usually proposed for certain array geometries and show limited

performance at low SNR or for small number of snapshots. In this chapter, a new

method is used to estimate both DOA and MC coefficients with a single and multi-

ple snapshots for an unstructured array where the antennas are placed arbitrarily in

space. The proposed method can effectively estimate both source DOA angles and

MC coefficients for any type of array geometries.

5.1 Introduction

Direction-of-arrival (DOA) estimation of the plane waves impinging on antenna ar-

rays is an important problem in a variety of fields including, radar, sonar, acoustics

and communications [1, 96]. Several high resolution methods are proposed to esti-

mate the DOA angles of unknown source signals [3], [97], [41]. Most of these meth-

ods perform well in ideal scenarios. In practical antenna array applications, received

signal is usually affected by mutual coupling (MC) generating distortions in the array

model [4], [5].

There are several methods in the literature which estimate DOA angles in antenna
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arrays with MC [6, 21–24]. Most of these methods are based on the eigenstructure

of the array covariance matrix and require uniform array structure. These methods

are based on the special MC matrix structures and applicable only for uniform ar-

rays. Since arbitrary array geometries are considered in this part of the thesis, above

methods cannot be applied for our case.

While there are different methods for DOA estimation with arbitrary array structures

[48–50], MC effect is considered in only limited number of works [32]. In [32], on-

line MC calibration with randomly placed array is considered for DOA estimation

using techniques based-on higher order statistics. [32] employs the array covariance

matrix which is estimated by assuming that the source signals are independent. This

assumption is not valid for finite length signals especially when the number of snap-

shots is small. Hence, its performance is not acceptable at low SNR and for small

number of snapshots. Moreover, sources and the antenna array are assumed to be in

the same plane leading to only 1-D (azimuth) DOA estimation. In this work, in addi-

tion to 1-D scenario, 2-D (azimuth and elevation) DOA estimation is considered for

source localization where sources are distributed in 3-D space with different elevation

angles.

DOA estimation with a single snapshot is an important problem especially when there

is only a single observation or when the system parameters change in time [6]. There-

fore, MC should be estimated online without interrupting the ongoing DOA estima-

tion. Single snapshot DOA estimation without MC is considered in [98] using sparse

recovery algorithms. The effect of MC in DOA estimation with single snapshot is

investigated in [99] and [100]. In [99], a semicircular array is considered with known

source DOA angles in the presence of MC and near-field scatterers. Numerical elec-

tromagnetic simulations are performed and a transformation-based approach is pro-

posed. In [100], an iterative minimization approach is proposed for L-shaped array in

case of unknown MC. This method is based on the special structure of the MC matrix.

When the antenna array has arbitrary structure, this method also fails to estimate the

MC.

Recently, compressed sensing (CS) is presented as an effective method for different

problems [51,52,101–103]. CS theory deals with the recovery of sparse signals from
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overcomplete and underdetermined linear measurements. Most of the CS algorithms

consider the direction-finding (DF) problem with only external noise [59,60,104,105]

as an error source and the effect of MC is usually ignored. Hence the conventional

CS algorithms fail in case of MC [106]. MC should be modeled appropriately for a

proper DOA estimation. DOA estimation under unknown MC is studied in [107] and

[108] using sparse recovery techniques. In particular, [107] considers multiple snap-

shots with ULA geometry and proposes an l1-SVD-like [105] algorithm. This method

discards some of the array information in order to decrease the effect of MC which

leads to "array shrinkage" [20]. In [108], Sparse Bayesian Array Calibration (SBAC)

is proposed for ULA using expected-maximization under unknown MC. These meth-

ods also fail in case of randomly placed arrays.

In [106] and [33], DOA estimation with a single snapshot is considered for UCA ge-

ometry. In [33], a single far-field source and near-field multipath reflections are con-

sidered. In [106], single snapshot DOA estimation problem is considered for UCA in

case of MC and a joint-sparse recovery (JSR) algorithm is proposed to estimate both

DOA angles of the unknown source locations and MC coefficients. In this part of

the thesis, the JSR approach proposed in [106] is extended to the case of arbitrary ar-

ray structures in the presence of MC. Furthermore, both single and multiple snapshot

cases are considered for DOA and MC coefficient estimation.

While the sparsity of a vector and matrix is well-known in the literature, joint-sparsity

is recently used to exploit the special sparsity patterns in vector and matrices for

DOA estimation [59, 60]. In [59], it is assumed that a vector is joint-sparse if all

the subblocks are constructed from the same sparsity basis. In this case, subblocks

share the same sparsity pattern. In [60], a matrix is said to be joint-sparse if all the

columns of the matrix have the same sparsity level with the same row indices. In this

study, both of above structures are used to exploit the joint-sparsity. In addition, joint-

block sparse matrix is defined. Therefore, three different joint-sparsity structures are

considered and they are outlined below.

1. Joint-sparse vectors [59]: l2,0-norm is used to define the joint-sparsity for a

vector whose subblocks share the same sparsity basis (See Def. 1).

2. Joint-sparse matrix [60]: l2,0-norm is used to define joint-sparsity for a matrix
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whose columns share the same sparsity pattern (See Def. 3).

3. Joint-block-sparse matrix: New mixed norms, i.e., l2,2,0-norm and l2,2,1-norm

are defined to employ joint-block-sparsity for matrices whose subblocks and

columns share the same sparsity pattern (See Def. 4).

The JSR problem is laid out in a form such that the source DOA angles and MC

coefficients can be recovered using convex optimization techniques. In JSR, joint-

sparsity property is considered instead of sparsity used in conventional techniques

and the spatial source directions and coupling coefficients are embedded into a joint-

sparse vector. A new dictionary matrix is defined in accordance with the symmetricity

of the MC matrix. Since the construction of the MC matrix is general, the proposed

method is suitable for recovering the support set of any array structure.

Once the JSR problem is solved, the source DOA angles are obtained from the sup-

port set. The recovered joint-sparse signal includes both coupling coefficients and the

source directions. MC coefficients are estimated with a least square method by min-

imizing a cost function employing the known DOA angles [109]. In case of multiple

snapshots, a quadratic minimization problem is treated and a closed form solution is

obtained similar to [6].

5.2 Signal Model and Problem Formulation

DOA estimation in case of MC is considered where there are K narrowband, far-field

source signals impinging on M -element randomly placed array. The MC matrix is

denoted by C ∈ CM×M which is direction independent and symmetric [6]. The array

output can be written as follows

y(ti) = CĀs̄(ti) + e(ti), i = 1, . . . , T (5.1)

where T is the number of snapshots, e is the spatially and temporarily white, zero

mean Gaussian noise with variance σ2
N . s̄(ti) = [s̄1(ti), s̄2(ti), . . . , s̄K(ti)]

T is aK×1

vector composed of source signals. Ā is M × K nominal array steering matrix and

defined as

Ā = [a(Θ̄1), a(Θ̄2), . . . , a(Θ̄K)] (5.2)
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where Θ̄k = (φ̄k, θ̄k) represents the azimuth and elevation angles of the kth source

respectively. The mth element of the array steering vector a(Θ̄k) is given as

am(Θ̄k) = exp
{
j

2π

λ
rTk pm

}
(5.3)

where rk = [cos(φ̄k) sin(θ̄k) sin(φ̄k) sin(θ̄k) cos(θ̄k)]
T , λ is the wavelength and

pm = [xm ym zm]T is the mth antenna position. The form of the MC matrix C for

arbitrary array structure is given as

C =



c1 c2 c3 . . . cM

c2 c1 cM+1 . . . c2M−2

c3 cM+1
. . . . . . ...

... . . . . . . c1 cM̄

cM c2M−2 . . . cM̄ c1


. (5.4)

The relation between the indices of C and the coupling coefficients is given explicitly

as

C(i, j) = cm, for m =

(
M − 1

2

)
i− i2

2
+ j −M + 1 (5.5)

for i = 1, . . . ,M and j = i + 1, . . . ,M . The first coupling coefficient c1 = 1 is

assumed without loss of generality [6]. {cm}M̄m=1 is the set of distinct MC coefficients

and M̄ = M(M−1)
2

+ 1.

The effect of MC decreases as the distance between the antenna pairs increases [18].

When this distance is sufficiently large (dm > λ for m = 2, . . . , M̄ ) the effect of MC

can be ignored [16, 17]. Here dm is the inter-element distance for the mth antenna

pair. In this study, the coupling coefficients of the antenna pairs with inter-element

distance larger than a wavelength are assumed to be zero and only the coefficients of

the antenna pairs with dm < λ are considered.

The problem in this study can be described as follows. Given the array output y(ti) for

i = 1, . . . , T , the sensor positions pm for m = 1, . . . ,M and the number of sources

K, the source DOA angles {Θ̄k}Kk=1 and the coupling coefficients {cm}M̄m=2 are to be

estimated.

In this study, both single and multiple snapshot cases are considered in sequel in the

following parts.
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5.3 Joint-Sparse Recovery For A Single Snapshot With MC

In this section, the proposed method JSR-SS is introduced for a single snapshot.

5.3.1 DOA Estimation For A Single Snapshot With JSR-SS

The signal model in (5.1) can be written for noise-free case with a single snapshot as

y = CAs (5.6)

where s ∈ RN is a K-sparse vector, namely, all entries of s but K are zero. The non-

zero entries of s are equal to sk(tT ) in (5.1) for k = 1, . . . , K and T = 1. A ∈ CM×N

is the dictionary matrix defined as

A = [A(θ1),A(θ2), . . . ,A(θNθ)]. (5.7)

The number of columns of the dictionary is N = NφNθ and A(θj) is the dictionary

matrix for θj which is defined as

A(θj) = [a(φ1, θj), a(φ2, θj), . . . , a(φNφ , θj)] (5.8)

and j = 1, . . . , Nθ. The dictionary resolution for azimuth and elevation is |φi −
φi+1| = ∆φ and |θj − θj+1| = ∆θ for i = 1, . . . , Nφ − 1 and j = 1, . . . , Nθ − 1

respectively. In order to find s and C, the following minimization problem can be

considered

(P1) min
s∈RN ,C∈CM×M

||s||0 s.t. y = CAs (5.9)

where ||s||0 = |{i : si 6= 0}| is the l0-norm which denotes the number of nonzero

elements of s, namely, the support of s. Since the problem P1 is non-linear due to

CAs which includes both of the unknowns s and C, it should be modified for an

effective solution. In the following part, P1 is converted to a JSR problem which can

be written in linear form. We introduce a joint-sparse vector composed of both signal

vector s and MC coefficients. Furthermore, a new dictionary matrix is defined using

the symmetricity of the MC matrix C.

As the first step, C is written as

C =
M̄∑
m=1

cmJm (5.10)
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where Jm is M ×M matrix whose (i, j)th entry is given as

Jm(i, j) =

 1, if C(i, j) = cm, m = 1, 2, . . . , M̄ .

0, otherwise.
(5.11)

Then, M × M̄N dictionary matrix D can be defined by stacking A as

D = [J1A, J2A, . . . , JM̄A]. (5.12)

Using (5.11) and (5.12), P1 can be written in the following form, i.e.,

(P2) min
x∈CM̄N

||x||0 s.t. y = Dx (5.13)

where x is an M̄K-sparse M̄N × 1 vector and

x = c⊗ s = [c1sT , c2sT , . . . , cM̄sT ]T =
[
x(1)T , x(2)T , . . . , x(M̄)T

]T
. (5.14)

c = [c1, . . . , cM̄ ]T and ⊗ denotes the Kronecker product. Since x is composed of

M̄ subblocks sharing the same sparsity pattern, (5.13) can be solved effectively by

employing joint-sparsity [59]. In this study, x is said to be K-joint-sparse if ||x||2,0 =

K where ||· ||2,0 is defined for a vector quantity as follows.

Definition 1 l2,0-norm of a joint-sparse vector x, which is composed of equal size

subblocks x(m), is defined as

||x||2,0 =
N∑
i=1

I(||X[i, :]||2) (5.15)

where X[i, :] denotes the ith row of X and X =
[
x(1), x(2), . . . , x(M̄)

]
is an N × M̄

matrix. I(·) is an indicator function and it is defined as

I(α) =

 0, if α = 0

1, otherwise.
(5.16)

Example 1 Let p = [p1, 0, p2, 0, p3, 0, p4, 0, p5, 0, p6, 0]T be composed of M̄ = 3

blocks of size N = 4 and pi 6= 0 for i = 1, . . . , 6. Then p(1) = [p1, 0, p2, 0]T ,

p(2) = [p3, 0, p4, 0]T , p(3) = [p5, 0, p6, 0]T and ||p||2,0 is given as

||p||2,0 = ||
[√

p2
1 + p2

3 + p2
5, 0,

√
p2

2 + p2
4 + p2

6, 0

]T
||0 = 2 (5.17)

while ||p||0 = 6 since there are two non-zero entries in each subblocks sharing the

same index.
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Using joint-sparsity, (5.13) can be rewritten as follows

(JSP1) min
x∈CM̄N

||x||2,0 s.t. y = Dx (5.18)

where JSP stands for Joint-Sparse Problem. Since the computation of l0-norm is

NP-Hard combinatorial, l1-norm is usually employed for an equivalent formulation

[90]. Hence, l2,0-norm is relaxed with l2,1-norm. The mixed l2,1-norm is defined

below.

Definition 2 The mixed l2,1-norm considers M̄ subblocks of size N × 1 under l1-

norm in a vector of M̄N × 1. Then ||x||2,1 is defined as

||x||2,1 =
N∑
i=1

(
M̄∑
m=1

|xN(m−1)+i|2
)1/2

. (5.19)

Example 2 Consider the 12 × 1 vector p given in the previous example for M̄ = 3

and N = 4. Then ||p||2,1 is given as

||p||2,1 =
√
|p1|2 + |p3|2 + |p5|2 +

√
|p2|2 + |p4|2 + |p6|2.

For noisy observations, joint-sparse recovery problem can be expressed as

(JSP2) min
x∈CM̄N

||x||2,1 s.t. ||y− Dx||22 ≤ ε2 (5.20)

where y = CAs + e and the residual is bounded by ε = σN

√
M + γ

√
2M [52]. γ

is an adjustable parameter which controls the noise power ||e||22. Then ||x||2,1 can be

explicitly given in terms of s and c as

||x||2,1 =
N∑
i=1

(
M̄∑
m=1

|cmsi|2
)1/2

. (5.21)

JSP2 can be further modified to a more convenient form by moving the inequality

constraint to the objective function and the final form of JSR-SS is given as

(JSP3) min
x∈CM̄N

µS||x||2,1 +
1

2
||y− Dx||22 (5.22)

where µS is the penalty term which determines the trade-off between the two terms in

the problem. A large regularization parameter µS enforces the sparsity (i.e. the l2,1-

norm term) which may lead to wrong estimation results. Similarly, a small value of µS
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emphasizes the effect of l2-norm term which may result large number of peaks in the

sparse vector. A suitable value for the penalty term is σN
√

2 log M̄N in accordance

with [110, Sec. 5.2]. JSP3 is a convex problem and can be solved effectively by using

standard techniques [111]. Once it is solved, the N × M̄ matrix X̂ can be constructed

as in Def. 1. Then the N × 1 indicator vector s̃ can be found as s̃ = P{X̂X̂
H
} where

P{·} denotes the principal eigenvector operation. Then we can find the source DOA

angles from the dictionary terms in A that correspond to the non-zero entries of s̃.

5.3.2 Estimation of MC Coefficients From A Single Snapshot

Once the convex problem in (5.22) is solved, the coupling coefficients can be found

as cm = xN(m−1)+i/si for m = 1, . . . , M̄ and i ∈ Ix which is the set of indices

of non-zero elements in x. This is a suboptimum method for finding the coupling

coefficients since there exist K many solutions of cm for i ∈ Ix. An alternative and

better solution is to find x̂ and ŝ from (5.22), then obtain a least-square solution of c

from a cost function. In this case, c is found by minimizing the cost function J(c),

i.e.,

J(c) = ||y−
M̄∑
m=1

cmJmAŝ||22 = yHy

−yH
M̄∑

m1=1

cm1Jm1Aŝ−
M̄∑

m2=1

c∗m2
ŝHAHJHm2

y

+
M̄∑

m1=1

M̄∑
m2=1

cm1c
∗
m2

ŝHAHJHm2
Jm1Aŝ. (5.23)

If the derivative of J(c) with respect to c∗m2
is considered and equated to zero, the

following expression is obtained, i.e.,

M̄∑
m1=1

M̄∑
m2=1

cm1 ŝHAHJHm2
Jm1Aŝ =

M̄∑
m2=1

ŝHAHJHm2
y. (5.24)

Above equation can be written as a linear set of equations, i.e.,

Acc = bc (5.25)
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where the elements of Ac ∈ C M̄×M̄ and bc ∈ C M̄ are known and expressed as

Ac(m2,m1) =ŝHAHJHm2
Jm1Aŝ

bc(m2) =ŝHAHJHm2
y, m1,m2 = 1, . . . , M̄ . (5.26)

Then the MC coefficients can be found as c = A−1
c bc.

5.4 Joint-Sparse Recovery For Multiple Snapshots With MC

In this part, the problem defined in Sec. 5.3 is solved for multiple snapshots. When

there are multiple noisy snapshots, (5.6) can be written in matrix form as

Y = CAS + E (5.27)

where Y = [y(t1), y(t2), . . . , y(tT )] is the M × T observation matrix and T is the

number of snapshots. S = [s(t1), s(t2), . . . , s(tT )] is an N × T matrix and E =

[e(t1), e(t2), . . . , e(tT )].

Since s(ti) is a K-sparse vector for i = 1, . . . , T , there are KT non-zero entries of

S. The number of non-zero elements of a matrix is obtained by l0-norm as ||S||0 =

|{i, j : Si,j 6= 0}|. Note that only K rows of S are non-zero. This property is used to

exploit the joint-sparsity of S. S is said to be K-joint-sparse matrix if ||S||2,0 = K.

The definition of l2,0-norm for a matrix is given below [60].

Definition 3 l2,0-norm of an N × T joint-sparse matrix S is defined as

||S||2,0 =
N∑
i=1

I(||S[i, :]||2) (5.28)

where S[i, :] denotes the ith row of S and I(·) is as defined in 5.16.
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Example 3 Consider a 6× 3 matrix P as

P =



a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3

e1 e2 e3

f1 f2 f3


(5.29)

where {ai, bi, di, fi}3
i=1 6= 0 and {ci, ei}3

i=1 = 0. Then ||P||2,0 = 4 whereas ||P||0 =

12.

When the joint-sparsity is considered, the optimization problem can be written as

follows

(JSP4) min
S∈RN×T ,C∈CM×M

||S||2,0 s.t. ||Y− CAS||2F ≤ ε̄2.

In JSP4, the constraint is non-linear and l2,0-norm is not convex. Furthermore, com-

putational complexity increases with T . It is possible to decrease the computational

complexity through singular value decomposition (SVD) [105]. Hence we first ex-

press the problem in an efficient form. Then DOA and MC parameters are considered

in a composite matrix and l2,0-norm is relaxed to obtain an effective solution. There-

fore we first consider the SVD of Y as

Y = UΣVH (5.30)

where U and V are the left and right singular vector matrices of Y respectively. Σ is

an M × T matrix composed of the singular values of Y. Since the first K singular

values are dominant in Σ, the M ×K reduced matrix YSV is defined as

YSV = UΣL = YVL (5.31)

where L is a T ×K matrix and defined as L = [IK 0]T . IK is K ×K identity matrix

and 0 is (T −K)×K matrix of zeros. Then YSV is given as

YSV = CASSV + ESV (5.32)

where SSV = SVL and ESV = EVL. Note that SSV and S have the same joint-

sparsity.
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The l1-SVD method proposed in [105] considers the sparse recovery problem when

there is no MC in the array model, i.e., YSV = ASSV + ESV . In the following part,

we will develop a JSR algorithm to solve the problem in case of multiple snapshots

and MC.

5.4.1 DOA Estimation For Multiple Snapshots With JSR-MS

In this section, a similar approach as in JSR-SS is followed and a JSR algorithm is

presented for multiple snapshots. In order to write JSP4 in linear form, (5.32) is

rewritten in the following form using joint-sparsity, i.e.,

YSV = DXSV + ESV (5.33)

where D is the same dictionary matrix as in (5.12). XSV is an M̄N ×K joint-block-

sparse matrix defined as

XSV = c⊗ SSV =


c1SSV
c2SSV

...

cM̄SSV

 =


X(1)
SV

X(2)
SV

...

X(M̄)
SV

 . (5.34)

Note that XSV is composed of M̄ subblock matrices. In Sec. 5.3.1, joint-sparsity

is employed for vector quantities which are composed of subblocks with the same

sparsity pattern. In this part, we define joint-block-sparsity for XSV using triple mixed

l2,2,0-norm which exploits the joint-sparsity in both subblocks and columns of matrix

XSV . In other words, l2,2,0-norm is the mixture of l2,0-norms defined for both vector

and matrix quantities. The definition of l2,2,0-norm is given as follows.

Definition 4 l2,2,0-norm of an M̄N×K joint-block-sparse matrix XSV , composed of

M̄ subblocks of size N ×K, is defined as

||XSV ||2,2,0 =
N∑
i=1

I(||X̄SV [i, :]||2) (5.35)

where X̄SV =
[
X(1)
SV ,X

(2)
SV , . . . ,X

(M̄)
SV

]
is an N × M̄K matrix composed of the sub-

blocks of XSV .

70



Example 4 Consider the matrix P in Example 3 for {ai, ci, ei}3
i=1 6= 0 and

{bi, di, fi}3
i=1 = 0 with M̄ = 3 and N = 2. Then ||P||2,2,0 = 1 while ||P||2,0 = 3 and

||P||0 = 9.

In order to solve the problem in JSP4 using joint-block-sparsity, l2,2,0-norm should

be used. Since l2,2,0-norm is not convex, it is relaxed to l2,2,1-norm which is defined

below.

Definition 5 Triple mixed l2,2,1-norm considers M̄ blocks of N ×K matrices in l1-

norm and ||XSV ||2,2,1 is defined as

||XSV ||2,2,1 =
N∑
i=1

(
M̄∑
m=1

K∑
k=1

|XSV (N(m− 1) + i, k)|2
)1/2

where XSV (i, j) is the (i, j)th entry of XSV .

Example 5 Consider the matrix P in Example 3. Then l2,2,1-norm of P for M̄ = 2

and N = 3 is given as

||P||2,2,1 =
√
|a1|2 + |a2|2 + |a3|2 + |d1|2 + |d2|2 + |d3|2

+
√
|b1|2 + |b2|2 + |b3|2 + |e1|2 + |e2|2 + |e3|2

+
√
|c1|2 + |c2|2 + |c3|2 + |f1|2 + |f2|2 + |f3|2.

The final form of the joint DOA and MC estimation problem for multiple snapshots,

i.e., JSR-MS, can be written similar to JSP3 as

(JSP5) min
XSV ∈CM̄N×K

µM ||XSV ||2,2,1 +
1

2
||YSV − DXSV ||2F

where µM is the regularization parameter that balances the trade-off between the

normed terms. ||XSV ||2,2,1 is explicitly given as

||XSV ||2,2,1 =
N∑
i=1

(
M̄∑
m=1

K∑
k=1

|cmsSVi (k)|2
)1/2

. (5.36)

sSVi (k) is the (i, k)th entry of N ×K matrix SSV .

In JSP5, joint-sparse recovery problem is given in case of multiple snapshots. JSP5

is a convex problem and can be solved effectively similar to JSP3 with convex prob-

lem solvers [111]. Once JSP5 is solved, the M̄N ×K matrix X̂SV can be obtained.
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Then the N × M̄K matrix ˆ̄XSV can be constructed by stacking the subblocks of X̂SV

as in Def. 4. In order to find the DOA angle estimates, the N × 1 indicator vector s̃

can be found as s̃ = P{ ˆ̄XSV
ˆ̄XH
SV }. Then the estimates of the source DOA angles are

found from the indices of M ×N dictionary A corresponding to the non-zero entries

of s̃.

5.4.2 Estimation of MC Coefficients From Multiple Snapshots

In Sec. 5.3.2, MC coefficients are estimated for a single snapshot. In this part, MC

coefficients are estimated using multiple snapshots where the array covariance matrix

is utilized. The covariance matrix of the array output can be written as

Ry = YYH = UΛUH . (5.37)

U = [UsUn] is the eigenvector matrix where Us and Un are signal and noise subspace

eigenvector matrices respectively. Λ is a diagonal matrix composed of the eigenvalues

of Ry.

In the presence of mutual coupling, the true steering matrix becomes CĀ and the

columns of signal subspace eigenvector matrix Us span the same space with Ca(Θ̄k)

for k = 1, . . . , K. Since the signal and noise subspaces are orthogonal [3], i.e.,

||UH
n Us||2F = 0, the following can be written, i.e.,

||UH
n Ca(Θ̄k)||2F = 0, k = 1, . . . , K. (5.38)

In order to estimate the MC coefficients for arbitrary array structure, we first introduce

the following lemma.

Lemma 1 Given the M × 1 steering vector a(Θ̄k) of an arbitrary array, the relation

between the M ×M symmetric matrix C and M̄ × 1 vector c is written as

Tkc = Ca(Θ̄k), k = 1, . . . , K (5.39)

where the transformation matrix Tk is given as

Tk = [τ k1, . . . , τ
k
M̄ ]

τ km = Jma(Θ̄k), k = 1, . . . , K (5.40)

and Jm is defined as in (5.11).
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Proof: If we consider the expression in (5.10), then the lemma can be easily proven

by writing (5.39) as

Tkc =
M̄∑
m=1

Jmcma(Θ̄k), k = 1, . . . , K

=
[
J1a(Θ̄k), J2a(Θ̄k), . . . , JM̄a(Θ̄k)

]


c1

c2

...

cM̄


= [τ k1, . . . , τ

k
M̄ ]c (5.41)

where
{
τ km
}M̄
m=1

are the columns of M × M̄ transformation matrix Tk. �

Once the DOA angle estimates {Θ̂k}Kk=1 are found by solving JSP5, the transforma-

tion matrix defined in (5.40) is used and the following cost function [6] is obtained,

i.e.,

J̄(c) =
K∑
k=1

a(Θ̂k)
HCHUnUH

n Ca(Θ̂k)

= c

(
K∑
k=1

TH
k UnUH

n Tk

)
c. (5.42)

In order to obtain a nontrivial solution, a constraint wT c = u is added to the problem.

Hence the following problem is obtained, i.e.,

min
c∈CM̄×1

J̄(c) s.t. wT c = u. (5.43)

The closed-form solution of c is given as

ĉ = G−1w
(
wTG−1w

)−1
u (5.44)

where

G =
K∑
k=1

TH
k UnUH

n Tk (5.45)

and wT c = u is the constraint equation. A possible choice for w ∈ CM̄×1 is w =

[1, 0, . . . , 0]T and u = 1 [6].
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5.5 Feasibility of the Problem

In this section, the feasibility conditions of the considered problem are discussed in

two parts. Firstly, the uniqueness condition for DOA estimation problem is intro-

duced. Then the MC estimation problem is investigated.

5.5.1 Uniqueness for DOA Estimation Problem

Since the considered problem in (5.13), i.e., y = As is underdetermined (M � N ),

there are infinitely many solutions in general. However, if the solution of the problem

s is sparse, a unique solution can be obtained. In the following, both sparse and

joint-sparse recovery cases are examined in sequel.

5.5.1.1 Sparse Recovery Case

Theorem 1 If y = As has a solution satisfying ||s||0 =K< spark(A)/2, then s is

the unique solution where spark(A) is defined as the minimum number of linearly

dependent columns of A.

Proof: Proof is by contradiction [112, 113]. Firstly, assume that there exists at most

one s where ||s||0 = K and spark(A) ≤ 2K. Then suppose that there exists an h with

||h||0 = 2K and h ∈ Null{A} i.e. the null space of A. This means that there exist

some set of at most 2K columns that are linearly dependent. Since ||h||0 = 2K, we

can write h = s− s′ for ||s||0 = ||s′||0 = K with s 6= s′. Using h ∈ Null{A}, we have

A(s−s)′, in other words, As = As′. This leads to the fact that there exist two solutions

s and s′. However, this contradicts our assumption that there exists at most one s with

||s||0 = K. Therefore we must have spark(A) > 2K. Since spark(A) ≤ M + 1,

K < spark(A)/2 leads to the final condition 2K < M . Then we can conclude that

the uniqueness condition for sparse recovery is 2K < M .
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5.5.1.2 Joint-sparse Recovery Case

In order to investigate the uniqueness for joint-sparsity, we first define the isometry

principle for the considered problem. The restricted isometry property for joint-sparse

case (JS-RIP) is investigated in [59] for 2K-sparse signals. In this study, M̄K-sparse

signal x is said to beK-joint-sparse if ||x||2,0 = K. Then JS-RIP is defined as follows.

Definition 6 The dictionary matrix D is said to obey JS-RIP with joint-sparsity level

K, if there exists δK ∈ [0, 1) for all K-joint-sparse (M̄K-sparse) signals x ∈ C M̄N

such that

(1− δK)||x||22 ≤ ||Dx||22 ≤ (1 + δK)||x||22 (5.46)

holds for the JS-RIP constant δK .

The JS-RIP constant δK can be found as follows [114]

min
δK∈[0,1)

δK s.t.(1− δK)||x||22 ≤ ||Dx||22 ≤ (1 + δK)||x||22 (5.47)

The uniqueness of the solution for the problem in JSP1 can be treated in a similar

manner as in [59]. In our case, the problem involves the mixed norms of source

vector and MC coefficients and should be treated accordingly. The following theorem

describes the uniqueness property.

Theorem 2 Let ŝ and ĉ be the solution to JSP1 problem. If the matrix D obeys

JS-RIP with δ2K < 1, then the solution is unique.

Proof: Let x̂ be the solution to JSP1 in (5.18) with

x̂ = [̂sT , ĉ2ŝT , ĉ3ŝT , . . . , ĉM̄ ŝT ]T (5.48)

Then, we can say that ||x̂||2,0 ≤ ||x||2,0 ≤ K since both x̂ and x are the solution [115].

Using the triangle inequality, the difference is bounded by 2K as

||x− x̂||2,0 ≤ 2K. (5.49)
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Since both x̂ and x solve JSP1 with equality, then y = Dx̂ = Dx which results

D(x− x̂) = 0. We can use (5.49) in JS-RIP as follows

(1− δ2K)||x− x̂||22 ≤ ||D(x− x̂)||22 = 0. (5.50)

Then we can see that ||x− x̂||22 = 0 since δ2K < 1 which concludes the proof. �

In case of multiple snapshots, JS-RIP can be written as follows

(1− δ(M)
K )||X||2F ≤ ||DX||2F ≤ (1 + δ

(M)
K )||X||2F (5.51)

where X is a K-joint-block-sparse matrix defined in (5.34). δ
(M)
K is the restricted

isometry constant for multiple snapshot case and it can be calculated as in [116].

Further information about the uniqueness of the solution in case of multiple snapshots

can be found in the literature for noiseless [117] and noisy scenario [116].

5.5.2 Uniqueness for MC Coefficient Estimation for A Single Snapshot

In case of a single snapshot, the MC coefficients are estimated from a linear set of

equations in least-square sense as in (5.26). To obtain a unique solution for MC coef-

ficient estimation, (5.26) should be well-defined. Therefore, the solution is unique if

M̄ ≤M is satisfied where M̄ is the number of coupling coefficients.

5.5.3 Uniqueness for MC Coefficient Estimation for Multiple Snapshots

In order to estimate the MC coefficients in multiple snapshot scenario, the orthogo-

nality of signal and noise subspaces is used as in (5.44). The solution is unique if G

in (5.44) is invertible that is only possible if

rank{G} ≤M −K (5.52)

is satisfied where rank{·} is the matrix rank operation. Hence the uniqueness condi-

tion is

M̄ ≤M −K. (5.53)
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5.6 Performance of The Joint-Sparse Recovery With MC

In this part, the performance bound of the proposed JSR algorithm is given in the

following theorem.

Theorem 3 Let y = Dx + e be the noisy measurement of M̄K-sparse x, and x̂ is

the solution to JSP2 in (5.20). If D satisfies JS-RIP with δ2K <
√

2 − 1, then the

reconstruction error ||x̂− x||2 is bounded as follows

||x̂− x||2 ≤ C0ε+ C1||x− (x)K ||2,1 (5.54)

where (x)K is the best K-joint-sparse approximation of x and

C0 =
4
√

1 + δ2K

1− (1 +
√

2)δ2K

C1 =
2(1− δ2K)(M̄K)

−1/2

1− (1 +
√

2)δ2K

. (5.55)

Proof: The proof is similar to the one presented in [90] where the performance bound

is considered for K-sparse vectors. For K-joint-sparse (M̄K-sparse) signals that are

considered in this work, the bound can be obtained by replacing K with M̄K in

[90, Theorem 1.2]. �

5.7 Simulation Results

In this section, the proposed methods, JSR-SS and JSR-MS are evaluated by sev-

eral experiments. The proposed approaches are compared with both conventional

CS methods (Basis Pursuit De-noising (BPDN) [110], Orthogonal Matching Pursuit

(OMP) [118], Modified OMP (MOMP) [117], which is the multiple snapshots ver-

sion of OMP) and subspace-based methods such as the MUSIC [3] algorithm with

and without known MC as well as the unconditional Cramer-Rao lower bound (CRB)

[6]. Note that the MUSIC algorithm with known MC (MUSIC w/ MC) corresponds

to the case that the MC matrix is perfectly known and used in the MUSIC algorithm

[28]. In the first part, the simulation results are presented for the scenario where the

sources and antenna array are in the same plane in order to have a comparison with
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Figure 5.1: The placement of the antennas in the array for a single realization. Dot:

the positions of the fixed antennas, Circle: the positions of the randomly changing

antennas.

the previous studies [32, 48–50]. These are 1-D DOA and MC coefficient estimation

results. In the second part, a DF scenario where the sources are located with different

elevation angles is considered. In this case, 2-D DOA and MC coefficient estima-

tion results are presented. In the third scenario, a DF scenario is considered where

the array data is corrupted by gain/phase mismatches (GPM) instead of MC. In this

scenario, 1-D DOA and GPM parameter estimation results are presented.

Throughout the simulations, three sources located at 32.375◦, 50.714◦ and 75.215◦ in

azimuth plane are considered. The elevation angle is assumed to be 90◦ if the sources

and the antenna array are located in the same plane. Otherwise, the elevation angles of

the sources are selected as 43.251◦, 52.852◦ and 62.734◦ respectively. In order to deal

with the off-grid target locations, the dictionary matrix A is constructed with a coarse

resolution, i.e., ∆φ = 3◦, then multi-resolution grid refinement [105, Sec. 6] is used

for all the algorithms. Note that the conventional CS algorithms use the dictionary

matrix A whereas the new dictionary matrix D is used for the proposed approaches,

namely, JSR-SS and JSR-MS respectively. The regularization parameters, µS and

µM are selected as described in [110, Sec. 5.2]. 100 Monte Carlo trials are done for
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each experiment. In each trial, the positions of the antennas in the array are updated.

There are M = 16 antennas positioned randomly in the xy-plane. The positions of

the antennas (xm, ym) are sampled from a uniform distribution and xm ∈ [−λ, λ],

ym ∈ [−λ, λ] and zm = 0 for m = 1, . . . ,M . In order to avoid from a dense antenna

positioning, each antenna is assumed to be placed randomly in a box in the xy-plane.

The xy-plane is divided into M = 16 boxes as shown in Fig. 5.1 where a single

realization for the positions of the antennas is presented. The position of the first

two antennas are fixed with a half wavelength spacing, namely (x1, y1) = (−3λ
4
, 3λ

4
)

and (x2, y2) = (−λ
4
, 3λ

4
). While this is not required for the proposed approaches, this

selection is used to avoid spatial aliasing. The other antennas are distributed such that

there is a single antenna in each box.

In order to generate the MC matrix, a similar approach in [6] and [50] is followed

where MC coefficients are selected randomly based on the distance between antennas.

Note that it is assumed that there are at most M unknown coupling coefficients so

that the problem in (5.26) is well-posed. The coupling coefficients corresponding

to the antenna pairs with dm > λ are assumed to be zero [16, 17]. The gain and

the phase terms of MC coefficients are selected as cm = cGm exp (jcPm) where cGm ∼
N ( d̄m

2
,
(
d̄m
20

)2

) and cPm ∼ N (0,
(
π
18

)2
) for m = 2, . . . , M̄ respectively. Note that

cGm = 1 and cPm = 0 for m = 1. d̄ = [d̄2, . . . , d̄M̄ ] = d
||d||∞ is (M̄ − 1) × 1 vector

composed of the normalized distances. Hence, the coupling coefficient, cm, will be

close to 1 in magnitude as |d̄m| −→ 0 and it will be close to 0 as |d̄m| −→ 1.

5.7.1 Scenario 1: 1-D DOA and MC Coefficient Estimation

In this scenario, the sources and antenna array are assumed to be in the same plane.

In Fig. 5.2, DOA estimation performance of the algorithms is presented for a single

snapshot. As it is seen, JSR-SS asymptotically follows the CRB while the other

algorithms do not give accurate estimation results. The MUSIC algorithm also fails

due to rank-deficiency. While BPDN and OMP are very effective algorithms for MC-

free measurements, their performance is not satisfactory when there is MC.

We present the multiple snapshot DOA estimation performance of the JSR-MS in

Fig. 5.3 for different SNR levels. As it is seen, JSR-MS follows the CRB while the
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Figure 5.2: 1-D DOA estimation performance for a single snapshot, T = 1.
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Figure 5.3: 1-D DOA estimation performance for multiple snapshots, T = 100.

other algorithms do not perform well except MUSIC with known MC coefficients.

When the MC is unknown, MUSIC does not perform well. The other CS algorithms,

l1-SVD and MOMP cannot achieve good performance due to MC.

In Fig. 5.4a, root mean square error (RMSE) for the gain and phase term of the

MC coefficients is presented for single snapshot case. Note that the phase estimates
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are given in radians. JSR-SS has significantly better performance compared to the

alternative methods. While JSR-SS performs better for gain estimates, the margin

between JSR-SS and the CRB is larger for phase estimation.

In Fig. 5.4b, RMSE for the gain and the phase term of the MC coefficients is pre-

sented for multiple snapshot case. As it is seen, JSR-MS achieves better estimation

performance in comparison to the other algorithms.

Since the previous approaches, which involve MC mitigation, require fixed array ge-

ometries [15, 107, 108], the proposed method is evaluated in a ULA with M = 16

antennas and compared with [107] and [108]. The distance between antennas is λ/2

and the number of snapshots is T = 200. There is a single coupling coefficient and

M̄ = 2. The results are shown in Fig. 5.5. As it is seen, JSR-MS performs better than

the other algorithms including the methods in [107] (Dai et.al.) and [108] (SBAC)

where MC effect is taken into account. The disadvantage of [107] is array shrink-

age where some of the antenna outputs are discarded in order to obtain a special MC

matrix in the array model. SBAC is an expectation-maximization algorithm which

iteratively estimates the MC coefficients, source signals and noise variance. While

SBAC has similar estimation results with JSR-MS for SNR<15dB, it has a certain

performance loss after SNR=15dB and its performance gets worse as SNR increases.

SBAC algorithm requires noise variance estimate and the accuracy of this estimate

degrades as SNR increases.

5.7.2 Scenario 2: 2-D DOA and MC Coefficient Estimation

In the second scenario, it is assumed that the sources have different elevation angles

so that 2-D DOA estimation is required to accurately estimate the source locations. In

2-D DOA estimation with sparse recovery, the dictionary matrix should be generated

such that it covers both azimuth and elevation planes. Since this task is computation-

ally inefficient, a sequential grid refinement is considered and the following procedure

is used.

1. The azimuth and elevation angles of the sources are estimated roughly with a

coarse resolution in the dictionary, namely ∆φ = 3◦ and ∆θ = 5◦ are selected.
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Figure 5.4: MC gain and phase estimation performance for 1-D scenario with a single

(a) and multiple snapshots (T = 100) (b). Note that the phase estimates are given in

radians. Gain estimation results are denoted with solid lines whereas phase estimates

are denoted with dashed lines.
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Figure 5.5: 1-D DOA estimation performance vs SNR for ULA when T = 200.

2. Then multi-resolution grid refinement is performed in azimuth and elevation

dimensions one by one. First, elevation angle is kept fixed and dictionary matrix

composed of only the azimuth angles is used. Hence the azimuth angles are

found in this step.

3. After the finer azimuth angle estimates are obtained, the azimuth angle is kept

fixed and the elevation angles are found.

4. This process is performed until a fine resolution is obtained.

It is observed that the above search procedure has less complexity than the use of a

single dictionary matrix with fine resolution in both azimuth and elevation planes.

In Fig. 5.6a and 5.6b, 2-D DOA estimation performance for azimuth and elevation

angles is presented for both single and multiple snapshot cases. In Fig. 5.6a, JSR-

SS AZ and JSR-SS EL denotes the azimuth and elevation performance of the JSR-SS

method respectively. In Fig. 5.6b, JSR-MS AZ and JSR-MS EL stand for the azimuth

and elevation performance of JSR-MS method respectively. As it is seen, JSR-SS and

JSR-MS perform better than the other algorithms. Note that, in 2-D DOA estimation

scenario, the margin between the proposed methods and the CRB gets larger as SNR

increases. This is due to the coupling between the azimuth and elevation angles. Fur-
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thermore, the proposed methods like the other CS methods produce biased estimates

[105].

In Fig. 5.7a and Fig. 5.7b, estimation results for the gain and phase components of

coupling coefficients are shown for both single and multiple snapshots respectively.

As it is seen, the proposed methods, JSR-SS and JSR-MS provide better results and

outperform the other algorithms. When Fig. 5.7a-5.7b are compared with Fig. 5.4a-

5.4b where 1-D results are presented, there is a certain performance loss. This is again

due to azimuth and elevation coupling and biased estimation.
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Figure 5.6: 2-D DOA estimation performance for a single snapshot (a) and mul-

tiple snapshots (T = 30) (b) respectively. The DOA angles of the sources are

(32.375◦, 43.251◦), (50.714◦, 52.852◦) and (75.215◦, 62.734◦). Azimuth estimation

results are denoted with solid lines whereas elevation estimates are denoted with

dashed lines.
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Figure 5.7: MC gain and phase estimation performance of 2-D scenario for a single

snapshot (a) and multiple snapshots (T = 30) (b) respectively. Gain estimation results

are denoted with solid lines whereas phase estimates are denoted in radians with

dashed lines.
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5.7.3 Scenario 3: 1-D DOA and Gain/Phase Mismatch Estimation in Multipath

Environment

In this part, the performance of the proposed JSR-MS is evaluated in case of

gain/phase mismatches and multipath. The signal model and the modifications to

JSR-MS method are provided in Appendix B. The selection of the dictionary matri-

ces A and D is the same as in the previous scenarios. 100 Monte Carlo trials are

run for each experiment. In each trial, the positions of the sensors and the mismatch

coefficients are updated. Note that the mismatch parameters are γm = αme
jβm for

m = 1, . . . ,M . The gain and the phase terms of mismatch parameters are selected

as αm ∼ N (µα, σ
2
α) and βm ∼ N (µβ, σ

2
β) respectively. Here µα, µβ and σ2

α, σ2
β are

mean and variances of αm and βm respectively.
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Figure 5.8: DOA estimation performance vs SNR when T = 100, µα = 1, σα = 0.5

and µβ = 0◦, σβ = 20◦.

DOA estimation performance of the proposed method for different SNR levels is pre-

sented in Fig. 5.8. As it is seen, JSR-MS closely follows the CRB whereas other

algorithms provide large errors. While l1-SVD and MOMP are effective sparse re-

covery methods for DOA estimation, they fail in case of array imperfections. The

MUSIC algorithm also fails in this scenario since the array covariance matrix is rank-

deficient due to coherent source signals. Note that MUSIC w/ GPM and MUSIC w/o
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GPM correspond to the MUSIC algorithm with and without known GPM parameters

respectively.

In Fig. 5.9, RMSE for the estimation of gain mismatch is shown. As it is seen, JSR-

MS performs better than the other algorithms while there is a small gap between JSR-

MS and the CRB. In Fig. 5.10, RMSE for the phase term of mismatch coefficients is

given. Similar behavior can be observed in this figure in comparison to Fig. 5.9.
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Figure 5.9: RMSE for the gain term of the mismatch coefficients when T = 100,

µα = 1, σα = 0.5 and µβ = 0◦, σβ = 20◦.

5.7.4 Performance of JSR-MS For Correlated Source Signals

In this experiment, DOA estimation performance is evaluated when two of the

source signals are correlated. The source signals are jointly-Gaussian and selected

as


s1(ti)

s2(ti)

s3(ti)

 ∼ N



0

0

0

 ,


1 ρ 0

ρ 1 0

0 0 1


 for i = 1, . . . , T where ρ ∈ [0, 1] is

the correlation coefficient. There are T = 100 snapshots and SNR = 10dB. The re-

sults are shown in Fig. 5.11. The figure shows that the performance of sparsity-based

algorithms are not affected much by the correlation between the source signals and
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Figure 5.10: RMSE for the phase term of the mismatch coefficients when T = 100,

µα = 1, σα = 0.5 and µβ = 0◦, σβ = 20◦.

JSR-MS outperforms the other algorithms. This observation is similar to the results

given in [105]. While MUSIC w/o MC provides large errors similar to the results in

Fig. 5.3, the performance of MUSIC w/ MC gets worse as ρ −→ 1.
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Figure 5.11: 1-D DOA estimation performance for correlated source signals, T = 100

and SNR=10dB.
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5.7.5 Computational Complexity

In this part, the computational complexities of the proposed methods are compared

with the previous methods. The sparse recovery algorithms, l1-SVD [105] and Basis

pursuit [110], have O
(
(KNφNθ)

3) and O
(
(NφNθ)

3) complexities respectively for

2-D scenario when there is no mutual coupling. Note that Basis pursuit solves the sin-

gle snapshot problem while the complexity of l1-SVD is given for multiple snapshots.

The complexity of 2-D MUSIC algorithm is O (M3NφNθ). When MC is taken into

consideration, the proposed methods, JSR-SS and JSR-MS have O
((
M̄NφNθ

)3
)

andO
((
KM̄NφNθ

)3
)

complexities respectively. Note that they have the same com-

plexity with Basis pursuit and l1-SVD when there is no mutual coupling (i.e., M̄ = 1).

The complexity of the proposed methods is higher than the subspace algorithms such

as the MUSIC. However, the MUSIC cannot be used in case of a single snapshot and

additional techniques should be employed when there is mutual coupling for multiple

snapshots increasing the complexity. In case of arbitrary array geometries, the use of

the MUSIC becomes harder for unknown mutual coupling.

90



5.8 The Advantages of The JSR-SS and JSR-MS

The advantages of the proposed methods are as follows:

• The proposed methods work well in case of mutual coupling for arbitrary struc-

tures while most of the algorithms in the literature require fixed and uniform

array structures.

• JSR-SS works well when there is only a single snapshot so that it can be used

for online array calibration.

• The proposed method can estimate 2-D DOA angles of the unknown source

locations with satisfied accuracy.

• The proposed methods are not effected by the correlation between the received

source signals. Therefore, they perform well in case of multipath signals.

• The proposed method also woks well in case of gain/phase mismatches and

multipath.

91



92



CHAPTER 6

CONCLUSIONS

In this thesis, major error sources in DF applications are investigated in detail and

three new methods are proposed in order to overcome these distortions and obtain

satisfactory DF performance.

In the first problem, an offline calibration technique is proposed for the antenna arrays

mounted on aeronautical vehicles. The calibration procedure is performed when the

vehicle is on the ground. In this scenario, the reflections from the ground and the

platform are the main distortions for DF operation. The scenario is modeled in a

numerical electromagnetic simulation tool, FEKO, and the array data is obtained.

When the received signals from the antennas are examined, it is observed that they are

composed of two parts, namely, the desired signal component and the reflected signal

from the ground. In order to mitigate the ground reflections, a time-gating approach

is employed using a windowing technique to extract the desired signal component.

In the calibration process, the selection of the setup parameters are very important

since their values determine the lengths of the direct path and the ground reflections.

These parameters are the heights of the transmitter source and the vehicle as well as

the distance between the array and the transmitter. The setup parameters should be

selected so that the desired signal and ground reflections can be separated in time by

using time-gating. When the desired signal components are gated, sufficiently clean

calibration data is obtained. The evaluation of the proposed calibration technique is

done by using both correlative interferometer and the MUSIC algorithm.

Since FEKO, the EM simulation tool used to implement the scenario, works in fre-
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quency domain, the antenna impulse response is obtained firstly in frequency. Then

it is transformed to the time domain for time-gating. In a practical scenario, the

proposed method can be applied both in time and frequency domain. In frequency

domain application, the calibration data can be collected in the same way as it is ob-

tained in this work. In time domain application, a pulse signal can be transmitted

from the transmitter antenna and the array impulse response can be obtained. After

time-gating is applied, calibration data is collected in time domain. Then, time-gated

signals can be transformed to the frequency domain and the calibration data can be

obtained for different frequencies.

The proposed method is simple and time-efficient as compared to other calibration

techniques such as the ones performed when the vehicle is airborne. Another ad-

vantage of the proposed method is its accuracy. Since the ground reflections and

gain/phase mismatches due to the reflections from the platform are effectively elimi-

nated, the DF performance is improved significantly as compared to the uncalibrated

scenario. In addition, the proposed calibration technique offers to use the collected

calibration data for a wide range of frequencies since the it is performed in time and

the calibration data for a certain frequency can easily be obtained by inverse Fourier

transform.

In the second problem, far-field DOA estimation and near-field localization of mul-

tipath signals is considered. In this scenario, there is a single far-field source with

its near-field multipath reflections leading to model mismatches. A new method is

proposed for the estimation of DOA angle of the far- and near-field signals and near-

field ranges. In order to estimate 2-D DOA angles of the far-field source, a circular

array is employed. A calibration technique is used and the collected calibration data

is utilized in the MUSIC spectrum for DF operation.

In far-field DOA estimation, calibration data is collected for the elevation interval of

[85◦, 95◦] whereas the effect of multipath differs as the elevation angle of the source

changes. Therefore, the calibration data should be collected for a large range of ele-

vation angles in order to obtain satisfactory DF results in a practical scenario.

Once the far-field source parameters are estimated, a near-to-far field transformation

is used and it is applied to the array output. This transformation process has two
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properties. Firstly, it transforms the near-field signal components of the array data to

far-field. In this case, the far-field signal components will be suppressed and seen as

an interference. Secondly, it transforms the circular array data to virtual array with

linear geometry so that spatial smoothing can be applied for accurate DOA estimation

of near-field sources. The selection of the inter-element distance of this virtual array

is an important issue for accurate parameter estimation. When the distance between

the antennas in the virtual array is large, it provides higher DOA estimation accuracy

for a narrow angular sector. If the array spacing is small, there is a slight performance

loss in DOA accuracy but it is established for a larger angular sector. This trade-

off should be solved for a better DF operation. In this study, the selection of the

virtual array spacing is examined for 360◦ operation and the best spacing is found by

evaluating the possible inter-element spacing in terms of DF accuracy. Once the DOA

angles are found, the near-field range parameters are estimated by using a compressed

sensing approach. In this case, a dictionary matrix is constructed by stacking the far-

and near-field steering vectors with estimated DOA angles.

The performance of the proposed method is evaluated by using numerical electro-

magnetic simulation tools and it is shown that parameters of both far- and near-field

sources can be accurately estimated. Another advantage of the proposed method is

that it has a robust performance in case of multipath.

In the third problem, 2-D DOA and MC coefficient estimation is considered for ar-

bitrary array structures. In this scenario, both single and multiple snapshot cases are

investigated and a new method is proposed for parameter estimation. A compressed

sensing approach is used where the sparsity of the spatial source directions is utilized

together with the MC coefficients. As a result, a joint-sparse recovery algorithm is

proposed where both source signals and the MC coefficients are jointly embedded into

a joint-sparse vector. This joint-sparse structure is used together with a new dictionary

which is constructed by the augmentation of sub-dictionary matrices corresponding

to each MC coefficient.

The size of the dictionary matrix is an important issue since it directly affects the

computational complexity of the problem. For instance, when anM×N conventional

dictionary matrix which is composed of steering vectors is used, the size of the new
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dictionary matrix becomes M × M̄N for M̄ MC coefficients. When a coarse grid is

used for the dictionary which reduces the size, the resolution of the solution will be

decreased. On the other hand, when a fine dictionary is used, the size of the dictionary

and the complexity of the problem will increase significantly. Therefore, selection of

the dictionary size is important and designing a dictionary matrix is still an open

problem in the literature.

In order to solve the considered problem for multiple snapshots, a new sparsity struc-

ture, namely joint-block-sparsity, is introduced to take advantage of the structure in

the composite matrix involving both DOA and MC coefficients. In this case, instead

of a joint-sparse vector, joint-sparse matrix blocks are utilized. In order to use the

joint-block-sparsity in the optimization problem, new norm structures, namely l2,2,0-

and l2,2,1-norms are proposed. In addition to the MC coefficient estimation, joint

DOA and gain/phase mismatch estimation is performed in case of multipath.

The proposed method is advantageous since it does not depend on the array structure

for joint DOA and MC coefficient estimation. It is shown that the proposed method

effectively estimates the DOA angles and mismatch parameters. It can work for both

single and multiple snapshot scenarios. The proposed method can ve seen as an on-

line calibration technique in the sense that it does not require calibration before DF

operation. Moreover, the proposed method can estimate 2-D DOA angles effectively

without a pairing problem which exists in parameter estimation problems with arbi-

trary array structures.

Some of the future works for this research can be summarized as follows:

• In the second problem, only a single far-field source is assumed for DOA esti-

mation. While this is usually the case in HF DF scenarios, the proposed method

can be modified for multiple far-field source case.

• In the third problem, the parameter estimation is done by using compressed

sensing strategies where a dictionary matrix is used. In the proposed method,

an augmented dictionary structure is employed so that the source parameters

are estimated with convex optimization. The complexity of these techniques

directly depends on the size of the dictionary. Therefore, compact dictionary
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structures can be used so that the size of the dictionary and eventually the com-

putational complexity is reduced.

• In the third problem, the antenna patterns of the array elements are assumed

to be isotropic which leads to direction-independent MC matrix. In a practi-

cal scenario, antennas have directional patters so that the MC matrix becomes

direction-dependent. In this case, there are KM̄ MC matrix parameters for K

sources and M̄ unknown parameters in each MC matrix. Hence, there are more

unknowns than the number of antennas in the array for arbitrary array struc-

tures. However the number of parameters can be reduced for uniform array

structures. As a result, a DF scenario in the presence of direction-dependent

MC can be considered as a future work.

97



98



REFERENCES

[1] H. Krim and M. Viberg. Two decades of array signal processing research:
the parametric approach. Signal Processing Magazine, IEEE, 13(4):67–94, Jul
1996.

[2] T. Engin Tuncer and Benjamin Friedlander. Classical and Modern Direction-
of-Arrival Estimation. Academic Press, 2009.

[3] R.O. Schmidt. Multiple emitter location and signal parameter estimation. An-
tennas and Propagation, IEEE Transactions on, 34(3):276–280, Mar 1986.

[4] Bin Liao and Shing-Chow Chan. Adaptive beamforming for uniform linear
arrays with unknown mutual coupling. Antennas and Wireless Propagation
Letters, IEEE, 11:464–467, 2012.

[5] I.J. Gupta and A.A. Ksienski. Effect of mutual coupling on the perfor-
mance of adaptive arrays. Antennas and Propagation, IEEE Transactions on,
31(5):785–791, Sep 1983.

[6] Benjamin Friedlander and A.J. Weiss. Direction finding in the presence of mu-
tual coupling. Antennas and Propagation, IEEE Transactions on, 39(3):273–
284, Mar 1991.

[7] Boon Poh Ng, Joni Polili Lie, Meng Hwa Er, and Aigang Feng. A practical
simple geometry and gain/phase calibration technique for antenna array pro-
cessing. Antennas and Propagation, IEEE Transactions on, 57(7):1963–1972,
July 2009.

[8] Lundgren A. Viberg M., Lanne M. Calibration Array Processing. In Tuncer
T.E. and Friedlander B., editors, Classical and Modern Direction-Of-Arrival
Estimation, pages 93–124. Academic Press, 2009.

[9] A. J. Weiss and B. Friedlander. Array shape calibration using sources in
unknown locations-a maximum likelihood approach. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37(12):1958–1966, Dec 1989.

[10] Y. Rockah and P. Schultheiss. Array shape calibration using sources in un-
known locations–part i: Far-field sources. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(3):286–299, Mar 1987.

[11] Stoica P. and Moses R.L. Spectral Analysis of Signals. 2005.

99



[12] N. Yuen and B. Friedlander. Doa estimation in multipath: an approach using
fourth-order cumulants. IEEE Transactions on Signal Processing, 45(5):1253–
1263, May 1997.

[13] Yufeng Zhang, Zhongfu Ye, and Chao Liu. An efficient {DOA} estimation
method in multipath environment. Signal Processing, 90(2):707 – 713, 2010.

[14] Qiming Bao, C.C. Ko, and Wanjun Zhi. DOA estimation under unknown mu-
tual coupling and multipath. Aerospace and Electronic Systems, IEEE Trans-
actions on, 41(2):565–573, April 2005.

[15] Hon Tat Hui. A practical approach to compensate for the mutual coupling ef-
fect in an adaptive dipole array. Antennas and Propagation, IEEE Transactions
on, 52(5):1262–1269, May 2004.

[16] T. Svantesson. Modeling and estimation of mutual coupling in a uniform linear
array of dipoles. In Acoustics, Speech, and Signal Processing, 1999. Proceed-
ings., 1999 IEEE International Conference on, volume 5, pages 2961–2964
vol.5, 1999.

[17] Zhongfu Ye and Chao Liu. On the Resiliency of MUSIC Direction Finding
Against Antenna Sensor Coupling. Antennas and Propagation, IEEE Trans-
actions on, 56(2):371–380, Feb 2008.

[18] J. D. Kraus and R. J. Marhefka. Antennas, Third Edition. McGraw-Hill, 2002.

[19] J. Dmochowski, J. Benesty, and S. Affes. On spatial aliasing in microphone ar-
rays. IEEE Transactions on Signal Processing, 57(4):1383–1395, April 2009.

[20] Zhongfu Ye and Chao Liu. 2-D DOA Estimation in the Presence of Mutual
Coupling. Antennas and Propagation, IEEE Transactions on, 56(10):3150–
3158, Oct 2008.

[21] R. Goossens and H. Rogier. A Hybrid UCA-RARE/Root-MUSIC Approach
for 2-D Direction of Arrival Estimation in Uniform Circular Arrays in the Pres-
ence of Mutual Coupling. Antennas and Propagation, IEEE Transactions on,
55(3):841–849, March 2007.

[22] Jisheng Dai, Xu Bao, Nan Hu, Chunqi Chang, and Weichao Xu. A Recur-
sive RARE Algorithm for DOA Estimation With Unknown Mutual Coupling.
Antennas and Wireless Propagation Letters, IEEE, 13:1593–1596, 2014.

[23] L. Xiang, Z. Ye, X. Xu, C. Chang, W. Xu, and Y.S. Hung. Direction of arrival
estimation for uniform circular array based on fourth-order cumulants in the
presence of unknown mutual coupling. Microwaves, Antennas Propagation,
IET, 2(3):281–287, April 2008.

100



[24] Kehu Yang, Shu Cai, and Zhi-Quan Luo. Convex relaxation approaches to
maximum likelihood DOA estimation in ULA’s and UCA’s with unknown mu-
tual coupling. In Acoustics, Speech and Signal Processing (ICASSP), 2011
IEEE International Conference on, pages 2556–2559, May 2011.

[25] V. Agrawal and Yuen Lo. Mutual coupling in phased arrays of ran-
domly spaced antennas. Antennas and Propagation, IEEE Transactions on,
20(3):288–295, May 1972.

[26] Weiping Mao, Guolin Li, Xin Xie, and Qingzhi Yu. DOA Estimation of Coher-
ent Signals Based on Direct Data Domain Under Unknown Mutual Coupling.
Antennas and Wireless Propagation Letters, IEEE, 13:1525–1528, 2014.

[27] Tansu Filik and T.Engin Tuncer. 2-D DOA estimation in case of unknown
mutual coupling for multipath signals. Multidimensional Systems and Signal
Processing, pages 1–18, 2014.

[28] Ahmet M. Elbir and T. Engin Tuncer. Calibration of antenna arrays for aero-
nautical vehicles on ground. Aerospace Science and Technology, 30(1):18 –
25, 2013.

[29] Chong Meng Samson See and A.B. Gershman. Direction-of-arrival estimation
in partly calibrated subarray-based sensor arrays. Signal Processing, IEEE
Transactions on, 52(2):329–338, Feb 2004.

[30] P. Heidenreich, A.M. Zoubir, and M. Rubsamen. Joint 2-D DOA Estimation
and Phase Calibration for Uniform Rectangular Arrays. Signal Processing,
IEEE Transactions on, 60(9):4683–4693, Sept 2012.

[31] A. Leshem and M. Wax. Array calibration in the presence of multipath. Signal
Processing, IEEE Transactions on, 48(1):53–59, Jan 2000.

[32] M. Aktas and T. E. Tuncer. HOS based online calibration. In Signal Process-
ing Conference, 2011 19th European, pages 604–608, Aug 2011.

[33] Ahmet M. Elbir and T. Engin Tuncer. Far-field DOA estimation and near-field
localization for multipath signals. Radio Science, 49(9):765–776, 2014.

[34] X. Zeng W. Wang J. Zhang J. Liang, D. Liu and H. Chen. Joint azimuth-
elevation/(-range) estimation of mixed near-field and far-field sources using
two-stage separated steering vector-based algorithm. Progress In Electromag-
netics Research, 113:17–46, 2011.

[35] J. Liang and D. Liu. Passive localization of mixed near-field and far-field
sources using two-stage music algorithm. IEEE Transactions on Signal Pro-
cessing, 58(1):108–120, Jan 2010.

101



[36] B. Wang, Y. Zhao, and J. Liu. Mixed-order music algorithm for localization
of far-field and near-field sources. IEEE Signal Processing Letters, 20(4):311–
314, April 2013.

[37] J. He, M. N. S. Swamy, and M. O. Ahmad. Efficient application of music al-
gorithm under the coexistence of far-field and near-field sources. IEEE Trans-
actions on Signal Processing, 60(4):2066–2070, April 2012.

[38] J. j. Jiang, F. j. Duan, J. Chen, Y. c. Li, and X. n. Hua. Mixed near-field and far-
field sources localization using the uniform linear sensor array. IEEE Sensors
Journal, 13(8):3136–3143, Aug 2013.

[39] G. Liu and X. Sun. Efficient method of passive localization for mixed far-
field and near-field sources. IEEE Antennas and Wireless Propagation Letters,
12:902–905, 2013.

[40] F. Wen and W. P. Tay. Localization for mixed near-field and far-field sources
using data supported optimization. In Information Fusion (FUSION), 2012
15th International Conference on, pages 402–407, July 2012.

[41] R. Roy and T. Kailath. ESPRIT-estimation of signal parameters via rotational
invariance techniques. Acoustics, Speech and Signal Processing, IEEE Trans-
actions on, 37(7):984–995, Jul 1989.

[42] J. S. Thompson, P. M. Grant, and B. Mulgrew. Performance of spatial smooth-
ing algorithms for correlated sources. IEEE Transactions on Signal Process-
ing, 44(4):1040–1046, Apr 1996.

[43] Yih-Min Chen. On spatial smoothing for two-dimensional direction-of-arrival
estimation of coherent signals. IEEE Transactions on Signal Processing,
45(7):1689–1696, Jul 1997.

[44] Shiwei Ren, Xiaochuan Ma, Shefeng Yan, and Chengpeng Hao. 2-d unitary
esprit-like direction-of-arrival (doa) estimation for coherent signals with a uni-
form rectangular array. Sensors, 13(4):4272, 2013.

[45] Pál Turán. Leopold Fejér Gesammelte Arbeiten I, chapter Über den Zusam-
menhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten
und Über den Picard—Landauschen Satz, pages 693–715. Birkhäuser, Basel,
1970.

[46] Benjamin Friedlander and A.J. Weiss. Direction finding using spatial smooth-
ing with interpolated arrays. Aerospace and Electronic Systems, IEEE Trans-
actions on, 28(2):574–587, Apr 1992.

[47] T. E. Tuncer, T. K. Yasar, and B. Friedlander. Direction of arrival estimation for
nonuniform linear arrays by using array interpolation. Radio Science, 42(4),
2007. RS4002.

102



[48] F. Belloni, A. Richter, and V. Koivunen. DoA Estimation Via Manifold Sep-
aration for Arbitrary Array Structures. Signal Processing, IEEE Transactions
on, 55(10):4800–4810, Oct 2007.

[49] M. Rubsamen and A.B. Gershman. Direction-of-Arrival Estimation for
Nonuniform Sensor Arrays: From Manifold Separation to Fourier Domain
MUSIC Methods. Signal Processing, IEEE Transactions on, 57(2):588–599,
Feb 2009.

[50] M. Aktas and T. E. Tuncer. Iterative HOS-SOS (IHOSS) Algorithm for
Direction-of-Arrival Estimation and Sensor Localization. Signal Processing,
IEEE Transactions on, 58(12):6181–6194, Dec 2010.

[51] E.J. Candès and M.B. Wakin. An Introduction To Compressive Sampling.
Signal Processing Magazine, IEEE, 25(2):21–30, March 2008.

[52] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Stable signal re-
covery from incomplete and inaccurate measurements. Communications on
Pure and Applied Mathematics, 59(8):1207–1223, 2006.

[53] Candès E. J. Compressive sampling. In , In Proceedings of the International
Congress of Mathematicians, pages 1433–1452, Aug 2006.

[54] D. L. Donoho. Compressed sensing. IEEE Transactions on Information The-
ory, 52(4):1289–1306, April 2006.

[55] Ahmet M. Elbir and T. Engin Tuncer. 2-D DOA and Mutual Coupling Co-
efficient Estimation for Arbitrary Array Structures with Single and Multiple
Snapshots. Digit. Signal Process., 54(C):75–86, July 2016.

[56] Paul N.D. Saucier N.E. Deep depression angle calibration of airborne direction
finding arrays, US Patent No: 6,806,837, 19 Oct 2004.

[57] L. Dinoi, A. Di Vito, and G. Lubello. Direction finding of ground based emit-
ters from airborne platforms. In Radar Conference, 2008. RADAR ’08. IEEE,
pages 1–6, May 2008.

[58] Anthony Bellion, C. Le Meins, Anne Julien-Vergonjanne, and Thierry
Monédière. Calibration of direction finding antennas in complex environ-
ment. In Colloque URSI 2008 (International Unio of Radio Science), Chicago,
United States.

[59] Zhao Tan, Peng Yang, and A. Nehorai. Joint Sparse Recovery Method for
Compressed Sensing With Structured Dictionary Mismatches. Signal Process-
ing, IEEE Transactions on, 62(19):4997–5008, Oct 2014.

[60] M.M. Hyder and K. Mahata. Direction-of-Arrival Estimation Using a Mixed
l2,0-norm Norm Approximation. Signal Processing, IEEE Transactions on,
58(9):4646–4655, Sept 2010.

103



[61] Tansu Filik and T. Engin Tuncer. A fast and automatically paired 2-D
direction-of-arrival estimation with and without estimating the mutual coupling
coefficients. Radio Science, 45(3), 2010. RS3009.

[62] Balanis C.A. Antenna Theory: Analysis and Design. Wiley-Interscience. N.J.
Prentice Hall, NY, USA., 2005.

[63] S. Das and D. Mandal. Synthesis of broadside uniform circular antenna array
with low on-surface scanning. In Antenna Week (IAW), 2011 Indian, pages
1–4, Dec 2011.

[64] Ding Wang, Hui Yao, and Ying Wu. Sensor array calibration for uniform
rectangular array in presence of mutual coupling and sensor gain-and-phase
errors. Journal of Central South University, 21(6):2228–2239, 2014.

[65] Sana Salous. Radio Channel Models, pages 85–147. John Wiley & Sons, Ltd,
2013.

[66] Y. S. Hsu, K. T. Wong, and L. Yeh. Mismatch of near-field bearing-range
spatial geometry in source-localization by a uniform linear array. IEEE Trans-
actions on Antennas and Propagation, 59(10):3658–3667, Oct 2011.

[67] M. N. El Korso, A. Renaux, R. Boyer, and S. Marcos. Deterministic per-
formance bounds on the mean square error for near field source localization.
IEEE Transactions on Signal Processing, 61(4):871–877, Feb 2013.

[68] I Bertino M Bozzetti, G M Ariano and P Galati. A state of the art ane-
choic cham-ber for air vehicle testing at Alenia Aeronautica. In International
Unionof Radio Science, pages 175–178, November 2008 2008.

[69] M. S. Reese, C. A. Balanis, C. R. Blncher, and G. C. Barber. Modeling and
simulation of a helicopter-mounted satcom antenna array. IEEE Antennas and
Propagation Magazine, 53(2):51–60, April 2011.

[70] Aubin J.F. and Hartman R.E. Design, calibration and performance of a full-
sized aircraft antenna range from 30MHz to 40 GHz. Technical Paper, Mi-
crowave Vision, Nov. 1981.

[71] T. Umeda, Y. Matsumoto, A. Nishikata, Y. Yamanaka, A. Sugiura, and
K. Koike. Emi antenna calibration on an absorber-lined ground plane for
measuring free-space antenna factor. In Electromagnetic Compatibility, 2002.
EMC 2002. IEEE International Symposium on, volume 1, pages 43–48, Aug
2002.

[72] Marcos V.T. Heckler and Achim Dreher. Performance of microstrip antenna
arrays installed on aircraft. Aerospace Science and Technology, 26(1):235–
143, 2013.

104



[73] R. Bunger, F. Demmel, and J. Ritter. Installed performance analysis of a di-
rection finding system on board of a large aircraft platform. In Microwave
Conference, 2003. 33rd European, volume 2, pages 695–697 vol.2, Oct 2003.

[74] Warren F. Perger Irfan Ahmed and Seyed A. Zekavat. Effects of Ground Con-
stituent Parameters on Array Mutual Coupling for DOA Estimation. Interna-
tional Journal of Antennas and Propagation, 2011(Article ID 425913), 2011.

[75] S. Kashyap and S. R. Mishra. Improvement in antenna factor measurements
using time-domain gating. In Electromagnetic Compatibility, 1988. Sympo-
sium Record., IEEE 1988 International Symposium on, pages 82–86, Aug
1988.

[76] FEKO User’s Manual. EM Software and System. 2010.

[77] P. Stoica and A. Nehorai. Music, maximum likelihood, and cramer-rao bound:
further results and comparisons. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 38(12):2140–2150, Dec 1990.

[78] Taylan Aksoy and T. Engin Tuncer. Measurement reduction for mutual cou-
pling calibration in doa estimation. Radio Science, 47(3):n/a–n/a, 2012.
RS3004.

[79] H. Nyquist. Certain topics in telegraph transmission theory. Transactions of
the American Institute of Electrical Engineers, 47(2):617–644, April 1928.

[80] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-time
signal processing. Prentice Hall signal processing series. Upper Saddle River,
N.J. Prentice Hall, 1999.

[81] V. Sipal, B. Allen, and D. Edwards. Effects of antenna impulse response on
wideband wireless channel. In Antennas and Propagation Conference (LAPC),
2010 Loughborough, pages 129–132, Nov 2010.

[82] D. Camell, R. T. Johnk, D. Novotny, and C. Grosvenor. Free-space antenna
factors through the use of time-domain signal processing. In Electromagnetic
Compatibility, 2007. EMC 2007. IEEE International Symposium on, pages 1–
5, July 2007.

[83] R. Rammal, M. Lalande, E. Martinod, N. Feix, M. Jouvet, J. Andrieu, and
B. Jecko. Far-Field Reconstruction from Transient Near-Field Measurement
Using Cylindrical Modal Development. International Journal of Antennas and
Propagation, 2009:1–8, 2009.

[84] C. s. Park and D. y. Kim. The fast correlative interferometer direction finder us-
ing i/q demodulator. In Communications, 2006. APCC ’06. Asia-Pacific Con-
ference on, pages 1–5, Aug 2006.

105



[85] Akimichi Hirota, Takehiro Miyamoto, Masayuki Nakano, and Hiroyuki Arai.
Modified calibration method for music method with an array antenna. Elec-
tronics and Communications in Japan (Part I: Communications), 90(10):1–13,
2007.

[86] Lena Chang. Signal subspace transformation for direction-of-arrival estima-
tion of wideband sources in near field. Journal of Marine Science and Tech-
nology, 18(6):830–836, 2010.

[87] De sen Yang, Jie Shi, and Bo sheng Liu. Doa estimation for the near-field
correlated sources with interpolated array technique. In Industrial Electronics
and Applications, 2009. ICIEA 2009. 4th IEEE Conference on, pages 3011–
3015, May 2009.

[88] J.S. Thompson, Peter M. Grant, and B. Mulgrew. Performance of spatial
smoothing algorithms for correlated sources. Signal Processing, IEEE Trans-
actions on, 44(4):1040–1046, Apr 1996.

[89] User’s Manual version 2.7 Wireless InSite. Remcom, PA, USA. 2012.

[90] Emmanuel J. Candès. The restricted isometry property and its implications for
compressed sensing. Comptes Rendus Mathematique, 346(9–10):589 – 592,
2008.

[91] E. J. Candès and T. Tao. Near-optimal signal recovery from random projec-
tions: Universal encoding strategies? IEEE Trans. Inf. Theor., 52(12):5406–
5425, December 2006.

[92] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEEE
Transactions on Information Theory, 52(2):489–509, Feb 2006.

[93] M. F. Duarte and Y. C. Eldar. Structured compressed sensing: From theory to
applications. IEEE Transactions on Signal Processing, 59(9):4053–4085, Sept
2011.

[94] I. Bilik. Spatial compressive sensing for direction-of-arrival estimation of mul-
tiple sources using dynamic sensor arrays. IEEE Transactions on Aerospace
and Electronic Systems, 47(3):1754–1769, July 2011.

[95] ITU-R. Direction finding and location determination at monitoring stations.
Rec. SM.854-3. Geneva, 2010.

[96] F. Röemer M. Haardt, M. Pesavento and M. N. El Korso. Subspace Methods
and Exploitation of Special Array Structures. In Signal Processing: Array and
Statistical Signal Processing, volume 3, pages 651–717. Elsevier, 2014.

106



[97] I. Ziskind and M. Wax. Maximum likelihood localization of multiple sources
by alternating projection. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 36(10):1553–1560, Oct 1988.

[98] S. Fortunati, R. Grasso, F. Gini, and M.S. Greco. Single snapshot DOA esti-
mation using compressed sensing. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 2297–2301, May
2014.

[99] K. Kim, Tapan Kumar Sarkar, and M.S. Palma. Adaptive processing using a
single snapshot for a nonuniformly spaced array in the presence of mutual cou-
pling and near-field scatterers. Antennas and Propagation, IEEE Transactions
on, 50(5):582–590, May 2002.

[100] Tongyu Zhang Yuguan Hou and Shaochuan Wu. CC-MUSIC: An Optimiza-
tion Estimator for Mutual Coupling Correction of L-Shaped Nonuniform Array
with Single Snapshot. Mathematical Problems in Engineering, 2015(Article
ID 969042):11, 2015.

[101] Mehdi Banitalebi Dehkordi, Hamid Reza Abutalebi, and Mohammad Reza Ta-
ban. Sound source localization using compressive sensing-based feature ex-
traction and spatial sparsity. Digital Signal Processing, 23(4):1239 – 1246,
2013.

[102] Richard Porter, Vladislav Tadic, and Alin Achim. Sparse bayesian learning for
non-gaussian sources. Digital Signal Processing, 45:2 – 12, 2015.

[103] Zhen-Qing He, Zhi-Ping Shi, and Lei Huang. Covariance sparsity-aware DOA
estimation for nonuniform noise . Digital Signal Processing, 28:75 – 81, 2014.

[104] M. Carlin, P. Rocca, G. Oliveri, F. Viani, and A. Massa. Directions-of-Arrival
Estimation Through Bayesian Compressive Sensing Strategies. Antennas and
Propagation, IEEE Transactions on, 61(7):3828–3838, July 2013.

[105] D. Malioutov, M. Cetin, and A.S. Willsky. A sparse signal reconstruction per-
spective for source localization with sensor arrays. Signal Processing, IEEE
Transactions on, 53(8):3010–3022, Aug 2005.

[106] A. M. Elbir and T. E. Tuncer. Sparse Support Recovery For DOA Estimation
in the Presence of Mutual Coupling. In Signal Processing Conference, 2015
23rd European, Aug 2015.

[107] J. Dai, D. Zhao, and X. Ji. A Sparse Representation Method for DOA Esti-
mation With Unknown Mutual Coupling. Antennas and Wireless Propagation
Letters, IEEE, 11:1210–1213, 2012.

107



[108] Zhang-Meng Liu and Yi-Yu Zhou. A Unified Framework and Sparse Bayesian
Perspective for Direction-of-Arrival Estimation in the Presence of Array Im-
perfections. Signal Processing, IEEE Transactions on, 61(15):3786–3798,
Aug 2013.

[109] T.T. Zhang, Y.L. Lu, and H.T. Hui. Simultaneous estimation of mutual cou-
pling matrix and DOAs for UCA and ULA. In Electromagnetic Compatibility,
2006. EMC-Zurich 2006. 17th International Zurich Symposium on, pages 265–
268, Feb 2006.

[110] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic de-
composition by basis pursuit. SIAM Journal on Scientific Computing, 20:33–
61, 1998.

[111] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, U.K, 2004.

[112] I. F. Gorodnitsky and B. D. Rao. Sparse signal reconstruction from limited data
using focuss: a re-weighted minimum norm algorithm. IEEE Transactions on
Signal Processing, 45(3):600–616, Mar 1997.

[113] Yonina C. Eldar. Sampling Theory: Beyond Bandlimited Systems. Cambridge
University Press, New York, NY, USA, 2014.

[114] Jeffrey D. Blanchard, Coralia Cartis, and Jared Tanner. Compressed Sensing:
How sharp is the Restricted Isometry Property? SIAM Rev., 53(1):105–125,
February 2011.

[115] Albert Cohen, Wolfgang Dahmen, and Ronald Devore. Compressed sensing
and best k-term approximation. J. Amer. Math. Soc, pages 211–231, 2009.

[116] Kiryung Lee and Yoram Bresler. Performance of Jointly Sparse Support Re-
covery in Compressed Sensing. In Information Theory and Applications Work-
shop, Feb 2011.

[117] S.F. Cotter, B.D. Rao, K. Engan, and K. Kreutz-Delgado. Sparse solutions to
linear inverse problems with multiple measurement vectors. Signal Process-
ing, IEEE Transactions on, 53(7):2477–2488, July 2005.

[118] S.G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries.
Signal Processing, IEEE Transactions on, 41(12):3397–3415, Dec 1993.

108



APPENDIX A

RMSE DEFINITION FOR AZIMUTH ANGLE

One far-field and N − 1 near-field sources are considered for JT trials and a range of

l ∈ [λ/300, λ/30]. In each trial, the near-field sources are fixed and the DOA of the

far-field source is changed. The observed array output for the jth trial is constructed

as

yj(t) = a(Θj
1)s(t) +

N∑
i=2

ã(Θi, di)s(t), t = 1, . . . , E. (A.1)

After the far-field source DOA Θj
1 is found as described in Sec. 4.3, the NFT matrix

is constructed for qth index of l (lq) as

Tq = VqU† (A.2)

where Vq is the far-field data set computed for the element spacing lq and U is the

near-field data set. The array output is transformed to virtual ULA as

ỹqj(t) = Tq yj(t) (A.3)

Then the near-field source azimuth angles for lq and jth trial {φ̂qij}
N

i=2 are estimated

as described in Sec. 4.4.2. Finally the RMSE for lq is computed as

RMSE(lq) =

√√√√ 1

JT (N − 1)

JT∑
j=1

N∑
i=2

|φ̂qij − φij|2 (A.4)

where φqij and φ̂qij are the true and estimated azimuth angles respectively.
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APPENDIX B

DOA ESTIMATION IN THE PRESENCE OF GAIN/PHASE

MISMATCHES AND MULTIPATH

In this appendix, the signal model and the modifications to the JSR-MS method are

presented in the presence of gain/phase mismatches and multipath. In this case, the

signal model is given as follows

y(ti) = Γ
K∑
k=1

a(Θ̄k)sk(ti) + e(ti), i = 1, . . . , T (B.1)

where T is the number of snapshots, e(ti) is the spatially and temporarily white, zero-

mean Gaussian noise. sk(ti) is the kth coherent source signal. The source signals are

related to each other as sk1(ti) = ηk1k2sk2(ti) for i = 1, . . . , T and k1, k2 = 1, . . . , K

where k1 6= k2 and ηk1k2 is a complex scalar. Θ̄k represents the direction-of-arrival

(DOA) angle of the kth source. a(Θ̄k) is an M × 1 nominal array steering vector for

the kth source. The mismatch matrix is denoted by Γ = diag(γ1, γ2, . . . , γM) which

is direction independent and it represents the array gain and phase uncertainties [6].

The entries of Γ are in the form of γm = αme
jβm where αm, βm ∈ R are the gain and

phase mismatch terms for m = 1, . . . ,M respectively.

In order to estimate source DOA angles with JSR-MS method, the array output is

written in compressed sensing (CS) context as

Y = ΓAS + E (B.2)

where Y = [y(t1), y(t2), . . . , y(tT )] is the M × T observation matrix and E =

[e(t1), e(t2), . . . , e(tT )]. S = [s(t1), s(t2), . . . , s(tT )] is an N × T matrix whose

each column is a K-sparse vector, namely, all the entries of s(ti) but K are zero

for i = 1, . . . , T . The number of non-zero entries of S is denoted by l0-norm as
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||S||0 = |{n, i : sn(ti) 6= 0}| where n and i correspond to the source direction and

snapshot indices respectively. Note that S has K non-zero rows and the other rows

are zero. In order to find the source DOA angles and mismatch parameters, the CS

problem can be written as

min
S∈RN×T ,Γ∈CM×M

||S||0 s.t. ||Y− ΓAS||2F ≤ ε2 (B.3)

Above problem is non-linear due to the unknowns S and Γ. Moreover, the computa-

tional complexity of P1 increases with T . In the following part, firstly, the dependence

of complexity on T is removed using the SVD of the measurement matrix Y [105].

Then the joint-sparsity is utilized to formulate the problem in convex and linear form

so that (B.3) can be solved effectively. Therefore we first consider the SVD of Y as

Y = UΣVH where U and V are left and right singular vector matrices of Y respec-

tively. Σ is an M × T diagonal matrix composed of the singular values of Y. While

there are K source signals, there is a single dominant singular value in Σ due to co-

herent source signals. Therefore, the M × T measurement matrix Y is reduced to an

M × 1 vector ỹ as

ỹ = ΓAs̃ + ẽ (B.4)

where ỹ = UΣz = YVz, s̃ = SVz and Ẽ = EVz. z = [1, 0, . . . , 0]T is T × 1

vector whose all entries are zero but the first entry is one. Note that the row indices

of the non-zero terms in S and s̃ are the same. Now the reduced model in (B.4) can

be rewritten in the following form, i.e.,

ỹ =
M∑
m=1

γmJmAs̃ + ẽ (B.5)

where Jm is an M ×M matrix whose all entries are zero but only the mth diagonal

entry is one.

In order to obtain a linear optimization problem, the model in (B.5) is further modified

so that the unknown terms are inserted into a vector as

ỹ = Dx̃ + ẽ (B.6)

where the M × MN dictionary matrix D is defined by stacking A as D =
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[J1A, J2A, . . . , JMA]. The MN × 1 vector x̃ is defined as

x̃ = γ ⊗ s̃ =
[
γ1s̃T , γ2s̃T , . . . , γM s̃T

]T
=
[
x̃(1)T , x̃(2)T , . . . , x̃(M)T

]T
(B.7)

where ⊗ denotes the Kronecker product and γ = [γ1, . . . , γM ]T . x̃(m) is the mth

subblock of x̃. Since s̃ is K-sparse, x̃ becomes an MK-sparse vector where s̃ and

mismatch parameters γ are embedded together. After some manipulations as in Sec.

5, the final form of the optimization problem is given as

min
x̃∈CMN×1

ζ ||x̃||2,1 +
1

2
||ỹ− Dx̃||22 (B.8)

where ζ is the penalty term that balances the trade-off between l2,1/l2 normed terms.

The mixed l2,1-norm ||x̃||2,1 is explicitly given as

||x̃||2,1 =
N∑
n=1

(
M∑
m=1

(|γms̃n|)2

)1/2

(B.9)

Once (B.8) is solved, the source DOA angles and the mismatch parameters can be

found in the same way as in Sec. 5.
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