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ABSTRACT

CLUSTER BASED MODEL DIAGNOSTIC FOR LOGISTIC REGRESSION

Tanju, Özge

M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Zeynep Kalaylıoğlu

June 2016, 101 pages

Model selection methods are commonly used to identify the best approximation that
explains the data. Existing methods are generally based on the information theory,
such as Akaike Information Criterion (AIC), corrected Akaike Information Criterion
(AICc), Consistent Akaike Information Criterion (CAIC), and Bayesian Information
Criterion (BIC). These criteria do not depend on any modeling purposes. In this
thesis, we propose a new method for logistic regression model selection where the
modeling purpose is classification. This method is based on a measure of distance
between two clusterings. There are many clustering similarity measures in the lit-
erature. Our model selection procedure is based on Jaccard index (Downton and
Brennan, 1980) and Fowlkes-Mallows Index (Fowlkes and Mallows, 1983). The new
model selection approach is compared against the currently used common methods
in an extensive simulation study concerned with many different realistic scenarios.
Scenarios are divided into two based on modeling purposes. Simulation scenarios are
also grouped whether the true model is in the candidate models or not. We consider
linear and nonlinear logistic models which are nested and non-nested, random-effects
and fixed-effects models as true models. Simulation results show that the new method
is highly promising. Apart from the new method, this thesis also provides an exten-
sive comparison of the current methods based on information criteria. Finally, cluster
based and information based criteria are applied to a real data set to select a binary
model.
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ÖZ

LOJİSTİK REGRESYONDA KÜMEYE DAYALI MODEL SEÇİMİ

Tanju, Özge

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Zeynep Kalaylıoğlu

Haziran 2016 , 101 sayfa

Model seçim yöntemleri veriyi açıklayan en iyi yaklaşık modeli belirlemek için yay-
gın olarak kullanılır. Mevcut model seçim metotları genellikle Akaike bilgi kriteri
(AICc), tutarlı Akaike bilgi kriteri (CAIC), Bayesian bilgi kriteri (BIC) ve bilgi kar-
maşıklığı kriteri (ICOMP) gibi bilgi teorisi kullanan kriterlere dayalıdır. Bu kriterler
herhangi bir modelleme amacına bağlı değildir. Bu tezde, lojistik regresyon için mo-
delleme amacı sınıflandırma olan yeni bir model seçim yöntemi önerilmiştir. Bu yeni
metot iki kümeleme arasındaki mesafenin ölçüsüne dayalıdır. Literatürde bir çok kü-
meleme benzerlik ölçüleri mevcuttur. Bizim model seçim prosedürümüz Jaccard ve
Fowlkes-Mallows indekslerini baz almaktadır. Bu yeni model seçim yaklaşımı ile li-
teratürde yaygın olarak kullanılan diğer metotlar bir çok farklı gerçek senaryo için
geniş çaplı bir simülasyon çalışması ile karşılaştırılır. Senaryolar modelleme amaçla-
rına dayalı olarak ikiye ayrılır. Gerçek model olarak iç içe ve iç içe olmayan, rasgele
etkili ve sabit etkili lineer ve lineer olmayan lojistik regresyon modelleri incelenmiş-
tir. Simülasyon sonuçları yeni önerilen metodun benzer konuda gelecekte yapılacak
çalışmalara temel oluşturacak nitelikte olduğunu göstermiştir. Bu tez çalışmasında
yeni bir metot önermenin yanı sıra literatürde var olan bilgi temelli kriterlerin geniş
çaplı bir karşılaştırılması da yapılmıştır. Tezin sonunda küme temelli ve bilgi temelli
kriterler lojistik model seçimi için gerçek bir veri seti üzerinde uygulanmıştır.
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CHAPTER 1

INTRODUCTION

"All models are wrong, but some are useful" (Box, 1976). This famous quote ex-

presses that models are just approximations. Finding the useful model requires an

adequate model selection process. It is needed for obtaining the best approximation

using the data set. The importance of model selection is well understood by many

researchers over the decades. Model selection is carried out for different purposes.

These are for variable selection, for prediction, for classification.

For instance in a regression analysis, interest may lie in finding out the explanatory

variables with non-zero regression coefficients (variable selection). In some regres-

sion, modeling purpose is to construct a prediction model to predict future responses

from a given set of covariates (prediction). Modeling for variable selection and pre-

diction can be referred as model fitting. In some areas, especially in archaeometry

and medicine, interest lies in classifying the objects/subjects given a set of covariates

(classification).

Current model selection procedures are based on i. hypothesis testing, ii. residual

analysis, iii. use of information theoretic criteria. Numerous model selection meth-

ods based on i-iii are given in Rao and Wu (2001). However, of the three types of

procedures, most widely used are the information theoretic model selection criteria

(iii) and this is the focus of the thesis. These are based on penalized likelihood. The

most commonly used ones are Akaike Information Criterion (AIC) and Bayesian In-

formation Criterion (BIC). There are many recent studies in literature proposing new

criteria in order to overcome the problems related to these criteria. Aparicio and

Villanua (2007) proposed a new model selection criterion denoted by C2 for nested
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binary models. It is based on the distance between observed variable and predicted

probabilities. Cavanaugh (2004) proposed a new model selection criteria based on

symmetric Kullback-Liebler (KL) divergence, whereas AIC type of criteria estimates

the directed KL divergence. Claeskens et al. (2006) proposed a new model selec-

tion criterion based on focused information criterion (FIC), which is developed by

Claeskens and Hjort (2003). They adjusted FIC based on prediction purposes for

logistic models. Muller and Welsh (2010) proposed a new model selection method-

ology, namely model selection curves. All of these indicate that model selection is a

complicated problem, it is still a hot topic in statistical research and it is the interest

in many ongoing researches.

What we notice is that current model selection criteria do not take the account of

modeling purpose. We think modeling purpose should be accounted for in the model

selection process. This is implied also by C.R. Rao as a conclusion in his 2001 paper

with Wu in that "We wish to emphasize that the model we use to analyze a data set

depends on the specific questions to be answered". We think each purpose (variable

selection, prediction, classification) is related with a different question. There are

only some studies in the literature that take the account of modeling purpose. They

are basically the researches led by Celeux resulting publications of which are namely

Biernacki et al. (2000) and Bouchard and Celeux (2006). Method in the first one is

based on an integrated completed likelihood where the method in the later one relies

on Bayesian paradigm and is called Bayesian Entropy Criterion.

In this thesis, our interest lies in model selection in binary regression where the mod-

eling purpose is classification. Information theoretic criteria, such as AIC and BIC,

are widely used for many different types of modeling such as linear regression, gener-

alized linear regression (e.g. binary, Poisson), time series models, nonlinear models,

and mixed effects models. We here focus on logistic regression models. Logistic re-

gression is one of the classification methods in literature (Lee et. al, 2005). Therefore,

we propose new model selection criteria for logistic regression in which the modeling

purpose is classification. We will denote them by CC, short for cluster based crite-

ria. They are based on clustering similarity measures existing in literature such as

Fowlkes-Mallows (FM) and Jaccard measures. They define similarity between the

two cluster trees. If these two trees are true and estimated trees out of a logistic re-

2



gression, their similarity can be an indicator of usefulness when the modeling purpose

is classification.

In this thesis, we give information about the conventional model selection criteria in

Chapter 2. We explain different logistic regression models and how their adequacy

is checked. Chapter 2 also includes the theory behind the comparison of model se-

lection criteria for different modeling purposes. We mainly focus on model fitting

(i.e. modeling for variable selection and prediction) and classification purposes and

evaluate those criteria accordingly. In Chapter 3, cluster based criteria are presented

in detail. The need for a penalty term for those criteria are shown by small simulation

studies. The results for Monte Carlo simulations are given in Chapter 4. We evaluated

the performances of cluster based and information based criteria for model fitting and

classification purposes. Chapter 5, on the other hand, present the outputs for a real

data analysis. Finally, in Chapter 6, we sum up our studies and give remarkable points

of this thesis.
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CHAPTER 2

MODELS AND MODEL SELECTION

2.1 Models

Regression is a very common and useful tool in statistics to form the relation between

variables. There is a vast amount of source on linear regression models. We herein

only very briefly review the basics of it. The aim is to fit a model that explains the

outcome in terms of related factors. Fitted model may be used to predict future values

of the outcome variable given a set of effective factors. In general, a linear regression

model fitted for n observations with k regressors can be written as the following.

yi = β0 + β1xi1 + ...+ βkxik + εi, i = 1, 2, ..., n

where yi indicates the outcome, namely the response variable, xi ’s are the factors,

which are generally called as regressor variables, and β ’s are regression coefficients.

They are the parameters of the model to be estimated. They measure the linear effect

of each factor on the response. Finally, εi represents the error term. This equation

is in the form of a linear function. However, it is also statistical since it involves the

random error term. The least squares estimation method is often used to estimate

the parameters. This method is based on minimizing the sum of squares of errors.

In order to apply this method and to make inference on the model, there are some

assumptions:

1. Errors should follow a normal distribution with zero mean and a constant vari-

ance, σ2.

5



2. Errors should be uncorrelated. i.e. repeated measurements of response should

be independent of each other.

3. The linearity between response and regressors should be satisfied.

2.1.1 Generalized Linear Regression

Linear regression models are based on a very strict assumptions. It is not applicable

for non-normal data such as count data, binary data, categorical data, and as such.

For this problem, Nelder and Wedderburn (1972) developed a technique named as

Generalized Linear Models (GLM).

Generalized linear models also relax the assumption of constant variance. A variance

function is defined to understand the variance structure. It depends on both a disper-

sion parameter, φ and a function of mean of responses, ϑ(µ). Variance function can

be expressed by

V ar(yi) = φϑ(µ)

Linearity in generalized linear models may change its usual meaning. Generalized

linear models are conducted by using a link function g. The main purpose of using a

link function is to change the range of responses into a proper range. The form of a

generalized linear model is seen as

yi = g−1(β0 + β1xi1 + ...+ βkxik) + εi, i = 1, 2, ..., n

Linear regression models are special cases of generalized linear models, where g is

an identity link. As long as the data follows a distribution from exponential family

of distributions, it is possible to use the method of generalized linear models. For

example, when the data comes from Poisson distribution, the link function becomes

the exponential function. For a multinomial data, inverse logit function is again used

as the link function.
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2.1.2 Logistic Regression

When the dependent variable in a regression model is binary, normality assumption

obviously does not hold. The response follows a Bernoulli distribution with parameter

p. p is namely the probability of observing the event of interest. Let Y be the response

variable following the Bernoulli distribution, and it is either 0 and 1. 1 is for presence

of the event of interest, and 0 is for its absence.

Logistic regression is a special case of generalized linear regression models, for which

the logit function is used as the link function.

logit(P (Yi = 1|Xi)) = β0 + β1xi1 + ...+ βkxik, i = 1, 2, ..., n

Logit function is equivalent to taking natural logarithm of odds that Y=1. Odds that

Y=1 means the proportion of P(Y=1|X) to P(Y=0|X). In other words, odds shows how

it is likely to have the event of interest to occur for a given level of covariate.

log(
P (Yi = 1|Xi)

P (Yi = 0|Xi)
) = β0 + β1xi1 + ...+ βkxik, i = 1, 2, ..., n

The above equation is also equivalent to

P (Yi = 1|Xi) =
eβ0+β1xi1+...+βkxik

1 + eβ0+β1xi1+...+βkxik
, i = 1, 2, ..., n

For parameter estimation, the most common approach is method of Maximum Likeli-

hood Estimation. Estimated regression coefficients are used in calculating estimated

odds ratios (ÔR) for two levels of the factor x,

ÔR =

P (Y=1|X=x1)
P (Y=0|X=x1)

P (Y=1|X=x2)
P (Y=0|X=x2)

=
eβ0+β1x1

eβ0+β1x2
= eβ1(x1−x2)

Odds ratio is the proportion of odds as seen in above equation. It shows how the odds

of the event changes in relation to the change in factor x.

Logistic regression is widely used for biological data sets, since in those sets the

main interest is generally having a disease or not. Moreover, logistic regression is

also named as a classification tool (Lee et. al, 2005). By using a threshold, estimated

7



probabilities can be grouped into two. With a real data, one can create estimated

classes for different characteristics of objects.

Diagnostic checks for logistic regression differ from those for linear regression. Pearson-

chi square, and Hosmer-Lemeshow statistics are used to test the significance of the

fitted model. In studies for which the main purpose is to group the objects, classifi-

cation tables are used to calculate the true classification and misclassification rates.

Again for the classification studies, ROC curves are used to measure the accuracy

of logistic model fit. Sensitivity versus 1-specificity is plotted for all possible cut-off

points for obtaining a ROC curve. Sensitivity is the true positive rate and 1-specificity

is the false positive rate. The area under this curve measures the fitted model’s ability

to classify objects in a correct way (Hosmer and Lemeshow, 2000). Another tech-

nique is to choose a proper model out of a set of candidate models based on some

criteria. This technique is easier to apply and can be used in all generalized linear

models. Some commonly used and approved criteria will be explained in detail in the

next section.

2.1.3 Random Effects Logistic Regression

Models discussed in previous sections are not applicable i. when the observations are

correlated as in a longitudinal or panel study, ii. when there is a common group effect

when there are homogeneous clusters in the data sets as in most survey data. A longi-

tudinal study in which responses are repeatedly recorded for each subject in the study

also results in a clustered data set, cluster being the longitudinal observations for the

same subject. In such data sets, there are two types of effects in consideration: cluster

specific effects (random effects) and population effects (fixed effects) (Fitzmaurice et

al., 2004).

The model structure can be expressed in two ways. First is the random intercept

model. This model includes a group-specific random effect on the response variable.

This effect is totally random, and does not depend on any covariate. The form of a

random intercept model is given by

yi = b0i + β0 + β1xi1 + ...+ βkxik + εi, i = 1, 2, ..., n
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where b0i represents the random intercept following a normal distribution with mean

0, and a constant unknown variance, σ2
0 . εi and b0i are independent. For binary re-

sponses, logistic random intercept model takes the form of

logit(P (Yi = 1|Xi)) = b0i + β0 + β1xi1 + ...+ βkxik, i = 1, 2, ..., n

In a longitudinal study, outcome variable may follow a subject-specific trend over the

covariate. In this case, random effects model include both random intercept and ran-

dom slope. The form of a random slope model is given by

yi = b0i + b1iz1i + β0 + β1xi1 + ...+ βkxik + εi, i = 1, 2, ..., n

where usually (b0i, b1i) has normal distribution with zero mean vector and a variance-

covariance matrix Σb, and z1 is the covariate associated with it which may be a subset

of x’s. Logistic random slope model can be written as

logit(P (Yi = 1|Xi)) = b0i + b1iz1i + β0 + β1xi1 + ...+ βkxik, i = 1, 2, ..., n

Variance of these random terms is the variance between groups. For the random in-

tercept model this variance is σ2
0 . Within group variance is expressed by the variance

of the error in the model, which is σ2. Summation of these two variance terms gives

the total variance in the response, σ2
0 + σ2 . The ratio of within group variance σ2

0

to total variance in response, σ2
0 + σ2 is regarded as intraclass correlation coefficient

(ICC). By this, it is understood that how much of the total variance comes from group

effects. The formula for ICC is given by

ICC =
σ2
0

σ2
0 + σ2

For logistic models, ICC takes the form of

ICC =
σ2
0

σ2
0 + π2/3
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2.2 Model Selection Methods

Fitting the best approximation out of a data set requires a model selection process.

One needs to reach out a final model that best explains the data and has the least

complexity. This final model is then used for inference. All other candidate models

should be eliminated until finding the best one. Model selection criteria serves to se-

lecting the best prediction model, association model and classification model. These

criteria include i. information theoretic, ii. Bayesian, iii. information complexity

based approaches. There are many methods for model selection. These criteria are

mostly based on information theoretic approaches and loss functions. Information

based model selection criteria relies on the concept of Kullback-Leibler. Before ex-

amining some widely used criteria, the concept of Kullback-Leibler information will

be discussed.

KULLBACK-LEIBLER INFORMATION

Kullback and Leibler (1951) proposed a discrepancy measure which is directly related

to Fisher’s information matrix. It serves as a distance function between two statistical

models. However, it should be noted that this is not a symmetrical distance, and

triangle inequality does not hold. The distance from the first model to the second is

not same as the distance from the second model to the first one. Kullback-Leibler

(KL) distance is generally used for model selection purposes.

Let f and g present two probability functions standing for two statistical models. Con-

sider f is fixed as the true model, and g shows the estimated one. Then KL distance

from f to g is given by

I(f, g) =

∫
f(x)log(

f(x)

g(x|θ)
)dx

where x is the data, and θ is the model parameters. KL distance is generally shown

by I(f,g), since it is sort of a loss of information when approximating f.

The above equation can also be written as
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I(f, g) =

∫
f(x)log(f(x))dx−

∫
f(x)log(g(x|θ))dx

and it is equivalent to

I(f, g) = Ef [log(f(x))]− Ef [log(g(x|θ))]

As it can be easily noticed the first part of the KL distance is not known, and can

be considered as a constant. Only Ef [log(g(x|θ))] will change according to the esti-

mated models. This quantity should be maximized so that −Ef [log(g(x|θ))] will be

minimized in order to choose the best approximating model. Following this result,

it can be concluded, model selection is based on the expected log-likelihood of the

estimated model.

For binary models, the calculation for KL distance becomes the following.

I(f, g) =
∑

plog(
p

π
)

I(f, g) =
∑

plog(p)−
∑

plog(π)dx

I(f, g) = Ep[log(p)]− Ep[log(π)]

where p is the true probability function and π is the estimated probability function.

2.2.1 Akaike Information Criterion (AIC)

AIC is one of the most common model selection criteria. KL distance is not enough

by itself as a model selection criteria, since it depends on an unknown truth. Akaike

(1973) used likelihood theory to estimate the KL distance between the true and the

candidate models. Akaike’s purpose was to minimize this loss as well as to keep the

model as simple as possible. It’s pointed out that the bias in estimating a model is

related to the number of parameters, k. Therefore, they subtracted the bias from the
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estimated expected log-likelihood. The more parameters exist in a model, the more

bias will occur. In order to eliminate this problem, AIC includes a penalty term de-

pending on the number of estimated parameters. This penalty term is found while

minimizing the information loss, namely KL distance.

AIC = −2log(L) + 2k

where L stands for the likelihood function, and k is the number of estimated param-

eters. The first term in AIC formula serves as a measure of goodness-of-fit, and 2k

is the penalty term. For selecting a better model, one should choose the one with

minimum AIC. By this way, the chosen model has the least information loss, so it can

be seen as the best approximation.

2.2.2 Bayesian Information Criterion (BIC)

Bayesian Information Criterion (BIC), or namely Schwarz’s Criterion is also a widely

known model selection criterion (Schwarz, 1978). Its derivation is not based on KL

distance, but it is based on selecting a mode which has the highest Bayesian posterior

probability. BIC is given by

BIC = −2log(L) + klog(n)

The penalty term of BIC depends on the sample size, and it is much greater than

the one in AIC. This property makes BIC preferable for overfitting problems. BIC

is not based on the information theory, although its name indicates so. Smaller BIC

indicates better model.

2.2.3 Consistent Akaike Information Criterion (CAIC)

Another extension of AIC is the Consistent Akaike Information Criterion (CAIC)

(Bozdogan, 1987). Staying parallel with Akaike’s understanding, Bozdogan extended

AIC to make it asymptotically consistent, and more strictly penalized. The formula

of this criterion is given by
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CAIC = −2log(L) + k(log(n) + 1)

It is seen that in CAIC the penalty term is an increasing function of the sample size,

where in AIC it is independent of the sample size.

2.2.4 Information Complexity Criterion (ICOMP)

Bozdogan (1988) suggested a new criterion for model selection. The idea he followed

was the same as Akaike. He tried to minimize Kullback-Liebler distance. However,

his penalty term was not directly based on the number of parameters, but it was based

on the complexity of covariance matrix of the estimated model. Bozdogan (2000),

then extended ICOMP, and it is given by

ICOMP = −2log(L) + 2C(F−1(θ̂))

The first component of the above equation is the same as in AIC. Second part is

the penalty term, where C stands for complexity. Inside the complexity function

C, there exist the inverse Fisher information matrix (IFIM), F−1, for the maximum

likelihood estimator (MLE) of the model parameters θ̂. By theorem (Behboodian,

1964), variance of parameter estimates given in the IFIM increase as the number of

parameters increase, and this is referred as variance inflation phenomenon. Hence,

increasing number of parameters decreases the accuracy of a model fit. This means

the penalty term is implicitly based on the number of estimated parameters.

2.2.5 Corrected Akaike Information Criterion (AICc)

For small sample sizes AIC is used with a correction term (Hurvish, Tsai, 1989). This

corrected AIC is denoted by AICc, and it is given by

AICc = −2log(L) + 2k +
2k(k + 1)

n− k − 1
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As the sample size gets larger AICc gets closer to AIC. In the same way, smaller

AICc values indicates better models for model selection process.

2.3 Comparison of Model Selection Criteria

Methods that are examined in this thesis are given in the previous sections. They

are compared with each other and with the proposed criteria by simulation studies in

Chapter 4. This comparison is based on purpose of modeling.

2.3.1 Comparison of Model Selection Criteria When Modeling Purpose is Model

Fitting

When modeling purpose is model fitting, comparison of model selection criteria is

conducted in terms of two essential terms: consistency and efficiency. Their defini-

tions are provided in the following sections.

2.3.1.1 Consistency

A model selection method is weakly consistent if the probability of the method se-

lecting the true model from the candidate model set tends to 1 as n goes to∞. It is

strong consistency if the method selects the true model from the candidate model set

with probability 1.

Sometimes in real data applications, true model may not be included in the candidate

model set. In this case, we assume that there is a model in the candidate model set

that is closest in KL distance to the true model. Consistency is then related to the

model selection method selecting this model.

Below listed the weak and strong consistency definitions for the cases focused in this

thesis. First two definitions can be found in the related statistical literature as well.

Definition 3 is a new addition by us for model selection where there is nonlinearity.
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Definitions

Definition 1 (Strong Consistency): Let M0 be the true model and M0 ∈ C, where C
is the set of candidate models. A model selection criterion Rn(.) is consistent if, for

any Mk ∈ C, Rn(Mk)−Rn(M0) ≥ 0 almost surely (a.s.) as n→∞.

In other words, probability of Rn(M0) being the minimum among all Rn(Mk), where

Mk ∈ C as n goes to∞ is 1. That is P (∀ε > 0, ∃ n0 such that for all n ≥ n0, for any

Mk ∈ C, Rn(Mk)−Rn(M0) ≥ ε) = 1. Strong consistency implies weak consistency.

Definition 2 (Weak Consistency): Let M0 be the true model and M0 6∈ C. Let

KL(M1,M2) be the Kullback-Liebler distance between any two models. LetMJ ∈ C
such that min

Mk∈C
KL(Mk,M0) = KL(MJ ,M0). A model selection criterion Rn(.) is

weakly consistent, if the probability of Rn(.) selecting MJ converges to 1 as n→∞.

Definition 3 (Strong Consistency): Let M0 be the true nonlinear model with a com-

plicated structure and M0 6∈ C. LetMJ ⊂ C be the set of polynomials well approxi-

mating M0 such that KL(Mj,M0 ; j ∈ J) ≤ c, where c is a known constant andMJ

is a subset of "correct" models. A model selection criterion Rn is consistent if, for

any Mk 6∈ MJ , Rn(Mk)−Rn(Mj) ≥ 0 almost surely (a.s.) n→∞.

A differentiable nonlinear function can always be well approximated by a polynomial

of order p. Therefore, there is a true polynomial with an order p that is equivalent to

the true nonlinear model with a complicated structure (M0). MJ is the set of fitted

polynomials that are best fitting among all the models in C.

Main Results

Given previous definitions, there are many studies evaluating conventional model se-

lection criteria. AIC type of criteria are proven to be weakly consistent, whereas

CAIC and BIC are strongly consistent. (Qian and Field, 2002; Claeskens and Hjort,

2008; Aparicio and Villanua, 2007).

To the best of our knowledge, consistency of model selection criteria in nonlinear lo-

gistic regression models has not been addressed in the literature. Here we extend the
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consistency theorem of Qian and Field (2002) for linear logistic regression to non-

linear logistic regression. In that paper, they established strong consistency of some

important model selection criteria in logistic regression with linear predictor. Here

we deal with logistic regression with nonlinear predictor. We assume that simplest

correct polynomial model is the model with minimum KL distance to the true model.

Related axiom is given in Appendix A.1.

The following conditions are needed:

Conditions: Let X = (X1, ..., Xn)T be a single explanatory variable. Let D = [1 X

X2 X3... XP ] be the design matrix in a p-order polynomial logistic regression. Let

h(η) = exp(η)/(1 + exp(η)).

(C.1) Columns of D are linearly independent.

(C.2) E(DDT ) is positive definite.

(C.3)E(Π0(1−Π0)DD
T ) andE(exp(−b||D||)Π0(1−Π0)DD

T ) are positive definite

where Π0 = h(DTβ0) with β0 being the true coefficients of the correct approximating

polynomial with minimum order.

(C.4) E(||D||2+κ) <∞ for some κ > 0.

(C.5) supkmk <∞ where mk is the number of parameters in the model.

Theorem: Suppose conditions (C.1)-(C.5) hold. Then, if the order of the penalty term

is greater than O(loglogn), then model selection criterionRn(.) is strongly consistent.

Proof: Under conditions (C.1)-(C.5), following hold:

(C.1) limn→∞ λk(In(β0)) =∞, k = 0, ..., p. Also there exists some constant d0 > 0

such that 0 < λp(In(β0)) ≤ d0λ1(In(β0)).

(C.2) δn(loglogλp(In(β0)))
1/2 = o(1).

(C.3) d1n ≤ λp(In(β0)) ≤ d2n holds for some positive constants d1 and d2.

(C.4) d3n ≤ λp(X
t
nMnXn) ≤ d4n for some positive constants d3 and d4.

(C.5) Let b = 1
2

min
1≤i≤pα0

|β0(α0)| where α0 is the correct model in C with the minimum

dimension and β0(α0)i is the ith component of β0(α0). Also letQn = diag(m1e
−||x1||×

π01(1−π01), ...,mne
−||xn||×π0n(1−π0n) with π0k(k = 1, ..., n) being the true value

of πk. Then there exists a constant d5 > 0 such that λ1(X t
nMnXn) ≤ d5n.
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Above, β0(M) are the true coefficients in the true polynomial that correspond to

the terms Xk, k = 1, ...p in the fitted pth order polynomial M ∈ C and λ presents

the eigenvalues of a p × p symmetric matrix. Then, 0 ≤ logL(β̂(M)|Y,X) −
logL(β0(m)|Y,X) = O(loglogn) a.s. by Qian and Field (2002).

Hence, 0 ≤ Rn(β0(M)−Rn(β̂(M)) = mM(logL(β̂(M)|Y,X)−logL(β0(M)|Y,X))+

(C(n, h(X, β0))− C(n,XT β̂)) = O(loglogn) + O(vn) where vn > loglogn, where

n is the sample size, h(X, β0) is the true nonlinear canonical predictor, XT β̂ is fitted

estimated canonical polynomial predictor, and C(.,.) is a penalty function.

2.3.1.2 Efficiency

Model selection criteria are also evaluated in terms of loss functions. We use the

definition of the average squared distance between the observed values and predicted

probabilities as the loss function for a logistic model. It is given by

L =
∑

((Ŷ − Ytrue)2|Yobs)

A model selection criteria is efficient if the probability of choosing the model with

minimum loss goes to 1 as n goes to∞. The efficiency definition for logistic model

selection criteria given as follows.

Definition: Let Lmin be the minimum loss among the candidate models, and let L0

be the loss of a chosen model by a criterion. The model selection criterion Rn(.) is

efficient, if LminL0 converges to 1 in probability as n→∞.

Based on this definition Claeskens and Hjort (2008) showed that AIC and AICc are

efficient.

2.3.2 Comparison of Model Selection Criteria When Modeling Purpose is Clas-

sification

Logistic regression is one of the classification tools. A group of subjects is divided

into two groups based on their fitted probabilities by using a proper cut-off value. In
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this section, we compare the classification based criteria and the conventional ones in

terms of their accuracy in correctly classifying the subjects. To evaluate this, we use

true classification rate, sensitivity, and specificity. Before explaining these measures,

a general notation used for their definitions are given.

Table 2.1 illustrates the number of subjects put in two clusters, namely 0 and 1. Rows

present the classification based on the observed values of 0 and 1 (true classifica-

tion), whereas columns present the classification based on the predicted probabilities

(model based classification).

Table 2.1: Number of subjects classified by two classifications

Predicted
0 1

Observed
0 n00 n01

1 n10 n11

n00 is the number of subjects classified as 0 by both classifications, n01 is the number

of subjects classified as 0 based on observed values, as 1 based on predicted proba-

bilities, n10 is the number of subjects classified as 1 based on observed values, as 0

based on predicted probabilities, n11 is the number of subjects classified as 1 by both

classifications.

2.3.2.1 True Classification Rate (TCR)

Using the notation given in Table 2.1, true classification rate (TCR) is defined as

TCR =
n00 + n11

n00 + n01 + n10 + n11

2.3.2.2 Sensitivity

Sensitivity is the proportion of true positives. Using the notation given in Table 2.1,

the formula for sensitivity is given by
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sensitivity =
n11

n10 + n11

2.3.2.3 Specificity

Specificity is the proportion of true negatives. Using the notation given in Table 2.1,

the formula for specificity is given by

specificity =
n00

n00 + n01
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CHAPTER 3

CLUSTERING BASED MODEL SELECTION

Penalized likelihood (information) based criteria do not take the account of modeling

purpose. We believe that an effective model selection criteria should take the account

of that. It is also stated in Baudry et. al (2015). Deriving model selection criteria with

such a purpose would lead more adequate and parsimonious models.

In this chapter, our aim is to develop a model evaluating criterion that may be par-

ticularly useful when the modeling purpose is classification. Our approach is based

on cluster tree similarity measures. Similarity of clusters may be used as an indica-

tor of good fit for logistic regression for the cases in which the modeling purpose is

classification. First we give a brief outline of cluster analysis and cluster similarity

measures. Then we give our method that is based on similarity measures.

3.1 Cluster Analysis

In cluster analysis, one groups objects based on their similarities and dissimilarities

in terms of some of their characteristics. Similarities are usually defined by Euclidean

distance. These groups of objects form clusters which compose a cluster tree. Clus-

ter analysis is a useful tool in many areas of research such as biology, psychology,

insurance and earthquake studies. There are different types of clusterings. The most

common ones are k-means clustering and hierarchical clustering. In k-means cluster-

ing, exactly k groups of objects are constructed. In hierarchical clustering, objects are

belonged to several sub-clusters. In following sections, we examine some measures

that measure similarities between clusterings. They are generally used for evaluating
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hierarchical clusterings conducted with complete linkage algorithm.

3.2 Cluster Similarity Measures

Many indexes have been developed in order to measure the level of similarity between

two cluster trees. Rand index, adjusted Rand measures, Fowlkes and Mallows mea-

sure and Jaccard index are the most common ones in the literature. They are based

on the number of pairs exist in clusters. All these measures are based on the general

notation explained below.

Table 3.1: Number of pairs classified by two clusterings

Second clustering
Pairs in different clusters Pairs in the same clusters

First clustering
Pairs in different cluster A00 A01

Pairs in the same clusters A10 A11

whereA00 is the number of pairs classified in different clusters by both partitions, A01

is the number of pairs put in the different clusters by the first clustering but in same

cluster by the second clustering, A10 is the number of pairs put in the same cluster

by the first clustering but in different clusters by the second clustering, and A11 is the

number of pairs classified in the same cluster by both partitions. Related likelihood

is given in Appendix A.2. For instance, the same five objects are put in two different

clusterings as in the following trees (Fowlkes and Mallows, 1983).

Figure 3.1: Two clustering trees

Trees in 3.1 are used to find A11, A10, A01 and A00. Corresponding pairs are given in

Table 3.2.
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Table 3.2: Existing Pairs

Pairs in the same cluster according to the first clustering (1,3)(3,1)(2,4)(4,2)
(2,5)(5,2)(4,5)(5,4)

Pairs in different clusters according to the first clustering (1,2)(2,1)(1,4)(4,1)(1,5)(5,1)
(3,2)(2,3)(3,4)(4,3)(3,5)(5,3)

Pairs in the same cluster according to the second clustering (1,4)(4,1)(2,3)(3,2)
(2,5)(5,2)(3,5)(5,3)

Pairs in different clusters according to the second clustering (1,2)(2,1)(1,3)(3,1)(1,5)(5,1)
(4,2)(2,4)(4,3)(3,4)(4,5)(5,4)

Then Table 3.1 for this data set is given in Table 3.3.

Table 3.3: Number of pairs classified by two clusterings

Second clustering
Pairs in different clusters Pairs in the same clusters

First clustering
Pairs in different cluster A00=6 A01=6
Pairs in the same clusters A10=6 A11=2

Rand index is derived with the purpose of evaluating the clustering methods (Rand,

1971). It is a proportion of positive and negative similarities in both clusterings to all

cases. The other similarity measures are derived in order to handle some problems

related to Rand index. Morey and Agresti (1984) showed that the Rand index fail

to reveal the dissimilarities between the two partition. Even for randomly clustered

objects, the Rand index tends to take high values. Their reasoning is that Rand counts

the similarities even occurred by chance. Morey and Agresti adjusted the Rand index

by subtracting a correction factor and eliminated the agreements occurred by chance.

Later, it is proved that there has been some incorrect assumptions in calculating the

correction factor (Hubert, Arabie, 1985). Hubert and Arabie (1985) also adjusted the

Rand index. They suggest that the Rand index lacks a constant expected value. For

example, a value of 0 is an indicator of perfect dissimilarity between two cluster-

ings for this type of criteria. However, the Rand index never takes such a value. A

perfect independence of two clusterings can only by demonstrated by a value of 0.

Therefore, Hubert and Arabie use the assumption of randomness of two cluster trees,

and take the generalized hypergeometric distribution as the null hypothesis. Their
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adjusted Rand index is shown as the most desirable measure among the others (Stein-

ley, 2004). However, the assumptions that they used seem unrealistic for many cases.

Furthermore, from the formula it is assessed that this measure takes values between

-1 and 1. Under their assumption of total independence of two clusterings, the index

takes a constant value of 0. This should be an indicator for the perfect dissimilarity. It

is also known that the higher values stand for higher similarity. Hence, negative val-

ues of HA seem uninterpretable. Jaccard and Fowlkes-Mallows measures are proved

to be more sensitive to dissimilarities between clusterings. Therefore, we focus on

Jaccard and Fowlkes-Mallows measures and explain them in more detail.

3.2.1 Jaccard

Downton and Brennan (1980) consider the number of pairs put in the same cluster by

both of the partitions to measure similarity. They neglect the the number of pairs put

in different clusters by both of the partitions. Unlike the Rand index, Jaccard does not

produce too high values for misclassifications. The Jaccard index is given by

Jaccard =
A11

A11 + A10 + A01

Jaccard takes values between 0 and 1, where 0 stands for perfect dissimilarity and 1

is a sign for perfect similarity between clusterings.According to the results of Monte

Carlo simulation studies conducted by Milligan and Schilling (1985), Jaccard mea-

sure is sensitive to high level of dissimilarities between two clusterings. It also has

a greater variability than other measures. This is a sign for its ability to notice even

slight differences between clusterings.

3.2.2 Fowlkes-Mallows (FM)

Fowlkes and Mallows (1983) showed that Rand is highly dependent on the number

of clusters and developed a new measure. Their simulations studies show that as the

number of clusters increase, the Rand index takes values near 1 even for highly dis-

similar clusterings. By using the general notation given above, FM is given by
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FM =
A11√

(A11 + A10)(A11 + A01)

FM changes between 0 and 1 in the same way as Jaccard. Milligan and Schilling

(1985) showed that FM is very sensitive to severe misspecifications in clusterings.

3.3 Clustering Based Model Selection

Clustering a group of subjects according to their observed values of 0 and 1, and

clustering the same group of subjects according to fitted probabilities can be thought

as two different clusterings. Comparing these two clusterings may in some situations

give information about the accuracy of a logistic regression model. In particular,

a strikingly high level of similarity may be an indicator of good fit. Most of the

model diagnostics (or goodness of fit testing ideas) are based on residuals, which

measure the distance between observed and fitted value in a regression model. In a

good fit, residuals are small. For any type of diagnostic method, the main interest is

the distance between observed and predicted values. Clustering algorithms are also

based on distance between objects. Comparing clustering based on observed values

against that based on predicted values, is done by comparing the topographies of the

two binary trees (clusterings) in terms of how similar/distant they are. Therefore,

clustering similarity measures given in the previous section can be used as model

selection criteria for logistic regression. Among the above measures, Jaccard and FM

are chosen as the new model selection criteria due to their advantageous properties.

Jaccard and FM are used as model selection criteria in the same way with the exist-

ing criteria, namely AIC, AICc, CAIC, BIC, and ICOMP. Smaller values of {AIC,

AICc, CAIC, BIC, ICOMP} and {1-FM, 1-Jaccard} indicate better fitted and better

classifying models.

We noticed that, the new measures (1-FM) and (1-Jaccard) decrease as the number

of parameters in the model increases, thus are refrained from selecting parsimonious

models unlike desired, and thus they need to be penalized for the number of pa-

rameters. This is all illustrated using the following simulation experiment. In this

simulation study, true model setting is given by
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logit(P (Yi = 1|Xi)) = 0.5 + 0.3xi

where y is the binary response and x follows U(-3,3). A of 20 candidate models is

constructed where the models include 1,2,3,...,20 covariates respectively. 20 different

covariates from different distributions are added to the model.

As explained before, the smaller values of 1-FM and 1-Jaccard correspond to better

models. In this simulation study, the true model involves two estimated parameters.

All the other models in the candidate set have higher number of parameters. A reason-

able model selection tool should choose the true model among those models including

unnecessary factors. What we expect from a good criteria is to increase as the fitted

model gets further from the true model.

Figure 3.2 and Figure 3.3 present the graphs of the value of the criteria versus the

number of parameters (d). For this illustration the number of parameters in the true

model is 2. Therefore, criteria should be lowest, when d is equal to 2. True model

is marked by a red dot in the graphs. Both 1-FM and 1-Jaccard decrease, as more

parameters are included in the model. In other words, they tend to select the model

consisting redundant variables. Therefore, the proposed criteria should also have a

penalty term for the number of parameters.

Figure 3.2: 1-FM vs. number of parameters
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Figure 3.3: 1-Jac vs. number of parameters

The reason behind this situation can be associated with the residual idea. Let y∗i
present the predicted grouping values.

y∗i = 1, ifP (Yi|Xi) > c

y∗i = 0, ifP (Yi|Xi) < c

where c is the cut point of the clustering tree. Let ri be the residuals from a logistic

regression fit.

ri = yi − ŷi

If ri is very close to 0, this means ŷi is very close to either 1 or 0, since observed

values can only take value 1 and 0. This also implies y∗i should be either 1 or 0.

Therefore, small residuals are indicators for a valid clustering. With this informa-

tion, we should demonstrate that the more estimated parameters exist in a model, the

smaller the residuals become. To illustrate, the following model setting is used.

P (Yi = 1|xi) = β0 + β1xi1 + β2xi2

where y is the binary response variable and x follows U(0,6). Regression coefficients

are chosen with the purpose of having an equal proportion of binary groups.
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Candidate models are in the following in which all the covariates follow the same

uniform distribution with the true model.

1. P (Yi = 1|xi) = β0 + β1xi1 + β2xi2

2. P (Yi = 1|xi) = β0 + β1xi1 + β2xi2 + β3xi3

3. P (Yi = 1|xi) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4

4. P (Yi = 1|xi) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5

5. P (Yi = 1|xi) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6

6. P (Yi = 1|xi) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + β7xi7

Data set is generated based on the true model, then the above 6 candidate models are

fit once. Their residual sum of squares are given in Table 3.4.

As seen from Table 3.4, residuals get smaller for larger models, even if the true model

is the smallest one. Since residuals are smallest for the largest model, 1-FM and 1-

Jaccard will also tend to that model. This is actually the definition for overfitting

problem of model selection criteria. The need for a penalty term is validated by this

point of view.

Table 3.4: Residual sum of squares

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
388.348 386.156 386.078 385.867 385.382 384.680

AIC, AICc, CAIC, BIC, and ICOMP are widely used for model selection. They are

proven to be effective in such studies. Their behaviour in the same simulation scenario

is examined in order to get an incentive to enhance 1-FM and 1-Jaccard. Figure 3.4

shows the relationship between each criterion and the number of parameters. Red

points are again indicators for the true number of parameters. They all tend to rise

as the number of parameters increases. In other words, they are able to pick the true

model among the other models. The slopes of these plots are steeper for CAIC and

BIC. They penalize the number of unnecessary parameters more than others. Their

ability to handle overfitting problem is obvious in this study. In other words, they
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choose the true model most of the times, which refers to their consistency based on

Definition 1.

The behaviour of model selection criteria as the number of parameters increases has

been investigated in the literature. Seghouane and Amari (2007) illustrated the rela-

tion between AIC type of criteria and the order of a polynomial model. They showed

that those criteria tend to increase if the number of estimated parameters is more than

the true number of parameters.

Figure 3.4: Common criteria vs. number of parameters

3.4 Penalty Term

As explained and illustrated in the previous section, we need to develop a penalty

term for 1-FM and 1-Jaccard. Desired properties of a penalty are given as follows:

1. It should be an increasing function of the number of parameters.
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2. It should also increase by the sample size, but with a smaller rate.

Figure 3.5: Cluster based criteria vs. number of parameters

Let the clustering based model selection criteria be presented by

CCJ = (1− Jaccard) + cn

CCFM = (1− FM) + cn

where cn is the penalty term. There are two penalty terms examined in this thesis.

They are based on the existing penalty terms (logn and loglogn) for the common cri-

teria and satisfy the desired properties. Our proposed penalty terms are

cn1 = (pulogn)/100

cn2 = (puloglogn)/100
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where p is the number of regression coefficients (i.e. model dimension) and u is the

rate of decrease in 1-FM and 1-Jaccard and it is found as 1.

The incentive for these penalty terms is the Qian and Field (2002) result. They showed

that a model selection criterion that consists of -2log likelihood and a penalty term is

strongly consistent if the penalty term is an increasing function of the model dimen-

sion and has an order higher than O(log log n). Their result is based on law of iterated

logarithm. Clustering based criteria with cn1 are named as CCFM1 and CCJ1, and

clustering based criteria with cn2 are named as CCFM2 and CCJ2.

Figure 3.5 presents the behaviour of new penalized criteria as the number of parame-

ters increase. These plots are similar to those for the common criteria given in Figure

3.4.
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CHAPTER 4

SIMULATION STUDIES

In this chapter, different simulation scenarios are created in order to scrutinize the

performances of information based and cluster based criteria. The two distinct fami-

lies of criteria are compared on the basis of the modeling purpose. Simulation experi-

ments are divided into two: i. if modeling purpose is model fitting (variable selection)

(section 4.1), ii. if modeling purpose is classification (section 4.2). For each scenario,

data sets including a binary response are generated based on a true model. Logis-

tic regression models are fit on these data sets. For all simulations R programming

language version 3.2.1 is used.

4.1 Modeling Purpose is Model Fitting

In this section, modeling purpose is model fitting. Therefore, consistency and effi-

ciency definitions are used to evaluate model selection criteria.

4.1.1 True Model is in the Set of Candidate Models

Firstly, the situations in which the true model is in the set of candidate models are

evaluated. In what follows, true models with different characteristics are setup. This

enables investigation of performance of model selection criteria under various true

settings. For each simulation study, data set is generated based on the true model.

This data set is then used to fit different logistic regression models. In this section,

true model is fitted as a candidate model along with the misspecified models. The
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scenarios here are not applicable to real life cases, but they enable us to observe the

exact performances of each criterion. Performance of the model selection criteria is

based on strong consistency as in Definition 1. Frequency of selecting the true model

out of 1000 trials are given in the subsequent tables. For efficiency the same definition

given in Chapter 2 is used for all scenarios.

4.1.1.1 Detecting Missing Quadratic Terms

Quadratic models with different levels of lack of linearity are set using the following

general form.

logit(p(Yi = 1|xi)) = β0 + β1xi + β2x
2
i

The scenarios used herein are the same scenarios used in Hosmer et al. (1997). In

that paper, they investigated the power of various different goodness of fit tests used

in logistic regression. There are 8 different true data generation processes under con-

sideration. Vector of true coefficients, (β0, β1, β2)
T , are chosen so that following con-

ditional probabilities hold in the logistic model. Resulting response data generating

logistic models are given next. These models are used to generate the binary response

data. In all settings there is a single covariate and it is generated from U(-3,3). Models

are also presented in Figure 4.1.

1. P (Y = 1|x = −1.5) = 0.05, P (Y = 1|x = 3) = 0.95, P (Y = 1|x = −3) = 0.01

2. P (Y = 1|x = −1.5) = 0.05, P (Y = 1|x = 3) = 0.95, P (Y = 1|x = −3) = 0.05

3. P (Y = 1|x = −1.5) = 0.05, P (Y = 1|x = 3) = 0.95, P (Y = 1|x = −3) = 0.1

4. P (Y = 1|x = −1.5) = 0.05, P (Y = 1|x = 3) = 0.95, P (Y = 1|x = −3) = 0.2

5. P (Y = 1|x = −1.5) = 0.05, P (Y = 1|x = 3) = 0.95, P (Y = 1|x = −3) = 0.4

6. P (Y = 1|x = −1.5) = 0.05, P (Y = 1|x = 3) = 0.95, P (Y = 1|x = −3) = 0.7

7. P (Y = 1|x = −1.5) = 0.05, P (Y = 1|x = 3) = 0.95, P (Y = 1|x = −3) = 0.8

8. P (Y = 1|x = −1.5) = 0.05, P (Y = 1|x = 3) = 0.95, P (Y = 1|x = −3) = 0.99

Under the above settings the correct models are as follows. Each of the eight models
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corresponds to a different level of nonlinearity.

1. logit(p(Yi = 1|xi)) = −1.138 + 1.256xi + 0.035x2i

2. logit(p(Yi = 1|xi)) = −1.963 + 0.981xi + 0.218x2i

3. logit(p(Yi = 1|xi)) = −2.336 + 0.857xi + 0.301x2i

4. logit(p(Yi = 1|xi)) = −2.742 + 0.722xi + 0.391x2i

5. logit(p(Yi = 1|xi)) = −3.232 + 0.558xi + 0.500x2i

6. logit(p(Yi = 1|xi)) = −3.858 + 0.349xi + 0.639x2i

7. logit(p(Yi = 1|xi)) = −4.128 + 0.2596xi + 0.699x2i

8. logit(p(Yi = 1|xi)) = −5.733− 0.275xi + 1.056x2i

Figure 4.1: The levels of lack of linearity in the logit function

As seen in Figure 4.1, the level of nonlinearity increases from model 1 to model 8.

For all of these eight settings, the candidate models are fitted in the following forms.

The first one includes a quadratic term as in the generating model, and the second one

misses the quadratic term.
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1. logit(p(Yi = 1|xi)) = β0 + β1xi + β2x
2
i

2. logit(p(Yi = 1|xi)) = β0 + β1xi

Models are compared by using the criteria presented in Chapter 3.

Consistency

Strong consistency Definition 1 from section 2 is used, since the true model is in the

set of candidate models in these simulations. A model selection criterion is strongly

consistent if, the selection of the true model happens almost surely, that is, its prob-

ability of being minimum for correctly fitted model is 1 for large n. Simulations for

eight true models were run 1000 times each with sample sizes of 100 and 500. For

each criteria, the frequency of choosing the correct model are shown in Table 4.1.

Table 4.1: Frequency of selecting the true model by each criterion out of 1000 repli-
cates

Tool Model 1 Model 2 Model 3 Model 4
n=100 n=500 n=100 n=500 n=100 n=500 n=100 n=500

AIC 161 192 500 971 729 999 897 1000
AICc 151 188 485 970 712 999 892 1000
CAIC 84 67 377 912 621 998 859 1000
BIC 42 18 284 824 525 992 790 1000

ICOMP 218 304 569 983 757 999 916 1000
CCFM1 82 10 239 118 362 243 454 371
CCFM2 186 155 385 435 511 564 583 684
CCJ1 100 27 293 195 421 320 508 473
CCJ2 198 178 398 470 522 612 599 732
Tool Model 5 Model 6 Model 7 Model 8

n=100 n=500 n=100 n=500 n=100 n=500 n=100 n=500
AIC 984 1000 999 1000 999 1000 1000 1000
AICc 983 1000 999 1000 999 1000 1000 1000
CAIC 974 1000 999 1000 999 1000 1000 1000
BIC 962 1000 999 1000 999 1000 1000 1000

ICOMP 985 1000 999 1000 999 1000 1000 1000
CCFM1 636 548 882 872 939 967 975 999
CCFM2 772 827 944 977 969 999 989 1000
CCJ1 685 649 904 919 951 983 985 1000
CCJ2 784 856 950 984 971 1000 995 1000
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In this scenario, true model is the largest model in the candidate set. Therefore, cri-

teria with smaller penalty terms work better here. Cluster based criteria with penalty

term cn2 are preferable. Cluster based criteria with penalty term cn1 penalize the true

model too much for the number of estimated parameters. Moreover, its dependence

on the sample size is with a higher factor. Therefore, it always performs poorer for

larger sample sizes. CCFM2 and CCJ2 are favoured for this case. They can be re-

garded as consistent in the context of Definition 1. However convergence seems to

occur at a much slower rate compared to the conventional model selection criteria.

AIC is also known to be consistent when the generating model is the extended model

(Aparicio, Villanua, 2007). That’s what we observe in this situation. AIC and AICc

perform better than CAIC and BIC. Among the information based criteria ICOMP

seems to be the best based on Table 4.1.

If the true model is very mildly nonlinear, the common criteria cannot detect the miss-

ing nonlinearity for sample size of 100. For model 1 , AIC, AICc, CAIC, and BIC

are not able to pick the true model. For such cases, ICOMP, CCFM2, and CCJ2 have

better performances, since they show a higher proportion of selecting the true model.

If the underlying true model is more nonlinear (through a more stressed quadratic co-

efficient), the common tools are successful as expected. However, for relatively small

samples as in n=100, for Model 2, their performance is still questionable (AIC=500,

AICc=485, CAIC=377, BIC=284, ICOMP=569). However, they are able to pick the

true model when sample size is increased to 500 (AIC=971, AICc=970, CAIC=912,

BIC=824, ICOMP=983). The number of selecting the true model for the new meth-

ods are less than those.

Efficiency

In terms of efficiency definition given in Chapter 2, average observed efficiency rates

are calculated, and are given in Table 4.2. All criteria seem to perform well in terms

of efficiency, but there are some remarkable points. Among the common criteria,

AIC, AICc, and ICOMP perform better than CAIC and BIC. Efficiency of AIC type

of criteria is also mentioned in the literature (Claeskens and Hjort, 2007). Their per-

formance gets better from Model 1 to Model 8, and also as the sample size increases.

For Model 8, all common criteria managed to choose the model with minimum loss
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for all trials.

Table 4.2: Average observed efficiency rates

Tool Model 1 Model 2 Model 3 Model 4
n=100 n=500 n=100 n=500 n=100 n=500 n=100 n=500

AIC 0.996 0.999 0.996 1 0.997 1 0.999 1
AICc 0.996 0.999 0.996 1 0.997 1 0.998 1
CAIC 0.994 0.999 0.993 0.999 0.994 1 0.998 1
BIC 0.993 0.998 0.989 0.999 0.991 1 0.995 1

ICOMP 0.996 0.999 0.996 1 0.998 1 0.999 1
CCFM1 0.992 0.998 0.982 0.982 0.971 0.965 0.951 0.939
CCFM2 0.993 0.999 0.986 0.989 0.979 0.980 0.964 0.969
CCJ1 0.993 0.998 0.984 0.983 0.974 0.969 0.957 0.949
CCJ2 0.994 0.999 0.986 0.990 0.979 0.982 0.965 0.974
Tool Model 5 Model 6 Model 7 Model 8

n=100 n=500 n=100 n=500 n=100 n=500 n=100 n=500
AIC 1 1 1 1 1 1 1 1
AICc 1 1 1 1 1 1 1 1
CAIC 0.999 1 1 1 1 1 1 1
BIC 0.999 1 1 1 1 1 1 1

ICOMP 1 1 1 1 1 1 1 1
CCFM1 0.936 0.912 0.966 0.956 0.980 0.987 0.988 0.999
CCFM2 0.962 0.967 0.984 0.993 0.990 0.9996 0.995 1
CCJ1 0.946 0.932 0.972 0.973 0.984 0.993 0.993 1
CCJ2 0.964 0.972 0.986 0.995 0.990 1 0.998 1

When we examine the results for the cluster based criteria in terms of efficiency, it

is observed that they are not as successful as the information based criteria. When

the true model is close to linear, their efficiency is more or less same with the com-

mon criteria. For a slight misspecification, the losses of two candidate models are

probably very close to each other. The high efficiency rates are a result of this. This

performance falls upto Model 6, and start to rise again after Model 6. When the

misspecification is severe, they are able to pick the model minimum loss. It is also

observed that cluster based criteria with cn2 are more effective for this scenario due

to the same reasoning in consistency study.
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4.1.1.2 Detecting Missing Interaction Terms

Models involving different level of interaction are constructed in the following form.

logit(p(Yi = 1|xi)) = β0 + β1xi + β2di + β3xdi

The settings are again based on Hosmer et al. (1997). They also examined the

power of goodness of fit tests for detecting a missing interaction. True coefficients

(β0, β1, β2, β3)
T are chosen based on the following settings. The generating models

are also given next. These models are used to generate the data set that are used to fit

logistic regression models. X follows U(-3, 3), whereas the dichotomous variable, d,

follows Ber(0.5). The generating models are presented in 4.2.

1. P (Y = 1|x = −3, d = 0) = 0.1, P (Y = 1|x = −3, d = 1) = 0.1,

P (Y = 1|x = 3, d = 0) = 0.2, P (Y = 1|x = 3, d = 1) = 0.3

2. P (Y = 1|x = −3, d = 0) = 0.1, P (Y = 1|x = −3, d = 1) = 0.1,

P (Y = 1|x = 3, d = 0) = 0.2, P (Y = 1|x = 3, d = 1) = 0.5

3. P (Y = 1|x = −3, d = 0) = 0.1, P (Y = 1|x = −3, d = 1) = 0.1,

P (Y = 1|x = 3, d = 0) = 0.2, P (Y = 1|x = 3, d = 1) = 0.7

4. P (Y = 1|x = −3, d = 0) = 0.1, P (Y = 1|x = −3, d = 1) = 0.1,

P (Y = 1|x = 3, d = 0) = 0.2, P (Y = 1|x = 3, d = 1) = 0.9

Under the above settings the correct models are given as follows. Each of these

models involves a different level of interaction.

1. logit(p(Yi = 1|xi)) = −1.792 + 0.135xi + 0.269di + 0.0898xdi

2. logit(p(Yi = 1|xi)) = −1.792 + 0.135xi + 0.693di + 0.231xdi

3. logit(p(Yi = 1|xi)) = −1.792 + 0.135xi + 1.117di + 0.372xdi

4. logit(p(Yi = 1|xi)) = −1.792 + 0.135xi + 1.792di + 0.597xdi
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Figure 4.2: The levels of interaction in the logit function

Figure 4.2 shows the interaction levels for four models. The lines are plotted for the

dichotomous variable, d, is equal to 0 and 1. If they were parallel for any model

setting, it would mean that there is no interaction. In Figure 4.2, all models involve

interaction with the dichotomous variable with varying levels. The further away from

the parallelism with d=0 line, the more profound interaction a model has. In our

setup, the interaction levels increase from model 1 to Model 4. For four generating

models, candidate set of fitted models is formed in the following way. The first model

is fitted in the same form of the generating model, and the other misses the dichoto-

mous variable and the interaction term. That is, candidate model set consists of the

following two model:

1. logit(p(Yi = 1|xi)) = β0 + β1xi + β2di + β3xdi

2. logit(p(Yi = 1|xi)) = β0 + β1xi

Fitted models are compared by using the criteria proposed in Chapter 3.

Consistency

Results are evaluated based on consistency Definition 1 given in Chapter 2. This defi-
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nition suggests that any criterion choosing the true model with probability 1 for large

n, will be regarded as a strongly consistent criterion.

Table 4.3: Frequency of selecting the true model by each criterion out of 1000 repli-
cates

Tool Model 1 Model 2 Model 3 Model 4
n=100 n=500 n=100 n=500 n=100 n=500 n=100 n=500

KL 165 559 663 996 907 1000 972 1000
AIC 212 412 504 983 863 1000 998 1000
AICc 185 403 471 983 842 1000 996 1000
CAIC 73 128 262 877 657 1000 979 1000
BIC 32 35 146 697 492 994 951 1000

ICOMP 375 644 690 996 947 1000 999 1000
CCFM1 314 164 414 297 561 386 783 599
CCFM2 558 580 671 835 847 932 958 996
CCJ1 380 279 473 407 606 504 827 710
CCJ2 566 603 678 854 853 941 963 997

Since the generating model is the largest of the candidate set, smaller penalty terms

are again more useful. Among the new methods, CCFM2 and CCJ2 are better than

others. They are consistent in terms of Definition1. Penalty term 1, plogn/100, pe-

nalizes the model too much, and its performance deteriorates as the sample size in-

creases.

In detecting a missing dichotomous variable and interaction, new methods seem to

outperform the common criteria. Only ICOMP performs better than the cluster based

criteria. CCFM2 and CCJ2 are successful especially for sample size of 100. AIC and

AICc are comparable with them for Model 3 (AIC=863, AICc=842, CCFM2=847,

CCJ2=853). CAIC and BIC are comparable even for a more pronounced missingness

of interaction(CAIC=979, BIC=951, CCFM2=958, CCJ2=963). For sample size of

500, common criteria are better beginning from Model 2. However, new methods

also show high rates of choosing the true model. AIC and AICc are again better than

CAIC and BIC due to smaller penalty terms. Their consistency in such cases is also

in the literature. (Aparicio and Villanua, 2007). Their tendency to overfit may also
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make them choose the largest model for this scenario.

Efficiency

Efficiency definition is again the same as given in Chapter 2. Average observed effi-

ciency rates are given in Table 4.4. AIC, AICc, and ICOMP outperform CAIC and

BIC for this scenario, too. CCFM2 and CCJ2 are comparable to those, whereas clus-

ter based criteria with penalty term 1 do not show such performance.

Table 4.4: Average observed efficiency rates

Tool Model 1 Model 2 Model 3 Model 4
n=100 n=500 n=100 n=500 n=100 n=500 n=100 n=500

AIC 0.999 0.998 0.989 0.999 0.996 1 0.999 1
AICc 0.999 0.998 0.987 0.999 0.995 1 0.999 1
CAIC 0.999 0.994 0.975 0.998 0.983 1 0.999 1
BIC 0.998 0.992 0.965 0.994 0.968 0.999 0.996 1

ICOMP 0.999 0.999 0.995 0.999 0.999 1 0.999 1
CCFM1 0.998 0.993 0.975 0.973 0.961 0.939 0.960 0.912
CCFM2 0.999 0.997 0.988 0.995 0.989 0.994 0.994 0.999
CCJ1 0.998 0.994 0.979 0.978 0.966 0.954 0.969 0.937
CCJ2 0.999 0.997 0.988 0.995 0.990 0.995 0.995 0.999

4.1.1.3 Detecting Misspecified Link Function

In this section, the performances of the criteria of our interest are examined in choos-

ing the correct link function. Scenarios are motivated by the settings given in Hosmer

et al. (1997) for the power studies of goodness-of-fit tests. Covariates are generated

from U(-3, 3). Three different true response data generating mechanisms are consid-

ered. These are 1. probit, 2. complementary log-log, and 3. log-log links. The same

linear predictor is used for all three models as given in Hosmer et al. (1997).

1 . probit(P (Yi = 1|xi)) = 0.8xi

2 . cloglog(P (Yi = 1|xi)) = 0.8xi

3 . loglog(P (Yi = 1|xi)) = 0.8xi

42



Candidate model set includes two models: 1. GLM with the true link g and 2. Logistic

regression (GLM with logit link). Model selection criteria of Chapter 2 are used and

their performances in determining the correct link are assessed. This way, sensitivities

of these model selection tools to the correct underlying link are investigated.

1. g(p(Yi = 1|xi)) = β1xi

2. logit(p(Yi = 1|xi)) = β1xi

where g corresponds to probit, complementary log-log, and log-log link function, as

the true model.

Consistency

The number of times selecting the true model for four different model settings are

given in Table 4.5.

Table 4.5: Frequency of selecting the true model by each criterion out of 1000 repli-
cates

Tool Model 1(probit) Model 2(c-loglog) Model 3(loglog)
n=100 n=500 n=100 n=500 n=100 n=500

KL 652 932 850 981 902 999
AIC 612 664 953 1000 925 1000
AICc 612 664 953 1000 925 1000
CAIC 612 664 953 1000 925 1000
BIC 612 664 953 1000 925 1000

ICOMP 612 664 953 1000 925 1000
CCFM1 216 365 374 551 381 543
CCFM2 216 365 374 551 381 543
CCJ1 216 363 373 551 381 543
CCJ2 216 363 373 551 381 543

The performances of the information based criteria are all comparable. They are not

very likely to detect the misspecifed link function when the true link is probit. This

is also seen in Hosmer et al. (1997)’s paper. On the other hand, their rate of choosing

the true link is above 90% for complementary log-log and log-log links. When the

true link is complementary log-log as in model 2, all common criteria choose the true
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model 953 times out of 1000. When log-log link the true link as in model 3, this

number is 925. They are also consistent in the context of Definition 1, since they

perform better as the sample size increases.

Performances of conventional information based criteria are much superior than those

of tree distance based ones.

Efficiency

In the efficiency context, it can be said that all common criteria perform well as seen

from Table 4.6. Cluster based criteria seem to be same with them when the true model

is probit. This high performance may be again due the similar losses of probit and

logit models. They are said to be indistinguishable by model selection tools in litera-

ture (Hosmer et. al, 1997). For model 2 and model 3, CCFM1 and CCJ1 outperform

the criteria with penalty term 2. However, all of them can still be considered as effi-

cient criteria based on the definition given in Chapter 2.

Table 4.6: Average observed efficiency rates

Tool Model 1(probit) Model 2(c-loglog) Model 3(loglog)
n=100 n=500 n=100 n=500 n=100 n=500

AIC 0.999 0.999 0.999 0.999 0.999 0.999
AICc 0.999 0.999 0.999 0.999 0.999 0.999
CAIC 0.999 0.999 0.999 0.999 0.999 0.999
BIC 0.999 0.999 0.999 0.999 0.999 0.999

ICOMP 0.999 0.999 0.999 0.999 0.999 0.999
CCFM1 0.998 0.999 0.992 0.999 0.994 0.999
CCFM2 0.998 0.999 0.985 0.992 0.989 0.992
CCJ1 0.998 0.999 0.991 0.999 0.993 0.999
CCJ2 0.998 0.999 0.984 0.991 0.988 0.991

4.1.1.4 Nested Models

Two models are nested if one can be extended or reduced to the other by changing

the number of parameters. These models are widely used and form an important field

of modelling. Comparing nested models is an essential problem. It is not so easy to
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see if adding one more parameter really contributes to the model or not. Including

these models in simulation studies is necessary in order to observe the performances

of our criteria. When the candidate set consists of smaller and larger models than the

true model, we face with potential overfitting and underfitting problems. Based on

the adequacy of penalty term, models can be overfitted or underfitted. Some of the

existing criteria tend to overfit due to small penalty terms, such as AIC and AICc.

These common problems in literature should also be investigated for the clustering

based criteria suggested in this thesis. Here simulations were run for sample sizes of

500 and 1000 due to convergence problems.

i. Candidate set of underfitted and overfitted nested models

Firstly, a candidate set including both underfitted and overfitted models along with

the true model is constructed. True model has five regressors. True data generating

mechanism is given below

logit(P (Yi = 1|xi)) = 2.5 + 0.5xi1 + 0.8xi2 + xi3 + 1.2xi4 − 4.33xi5

where y is the binary response variable, and x1, x2, x3, x4 and x5 are the covariates

generated from U(0,6). Regression coefficients are chosen with the purpose of having

an equal proportion of binary groups.

Candidate model set is constructed in the following form.

1. logit(P (Yi = 1|xi)) = β0 + β1xi1

2. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2

3. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3

4. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4

5. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5

6. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6

7. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + β7xi7

Consistency

The true model is one of the fitted models. The performance of model selection tools

is determined by the number of times they select the true model. Model selection tool
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is consistent if it chooses the true model almost surely (see Definition 1, Chapter 2).

Table 4.7: Frequency of selecting the true model by each criterion out of 1000 repli-
cates

Tool n=500 n=1000
KL 933 957
AIC 771 760

CAIC 937 967
AICc 780 763
BIC 982 994

ICOMP 828 828
CCFM1 1000 1000
CCFM2 938 974
CCJ1 997 1000
CCJ2 833 912

In Table 4.7, it’s seen that BIC and CAIC are good at selecting the true model among

both underfitted and overfitted models. Moreover, their selecting probabilities get

higher as the sample size increases. AIC and AICc perform poorly in selecting true

model probably due to their small penalty terms. AIC’s tendency to overfit is men-

tioned in the literature. (Schwarz, 1978; Bozdogan, 1987). ICOMP’s performance is

not as good as CAIC and BIC, but it still has a high rate of picking the true model.

Cluster based criteria are very promising for this scenario. They are all good at pick-

ing the correct model out of underfitted and overfitted models. Criteria with penalty

term 1 outperform the others. It penalizes the unnecessary parameters adequately.

If this penalty term were too high, it would also penalize the true parameters and

select a smaller model. CCFM1 and CCJ1 are even better than information based

criteria. Criteria with penalty term 2 show also higher performance than AIC, AICc,

and ICOMP. They are comparable with CAIC and BIC. These cluster based criteria

become even better with an increase in the sample size. As a result, it can be said that

they are consistent according to Definition 1.

Efficiency

Efficiency rates are given in Table 4.8. AIC,AICc, and ICOMP outperform CAIC and

46



BIC for this scenario, too. Cluster based criteria show a slightly worse performance

than the common criteria. Penalty term 1 and penalty term 2 work more or less in

the same way. As the sample size increases, each criterion gets better. Based on the

efficiency definition, all criteria can be shown as efficient.

Table 4.8: Average observed efficiency rates

Tool n=500 n=1000
AIC 0.990 0.995

CAIC 0.984 0.991
AICc 0.990 0.995
BIC 0.982 0.991

ICOMP 0.988 0.994
CCFM1 0.980 0.990
CCFM2 0.981 0.991
CCJ1 0.980 0.990
CCJ2 0.983 0.991

ii. Candidate set of underfitted nested models

This scenario handles the problem of underfitting. If the penalty terms is too high, that

model selection criterion tend to choose smaller models. Therefore, this simulation

is helpful to evaluate the model selection criteria for such a case. True model is the

same as the previous scenario. Generating model is given by

logit(P (Yi = 1|xi)) = 2.5 + 0.5xi1 + 0.8xi2 + xi3 + 1.2xi4 − 4.33xi5

where y is the binary response variable, and x1, x2, x3, x4 and x5 are generated from

U(0,6). Regression coefficients are again chosen with the purpose of having an equal

proportion of binary groups.

Candidate models are given by

1. logit(P (Yi = 1|xi)) = β0 + β1xi1

2. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2

3. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3

4. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4

5. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5
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Consistency

For this case candidate model set includes the true model along with the smaller

models. Consistency of a model selection tool is again based on Definition 1.

Table 4.9: Frequency of selecting the true model by each criterion out of 1000 repli-
cates

Tool n=500 n=1000
KL 1000 1000
AIC 1000 1000

CAIC 1000 1000
AICc 1000 1000
BIC 1000 1000

ICOMP 1000 1000
CCFM1 1000 1000
CCFM2 1000 1000
CCJ1 1000 1000
CCJ2 1000 1000

As seen in Table 4.9, all tools select the true model in each trial for both the sample

size of 500 and 1000. This result is in line with the proposition 1 in Bozdogan and

Haughton (1998)’s article. That is when the true model is included in candidate model

set of underfitted models, both AIC and BIC are consistent. Furthermore, Aparicio

and Villanua (2007) also suggest that both AIC and BIC are consistent when the

generating model is largest of the candidate models.

When the candidate set includes smaller models, and the true model, cluster based

criteria show the same performance as the common criteria. For both sample sizes,

they are able to choose the true model for all trials. If the penalty term 1 was higher

than necessary, it would penalize the true model too much, and it would choose a

smaller model. The penalty terms for the cluster based criteria seem to be very useful

for nested models, when the true model is in the candidate set. Their consistency in

the context of Definition 1 is observable for this case, too.
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Efficiency

As seen from Table 4.10, all criteria of interest are able to pick the model with mini-

mum loss for all of the trials.

Table 4.10: Average observed efficiency rates

Tool n=500 n=1000
AIC 1 1

CAIC 1 1
AICc 1 1
BIC 1 1

ICOMP 1 1
CCFM1 1 1
CCFM2 1 1
CCJ1 1 1
CCJ2 1 1

iii. Candidate set of overfitted nested models

Overfitting is one of the biggest problems for prediction and model selection. Adding

more parameters results in variance inflation without necessarily improving the model.

This is the rationale behind using penalty terms in model selection criteria. These

terms penalize the model selection criterion for including more parameters. How-

ever, penalty terms may still fail in handling overfitting problems. The objective of

the current investigation here is to evaluate the behaviour of similarity measures as

well as the common methods in such cases. In our setup, true model includes two

uniform covariates, and the candidate set consists of larger models in addition to true

model. Generating model is given by

logit(P (Yi = 1|xi)) = 2.5 + 0.5xi1 − 1.33xi2

where y is the binary response variable, and x1 and x2 follows U(0,6). Regression
coefficients are chosen with the same manner as the previous nested models.
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Set of candidate models include

1. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2

2. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3

3. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4

4. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5

5. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6

6. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4x4 + β5xi5 + β6xi6 + β7xi7

Consistency

In this scenario, the generating model is the smallest fitted model in the candidate

models. All the other fitted models have more covariates. Since true model is in the

set of candidate set, Definiton 1 for consistency is used.

Table 4.11: Frequency of selecting the true model by each criterion out of 1000 repli-
cates

Tool n=500 n=1000
KL 974 985
AIC 709 719

CAIC 937 953
AICc 724 722
BIC 983 989

ICOMP 777 784
CCFM1 998 1000
CCFM2 868 925
CCJ1 997 1000
CCJ2 822 892

Results in Table 4.11 indicate only BIC and CAIC handles overfitting problem. AIC

is known to be inconsistent for such cases. Bozdogan and Haughton (1998) and

Aparicio and Villanua (2007) show that when the candidate model set includes true

model and the overfitted models, BIC is consistent while AIC is not.

CCFM1 and CCJ1 are better than all other criteria for this case. CCFM2 and CCJ2

also show remarkable performances. They outperform AIC, AICc, and ICOMP.

When the true model is the smallest among the candidate set, all the cluster based
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criteria managed to pick the true model. Penalty terms seem to handle the overfitting

problem in nested models.

Efficiency

Table 4.12: Average observed efficiency rates

Tool n=500 n=1000
AIC 0.990 0.995

CAIC 0.986 0.993
AICc 0.990 0.995
BIC 0.985 0.992

ICOMP 0.988 0.994
CCFM1 0.984 0.992
CCFM2 0.985 0.992
CCJ1 0.985 0.992
CCJ2 0.984 0.992

Results for the efficiency are given in Table 4.12. When the true model is the smallest

of the candidate set, all model selection methods perform well in terms of efficiency.

AIC, AICc and ICOMP are barely better than BIC and CAIC. Cluster based criteria

are slightly worse than the common criteria. Their performances do not differ for

penalty term 1 and penalty term 2. Moreover, all gets better with an increase in the

sample size.

4.1.1.5 Random Effects Models

As the last part for scenarios in which the true model is included in the candidate

models, random effects models are conducted. It is essential to investigate the perfor-

mances of the model selection criteria in random effects models.

i. Candidate set of random effects models

The abilities of information based criteria and cluster based criteria to recognize the

true random relation in a logistic model are evaluated in this part. Generating random

intercept model is given by
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logit(P (Yij = 1|xij)) = b0i + 2.5 + 0.5xij1 − 1.33xij2

where i=1,...,10, j=1,...,ni, ni = n
10

. Candidate model set includes the true model and

a random slope model as given by

1. logit(P (Yij = 1|xij)) = b0i + β0 + β1xij1 + β2xij2

2. logit(P (Yij = 1|xij)) = b0i + b1ixi1 + β0 + β1xij1 + β2xij2

where b0 is the random intercept, and b1 is the random slope. Random intercept

follows a normal distribution with zero mean and a constant variance, σ2
0 , for the true

model. Random slope model is fitted with the assumption that (b0i, b1i) follows a

multivariate normal distribution. Regression coefficients are chosen as in the nested

model settings.

The true model is generated under three different scenarios for ICC’s. These three

scenarios correspond to ICC=0.3 (low intra-class correlation), 0.5 (mild intra-class

correlation), and 0.8 (high intra-class correlation) respectively. Given ICC’s, true σ2
0

are computed as 1.408, 1.972, and 4.929 respectively. The frequency of each model

selection criteria selecting the true model is given in Table 4.13.

Consistency

Table 4.13: Frequency of selecting the true model by each criterion out of 1000 repli-
cates

Tool ICC=0.3 ICC=0.5 ICC=0.8
n=500 n=1000 n=500 n=1000 n=500 n=1000

KL 842 888 865 887 850 882
AIC 932 944 946 943 937 933
AICc 935 945 950 944 940 934
CAIC 991 994 996 996 994 997
BIC 999 1000 1000 1000 1000 1000

ICOMP 165 209 176 173 159 116
CCFM1 1000 1000 1000 1000 1000 1000
CCFM2 965 992 979 990 972 985
CCJ1 1000 1000 1000 1000 1000 1000
CCJ2 940 978 938 979 928 968
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Results given in Table 4.13 are evaluated according to the Definition 1, as the true

model is in the set of candidate models. It is observed from Table 4.13, CAIC and

BIC are consistent for all ICC levels. (Their performances improve as sample size

increases). Also they perform better than AIC and AICc. AIC and AICc seem to

be consistent for low intra-class correlation (namely ICC=0.3). ICOMP is not able

distinguish between two random effects models. Its performance even worsen as the

ICC level increases.

Cluster based criteria perform well for all ICC. Both with penalty term 1 and penalty

term 2 are successful. However, since the true model is the smallest of the candidates,

one with a larger penalty term outperforms the other. CCFM1 and CCJ1 are able to

pick the true model for all of the trials. The performances of CCFM2 and CCJ2

get better as the sample size increases. Hence, we consider cluster based criteria as

consistent based on Definition2.

Efficiency

As seen from Table 4.14, ICOMP performs better than all other criteria in terms of

efficiency. Performances of any criteria do not change with ICC. AIC and AICc out-

perform CAIC and BIC. Cluster based criteria are more or less the same with CAIC

and BIC. In overall context, they are all efficient based on the definition given in sec-

tion 2.3.2.

Table 4.14: Average observed efficiency rates

Tool ICC=0.3 ICC=0.5 ICC=0.8
n=500 n=1000 n=500 n=1000 n=500 n=1000

AIC 0.993 0.997 0.993 0.997 0.993 0.996
AICc 0.993 0.997 0.993 0.997 0.993 0.996
CAIC 0.991 0.996 0.991 0.996 0.991 0.995
BIC 0.991 0.996 0.991 0.996 0.990 0.995

ICOMP 0.999 0.999 0.999 0.999 0.999 0.999
CCFM1 0.991 0.996 0.991 0.996 0.990 0.995
CCFM2 0.991 0.996 0.991 0.996 0.992 0.995
CCJ1 0.991 0.996 0.991 0.996 0.990 0.995
CCJ2 0.991 0.996 0.992 0.996 0.992 0.995
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ii. Candidate set of random effects and fixed effects models

As another scenario, candidate set of fitted models involves a fixed effect model along

with the true random intercept model. Criteria are evaluated for detecting a missing

random term in logistic models. The generating model is the same.

logit(P (Yij = 1|xij)) = b0i + 2.5 + 0.5xij1 − 1.33xij2

Candidate set of models is given by

1. logit(P (Yij = 1|xij)) = b0i + β0 + β1xij1 + β2xij2

2. logit(P (Yij = 1|xij)) = β0 + β1xij1 + β2xij2

Consistency

Table 4.15: Frequency of selecting the true model by each criterion out of 1000 repli-
cates

Tool ICC=0.3 ICC=0.5 ICC=0.8
n=500 n=1000 n=500 n=1000 n=500 n=1000

KL 996 1000 999 1000 1000 1000
AIC 989 1000 995 1000 1000 1000
AICc 989 1000 995 1000 1000 1000
CAIC 978 997 989 999 999 1000
BIC 963 995 985 998 999 1000

ICOMP 999 1000 1000 1000 1000 1000
CCFM1 279 172 492 357 884 852
CCFM2 862 848 915 939 994 997
CCJ1 423 302 607 498 924 916
CCJ2 889 883 933 954 997 998

According to Table 4.15, among the common criteria, ICOMP seems to the best.

AIC, and AICc outperform CAIC, and BIC. This may be due to their tendency for

overfitting. CAIC and BIC are also good at detecting the missingness of a random
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term. The performances of all common criteria gets better as ICC and the sample size

increase. They are consistent in terms of consistency Definition 1.

CCFM1 and CCJ1 stay far behind CCFM2 and CCJ2. Penalty term 1 is too high

for such cases. It is also observed that they get worse as the sample size increases.

However, when ICC gets high for the true model, their ability to picking the random

intercept model increases as obviously seen from Table 4.15. Cluster based crite-

ria with penalty term 2 is much better than those. Their performance falls with an

increase in the sample size for a true ICC of 0.3, but they get better for larger ICC.

Efficiency

Average observed efficiency rates for this scenario are given in Table 4.16. ICOMP

outperforms others as in the previous scenario. Each information based criterion has

very high efficiency rates. AIC and AICc are a little better than CAIC and BIC.

Cluster based criteria are not as successful as information criteria for this case. Their

efficiency rates increase as ICC increases. CCFM2 and CCJ2 perform better than

CCFM1 and CCJ1. This may be due to a higher penalty term. The true model is the

largest in the candidate set and CCFM1 and CCJ1 penalize it more than necessary.

This is due a higher penalty term, plogn/100.

Table 4.16: Average observed efficiency rates

Tool ICC=0.3 ICC=0.5 ICC=0.8
n=500 n=1000 n=500 n=1000 n=500 n=1000

AIC 0.999 1 0.999 1 1 1
AICc 0.999 1 0.999 1 1 1
CAIC 0.999 0.999 0.999 0.999 0.999 1
BIC 0.998 0.999 0.999 0.999 0.999 1

ICOMP 1 1 1 1 1 1
CCFM1 0.887 0.870 0.910 0.883 0.974 0.965
CCFM2 0.986 0.984 0.990 0.993 0.999 0.999
CCJ1 0.916 0.898 0.934 0.916 0.984 0.982
CCJ2 0.989 0.988 0.992 0.996 0.999 0.999
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4.1.2 True Model is not in the Set of Candidate Models

For real life cases it is not possible to know the true model. For the simulations in

this section, the data set is generated from a true model. However, this true model is

not included in the candidate model set. The evaluation of model selection criteria is

now based on consistency Definition 2. Kullback-Liebler distance is used as the main

reference. Criteria that chooses the model with the smallest KL distance to the truth

are regarded as successful. For efficiency, the definition is the same for all cases.

4.1.2.1 Nonlinear Model Study

The model which perfectly explains the relation between the response and the covari-

ate is generally something very complicated. The best approach for such cases is to

obtain the closest approximation. It is essential to observe the performances of the

model selection criteria in order to obtain the best approximation.

We used the same true model given in (Kalaylioglu and Ozturk, 2013)

logit(P (Yi = 1|xi)) = 3− 1.5xi + 5(0.5− 1/(1 + (xi + 1)4)

where y is the binary response variable, and x follows U(0,6). Regression coefficients

are chosen with the purpose of having an equal proportion of binary groups.

Candidate models are given by

1. logit(P (Yi = 1|xi)) = β0 + β1xi

2. logit(P (Yi = 1|xi)) = β0 + β1xi + β2x
2
i

3. logit(P (Yi = 1|xi)) = β0 + β1xi + β2x
2
i + β3x

3

These candidate models are very close to each other as from Figure 4.3. Simulations

are replicated for 1000 times. Regression coefficients obtained from the first trial are

used to visualize the shapes of candidate models and the true model.
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Figure 4.3: Illustration of true model and candidate models

Consistency

For this case, the consistency of the model selection criteria are associated with the

Kullback-Liebler distance. The Definition 3 for consistency will be used. In order to

use the theorem given in 2.3.1, the columns of the covariate matrix should be linearly

independent. Orthogonal polynomials are used to satisfy this condition (Rawlings et

al., 1998). Candidate models are fitted with those orthogonal covariates. The number

of times selecting the model with minimum KL distance are in Table 4.17.

According to Table 4.18, none of the model selection criteria perform satisfactorily

in terms of consistency. For small sample sizes the cluster based criteria seem to

outperform the common ones. For information based criteria, the problem seems to

be related to convergence. Their performance fluctuate as the sample size increases.

Cluster based criteria, on the other hand, worsen regularly as the sample size in-

creases. This rises the need for a further investigation on penalty terms of cluster
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based criteria.

Table 4.17: Frequency of selecting the model with minimum KL distance by each
criterion out of 1000 replicates

Tool n=100 n=250 n=500 n=750 n=1000 n=1500 n=5000 n=10000
AIC 414 416 359 301 293 258 307 481

CAIC 535 523 478 444 392 317 187 377
AICc 432 423 360 302 296 258 307 481
BIC 596 576 532 514 469 416 183 242

ICOMP 602 563 515 480 426 362 150 270
CCFM1 684 640 607 591 562 516 347 282
CCFM2 631 618 602 588 563 515 347 282
CCJ1 679 640 607 591 562 516 347 282
CCJ2 624 602 599 580 558 515 346 282

Efficiency

Table 4.18: Average observed efficiency rates

Tool n=100 n=250 n=500 n=750 n=1000 n=1500 n=5000 n=10000
AIC 0.990 0.997 0.998 0.999 0.999 0.999 0.999 0.999

CAIC 0.984 0.995 0.997 0.998 0.999 0.999 0.999 0.999
AICc 0.990 0.996 0.998 0.999 0.999 0.999 0.999 0.999
BIC 0.979 0.993 0.996 0.998 0.998 0.999 0.999 0.999

ICOMP 0.976 0.993 0.997 0.998 0.998 0.999 0.999 0.999
CCFM1 0.972 0.991 0.996 0.997 0.997 0.998 0.999 0.999
CCFM2 0.977 0.992 0.996 0.997 0.997 0.998 0.999 0.999
CCJ1 0.972 0.991 0.996 0.997 0.997 0.998 0.999 0.999
CCJ2 0.977 0.992 0.996 0.997 0.997 0.998 0.999 0.999

Average observed efficiency rates are given in Table 4.18. In the context of efficiency,

all criteria perform well. Among the information based criteria, AIC and AICc out-

perform CAIC, BIC, and ICOMP for smaller sample sizes. All get better and become

comparable with each other as the sample size increases.

Cluster based criteria are a little less successful than common criteria for small sample

sizes. They are more or less the same for larger sample sizes. When the sample

size is 100 and 250, CCFM2 and CCJ2 are better than CCFM1 and CCJ1. Unlike

consistency, the efficiency rates of model selection criteria converges easily for small
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sample sizes. All can be regarded as efficiency according to the efficiency definition

given in section 2.3.1.2.

4.1.2.2 Nested Models

Nested models are conducted in this section in the same way as in section 4.1.4.

Model selection criteria are evaluated for their performances in overfitting and under-

fitting problems.

i. Candidate set of overfitted and underfitted nested models

The first case is again the set of overfitted and underfitted models. Generating model

is given by

logit(P (Yi = 1|xi)) = 2.5 + 0.5xi1 + 0.8xi2 + xi3 + 1.2xi4 − 4.33xi5

where y is the binary response variable, and x1, x2, x3, x4, and x5 follow U(0,6).

Regression coefficients are chosen with the purpose of having an equal proportion of

binary groups.

As seen in the following candidate models, now the generating model is not included.

1. logit(P (Yi = 1|xi)) = β0 + β1xi1

2. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2

3. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3

4. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4

5. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6

6. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + β7xi7

Consistency

Evaluating the consistency of the criteria based on Table 4.19, Definition 2 is used. A

model selection criterion is consistent if the probability of selecting the model with

the smallest Kullback-Leibler distance converges to 1 as n goes to∞.
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Table 4.19: Frequency of selecting the model with minimum KL distance by each
criterion out of 1000 replicates

Tool n=500 n=1000 n=1500
AIC 773 781 797

CAIC 897 907 930
AICc 782 782 798
BIC 939 937 958

ICOMP 813 816 829
CCFM1 948 924 815
CCFM2 884 925 950
CCJ1 946 945 966
CCJ2 795 862 875

In this simulation study, model 5 had the minimum expected KL distance around 950

times out of 1000 replicates.

According to Table 4.19, among the conventional model selection criteria, BIC and

CAIC show the highest performance in terms of agreeing with Kullback-Leibler dis-

tance. This is again a sign for handling the ovetfitting problem better than the others.

As seen in the table, BIC slightly decreases with increasing sample size. This may

be because BIC is based on the assumption that true model is in the candidate set.

(Schwarz, 1978).

Cluster based criteria perform well. They guard against overfitting unlike AIC and

AICc. Their performances are more satisfactory than ICOMP and comparable with

CAIC and BIC. However, they do not show a significant increase in their performance

with an increase in the sample size. This may be due to using KL distance as the

reference. These cluster based criteria are not based on minimizing KL distance.

Therefore, it may not be reasonable to evaluate them in reference to minimum KL

distance.

Efficiency

Results given in Table 4.20 are very similar to those given in previous section. AIC,

AICc, and ICOMP perform better than other criteria. Cluster based criteria with

penalty term ploglogn/100 is slightly better than those with plogn/100 for this sce-

nario. CCFM1’s rate of efficiency decreased with an increase in the sample size.
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Dependence on the sample size with a higher rate can be shown as the reason for that.

Table 4.20: Average observed efficiency rates

Tool n=500 n=1000
AIC 0.995 0.998

CAIC 0.992 0.996
AICc 0.995 0.998
BIC 0.990 0.995

ICOMP 0.994 0.995
CCFM1 0.988 0.975
CCFM2 0.990 0.995
CCJ1 0.990 0.995
CCJ2 0.992 0.996

ii. Candidate set of underfitted nested models

Objective is to evaluate the performances of model selection criteria in dealing with

underfitting problem. Generating model is the same as given in the following.

logit(P (Yi = 1|xi)) = 2.5 + 0.5xi1 + 0.8xi2 + xi3 + 1.2xi4 − 4.33xi5

where y is the binary response variable, and x1, x2, x3, x4, and x5 follow U(0,6).

Regression coefficients are chosen with the purpose of having an equal proportion of

binary groups.

Candidate models are given below

1. logit(P (Yi = 1|xi)) = β0 + βi1x1

2. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2

3. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3

4. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4

Consistency

Consistency definition based on the Kullback-Leibler distance is again used here,

which is Definition 2. A model selection tool is consistent if the probability of se-

lecting the model with the smallest Kullback-Leibler distance goes to 1 as the sample
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size goes to infinity.

Table 4.21: Frequency of selecting the model with minimum KL distance by each
criterion out of 1000 replicates

Tool n=500 n=1000
AIC 982 1000

CAIC 912 1000
AICc 982 1000
BIC 770 996

ICOMP 971 1000
CCFM2 160 140
CCJ2 129 109

In this simulation study, model 4 had the minimum expected KL distance for all the

replicates.

In this scenario overfitted models are not in the candidate set. That is probably the

reason of better performances of AIC, CAIC, and AICc. These criteria fail to handle

overfitting problems due to an inadequate penalty term. BIC also shows a good result.

Bozdogan (1998) suggests that when the true model is not included in the set of

candidate models, both AIC and BIC are consistent when the true model is compared

to smaller models. The fact that the other information based criteria works better than

BIC in this situation may be because BIC is based on the assumption of having the

true model in the candidate set (Schwarz, 1978).

Cluster based criteria do not seem to be useful for this scenario as seen from Table

4.21. Corresponding frequencies are strikingly low. CCFM1 and CCJ1 never agreed

with minimum KL reference (not shown in the tables). In order to understand the

reason behind, this simulation is examined in more detail. Accordingly, model 4 has

the minimum KL distance in all 1000 replicates. On the other hand, CCFM1 and

CCJ1 select model 1 900 times out of 1000 replicates. We found out that when the

fitted model does not include x5, the most significant factor in the true model, these

clustering based criteria do not regard the model as a good fit, and judge them only for

the number of parameters. In order to investigate this further, we carefully designed

two additional simulation experiments: 1. One of the candidate models include x5, 2.
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All the models in the candidate set include x5.

1. Only one candidate model includes x5 Candidate models are given below.

1. logit(P (Yi = 1|xi)) = β0 + βi1xi2

2. logit(P (Yi = 1|xi)) = β0 + β1xi2 + β2xi3

3. logit(P (Yi = 1|xi)) = β0 + β1xi2 + β2xi3 + β3xi4

4. logit(P (Yi = 1|xi)) = β0 + β1xi2 + β2xi3 + β3xi4 + β4xi5

Table 4.22 indicates that all criteria picked the model with minimum KL distance.

Here, model 4 has the minimum KL distance in all the 1000 replicates. Therefore,

when the most effective factor is in the fitted model, our cluster based criteria are

useful.

Table 4.22: Frequency of selecting the model with minimum KL distance by each
criterion out of 1000 replicates

Tool n=500 n=1000
AIC 1000 1000

CAIC 1000 1000
AICc 1000 1000
BIC 1000 996

ICOMP 1000 1000
CCFM1 1000 1000
CCFM2 1000 1000
CCJ1 1000 1000
CCJ2 1000 1000

2. All the models in the candidate set include x5

Candidate models for this situation are given below.

1. logit(P (Yi = 1|xi)) = β0 + βi1xi5

2. logit(P (Yi = 1|xi)) = β0 + β1xi4 + β2x5

3. logit(P (Yi = 1|xi)) = β0 + β1xi3 + β2xi4 + β3xi5

4. logit(P (Yi = 1|xi)) = β0 + β1xi2 + β2xi3 + β3xi4 + β4xi5
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Table 4.23: Frequency of selecting the model with minimum KL distance by each
criterion out of 1000 replicates

Tool n=500 n=1000
AIC 1000 1000

CAIC 1000 1000
AICc 1000 1000
BIC 1000 1000

ICOMP 1000 1000
CCFM2 605 617
CCJ2 777 829

Common criteria show a high success as expected. They are again able to select the

model with minimum KL distance, which is model 4. Cluster based criteria with

penalty term 1 failed for this scenario, too (results not shown in the table). They

seem to be ignoring the significance of other factors, and penalize them more than

necessary. They always pick the smaller models. Penalty term 2 is more reasonable.

Even if it does not work as well as the common criteria, it is able to choose the largest

model for most of the times.

Efficiency

Efficiency rates are obtained for the scenario in which x5 is not included in any of the

candidate models. Table 4.24 presents the results.

Table 4.24: Average observed efficiency rates

Tool n=500 n=1000
AIC 0.999 1

CAIC 0.999 1
AICc 0.999 1
BIC 0.996 0.999

ICOMP 0.999 1
CCFM1 0.940 0.942
CCFM2 0.959 0.960
CCJ1 0.940 0.942
CCJ2 0.957 0.957

The common tools are all good at selecting the best approximation in terms of effi-
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ciency. They can be called as efficient for this study, too. We know for this model

neither CCFM1 or CCJ1 were able to pick the true model. However, in Table 4.24,

average observed efficiency rates are around 95%. When the interest is loss, which is

defined as average squared distance between observed and predicted values, models

are not very distinct from each other. That is why these efficiency rates are too high.

On the other hand, it is obviously seen that they are very much lower than the effi-

ciency rates of the common criteria. Moreover, higher dependence on the sample size

again create a drawback for criteria with penalty term 1.

iii. Candidate set of overfitted nested models

As the last scenario of the nested models, overfitting problem is addressed. Data gen-

eration model is given by

logit(P (Yi = 1|xi)) = 2.5 + 0.5xi1 − 1.33xi2

where y is the binary response variable, and x1 and x2 follow U(0,6). Regression co-

efficients are chosen with the purpose of having an equal proportion of binary groups.

Candidate model set contains the following models.

1. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3

2. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4

3. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5

4. logit(P ((Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6

5. logit(P (Yi = 1|xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + β7xi7

Consistency

Candidate set does not include the true model and includes the models that are larger

than the (unknown) true model. Here the model with minimum Kullback-Leibler

distance can be regarded as the best approximating model. Therefore, each method is

examined in terms of its agreement with Kullback-Leibler distance. The consistency

of criteria will be based on Definition 2. Frequency of each model selection criterion

selecting the model with minimum KL distance out of 1000 replicates is given in

Table 4.25.
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Table 4.25: Frequency of selecting the model with minimum KL distance by each
criterion out of 1000 replicates

Tool n=500 n=1000
AIC 715 728

CAIC 914 939
AICc 729 734
BIC 957 974

ICOMP 772 783
CCFM1 968 984
CCFM2 840 916
CCJ1 968 984
CCJ2 802 885

As seen in in Table 4.25, BIC and CAIC again handles overfitting problem for the

cases in which candidate set does not include the true model. AIC and AICc’s ten-

dency to overfit is also obvious.

Results in Table 4.25 show similar results with Table 4.19. CCFM1 and CCJ1 outper-

form all other methods. Although cluster based criteria with penalty type 2 tends to

overfit, their performances are better than AIC, AICc, and ICOMP. Frequency of se-

lecting the model with minimum KL distance increases as the sample size increases.

Hence, it can be said that these cluster based criteria are consistent in terms of Defi-

nition 2.

Efficiency

Table 4.26: Average observed efficiency rates

Tool n=500 n=1000
AIC 0.992 0.996

CAIC 0.989 0.994
AICc 0.992 0.996
BIC 0.988 0.994

ICOMP 0.991 0.996
CCFM1 0.987 0.994
CCFM2 0.988 0.994
CCJ1 0.987 0.994
CCJ2 0.988 0.994
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Average observed efficiency rates are given in Table 4.26.

When modeling is bound to overfitted models, all criterion showed a good perfor-

mance. As in the previous sections, AIC, AICc, and ICOMP outperform all other

methods. Their efficiency mentioned in the literature is observed for this case, too.

For the cluster based criteria, penalty terms do not differ too much for this scenario.

Their efficiency rates are almost the same as BIC and ICOMP.

4.2 Modeling Purpose is Classification

In this section we focus on the scenarios in section 4.1 in which information based

and classification based model selection criteria were comparable in terms of assess-

ing the fit of the models. Each criterion is evaluated in terms of TCR, specificity

and sensitivity. In each iteration of Monte Carlo simulations, each model selection

criterion selects one of the candidate models. TCR, specificity and sensitivity are

calculated for those models. Their Monte Carlo averages are given in the preceding

tables.

4.2.1 True Model is in the set of Candidate Models

Firstly, we examine scenarios in which the true model is in the set of candidate mod-

els. We conduct the same simulation settings in which cluster based criteria show

promising results.

4.2.1.1 Detecting Missing Interaction Terms

Firstly, we evaluated each criterion by using the simulation settings from section

4.1.2. Table 4.27 presents the results for Monte Carlo averages of TCR.
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Table 4.27: Monte Carlo Average of TCR for Each Criterion

Tool Model 1 Model 2 Model 3 Model 4
n=100 n=500 n=100 n=500 n=100 n=500 n=100 n=500

TCR of true model 0.593 0.584 0.611 0.620 0.643 0.650 0.680 0.676
AIC 0.556 0.556 0.586 0.619 0.634 0.650 0.680 0.676
AICc 0.554 0.555 0.584 0.619 0.632 0.650 0.680 0.676
CAIC 0.545 0.539 0.569 0.612 0.617 0.650 0.680 0.676
BIC 0.537 0.529 0.557 0.600 0.604 0.650 0.679 0.676

ICOMP 0.569 0.573 0.597 0.620 0.642 0.650 0.680 0.676
CCFM1 0.583 0.553 0.591 0.584 0.618 0.604 0.664 0.637
CCFM2 0.597 0.588 0.615 0.619 0.643 0.648 0.678 0.676
CCJ1 0.588 0.564 0.597 0.592 0.622 0.618 0.670 0.648
CCJ2 0.596 0.586 0.614 0.621 0.643 0.648 0.680 0.676

Table 4.27 also show average TCR for the true model. True model itself does not have

a high classification rate. The highest TCR is around 68 %, which occurs when the

true model is Model 4. Monte Carlo averages of TCR for each criterion are very close

to true model’s TCR. Overall CCFM2 and CCJ2 outperform all the others.Among the

information based criteria, ICOMP outperform the others. AIC, AICc, CAIC, and

BIC show similar results with ICOMP for Model 3 (when the sample size is 500) and

for Model 4. Among cluster based criteria CCFM2 and CCJ2 perform better than

CCFM1 and CCJ1.

Table 4.28: Monte Carlo average of sensitivity for each criterion

Tool Model 1 Model 2 Model 3 Model 4
n=100 n=500 n=100 n=500 n=100 n=500 n=100 n=500

sensitivity of true model 0.420 0.416 0.441 0.421 0.487 0.475 0.568 0.558
AIC 0.471 0.453 0.467 0.421 0.490 0.475 0.569 0.558
AICc 0.472 0.454 0.468 0.421 0.491 0.475 0.571 0.558
CAIC 0.474 0.475 0.478 0.429 0.496 0.475 0.569 0.558
BIC 0.478 0.482 0.480 0.440 0.506 0.475 0.573 0.558

ICOMP 0.456 0.434 0.453 0.421 0.488 0.475 0.568 0.558
CCFM1 0.429 0.451 0.438 0.448 0.471 0.476 0.549 0.529
CCFM2 0.420 0.411 0.430 0.418 0.476 0.468 0.564 0.558
CCJ1 0.426 0.434 0.435 0.439 0.470 0.473 0.554 0.534
CCJ2 0.419 0.411 0.429 0.418 0.476 0.468 0.565 0.558
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From Table 4.28, it is seen that information based criteria are better than cluster based

criteria in terms of sensitivity. Only for Model 3 and Model 4, they are comparable

with the common criteria. All criteria are also comparable with the sensitivity for true

model. In some cases, sensitivity rates for information based criteria are greater than

sensitivity of true model.

Results for Monte Carlo averages of specificity rates are given in Table 4.29. Cluster

based criteria perform better than information based criteria in terms of specificity.

CCFM2 and CCJ2 outperform CCFM1 and CCJ1, as well as the common criteria

especially for sample size of 100. They are also greater than specificity of true model

for some cases.

Table 4.29: Monte Carlo average of specificity for each criterion

Tool Model 1 Model 2 Model 3 Model 4
n=100 n=500 n=100 n=500 n=100 n=500 n=100 n=500

specificity of true model 0.647 0.638 0.673 0.690 0.705 0.712 0.725 0.724
AIC 0.579 0.591 0.628 0.689 0.692 0.712 0.724 0.724
AICc 0.578 0.589 0.626 0.689 0.671 0.712 0.723 0.724
CAIC 0.566 0.589 0.604 0.676 0.689 0.712 0.722 0.724
BIC 0.556 0.548 0.588 0.658 0.647 0.712 0.719 0.724

ICOMP 0.602 0.618 0.651 0.689 0.703 0.712 0.724 0.724
CCFM1 0.627 0.586 0.652 0.629 0.678 0.649 0.712 0.683
CCFM2 0.648 0.640 0.682 0.690 0.710 0.712 0.724 0.724
CCJ1 0.634 0.607 0.660 0.644 0.685 0.668 0.718 0.697
CCFM2 0.648 0.640 0.683 0.691 0.710 0.713 0.726 0.724

4.2.1.2 Nested Models

As another scenario, settings from section 4.1.4 are used. Monte Carlo averages of

TCR, sensitivity and specificity for each criterion are given in three parts: i. when the

candidate set includes both overfitted and underfitted models, ii. when the candidate

set includes underfitted models, iii. when the candidate set includes overfitted models.

As seen in Table 4.30, all criteria have high TCR for nested models. Overall perfor-

mances of CCFM2 and CCJ2 are again better than the others. Monte Carlo average

of TCR for each criterion are more or less the same with TCR for true model. For
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the set of overfitted candidate models, cluster based criteria give higher TCR than the

true model. Overall CCFM2 and CCJ2 have higher rates than the true model outper-

forming the rest in terms of TCR.

Table 4.30: Monte Carlo Average of TCR for Each Criterion

Tool overfitted and underfitted underfitted overfitted
n=500 n=1000 n=500 n=1000 n=500 n=1000

TCR of true model 0.914 0.894 0.914 0.894 0.721 0.710
AIC 0.912 0.895 0.914 0.894 0.724 0.710
AICc 0.913 0.895 0.914 0.894 0.723 0.710
CAIC 0.913 0.893 0.914 0.894 0.725 0.710
BIC 0.914 0.894 0.914 0.894 0.724 0.712

ICOMP 0.913 0.895 0.914 0.894 0.723 0.711
CCFM1 0.914 0.894 0.914 0.894 0.724 0.712
CCFM2 0.916 0.894 0.914 0.894 0.728 0.713
CCJ1 0.914 0.894 0.914 0.894 0.724 0.712
CCJ2 0.916 0.895 0.914 0.894 0.728 0.714

Sensitivity rates are given in Table 4.31 for this scenario. Rates for criteria are com-

parable with true model. They are all able to select the model with sensitivity rate

close to the true model. For the set of overfitted candidate models, CCFM2 and CCJ2

have higher rates than the true model outperforming the rest in terms of sensitivity.

Table 4.31: Monte Carlo average of sensitivity for each criterion

Tool overfitted and underfitted underfitted overfitted
n=500 n=1000 n=500 n=1000 n=500 n=1000

sensitivity of true model 0.913 0.893 0.913 0.893 0.713 0.703
AIC 0.913 0.895 0.913 0.893 0.716 0.702
AICc 0.914 0.895 0.913 0.893 0.715 0.700
CAIC 0.913 0.892 0.913 0.893 0.716 0.701
BIC 0.914 0.893 0.913 0.893 0.713 0.702

ICOMP 0.913 0.895 0.913 0.893 0.715 0.701
CCFM1 0.913 0.893 0.913 0.893 0.719 0.702
CCFM2 0.915 0.894 0.913 0.893 0.719 0.704
CCJ1 0.914 0.893 0.913 0.893 0.715 0.702
CCJ2 0.916 0.895 0.913 0.893 0.722 0.706
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As seen from Table 4.32, again CCFM2 and CCJ2 outperform the others overall.

Table 4.32: Monte Carlo average of specificity for each criterion

Tool overfitted and underfitted underfitted overfitted
n=500 n=1000 n=500 n=1000 n=500 n=1000

specificity of true model 0.914 0.895 0.914 0.895 0.728 0.716
AIC 0.912 0.896 0.914 0.895 0.731 0.719
AICc 0.913 0.896 0.914 0.895 0.730 0.720
CAIC 0.913 0.894 0.914 0.895 0.734 0.719
BIC 0.914 0.895 0.914 0.895 0.733 0.721

ICOMP 0.913 0.896 0.914 0.895 0.731 0.721
CCFM1 0.914 0.895 0.914 0.895 0.732 0.720
CCFM2 0.916 0.895 0.914 0.895 0.734 0.723
CCJ1 0.914 0.895 0.914 0.895 0.733 0.720
CCJ2 0.917 0.895 0.914 0.895 0.734 0.722

4.2.2 True Model is in not the set of Candidate Models

As another part, we now use the settings in which the true model is not in the candi-

date set. We evaluate the performances of model selection criteria in terms of TCR,

sensitivity and specificity.

4.2.2.1 Nested Models

Simulation scenarios in section 4.2.2 are used to examine the performances of model

selection criteria over the set of the nested models when the true model is not in the

set of candidate models. Table 4.33 gives TCR for each criterion again in three parts.

Results in Table 4.33 are similar to those in Table 4.30, when the candidate set in-

cludes both overfitted and underfitted models and when it has only overfitted models.

When only underfitted models exist in the candidate set, TCR decreases for each

criterion. In that case, common criteria perform better than cluster based criteria.
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Table 4.33: Monte Carlo Average of TCR for Each Criterion

Tool overfitted and underfitted underfitted overfitted
n=500 n=1000 n=500 n=1000 n=500 n=1000

AIC 0.913 0.894 0.522 0.521 0.721 0.707
AICc 0.913 0.894 0.522 0.521 0.719 0.706
CAIC 0.913 0.892 0.522 0.521 0.720 0.710
BIC 0.913 0.892 0.521 0.521 0.720 0.711

ICOMP 0.913 0.894 0.522 0.521 0.721 0.706
CCFM1 0.912 0.882 0.504 0.503 0.721 0.710
CCFM2 0.914 0.891 0.504 0.507 0.726 0.713
CCJ1 0.913 0.890 0.504 0.503 0.721 0.710
CCJ2 0.916 0.892 0.504 0.507 0.729 0.713

Table 4.34: Monte Carlo average of sensitivity for each criterion

Tool overfitted and underfitted underfitted overfitted
n=500 n=1000 n=500 n=1000 n=500 n=1000

AIC 0.911 0.893 0.459 0.452 0.714 0.699
AICc 0.911 0.893 0.459 0.452 0.713 0.699
CAIC 0.911 0.891 0.459 0.452 0.711 0.702
BIC 0.911 0.890 0.460 0.452 0.712 0.704

ICOMP 0.911 0.893 0.460 0.452 0.715 0.698
CCFM1 0.910 0.880 0.474 0.474 0.712 0.703
CCFM2 0.913 0.890 0.406 0.403 0.721 0.706
CCJ1 0.911 0.889 0.477 0.476 0.713 0.703
CCJ2 0.915 0.892 0.411 0.409 0.724 0.706

Sensitivity rates for this scenario are given in Table 4.34. When the true model is not

in the candidate set, sensitivity rates for each criterion are less than those when the

true model is involved in the candidate set. For the scenario in which the candidate

set includes underfitted models, CCFM1 and CCJ1 outperform CCFM2 and CCJ2, as

well as the information based criteria. On the other hand, CCFM2 andCCJ2 are better

than all other criteria when only overfitted models are fitted as candidate models.

Table 4.35 presents the specificity rates for each criterion. CCFM2 and CCJ2 are

comparable with or better than all other criteria for any set of candidates. There is
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again a sharp decrease in specificity rates when true model is excluded from the can-

didates and when only underfitted models are fitted as candidate models.

Table 4.35: Monte Carlo average of specificity for each criterion

Tool overfitted and underfitted underfitted overfitted
n=500 n=1000 n=500 n=1000 n=500 n=1000

AIC 0.914 0.894 0.585 0.589 0.726 0.714
AICc 0.914 0.894 0.585 0.589 0.725 0.714
CAIC 0.914 0.892 0.586 0.589 0.728 0.717
BIC 0.914 0.891 0.583 0.589 0.728 0.717

ICOMP 0.914 0.894 0.585 0.589 0.726 0.715
CCFM1 0.913 0.885 0.533 0.533 0.728 0.716
CCFM2 0.915 0.892 0.602 0.610 0.731 0.719
CCJ1 0.914 0.891 0.532 0.530 0.728 0.716
CCJ2 0.917 0.892 0.597 0.605 0.733 0.719
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CHAPTER 5

APPLICATION

We apply the model selection criteria to analyze the breast cancer data set obtained

in a study conducted in Ankara Oncology Research and Education Hospital will be

used to fit a logistic regression model. The data set includes tumor characteristics and

the risk factors of 249 women with breast cancer and the covariates (breast cancer

risk factors) for 251 women without breast cancer. This case-control study data set

was firstly used by Dogan et al. (2011) and Erdem (2011) to investigate the etiologic

heterogeneity of breast cancer, i.e. the association between the epidemiological risk

factors and breast cancer by the disease characteristics. In the current chapter, a

portion of the dataset is used to illustrate the model selection techniques considered

in this thesis.

Data are described in detail and univariate analyses are given in section 5.1. In section

5.2, logistic regression models are fitted with the significantly effective covariates.

According to the literature and univariate models in section 5.1, the set of candidate

models are constructed. Model selection process is held by both using the common

and newly proposed criteria.

5.1 Data Description

Data set includes a binary response for 249 cases (women with breast cancer), and

251 controls (healthy women). Covariates consist of potential risk factors. These risk

factors to be investigated are age, height, weight, body mass index (BMI), region, ed-

ucation level, menstrual regularity, menopause status, age at menopause, age at first
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menstruation, birth status, number of births, age at first birth, age at last birth, breast-

feeding duration, smoking status, smoking duration, hormone replacement therapy

(HRT) status, family history, mammography history, cyst history, biopsy history.

Variable types for these factors will briefly be explained. Age variable consists of

the ages of women with breast cancer and ages of healthy women. It is a continuous

variable including positive natural numbers. BMI is known as body mass index, and

it is calculated by weight/height2 (kg/m2). Region is a categorical variable with

seven levels. It s based on geographical regions in Turkey. In this variable, refer-

ence level is indicated by 1, and it refers to Mediterranean Region . 2 shows Eastern

Anatolia Region, 3 is Aegean Region, 4 is Southeastern Anatolia Region, 5 is Central

Anatolia Region, 6 is Black Sea Region, and 7 is Marmara Region. Education level

of cases and controls is presented in another categorical variable. It has 5 level, from

no education as the reference level to a bachelor degree. Menstrual regularity can

also be regarded as a risk factor for breast cancer. It is a categorical variable with 4

levels. The reference level is coded as 1, and it shows regularity in pre-menopausal

period. 2 is for irregularity in pre-menopausal period, 3 is for perimenopausal period,

and 4 stands for women in their post-menopausal period. Another categorical vari-

able show the menopause status of cases and controls. 0 is for women who are not in

their menopause period, 1 is for women who went through menopause. For women

in their menopause period, their entering age exists as another continuous variable.

Having had a birth or not is a binary variable coded as 1 and 0. For women who had

a birth, their number of births, age at first and last births, and breast-feeding duration

are other potential risk factors in the data set. Smoking status is also a binary variable

coded as 1 and 0. For whom smoking, their smoking duration is given as a continuous

variable. Hormone replacement therapy (HRT) status of women is given in another

categorical variable. 0 is for reference level of having no HRT. 1 is for HRT with

estrogen receptor (ER), 2 is for HRT with progesterone receptor (PR), and 3 is for

both. Women having no family history of breast cancer is coded as 0 in another cate-

gorical variable. This variable has three levels. First order relative history is coded as

1, and second order relative history is coded as 2. Regular mammography check can

also be related to the risk of breast cancer. This is given in the next binary variable.

Women who never had a mammography is coded as 0, and women who go through

mammography twice as year is coded as 1. Breast cyst history also exists in the data
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set, and given by 1 and 0. For women who had a cyst in their breasts, their having a

biopsy or not is another binary variable coded as 1 and 0.

These variables are all potential risk factors for breast cancer. For the analysis of such

a data, the first thing to do is to examine their univariate relations with the response

variable. For categorical variables, chi-square tests for independence are conducted.

In Table 5.1 p-values are given for each. Significance level for univariate analy-

ses can be taken as 0.15. Accordingly, region, education level, menstrual regularity,

menopausal status, smoking, HRT, mammography, cyst history, and pathology vari-

ables are related to breast cancer. They should be included in the overall analysis.

Comparison of the averages of continuous variables for cases and controls is held

by t-test. Their p-values are given in Table 5.2. For 0.15 significance level, risk for

breast cancer depends on age, BMI, number of births, age at first birth, age at last

birth, breast-feeding duration, and smoking duration (marked by stars in the table).

They will be included in the overall model, too.
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Table 5.1: Chi-square test for independence

Factor Factor Levels Case Control p-value
Total

Region Mediterranean Region 12 17
Eastern Anatolia Region 16 19
Aegean Region 9 5
Southeastern Anatolia Region 18 7
Central Anatolia Region 146 165
Black Sea Region 43 35
Marmara Region 5 3
Total 0.144*

Education No education 39 15
Primary school 112 105
Secondary school 31 27
High school 29 53
University 38 46
Total 0.000*

Menstrual regularity Premenaposal regural 36 115
Premenaposal irregular 21 37
Perimenaposal 43 10
Postmenaposal 149 89
Total <0.000*

Menaposal status 0 94 162
1 155 89
Total 0.000*

Birth status 0 25 24
1 224 227
Total 0.976

Smoking status 0 189 185
1 60 96
Total 0.000*

HRT Never 210 197
ER 10 14
PR 16 35
ER and PR 13 5
Total 0.008*

Family history Absent 192 195
1st order relative 42 46
2st order relative 15 10
Total 0.550

Mammography Never 159 104
1 26 38
2 64 109
Total 0.000*

Cyst history 0 209 157
1 40 64
Total 0.000*

Pathology 0 14 56
1 26 38
Total 0.016*
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Table 5.2: t-test for the difference of means

Factor Case Control
Average (sd) Average (sd) p-value

Age 51.301 (10.516) 45.967 (9.553) 0.000*
BMI 29.068 (4.942) 27.183 (5.316) 0.000*
Age at menapouse 46.839 (5.424) 45.955 (5.502) 0.226
Age at first menstruation 13.486 (1.374) 13.478 (1.386) 0.949
Number of births 2.781 (1.356) 2.507 (1.311) 0.029*
Age at first birth 22.112 (4.992) 21.471 (4.349) 0.147*
Age at last birth 29.116 (5.446) 27.471 (5.220) 0.001*
Breast-feeding duration 29.237 (28.320) 24.771 (21.916) 0.062*
Smoking duration 15.183 (12.526) 12.167 (9.872) 0.117*

5.2 Analysis

Data analysis of this data set is conducted in three part. Firstly the univariate analyses

are held in order to pick the significant factors. Then multivariate analyses are done

to obtain the overall model. Several candidate models are fitted. In model selection

part, best approximation is selected by using the information based and cluster based

model selection criteria.

5.2.1 Univariate Analysis

Before conducting an overall logistic regression, it would be beneficial to see the

results for univariate logistic models. All factors are fitted univariately to see their

individual effects. Table 5.3 presents outputs for each model. Factors that are signifi-

cant at α=0.15 nominal level are marked by a star sign. Age, BMI, region, education

level, menstrual regulation, menopausal status, number of births, age at first birth,

age at last birth, breast-feeding duration, smoking status, smoking duration, HRT,

mammography, cyst history, and pathology variables are seem to be related to breast

cancer risk. Based on univariate analyses, odds of having breast for older women is

higher (OR=1.055). Women having higher BMI have higher odds of having breast
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cancer, too (OR=1.075). Women living in region 3 (Southeastern Anatolia Region),

have significantly higher odds than women living in region 1 (Mediterranean Region)

(OR=3.643). For education level, having no education is taken as the reference. Uni-

variate analysis of this factor reveals that higher education levels decreases the breast

cancer risk. Primary school graduation makes women less likely to have a breast can-

cer. (OR=0.392). Women graduated from secondary school have less odds of having

breast cancer than women with no education. (OR=0.441). In the same way, women

graduated from high school have less odds of having breast cancer than women with

no education (OR=210). A bachelor degree makes women have less odds of hav-

ing breast cancer than women with no education, too (OR=0.318). Irregularities in

menstrual periods also enhances the risk of breast cancer. Women having irregularity

in their premenopausal period have higher odds of breast cancer than women having

regular menstruations (OR=1.813). Women in their perimenopausal period have also

higher odds of having breast cancer (OR=13.736). Being in postmenopausal period,

women have also higher odds of having breast cancer (OR=5.348). Another sig-

nificantly effective factor is the menopausal status based on the univariate analyses.

Women who entered their menopause have a higher risk of breast cancer (OR=3.001).

Number of births also increases the odds for having breast cancer (OR=1.171). Giv-

ing their first birth at a higher age, women have higher odds for having breast cancer

(OR=1.030). In the same direction, having the last birth at a higher age makes women

have higher odds of having breast cancer (OR=1.059). Breast-feeding duration is a

significant factor, too. Based on this data set, women with a longer breast-feeding

duration have higher odds for having breast cancer (OR=1.007). Smoking seems to

decrease the odds of having breast cancer (0.512). However, for women who smoke,

smoking for a longer time increases the odds of having breast cancer (1.025). HRT

status show significance for two levels. Women who had HRT with PR have a less

risk of having breast cancer (OR=0.429). On the other hand, women who had both

ER and PR as a HRT have higher odds of having breast cancer (OR=2.439). Women

who had mammography have less odds than women who never had mammography.

(0.400). Having a cyst history decreases the odds of having breast cancer (OR=0.320).

On the other hand, if women with a cyst history had a biopsy, their odds of having

breast cancer is higher than women who never had a biopsy (2.737). The results are

consistent with chi-square test for independence and t-test for the mean differences.
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Table 5.3: Univariate Models

Factor OR 95% CI p value
Age 1.055 (1.036,1.076) 0.000*
BMI 1.075 (1.038,1.115) 0.000*
Region1 1.192 (0.442,3.261) 0.728
Region2 2.550 (0.700,10.171) 0.164
Region3 3.643 (1.196,12.013) 0.027*
Region4 1.253 (0.583,2.773) 0.566
Region5 1.740 (0.739,4.203) 0.208
Region6 2.361 (0.485,13.372) 0.296
Education1 0.392 (0.199,0.737) 0.005*
Education2 0.441 (0.197,0.961) 0.042*
Education3 0.210 (0.097,0.437) 0.000*
Education4 0.318 (0.149,0.652) 0.002*
Menstrual reg1 1.813 (0.936,3.476) 0.074*
Menstrual reg2 13.736 (6.501,31.522) 0.000*
Menstrual reg3 5.348 (3.414,8.533) 0.000*
Menopause 3.001 (2.091,4.333) 0.000*
Menopause age 1.030 (0.982,1.082) 0.224
Menstruation age 1.004 (0.884,1.141) 0.949
Birth 0.947 (0.523,1.712) 0.857
Number of births 1.171 (1.017,1.356) 0.031*
Age at the first birth 1.030 (0.990,1.072) 0.148*
Age at the last birth 1.059 (1.023,1.098) 0.001*
Breast-feeding duration 1.007 (0.999,1.016) 0.068*
Smoking 0.512 (0.347,0.752) 0.000*
Smoking duration 1.025 (0.995,1.056) 0.100*
HRT1 0.670 (0.283,1.295) 0.347
HRT2 0.429 (0.225,0.787) 0.008*
HRT3 2.439 (0.902,7.716) 0.096*
Family history1 0.927 (0.582,1.474) 0.750
Family history2 1.523 (0.675,3.583) 0.317
Mammography 0.400 (0.278,0.573) 0.000*
Cyst history 0.320 (0.207,0.485) 0.000*
Pathology 2.737 (1.284,6.031) 0.010*
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5.2.2 Multivariate Analysis

Significantly effective covariates are chosen to fit an overall model given in Table 5.4.

The probability of having a breast cancer is modelled by these covariates adjusted for

each other.

From Table 5.3, it is seen that region variable show significance for only one level.

Therefore, it is changed to a binary variable. If a woman is from region 3 (Southeast-

ern Anatolia Region), it is coded as 1, otherwise it is 0. This variable is put into the

overall model as a two-level categorical variable.

Table 5.4: Overall Model

Factor OR 95 % CI p value
Age 1.033 (1.002,1.066) 0.038*
BMI 1.027 (0.982,1.076) 0.239
Region 2.789 (0.989,8.503) 0.059
Education1 0.596 (0.262,1.306) 0.205
Education2 0.924 (0.334,2.507) 0.877
Education3 0.326 (0.117,0.869) 0.028*
Education4 0.793 (0.283,2.168) 0.655
Menstrual reg1 2.594 (1.197,5.609) 0.015*
Menstrual reg2 13.172 (5.629,33.465) 0.000*
Menstrual reg3 6.103 (3.822,9.141) 0.000*
Menopause 1.021 (0.541,3.252) 0.977
Number of births 0.711 (0.543,0.926) 0.012*
Age at the first birth 0.971 (0.911,1.033) 0.355
Age at the last birth 1.043 (0.983,1.108) 0.162
Breast-feeding duration 1.006 (0.995,1.017) 0.271
Smoking 0.723 (0.362,1.430) 0.354
Smoking duration 1.016 (0.980,1.055) 0.403
HRT1 0.462 (0.172,1.195) 0.115
HRT2 0.628 (0.280,1.373) 0.250
HRT3 4.839 (1.486,18.003) 0.012*
Mammography 0.287 (0.169,0.480) 0.000*
Cyst 0.278 (0.125,0.581) 0.001*
Pathology 3.610 (1.448,9.409) 0.007*
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In Table 5.4, significantly effective factors are marked by a star sign for the overall

model. The significance level is taken as 0.05.

5.2.3 Model Selection

In order to obtain the first candidate model, insignificant covariates are removed from

the overall model, and the model is fitted again. Age, BMI, and smoking status vari-

ables are kept in the model. The other variables are adjusted according to these fac-

tors. By eliminating the insignificant factors, the final significant model adjusted for

age, BMI, and smoking status. As a result, the first candidate model is given by

M1 : logit(P (Y = 1))i = β0 + β1AGEi + β2BMIi + β3MenstrualRegi

+ β4Smokingi + β5HRTi + β6Mammographyi

+ β7Cysti + β8Pathologyi

Table 5.5 presents outputs for M1.

Table 5.5: Candidate Model 1

Factor OR 95 % CI p value
Age 1.026 (0.998,1.055) 0.076
BMI 1.030 (0.987,1.074) 0.176
Menstrual reg1 2.647 (1.275,5.497) 0.009*
Menstrual reg2 14.153 (6.168,35.299) 0.000*
Menstrual reg3 5.229 (2.777,10.079) 0.000*
Smoking 0.820 (0.518,1.298) 0.395
HRT1 0.439 (0.169,1.099) 0.081
HRT2 0.515 (0.237,1.085) 0.086
HRT3 4.564 (1.474,16.264) 0.012*
Mammography 0.316 (0.191,0.516) 0.000*
Cyst 0.331 (0.156,0.667) 0.003*
Pathology 3.146 (1.337,7.789) 0.010*

Nonlinearity of the relation between age and breast cancer probability is suspected.
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Therefore, along with the model shown in Table 5.5, another candidate model includ-

ing a quadratic age term is conducted as given by

M2 : logit(P (Y = 1))i = β0 + β1AGEi + β2AGE
2
i + β3BMIi + β4MenstrualRegi

+ β5Smokingi + β6HRTi + β7Mammographyi + β8Cysti

+ β9Pathologyi

Outputs for M2 is given in Table 5.6.

Table 5.6: Candidate Model 2

Factor OR 95 % CI p value
Age 1.025 (0.888,1.184) 0.730
Age2 1.000 (0.999,1.001) 0.998
BMI 1.030 (0.986,1.075) 0.183
Menstrual reg1 2.648 (1.274,5.501) 0.009*
Menstrual reg2 14.154 (6.148,35.420) 0.000*
Menstrual reg3 5.229 (2.771,10.108) 0.000*
Smoking 0.820 (0.518,1.299) 0.396
HRT1 0.439 (0.169,1.099) 0.082
HRT2 0.515 (0.237,1.085) 0.086
HRT3 4.563 (1.470,16.334) 0.012*
Mammography 0.316 (0.190,0.519) 0.000*
Cyst 0.331 (0.155,0.668) 0.003*
Pathology 3.146 (1.337,7.680) 0.010*

In another candidate model, nonlinearity of BMI is checked by adding a quadratic

BMI term. Now, the age variable is kept in a linear relation. The fitted model is given

by

M3 : logit(P (Y = 1))i = β0 + β1AGEi + β2BMIi + β3BMI2i + β4MenstrualRegi

+ β5Smokingi + β6HRTi + β7Mammographyi

+ β8Cysti + β9Pathologyi

Table 5.7 indicates outputs for M3.
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Table 5.7: Candidate Model 3

Factor OR 95 % CI p value
Age 1.019 (0.991,1.049) 0.197
BMI 1.599 (1.152,2.245) 0.005*
BMI2 0.993 (0.987,0.998) 0.008*
Menstrual reg1 2.547 (1.215,5.336) 0.013*
Menstrual reg2 13.945 (6.050,34.899) 0.000*
Menstrual reg3 5.554 (2.929,10.796) 0.000*
Smoking 0.814 (0.513,1.292) 0.382
HRT1 0.430 (0.165,1.086) 0.076
HRT2 0.492 (0.225,1.043) 0.069
HRT3 4.877 (1.543,17.767) 0.010*
Mammography 0.307 (0.185,0.502) 0.000*
Cyst 0.325 (0.152,0.660) 0.003*
Pathology 3.155 (1.334,7.748) 0.010*

The last candidate model is given in Table 5.8. Both quadratic age term, and quadratic

BMI term is now included in the fitted model.

Table 5.8: Candidate Model 4

Factor OR 95 % CI p value
Age 1.000 (0.863,1.159) 0.997
Age2 1.000 (0.999,1.002) 0.796
BMI 1.606 (1.155,2.259) 0.005*
BMI2 0.993 (0.987,0.998) 0.008*
Menstrual reg1 2.559 (1.220,5.364) 0.012*
Menstrual reg2 14.096 (6.089,35.442) 0.000*
Menstrual reg3 5.603 (2.944,10.940) 0.000*
Smoking 0.816 (0.514,1.296) 0.389
HRT1 0.429 (0.165,1.084) 0.076
HRT2 0.492 (0.225,1.043) 0.069
HRT3 4.814 (1.521,17.497) 0.010*
Mammography 0.309 (0.185,0.509) 0.000*
Cyst 0.327 (0.152,0.665) 0.003*
Pathology 3.148 (1.330,7.731) 0.010*
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The formula of the model is given by

M4 : logit(P (Y = 1))i = β0 + β1AGEi + β2AGE
2
i + β3BMIi + β4BMI2i

+ β5MenstrualRegi + β6Smokingi + β7HRTi

+ β8Mammographyi + β9Cysti + β10Pathologyi

Overall significance of the candidate models are tested by using Hosmer-Lemeshow

test (Hosmer and Lemeshow, 2000) and the p-values are given in Table 5.9. Nom-

inal significance level is set at α=0.05. As a result, the conducted models are all

significant.

Candidate models M1-M4 are compared using the model selection methods consid-

ered in this thesis. Results are presented in Table 5.9.

Table 5.9: Comparison

Criterion Overall M1 M2 M3 M4
AIC 560.424 562.091 564.091 557.012 558.945
AICc 562.951 562.840 564.957 557.878 559.937
CAIC 610.999 589.486 593.594 586.515 590.555
BIC 661.575 616.881 623.096 616.017 622.165

ICOMP 829.211 555.563 577.855 574.955 591.178
CCFM1 1.437 0.959 1.021 1.009 1.081
CCFM2 0.691 0.564 0.582 0.570 0.599
CCJ1 1.608 1.130 1.192 1.180 1.253
CCJ2 0.862 0.735 0.753 0.741 0.771

Hosmer-Lemeshow p-values 0.380 0.824 0.824 0.477 0.595
TCR 0.73 0.73 0.73 0.73 0.23

Sensitivity 0.59 0.72 0.72 0.66 0.14
Specificity 0.87 0.73 0.73 0.81 0.45

Overall model is also presented in Table 5.9. According to Hosmer-Lemeshow test,

this model is significant. However, it cannot be a candidate model, since it includes in-

significant factors. Model selection criteria also regard this model as the worst model.

Proposed criteria are able to discriminate between poor and better approximations.

86



In Table 5.9, the minimum value of each criterion is given in bold for each candidate

model. AIC,AICc, CAIC and BIC select M3, where M3 is the model including linear

relation with age, and nonlinear relation with BMI index. On the other hand, ICOMP

and the clustering based criteria choose M1, where M1 is linear in age and BMI.

M1 versus M3 ?

When model selection criteria used for a particular data analysis lead to different

models, care should be taken and more investigation should be conducted before

eventually deciding on the final model. These include i. taking the statistical power

statistical power of the model selection criteria used into account, ii. existent literature

on the subject matter.

As seen in Table 4.1, when compared with other common criteria, ICOMP is more

successful in determining the need for a quadratic term. That is, if there was a curvi-

linear relationship between the logit(P(Y=1)) and age or BMI, ICOMP would have

selected the logistic regression model with quadtratic terms in age and BMI. For this

data analysis, the proposed criteria choose the same model with ICOMP. Hosmer-

Lemeshow significance test p values also favor the candidate Model 1 over candidate

Model 3, since it has a greater p-value.

In Table 5.9, TCR, sensitivity and specificity for each candidate model are also given.

There is no significant difference between M1 and M3 in terms of TCR. Sensitivity

rate of M3 is remarkably low, whereas specificity rate for the same model is higher

than M1.

Linear relation between age and breast cancer is supported by an earlier study (Kessler,

1992). Figure 5.1 shows that a sample taken in 1987 shows that breast cancer inci-

dence increases until age 75, and then starts to decrease. This is actually a sign for a

nonlinear relation between age and breast cancer. However, most of the women in-

cluded in our data set are under age 75. There are only 5 women older than 75 out of

500 women. Therefore, for our sample we expect to observe a linear relation between

age and breast cancer based on Figure 5.1.
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Figure 5.1: Breast Cancer Incidence by Age

Figure 5.2 presents the relation between age and proportion of cases in the data, and

Figure 5.3 shows the relation between BMI and proportion of cases in the data. These

are also an indicator of linear relations.

Figure 5.2: Age vs. P(Y=1)
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Figure 5.3: BMI vs. P(Y=1)

As a result of these additional findings, M1 is preferred over M3.
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CHAPTER 6

CONCLUSION

In this study, we focus on the lack of importance given to modeling purposes in model

selection process. Our objective in this thesis is to provide a new model selection

approach for logistic regression based on classification. Logistic regression is com-

monly used for classification purposes. With this incentive, we use clustering tree

distances to assess adequacy of logistic regression models.

In the first part of this thesis, likelihood based model selection criteria, namely AIC,

AICc, CAIC, BIC and ICOMP, are reviewed. This part also provides information

about different characteristics of model selection criteria for different purposes. Con-

sistency and efficiency definitions are given for the cases in which the modeling pur-

pose is model fitting. For the cases when classification is the modeling purpose, TCR,

sensitivity and specificity measures are explained.

In the next part, new approach for model selection is given in detail. We here focus on

the idea that logistic regression can be used as a classification tool. When observed

and predicted values of a logistic fit are presented by two cluster trees, the similarity

of these trees is used as a goodness of the model as a classification tool. Existing clus-

tering similarity measures and the reasons for choosing FM and Jaccard among them

are explained. Their behaviour as a model selection tool are assessed by conducting

small simulation studies. The need for a penalty term is shown. Theory behind the

existing penalty terms are investigated. The behaviour of likelihood based model se-

lection criteria for the same simulation scenario is also assessed. In order to obtain

such behaviour, 1-FM and 1-Jaccard are penalized for the number of parameters. The

proposed penalties are also based on the sample size. These new penalized cluster
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based criteria are denoted by CCFM and CCJ .

The performances of CCFM and CCJ with two different possible penalty terms are

evaluated in simulation studies chapter. They are also compared with commonly used

information based criteria, AIC,AICc, CAIC, BIC and ICOMP. Simulation scenarios

are divided into two based on modeling purposes of model fitting and classification.

Their performances are also assessed both when the true model is in the set of can-

didate models and when it is not. Results present that there are no outstanding dif-

ferences in performances for different modeling purposes. Cluster based criteria are

not better than information based criteria when the modeling purpose is classification.

They show similar performances for both purposes. The most remarkable results of

these simulations are given in two parts. For the scenarios in which the modeling

purpose is model fitting, the results are as follows:

• When the candidate set includes rather parsimonious models,

– In terms of consistency, ICOMP outperform all other criteria. Among

information based criteria, AIC and AICc are better than CAIC and BIC.

Among cluster based criteria, CCFM2 and CCJ2 are better than CCFM1

and CCJ1. Information based criteria perform better than cluster based

criteria.

– In terms of efficiency, ICOMP, AIC and AICc are better than all other.

Two groups of criteria are comparable to each other.

• When the candidate set includes rather saturated models,

– In terms of consistency, among information based criteria CAIC and BIC

perform better than AIC, AICc and ICOMP. Among cluster based crite-

ria, CCFM1 and CCJ1 are better than CCFM2 and CCJ2. Cluster based

criteria perform better than cluster based criteria.

– In terms of efficiency, ICOMP, AIC and AICc are again better than all

other. Two groups of criteria are comparable to each other.

When the modeling purpose is classification, our simulations result in the following:

• All criteria show similar performances.
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• CCFM2 and CCJ2 are better than others especially for detecting a missing in-

teraction term when sample size is moderate and for nested models when the

candidate set involves overfitted models.

We also use cluster based criteria along with the information based criteria to model

a breast cancer data set. Candidate model set is constructed after univariate analyses.

Models are selected by comparing the values of CCFM , CCJ , AIC, AICc, CAIC,

BIC and ICOMP. Cluster based criteria selects the same model with ICOMP, whereas

the others selects an another model as the best approximation. The difference between

these two models is a quadratic term. In our simulations, ICOMP performs better than

any other criteria in detecting a missing quadratic term. Therefore, our model choice

is reasonable.

This thesis leads a different point of view for model selection of logistic regression. It

also provides an extensive comparison of the existing model selection criteria. How-

ever, our studies imply that proposed penalty terms require a further research. As a

future study, we consider to investigate those terms in more detail.
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APPENDIX A

A.1 Axiom for "Simplest correct polynomial has the smallest KL divergence

from the true nonlinear model"

Figure A.1: Model selection criteria vs. model order

Figure A.2: Model selection criteria vs. model order
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Correct model is the true model with a complicated nonlinear structure. An equivalent

model is infinite order polynomial model (from the Taylor series expansion of the true

model) which is called full model.

Set of fitted models is a subset of polynomials with different finite orders. Some of

the models in this set are wrong models, some are correct.

Note that KL(f,g), i.e. KL distance between the true f (the pdf under the logistic

regression with complicated nonlinear predictor) and g (the pdf under the logistic re-

gression with a predictor that is a polynomial of order k) is a function of k and it has a

unique minimum as illustrated in Figures A.1 (Seghouane, 2010) and A.2 (Seghouane

and Amari, 2007). Let kmin be the solution of d
dk
KL = 0. Then, polynomials of order

k where k ≥ kmin are correct models and the polynomial of order k=kmin (which is

the simplest polynomial ) has the lowest KL distance.

A.2 Likelihood of Clustering Similarity Measures

Let g(β) = ex
T β

1+exT β
. Also let g(β̂(α)) = ex

T
α β̂(α)

1+ex
T
α β̂(α)

denote the fitted model and,

g(β0(α)) = ex
T
αβ0(α)

1+ex
T
αβ0(α)

denote the true model.

L(π00, π01, π10, π11) ∝
n∏

i=1

n∏
j=i+1

[π
(1−yi)(1−yj)
00,ij π

(1−yi)(yj)
01,ij π

(yi)(1−yj)
10,ij (1−π00,ij−π01,ij−π10,ij)yiyj ]

where

π00,ij = Pf (Yi = 0, Yj = 1)Pg(Yi = 0, Yj = 1) + Pf (Yi = 0, Yj = 1)Pg(Yi = 1, Yj = 0) +

Pf (Yi = 1, Yj = 0)Pg(Yi = 0, Yj = 1) + Pf (Yi = 1, Yj = 0)Pg(Yi = 0, Yj = 1)

π01,ij = Pf (Yi = 0, Yj = 1)Pg(Yi = 0, Yj = 0) + Pf (Yi = 1, Yj = 0)Pg(Yi = 0, Yj = 0) +

Pf (Yi = 0, Yj = 1)Pg(Yi = 1, Yj = 1) + Pf (Yi = 1, Yj = 0)Pg(Yi = 1, Yj = 1)

π10,ij = Pf (Yi = 0, Yj = 0)Pg(Yi = 0, Yj = 1) + Pf (Yi = 0, Yj = 0)Pg(Yi = 1, Yj = 0) +

Pf (Yi = 1, Yj = 1)Pg(Yi = 0, Yj = 1) + Pf (Yi = 1, Yj = 1)Pg(Yi = 1, Yj = 0)

π11,ij = Pf (Yi = 0, Yj = 0)Pg(Yi = 0, Yj = 0) + Pf (Yi = 1, Yj = 1)Pg(Yi = 1, Yj = 1) +

(Pf (Yi = 0, Yj = 0)Pg(Yi = 1, Yj = 1) + Pf (Yi = 1, Yj = 1)Pg(Yi = 0, Yj = 0)
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where g is the true density function and f is the predicted density function. (yi, yj)
denotes the all possible pairs which are classified. π00,ij is the probability of having
a pair in the same cluster by both of trees. π01,ij is the probability of having a pair
put in different clusters by the first tree and put in the same cluster by the second tree.
π10,ij is the probability of having a pair put in the same cluster by the first tree and
put in different clusters by the second tree. π11,ij is the probability of having a pair in
different clusters by both of trees.

π00,ij = (1− gi(β̂(α)))(1− gj(β̂(α)))(1− gi(β0))(1− gj(β0)) + gi(β̂(α))gj(β̂(α))gi(β0)gj(β0)

where β0 is the true coefficients of full (unknown) model XTβ; β̂(α) is the estimated

coefficients of the submodel xTαβ; g(.) = e.

1+e.
. Others follow similarly.
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