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ABSTRACT 

 

 
USING LEARNING TO RANK FOR A TOP-N RECOMMENDATION SYSTEM 

IN TV DOMAIN 

 

 

 

 

Acar, Bedia 

M.Sc., Department of Computer Engineering 

                                Supervisor: Prof. Dr. Nihan Kesim Çiçekli 

 

June 2016, 59 pages 

 

 

 

In this thesis, a top-N recommendation system in TV domain is proposed using 

learning to rank. The design, development and evaluation of the proposed recommender 

system are described in detail. Instead of calculating rating score of items like in 

conventional recommender systems, the ranked recommendation item list is 

presented to TV users. Moreover, path-based features which are used to build 

ranking model is explained in detail. These features provide collaborative filtering, 

content-based filtering and context aware recommendation system. Furthermore, 

some state of the art learning to rank approaches from each category called as 

pointwise, pairwise and listwise have been experimented to generate a ranking 

model. Then a baseline which does not use any learning are compared with the one 

using learning to rank algorithm. It is shown that the model constructed with learning 

to rank algorithm gives better results.  

 

 

Keywords: Recommender systems, learning to rank, top-N recommendation, TV 

program recommendation, ranking 
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ÖZ 

 

 
TV ALANINDA BİR İLK-N ÖNERİ SİSTEMİ İÇİN SIRALAMA 

ÖĞRENİMİNİN KULLANILMASI 

 

 

 

 

Acar, Bedia 

Yüksek Lisans, Bilgisayar Mühendisliği  Bölümü 

Tez Yöneticisi: Prof. Dr. Nihan Kesim Çiçekli 

 

Haziran 2016, 59 sayfa 

 

 

 

Bu çalışmada, sıralama öğrenimi yöntemleri kullanılarak televizyon alanında bir   

ilk-N öneri sistemi sunulmuştur. Önerilen sistemin tasarım, geliştirme ve 

değerlendirmesi detaylı bir şekilde açıklanmıştır. Geleneksel öneri sistemlerinde 

kullanılan nesnelerin puanlanmasının aksine, TV kullanıcılarına ilgiye göre 

sıralanmış öneri nesnelerinin listesi sunulmuştur. Bunun yanı sıra sıralama 

modelinin oluşturulması için kullanılan yol tabanlı özellikler detaylı bir şekilde 

açıklanmıştır. Kullanılan bu özellikler işbirlikçi, içerik tabanlı ve bağlam duyarlı 

öneri sistemini mümkün kılmaktadır. Ayrıca, bazı en gelişkin nokta bazlı, ikili bazlı 

ve liste bazlı olarak gruplandırılmış sıralama öğrenimi algoritmaları, sıralama 

modelinin oluşturulmasında denenmiştir. Böylece, temel bir öğrenme kullanmayan 

yöntem ile sıralama öğrenimi kullanan yöntem karşılaştırılmış ve sıralama öğrenimi 

kullanılan modelin daha iyi performans gösterdiği sunulmuştur. 

 

 

Anahtar Kelimeler: Öneri sistemleri, sıralama öğrenimi, ilk-N öneri sistemleri, TV 

programı öneri sistemleri, sıralama 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

TVs have an important role in our daily life and Turkish people spend much of their 

time allocated for social activities in front of TV according to the research conducted 

by Turkish Statistical Institute (2015). Thus, it is inevitable that TV is the foremost 

entertainment tool for us. Moreover, the number of channels and programs are 

increasing day by day with the evolution of TVs. Today, there exist TVs which have 

the capability of Internet, such as Smart TV, IPTV and Internet TV. These different 

technologies also bring to access the Web sources besides serving traditional 

broadcasting media. As a result, user profiles can be constructed from the Web, 

social networks and TV watching history of users explicitly or implicitly (Véras, et 

al. 2015).                                            

 

The necessity of recommender systems in TV domain has risen with the increase of 

the count of programs and channels. Instead of traditional channel surfing, 

recommending interesting and relevant contents will raise the satisfaction of TV 

users. Additionally, the availability of user profiles with the Internet connected TVs 

makes possible to develop recommender systems in TV domain. 

 

Furthermore, the size of recommend item list must be reasonable since users will pay 

attention to only a few of them. In addition, the amount of recommended items, 

which can appear on the TV screen at a time, is very little. In this thesis, top-N item 

recommendation using learning to rank in TV domain is proposed. Firstly, path-

based features in a graph based user model are extracted to generate a ranking model. 

https://en.wikipedia.org/wiki/Broadcasting
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Then, according to this ranking model, top-N recommended item list is presented to 

the user. 

 

 1.1. Contribution of the Thesis 

 

The present study contributes to the literature of recommendation systems in TV 

domain in the following ways; 

 

 Path based features in the work of Ostuni, et al. (2013) are adapted to a graph 

based recommender system in TV domain. These features are extracted by 

using Neo4j. 

 

 Some state of the art learning to rank approaches are applied to generate a 

ranking model and compared with each other. Then top-N items are 

recommended according to the ranking model. 

 

 The used ranking model learns weights of features. It is compared with a 

baseline method which gives features equal weights. The evaluation results 

show that the ranking model performs better. 

 

1.2. Organization of the Thesis 

 

The rest of this thesis is organized as follows; 

 

Chapter 2 summarizes the relevant literature on recommendation systems in TV 

domain by touching upon differences from other recommendation domains. Then, 

learning to rank (LTR) which is so popular in information retrieval domain is 

described in detail and the common types of LTR algorithms are presented. In the 

last sub-section of this chapter, some example recommendation systems which use 

learning to rank methods are explained. 
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Chapter 3 gives information about the developed system. Firstly, the graph based 

model is presented. Then, used path based features are described to construct the 

training data. Finally, the generation of the top-N recommended item list is 

described. 

 

Chapter 4 illustrates the evaluation approaches used in LTR domain. Then, the 

conducted experiments and evaluation results are presented graphically. 

 

Chapter 5 presents conclusions by summarizing the conducted work and suggesting 

relevant future work. 
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CHAPTER 2 

 

 

RELATED WORK 

 

 

 

Recommender Systems (RS) emerged in the mid-1990s as a solution to assist users 

by exploring items attracting them. In the last decades, recommendation has become 

a classic data mining problem which has been extensively researched in many 

application domains such as movie, book, music, news, shopping and others. To 

tackle this problem, the conventional recommender systems mostly try to predict the 

ratings of items. To accurately estimate the rating, core methodologies namely 

content-based filtering, collaborative filtering and hybrid of both have been 

developed (Lu, et al. 2015). Content-based filtering (CBF) is based on the similarity 

between descriptions of items and the profile of a user (Pazzani and Billsus 2007). 

On the other hand, the fundamental logic of collaborative filtering (CF) is that if n 

items are liked by two users, it means that the users have similar characteristics and 

thus they will rate or response other items similarly (Su and Khoshgoftaar 2009). 

Lastly, hybrid approaches combining two or more methods have also been proposed 

in the literature to increase the accuracy of predictions by taking advantages of each 

methods. 

 

In this chapter, recommender system approaches in TV domain are presented by 

mentioning the methods and challenges faced in this domain. Moreover, top-N 

recommender systems and especially learning to rank, which is one of the mostly 

used approaches, are explained in detail. 
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2.1. Recommender Systems in TV Domain 

 

Recommendation approaches have also been applied to TV domain since TV 

viewers suffer from finding interesting TV contents to watch among massive amount 

of TV programs and channels. Although research about TV program 

recommendation has been increased with the development of TVs and RSs, Véras, 

et al. state that more research must be done for TV programs since the 

recommendation for TV is more comprehensive and less studied than other 

recommendation domains (2015). The other point mentioned in their survey is that 

not only recommending TV programs, but also recommending other types of items 

is possible in TV domain. TV channels, advertisements, tourist packages, 

educational videos related with content can also be suggested to the user.  

 

There exist some challenges in the recommendation of TV programs unlike other 

domains. One of them is the hidden user problem which means that multiple users, 

having different viewing habits and tastes, may share a single TV (Kim, et al. 2012). 

Therefore, different combinations of users in front of TV require different 

recommendations (Aharon, et al. 2015). Chang, Irvan and Terano state that TV 

program recommendation not only deals with personalized recommendation but also 

deals with group recommendation (2013). They also point that different members of 

a family can watch programs in distinct periods of day. For instance, the wife may 

prefer watching TV in the afternoon, children may prefer watching cartoon in the 

evening, and the husband may prefer watching news at night. At the weekends, 

family members may watch a program which is preferred by everyone, so group 

recommendation is required. An authentication system will also be cumbersome for 

family members in order to identify them explicitly. 

 

Aharon, et al. developed a contextual TV recommender system namely WatchItNext 

which suggests programs to be watched by analyzing the context in which the current 

program is watched and time of day since currently watched program affects the next 

programs to be watched (2015). Thus, current context will give a clue about the target 

user profile to recommend a next program. They named this metric as sequential 
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popularity. The following recommender metrics are also defined in their study. In 

this thesis, general popularity and device popularity have also been considered by 

exploring paths on the graph.  

 General Popularity; measures how many times the given item is watched for 

all devices. 

 

 Temporal Popularity; measures the popularity of items in a particular time of 

day relative to its general popularity. 

 

 Sequential Popularity; measures the popularity of items based upon their 

conditional popularity of being watched sequentially after a specific item. 

 

 Device Popularity: measures the popularity of items based on how many 

times watched before by considering that users usually re-watch programs 

they have already watched. 

 

Moreover, Aharon, et al. adapted Latent Dirichlet Allocation (LDA) algorithm as a 

collaborative filtering recommendation (2015). Latent Dirichlet Allocation is a 

learning algorithm to cluster words into latent topics and documents into mixtures of 

topics (Blei, Ng and Jordan 2003). To use LDA algorithm on TV data, every user 

(device) is considered as a document and every item watched by that user is 

considered as a word in the document. If the same program is watched multiple 

times, it will appear multiple times in a document or a user profile in that case. Each 

device may also be associated with multiple topics since many watchers who have 

varying characteristics, may share a single TV. After the calculation of the 

probability of each topic for a given user by LDA algorithm, the probability of an 

item to be watched for a given device (user) is estimated according to probability 

distribution of topics. 

 

To tackle multiple users, Iguchi, Hijikata and Nishida try to identify users from logs 

according to the idea that there are one dominant user in different time intervals of a 
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day and in different days of a week and hence the active user has similar viewing 

patterns in his active times (2015). Then, they cluster days according to similar 

viewing patterns by running K-means algorithm and estimate the active time 

intervals for each cluster. Thus, a user profile is constructed according to each 

estimated active time in each cluster and the content of programs watched. As a 

result, the proposed model recommend items to the user according to time when he 

turns on TV. The relevance degree is the cosine similarity between user and program 

feature vectors. Each item of the feature vectors is TD-IDF score of a term which is 

extracted from texts in the EPG (Electronic Program Guide).  TF-IDF (Term 

frequency – inverse document frequency) weighting schema is a popularly used 

metric in Informational Retrieval (IR). 

 

In another study conducted by Kim, et al. users are modeled as feature vectors of 

category preferences where category is defined as the tuple of genre and channel 

(2012). Each element of the feature vector is calculated with CF-IUF (category 

frequency-inverse user frequency) scoring model adapted from TF-IDF weighting 

schema. Then users are clustered with ISOData algorithm which determines 

automatically the optimal number of clusters (Memarsadeghi, et al. 2007). After that, 

items are recommended based on the preference of similar users within the cluster 

by applying a user-based collaborative filtering approach. In the following equation, 

𝑠𝑢𝑞   is the CF-IUF value of the user 𝑢 for category 𝑞, 𝑓𝑢𝑞 is the number of views of 

category 𝑞, ℎ𝑞 is the number of users who viewed the category 𝑞 and 𝑁 is the total 

number of users.  𝐹𝑢 is the feature vector of the user u consisting CF-IUF values for 

each category. 

 

 

𝑠𝑢𝑞 = {
(1 + 𝑙𝑜𝑔𝑓𝑢𝑞).  𝑙𝑜𝑔

𝑁

ℎ𝑞
, 𝑖𝑓 𝑓𝑢𝑞 ≠ 0

0, 𝑖𝑓 𝑓𝑢𝑞 = 0
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𝐹𝑢 = { 𝑠𝑢𝑞1
, 𝑠𝑢𝑞2

, … , 𝑠𝑢𝑞𝑚
} 

 

Oh, et al. states another significant point that not only recommended items but also 

time of the recommendation is significant in TV domain (2014). In conventional 

systems, user gets recommendation whatever time he wants. On the contrary, they 

developed a system which detects the proper time for recommendation while user 

watches TV. The proposed system continuously compare all programs broadcasted 

at that time with the user’s currently watched one. When overall utility which is 

formulated in the below formula is positive, the item will be suggested to the user. 

Then user profile is adjusted according to the feedback of user.  

 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑢, 𝑡) = 𝑃𝑟𝑜𝑓𝑖𝑡(𝑢, 𝑡) − 𝐶𝑜𝑠𝑡(𝑢, 𝑡) 

 

where u is a user and t is the time. While calculating the profit for each item, the 

system takes into consideration some measures such as how similar the item is to the 

user profile, how much time remains to the end of the program and how many times 

the user watches the same channel. The cost is calculated by taking into account 

the fact that user does not accept some recommended items consecutively. 

 

The other challenge in TV domain is that collaborative filtering cannot advise newly 

broadcasted programs since none of the users has watched them yet. One solution is 

that programs can be considered as series, not as episodes. So if some episodes of an 

item are watched by similar users, we can suggest its subsequent episodes. 

Additionally, Taşçı proposes that collaborative filtering in TV domain can be applied 

in a fashion such that “Users who are similar to user U are those who like the same 

content. Then, the user U is recommended those programs which are liked by the 

similar users” (2015). Similar users are found by traversing the attribute and 

descriptor nodes through the graph based core model. 

 

Taşçı proposes a graph based core model to represent users and programs (2015).  

The proposed model is enriched with content information of items (actor, director, 

http://dictionary.cambridge.org/dictionary/turkish/fact
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term and named entity), and contextual information (genre and time of day) besides 

user and program nodes (Figure 2.1). Therefore, content-based, collaborative 

filtering and context-aware recommendation systems get chance to be developed 

with the help of this model. Additionally, the user can make elimination on the 

recommended item list by explicitly choosing the favorite actor, director, genre etc.   

 

 

 

Figure 2.1 Graph Based User Modeling   

 

 

 

In the study conducted by Taşçı, TV programs whether relevant or irrelevant to the 

user is determined by running spreading activation algorithm on graph-based model 

(2015). Spreading activation is an algorithm that labels nodes with weights by 

iteratively propagating through the network. These weights are values that decay 

while spreading through the network. At the end of this propagation, relevant items 

are found. In this study, a similar graph based core model is used in the representation 

of users and TV programs with their attributes. However, the primary goal of the 
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recommendation approach used in this thesis is to find top-N relevant programs in a 

ranked way instead of labeling programs as relevant or irrelevant. Moreover, the size 

of the recommended item list must be small to be able to show it on the TV screen 

and so it is significant to move up relevant items to the top positions of the 

recommendation list. 

 

2.2. Learning to Rank 

 

Supervised learning algorithms in machine learning contain 4 main components 

illustrated in Figure 2.2. These are input space, output space, hypothesis and loss 

function. 

 

 

 

 

 

Figure 2.2 Machine Learning Framework (Liu 2011) 
 

 

 

 

In brief, input space (𝑋) is the input objects which will be used for learning the 

model. These input objects are usually represented as feature vectors. Output space 

(𝑌) is the target variable which will be predicted. While it takes discrete values in 

classification problems, it takes real values in regression problems. Unlike 

classification and regression problems, the output space is a sorted list of items in 

ranking problems. Furthermore, Liu states that two different definitions of output 
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space exist.  While the first one is the output space of the task, the second one is the 

output space to facilitate learning. For instance, one can use regression algorithm for 

the classification problem. In that case, the output space of the task is the discrete 

labels while the output space to facilitate learning is the real numbers (2011). 

Hypothesis (ℎ) is the function which maps input space to output space ℎ: 𝑋−> 𝑌. 

Lastly, the lost function (𝑙) measures how much the predicted labels are similar to 

ground truth labels (𝑦) which are given in training data.  

 

Methods that use supervised machine learning techniques to solve the problem of 

ranking are distinctively called as learning to rank (LTR) (Liu 2011). Learning to 

rank algorithms learn a hypothesis function which outputs a score for each object. 

Additionally, an ordered list of objects are constructed by sorting these score values.  

 

There exist applications using LTR in the fields of Information Retrieval (IR), 

Natural Language Processing and Data Mining etc. Some specific applications are 

web search, question answering, collaborative filtering, machine translation and text 

summarization. Recently, LTR is one of the key technologies for modern web search 

(Li 2011). The commercial web search engines have two ranking phases (Figure 2.3).  

 

 

 

 

 

Figure 2.3 Typical flow of LTR applied search engine (Learning to 

Rank – Wikipedia, 2016) 
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Firstly, top-k documents are retrieved with applying traditional approaches, then top-

k results are re-ranked according to the learned ranking model. The benchmark 

datasets are also available for the research on learning to rank for information 

retrieval, namely LETOR (Qin, et. al 2010). 

 

Learning to rank will be first described from the information retrieval perspective 

since it is one of the most active research fields in IR. In information retrieval, the 

goal is to rank documents with respect to a given query. Figure 2.4 shows the steps 

in a learning to rank framework. Since LTR is a supervised learning task, it has two 

phases known as training and testing.  

 

 

 

 

 

Figure 2.4 Learning to Rank Framework (Liu 2011) 

 

 

 

In training phase, a ranking function ℎ(𝑥) =  𝑓(𝑞, 𝑑) is learned from the training 

data by applying one of the learning algorithms. Training data consists of 𝑛 number 
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of queries 𝑞𝑖 (𝑖 = 1 … 𝑛) and 𝑚 number of documents 𝑑𝑖  (𝑖 = 1 … 𝑚) where each 

of them is represented with a feature vector 𝑥𝑖 , 𝑥(𝑖) = {𝑥𝑗
(𝑖)

}𝑗=1
𝑚(𝑖)

.  Additionally, each 

query and document pair is associated with a relevance label 𝑦 (ground truth label). 

This label shows the degree of relevance between query and document.  

 

In a similar way, test data consists of a query and a list of documents corresponding 

to query without a relevance label. The ranking system outputs a ranking list of 

documents for that query in the test phase according to the learned model ℎ.  

 

LTR methods have two main characteristics namely feature-based and 

discriminative training. (Liu 2011) 

 

Feature based: It means that feature vectors are used in the representation of all 

documents. These features reveals the similarity of the documents with respect to the 

given query. Conventional systems make manual parameter tuning to predict the 

weight of each feature, which is so difficult especially when there are too many 

parameters. On the other hand, LTR endeavors to combine these features in an 

optimal way in order to predict the relevance label correctly.  

 

Discriminative training: There exists an automatic learning process based on 

training data. Additionally, LTR methods can be described by four components of 

discriminative learning which are input space, output space, hypothesis space and 

loss function described in the beginning of the section. According to differences in 

these four components, learning to rank algorithms are classified into three common 

approaches namely, pointwise, pairwise and listwise. In LTR, the output space which 

facilitates learning is used to differentiate approaches from each other, but not the 

output space of the task. 

 



  

15 

 

2.2.1. Learning to Rank Approaches 

2.2.1.1. Pointwise Approach 

 

Pointwise approaches focus on the estimation of relevance score of each document 

separately. Thus, existing machine learning algorithms can be used to solve the 

problem of ranking. Since, pointwise algorithms do not care group structure, the 

problem of ranking can be reduced to classification, regression or ordinal regression. 

Therefore, the input space is a feature vector of each single document while the 

output space is the relevance degree of each single document. Furthermore, 

hypothesis space consists of a ranking function 𝑓 which takes feature vectors of 

documents as input and outputs the relevance prediction of documents. Then, all 

documents are sorted to produce the final ranked list based upon labels returning 

from the function f.  Regression loss, classification loss and ordinal regression loss 

functions can be used as a loss function since pointwise algorithms can be reduced 

to classification, regression or ordinal regression problem. Some pointwise 

algorithms are Random Forests (Breiman 2001), Gradient Boosted Regression Trees 

(Friedman 2001), McRank (Li, Burges and Wu 2008) and PRank (Crammer and 

Singer 2001). Mohan, Chen and Weinberger illustrate that Random Forests is 

comparable to or better than Gradient Boosted Regression Trees which is a standard 

algorithm for web search ranking. Therefore, Random Forests is evaluated among 

pointwise algorithms in this study.  

 

Random Forests:   

 

Random Forests for regression can also be used as a pointwise learning to rank 

algorithm. It is an ensemble method where a group of weak learners come together 

to form a strong learner. It consists of many decision trees, thus it is called forest. 

Each decision tree is constructed by selecting the random subset from the data. Then, 

the remaining data is tested on the tree and the out of bag error is calculated. After 

that, the tree with the lowest error is selected as the ranking model (Breiman 2001).  

Since, each tree is constructed independently from the others, this algorithm can 
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easily be parallelized. Finally, when a new object comes in the test phase, Random 

Forests averages the output of each decision trees. 

 

2.2.1.2. Pairwise Approach 

 

Unlike pointwise approaches, pairwise approaches take care of predicting the 

relative order between the pair of documents. Therefore, pairwise approaches try to 

maximize the number of correctly classified document pairs. Thus, the input space 

is pairs of documents where both of them are represented by feature vectors while 

the output space is the pairwise preference {+1, -1} showing which one is more 

relevant than the other. The hypothesis function takes a pair of documents and 

outputs the relative order between them. Then all documents are ranked according to 

ranking between pairs. If orders between all pairs are correctly sorted, then the 

optimal ranked list will be obtained. RankNet (Burges, et al. 2005), FRank (Tsai, et 

al. 2007), Ranking SVM (Joachims 2002) and RankBoost (Freund, et al. 2003) are 

some examples of pairwise methods. According to experiments conducted by Qin, 

et al., Ranking SVM gives slightly better results in some of the benchmark datasets 

compared to other pairwise algorithms namely FRank and RankBoost (2010). In this 

thesis, we have experimented Ranking SVM among pairwise approaches and it is 

introduced in the following part. 

 

 

Ranking SVM: 

 

 

SVM is a classification or regression analysis method which is widely used in 

various application areas. It can also be adapted for ranking problems and it is called 

as Ranking SVM.  Differences between SVM for classification and Ranking SVM 

are as follows (Yu and Kim 2012); 

 A training data is a set of objects with their class labels in classification; 

however, it is an ordered set of objects in Ranking SVM. Let the notation 

𝐴 ≻ 𝐵 means that 𝐴 is more relevant than 𝐵. Then a training set for ranking 
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SVM is 𝑅 = { (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}  where 𝑦𝑖 is the ranking of 𝑥𝑖 , 

and if 𝑥𝑖  ≻ 𝑥𝑗, then  𝑦𝑖 <  𝑦𝑗. 

 

 The output of classification is the class label for an object. On the contrary, 

Ranking SVM outputs a score for each object such that 𝐹(𝑥𝑖) > 𝐹(𝑥𝑗)  for 

any 𝑥𝑖  ≻ 𝑥𝑗   where F is a ranking function. Then, a total ordering can be 

generated from these scores. 

 

 

According to the following formula, Ranking SVM aims to learn a function 𝐹 which 

finds a weight vector 𝑤 such that 𝑤𝑥𝑖 > 𝑤. 𝑥𝑗 for most of the data pairs. 

 

∀{(𝑥𝑖, 𝑥𝑗): 𝑦𝑖 <  𝑦𝑗  𝜖 𝑅}: 𝐹(𝑥𝑗) ⟸⟹ 𝑤𝑥𝑖 > 𝑤. 𝑥𝑗 

 

For instance; in the following Figure 2.5, weight vector 𝑤1 orders points as (1, 2, 3, 

4, 5) and weight vector w2 orders points as (4, 1, 2, 5, 3) vector, so w2 cannot be a 

candidate vector. 

 

 

 

 

 

Figure 2.5 Weight Vectors w1 and w2 in Feature Space 
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Since finding such a vector 𝑤  is NP-hard problem, we can find an approximate 

solution by using SVM methods with slack variables 𝜉𝑖𝑗 and minimizing the upper 

bound ∑ 𝜉𝑖𝑗 as the following:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶    𝐿1(𝑤, 𝜉𝑖𝑗) =  
1

2
 𝑤. 𝑤 + 𝐶 ∑ 𝜉𝑖𝑗 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∀{(𝑥𝑖, 𝑥𝑗): 𝑦𝑖 <  𝑦𝑗  ∈ 𝑅} ∶ 𝑤. 𝑥𝑖  ≥ 𝑤. 𝑥𝑗 + 1 − 𝜉𝑖𝑗 

 

In the above formula, the part of  𝑤. 𝑥𝑖  ≥ 𝑤. 𝑥𝑗 + 1 −  𝜉𝑖𝑗 can be rewritten as; 

 

𝑤 (𝑥𝑖 −  𝑥𝑗) ≥ 1 −  𝜉𝑖𝑗 

 

Then this optimization problem becomes the classifying SVM on pairwise difference 

vectors (𝑥𝑖 −  𝑥𝑗).  

 

2.2.1.3. Listwise Approach 

 

In listwise approach, a query and all documents associated with this query are given 

as input. Then, it outputs a permutation (ranked list) of the input documents such that 

the permutation minimizes the loss function. ListNet (Cao, et al. 2007), Coordinate 

Ascent (Metzler and Croft 2007), AdaRank (Xu and Li 2007), LambdaMART (Wu, 

et al. 2010) are some example algorithms applying listwise approach. In listwise 

approaches, lost function can also be considered as evaluation measure, so this 

approach also called as “direct optimization method” (Liu 2011). In the study of 

Busa-Fekete, et al., Coordinate Ascent gives the best performance with a small 

difference among some of the listwise algorithms such as AdaRank, LambdaMART 

and some of the pairwise algorithms such as RankBoost, RankingSVM (2012). As a 

listwise approach, Coordinate Ascent is chosen in this study. 
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Coordinate Ascent:   

 

Coordinate Ascent is a listwise learning to rank approach proposed by Metzler and 

Croft (2007). It is a linear feature based method that optimizes the ranking measure.  

In this study, we have selected only one popular algorithm from each approach. 

These algorithms are Random Forests, Ranking SVM and Coordinate Ascent which 

have been already described above. 

 

2.2.2. Data Labeling and Feature Extraction in Learning to Rank 
 

 

Data Labeling 

 

The training data given to learning algorithm consists of feature vector and relevance 

label for each user-item pair in recommender systems or document-query pairs in 

web search. Relevance labels can be inferred either explicitly or implicitly. 

 

 Explicit Feedback 

Users explicitly clarify their interest on items by giving ratings, likes etc. In 

this way relevance labels can take binary or scalar values. In binary judgment, 

users decide whether the item is relevant or not, like or dislike. They give 

different degrees of scores to items such that perfect, excellent, good, fair and 

bad in scalar rating. 

            Some drawbacks of explicit feedback are that; 

- Users may provide inconsistent or incorrect information. 

- Users’ interest may change over time. 

- It is time consuming and a burden for users. 
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 Implicit Feedback 

 

Relevance labels can be inferred from logs or click-through information. The 

dwell time (i.e. how much time was spent) or the number of clicks on an item 

gives clue about the relevance degree of the item for the user. Since, explicit 

feedback is not possible in TV domain, implicit feedback has been used in 

this thesis. TV program watching time periods, which have been extracted 

from user logs, are used as relevance labels for constructing the training data. 

 

 

Feature Extraction 

 

Feature selection (or designing) is a significant phase to construct a good ranking 

model. Any attribute could be a feature if it is useful to the model. In machine 

learning, this is called feature engineering which requires the domain knowledge of 

data to make machine learning algorithms work.  

 

In information retrieval area, page rank score of a document, title and length of the 

document, query length, TF-IDF score, occurrence counts of query terms in 

document etc. are some features that are commonly used (Qin, et. al 2010). 

 

Learning to rank algorithms have also been applied to top-N recommendation 

systems in the last decades. Users are considered as queries and items are considered 

as documents to apply learning to rank in recommendation systems.  

 

The following sub-section 2.3 explains how learning to rank is adapted to 

recommendation domain in detail by mentioning the types of features that have been 

used. 
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2.3. Top-N Recommender Systems Using Learning to Rank 

 

In the last decades, approaches considering the recommender problem as ranking 

instead of rating have been emerged. Ranking based systems try to increase the 

fraction of the relevant items in the top n positions of the recommended item list. In 

particular, learning to rank (LTR) techniques which have demonstrated high 

promise, have been applied to generate top-N recommendations list recently (Shi, et 

al. 2012) (Weime, et al. 2009) (Sun, et al. 2012) (Ostuni, et al. 2013).  

 

Sun, et al. adapted learning to rank for a hybrid movie recommendation system, 

namely LRHR (Learning to Rank for Hybrid Recommendation) for the first time 

(2012). For that, user and item based features are defined. The weights of these 

features are calculated with TF-IDF scores. Like documents and queries, users and 

items are represented with terms, namely user-based and item-based terms to make 

them content comparable. User-based terms are age interval, gender and occupation, 

item-based term is genre. In table 2.1, TF (term frequency) scores of each term for 

both user u and item i are illustrated. According to the table, user u is in the age 

interval of (18,24], male, technician, and u watched 64, 16 and 8 times of action, 

adventure, western movies respectively. Item i is watched by 10.000 people in the 

age interval of (18,24], 100.000 males, 1.000 technicians and the genre of item i is 

action and western.  

 

 

 

Table 2.1 Counts of User-based and Item-based Features 

 

 (18,24] male technician student action adventure western 

User u 1 1 1 0 64 16 8 

Item i 10.000 100.000 1.000 1.000 1 0 1 
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The frequency of terms have two weighting schema, TF and WF.  User terms in the 

representation of users and item terms in the representation of items have low 

frequencies, generally which is 1, so TF is used in their weighting. However, other 

terms have high frequencies; therefore, WF weighting is used.  

 

 

𝑊𝐹𝑡,𝑑 = {
1 + 𝑙𝑜𝑔𝑛𝑇𝐹𝑡,𝑑,       𝑖𝑓 𝑇𝐹𝑡,𝑑 > 0

0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        

 

 

 

where n is 2 for users, 10 for items. New frequency values after weighting are shown 

in Table 2.2. 

 

 

 

Table 2.2 Weighted Frequency Values 

 

 (18,24] male technician student action adventure western 

User u 1 1 1 0 7 5 4 

Item i 5 6 4 4 1 0 1 

 

 

 

 

Each user - item pair is defined with these term-based features and also some rating-

based features. The relevance label of each user-item pair is the rating score [1 to 5] 

of an item given by the user. These feature vectors are input to Ranking SVM, 

pairwise learning to rank algorithm, in order to generate a ranking model.  

 

In the study of Ostuni, et al., SPrank (Semantic Path-based ranking) algorithm is 

proposed (Ostuni, et al. 2013). Two dataset, MovieLens and Last.fm, which are 

widely used in recommendation domain, are chosen to test the proposed approach. 

They have used a graph based model, consisting user, item and named entity nodes. 

Named entities are extracted from DBPedia, a well-known encyclopedic knowledge 

base allowing users to query relationships and properties associated with Wikipedia 
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resources. From the analysis of the graph, they extract path-based features, assuming 

that the more paths between user and item, the more the item is relevant to user. 

Then, they used regression-based pointwise learning to rank algorithm to find which 

type of path features are most relevant to get a top-N recommendation list. In this 

thesis, similar path-based features are defined to generate a ranking model for 

recommendation in TV domain. 
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CHAPTER 3 

 

 

A TOP-N RECOMMENDATION FOR TV DOMAIN 

 

 

 

In this thesis, a top-N recommendation system for TV users has been developed by 

using learning to rank methods. The developed recommender system provides a 

hybrid recommendation framework using collaborative, content-based and context-

aware features. In this chapter, the construction of graph based model, the feature 

extraction from the graph and the generation of ranked TV program list are described 

in detail. 

 

3.1. Dataset Description 

 

One month TV program dataset which was broadcasted in Turkish channels starting 

from 01.12.2013 and ending with 31.12.2013 has been used in this study. There are 

two types of data in the used dataset to construct the graph-based user model. The 

first one is the JSON files of programs, which are separated to different folders and 

files according to day and channel name. One JSON file encapsulates programs with 

their attributes which are name, date, start time, end time, genres, directors, actors, 

description, terms, and named-entities of a program for a given day and channel. 

Figure 3.1 illustrates one of the programs broadcasted on the day of 21.12.2013. The 

second type of data is user logs which are kept in MySQL database. Each record in 

this database consists of user id, start time, end time and channel name columns. The 

time interval between the start and end time shows the length of the watching activity 
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  { 

    "name": "Zengin Kız Fakir Oğlan", 

    "date": "21.Aralık.2013", 

    "startTimeStr": "04:10", 

    "endTimeStr": "05:50", 

    "duration": 100, 

    "startTime": 1387591800, 

    "endTime": 1387597800, 

    "genreList": [ 

      "Dizi", 

      "Komedi" 

    ], 

    "imageUrl": 

"http://i.radikal.com.tr/TvRehberi/320x240/2013/12/21/5373780115201312210

410.jpg", 

    "summary": "Zengin bir aileye damat giden genç bir adamın komik 

öyküsü...", 

    "longDescription": "Sıradan bir banka çalışanı olan Nurhan zengin bir aileye 

damat olur. Kayınpeder Kemal ise onu kızına layık görmemektedir. Böylece 

komik olaylar dizisi başlar.", 

    "directors": [ 

      "Hasan Tolga Pulat" 

    ], 

    "actors": [ 

      "Hüseyin Avni Danyal", 

      " Ayda Aksel", 

      " Ufuk Özkan", 

      " Ecem Özkaya" 

    ], 

    "stemmedWords": [ 

      "banka", 

      "aile", 

      "damat", 

      "kemal", 

      "onu", 

      "kız", 

      "layık", 

      "olay", 

      "dizi" 

    ], 

    "annotatedEntities": [], 

    "timeOfDay": [ "EARLY_MORNING" ] 

  } 

 

Figure 3.1 A program instance in JSON program file 
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of the user at a specified channel. Taşçı (2015) describes how these program 

attributes have been crawled and enhanced and how user logs have been collected in 

detail. In this thesis, a graph based model has been constructed thanks to these two 

types of data, the program JSON files and the user logs. 

 

3.2. Construction of the Graph Based Model 

 

Relational databases are not suitable for reflecting too many relationships; 

conversely, graph databases are proper for storing graph structures including many 

relationships. Therefore, Neo4j1, which is one of the popular graph databases, has 

been chosen to construct a graph based user model in this study. Neo4j is a graph 

database management system implemented in Java. It stores everything as a node, 

an edge or an attribute. Each node and edge can have any number of attributes. These 

attributes can be a primitive type like string, numeric or boolean value, or a list which 

consists of any primitive types (The Neo4j Developer Manual v3.0. 2016). Neo4j 

has also its own query language, known as Cypher. It is a declarative language 

inspired from SQL and is used to describe patterns in graphs. An example cypher 

query in Figure 3.2 returns the top 10 most popular programs broadcasted between 

dates 07.12.2013 - 12.12.2013 which are corresponding to timestamp values 

1386367200 and 1386885599 respectively.  

 

 

 

 

                                                 
1 http://neo4j.com/ 

Match (u:USER) - [r:user_program] - (p:PROGRAM)  
where filter(x in r.startTimeStampList where x <> 0 and (x>1386367200 and 
x<1386885599))  
return p.name as name, count((r)) as popularity order by popularity DESC  
limit 10; 

 

Figure 3.2 An Example Cypher Query 
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In this study, Java programming language was chosen for the implementation of 

building the graph and extracting features based on this graph. Cypher also provides 

a Java API which enables connecting to the database and writing queries with Java.  

 

To construct the graph based user model, the available data, program data and user 

logs, have been aggregated by matching channel names and time attributes. The 

program data was initially inserted into Neo4j database by parsing the program JSON 

files. Programs with their attributes actor, director, genre, time of day, term and 

named-entity, are inserted into the graph database as distinct nodes. Then, users who 

watched Turkish channels are extracted from MySQL database. After that, programs 

which were watched by the users are found by intersecting watching time of the users 

with the broadcasting time of programs as well as comparing channel names.  

 

In this aggregation phase, some preprocessing were conducted similar to the work of 

Taşçı (2015). The first one is that the redundant entries in the user log data are 

eliminated such that start time is bigger than end time or time interval is invalid. The 

second one was for correcting channel names because there were channel names 

which were written in different formats. These are mapped to the same format as the 

following; 

 

        “TRT-1 HD”, “TRT 1 HD”, “TRT1” and “TRT 1” are mapped to “TRT 1”  

        “NTV Spor” and “NTV SPOR” are mapped to “NTV SPOR” and so on. 

 

As a result, the number of nodes in the final graph database are as follows; 

 

 2678 users 

 2124 programs 

 3964 terms  

 1202 named entities 

 35 genres 

 7 time of day 
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 2685 actors 

 730 directors 

 

3.2.1. Detailed Description of the Graph Based Model 

 

In this sub-section, the defined types of nodes and edges are described. Similar 

terminology with the work of Taşçı is used (2015). 

 

Node Types: 

 

 User Node  

Users only have an id attribute since this dataset does not contain any other 

user related information.  

 

 Program Node   

Programs have all attributes specified in the JSON file. The programs which 

were broadcasted many times are represented with a single program node 

which contains a list of start and end timestamps. Whether the user watched 

the program or not in the given time interval is determined according to this 

attribute while traversing the graph.  

 

 Genre Node  

There are 35 genres defined in the system. Some of them are “Sinema”, 

“Aktüalite”, “Yaşam”, “Hobi”, “Komedi”, “Belgesel” and “Tarihi” etc. 

While inserting genre nodes, some mapping is also conducted. For instance; 

“Eğlence Programı” and “Eğlence” are inserted as one unique node with the 

name “Eğlence” since they refer to the same genre. 
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 Time of Day Node   

There are 7 types of Time of Day node, which are “EARLY MORNING”, 

“BREAKFAST”, “LATE MORNING”, “DAYTIME”, “EVENING”, 

“PRIME TIME” and “NIGHT”. 

 

 Named-Entity Node  

Programs may have zero or more named-entity nodes. Named-entities, which 

are extracted from DBPedia, can be the name of a famous person ("Türkan 

Şoray", "Barış Manço"), a location ("Türkiye", "Aydın") or a general term 

("futbol","Anayasa Mahkemesi", "Hollywood", "bisiklet") etc. depending 

upon terms in the description field of TV programs. 

 

 Actor Node  

Programs may have zero or more actor nodes.  

 

 Director Node  

Programs may have zero or more director nodes.  

 

 Term Node    

Terms were extracted from the description of program which are already 

available in the JSON file.  

 

Edge Types: 

 “user_program” is the relationship between user and program node. This 

edge exists if the user watched the TV program. “user_program” edge has 

the list of “dwellTime” attribute such as dwellTimeList: [0.235, 0, 0, 0, 0, 

0.887, 0, 0, 0, 0.376]. This list shows that the program broadcasted 10 times 

in one month and the user watched the program 3 times with dwell times 

0.235, 0.887 and 0.376 respectively. Dwell time shows the degree of 

relevance between user and program. It is calculated in the following formula. 
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𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒 =
𝑤𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑔𝑟𝑎𝑚
 

 

The edge types defined below are all un-weighted edges.  

 “program_genre” is the relationship between program and genre node. One 

program may have genres more than one. 

 

 “program_term” is the relationship between program and term node. 

 

 “program_entity” is the relationship between program and named-entity 

node.  

 “program_timeofday” is the relationship between program and time of day 

node. 

 “program_actor” is the relationship between program and actor node. 

 

 “program_director” is the relationship between program and director node. 

 

 “actor_coocurance” is the relationship between two actor nodes. If two 

actors are acted in the same program, there is a co-occurrence relationship 

between them. 

 “entity_coocurance” is the relationship between two named-entity nodes. If 

two entities are linked to the same program, there is a co-occurrence 

relationship between them. 

 

 “term_coocurance” is the relationship between two term nodes. If two terms 

exist in the same program, there is a co-occurrence relationship between 

them. 

 

In Figure 3.3, a sample Neo4j graph is illustrated. The graph shows the 

programs watched by the user “27971” and the attributes of those programs. 
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3.3. Feature Extraction 

 

To generate a good ranking model, it is critical to define good features. SPRank 

(Semantic Path based Ranking) algorithm, which is proposed as a hybrid 

recommendation algorithm, uses path based features which are obtained from the 

graph based user model (Ostuni, et al. 2013). In this thesis, this algorithm has been 

adapted to the TV domain in a similar way. In their graph model only user, program 

and named-entity nodes are available. In addition to these nodes, genre, actor, 

director, time of day and term nodes are added into the constructed graph. The 

construction of path based features is explained with the help of the following sub-

graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the undirected sub-graph G = (V, R) that is illustrated in Figure 3.4, the defined 

vertices are V: u, p, g, a, t which represent user, program, genre, actor and term 

t1 

a1 

g1 

a2 

u3 p3 

p2 

u1 

u2 

p1 

 

Figure 3.4 An Example Sub-graph 
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respectively. All possible paths which are obtained by traversing this sub-graph can 

be categorized into 6 types by assuming the maximum depth of a path is four. 

 

 P1 : u – p 

 P2:  u – p – u – p  

 P3:  u – p – t – p 

 P4:  u – p – g – p 

 P5:  u – p – a – p 

 P6:  u – p – a – a – p 

 

After defining these 6 path types, the number of paths for each kind of path is counted 

between the given user and item. For instance, if we choose the user u3 and the 

program p1, which has not been watched by the user u3 yet, we find all paths starting 

from u3 and ending with p1. There are two paths as u3–p3–u2–p1 and u3–p2–u1–p1 

for the type of u–p–u–p path. There is the path of u3–p2–g1–p1 for the type of u–p–

g–p. Finally, there are paths of u3–p3–a2–a1-p1 and u3–p2–a2–a1-p1 for the type 

of u–p–a–a–p. So, the path counts are 0, 2, 0, 1, 0 and 2 for path types of P1, P2, P3, 

P4, P5 and P6 respectively. 

 

3.3.1. Path Based Features 

 

These paths are acyclic paths. The depth of paths is at most 4. These path based 

features can be grouped as rating based, collaborative, content based and context 

aware paths. The total path type is 11 and these 11 features are used to get the ranking 

model. 

 

a) Rating-Based Paths 

 

 User – Program              

                               

 
Ui Pj 
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This type of path can be considered in two ways; 

 

1) For all users: This will give how many users watched the program, 

which indicates the overall popularity of the program. 

 

2) For a specific user: This will give how many times the user have 

watched the program. 

 

b) Collaborative Paths 

 

 User – Program – User – Program         

 

 

 

This path type indicates how many paths between the user node Ui and the 

program node Pj exist over any user node Uj who watched the same programs 

as the user Ui.  

 

c) Content-based Paths 

 

The followings are content-based paths that indicate the user U can watch programs 

consisting the same attributes with the already watched programs by U. 

 

 User – Program – Actor – Program 

 

 

 

 User – Program – Director – Program 

 

 

 

 

Ui Pi Uj Pj 

Ui Pi A Pj 

Ui Pi D Pj 
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 User – Program – Term – Program 

 

 

 

 User – Program – Named_Entity – Program 

 

 

 

 

The following two types of path reveal the effect of co-occurrence in the 

actor-actor and entity-entity relationships. 

 

 User – Program – Actor – Actor  – Program 

 

 

 

 User – Program – Named_Entity – Named_Entity  – Program 

 

 

 

 

d) Context-Aware Paths 

 

These paths consist of contextual nodes, namely time and genre. 

 

 User – Program – TimeOfDay – Program 

 

 

 

 User – Program – Genre – Program 

 

Ui Pi T Pj 

Ui Pi E Pj 

Ui Pi A Pj A 

Ui Pi E Pj E 

Ui Pi T Pj 

Ui Pi G Pj 
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An example cypher query returns the id of each program and all path counts between 

the user “27971” and each program node for the path type of “user-program-actor-

program”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The weight of each kind of path features is different since some paths provide access 

to more relevant items while the importance of other paths may be less relevant 

(Ostuni, et al. 2013). Therefore, learning to rank provides a solution to enable an 

optimal ranking model according to the given features.  In the following sub-section, 

we explain how learning to rank approaches have been used to get a ranked 

recommendation list. 

 

 

3.4. Ranking 

 

Figure 3.6 illustrates the flow of obtaining top-N recommendation program list. It 

consists of two phases, training and testing. First, a ranking model is learned from 

the training file.  According to this model, predictions file generated for a user and 

all programs broadcasted in the specified time interval. In prediction file, there are 

score values for each program items. Then, these values are sorted to get a ranked 

list. After that, the top N program will be offered to the user.  

 

 

 

MATCH path = (u:USER) -- (p1:PROGRAM) -- (a:ACTOR)-- (p2:PROGRAM)  
WHERE u.name="27971"   
RETURN ID(p2) as pid, count(path) as count 

 

Figure 3.5 An Example Cypher Query to Find Path Counts 
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                                                                             Learns a 

                 Ranking System 

 

 

 

 

 

                                                                                                                                   

                                                                                                                       Sort 

 

 

 

 

 

 

 

 

 

 

To generate the ranking model, two learning to rank sources are used. The first one 

is RankLib1 which is an open source library where some of the state of the art 

learning to rank algorithms implemented in Java. It is a part of Lemur project which 

supports the research and development of information retrieval and text mining by 

developing search engines, browser toolbars, text analysis tools, and data resources.  

From this library, Random Forests and Coordinate Ascent algorithms have been 

used. The second one is Ranking SVM2 tool. 

 

 

 

 

 

                                                 
1 https://sourceforge.net/p/lemur/wiki/RankLib/ 
2 https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html 

 

Training  

File 

Model  Test  File Predictions

File 

Ranked 

List 

 

Figure 3.6 The Flow of Obtaining Top-N Recommendation List 
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3.4.1. Data Format of Training and Test File 

 

The data format is same for all algorithms which are used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 illustrates a typical data format. Train and test file consist of lines where 

each line corresponds to one query and document pair. Each line starts with a 

relevance label and this label can take any integer number. In our case, relevance 

label is determined implicitly according to dwell time. In train and test phases, 

programs with dwell time bigger than 0.75 are considered as relevant, the others are 

considered as irrelevant. Therefore, relevance label takes only binary values, 0 or 1. 

 

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 𝐿𝑎𝑏𝑒𝑙 =  {
1    𝑖𝑓  𝑑𝑤𝑒𝑙𝑙𝑇𝑖𝑚𝑒 ≥ 0.75 
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

This relevance label is 0 in the test file since it will be predicted. After relevance 

label, the id of query comes and then feature id: value pairs (feature vectors) follow 

the query id. The feature ids must be in increasing order. 

 

 

Figure 3.8 illustrates a sample training file. # is for commenting. In Figure 3.8, there 

are two queries with query id (qid) 1 and 2 and three documents returning for the 

both of these queries. There are also 6 features for all query document pairs. 

<line> .=. <relevance> qid:<qid> <feature>:<value> ... <feature>:<value> 

<relevance> .=. 0 | 1 

<qid> .=. <positive integer> 

<feature> .=. <positive integer> 

<value> .=. <float> 

 

Figure 3.7 Data Format 



  

40 

 

 

 

1    qid:1  1:1 2:1 3:0 4:0.3 5:0  6:0.1  #1A 

1    qid:1  1:1 2:0 3:1 4:0.5 5:1  6:0.2 #1B 

0    qid:1  1:0 2:1 3:0 4:0.2 5:0   6:0.1#1C  

0    qid:2  1:0 2:0 3:1 4:0.1 5:1 6:0.2  #2A 

1    qid:2  1:1 2:1 3:1 4:0.3 5:1  6:0.2 #2B  

0    qid:2  1:1 2:0 3:0 4:0.5 5:0 6:0.1  #2C 

 

Figure 3.8 Sample Training File 

 

 

 

3.4.1.1.   Train Phase 

 

It has been already mentioned that two different sources are used for learning to rank 

algorithms. For the first one RankLib, the command for training is shown in Figure 

3.9. 

 

 

 

 

 

       

 

 

 

    Parameters 

       -train:  specifies the training data file  

-ranker:  RankLib provides 9 learning to rank algorithms. This parameter 

shows which algorithm is used by specifying the id. Id is 4 for Coordinate 

Ascent, id is 8 for Random Forests. 

-save:  specifies the location of the learned model to save. 

 

    > java -jar bin\RankLib.jar -train fold1\train.dat -ranker 4 -save 

fold1\model 

 
 

Figure 3.9 Command to train data in RankLib 
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For the second tool RankingSVM, the command is as follows for training. It takes 

train file and model file as an argument.  

 

 

 

 

 

 

 

 

 

 

3.4.1.2.   Test Phase 

 

For RankLib, the command for testing is as the following; 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters: 

 

-load:  specifies which model file will be used. 

-rank:  specifies which test file will be used to get predictions file. 

-score:  specifies the location of predictions file. 

 

For RankingSVM, the command to generate ranked list is as follows. It takes test 

file, model file and predictions file respectively as an argument. 

 

 

 

 

 

 

   > java -jar bin\RankLib.jar -load fold1\model -rank fold1\fold1_test.dat  

-score fold1\predictions 

 

Figure 3.11 Command to test data in RankLib 

> svm_rank_learn.exe train.dat model 

> svm_rank_classify.exe test.dat model predictions 

 

Figure 3.12 Command to test data for RankingSVM 

 

Figure 3.10 Command to train data for Ranking SVM 
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CHAPTER 4 

 

 

EXPERIMENTS & EVALUATION 

 

 

 

The evaluation strategy and metrics used in the proposed recommendation system 

are explained in detail in this chapter. The metrics widely used in the evaluation of 

top-N recommendation systems are described and then the results of the conducted 

experiments are presented. 

 

4.1. Evaluation Strategy and Metrics  

 

4.1.1. K-fold Cross Validation 

 

Cross validation, also known as rotation estimation, is a model validation technique 

which helps to observe the accuracy of model in practice. With the help of cross 

validation how the model will perform for unseen data is predicted. One commonly 

used kind of it is k-fold cross validation (Cross Validation, Wikipedia 2016). It starts 

with dividing the data into k chunks. One of the chunks is used for testing and 

remaining chunks are used for training. Then, it iterates k times until each chunk 

used as test data. Then result is calculated as the average of all rounds. Multiple 

rounds provide to reduce the variability.  

 

In this work, 5-fold cross validation is chosen so data is divided into 5 chunks. For 

all evaluation results, 5-fold cross validation was performed. Since TV program data 

which had been broadcasted for one month, is used in this work, data is divided 
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according to equal time periods for evaluation (Figure 4.1). In test data, it is assumed 

that no user has watched any program yet. 

 

 

 
                           1                     6                     12                   18                   24                   31 

              Days     

 

 

 

 

 

 

 

 

 

             

                             

 

 

4.1.2. Evaluation Metrics 

 

In top-N recommendation systems, there are some accepted measurements. Some of 

them are Mean Average Precision (MAP), Normalized Discounted Cumulative Gain 

(NDCG), Recall @N and Mean Reciprocal Rank. In this study, Recall @N and 

NDCG have been used. 

 

4.1.2.1. Recall @N 
 

This metric measures how many items occur in the specified top-N positions of the 

recommended item list. The position of each relevant item i is compared with the 

value of given N. If the position is smaller than or equal to N, it is considered as hit, 

else it is considered as miss. Then total number of hits are averaged by total relevant 

items in the test data.  

test train train 

 
train 

 
train 

 

train 
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train 
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train 
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Fold 5 

 

Figure 4.1 Five Fold Cross Validation 
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𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 =  
#ℎ𝑖𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠
 

 

 

 

In the calculation of Recall @N, two ways have been tried. The first one is looking 

at all items in test data. The second one is the same as the description in SPRank 

paper (Ostuni, et al. 2013). First, 100 irrelevant items are randomly selected from 

test data and only 1 relevant item is chosen. Then whether this 1 relevant item occurs 

at the specified top-N locations in these 101 items or not is evaluated. 

 

4.1.2.2. NDCG (Normalized Discounted Cumulative Gain) 
 

Discounted Cumulative Gain (DCG) measures the ranking quality, meaning that 

documents with higher label must be in top positions of the list. It penalizes the 

documents having higher grades if they are in lower positions of the list. 

 

𝐷𝐶𝐺𝑝 = ∑
2𝑟𝑒𝑙𝑖 − 1

𝑙𝑜𝑔2(𝑖 + 1)
    

𝑝

𝑖=1

 

 

where p is the position and reli is the relevance value of item i. 

 

NDCG is the fraction of DCG over IDCG (Ideal DCG). 

 

𝑁𝐷𝐶𝐺𝑝 =
𝐷𝐶𝐺𝑝

𝐼𝐷𝐶𝐺𝑝

 

 

 

For instance, assume there are documents d1, d2, d3, d4, d5 and d6 with values 3, 2, 3, 

0, 1 and 2 respectively. Then DCG value of this ranking equals to 13.85. The optimal 

ordering of these documents are d1, d3, d2, d6, d5 and d4 with values 3, 3, 2, 2, 1, 0 

and the value of IDCG is 14.6. So, 
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𝑁𝐷𝐶𝐺 =  
13.85

14.6
= 0.95 

 

In this study, binary relevance judgment has been used and so reli in the NDCG 

formula, can take 0 or 1 value. 

 

4.2.  Experimental Results 

 

In this thesis, three types of experiments are conducted by applying 5-fold cross 

validation technique. First, learning to rank algorithms are compared from each 

category. Second, a baseline method is compared against to learning to rank 

approaches. Finally, the effects of each type of path-based features are investigated. 

The results of each experiment are presented in the following sub-sections. 

 

4.2.1. Comparison of Learning to Rank Algorithms 

 

In evaluation, the state-of-the art learning to rank algorithms shown in Table 4.1 are 

tested.  Each algorithm is chosen from different categories of learning to rank. 

 

Table 4.1 Learning to Rank Algorithms Compared 

 

 

 

 

 

 

 

 

 

 

 

4.2.1.1.    Recall @N Results 

 

As we mentioned in section 4.1.2.1 two approaches have been used for the 

calculation of Recall @N. Figure 4.2 shows the calculation of Recall @N with all 

Algorithm Name Category 

Random Forests Pointwise 

Ranking SVM Pairwise 

Coordinate Ascent Listwise 
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broadcasted items in test data.  According to the results, Coordinate Ascent gives the 

best results with a small difference from Ranking SVM.  

 

 

 

  

 

Figure 4.2 Recall @N values (N: 5, 10, 15 and 20) 

 

 

 

Figure 4.3 illustrates the results of Coordinate Ascent (CA) for the second            

Recall @N approach that is selecting randomly 100 irrelevant items and 1 relevant 

item. 
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Figure 4.3 Coordinate Ascent in 101 items 

 

 

4.2.1.2. NDCG @N Results 

 

Results for three algorithms according to metric of NDCG @N are as the following; 

 

 

 

 

 

Figure 4.4 Comparison of 3 LTR methods according to NDCG @N 
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4.2.2. Comparison with a Baseline Method 

 

In the work of Ostuni, et al. the proposed SPRank algorithm was compared with a 

baseline method namely Sum (2013). In Sum, all path count values for all features 

are summed up for each user and program. Therefore, a ranking-oriented learning 

approach is compared with a baseline method, which does not use any learning. 

 

 

According to Figure 4.5, learning to rank approach, Coordinate Ascent outperforms 

Sum according to the evaluation metric Recall @N. In addition, Figure 4.6 compares 

all algorithms with the baseline method Sum. According to the presented results, all 

evaluated learning to rank approaches give better results than Sum except for 

Random Forests at Recall @5.  

 

 

 

 

  

 

Figure 4.5 Comparison of Coordinate Ascent with SUM  
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Figure 4.6 Comparison of All Methods with a Baseline according to 

Recall @N 

 

 

Similarly, Figure 4.7 shows the comparison of all methods with Sum based on the 

metric of NDCG. As a result, learning to rank approaches give better NDCG@N 

values compared to Sum. 

 

 

 

 

Figure 4.7 Comparison of All Methods with a Baseline according to 

NDCG @N  
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4.2.3. Comparison of Each Type of Path-Based Features 

 

In this thesis, four types of path-based features are used. These are rating-based, 

collaborative, content-based and context-aware paths. We have experimented each 

type separately. Figure 4.8 illustrates the Recall @N results of each path type and 

also the Recall @N results of the overall. According to the results the most effective 

feature is collaborative path. 

 

 

 

 

Figure 4.8 Recall @N Results of Each Type of Path-Based Features 

 

 

4.3. Discussion of Experimental Results 

 

In this thesis, it is mentioned that recommendation problem can be seen as a ranking 

problem instead of rating because suggested items to the users must be sorted 

according to the relevance. Thus, the users can find compelling programs near the 

top places of recommendation item list. In this study, we have developed a top-N 

recommender system in TV domain and we have considered only top-N locations of 
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the list where N equals to 5, 10, 15 and 20. The results show that learning to rank 

leads to move the relevant items to the top positions of the list. Furthermore, we have 

compared our recommender system with a baseline method in which all features 

have equal weights. According to the results, learning to rank approaches provide 

significant advantage compared to the baseline.  

 

Moreover, we have compared three approaches of learning to rank. According to 

NDCG@N and Recall @N results, we can deduce that listwise approach (Coordinate 

Ascent) gives better results than pairwise and pointwise approaches as stated in the 

work of Qin, et al. (2010). The fact that listwise methods care the group structure of 

the list of program makes them advantageous relative to pointwise and pairwise 

methods. Moreover, Random Forests is slightly worse than Coordinate Ascent in this 

study as experimented by Busa-Fekete, et al. (2012). 

 

Finally, we have investigated the effects of each type of path-based features. 

According to the results, we can conclude that the effect of collaborative filtering is 

the highest and then rating-based features follow it. The effect of the content is the 

lowest. The reason for that can be the sparseness of content-based nodes compared 

to the other nodes. For instance, many programs like whose genre are “News”, 

“Cartoon”, “Documentary”, “Sport” etc. do not have any connected actor, director 

nodes. On the other hand, each program has at least one genre and time-of-day node. 

Therefore, the effects of context can be observed more accurately. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

In this thesis, a top-N recommendation system has been developed by using the 

methods in learning to rank for TV domain. The main goal is to provide TV users a 

ranked list of programs for a specific top-N position.  

 

First, users, programs and the attributes of programs are combined in a graph based 

model similar to the work of Taşçı (2015). Neo4j graph database management 

system was used both for the constructing of the graph based model and the acquiring 

of the features.  

 

Moreover, features, which have an important role in the construction of a good 

ranking model, have been chosen. For that, path-based features, which have been 

proposed in the study of Ostuni, et al. (2013), were adapted to TV domain. Then, a 

ranking model was learned by using pointwise, pairwise and listwise LTR methods. 

These are, Random Forests, Ranking SVM and Coordinate Ascent respectively. 

Coordinate Ascent showed slightly better performance than RankingSVM. 

Furthermore, using learning to rank algorithms make an improvement compared to 

a baseline method, which aggregates all features equally.  

 

As a future work, the count of features can be increased since learning to rank is so 

efficient to combine many features. Channel nodes can be added into the graph based 

user model, and then, channel name based ratings, such as how many times user 

watched the same channel and the general popularity of the channel can be used as 
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new features. Additionally, current context of the user is very significant in TV 

domain to recommend next programs to be watched as mentioned in the related 

work. So, two types of user profiles, namely current user profile and historical user 

profile, can be defined using the graph based user model. Then the same path-based 

features could be extracted from both current user profile and historical user profile 

to generate the ranking model. 

 

  



  

55 

 

 

 

REFERENCES 

 

 

 

Aharon, Michal, Eshcar Hillel, Amit Kagian, Ronny Lempel, Hayim Makabee, and 

Raz Nissim. "Watch-It-Next: A Contextual TV Recommendation System." 

Machine Learning and Knowledge Discovery in Databases Lecture Notes 

in Computer Science, 2015: 180-195. 

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent Dirichlet 

Allocation." Journal of Machine Learning Research, 2003: 993-1022. 

Breiman, Leo. "Random Forests." Machine Learning 45 (2001): 5-32. 

Burges, Chris, et al. "Learning to Rank using Gradient Descent." Proceedings of 

the 22nd International Conference on Machine Learning. Bonn, 2005. 89-

96. 

Busa-Fekete, Robert, Gyorgy Szarvas, Tamas Elteto, and Balazs Kegl. "An apple-

to-apple comparison of Learning-to-rank algorithms in terms of Normalized 

Discounted Cumulative." In Proceedings of the 20th European Conference 

on Artificial Intelligence (ECAI-12) 242 (2012). 

Cao, Zhe, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. "Learning to 

Rank: From Pairwise Approach to Listwise Approach." Proceedings of the 

24th International Conferenceon Machine Learning. 2007. 129-136. 

Chang, Na, Mhd Irvan, and Takao Terano. "A TV program recommender 

framework." Procedia Computer Science 22 (2013): 561-570. 

Crammer, Koby, and Yoram Singer. "Pranking with Ranking." Advances in Neural 

Information Processing Systems, 2001: 641-647. 



  

56 

 

Cremonesi, Paolo, Yehuda Koren, and Roberto Turrin. "Performance of 

Recommender Algorithms on Top-N Recommendation Tasks." 

Proceedings of the fourth ACM conference on Recommender systems - 

RecSys '10. 2010. 39-46. 

Cross Validation - Wikipedia, the free encyclopedia. May 4, 2016. 

https://en.wikipedia.org/wiki/Cross-validation_(statistics) (accessed May 

2016). 

Discounted Cumulative Gain - Wikipedia, the free encyclopedia. April 11, 2016. 

https://en.wikipedia.org/wiki/Discounted_cumulative_gain (accessed May 

2016). 

Freund, Yoav, Raj Iyer, Robert E. Schapire, and Yoram Singer. "An Efficient 

Boosting Algorithm for Combining Preferences." Journal of Machine 

Learning Research, 2003: 933-969. 

Friedman, Jerome H. "Greedy Function Approximation: A Gradient Boosting 

Machine." The Annals of Statistics 29 (2001): 1189-1232. 

Iguchi, Koichi, Yoshinori Hijikata, and Shogo Nishida. "Individualizing user 

profile from viewing logs of several people for TV program 

recommendation." Proceedings of the 9th International Conference on 

Ubiquitous Information Management and Communication - IMCOM '15. 

BALI: ACM, 2015. 

Joachims, Thorsten. "Optimizing Search Engines using Clickthrough Data." 

Proceedings of the eighth ACM SIGKDD international conference on 

Knowledge discovery and data mining - KDD '02. 2002. 133–142. 

Kim, Myung-Won, Eun-Ju Kim, Won-Moon Song, Sung-Yeol Song, and A. Ra 

Khil. "Efficient Recommendation for Smart TV Contents." Big Data 

Analytics Lecture Notes in Computer Science, 2012: 158-167. 



  

57 

 

Learning to Rank - Wikipedia, the free encyclopedia. April 4, 2016. 

https://en.wikipedia.org/wiki/Learning_to_rank (accessed May 10, 2016). 

Li, Hang. "A Short Introduction to Learning to Rank." IEICE Transactions on 

Information and Systems IEICE Trans. Inf. & Syst. E94-D, no. 10 (2011): 

1854-1862. 

Li, Ping, Christopher J.C. Burges, and Qiang Wu. "McRank: Learning to Rank 

Using Multiple Classification and Gradient Boosting." Advances in Neural 

Information Processing Systems, 2008: 845-852. 

Liu, Tie-Yan. Learning to Rank for Information Retrieval. Heidelberg: Springer, 

2011. 

Lu, Jie, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. 

"Recommender system application developments: A survey." Decision 

Support Systems 74 (2015): 12-32. 

Memarsadeghi, Nargess, David M. Mount, Nathan S. Netanyahu, and Jacqueline 

Le Moigne. "A Fast Implementation of the ISOData Clustering Algorithm." 

International Journal of Computational Geometry & Applications, 2007: 

71-103. 

Metzler, Donald, and W. Bruce Croft. "Linear Feature-Based Models for 

Information Retrieval." Inf Retrieval, 2007: 257-274. 

Mohan, Ananth, Zheng Chen, and Kilian Weinberger. "Web-Search Ranking with 

Initialized Gradient Boosted Regression Trees." Journal of Machine 

Learning Research, 2011: 77-89. 

Oh, Jinoh, Sungchul Kim, Jinha Kim, and Hwanjo Yu. "When to recommend: A 

new issue on TV show recommendation." Information Sciences, 2014: 261-

274. 



  

58 

 

Ostuni, Vito Claudio, Tommaso Di Noia, Eugenio Di Sciascio, and Roberto 

Mirizzi. "Top-N Recommendations from Implicit Feedback Leveraging 

Linked Open Data." Proceedings of the 7th ACM conference on 

Recommender systems - RecSys '13. Hong Kong, China, 2013. 85-92. 

Pazzani, Michael J., and Daniel Billsus. "Content-based Recommendation 

Systems." The Adaptive Web Lecture Notes in Computer Science 4321 

(2007): 325-341. 

Qin, Tao, Tie-Yan Liu, Jun Xu, and Hang Li. "LETOR: A benchmark collection 

for research on learning to rank for information retrieval." Inf Retrieval 13 

(2010): 346-374. 

Shi, Yue, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Nuria Oliver, 

and Alan Hanjalic. "CLiMF: Collaborative Less-Is-More Filtering." 

Proceedings of the sixth ACM conference on Recommender systems. 

Dublin, 2012. 3077-3081. 

Spreading Activation - Wikipedia, the free encyclopedia. September 22, 2015. 

https://en.wikipedia.org/wiki/Spreading_activation (accessed April 27, 

2016). 

Su, Xiaoyuan, and Taghi M. Khoshgoftaar. "A Survey of Collaborative Filtering 

Techniques." Advances in Artificial Intelligence, 2009: 1-19. 

Sun, Jiankai, Shuaiqiang Wang, Byron J. Gao, and Jun Ma. "Learning to Rank for 

Hybrid Recommendation." Proceedings of the 21st ACM international 

conference on Information and knowledge management - CIKM '12. 2012. 

2239-2242. 

Taşçı, Arda. "A GRAPH-BASED CORE MODEL AND A HYBRID 

RECOMMENDER SYSTEM FOR TV USERS." MS Thesis, Middle East 

Technical University, 2015. 



  

59 

 

The Neo4j Developer Manual V3.0. 2016. http://neo4j.com/docs/developer-

manual/current/ (accessed February 10, 2016). 

Tsai, Ming-Feng, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and Wei-Ying Ma. 

"FRank: A Ranking Method with Fidelity Loss." SIGIR '07. New York: 

ACM Press, 2007. 383-390. 

Tsunoda, Tomohiro, and Masaaki Hoshino. "Automatic metadata expansion and 

indirect collaborative filtering for TV program recommendation system." 

Multimed Tools Appl 36 (2008): 37-54. 

Türkiye İstatistik Kurumu, Zaman Kullanım Araştırması. 2015. 

http://www.tuik.gov.tr/PreHaberBultenleri.do?id=18627 (accessed May 

2016). 

Véras, Douglas, Thiago Prota, Alysson Bispo, Ricardo Prudêncio, and Carlos 

Ferraz. "A literature review of recommender systems in the television 

domain." Expert Systems With Applications 42, no. 22 (2015): 9036-9046. 

Weime, Markus, Alexandros Karatzoglou, Quoc Viet Le, and Alex Smola. "Cofi 

Rank Maximum Margin Matrix Factorization for Collaborative Filtering." 

In Proceedings of the Twenty-First Annual Conference on Neural 

Information Processing Systems. 2009. 

Wu, Qiang, Christopher J. C. Burges, Krysta M. Svore, and Jianfeng Gao. 

"Adapting Boosting for Information Retrieval Measures." Information 

Retrieval, 2010: 254-270. 

Xu, Jun, and Hang Li. "AdaRank: A Boosting Algorithm for Information 

Retrieval." Proceedings of the 30th Annual Internation aCM SIGIR 

Conference on Research and Development in Information Retrieval. 2007. 

391-398. 

Yu, Hwanjo, and Sungchul Kim. "SVM Tutorial : Classification, Regression and 

Ranking." Handbook of Natural Computing, 2012: 479-506. 


